]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
posixtimers, sched: Fix posix clock monotonicity
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
0b148fa0 226 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
052f1dc7 334#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
335#ifdef CONFIG_USER_SCHED
336# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 337#else /* !CONFIG_USER_SCHED */
052f1dc7 338# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 339#endif /* CONFIG_USER_SCHED */
052f1dc7 340
cb4ad1ff 341/*
2e084786
LJ
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
cb4ad1ff
MX
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
348 */
18d95a28 349#define MIN_SHARES 2
2e084786 350#define MAX_SHARES (1UL << 18)
18d95a28 351
052f1dc7
PZ
352static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353#endif
354
29f59db3 355/* Default task group.
3a252015 356 * Every task in system belong to this group at bootup.
29f59db3 357 */
434d53b0 358struct task_group init_task_group;
29f59db3
SV
359
360/* return group to which a task belongs */
4cf86d77 361static inline struct task_group *task_group(struct task_struct *p)
29f59db3 362{
4cf86d77 363 struct task_group *tg;
9b5b7751 364
052f1dc7 365#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
052f1dc7 369#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
24e377a8 372#else
41a2d6cf 373 tg = &init_task_group;
24e377a8 374#endif
9b5b7751 375 return tg;
29f59db3
SV
376}
377
378/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 380{
052f1dc7 381#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
052f1dc7 384#endif
6f505b16 385
052f1dc7 386#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 389#endif
29f59db3
SV
390}
391
392#else
393
6f505b16 394static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
395static inline struct task_group *task_group(struct task_struct *p)
396{
397 return NULL;
398}
29f59db3 399
052f1dc7 400#endif /* CONFIG_GROUP_SCHED */
29f59db3 401
6aa645ea
IM
402/* CFS-related fields in a runqueue */
403struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
406
6aa645ea 407 u64 exec_clock;
e9acbff6 408 u64 min_vruntime;
6aa645ea
IM
409
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
4a55bd5e
PZ
412
413 struct list_head tasks;
414 struct list_head *balance_iterator;
415
416 /*
417 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
418 * It is set to NULL otherwise (i.e when none are currently running).
419 */
4793241b 420 struct sched_entity *curr, *next, *last;
ddc97297 421
5ac5c4d6 422 unsigned int nr_spread_over;
ddc97297 423
62160e3f 424#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
426
41a2d6cf
IM
427 /*
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
431 *
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
434 */
41a2d6cf
IM
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
437
438#ifdef CONFIG_SMP
c09595f6 439 /*
c8cba857 440 * the part of load.weight contributed by tasks
c09595f6 441 */
c8cba857 442 unsigned long task_weight;
c09595f6 443
c8cba857
PZ
444 /*
445 * h_load = weight * f(tg)
446 *
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
449 */
450 unsigned long h_load;
c09595f6 451
c8cba857
PZ
452 /*
453 * this cpu's part of tg->shares
454 */
455 unsigned long shares;
f1d239f7
PZ
456
457 /*
458 * load.weight at the time we set shares
459 */
460 unsigned long rq_weight;
c09595f6 461#endif
6aa645ea
IM
462#endif
463};
1da177e4 464
6aa645ea
IM
465/* Real-Time classes' related field in a runqueue: */
466struct rt_rq {
467 struct rt_prio_array active;
63489e45 468 unsigned long rt_nr_running;
052f1dc7 469#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
470 int highest_prio; /* highest queued rt task prio */
471#endif
fa85ae24 472#ifdef CONFIG_SMP
73fe6aae 473 unsigned long rt_nr_migratory;
a22d7fc1 474 int overloaded;
fa85ae24 475#endif
6f505b16 476 int rt_throttled;
fa85ae24 477 u64 rt_time;
ac086bc2 478 u64 rt_runtime;
ea736ed5 479 /* Nests inside the rq lock: */
ac086bc2 480 spinlock_t rt_runtime_lock;
6f505b16 481
052f1dc7 482#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
483 unsigned long rt_nr_boosted;
484
6f505b16
PZ
485 struct rq *rq;
486 struct list_head leaf_rt_rq_list;
487 struct task_group *tg;
488 struct sched_rt_entity *rt_se;
489#endif
6aa645ea
IM
490};
491
57d885fe
GH
492#ifdef CONFIG_SMP
493
494/*
495 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
498 * exclusive cpuset is created, we also create and attach a new root-domain
499 * object.
500 *
57d885fe
GH
501 */
502struct root_domain {
503 atomic_t refcount;
c6c4927b
RR
504 cpumask_var_t span;
505 cpumask_var_t online;
637f5085 506
0eab9146 507 /*
637f5085
GH
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
510 */
c6c4927b 511 cpumask_var_t rto_mask;
0eab9146 512 atomic_t rto_count;
6e0534f2
GH
513#ifdef CONFIG_SMP
514 struct cpupri cpupri;
515#endif
7a09b1a2
VS
516#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
517 /*
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
521 */
522 unsigned int sched_mc_preferred_wakeup_cpu;
523#endif
57d885fe
GH
524};
525
dc938520
GH
526/*
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
529 */
57d885fe
GH
530static struct root_domain def_root_domain;
531
532#endif
533
1da177e4
LT
534/*
535 * This is the main, per-CPU runqueue data structure.
536 *
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
540 */
70b97a7f 541struct rq {
d8016491
IM
542 /* runqueue lock: */
543 spinlock_t lock;
1da177e4
LT
544
545 /*
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
548 */
549 unsigned long nr_running;
6aa645ea
IM
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 552 unsigned char idle_at_tick;
46cb4b7c 553#ifdef CONFIG_NO_HZ
15934a37 554 unsigned long last_tick_seen;
46cb4b7c
SS
555 unsigned char in_nohz_recently;
556#endif
d8016491
IM
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
6aa645ea
IM
559 unsigned long nr_load_updates;
560 u64 nr_switches;
561
562 struct cfs_rq cfs;
6f505b16 563 struct rt_rq rt;
6f505b16 564
6aa645ea 565#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
566 /* list of leaf cfs_rq on this cpu: */
567 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
568#endif
569#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 570 struct list_head leaf_rt_rq_list;
1da177e4 571#endif
1da177e4
LT
572
573 /*
574 * This is part of a global counter where only the total sum
575 * over all CPUs matters. A task can increase this counter on
576 * one CPU and if it got migrated afterwards it may decrease
577 * it on another CPU. Always updated under the runqueue lock:
578 */
579 unsigned long nr_uninterruptible;
580
36c8b586 581 struct task_struct *curr, *idle;
c9819f45 582 unsigned long next_balance;
1da177e4 583 struct mm_struct *prev_mm;
6aa645ea 584
3e51f33f 585 u64 clock;
6aa645ea 586
1da177e4
LT
587 atomic_t nr_iowait;
588
589#ifdef CONFIG_SMP
0eab9146 590 struct root_domain *rd;
1da177e4
LT
591 struct sched_domain *sd;
592
593 /* For active balancing */
594 int active_balance;
595 int push_cpu;
d8016491
IM
596 /* cpu of this runqueue: */
597 int cpu;
1f11eb6a 598 int online;
1da177e4 599
a8a51d5e 600 unsigned long avg_load_per_task;
1da177e4 601
36c8b586 602 struct task_struct *migration_thread;
1da177e4
LT
603 struct list_head migration_queue;
604#endif
605
8f4d37ec 606#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
607#ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610#endif
8f4d37ec
PZ
611 struct hrtimer hrtick_timer;
612#endif
613
1da177e4
LT
614#ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
9c2c4802
KC
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
619
620 /* sys_sched_yield() stats */
480b9434
KC
621 unsigned int yld_exp_empty;
622 unsigned int yld_act_empty;
623 unsigned int yld_both_empty;
624 unsigned int yld_count;
1da177e4
LT
625
626 /* schedule() stats */
480b9434
KC
627 unsigned int sched_switch;
628 unsigned int sched_count;
629 unsigned int sched_goidle;
1da177e4
LT
630
631 /* try_to_wake_up() stats */
480b9434
KC
632 unsigned int ttwu_count;
633 unsigned int ttwu_local;
b8efb561
IM
634
635 /* BKL stats */
480b9434 636 unsigned int bkl_count;
1da177e4
LT
637#endif
638};
639
f34e3b61 640static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 641
15afe09b 642static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 643{
15afe09b 644 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
645}
646
0a2966b4
CL
647static inline int cpu_of(struct rq *rq)
648{
649#ifdef CONFIG_SMP
650 return rq->cpu;
651#else
652 return 0;
653#endif
654}
655
674311d5
NP
656/*
657 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 658 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
659 *
660 * The domain tree of any CPU may only be accessed from within
661 * preempt-disabled sections.
662 */
48f24c4d
IM
663#define for_each_domain(cpu, __sd) \
664 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
665
666#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
667#define this_rq() (&__get_cpu_var(runqueues))
668#define task_rq(p) cpu_rq(task_cpu(p))
669#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
670
3e51f33f
PZ
671static inline void update_rq_clock(struct rq *rq)
672{
673 rq->clock = sched_clock_cpu(cpu_of(rq));
674}
675
bf5c91ba
IM
676/*
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
678 */
679#ifdef CONFIG_SCHED_DEBUG
680# define const_debug __read_mostly
681#else
682# define const_debug static const
683#endif
684
017730c1
IM
685/**
686 * runqueue_is_locked
687 *
688 * Returns true if the current cpu runqueue is locked.
689 * This interface allows printk to be called with the runqueue lock
690 * held and know whether or not it is OK to wake up the klogd.
691 */
692int runqueue_is_locked(void)
693{
694 int cpu = get_cpu();
695 struct rq *rq = cpu_rq(cpu);
696 int ret;
697
698 ret = spin_is_locked(&rq->lock);
699 put_cpu();
700 return ret;
701}
702
bf5c91ba
IM
703/*
704 * Debugging: various feature bits
705 */
f00b45c1
PZ
706
707#define SCHED_FEAT(name, enabled) \
708 __SCHED_FEAT_##name ,
709
bf5c91ba 710enum {
f00b45c1 711#include "sched_features.h"
bf5c91ba
IM
712};
713
f00b45c1
PZ
714#undef SCHED_FEAT
715
716#define SCHED_FEAT(name, enabled) \
717 (1UL << __SCHED_FEAT_##name) * enabled |
718
bf5c91ba 719const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
720#include "sched_features.h"
721 0;
722
723#undef SCHED_FEAT
724
725#ifdef CONFIG_SCHED_DEBUG
726#define SCHED_FEAT(name, enabled) \
727 #name ,
728
983ed7a6 729static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
730#include "sched_features.h"
731 NULL
732};
733
734#undef SCHED_FEAT
735
34f3a814 736static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 737{
f00b45c1
PZ
738 int i;
739
740 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
741 if (!(sysctl_sched_features & (1UL << i)))
742 seq_puts(m, "NO_");
743 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 744 }
34f3a814 745 seq_puts(m, "\n");
f00b45c1 746
34f3a814 747 return 0;
f00b45c1
PZ
748}
749
750static ssize_t
751sched_feat_write(struct file *filp, const char __user *ubuf,
752 size_t cnt, loff_t *ppos)
753{
754 char buf[64];
755 char *cmp = buf;
756 int neg = 0;
757 int i;
758
759 if (cnt > 63)
760 cnt = 63;
761
762 if (copy_from_user(&buf, ubuf, cnt))
763 return -EFAULT;
764
765 buf[cnt] = 0;
766
c24b7c52 767 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
768 neg = 1;
769 cmp += 3;
770 }
771
772 for (i = 0; sched_feat_names[i]; i++) {
773 int len = strlen(sched_feat_names[i]);
774
775 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
776 if (neg)
777 sysctl_sched_features &= ~(1UL << i);
778 else
779 sysctl_sched_features |= (1UL << i);
780 break;
781 }
782 }
783
784 if (!sched_feat_names[i])
785 return -EINVAL;
786
787 filp->f_pos += cnt;
788
789 return cnt;
790}
791
34f3a814
LZ
792static int sched_feat_open(struct inode *inode, struct file *filp)
793{
794 return single_open(filp, sched_feat_show, NULL);
795}
796
f00b45c1 797static struct file_operations sched_feat_fops = {
34f3a814
LZ
798 .open = sched_feat_open,
799 .write = sched_feat_write,
800 .read = seq_read,
801 .llseek = seq_lseek,
802 .release = single_release,
f00b45c1
PZ
803};
804
805static __init int sched_init_debug(void)
806{
f00b45c1
PZ
807 debugfs_create_file("sched_features", 0644, NULL, NULL,
808 &sched_feat_fops);
809
810 return 0;
811}
812late_initcall(sched_init_debug);
813
814#endif
815
816#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 817
b82d9fdd
PZ
818/*
819 * Number of tasks to iterate in a single balance run.
820 * Limited because this is done with IRQs disabled.
821 */
822const_debug unsigned int sysctl_sched_nr_migrate = 32;
823
2398f2c6
PZ
824/*
825 * ratelimit for updating the group shares.
55cd5340 826 * default: 0.25ms
2398f2c6 827 */
55cd5340 828unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 829
ffda12a1
PZ
830/*
831 * Inject some fuzzyness into changing the per-cpu group shares
832 * this avoids remote rq-locks at the expense of fairness.
833 * default: 4
834 */
835unsigned int sysctl_sched_shares_thresh = 4;
836
fa85ae24 837/*
9f0c1e56 838 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
839 * default: 1s
840 */
9f0c1e56 841unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 842
6892b75e
IM
843static __read_mostly int scheduler_running;
844
9f0c1e56
PZ
845/*
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
848 */
849int sysctl_sched_rt_runtime = 950000;
fa85ae24 850
d0b27fa7
PZ
851static inline u64 global_rt_period(void)
852{
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
854}
855
856static inline u64 global_rt_runtime(void)
857{
e26873bb 858 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
859 return RUNTIME_INF;
860
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
862}
fa85ae24 863
1da177e4 864#ifndef prepare_arch_switch
4866cde0
NP
865# define prepare_arch_switch(next) do { } while (0)
866#endif
867#ifndef finish_arch_switch
868# define finish_arch_switch(prev) do { } while (0)
869#endif
870
051a1d1a
DA
871static inline int task_current(struct rq *rq, struct task_struct *p)
872{
873 return rq->curr == p;
874}
875
4866cde0 876#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 877static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 878{
051a1d1a 879 return task_current(rq, p);
4866cde0
NP
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884}
885
70b97a7f 886static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 887{
da04c035
IM
888#ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891#endif
8a25d5de
IM
892 /*
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
896 */
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898
4866cde0
NP
899 spin_unlock_irq(&rq->lock);
900}
901
902#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 903static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
904{
905#ifdef CONFIG_SMP
906 return p->oncpu;
907#else
051a1d1a 908 return task_current(rq, p);
4866cde0
NP
909#endif
910}
911
70b97a7f 912static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
913{
914#ifdef CONFIG_SMP
915 /*
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
919 */
920 next->oncpu = 1;
921#endif
922#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924#else
925 spin_unlock(&rq->lock);
926#endif
927}
928
70b97a7f 929static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 /*
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
936 */
937 smp_wmb();
938 prev->oncpu = 0;
939#endif
940#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
1da177e4 942#endif
4866cde0
NP
943}
944#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 945
b29739f9
IM
946/*
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
949 */
70b97a7f 950static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
951 __acquires(rq->lock)
952{
3a5c359a
AK
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
b29739f9 958 spin_unlock(&rq->lock);
b29739f9 959 }
b29739f9
IM
960}
961
1da177e4
LT
962/*
963 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 964 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
965 * explicitly disabling preemption.
966 */
70b97a7f 967static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
968 __acquires(rq->lock)
969{
70b97a7f 970 struct rq *rq;
1da177e4 971
3a5c359a
AK
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
1da177e4 978 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 979 }
1da177e4
LT
980}
981
ad474cac
ON
982void task_rq_unlock_wait(struct task_struct *p)
983{
984 struct rq *rq = task_rq(p);
985
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq->lock);
988}
989
a9957449 990static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
991 __releases(rq->lock)
992{
993 spin_unlock(&rq->lock);
994}
995
70b97a7f 996static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
997 __releases(rq->lock)
998{
999 spin_unlock_irqrestore(&rq->lock, *flags);
1000}
1001
1da177e4 1002/*
cc2a73b5 1003 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1004 */
a9957449 1005static struct rq *this_rq_lock(void)
1da177e4
LT
1006 __acquires(rq->lock)
1007{
70b97a7f 1008 struct rq *rq;
1da177e4
LT
1009
1010 local_irq_disable();
1011 rq = this_rq();
1012 spin_lock(&rq->lock);
1013
1014 return rq;
1015}
1016
8f4d37ec
PZ
1017#ifdef CONFIG_SCHED_HRTICK
1018/*
1019 * Use HR-timers to deliver accurate preemption points.
1020 *
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1023 * reschedule event.
1024 *
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * rq->lock.
1027 */
8f4d37ec
PZ
1028
1029/*
1030 * Use hrtick when:
1031 * - enabled by features
1032 * - hrtimer is actually high res
1033 */
1034static inline int hrtick_enabled(struct rq *rq)
1035{
1036 if (!sched_feat(HRTICK))
1037 return 0;
ba42059f 1038 if (!cpu_active(cpu_of(rq)))
b328ca18 1039 return 0;
8f4d37ec
PZ
1040 return hrtimer_is_hres_active(&rq->hrtick_timer);
1041}
1042
8f4d37ec
PZ
1043static void hrtick_clear(struct rq *rq)
1044{
1045 if (hrtimer_active(&rq->hrtick_timer))
1046 hrtimer_cancel(&rq->hrtick_timer);
1047}
1048
8f4d37ec
PZ
1049/*
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1052 */
1053static enum hrtimer_restart hrtick(struct hrtimer *timer)
1054{
1055 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1056
1057 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1058
1059 spin_lock(&rq->lock);
3e51f33f 1060 update_rq_clock(rq);
8f4d37ec
PZ
1061 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 spin_unlock(&rq->lock);
1063
1064 return HRTIMER_NORESTART;
1065}
1066
95e904c7 1067#ifdef CONFIG_SMP
31656519
PZ
1068/*
1069 * called from hardirq (IPI) context
1070 */
1071static void __hrtick_start(void *arg)
b328ca18 1072{
31656519 1073 struct rq *rq = arg;
b328ca18 1074
31656519
PZ
1075 spin_lock(&rq->lock);
1076 hrtimer_restart(&rq->hrtick_timer);
1077 rq->hrtick_csd_pending = 0;
1078 spin_unlock(&rq->lock);
b328ca18
PZ
1079}
1080
31656519
PZ
1081/*
1082 * Called to set the hrtick timer state.
1083 *
1084 * called with rq->lock held and irqs disabled
1085 */
1086static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1087{
31656519
PZ
1088 struct hrtimer *timer = &rq->hrtick_timer;
1089 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1090
cc584b21 1091 hrtimer_set_expires(timer, time);
31656519
PZ
1092
1093 if (rq == this_rq()) {
1094 hrtimer_restart(timer);
1095 } else if (!rq->hrtick_csd_pending) {
1096 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1097 rq->hrtick_csd_pending = 1;
1098 }
b328ca18
PZ
1099}
1100
1101static int
1102hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1103{
1104 int cpu = (int)(long)hcpu;
1105
1106 switch (action) {
1107 case CPU_UP_CANCELED:
1108 case CPU_UP_CANCELED_FROZEN:
1109 case CPU_DOWN_PREPARE:
1110 case CPU_DOWN_PREPARE_FROZEN:
1111 case CPU_DEAD:
1112 case CPU_DEAD_FROZEN:
31656519 1113 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1114 return NOTIFY_OK;
1115 }
1116
1117 return NOTIFY_DONE;
1118}
1119
fa748203 1120static __init void init_hrtick(void)
b328ca18
PZ
1121{
1122 hotcpu_notifier(hotplug_hrtick, 0);
1123}
31656519
PZ
1124#else
1125/*
1126 * Called to set the hrtick timer state.
1127 *
1128 * called with rq->lock held and irqs disabled
1129 */
1130static void hrtick_start(struct rq *rq, u64 delay)
1131{
1132 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1133}
b328ca18 1134
006c75f1 1135static inline void init_hrtick(void)
8f4d37ec 1136{
8f4d37ec 1137}
31656519 1138#endif /* CONFIG_SMP */
8f4d37ec 1139
31656519 1140static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1141{
31656519
PZ
1142#ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
8f4d37ec 1144
31656519
PZ
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148#endif
8f4d37ec 1149
31656519
PZ
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
8f4d37ec 1152}
006c75f1 1153#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1154static inline void hrtick_clear(struct rq *rq)
1155{
1156}
1157
8f4d37ec
PZ
1158static inline void init_rq_hrtick(struct rq *rq)
1159{
1160}
1161
b328ca18
PZ
1162static inline void init_hrtick(void)
1163{
1164}
006c75f1 1165#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1166
c24d20db
IM
1167/*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174#ifdef CONFIG_SMP
1175
1176#ifndef tsk_is_polling
1177#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178#endif
1179
31656519 1180static void resched_task(struct task_struct *p)
c24d20db
IM
1181{
1182 int cpu;
1183
1184 assert_spin_locked(&task_rq(p)->lock);
1185
31656519 1186 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1187 return;
1188
31656519 1189 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199}
1200
1201static void resched_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1210}
06d8308c
TG
1211
1212#ifdef CONFIG_NO_HZ
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
1245 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
6d6bc0ad 1252#endif /* CONFIG_NO_HZ */
06d8308c 1253
6d6bc0ad 1254#else /* !CONFIG_SMP */
31656519 1255static void resched_task(struct task_struct *p)
c24d20db
IM
1256{
1257 assert_spin_locked(&task_rq(p)->lock);
31656519 1258 set_tsk_need_resched(p);
c24d20db 1259}
6d6bc0ad 1260#endif /* CONFIG_SMP */
c24d20db 1261
45bf76df
IM
1262#if BITS_PER_LONG == 32
1263# define WMULT_CONST (~0UL)
1264#else
1265# define WMULT_CONST (1UL << 32)
1266#endif
1267
1268#define WMULT_SHIFT 32
1269
194081eb
IM
1270/*
1271 * Shift right and round:
1272 */
cf2ab469 1273#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1274
a7be37ac
PZ
1275/*
1276 * delta *= weight / lw
1277 */
cb1c4fc9 1278static unsigned long
45bf76df
IM
1279calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1280 struct load_weight *lw)
1281{
1282 u64 tmp;
1283
7a232e03
LJ
1284 if (!lw->inv_weight) {
1285 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1286 lw->inv_weight = 1;
1287 else
1288 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1289 / (lw->weight+1);
1290 }
45bf76df
IM
1291
1292 tmp = (u64)delta_exec * weight;
1293 /*
1294 * Check whether we'd overflow the 64-bit multiplication:
1295 */
194081eb 1296 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1297 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1298 WMULT_SHIFT/2);
1299 else
cf2ab469 1300 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1301
ecf691da 1302 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1303}
1304
1091985b 1305static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1306{
1307 lw->weight += inc;
e89996ae 1308 lw->inv_weight = 0;
45bf76df
IM
1309}
1310
1091985b 1311static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1312{
1313 lw->weight -= dec;
e89996ae 1314 lw->inv_weight = 0;
45bf76df
IM
1315}
1316
2dd73a4f
PW
1317/*
1318 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1319 * of tasks with abnormal "nice" values across CPUs the contribution that
1320 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1321 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1322 * scaled version of the new time slice allocation that they receive on time
1323 * slice expiry etc.
1324 */
1325
cce7ade8
PZ
1326#define WEIGHT_IDLEPRIO 3
1327#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1328
1329/*
1330 * Nice levels are multiplicative, with a gentle 10% change for every
1331 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1332 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1333 * that remained on nice 0.
1334 *
1335 * The "10% effect" is relative and cumulative: from _any_ nice level,
1336 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1337 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1338 * If a task goes up by ~10% and another task goes down by ~10% then
1339 * the relative distance between them is ~25%.)
dd41f596
IM
1340 */
1341static const int prio_to_weight[40] = {
254753dc
IM
1342 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1343 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1344 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1345 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1346 /* 0 */ 1024, 820, 655, 526, 423,
1347 /* 5 */ 335, 272, 215, 172, 137,
1348 /* 10 */ 110, 87, 70, 56, 45,
1349 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1350};
1351
5714d2de
IM
1352/*
1353 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1354 *
1355 * In cases where the weight does not change often, we can use the
1356 * precalculated inverse to speed up arithmetics by turning divisions
1357 * into multiplications:
1358 */
dd41f596 1359static const u32 prio_to_wmult[40] = {
254753dc
IM
1360 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1361 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1362 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1363 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1364 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1365 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1366 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1367 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1368};
2dd73a4f 1369
dd41f596
IM
1370static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1371
1372/*
1373 * runqueue iterator, to support SMP load-balancing between different
1374 * scheduling classes, without having to expose their internal data
1375 * structures to the load-balancing proper:
1376 */
1377struct rq_iterator {
1378 void *arg;
1379 struct task_struct *(*start)(void *);
1380 struct task_struct *(*next)(void *);
1381};
1382
e1d1484f
PW
1383#ifdef CONFIG_SMP
1384static unsigned long
1385balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1386 unsigned long max_load_move, struct sched_domain *sd,
1387 enum cpu_idle_type idle, int *all_pinned,
1388 int *this_best_prio, struct rq_iterator *iterator);
1389
1390static int
1391iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1392 struct sched_domain *sd, enum cpu_idle_type idle,
1393 struct rq_iterator *iterator);
e1d1484f 1394#endif
dd41f596 1395
d842de87
SV
1396#ifdef CONFIG_CGROUP_CPUACCT
1397static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1398#else
1399static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1400#endif
1401
18d95a28
PZ
1402static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1403{
1404 update_load_add(&rq->load, load);
1405}
1406
1407static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1408{
1409 update_load_sub(&rq->load, load);
1410}
1411
7940ca36 1412#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1413typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1414
1415/*
1416 * Iterate the full tree, calling @down when first entering a node and @up when
1417 * leaving it for the final time.
1418 */
eb755805 1419static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1420{
1421 struct task_group *parent, *child;
eb755805 1422 int ret;
c09595f6
PZ
1423
1424 rcu_read_lock();
1425 parent = &root_task_group;
1426down:
eb755805
PZ
1427 ret = (*down)(parent, data);
1428 if (ret)
1429 goto out_unlock;
c09595f6
PZ
1430 list_for_each_entry_rcu(child, &parent->children, siblings) {
1431 parent = child;
1432 goto down;
1433
1434up:
1435 continue;
1436 }
eb755805
PZ
1437 ret = (*up)(parent, data);
1438 if (ret)
1439 goto out_unlock;
c09595f6
PZ
1440
1441 child = parent;
1442 parent = parent->parent;
1443 if (parent)
1444 goto up;
eb755805 1445out_unlock:
c09595f6 1446 rcu_read_unlock();
eb755805
PZ
1447
1448 return ret;
c09595f6
PZ
1449}
1450
eb755805
PZ
1451static int tg_nop(struct task_group *tg, void *data)
1452{
1453 return 0;
c09595f6 1454}
eb755805
PZ
1455#endif
1456
1457#ifdef CONFIG_SMP
1458static unsigned long source_load(int cpu, int type);
1459static unsigned long target_load(int cpu, int type);
1460static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1461
1462static unsigned long cpu_avg_load_per_task(int cpu)
1463{
1464 struct rq *rq = cpu_rq(cpu);
af6d596f 1465 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1466
4cd42620
SR
1467 if (nr_running)
1468 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1469 else
1470 rq->avg_load_per_task = 0;
eb755805
PZ
1471
1472 return rq->avg_load_per_task;
1473}
1474
1475#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1476
c09595f6
PZ
1477static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1478
1479/*
1480 * Calculate and set the cpu's group shares.
1481 */
1482static void
ffda12a1
PZ
1483update_group_shares_cpu(struct task_group *tg, int cpu,
1484 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1485{
c09595f6
PZ
1486 unsigned long shares;
1487 unsigned long rq_weight;
1488
c8cba857 1489 if (!tg->se[cpu])
c09595f6
PZ
1490 return;
1491
ec4e0e2f 1492 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1493
c09595f6
PZ
1494 /*
1495 * \Sum shares * rq_weight
1496 * shares = -----------------------
1497 * \Sum rq_weight
1498 *
1499 */
ec4e0e2f 1500 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1501 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1502
ffda12a1
PZ
1503 if (abs(shares - tg->se[cpu]->load.weight) >
1504 sysctl_sched_shares_thresh) {
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long flags;
c09595f6 1507
ffda12a1 1508 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1509 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1510
ffda12a1
PZ
1511 __set_se_shares(tg->se[cpu], shares);
1512 spin_unlock_irqrestore(&rq->lock, flags);
1513 }
18d95a28 1514}
c09595f6
PZ
1515
1516/*
c8cba857
PZ
1517 * Re-compute the task group their per cpu shares over the given domain.
1518 * This needs to be done in a bottom-up fashion because the rq weight of a
1519 * parent group depends on the shares of its child groups.
c09595f6 1520 */
eb755805 1521static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1522{
ec4e0e2f 1523 unsigned long weight, rq_weight = 0;
c8cba857 1524 unsigned long shares = 0;
eb755805 1525 struct sched_domain *sd = data;
c8cba857 1526 int i;
c09595f6 1527
758b2cdc 1528 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1529 /*
1530 * If there are currently no tasks on the cpu pretend there
1531 * is one of average load so that when a new task gets to
1532 * run here it will not get delayed by group starvation.
1533 */
1534 weight = tg->cfs_rq[i]->load.weight;
1535 if (!weight)
1536 weight = NICE_0_LOAD;
1537
1538 tg->cfs_rq[i]->rq_weight = weight;
1539 rq_weight += weight;
c8cba857 1540 shares += tg->cfs_rq[i]->shares;
c09595f6 1541 }
c09595f6 1542
c8cba857
PZ
1543 if ((!shares && rq_weight) || shares > tg->shares)
1544 shares = tg->shares;
1545
1546 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1547 shares = tg->shares;
c09595f6 1548
758b2cdc 1549 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1550 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1551
1552 return 0;
c09595f6
PZ
1553}
1554
1555/*
c8cba857
PZ
1556 * Compute the cpu's hierarchical load factor for each task group.
1557 * This needs to be done in a top-down fashion because the load of a child
1558 * group is a fraction of its parents load.
c09595f6 1559 */
eb755805 1560static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1561{
c8cba857 1562 unsigned long load;
eb755805 1563 long cpu = (long)data;
c09595f6 1564
c8cba857
PZ
1565 if (!tg->parent) {
1566 load = cpu_rq(cpu)->load.weight;
1567 } else {
1568 load = tg->parent->cfs_rq[cpu]->h_load;
1569 load *= tg->cfs_rq[cpu]->shares;
1570 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1571 }
c09595f6 1572
c8cba857 1573 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1574
eb755805 1575 return 0;
c09595f6
PZ
1576}
1577
c8cba857 1578static void update_shares(struct sched_domain *sd)
4d8d595d 1579{
2398f2c6
PZ
1580 u64 now = cpu_clock(raw_smp_processor_id());
1581 s64 elapsed = now - sd->last_update;
1582
1583 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1584 sd->last_update = now;
eb755805 1585 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1586 }
4d8d595d
PZ
1587}
1588
3e5459b4
PZ
1589static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1590{
1591 spin_unlock(&rq->lock);
1592 update_shares(sd);
1593 spin_lock(&rq->lock);
1594}
1595
eb755805 1596static void update_h_load(long cpu)
c09595f6 1597{
eb755805 1598 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1599}
1600
c09595f6
PZ
1601#else
1602
c8cba857 1603static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1604{
1605}
1606
3e5459b4
PZ
1607static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1608{
1609}
1610
18d95a28
PZ
1611#endif
1612
70574a99
AD
1613/*
1614 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1615 */
1616static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1617 __releases(this_rq->lock)
1618 __acquires(busiest->lock)
1619 __acquires(this_rq->lock)
1620{
1621 int ret = 0;
1622
1623 if (unlikely(!irqs_disabled())) {
1624 /* printk() doesn't work good under rq->lock */
1625 spin_unlock(&this_rq->lock);
1626 BUG_ON(1);
1627 }
1628 if (unlikely(!spin_trylock(&busiest->lock))) {
1629 if (busiest < this_rq) {
1630 spin_unlock(&this_rq->lock);
1631 spin_lock(&busiest->lock);
1632 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1633 ret = 1;
1634 } else
1635 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1636 }
1637 return ret;
1638}
1639
1640static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642{
1643 spin_unlock(&busiest->lock);
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645}
18d95a28
PZ
1646#endif
1647
30432094 1648#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1649static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1650{
30432094 1651#ifdef CONFIG_SMP
34e83e85
IM
1652 cfs_rq->shares = shares;
1653#endif
1654}
30432094 1655#endif
e7693a36 1656
dd41f596 1657#include "sched_stats.h"
dd41f596 1658#include "sched_idletask.c"
5522d5d5
IM
1659#include "sched_fair.c"
1660#include "sched_rt.c"
dd41f596
IM
1661#ifdef CONFIG_SCHED_DEBUG
1662# include "sched_debug.c"
1663#endif
1664
1665#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1666#define for_each_class(class) \
1667 for (class = sched_class_highest; class; class = class->next)
dd41f596 1668
c09595f6 1669static void inc_nr_running(struct rq *rq)
9c217245
IM
1670{
1671 rq->nr_running++;
9c217245
IM
1672}
1673
c09595f6 1674static void dec_nr_running(struct rq *rq)
9c217245
IM
1675{
1676 rq->nr_running--;
9c217245
IM
1677}
1678
45bf76df
IM
1679static void set_load_weight(struct task_struct *p)
1680{
1681 if (task_has_rt_policy(p)) {
dd41f596
IM
1682 p->se.load.weight = prio_to_weight[0] * 2;
1683 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1684 return;
1685 }
45bf76df 1686
dd41f596
IM
1687 /*
1688 * SCHED_IDLE tasks get minimal weight:
1689 */
1690 if (p->policy == SCHED_IDLE) {
1691 p->se.load.weight = WEIGHT_IDLEPRIO;
1692 p->se.load.inv_weight = WMULT_IDLEPRIO;
1693 return;
1694 }
71f8bd46 1695
dd41f596
IM
1696 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1697 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1698}
1699
2087a1ad
GH
1700static void update_avg(u64 *avg, u64 sample)
1701{
1702 s64 diff = sample - *avg;
1703 *avg += diff >> 3;
1704}
1705
8159f87e 1706static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1707{
dd41f596 1708 sched_info_queued(p);
fd390f6a 1709 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1710 p->se.on_rq = 1;
71f8bd46
IM
1711}
1712
69be72c1 1713static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1714{
2087a1ad
GH
1715 if (sleep && p->se.last_wakeup) {
1716 update_avg(&p->se.avg_overlap,
1717 p->se.sum_exec_runtime - p->se.last_wakeup);
1718 p->se.last_wakeup = 0;
1719 }
1720
46ac22ba 1721 sched_info_dequeued(p);
f02231e5 1722 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1723 p->se.on_rq = 0;
71f8bd46
IM
1724}
1725
14531189 1726/*
dd41f596 1727 * __normal_prio - return the priority that is based on the static prio
14531189 1728 */
14531189
IM
1729static inline int __normal_prio(struct task_struct *p)
1730{
dd41f596 1731 return p->static_prio;
14531189
IM
1732}
1733
b29739f9
IM
1734/*
1735 * Calculate the expected normal priority: i.e. priority
1736 * without taking RT-inheritance into account. Might be
1737 * boosted by interactivity modifiers. Changes upon fork,
1738 * setprio syscalls, and whenever the interactivity
1739 * estimator recalculates.
1740 */
36c8b586 1741static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1742{
1743 int prio;
1744
e05606d3 1745 if (task_has_rt_policy(p))
b29739f9
IM
1746 prio = MAX_RT_PRIO-1 - p->rt_priority;
1747 else
1748 prio = __normal_prio(p);
1749 return prio;
1750}
1751
1752/*
1753 * Calculate the current priority, i.e. the priority
1754 * taken into account by the scheduler. This value might
1755 * be boosted by RT tasks, or might be boosted by
1756 * interactivity modifiers. Will be RT if the task got
1757 * RT-boosted. If not then it returns p->normal_prio.
1758 */
36c8b586 1759static int effective_prio(struct task_struct *p)
b29739f9
IM
1760{
1761 p->normal_prio = normal_prio(p);
1762 /*
1763 * If we are RT tasks or we were boosted to RT priority,
1764 * keep the priority unchanged. Otherwise, update priority
1765 * to the normal priority:
1766 */
1767 if (!rt_prio(p->prio))
1768 return p->normal_prio;
1769 return p->prio;
1770}
1771
1da177e4 1772/*
dd41f596 1773 * activate_task - move a task to the runqueue.
1da177e4 1774 */
dd41f596 1775static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1776{
d9514f6c 1777 if (task_contributes_to_load(p))
dd41f596 1778 rq->nr_uninterruptible--;
1da177e4 1779
8159f87e 1780 enqueue_task(rq, p, wakeup);
c09595f6 1781 inc_nr_running(rq);
1da177e4
LT
1782}
1783
1da177e4
LT
1784/*
1785 * deactivate_task - remove a task from the runqueue.
1786 */
2e1cb74a 1787static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1788{
d9514f6c 1789 if (task_contributes_to_load(p))
dd41f596
IM
1790 rq->nr_uninterruptible++;
1791
69be72c1 1792 dequeue_task(rq, p, sleep);
c09595f6 1793 dec_nr_running(rq);
1da177e4
LT
1794}
1795
1da177e4
LT
1796/**
1797 * task_curr - is this task currently executing on a CPU?
1798 * @p: the task in question.
1799 */
36c8b586 1800inline int task_curr(const struct task_struct *p)
1da177e4
LT
1801{
1802 return cpu_curr(task_cpu(p)) == p;
1803}
1804
dd41f596
IM
1805static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1806{
6f505b16 1807 set_task_rq(p, cpu);
dd41f596 1808#ifdef CONFIG_SMP
ce96b5ac
DA
1809 /*
1810 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1811 * successfuly executed on another CPU. We must ensure that updates of
1812 * per-task data have been completed by this moment.
1813 */
1814 smp_wmb();
dd41f596 1815 task_thread_info(p)->cpu = cpu;
dd41f596 1816#endif
2dd73a4f
PW
1817}
1818
cb469845
SR
1819static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1820 const struct sched_class *prev_class,
1821 int oldprio, int running)
1822{
1823 if (prev_class != p->sched_class) {
1824 if (prev_class->switched_from)
1825 prev_class->switched_from(rq, p, running);
1826 p->sched_class->switched_to(rq, p, running);
1827 } else
1828 p->sched_class->prio_changed(rq, p, oldprio, running);
1829}
1830
1da177e4 1831#ifdef CONFIG_SMP
c65cc870 1832
e958b360
TG
1833/* Used instead of source_load when we know the type == 0 */
1834static unsigned long weighted_cpuload(const int cpu)
1835{
1836 return cpu_rq(cpu)->load.weight;
1837}
1838
cc367732
IM
1839/*
1840 * Is this task likely cache-hot:
1841 */
e7693a36 1842static int
cc367732
IM
1843task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1844{
1845 s64 delta;
1846
f540a608
IM
1847 /*
1848 * Buddy candidates are cache hot:
1849 */
4793241b
PZ
1850 if (sched_feat(CACHE_HOT_BUDDY) &&
1851 (&p->se == cfs_rq_of(&p->se)->next ||
1852 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1853 return 1;
1854
cc367732
IM
1855 if (p->sched_class != &fair_sched_class)
1856 return 0;
1857
6bc1665b
IM
1858 if (sysctl_sched_migration_cost == -1)
1859 return 1;
1860 if (sysctl_sched_migration_cost == 0)
1861 return 0;
1862
cc367732
IM
1863 delta = now - p->se.exec_start;
1864
1865 return delta < (s64)sysctl_sched_migration_cost;
1866}
1867
1868
dd41f596 1869void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1870{
dd41f596
IM
1871 int old_cpu = task_cpu(p);
1872 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1873 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1874 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1875 u64 clock_offset;
dd41f596
IM
1876
1877 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1878
cbc34ed1
PZ
1879 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1880
6cfb0d5d
IM
1881#ifdef CONFIG_SCHEDSTATS
1882 if (p->se.wait_start)
1883 p->se.wait_start -= clock_offset;
dd41f596
IM
1884 if (p->se.sleep_start)
1885 p->se.sleep_start -= clock_offset;
1886 if (p->se.block_start)
1887 p->se.block_start -= clock_offset;
cc367732
IM
1888 if (old_cpu != new_cpu) {
1889 schedstat_inc(p, se.nr_migrations);
1890 if (task_hot(p, old_rq->clock, NULL))
1891 schedstat_inc(p, se.nr_forced2_migrations);
1892 }
6cfb0d5d 1893#endif
2830cf8c
SV
1894 p->se.vruntime -= old_cfsrq->min_vruntime -
1895 new_cfsrq->min_vruntime;
dd41f596
IM
1896
1897 __set_task_cpu(p, new_cpu);
c65cc870
IM
1898}
1899
70b97a7f 1900struct migration_req {
1da177e4 1901 struct list_head list;
1da177e4 1902
36c8b586 1903 struct task_struct *task;
1da177e4
LT
1904 int dest_cpu;
1905
1da177e4 1906 struct completion done;
70b97a7f 1907};
1da177e4
LT
1908
1909/*
1910 * The task's runqueue lock must be held.
1911 * Returns true if you have to wait for migration thread.
1912 */
36c8b586 1913static int
70b97a7f 1914migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1915{
70b97a7f 1916 struct rq *rq = task_rq(p);
1da177e4
LT
1917
1918 /*
1919 * If the task is not on a runqueue (and not running), then
1920 * it is sufficient to simply update the task's cpu field.
1921 */
dd41f596 1922 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1923 set_task_cpu(p, dest_cpu);
1924 return 0;
1925 }
1926
1927 init_completion(&req->done);
1da177e4
LT
1928 req->task = p;
1929 req->dest_cpu = dest_cpu;
1930 list_add(&req->list, &rq->migration_queue);
48f24c4d 1931
1da177e4
LT
1932 return 1;
1933}
1934
1935/*
1936 * wait_task_inactive - wait for a thread to unschedule.
1937 *
85ba2d86
RM
1938 * If @match_state is nonzero, it's the @p->state value just checked and
1939 * not expected to change. If it changes, i.e. @p might have woken up,
1940 * then return zero. When we succeed in waiting for @p to be off its CPU,
1941 * we return a positive number (its total switch count). If a second call
1942 * a short while later returns the same number, the caller can be sure that
1943 * @p has remained unscheduled the whole time.
1944 *
1da177e4
LT
1945 * The caller must ensure that the task *will* unschedule sometime soon,
1946 * else this function might spin for a *long* time. This function can't
1947 * be called with interrupts off, or it may introduce deadlock with
1948 * smp_call_function() if an IPI is sent by the same process we are
1949 * waiting to become inactive.
1950 */
85ba2d86 1951unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1952{
1953 unsigned long flags;
dd41f596 1954 int running, on_rq;
85ba2d86 1955 unsigned long ncsw;
70b97a7f 1956 struct rq *rq;
1da177e4 1957
3a5c359a
AK
1958 for (;;) {
1959 /*
1960 * We do the initial early heuristics without holding
1961 * any task-queue locks at all. We'll only try to get
1962 * the runqueue lock when things look like they will
1963 * work out!
1964 */
1965 rq = task_rq(p);
fa490cfd 1966
3a5c359a
AK
1967 /*
1968 * If the task is actively running on another CPU
1969 * still, just relax and busy-wait without holding
1970 * any locks.
1971 *
1972 * NOTE! Since we don't hold any locks, it's not
1973 * even sure that "rq" stays as the right runqueue!
1974 * But we don't care, since "task_running()" will
1975 * return false if the runqueue has changed and p
1976 * is actually now running somewhere else!
1977 */
85ba2d86
RM
1978 while (task_running(rq, p)) {
1979 if (match_state && unlikely(p->state != match_state))
1980 return 0;
3a5c359a 1981 cpu_relax();
85ba2d86 1982 }
fa490cfd 1983
3a5c359a
AK
1984 /*
1985 * Ok, time to look more closely! We need the rq
1986 * lock now, to be *sure*. If we're wrong, we'll
1987 * just go back and repeat.
1988 */
1989 rq = task_rq_lock(p, &flags);
0a16b607 1990 trace_sched_wait_task(rq, p);
3a5c359a
AK
1991 running = task_running(rq, p);
1992 on_rq = p->se.on_rq;
85ba2d86 1993 ncsw = 0;
f31e11d8 1994 if (!match_state || p->state == match_state)
93dcf55f 1995 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1996 task_rq_unlock(rq, &flags);
fa490cfd 1997
85ba2d86
RM
1998 /*
1999 * If it changed from the expected state, bail out now.
2000 */
2001 if (unlikely(!ncsw))
2002 break;
2003
3a5c359a
AK
2004 /*
2005 * Was it really running after all now that we
2006 * checked with the proper locks actually held?
2007 *
2008 * Oops. Go back and try again..
2009 */
2010 if (unlikely(running)) {
2011 cpu_relax();
2012 continue;
2013 }
fa490cfd 2014
3a5c359a
AK
2015 /*
2016 * It's not enough that it's not actively running,
2017 * it must be off the runqueue _entirely_, and not
2018 * preempted!
2019 *
2020 * So if it wa still runnable (but just not actively
2021 * running right now), it's preempted, and we should
2022 * yield - it could be a while.
2023 */
2024 if (unlikely(on_rq)) {
2025 schedule_timeout_uninterruptible(1);
2026 continue;
2027 }
fa490cfd 2028
3a5c359a
AK
2029 /*
2030 * Ahh, all good. It wasn't running, and it wasn't
2031 * runnable, which means that it will never become
2032 * running in the future either. We're all done!
2033 */
2034 break;
2035 }
85ba2d86
RM
2036
2037 return ncsw;
1da177e4
LT
2038}
2039
2040/***
2041 * kick_process - kick a running thread to enter/exit the kernel
2042 * @p: the to-be-kicked thread
2043 *
2044 * Cause a process which is running on another CPU to enter
2045 * kernel-mode, without any delay. (to get signals handled.)
2046 *
2047 * NOTE: this function doesnt have to take the runqueue lock,
2048 * because all it wants to ensure is that the remote task enters
2049 * the kernel. If the IPI races and the task has been migrated
2050 * to another CPU then no harm is done and the purpose has been
2051 * achieved as well.
2052 */
36c8b586 2053void kick_process(struct task_struct *p)
1da177e4
LT
2054{
2055 int cpu;
2056
2057 preempt_disable();
2058 cpu = task_cpu(p);
2059 if ((cpu != smp_processor_id()) && task_curr(p))
2060 smp_send_reschedule(cpu);
2061 preempt_enable();
2062}
2063
2064/*
2dd73a4f
PW
2065 * Return a low guess at the load of a migration-source cpu weighted
2066 * according to the scheduling class and "nice" value.
1da177e4
LT
2067 *
2068 * We want to under-estimate the load of migration sources, to
2069 * balance conservatively.
2070 */
a9957449 2071static unsigned long source_load(int cpu, int type)
1da177e4 2072{
70b97a7f 2073 struct rq *rq = cpu_rq(cpu);
dd41f596 2074 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2075
93b75217 2076 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2077 return total;
b910472d 2078
dd41f596 2079 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2080}
2081
2082/*
2dd73a4f
PW
2083 * Return a high guess at the load of a migration-target cpu weighted
2084 * according to the scheduling class and "nice" value.
1da177e4 2085 */
a9957449 2086static unsigned long target_load(int cpu, int type)
1da177e4 2087{
70b97a7f 2088 struct rq *rq = cpu_rq(cpu);
dd41f596 2089 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2090
93b75217 2091 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2092 return total;
3b0bd9bc 2093
dd41f596 2094 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2095}
2096
147cbb4b
NP
2097/*
2098 * find_idlest_group finds and returns the least busy CPU group within the
2099 * domain.
2100 */
2101static struct sched_group *
2102find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2103{
2104 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2105 unsigned long min_load = ULONG_MAX, this_load = 0;
2106 int load_idx = sd->forkexec_idx;
2107 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2108
2109 do {
2110 unsigned long load, avg_load;
2111 int local_group;
2112 int i;
2113
da5a5522 2114 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2115 if (!cpumask_intersects(sched_group_cpus(group),
2116 &p->cpus_allowed))
3a5c359a 2117 continue;
da5a5522 2118
758b2cdc
RR
2119 local_group = cpumask_test_cpu(this_cpu,
2120 sched_group_cpus(group));
147cbb4b
NP
2121
2122 /* Tally up the load of all CPUs in the group */
2123 avg_load = 0;
2124
758b2cdc 2125 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2126 /* Bias balancing toward cpus of our domain */
2127 if (local_group)
2128 load = source_load(i, load_idx);
2129 else
2130 load = target_load(i, load_idx);
2131
2132 avg_load += load;
2133 }
2134
2135 /* Adjust by relative CPU power of the group */
5517d86b
ED
2136 avg_load = sg_div_cpu_power(group,
2137 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2138
2139 if (local_group) {
2140 this_load = avg_load;
2141 this = group;
2142 } else if (avg_load < min_load) {
2143 min_load = avg_load;
2144 idlest = group;
2145 }
3a5c359a 2146 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2147
2148 if (!idlest || 100*this_load < imbalance*min_load)
2149 return NULL;
2150 return idlest;
2151}
2152
2153/*
0feaece9 2154 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2155 */
95cdf3b7 2156static int
758b2cdc 2157find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2158{
2159 unsigned long load, min_load = ULONG_MAX;
2160 int idlest = -1;
2161 int i;
2162
da5a5522 2163 /* Traverse only the allowed CPUs */
758b2cdc 2164 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2165 load = weighted_cpuload(i);
147cbb4b
NP
2166
2167 if (load < min_load || (load == min_load && i == this_cpu)) {
2168 min_load = load;
2169 idlest = i;
2170 }
2171 }
2172
2173 return idlest;
2174}
2175
476d139c
NP
2176/*
2177 * sched_balance_self: balance the current task (running on cpu) in domains
2178 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2179 * SD_BALANCE_EXEC.
2180 *
2181 * Balance, ie. select the least loaded group.
2182 *
2183 * Returns the target CPU number, or the same CPU if no balancing is needed.
2184 *
2185 * preempt must be disabled.
2186 */
2187static int sched_balance_self(int cpu, int flag)
2188{
2189 struct task_struct *t = current;
2190 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2191
c96d145e 2192 for_each_domain(cpu, tmp) {
9761eea8
IM
2193 /*
2194 * If power savings logic is enabled for a domain, stop there.
2195 */
5c45bf27
SS
2196 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2197 break;
476d139c
NP
2198 if (tmp->flags & flag)
2199 sd = tmp;
c96d145e 2200 }
476d139c 2201
039a1c41
PZ
2202 if (sd)
2203 update_shares(sd);
2204
476d139c 2205 while (sd) {
476d139c 2206 struct sched_group *group;
1a848870
SS
2207 int new_cpu, weight;
2208
2209 if (!(sd->flags & flag)) {
2210 sd = sd->child;
2211 continue;
2212 }
476d139c 2213
476d139c 2214 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2215 if (!group) {
2216 sd = sd->child;
2217 continue;
2218 }
476d139c 2219
758b2cdc 2220 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2221 if (new_cpu == -1 || new_cpu == cpu) {
2222 /* Now try balancing at a lower domain level of cpu */
2223 sd = sd->child;
2224 continue;
2225 }
476d139c 2226
1a848870 2227 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2228 cpu = new_cpu;
758b2cdc 2229 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2230 sd = NULL;
476d139c 2231 for_each_domain(cpu, tmp) {
758b2cdc 2232 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2233 break;
2234 if (tmp->flags & flag)
2235 sd = tmp;
2236 }
2237 /* while loop will break here if sd == NULL */
2238 }
2239
2240 return cpu;
2241}
2242
2243#endif /* CONFIG_SMP */
1da177e4 2244
1da177e4
LT
2245/***
2246 * try_to_wake_up - wake up a thread
2247 * @p: the to-be-woken-up thread
2248 * @state: the mask of task states that can be woken
2249 * @sync: do a synchronous wakeup?
2250 *
2251 * Put it on the run-queue if it's not already there. The "current"
2252 * thread is always on the run-queue (except when the actual
2253 * re-schedule is in progress), and as such you're allowed to do
2254 * the simpler "current->state = TASK_RUNNING" to mark yourself
2255 * runnable without the overhead of this.
2256 *
2257 * returns failure only if the task is already active.
2258 */
36c8b586 2259static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2260{
cc367732 2261 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2262 unsigned long flags;
2263 long old_state;
70b97a7f 2264 struct rq *rq;
1da177e4 2265
b85d0667
IM
2266 if (!sched_feat(SYNC_WAKEUPS))
2267 sync = 0;
2268
1596e297
PZ
2269 if (!sync) {
2270 if (current->se.avg_overlap < sysctl_sched_migration_cost &&
2271 p->se.avg_overlap < sysctl_sched_migration_cost)
2272 sync = 1;
2273 } else {
2274 if (current->se.avg_overlap >= sysctl_sched_migration_cost ||
2275 p->se.avg_overlap >= sysctl_sched_migration_cost)
2276 sync = 0;
2277 }
d942fb6c 2278
2398f2c6
PZ
2279#ifdef CONFIG_SMP
2280 if (sched_feat(LB_WAKEUP_UPDATE)) {
2281 struct sched_domain *sd;
2282
2283 this_cpu = raw_smp_processor_id();
2284 cpu = task_cpu(p);
2285
2286 for_each_domain(this_cpu, sd) {
758b2cdc 2287 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2288 update_shares(sd);
2289 break;
2290 }
2291 }
2292 }
2293#endif
2294
04e2f174 2295 smp_wmb();
1da177e4 2296 rq = task_rq_lock(p, &flags);
03e89e45 2297 update_rq_clock(rq);
1da177e4
LT
2298 old_state = p->state;
2299 if (!(old_state & state))
2300 goto out;
2301
dd41f596 2302 if (p->se.on_rq)
1da177e4
LT
2303 goto out_running;
2304
2305 cpu = task_cpu(p);
cc367732 2306 orig_cpu = cpu;
1da177e4
LT
2307 this_cpu = smp_processor_id();
2308
2309#ifdef CONFIG_SMP
2310 if (unlikely(task_running(rq, p)))
2311 goto out_activate;
2312
5d2f5a61
DA
2313 cpu = p->sched_class->select_task_rq(p, sync);
2314 if (cpu != orig_cpu) {
2315 set_task_cpu(p, cpu);
1da177e4
LT
2316 task_rq_unlock(rq, &flags);
2317 /* might preempt at this point */
2318 rq = task_rq_lock(p, &flags);
2319 old_state = p->state;
2320 if (!(old_state & state))
2321 goto out;
dd41f596 2322 if (p->se.on_rq)
1da177e4
LT
2323 goto out_running;
2324
2325 this_cpu = smp_processor_id();
2326 cpu = task_cpu(p);
2327 }
2328
e7693a36
GH
2329#ifdef CONFIG_SCHEDSTATS
2330 schedstat_inc(rq, ttwu_count);
2331 if (cpu == this_cpu)
2332 schedstat_inc(rq, ttwu_local);
2333 else {
2334 struct sched_domain *sd;
2335 for_each_domain(this_cpu, sd) {
758b2cdc 2336 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2337 schedstat_inc(sd, ttwu_wake_remote);
2338 break;
2339 }
2340 }
2341 }
6d6bc0ad 2342#endif /* CONFIG_SCHEDSTATS */
e7693a36 2343
1da177e4
LT
2344out_activate:
2345#endif /* CONFIG_SMP */
cc367732
IM
2346 schedstat_inc(p, se.nr_wakeups);
2347 if (sync)
2348 schedstat_inc(p, se.nr_wakeups_sync);
2349 if (orig_cpu != cpu)
2350 schedstat_inc(p, se.nr_wakeups_migrate);
2351 if (cpu == this_cpu)
2352 schedstat_inc(p, se.nr_wakeups_local);
2353 else
2354 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2355 activate_task(rq, p, 1);
1da177e4
LT
2356 success = 1;
2357
2358out_running:
468a15bb 2359 trace_sched_wakeup(rq, p, success);
15afe09b 2360 check_preempt_curr(rq, p, sync);
4ae7d5ce 2361
1da177e4 2362 p->state = TASK_RUNNING;
9a897c5a
SR
2363#ifdef CONFIG_SMP
2364 if (p->sched_class->task_wake_up)
2365 p->sched_class->task_wake_up(rq, p);
2366#endif
1da177e4 2367out:
2087a1ad
GH
2368 current->se.last_wakeup = current->se.sum_exec_runtime;
2369
1da177e4
LT
2370 task_rq_unlock(rq, &flags);
2371
2372 return success;
2373}
2374
7ad5b3a5 2375int wake_up_process(struct task_struct *p)
1da177e4 2376{
d9514f6c 2377 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2378}
1da177e4
LT
2379EXPORT_SYMBOL(wake_up_process);
2380
7ad5b3a5 2381int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2382{
2383 return try_to_wake_up(p, state, 0);
2384}
2385
1da177e4
LT
2386/*
2387 * Perform scheduler related setup for a newly forked process p.
2388 * p is forked by current.
dd41f596
IM
2389 *
2390 * __sched_fork() is basic setup used by init_idle() too:
2391 */
2392static void __sched_fork(struct task_struct *p)
2393{
dd41f596
IM
2394 p->se.exec_start = 0;
2395 p->se.sum_exec_runtime = 0;
f6cf891c 2396 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2397 p->se.last_wakeup = 0;
2398 p->se.avg_overlap = 0;
6cfb0d5d
IM
2399
2400#ifdef CONFIG_SCHEDSTATS
2401 p->se.wait_start = 0;
dd41f596
IM
2402 p->se.sum_sleep_runtime = 0;
2403 p->se.sleep_start = 0;
dd41f596
IM
2404 p->se.block_start = 0;
2405 p->se.sleep_max = 0;
2406 p->se.block_max = 0;
2407 p->se.exec_max = 0;
eba1ed4b 2408 p->se.slice_max = 0;
dd41f596 2409 p->se.wait_max = 0;
6cfb0d5d 2410#endif
476d139c 2411
fa717060 2412 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2413 p->se.on_rq = 0;
4a55bd5e 2414 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2415
e107be36
AK
2416#ifdef CONFIG_PREEMPT_NOTIFIERS
2417 INIT_HLIST_HEAD(&p->preempt_notifiers);
2418#endif
2419
1da177e4
LT
2420 /*
2421 * We mark the process as running here, but have not actually
2422 * inserted it onto the runqueue yet. This guarantees that
2423 * nobody will actually run it, and a signal or other external
2424 * event cannot wake it up and insert it on the runqueue either.
2425 */
2426 p->state = TASK_RUNNING;
dd41f596
IM
2427}
2428
2429/*
2430 * fork()/clone()-time setup:
2431 */
2432void sched_fork(struct task_struct *p, int clone_flags)
2433{
2434 int cpu = get_cpu();
2435
2436 __sched_fork(p);
2437
2438#ifdef CONFIG_SMP
2439 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2440#endif
02e4bac2 2441 set_task_cpu(p, cpu);
b29739f9
IM
2442
2443 /*
2444 * Make sure we do not leak PI boosting priority to the child:
2445 */
2446 p->prio = current->normal_prio;
2ddbf952
HS
2447 if (!rt_prio(p->prio))
2448 p->sched_class = &fair_sched_class;
b29739f9 2449
52f17b6c 2450#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2451 if (likely(sched_info_on()))
52f17b6c 2452 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2453#endif
d6077cb8 2454#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2455 p->oncpu = 0;
2456#endif
1da177e4 2457#ifdef CONFIG_PREEMPT
4866cde0 2458 /* Want to start with kernel preemption disabled. */
a1261f54 2459 task_thread_info(p)->preempt_count = 1;
1da177e4 2460#endif
476d139c 2461 put_cpu();
1da177e4
LT
2462}
2463
2464/*
2465 * wake_up_new_task - wake up a newly created task for the first time.
2466 *
2467 * This function will do some initial scheduler statistics housekeeping
2468 * that must be done for every newly created context, then puts the task
2469 * on the runqueue and wakes it.
2470 */
7ad5b3a5 2471void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2472{
2473 unsigned long flags;
dd41f596 2474 struct rq *rq;
1da177e4
LT
2475
2476 rq = task_rq_lock(p, &flags);
147cbb4b 2477 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2478 update_rq_clock(rq);
1da177e4
LT
2479
2480 p->prio = effective_prio(p);
2481
b9dca1e0 2482 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2483 activate_task(rq, p, 0);
1da177e4 2484 } else {
1da177e4 2485 /*
dd41f596
IM
2486 * Let the scheduling class do new task startup
2487 * management (if any):
1da177e4 2488 */
ee0827d8 2489 p->sched_class->task_new(rq, p);
c09595f6 2490 inc_nr_running(rq);
1da177e4 2491 }
c71dd42d 2492 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2493 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2494#ifdef CONFIG_SMP
2495 if (p->sched_class->task_wake_up)
2496 p->sched_class->task_wake_up(rq, p);
2497#endif
dd41f596 2498 task_rq_unlock(rq, &flags);
1da177e4
LT
2499}
2500
e107be36
AK
2501#ifdef CONFIG_PREEMPT_NOTIFIERS
2502
2503/**
421cee29
RD
2504 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2505 * @notifier: notifier struct to register
e107be36
AK
2506 */
2507void preempt_notifier_register(struct preempt_notifier *notifier)
2508{
2509 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2510}
2511EXPORT_SYMBOL_GPL(preempt_notifier_register);
2512
2513/**
2514 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2515 * @notifier: notifier struct to unregister
e107be36
AK
2516 *
2517 * This is safe to call from within a preemption notifier.
2518 */
2519void preempt_notifier_unregister(struct preempt_notifier *notifier)
2520{
2521 hlist_del(&notifier->link);
2522}
2523EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2524
2525static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2526{
2527 struct preempt_notifier *notifier;
2528 struct hlist_node *node;
2529
2530 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2531 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2532}
2533
2534static void
2535fire_sched_out_preempt_notifiers(struct task_struct *curr,
2536 struct task_struct *next)
2537{
2538 struct preempt_notifier *notifier;
2539 struct hlist_node *node;
2540
2541 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2542 notifier->ops->sched_out(notifier, next);
2543}
2544
6d6bc0ad 2545#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2546
2547static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2548{
2549}
2550
2551static void
2552fire_sched_out_preempt_notifiers(struct task_struct *curr,
2553 struct task_struct *next)
2554{
2555}
2556
6d6bc0ad 2557#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2558
4866cde0
NP
2559/**
2560 * prepare_task_switch - prepare to switch tasks
2561 * @rq: the runqueue preparing to switch
421cee29 2562 * @prev: the current task that is being switched out
4866cde0
NP
2563 * @next: the task we are going to switch to.
2564 *
2565 * This is called with the rq lock held and interrupts off. It must
2566 * be paired with a subsequent finish_task_switch after the context
2567 * switch.
2568 *
2569 * prepare_task_switch sets up locking and calls architecture specific
2570 * hooks.
2571 */
e107be36
AK
2572static inline void
2573prepare_task_switch(struct rq *rq, struct task_struct *prev,
2574 struct task_struct *next)
4866cde0 2575{
e107be36 2576 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2577 prepare_lock_switch(rq, next);
2578 prepare_arch_switch(next);
2579}
2580
1da177e4
LT
2581/**
2582 * finish_task_switch - clean up after a task-switch
344babaa 2583 * @rq: runqueue associated with task-switch
1da177e4
LT
2584 * @prev: the thread we just switched away from.
2585 *
4866cde0
NP
2586 * finish_task_switch must be called after the context switch, paired
2587 * with a prepare_task_switch call before the context switch.
2588 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2589 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2590 *
2591 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2592 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2593 * with the lock held can cause deadlocks; see schedule() for
2594 * details.)
2595 */
a9957449 2596static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2597 __releases(rq->lock)
2598{
1da177e4 2599 struct mm_struct *mm = rq->prev_mm;
55a101f8 2600 long prev_state;
1da177e4
LT
2601
2602 rq->prev_mm = NULL;
2603
2604 /*
2605 * A task struct has one reference for the use as "current".
c394cc9f 2606 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2607 * schedule one last time. The schedule call will never return, and
2608 * the scheduled task must drop that reference.
c394cc9f 2609 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2610 * still held, otherwise prev could be scheduled on another cpu, die
2611 * there before we look at prev->state, and then the reference would
2612 * be dropped twice.
2613 * Manfred Spraul <manfred@colorfullife.com>
2614 */
55a101f8 2615 prev_state = prev->state;
4866cde0
NP
2616 finish_arch_switch(prev);
2617 finish_lock_switch(rq, prev);
9a897c5a
SR
2618#ifdef CONFIG_SMP
2619 if (current->sched_class->post_schedule)
2620 current->sched_class->post_schedule(rq);
2621#endif
e8fa1362 2622
e107be36 2623 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2624 if (mm)
2625 mmdrop(mm);
c394cc9f 2626 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2627 /*
2628 * Remove function-return probe instances associated with this
2629 * task and put them back on the free list.
9761eea8 2630 */
c6fd91f0 2631 kprobe_flush_task(prev);
1da177e4 2632 put_task_struct(prev);
c6fd91f0 2633 }
1da177e4
LT
2634}
2635
2636/**
2637 * schedule_tail - first thing a freshly forked thread must call.
2638 * @prev: the thread we just switched away from.
2639 */
36c8b586 2640asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2641 __releases(rq->lock)
2642{
70b97a7f
IM
2643 struct rq *rq = this_rq();
2644
4866cde0
NP
2645 finish_task_switch(rq, prev);
2646#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2647 /* In this case, finish_task_switch does not reenable preemption */
2648 preempt_enable();
2649#endif
1da177e4 2650 if (current->set_child_tid)
b488893a 2651 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2652}
2653
2654/*
2655 * context_switch - switch to the new MM and the new
2656 * thread's register state.
2657 */
dd41f596 2658static inline void
70b97a7f 2659context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2660 struct task_struct *next)
1da177e4 2661{
dd41f596 2662 struct mm_struct *mm, *oldmm;
1da177e4 2663
e107be36 2664 prepare_task_switch(rq, prev, next);
0a16b607 2665 trace_sched_switch(rq, prev, next);
dd41f596
IM
2666 mm = next->mm;
2667 oldmm = prev->active_mm;
9226d125
ZA
2668 /*
2669 * For paravirt, this is coupled with an exit in switch_to to
2670 * combine the page table reload and the switch backend into
2671 * one hypercall.
2672 */
2673 arch_enter_lazy_cpu_mode();
2674
dd41f596 2675 if (unlikely(!mm)) {
1da177e4
LT
2676 next->active_mm = oldmm;
2677 atomic_inc(&oldmm->mm_count);
2678 enter_lazy_tlb(oldmm, next);
2679 } else
2680 switch_mm(oldmm, mm, next);
2681
dd41f596 2682 if (unlikely(!prev->mm)) {
1da177e4 2683 prev->active_mm = NULL;
1da177e4
LT
2684 rq->prev_mm = oldmm;
2685 }
3a5f5e48
IM
2686 /*
2687 * Since the runqueue lock will be released by the next
2688 * task (which is an invalid locking op but in the case
2689 * of the scheduler it's an obvious special-case), so we
2690 * do an early lockdep release here:
2691 */
2692#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2693 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2694#endif
1da177e4
LT
2695
2696 /* Here we just switch the register state and the stack. */
2697 switch_to(prev, next, prev);
2698
dd41f596
IM
2699 barrier();
2700 /*
2701 * this_rq must be evaluated again because prev may have moved
2702 * CPUs since it called schedule(), thus the 'rq' on its stack
2703 * frame will be invalid.
2704 */
2705 finish_task_switch(this_rq(), prev);
1da177e4
LT
2706}
2707
2708/*
2709 * nr_running, nr_uninterruptible and nr_context_switches:
2710 *
2711 * externally visible scheduler statistics: current number of runnable
2712 * threads, current number of uninterruptible-sleeping threads, total
2713 * number of context switches performed since bootup.
2714 */
2715unsigned long nr_running(void)
2716{
2717 unsigned long i, sum = 0;
2718
2719 for_each_online_cpu(i)
2720 sum += cpu_rq(i)->nr_running;
2721
2722 return sum;
2723}
2724
2725unsigned long nr_uninterruptible(void)
2726{
2727 unsigned long i, sum = 0;
2728
0a945022 2729 for_each_possible_cpu(i)
1da177e4
LT
2730 sum += cpu_rq(i)->nr_uninterruptible;
2731
2732 /*
2733 * Since we read the counters lockless, it might be slightly
2734 * inaccurate. Do not allow it to go below zero though:
2735 */
2736 if (unlikely((long)sum < 0))
2737 sum = 0;
2738
2739 return sum;
2740}
2741
2742unsigned long long nr_context_switches(void)
2743{
cc94abfc
SR
2744 int i;
2745 unsigned long long sum = 0;
1da177e4 2746
0a945022 2747 for_each_possible_cpu(i)
1da177e4
LT
2748 sum += cpu_rq(i)->nr_switches;
2749
2750 return sum;
2751}
2752
2753unsigned long nr_iowait(void)
2754{
2755 unsigned long i, sum = 0;
2756
0a945022 2757 for_each_possible_cpu(i)
1da177e4
LT
2758 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2759
2760 return sum;
2761}
2762
db1b1fef
JS
2763unsigned long nr_active(void)
2764{
2765 unsigned long i, running = 0, uninterruptible = 0;
2766
2767 for_each_online_cpu(i) {
2768 running += cpu_rq(i)->nr_running;
2769 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2770 }
2771
2772 if (unlikely((long)uninterruptible < 0))
2773 uninterruptible = 0;
2774
2775 return running + uninterruptible;
2776}
2777
48f24c4d 2778/*
dd41f596
IM
2779 * Update rq->cpu_load[] statistics. This function is usually called every
2780 * scheduler tick (TICK_NSEC).
48f24c4d 2781 */
dd41f596 2782static void update_cpu_load(struct rq *this_rq)
48f24c4d 2783{
495eca49 2784 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2785 int i, scale;
2786
2787 this_rq->nr_load_updates++;
dd41f596
IM
2788
2789 /* Update our load: */
2790 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2791 unsigned long old_load, new_load;
2792
2793 /* scale is effectively 1 << i now, and >> i divides by scale */
2794
2795 old_load = this_rq->cpu_load[i];
2796 new_load = this_load;
a25707f3
IM
2797 /*
2798 * Round up the averaging division if load is increasing. This
2799 * prevents us from getting stuck on 9 if the load is 10, for
2800 * example.
2801 */
2802 if (new_load > old_load)
2803 new_load += scale-1;
dd41f596
IM
2804 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2805 }
48f24c4d
IM
2806}
2807
dd41f596
IM
2808#ifdef CONFIG_SMP
2809
1da177e4
LT
2810/*
2811 * double_rq_lock - safely lock two runqueues
2812 *
2813 * Note this does not disable interrupts like task_rq_lock,
2814 * you need to do so manually before calling.
2815 */
70b97a7f 2816static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2817 __acquires(rq1->lock)
2818 __acquires(rq2->lock)
2819{
054b9108 2820 BUG_ON(!irqs_disabled());
1da177e4
LT
2821 if (rq1 == rq2) {
2822 spin_lock(&rq1->lock);
2823 __acquire(rq2->lock); /* Fake it out ;) */
2824 } else {
c96d145e 2825 if (rq1 < rq2) {
1da177e4 2826 spin_lock(&rq1->lock);
5e710e37 2827 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2828 } else {
2829 spin_lock(&rq2->lock);
5e710e37 2830 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2831 }
2832 }
6e82a3be
IM
2833 update_rq_clock(rq1);
2834 update_rq_clock(rq2);
1da177e4
LT
2835}
2836
2837/*
2838 * double_rq_unlock - safely unlock two runqueues
2839 *
2840 * Note this does not restore interrupts like task_rq_unlock,
2841 * you need to do so manually after calling.
2842 */
70b97a7f 2843static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2844 __releases(rq1->lock)
2845 __releases(rq2->lock)
2846{
2847 spin_unlock(&rq1->lock);
2848 if (rq1 != rq2)
2849 spin_unlock(&rq2->lock);
2850 else
2851 __release(rq2->lock);
2852}
2853
1da177e4
LT
2854/*
2855 * If dest_cpu is allowed for this process, migrate the task to it.
2856 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2857 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2858 * the cpu_allowed mask is restored.
2859 */
36c8b586 2860static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2861{
70b97a7f 2862 struct migration_req req;
1da177e4 2863 unsigned long flags;
70b97a7f 2864 struct rq *rq;
1da177e4
LT
2865
2866 rq = task_rq_lock(p, &flags);
96f874e2 2867 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2868 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2869 goto out;
2870
2871 /* force the process onto the specified CPU */
2872 if (migrate_task(p, dest_cpu, &req)) {
2873 /* Need to wait for migration thread (might exit: take ref). */
2874 struct task_struct *mt = rq->migration_thread;
36c8b586 2875
1da177e4
LT
2876 get_task_struct(mt);
2877 task_rq_unlock(rq, &flags);
2878 wake_up_process(mt);
2879 put_task_struct(mt);
2880 wait_for_completion(&req.done);
36c8b586 2881
1da177e4
LT
2882 return;
2883 }
2884out:
2885 task_rq_unlock(rq, &flags);
2886}
2887
2888/*
476d139c
NP
2889 * sched_exec - execve() is a valuable balancing opportunity, because at
2890 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2891 */
2892void sched_exec(void)
2893{
1da177e4 2894 int new_cpu, this_cpu = get_cpu();
476d139c 2895 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2896 put_cpu();
476d139c
NP
2897 if (new_cpu != this_cpu)
2898 sched_migrate_task(current, new_cpu);
1da177e4
LT
2899}
2900
2901/*
2902 * pull_task - move a task from a remote runqueue to the local runqueue.
2903 * Both runqueues must be locked.
2904 */
dd41f596
IM
2905static void pull_task(struct rq *src_rq, struct task_struct *p,
2906 struct rq *this_rq, int this_cpu)
1da177e4 2907{
2e1cb74a 2908 deactivate_task(src_rq, p, 0);
1da177e4 2909 set_task_cpu(p, this_cpu);
dd41f596 2910 activate_task(this_rq, p, 0);
1da177e4
LT
2911 /*
2912 * Note that idle threads have a prio of MAX_PRIO, for this test
2913 * to be always true for them.
2914 */
15afe09b 2915 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2916}
2917
2918/*
2919 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2920 */
858119e1 2921static
70b97a7f 2922int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2923 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2924 int *all_pinned)
1da177e4
LT
2925{
2926 /*
2927 * We do not migrate tasks that are:
2928 * 1) running (obviously), or
2929 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2930 * 3) are cache-hot on their current CPU.
2931 */
96f874e2 2932 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 2933 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2934 return 0;
cc367732 2935 }
81026794
NP
2936 *all_pinned = 0;
2937
cc367732
IM
2938 if (task_running(rq, p)) {
2939 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2940 return 0;
cc367732 2941 }
1da177e4 2942
da84d961
IM
2943 /*
2944 * Aggressive migration if:
2945 * 1) task is cache cold, or
2946 * 2) too many balance attempts have failed.
2947 */
2948
6bc1665b
IM
2949 if (!task_hot(p, rq->clock, sd) ||
2950 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2951#ifdef CONFIG_SCHEDSTATS
cc367732 2952 if (task_hot(p, rq->clock, sd)) {
da84d961 2953 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2954 schedstat_inc(p, se.nr_forced_migrations);
2955 }
da84d961
IM
2956#endif
2957 return 1;
2958 }
2959
cc367732
IM
2960 if (task_hot(p, rq->clock, sd)) {
2961 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2962 return 0;
cc367732 2963 }
1da177e4
LT
2964 return 1;
2965}
2966
e1d1484f
PW
2967static unsigned long
2968balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2969 unsigned long max_load_move, struct sched_domain *sd,
2970 enum cpu_idle_type idle, int *all_pinned,
2971 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2972{
051c6764 2973 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2974 struct task_struct *p;
2975 long rem_load_move = max_load_move;
1da177e4 2976
e1d1484f 2977 if (max_load_move == 0)
1da177e4
LT
2978 goto out;
2979
81026794
NP
2980 pinned = 1;
2981
1da177e4 2982 /*
dd41f596 2983 * Start the load-balancing iterator:
1da177e4 2984 */
dd41f596
IM
2985 p = iterator->start(iterator->arg);
2986next:
b82d9fdd 2987 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2988 goto out;
051c6764
PZ
2989
2990 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2991 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2992 p = iterator->next(iterator->arg);
2993 goto next;
1da177e4
LT
2994 }
2995
dd41f596 2996 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2997 pulled++;
dd41f596 2998 rem_load_move -= p->se.load.weight;
1da177e4 2999
2dd73a4f 3000 /*
b82d9fdd 3001 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3002 */
e1d1484f 3003 if (rem_load_move > 0) {
a4ac01c3
PW
3004 if (p->prio < *this_best_prio)
3005 *this_best_prio = p->prio;
dd41f596
IM
3006 p = iterator->next(iterator->arg);
3007 goto next;
1da177e4
LT
3008 }
3009out:
3010 /*
e1d1484f 3011 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3012 * so we can safely collect pull_task() stats here rather than
3013 * inside pull_task().
3014 */
3015 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3016
3017 if (all_pinned)
3018 *all_pinned = pinned;
e1d1484f
PW
3019
3020 return max_load_move - rem_load_move;
1da177e4
LT
3021}
3022
dd41f596 3023/*
43010659
PW
3024 * move_tasks tries to move up to max_load_move weighted load from busiest to
3025 * this_rq, as part of a balancing operation within domain "sd".
3026 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3027 *
3028 * Called with both runqueues locked.
3029 */
3030static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3031 unsigned long max_load_move,
dd41f596
IM
3032 struct sched_domain *sd, enum cpu_idle_type idle,
3033 int *all_pinned)
3034{
5522d5d5 3035 const struct sched_class *class = sched_class_highest;
43010659 3036 unsigned long total_load_moved = 0;
a4ac01c3 3037 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3038
3039 do {
43010659
PW
3040 total_load_moved +=
3041 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3042 max_load_move - total_load_moved,
a4ac01c3 3043 sd, idle, all_pinned, &this_best_prio);
dd41f596 3044 class = class->next;
c4acb2c0
GH
3045
3046 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3047 break;
3048
43010659 3049 } while (class && max_load_move > total_load_moved);
dd41f596 3050
43010659
PW
3051 return total_load_moved > 0;
3052}
3053
e1d1484f
PW
3054static int
3055iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3056 struct sched_domain *sd, enum cpu_idle_type idle,
3057 struct rq_iterator *iterator)
3058{
3059 struct task_struct *p = iterator->start(iterator->arg);
3060 int pinned = 0;
3061
3062 while (p) {
3063 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3064 pull_task(busiest, p, this_rq, this_cpu);
3065 /*
3066 * Right now, this is only the second place pull_task()
3067 * is called, so we can safely collect pull_task()
3068 * stats here rather than inside pull_task().
3069 */
3070 schedstat_inc(sd, lb_gained[idle]);
3071
3072 return 1;
3073 }
3074 p = iterator->next(iterator->arg);
3075 }
3076
3077 return 0;
3078}
3079
43010659
PW
3080/*
3081 * move_one_task tries to move exactly one task from busiest to this_rq, as
3082 * part of active balancing operations within "domain".
3083 * Returns 1 if successful and 0 otherwise.
3084 *
3085 * Called with both runqueues locked.
3086 */
3087static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3088 struct sched_domain *sd, enum cpu_idle_type idle)
3089{
5522d5d5 3090 const struct sched_class *class;
43010659
PW
3091
3092 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3093 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3094 return 1;
3095
3096 return 0;
dd41f596
IM
3097}
3098
1da177e4
LT
3099/*
3100 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3101 * domain. It calculates and returns the amount of weighted load which
3102 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3103 */
3104static struct sched_group *
3105find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3106 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3107 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3108{
3109 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3110 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3111 unsigned long max_pull;
2dd73a4f
PW
3112 unsigned long busiest_load_per_task, busiest_nr_running;
3113 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3114 int load_idx, group_imb = 0;
5c45bf27
SS
3115#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3116 int power_savings_balance = 1;
3117 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3118 unsigned long min_nr_running = ULONG_MAX;
3119 struct sched_group *group_min = NULL, *group_leader = NULL;
3120#endif
1da177e4
LT
3121
3122 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3123 busiest_load_per_task = busiest_nr_running = 0;
3124 this_load_per_task = this_nr_running = 0;
408ed066 3125
d15bcfdb 3126 if (idle == CPU_NOT_IDLE)
7897986b 3127 load_idx = sd->busy_idx;
d15bcfdb 3128 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3129 load_idx = sd->newidle_idx;
3130 else
3131 load_idx = sd->idle_idx;
1da177e4
LT
3132
3133 do {
908a7c1b 3134 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3135 int local_group;
3136 int i;
908a7c1b 3137 int __group_imb = 0;
783609c6 3138 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3139 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3140 unsigned long sum_avg_load_per_task;
3141 unsigned long avg_load_per_task;
1da177e4 3142
758b2cdc
RR
3143 local_group = cpumask_test_cpu(this_cpu,
3144 sched_group_cpus(group));
1da177e4 3145
783609c6 3146 if (local_group)
758b2cdc 3147 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3148
1da177e4 3149 /* Tally up the load of all CPUs in the group */
2dd73a4f 3150 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3151 sum_avg_load_per_task = avg_load_per_task = 0;
3152
908a7c1b
KC
3153 max_cpu_load = 0;
3154 min_cpu_load = ~0UL;
1da177e4 3155
758b2cdc
RR
3156 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3157 struct rq *rq = cpu_rq(i);
2dd73a4f 3158
9439aab8 3159 if (*sd_idle && rq->nr_running)
5969fe06
NP
3160 *sd_idle = 0;
3161
1da177e4 3162 /* Bias balancing toward cpus of our domain */
783609c6
SS
3163 if (local_group) {
3164 if (idle_cpu(i) && !first_idle_cpu) {
3165 first_idle_cpu = 1;
3166 balance_cpu = i;
3167 }
3168
a2000572 3169 load = target_load(i, load_idx);
908a7c1b 3170 } else {
a2000572 3171 load = source_load(i, load_idx);
908a7c1b
KC
3172 if (load > max_cpu_load)
3173 max_cpu_load = load;
3174 if (min_cpu_load > load)
3175 min_cpu_load = load;
3176 }
1da177e4
LT
3177
3178 avg_load += load;
2dd73a4f 3179 sum_nr_running += rq->nr_running;
dd41f596 3180 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3181
3182 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3183 }
3184
783609c6
SS
3185 /*
3186 * First idle cpu or the first cpu(busiest) in this sched group
3187 * is eligible for doing load balancing at this and above
9439aab8
SS
3188 * domains. In the newly idle case, we will allow all the cpu's
3189 * to do the newly idle load balance.
783609c6 3190 */
9439aab8
SS
3191 if (idle != CPU_NEWLY_IDLE && local_group &&
3192 balance_cpu != this_cpu && balance) {
783609c6
SS
3193 *balance = 0;
3194 goto ret;
3195 }
3196
1da177e4 3197 total_load += avg_load;
5517d86b 3198 total_pwr += group->__cpu_power;
1da177e4
LT
3199
3200 /* Adjust by relative CPU power of the group */
5517d86b
ED
3201 avg_load = sg_div_cpu_power(group,
3202 avg_load * SCHED_LOAD_SCALE);
1da177e4 3203
408ed066
PZ
3204
3205 /*
3206 * Consider the group unbalanced when the imbalance is larger
3207 * than the average weight of two tasks.
3208 *
3209 * APZ: with cgroup the avg task weight can vary wildly and
3210 * might not be a suitable number - should we keep a
3211 * normalized nr_running number somewhere that negates
3212 * the hierarchy?
3213 */
3214 avg_load_per_task = sg_div_cpu_power(group,
3215 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3216
3217 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3218 __group_imb = 1;
3219
5517d86b 3220 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3221
1da177e4
LT
3222 if (local_group) {
3223 this_load = avg_load;
3224 this = group;
2dd73a4f
PW
3225 this_nr_running = sum_nr_running;
3226 this_load_per_task = sum_weighted_load;
3227 } else if (avg_load > max_load &&
908a7c1b 3228 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3229 max_load = avg_load;
3230 busiest = group;
2dd73a4f
PW
3231 busiest_nr_running = sum_nr_running;
3232 busiest_load_per_task = sum_weighted_load;
908a7c1b 3233 group_imb = __group_imb;
1da177e4 3234 }
5c45bf27
SS
3235
3236#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3237 /*
3238 * Busy processors will not participate in power savings
3239 * balance.
3240 */
dd41f596
IM
3241 if (idle == CPU_NOT_IDLE ||
3242 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3243 goto group_next;
5c45bf27
SS
3244
3245 /*
3246 * If the local group is idle or completely loaded
3247 * no need to do power savings balance at this domain
3248 */
3249 if (local_group && (this_nr_running >= group_capacity ||
3250 !this_nr_running))
3251 power_savings_balance = 0;
3252
dd41f596 3253 /*
5c45bf27
SS
3254 * If a group is already running at full capacity or idle,
3255 * don't include that group in power savings calculations
dd41f596
IM
3256 */
3257 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3258 || !sum_nr_running)
dd41f596 3259 goto group_next;
5c45bf27 3260
dd41f596 3261 /*
5c45bf27 3262 * Calculate the group which has the least non-idle load.
dd41f596
IM
3263 * This is the group from where we need to pick up the load
3264 * for saving power
3265 */
3266 if ((sum_nr_running < min_nr_running) ||
3267 (sum_nr_running == min_nr_running &&
d5679bd1 3268 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3269 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3270 group_min = group;
3271 min_nr_running = sum_nr_running;
5c45bf27
SS
3272 min_load_per_task = sum_weighted_load /
3273 sum_nr_running;
dd41f596 3274 }
5c45bf27 3275
dd41f596 3276 /*
5c45bf27 3277 * Calculate the group which is almost near its
dd41f596
IM
3278 * capacity but still has some space to pick up some load
3279 * from other group and save more power
3280 */
3281 if (sum_nr_running <= group_capacity - 1) {
3282 if (sum_nr_running > leader_nr_running ||
3283 (sum_nr_running == leader_nr_running &&
d5679bd1 3284 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3285 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3286 group_leader = group;
3287 leader_nr_running = sum_nr_running;
3288 }
48f24c4d 3289 }
5c45bf27
SS
3290group_next:
3291#endif
1da177e4
LT
3292 group = group->next;
3293 } while (group != sd->groups);
3294
2dd73a4f 3295 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3296 goto out_balanced;
3297
3298 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3299
3300 if (this_load >= avg_load ||
3301 100*max_load <= sd->imbalance_pct*this_load)
3302 goto out_balanced;
3303
2dd73a4f 3304 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3305 if (group_imb)
3306 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3307
1da177e4
LT
3308 /*
3309 * We're trying to get all the cpus to the average_load, so we don't
3310 * want to push ourselves above the average load, nor do we wish to
3311 * reduce the max loaded cpu below the average load, as either of these
3312 * actions would just result in more rebalancing later, and ping-pong
3313 * tasks around. Thus we look for the minimum possible imbalance.
3314 * Negative imbalances (*we* are more loaded than anyone else) will
3315 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3316 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3317 * appear as very large values with unsigned longs.
3318 */
2dd73a4f
PW
3319 if (max_load <= busiest_load_per_task)
3320 goto out_balanced;
3321
3322 /*
3323 * In the presence of smp nice balancing, certain scenarios can have
3324 * max load less than avg load(as we skip the groups at or below
3325 * its cpu_power, while calculating max_load..)
3326 */
3327 if (max_load < avg_load) {
3328 *imbalance = 0;
3329 goto small_imbalance;
3330 }
0c117f1b
SS
3331
3332 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3333 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3334
1da177e4 3335 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3336 *imbalance = min(max_pull * busiest->__cpu_power,
3337 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3338 / SCHED_LOAD_SCALE;
3339
2dd73a4f
PW
3340 /*
3341 * if *imbalance is less than the average load per runnable task
3342 * there is no gaurantee that any tasks will be moved so we'll have
3343 * a think about bumping its value to force at least one task to be
3344 * moved
3345 */
7fd0d2dd 3346 if (*imbalance < busiest_load_per_task) {
48f24c4d 3347 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3348 unsigned int imbn;
3349
3350small_imbalance:
3351 pwr_move = pwr_now = 0;
3352 imbn = 2;
3353 if (this_nr_running) {
3354 this_load_per_task /= this_nr_running;
3355 if (busiest_load_per_task > this_load_per_task)
3356 imbn = 1;
3357 } else
408ed066 3358 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3359
01c8c57d 3360 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3361 busiest_load_per_task * imbn) {
2dd73a4f 3362 *imbalance = busiest_load_per_task;
1da177e4
LT
3363 return busiest;
3364 }
3365
3366 /*
3367 * OK, we don't have enough imbalance to justify moving tasks,
3368 * however we may be able to increase total CPU power used by
3369 * moving them.
3370 */
3371
5517d86b
ED
3372 pwr_now += busiest->__cpu_power *
3373 min(busiest_load_per_task, max_load);
3374 pwr_now += this->__cpu_power *
3375 min(this_load_per_task, this_load);
1da177e4
LT
3376 pwr_now /= SCHED_LOAD_SCALE;
3377
3378 /* Amount of load we'd subtract */
5517d86b
ED
3379 tmp = sg_div_cpu_power(busiest,
3380 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3381 if (max_load > tmp)
5517d86b 3382 pwr_move += busiest->__cpu_power *
2dd73a4f 3383 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3384
3385 /* Amount of load we'd add */
5517d86b 3386 if (max_load * busiest->__cpu_power <
33859f7f 3387 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3388 tmp = sg_div_cpu_power(this,
3389 max_load * busiest->__cpu_power);
1da177e4 3390 else
5517d86b
ED
3391 tmp = sg_div_cpu_power(this,
3392 busiest_load_per_task * SCHED_LOAD_SCALE);
3393 pwr_move += this->__cpu_power *
3394 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3395 pwr_move /= SCHED_LOAD_SCALE;
3396
3397 /* Move if we gain throughput */
7fd0d2dd
SS
3398 if (pwr_move > pwr_now)
3399 *imbalance = busiest_load_per_task;
1da177e4
LT
3400 }
3401
1da177e4
LT
3402 return busiest;
3403
3404out_balanced:
5c45bf27 3405#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3406 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3407 goto ret;
1da177e4 3408
5c45bf27
SS
3409 if (this == group_leader && group_leader != group_min) {
3410 *imbalance = min_load_per_task;
7a09b1a2
VS
3411 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3412 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3413 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3414 }
5c45bf27
SS
3415 return group_min;
3416 }
5c45bf27 3417#endif
783609c6 3418ret:
1da177e4
LT
3419 *imbalance = 0;
3420 return NULL;
3421}
3422
3423/*
3424 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3425 */
70b97a7f 3426static struct rq *
d15bcfdb 3427find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3428 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3429{
70b97a7f 3430 struct rq *busiest = NULL, *rq;
2dd73a4f 3431 unsigned long max_load = 0;
1da177e4
LT
3432 int i;
3433
758b2cdc 3434 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3435 unsigned long wl;
0a2966b4 3436
96f874e2 3437 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3438 continue;
3439
48f24c4d 3440 rq = cpu_rq(i);
dd41f596 3441 wl = weighted_cpuload(i);
2dd73a4f 3442
dd41f596 3443 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3444 continue;
1da177e4 3445
dd41f596
IM
3446 if (wl > max_load) {
3447 max_load = wl;
48f24c4d 3448 busiest = rq;
1da177e4
LT
3449 }
3450 }
3451
3452 return busiest;
3453}
3454
77391d71
NP
3455/*
3456 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3457 * so long as it is large enough.
3458 */
3459#define MAX_PINNED_INTERVAL 512
3460
1da177e4
LT
3461/*
3462 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3463 * tasks if there is an imbalance.
1da177e4 3464 */
70b97a7f 3465static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3466 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3467 int *balance, struct cpumask *cpus)
1da177e4 3468{
43010659 3469 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3470 struct sched_group *group;
1da177e4 3471 unsigned long imbalance;
70b97a7f 3472 struct rq *busiest;
fe2eea3f 3473 unsigned long flags;
5969fe06 3474
96f874e2 3475 cpumask_setall(cpus);
7c16ec58 3476
89c4710e
SS
3477 /*
3478 * When power savings policy is enabled for the parent domain, idle
3479 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3480 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3481 * portraying it as CPU_NOT_IDLE.
89c4710e 3482 */
d15bcfdb 3483 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3484 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3485 sd_idle = 1;
1da177e4 3486
2d72376b 3487 schedstat_inc(sd, lb_count[idle]);
1da177e4 3488
0a2966b4 3489redo:
c8cba857 3490 update_shares(sd);
0a2966b4 3491 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3492 cpus, balance);
783609c6 3493
06066714 3494 if (*balance == 0)
783609c6 3495 goto out_balanced;
783609c6 3496
1da177e4
LT
3497 if (!group) {
3498 schedstat_inc(sd, lb_nobusyg[idle]);
3499 goto out_balanced;
3500 }
3501
7c16ec58 3502 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3503 if (!busiest) {
3504 schedstat_inc(sd, lb_nobusyq[idle]);
3505 goto out_balanced;
3506 }
3507
db935dbd 3508 BUG_ON(busiest == this_rq);
1da177e4
LT
3509
3510 schedstat_add(sd, lb_imbalance[idle], imbalance);
3511
43010659 3512 ld_moved = 0;
1da177e4
LT
3513 if (busiest->nr_running > 1) {
3514 /*
3515 * Attempt to move tasks. If find_busiest_group has found
3516 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3517 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3518 * correctly treated as an imbalance.
3519 */
fe2eea3f 3520 local_irq_save(flags);
e17224bf 3521 double_rq_lock(this_rq, busiest);
43010659 3522 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3523 imbalance, sd, idle, &all_pinned);
e17224bf 3524 double_rq_unlock(this_rq, busiest);
fe2eea3f 3525 local_irq_restore(flags);
81026794 3526
46cb4b7c
SS
3527 /*
3528 * some other cpu did the load balance for us.
3529 */
43010659 3530 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3531 resched_cpu(this_cpu);
3532
81026794 3533 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3534 if (unlikely(all_pinned)) {
96f874e2
RR
3535 cpumask_clear_cpu(cpu_of(busiest), cpus);
3536 if (!cpumask_empty(cpus))
0a2966b4 3537 goto redo;
81026794 3538 goto out_balanced;
0a2966b4 3539 }
1da177e4 3540 }
81026794 3541
43010659 3542 if (!ld_moved) {
1da177e4
LT
3543 schedstat_inc(sd, lb_failed[idle]);
3544 sd->nr_balance_failed++;
3545
3546 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3547
fe2eea3f 3548 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3549
3550 /* don't kick the migration_thread, if the curr
3551 * task on busiest cpu can't be moved to this_cpu
3552 */
96f874e2
RR
3553 if (!cpumask_test_cpu(this_cpu,
3554 &busiest->curr->cpus_allowed)) {
fe2eea3f 3555 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3556 all_pinned = 1;
3557 goto out_one_pinned;
3558 }
3559
1da177e4
LT
3560 if (!busiest->active_balance) {
3561 busiest->active_balance = 1;
3562 busiest->push_cpu = this_cpu;
81026794 3563 active_balance = 1;
1da177e4 3564 }
fe2eea3f 3565 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3566 if (active_balance)
1da177e4
LT
3567 wake_up_process(busiest->migration_thread);
3568
3569 /*
3570 * We've kicked active balancing, reset the failure
3571 * counter.
3572 */
39507451 3573 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3574 }
81026794 3575 } else
1da177e4
LT
3576 sd->nr_balance_failed = 0;
3577
81026794 3578 if (likely(!active_balance)) {
1da177e4
LT
3579 /* We were unbalanced, so reset the balancing interval */
3580 sd->balance_interval = sd->min_interval;
81026794
NP
3581 } else {
3582 /*
3583 * If we've begun active balancing, start to back off. This
3584 * case may not be covered by the all_pinned logic if there
3585 * is only 1 task on the busy runqueue (because we don't call
3586 * move_tasks).
3587 */
3588 if (sd->balance_interval < sd->max_interval)
3589 sd->balance_interval *= 2;
1da177e4
LT
3590 }
3591
43010659 3592 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3593 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3594 ld_moved = -1;
3595
3596 goto out;
1da177e4
LT
3597
3598out_balanced:
1da177e4
LT
3599 schedstat_inc(sd, lb_balanced[idle]);
3600
16cfb1c0 3601 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3602
3603out_one_pinned:
1da177e4 3604 /* tune up the balancing interval */
77391d71
NP
3605 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3606 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3607 sd->balance_interval *= 2;
3608
48f24c4d 3609 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3610 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3611 ld_moved = -1;
3612 else
3613 ld_moved = 0;
3614out:
c8cba857
PZ
3615 if (ld_moved)
3616 update_shares(sd);
c09595f6 3617 return ld_moved;
1da177e4
LT
3618}
3619
3620/*
3621 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3622 * tasks if there is an imbalance.
3623 *
d15bcfdb 3624 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3625 * this_rq is locked.
3626 */
48f24c4d 3627static int
7c16ec58 3628load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3629 struct cpumask *cpus)
1da177e4
LT
3630{
3631 struct sched_group *group;
70b97a7f 3632 struct rq *busiest = NULL;
1da177e4 3633 unsigned long imbalance;
43010659 3634 int ld_moved = 0;
5969fe06 3635 int sd_idle = 0;
969bb4e4 3636 int all_pinned = 0;
7c16ec58 3637
96f874e2 3638 cpumask_setall(cpus);
5969fe06 3639
89c4710e
SS
3640 /*
3641 * When power savings policy is enabled for the parent domain, idle
3642 * sibling can pick up load irrespective of busy siblings. In this case,
3643 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3644 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3645 */
3646 if (sd->flags & SD_SHARE_CPUPOWER &&
3647 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3648 sd_idle = 1;
1da177e4 3649
2d72376b 3650 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3651redo:
3e5459b4 3652 update_shares_locked(this_rq, sd);
d15bcfdb 3653 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3654 &sd_idle, cpus, NULL);
1da177e4 3655 if (!group) {
d15bcfdb 3656 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3657 goto out_balanced;
1da177e4
LT
3658 }
3659
7c16ec58 3660 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3661 if (!busiest) {
d15bcfdb 3662 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3663 goto out_balanced;
1da177e4
LT
3664 }
3665
db935dbd
NP
3666 BUG_ON(busiest == this_rq);
3667
d15bcfdb 3668 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3669
43010659 3670 ld_moved = 0;
d6d5cfaf
NP
3671 if (busiest->nr_running > 1) {
3672 /* Attempt to move tasks */
3673 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3674 /* this_rq->clock is already updated */
3675 update_rq_clock(busiest);
43010659 3676 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3677 imbalance, sd, CPU_NEWLY_IDLE,
3678 &all_pinned);
1b12bbc7 3679 double_unlock_balance(this_rq, busiest);
0a2966b4 3680
969bb4e4 3681 if (unlikely(all_pinned)) {
96f874e2
RR
3682 cpumask_clear_cpu(cpu_of(busiest), cpus);
3683 if (!cpumask_empty(cpus))
0a2966b4
CL
3684 goto redo;
3685 }
d6d5cfaf
NP
3686 }
3687
43010659 3688 if (!ld_moved) {
36dffab6 3689 int active_balance = 0;
ad273b32 3690
d15bcfdb 3691 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3692 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3693 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3694 return -1;
ad273b32
VS
3695
3696 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3697 return -1;
3698
3699 if (sd->nr_balance_failed++ < 2)
3700 return -1;
3701
3702 /*
3703 * The only task running in a non-idle cpu can be moved to this
3704 * cpu in an attempt to completely freeup the other CPU
3705 * package. The same method used to move task in load_balance()
3706 * have been extended for load_balance_newidle() to speedup
3707 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3708 *
3709 * The package power saving logic comes from
3710 * find_busiest_group(). If there are no imbalance, then
3711 * f_b_g() will return NULL. However when sched_mc={1,2} then
3712 * f_b_g() will select a group from which a running task may be
3713 * pulled to this cpu in order to make the other package idle.
3714 * If there is no opportunity to make a package idle and if
3715 * there are no imbalance, then f_b_g() will return NULL and no
3716 * action will be taken in load_balance_newidle().
3717 *
3718 * Under normal task pull operation due to imbalance, there
3719 * will be more than one task in the source run queue and
3720 * move_tasks() will succeed. ld_moved will be true and this
3721 * active balance code will not be triggered.
3722 */
3723
3724 /* Lock busiest in correct order while this_rq is held */
3725 double_lock_balance(this_rq, busiest);
3726
3727 /*
3728 * don't kick the migration_thread, if the curr
3729 * task on busiest cpu can't be moved to this_cpu
3730 */
6ca09dfc 3731 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3732 double_unlock_balance(this_rq, busiest);
3733 all_pinned = 1;
3734 return ld_moved;
3735 }
3736
3737 if (!busiest->active_balance) {
3738 busiest->active_balance = 1;
3739 busiest->push_cpu = this_cpu;
3740 active_balance = 1;
3741 }
3742
3743 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
3744 /*
3745 * Should not call ttwu while holding a rq->lock
3746 */
3747 spin_unlock(&this_rq->lock);
ad273b32
VS
3748 if (active_balance)
3749 wake_up_process(busiest->migration_thread);
da8d5089 3750 spin_lock(&this_rq->lock);
ad273b32 3751
5969fe06 3752 } else
16cfb1c0 3753 sd->nr_balance_failed = 0;
1da177e4 3754
3e5459b4 3755 update_shares_locked(this_rq, sd);
43010659 3756 return ld_moved;
16cfb1c0
NP
3757
3758out_balanced:
d15bcfdb 3759 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3760 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3761 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3762 return -1;
16cfb1c0 3763 sd->nr_balance_failed = 0;
48f24c4d 3764
16cfb1c0 3765 return 0;
1da177e4
LT
3766}
3767
3768/*
3769 * idle_balance is called by schedule() if this_cpu is about to become
3770 * idle. Attempts to pull tasks from other CPUs.
3771 */
70b97a7f 3772static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3773{
3774 struct sched_domain *sd;
efbe027e 3775 int pulled_task = 0;
dd41f596 3776 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3777 cpumask_var_t tmpmask;
3778
3779 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3780 return;
1da177e4
LT
3781
3782 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3783 unsigned long interval;
3784
3785 if (!(sd->flags & SD_LOAD_BALANCE))
3786 continue;
3787
3788 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3789 /* If we've pulled tasks over stop searching: */
7c16ec58 3790 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3791 sd, tmpmask);
92c4ca5c
CL
3792
3793 interval = msecs_to_jiffies(sd->balance_interval);
3794 if (time_after(next_balance, sd->last_balance + interval))
3795 next_balance = sd->last_balance + interval;
3796 if (pulled_task)
3797 break;
1da177e4 3798 }
dd41f596 3799 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3800 /*
3801 * We are going idle. next_balance may be set based on
3802 * a busy processor. So reset next_balance.
3803 */
3804 this_rq->next_balance = next_balance;
dd41f596 3805 }
4d2732c6 3806 free_cpumask_var(tmpmask);
1da177e4
LT
3807}
3808
3809/*
3810 * active_load_balance is run by migration threads. It pushes running tasks
3811 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3812 * running on each physical CPU where possible, and avoids physical /
3813 * logical imbalances.
3814 *
3815 * Called with busiest_rq locked.
3816 */
70b97a7f 3817static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3818{
39507451 3819 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3820 struct sched_domain *sd;
3821 struct rq *target_rq;
39507451 3822
48f24c4d 3823 /* Is there any task to move? */
39507451 3824 if (busiest_rq->nr_running <= 1)
39507451
NP
3825 return;
3826
3827 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3828
3829 /*
39507451 3830 * This condition is "impossible", if it occurs
41a2d6cf 3831 * we need to fix it. Originally reported by
39507451 3832 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3833 */
39507451 3834 BUG_ON(busiest_rq == target_rq);
1da177e4 3835
39507451
NP
3836 /* move a task from busiest_rq to target_rq */
3837 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3838 update_rq_clock(busiest_rq);
3839 update_rq_clock(target_rq);
39507451
NP
3840
3841 /* Search for an sd spanning us and the target CPU. */
c96d145e 3842 for_each_domain(target_cpu, sd) {
39507451 3843 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3844 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3845 break;
c96d145e 3846 }
39507451 3847
48f24c4d 3848 if (likely(sd)) {
2d72376b 3849 schedstat_inc(sd, alb_count);
39507451 3850
43010659
PW
3851 if (move_one_task(target_rq, target_cpu, busiest_rq,
3852 sd, CPU_IDLE))
48f24c4d
IM
3853 schedstat_inc(sd, alb_pushed);
3854 else
3855 schedstat_inc(sd, alb_failed);
3856 }
1b12bbc7 3857 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3858}
3859
46cb4b7c
SS
3860#ifdef CONFIG_NO_HZ
3861static struct {
3862 atomic_t load_balancer;
7d1e6a9b 3863 cpumask_var_t cpu_mask;
46cb4b7c
SS
3864} nohz ____cacheline_aligned = {
3865 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3866};
3867
7835b98b 3868/*
46cb4b7c
SS
3869 * This routine will try to nominate the ilb (idle load balancing)
3870 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3871 * load balancing on behalf of all those cpus. If all the cpus in the system
3872 * go into this tickless mode, then there will be no ilb owner (as there is
3873 * no need for one) and all the cpus will sleep till the next wakeup event
3874 * arrives...
3875 *
3876 * For the ilb owner, tick is not stopped. And this tick will be used
3877 * for idle load balancing. ilb owner will still be part of
3878 * nohz.cpu_mask..
7835b98b 3879 *
46cb4b7c
SS
3880 * While stopping the tick, this cpu will become the ilb owner if there
3881 * is no other owner. And will be the owner till that cpu becomes busy
3882 * or if all cpus in the system stop their ticks at which point
3883 * there is no need for ilb owner.
3884 *
3885 * When the ilb owner becomes busy, it nominates another owner, during the
3886 * next busy scheduler_tick()
3887 */
3888int select_nohz_load_balancer(int stop_tick)
3889{
3890 int cpu = smp_processor_id();
3891
3892 if (stop_tick) {
7d1e6a9b 3893 cpumask_set_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3894 cpu_rq(cpu)->in_nohz_recently = 1;
3895
3896 /*
3897 * If we are going offline and still the leader, give up!
3898 */
e761b772 3899 if (!cpu_active(cpu) &&
46cb4b7c
SS
3900 atomic_read(&nohz.load_balancer) == cpu) {
3901 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3902 BUG();
3903 return 0;
3904 }
3905
3906 /* time for ilb owner also to sleep */
7d1e6a9b 3907 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
3908 if (atomic_read(&nohz.load_balancer) == cpu)
3909 atomic_set(&nohz.load_balancer, -1);
3910 return 0;
3911 }
3912
3913 if (atomic_read(&nohz.load_balancer) == -1) {
3914 /* make me the ilb owner */
3915 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3916 return 1;
3917 } else if (atomic_read(&nohz.load_balancer) == cpu)
3918 return 1;
3919 } else {
7d1e6a9b 3920 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
3921 return 0;
3922
7d1e6a9b 3923 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3924
3925 if (atomic_read(&nohz.load_balancer) == cpu)
3926 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3927 BUG();
3928 }
3929 return 0;
3930}
3931#endif
3932
3933static DEFINE_SPINLOCK(balancing);
3934
3935/*
7835b98b
CL
3936 * It checks each scheduling domain to see if it is due to be balanced,
3937 * and initiates a balancing operation if so.
3938 *
3939 * Balancing parameters are set up in arch_init_sched_domains.
3940 */
a9957449 3941static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3942{
46cb4b7c
SS
3943 int balance = 1;
3944 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3945 unsigned long interval;
3946 struct sched_domain *sd;
46cb4b7c 3947 /* Earliest time when we have to do rebalance again */
c9819f45 3948 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3949 int update_next_balance = 0;
d07355f5 3950 int need_serialize;
a0e90245
RR
3951 cpumask_var_t tmp;
3952
3953 /* Fails alloc? Rebalancing probably not a priority right now. */
3954 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3955 return;
1da177e4 3956
46cb4b7c 3957 for_each_domain(cpu, sd) {
1da177e4
LT
3958 if (!(sd->flags & SD_LOAD_BALANCE))
3959 continue;
3960
3961 interval = sd->balance_interval;
d15bcfdb 3962 if (idle != CPU_IDLE)
1da177e4
LT
3963 interval *= sd->busy_factor;
3964
3965 /* scale ms to jiffies */
3966 interval = msecs_to_jiffies(interval);
3967 if (unlikely(!interval))
3968 interval = 1;
dd41f596
IM
3969 if (interval > HZ*NR_CPUS/10)
3970 interval = HZ*NR_CPUS/10;
3971
d07355f5 3972 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3973
d07355f5 3974 if (need_serialize) {
08c183f3
CL
3975 if (!spin_trylock(&balancing))
3976 goto out;
3977 }
3978
c9819f45 3979 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 3980 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
3981 /*
3982 * We've pulled tasks over so either we're no
5969fe06
NP
3983 * longer idle, or one of our SMT siblings is
3984 * not idle.
3985 */
d15bcfdb 3986 idle = CPU_NOT_IDLE;
1da177e4 3987 }
1bd77f2d 3988 sd->last_balance = jiffies;
1da177e4 3989 }
d07355f5 3990 if (need_serialize)
08c183f3
CL
3991 spin_unlock(&balancing);
3992out:
f549da84 3993 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3994 next_balance = sd->last_balance + interval;
f549da84
SS
3995 update_next_balance = 1;
3996 }
783609c6
SS
3997
3998 /*
3999 * Stop the load balance at this level. There is another
4000 * CPU in our sched group which is doing load balancing more
4001 * actively.
4002 */
4003 if (!balance)
4004 break;
1da177e4 4005 }
f549da84
SS
4006
4007 /*
4008 * next_balance will be updated only when there is a need.
4009 * When the cpu is attached to null domain for ex, it will not be
4010 * updated.
4011 */
4012 if (likely(update_next_balance))
4013 rq->next_balance = next_balance;
a0e90245
RR
4014
4015 free_cpumask_var(tmp);
46cb4b7c
SS
4016}
4017
4018/*
4019 * run_rebalance_domains is triggered when needed from the scheduler tick.
4020 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4021 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4022 */
4023static void run_rebalance_domains(struct softirq_action *h)
4024{
dd41f596
IM
4025 int this_cpu = smp_processor_id();
4026 struct rq *this_rq = cpu_rq(this_cpu);
4027 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4028 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4029
dd41f596 4030 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4031
4032#ifdef CONFIG_NO_HZ
4033 /*
4034 * If this cpu is the owner for idle load balancing, then do the
4035 * balancing on behalf of the other idle cpus whose ticks are
4036 * stopped.
4037 */
dd41f596
IM
4038 if (this_rq->idle_at_tick &&
4039 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4040 struct rq *rq;
4041 int balance_cpu;
4042
7d1e6a9b
RR
4043 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4044 if (balance_cpu == this_cpu)
4045 continue;
4046
46cb4b7c
SS
4047 /*
4048 * If this cpu gets work to do, stop the load balancing
4049 * work being done for other cpus. Next load
4050 * balancing owner will pick it up.
4051 */
4052 if (need_resched())
4053 break;
4054
de0cf899 4055 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4056
4057 rq = cpu_rq(balance_cpu);
dd41f596
IM
4058 if (time_after(this_rq->next_balance, rq->next_balance))
4059 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4060 }
4061 }
4062#endif
4063}
4064
4065/*
4066 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4067 *
4068 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4069 * idle load balancing owner or decide to stop the periodic load balancing,
4070 * if the whole system is idle.
4071 */
dd41f596 4072static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4073{
46cb4b7c
SS
4074#ifdef CONFIG_NO_HZ
4075 /*
4076 * If we were in the nohz mode recently and busy at the current
4077 * scheduler tick, then check if we need to nominate new idle
4078 * load balancer.
4079 */
4080 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4081 rq->in_nohz_recently = 0;
4082
4083 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4084 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4085 atomic_set(&nohz.load_balancer, -1);
4086 }
4087
4088 if (atomic_read(&nohz.load_balancer) == -1) {
4089 /*
4090 * simple selection for now: Nominate the
4091 * first cpu in the nohz list to be the next
4092 * ilb owner.
4093 *
4094 * TBD: Traverse the sched domains and nominate
4095 * the nearest cpu in the nohz.cpu_mask.
4096 */
7d1e6a9b 4097 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4098
434d53b0 4099 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4100 resched_cpu(ilb);
4101 }
4102 }
4103
4104 /*
4105 * If this cpu is idle and doing idle load balancing for all the
4106 * cpus with ticks stopped, is it time for that to stop?
4107 */
4108 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4109 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4110 resched_cpu(cpu);
4111 return;
4112 }
4113
4114 /*
4115 * If this cpu is idle and the idle load balancing is done by
4116 * someone else, then no need raise the SCHED_SOFTIRQ
4117 */
4118 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4119 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4120 return;
4121#endif
4122 if (time_after_eq(jiffies, rq->next_balance))
4123 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4124}
dd41f596
IM
4125
4126#else /* CONFIG_SMP */
4127
1da177e4
LT
4128/*
4129 * on UP we do not need to balance between CPUs:
4130 */
70b97a7f 4131static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4132{
4133}
dd41f596 4134
1da177e4
LT
4135#endif
4136
1da177e4
LT
4137DEFINE_PER_CPU(struct kernel_stat, kstat);
4138
4139EXPORT_PER_CPU_SYMBOL(kstat);
4140
4141/*
c5f8d995 4142 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4143 * @p in case that task is currently running.
c5f8d995
HS
4144 *
4145 * Called with task_rq_lock() held on @rq.
1da177e4 4146 */
c5f8d995
HS
4147static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4148{
4149 u64 ns = 0;
4150
4151 if (task_current(rq, p)) {
4152 update_rq_clock(rq);
4153 ns = rq->clock - p->se.exec_start;
4154 if ((s64)ns < 0)
4155 ns = 0;
4156 }
4157
4158 return ns;
4159}
4160
bb34d92f 4161unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4162{
1da177e4 4163 unsigned long flags;
41b86e9c 4164 struct rq *rq;
bb34d92f 4165 u64 ns = 0;
48f24c4d 4166
41b86e9c 4167 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4168 ns = do_task_delta_exec(p, rq);
4169 task_rq_unlock(rq, &flags);
1508487e 4170
c5f8d995
HS
4171 return ns;
4172}
f06febc9 4173
c5f8d995
HS
4174/*
4175 * Return accounted runtime for the task.
4176 * In case the task is currently running, return the runtime plus current's
4177 * pending runtime that have not been accounted yet.
4178 */
4179unsigned long long task_sched_runtime(struct task_struct *p)
4180{
4181 unsigned long flags;
4182 struct rq *rq;
4183 u64 ns = 0;
4184
4185 rq = task_rq_lock(p, &flags);
4186 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4187 task_rq_unlock(rq, &flags);
4188
4189 return ns;
4190}
48f24c4d 4191
c5f8d995
HS
4192/*
4193 * Return sum_exec_runtime for the thread group.
4194 * In case the task is currently running, return the sum plus current's
4195 * pending runtime that have not been accounted yet.
4196 *
4197 * Note that the thread group might have other running tasks as well,
4198 * so the return value not includes other pending runtime that other
4199 * running tasks might have.
4200 */
4201unsigned long long thread_group_sched_runtime(struct task_struct *p)
4202{
4203 struct task_cputime totals;
4204 unsigned long flags;
4205 struct rq *rq;
4206 u64 ns;
4207
4208 rq = task_rq_lock(p, &flags);
4209 thread_group_cputime(p, &totals);
4210 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4211 task_rq_unlock(rq, &flags);
48f24c4d 4212
1da177e4
LT
4213 return ns;
4214}
4215
1da177e4
LT
4216/*
4217 * Account user cpu time to a process.
4218 * @p: the process that the cpu time gets accounted to
1da177e4 4219 * @cputime: the cpu time spent in user space since the last update
457533a7 4220 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4221 */
457533a7
MS
4222void account_user_time(struct task_struct *p, cputime_t cputime,
4223 cputime_t cputime_scaled)
1da177e4
LT
4224{
4225 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4226 cputime64_t tmp;
4227
457533a7 4228 /* Add user time to process. */
1da177e4 4229 p->utime = cputime_add(p->utime, cputime);
457533a7 4230 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4231 account_group_user_time(p, cputime);
1da177e4
LT
4232
4233 /* Add user time to cpustat. */
4234 tmp = cputime_to_cputime64(cputime);
4235 if (TASK_NICE(p) > 0)
4236 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4237 else
4238 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4239 /* Account for user time used */
4240 acct_update_integrals(p);
1da177e4
LT
4241}
4242
94886b84
LV
4243/*
4244 * Account guest cpu time to a process.
4245 * @p: the process that the cpu time gets accounted to
4246 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4247 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4248 */
457533a7
MS
4249static void account_guest_time(struct task_struct *p, cputime_t cputime,
4250 cputime_t cputime_scaled)
94886b84
LV
4251{
4252 cputime64_t tmp;
4253 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4254
4255 tmp = cputime_to_cputime64(cputime);
4256
457533a7 4257 /* Add guest time to process. */
94886b84 4258 p->utime = cputime_add(p->utime, cputime);
457533a7 4259 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4260 account_group_user_time(p, cputime);
94886b84
LV
4261 p->gtime = cputime_add(p->gtime, cputime);
4262
457533a7 4263 /* Add guest time to cpustat. */
94886b84
LV
4264 cpustat->user = cputime64_add(cpustat->user, tmp);
4265 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4266}
4267
1da177e4
LT
4268/*
4269 * Account system cpu time to a process.
4270 * @p: the process that the cpu time gets accounted to
4271 * @hardirq_offset: the offset to subtract from hardirq_count()
4272 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4273 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4274 */
4275void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4276 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4277{
4278 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4279 cputime64_t tmp;
4280
983ed7a6 4281 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4282 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4283 return;
4284 }
94886b84 4285
457533a7 4286 /* Add system time to process. */
1da177e4 4287 p->stime = cputime_add(p->stime, cputime);
457533a7 4288 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4289 account_group_system_time(p, cputime);
1da177e4
LT
4290
4291 /* Add system time to cpustat. */
4292 tmp = cputime_to_cputime64(cputime);
4293 if (hardirq_count() - hardirq_offset)
4294 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4295 else if (softirq_count())
4296 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4297 else
79741dd3
MS
4298 cpustat->system = cputime64_add(cpustat->system, tmp);
4299
1da177e4
LT
4300 /* Account for system time used */
4301 acct_update_integrals(p);
1da177e4
LT
4302}
4303
c66f08be 4304/*
1da177e4 4305 * Account for involuntary wait time.
1da177e4 4306 * @steal: the cpu time spent in involuntary wait
c66f08be 4307 */
79741dd3 4308void account_steal_time(cputime_t cputime)
c66f08be 4309{
79741dd3
MS
4310 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4311 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4312
4313 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4314}
4315
1da177e4 4316/*
79741dd3
MS
4317 * Account for idle time.
4318 * @cputime: the cpu time spent in idle wait
1da177e4 4319 */
79741dd3 4320void account_idle_time(cputime_t cputime)
1da177e4
LT
4321{
4322 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4323 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4324 struct rq *rq = this_rq();
1da177e4 4325
79741dd3
MS
4326 if (atomic_read(&rq->nr_iowait) > 0)
4327 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4328 else
4329 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4330}
4331
79741dd3
MS
4332#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4333
4334/*
4335 * Account a single tick of cpu time.
4336 * @p: the process that the cpu time gets accounted to
4337 * @user_tick: indicates if the tick is a user or a system tick
4338 */
4339void account_process_tick(struct task_struct *p, int user_tick)
4340{
4341 cputime_t one_jiffy = jiffies_to_cputime(1);
4342 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4343 struct rq *rq = this_rq();
4344
4345 if (user_tick)
4346 account_user_time(p, one_jiffy, one_jiffy_scaled);
4347 else if (p != rq->idle)
4348 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4349 one_jiffy_scaled);
4350 else
4351 account_idle_time(one_jiffy);
4352}
4353
4354/*
4355 * Account multiple ticks of steal time.
4356 * @p: the process from which the cpu time has been stolen
4357 * @ticks: number of stolen ticks
4358 */
4359void account_steal_ticks(unsigned long ticks)
4360{
4361 account_steal_time(jiffies_to_cputime(ticks));
4362}
4363
4364/*
4365 * Account multiple ticks of idle time.
4366 * @ticks: number of stolen ticks
4367 */
4368void account_idle_ticks(unsigned long ticks)
4369{
4370 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4371}
4372
79741dd3
MS
4373#endif
4374
49048622
BS
4375/*
4376 * Use precise platform statistics if available:
4377 */
4378#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4379cputime_t task_utime(struct task_struct *p)
4380{
4381 return p->utime;
4382}
4383
4384cputime_t task_stime(struct task_struct *p)
4385{
4386 return p->stime;
4387}
4388#else
4389cputime_t task_utime(struct task_struct *p)
4390{
4391 clock_t utime = cputime_to_clock_t(p->utime),
4392 total = utime + cputime_to_clock_t(p->stime);
4393 u64 temp;
4394
4395 /*
4396 * Use CFS's precise accounting:
4397 */
4398 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4399
4400 if (total) {
4401 temp *= utime;
4402 do_div(temp, total);
4403 }
4404 utime = (clock_t)temp;
4405
4406 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4407 return p->prev_utime;
4408}
4409
4410cputime_t task_stime(struct task_struct *p)
4411{
4412 clock_t stime;
4413
4414 /*
4415 * Use CFS's precise accounting. (we subtract utime from
4416 * the total, to make sure the total observed by userspace
4417 * grows monotonically - apps rely on that):
4418 */
4419 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4420 cputime_to_clock_t(task_utime(p));
4421
4422 if (stime >= 0)
4423 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4424
4425 return p->prev_stime;
4426}
4427#endif
4428
4429inline cputime_t task_gtime(struct task_struct *p)
4430{
4431 return p->gtime;
4432}
4433
7835b98b
CL
4434/*
4435 * This function gets called by the timer code, with HZ frequency.
4436 * We call it with interrupts disabled.
4437 *
4438 * It also gets called by the fork code, when changing the parent's
4439 * timeslices.
4440 */
4441void scheduler_tick(void)
4442{
7835b98b
CL
4443 int cpu = smp_processor_id();
4444 struct rq *rq = cpu_rq(cpu);
dd41f596 4445 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4446
4447 sched_clock_tick();
dd41f596
IM
4448
4449 spin_lock(&rq->lock);
3e51f33f 4450 update_rq_clock(rq);
f1a438d8 4451 update_cpu_load(rq);
fa85ae24 4452 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4453 spin_unlock(&rq->lock);
7835b98b 4454
e418e1c2 4455#ifdef CONFIG_SMP
dd41f596
IM
4456 rq->idle_at_tick = idle_cpu(cpu);
4457 trigger_load_balance(rq, cpu);
e418e1c2 4458#endif
1da177e4
LT
4459}
4460
6cd8a4bb
SR
4461#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4462 defined(CONFIG_PREEMPT_TRACER))
4463
4464static inline unsigned long get_parent_ip(unsigned long addr)
4465{
4466 if (in_lock_functions(addr)) {
4467 addr = CALLER_ADDR2;
4468 if (in_lock_functions(addr))
4469 addr = CALLER_ADDR3;
4470 }
4471 return addr;
4472}
1da177e4 4473
43627582 4474void __kprobes add_preempt_count(int val)
1da177e4 4475{
6cd8a4bb 4476#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4477 /*
4478 * Underflow?
4479 */
9a11b49a
IM
4480 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4481 return;
6cd8a4bb 4482#endif
1da177e4 4483 preempt_count() += val;
6cd8a4bb 4484#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4485 /*
4486 * Spinlock count overflowing soon?
4487 */
33859f7f
MOS
4488 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4489 PREEMPT_MASK - 10);
6cd8a4bb
SR
4490#endif
4491 if (preempt_count() == val)
4492 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4493}
4494EXPORT_SYMBOL(add_preempt_count);
4495
43627582 4496void __kprobes sub_preempt_count(int val)
1da177e4 4497{
6cd8a4bb 4498#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4499 /*
4500 * Underflow?
4501 */
01e3eb82 4502 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4503 return;
1da177e4
LT
4504 /*
4505 * Is the spinlock portion underflowing?
4506 */
9a11b49a
IM
4507 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4508 !(preempt_count() & PREEMPT_MASK)))
4509 return;
6cd8a4bb 4510#endif
9a11b49a 4511
6cd8a4bb
SR
4512 if (preempt_count() == val)
4513 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4514 preempt_count() -= val;
4515}
4516EXPORT_SYMBOL(sub_preempt_count);
4517
4518#endif
4519
4520/*
dd41f596 4521 * Print scheduling while atomic bug:
1da177e4 4522 */
dd41f596 4523static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4524{
838225b4
SS
4525 struct pt_regs *regs = get_irq_regs();
4526
4527 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4528 prev->comm, prev->pid, preempt_count());
4529
dd41f596 4530 debug_show_held_locks(prev);
e21f5b15 4531 print_modules();
dd41f596
IM
4532 if (irqs_disabled())
4533 print_irqtrace_events(prev);
838225b4
SS
4534
4535 if (regs)
4536 show_regs(regs);
4537 else
4538 dump_stack();
dd41f596 4539}
1da177e4 4540
dd41f596
IM
4541/*
4542 * Various schedule()-time debugging checks and statistics:
4543 */
4544static inline void schedule_debug(struct task_struct *prev)
4545{
1da177e4 4546 /*
41a2d6cf 4547 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4548 * schedule() atomically, we ignore that path for now.
4549 * Otherwise, whine if we are scheduling when we should not be.
4550 */
3f33a7ce 4551 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4552 __schedule_bug(prev);
4553
1da177e4
LT
4554 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4555
2d72376b 4556 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4557#ifdef CONFIG_SCHEDSTATS
4558 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4559 schedstat_inc(this_rq(), bkl_count);
4560 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4561 }
4562#endif
dd41f596
IM
4563}
4564
4565/*
4566 * Pick up the highest-prio task:
4567 */
4568static inline struct task_struct *
ff95f3df 4569pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4570{
5522d5d5 4571 const struct sched_class *class;
dd41f596 4572 struct task_struct *p;
1da177e4
LT
4573
4574 /*
dd41f596
IM
4575 * Optimization: we know that if all tasks are in
4576 * the fair class we can call that function directly:
1da177e4 4577 */
dd41f596 4578 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4579 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4580 if (likely(p))
4581 return p;
1da177e4
LT
4582 }
4583
dd41f596
IM
4584 class = sched_class_highest;
4585 for ( ; ; ) {
fb8d4724 4586 p = class->pick_next_task(rq);
dd41f596
IM
4587 if (p)
4588 return p;
4589 /*
4590 * Will never be NULL as the idle class always
4591 * returns a non-NULL p:
4592 */
4593 class = class->next;
4594 }
4595}
1da177e4 4596
dd41f596
IM
4597/*
4598 * schedule() is the main scheduler function.
4599 */
41719b03 4600asmlinkage void __sched __schedule(void)
dd41f596
IM
4601{
4602 struct task_struct *prev, *next;
67ca7bde 4603 unsigned long *switch_count;
dd41f596 4604 struct rq *rq;
31656519 4605 int cpu;
dd41f596 4606
dd41f596
IM
4607 cpu = smp_processor_id();
4608 rq = cpu_rq(cpu);
4609 rcu_qsctr_inc(cpu);
4610 prev = rq->curr;
4611 switch_count = &prev->nivcsw;
4612
4613 release_kernel_lock(prev);
4614need_resched_nonpreemptible:
4615
4616 schedule_debug(prev);
1da177e4 4617
31656519 4618 if (sched_feat(HRTICK))
f333fdc9 4619 hrtick_clear(rq);
8f4d37ec 4620
8cd162ce 4621 spin_lock_irq(&rq->lock);
3e51f33f 4622 update_rq_clock(rq);
1e819950 4623 clear_tsk_need_resched(prev);
1da177e4 4624
1da177e4 4625 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4626 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4627 prev->state = TASK_RUNNING;
16882c1e 4628 else
2e1cb74a 4629 deactivate_task(rq, prev, 1);
dd41f596 4630 switch_count = &prev->nvcsw;
1da177e4
LT
4631 }
4632
9a897c5a
SR
4633#ifdef CONFIG_SMP
4634 if (prev->sched_class->pre_schedule)
4635 prev->sched_class->pre_schedule(rq, prev);
4636#endif
f65eda4f 4637
dd41f596 4638 if (unlikely(!rq->nr_running))
1da177e4 4639 idle_balance(cpu, rq);
1da177e4 4640
31ee529c 4641 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4642 next = pick_next_task(rq, prev);
1da177e4 4643
1da177e4 4644 if (likely(prev != next)) {
673a90a1
DS
4645 sched_info_switch(prev, next);
4646
1da177e4
LT
4647 rq->nr_switches++;
4648 rq->curr = next;
4649 ++*switch_count;
4650
dd41f596 4651 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4652 /*
4653 * the context switch might have flipped the stack from under
4654 * us, hence refresh the local variables.
4655 */
4656 cpu = smp_processor_id();
4657 rq = cpu_rq(cpu);
1da177e4
LT
4658 } else
4659 spin_unlock_irq(&rq->lock);
4660
8f4d37ec 4661 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4662 goto need_resched_nonpreemptible;
41719b03 4663}
8f4d37ec 4664
41719b03
PZ
4665asmlinkage void __sched schedule(void)
4666{
4667need_resched:
4668 preempt_disable();
4669 __schedule();
1da177e4
LT
4670 preempt_enable_no_resched();
4671 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4672 goto need_resched;
4673}
1da177e4
LT
4674EXPORT_SYMBOL(schedule);
4675
0d66bf6d
PZ
4676#ifdef CONFIG_SMP
4677/*
4678 * Look out! "owner" is an entirely speculative pointer
4679 * access and not reliable.
4680 */
4681int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4682{
4683 unsigned int cpu;
4684 struct rq *rq;
4685
4686 if (!sched_feat(OWNER_SPIN))
4687 return 0;
4688
4689#ifdef CONFIG_DEBUG_PAGEALLOC
4690 /*
4691 * Need to access the cpu field knowing that
4692 * DEBUG_PAGEALLOC could have unmapped it if
4693 * the mutex owner just released it and exited.
4694 */
4695 if (probe_kernel_address(&owner->cpu, cpu))
4696 goto out;
4697#else
4698 cpu = owner->cpu;
4699#endif
4700
4701 /*
4702 * Even if the access succeeded (likely case),
4703 * the cpu field may no longer be valid.
4704 */
4705 if (cpu >= nr_cpumask_bits)
4706 goto out;
4707
4708 /*
4709 * We need to validate that we can do a
4710 * get_cpu() and that we have the percpu area.
4711 */
4712 if (!cpu_online(cpu))
4713 goto out;
4714
4715 rq = cpu_rq(cpu);
4716
4717 for (;;) {
4718 /*
4719 * Owner changed, break to re-assess state.
4720 */
4721 if (lock->owner != owner)
4722 break;
4723
4724 /*
4725 * Is that owner really running on that cpu?
4726 */
4727 if (task_thread_info(rq->curr) != owner || need_resched())
4728 return 0;
4729
4730 cpu_relax();
4731 }
4732out:
4733 return 1;
4734}
4735#endif
4736
1da177e4
LT
4737#ifdef CONFIG_PREEMPT
4738/*
2ed6e34f 4739 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4740 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4741 * occur there and call schedule directly.
4742 */
4743asmlinkage void __sched preempt_schedule(void)
4744{
4745 struct thread_info *ti = current_thread_info();
6478d880 4746
1da177e4
LT
4747 /*
4748 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4749 * we do not want to preempt the current task. Just return..
1da177e4 4750 */
beed33a8 4751 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4752 return;
4753
3a5c359a
AK
4754 do {
4755 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4756 schedule();
3a5c359a 4757 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4758
3a5c359a
AK
4759 /*
4760 * Check again in case we missed a preemption opportunity
4761 * between schedule and now.
4762 */
4763 barrier();
4764 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4765}
1da177e4
LT
4766EXPORT_SYMBOL(preempt_schedule);
4767
4768/*
2ed6e34f 4769 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4770 * off of irq context.
4771 * Note, that this is called and return with irqs disabled. This will
4772 * protect us against recursive calling from irq.
4773 */
4774asmlinkage void __sched preempt_schedule_irq(void)
4775{
4776 struct thread_info *ti = current_thread_info();
6478d880 4777
2ed6e34f 4778 /* Catch callers which need to be fixed */
1da177e4
LT
4779 BUG_ON(ti->preempt_count || !irqs_disabled());
4780
3a5c359a
AK
4781 do {
4782 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4783 local_irq_enable();
4784 schedule();
4785 local_irq_disable();
3a5c359a 4786 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4787
3a5c359a
AK
4788 /*
4789 * Check again in case we missed a preemption opportunity
4790 * between schedule and now.
4791 */
4792 barrier();
4793 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4794}
4795
4796#endif /* CONFIG_PREEMPT */
4797
95cdf3b7
IM
4798int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4799 void *key)
1da177e4 4800{
48f24c4d 4801 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4802}
1da177e4
LT
4803EXPORT_SYMBOL(default_wake_function);
4804
4805/*
41a2d6cf
IM
4806 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4807 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4808 * number) then we wake all the non-exclusive tasks and one exclusive task.
4809 *
4810 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4811 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4812 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4813 */
777c6c5f
JW
4814void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4815 int nr_exclusive, int sync, void *key)
1da177e4 4816{
2e45874c 4817 wait_queue_t *curr, *next;
1da177e4 4818
2e45874c 4819 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4820 unsigned flags = curr->flags;
4821
1da177e4 4822 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4823 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4824 break;
4825 }
4826}
4827
4828/**
4829 * __wake_up - wake up threads blocked on a waitqueue.
4830 * @q: the waitqueue
4831 * @mode: which threads
4832 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4833 * @key: is directly passed to the wakeup function
1da177e4 4834 */
7ad5b3a5 4835void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4836 int nr_exclusive, void *key)
1da177e4
LT
4837{
4838 unsigned long flags;
4839
4840 spin_lock_irqsave(&q->lock, flags);
4841 __wake_up_common(q, mode, nr_exclusive, 0, key);
4842 spin_unlock_irqrestore(&q->lock, flags);
4843}
1da177e4
LT
4844EXPORT_SYMBOL(__wake_up);
4845
4846/*
4847 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4848 */
7ad5b3a5 4849void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4850{
4851 __wake_up_common(q, mode, 1, 0, NULL);
4852}
4853
4854/**
67be2dd1 4855 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4856 * @q: the waitqueue
4857 * @mode: which threads
4858 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4859 *
4860 * The sync wakeup differs that the waker knows that it will schedule
4861 * away soon, so while the target thread will be woken up, it will not
4862 * be migrated to another CPU - ie. the two threads are 'synchronized'
4863 * with each other. This can prevent needless bouncing between CPUs.
4864 *
4865 * On UP it can prevent extra preemption.
4866 */
7ad5b3a5 4867void
95cdf3b7 4868__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4869{
4870 unsigned long flags;
4871 int sync = 1;
4872
4873 if (unlikely(!q))
4874 return;
4875
4876 if (unlikely(!nr_exclusive))
4877 sync = 0;
4878
4879 spin_lock_irqsave(&q->lock, flags);
4880 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4881 spin_unlock_irqrestore(&q->lock, flags);
4882}
4883EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4884
65eb3dc6
KD
4885/**
4886 * complete: - signals a single thread waiting on this completion
4887 * @x: holds the state of this particular completion
4888 *
4889 * This will wake up a single thread waiting on this completion. Threads will be
4890 * awakened in the same order in which they were queued.
4891 *
4892 * See also complete_all(), wait_for_completion() and related routines.
4893 */
b15136e9 4894void complete(struct completion *x)
1da177e4
LT
4895{
4896 unsigned long flags;
4897
4898 spin_lock_irqsave(&x->wait.lock, flags);
4899 x->done++;
d9514f6c 4900 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4901 spin_unlock_irqrestore(&x->wait.lock, flags);
4902}
4903EXPORT_SYMBOL(complete);
4904
65eb3dc6
KD
4905/**
4906 * complete_all: - signals all threads waiting on this completion
4907 * @x: holds the state of this particular completion
4908 *
4909 * This will wake up all threads waiting on this particular completion event.
4910 */
b15136e9 4911void complete_all(struct completion *x)
1da177e4
LT
4912{
4913 unsigned long flags;
4914
4915 spin_lock_irqsave(&x->wait.lock, flags);
4916 x->done += UINT_MAX/2;
d9514f6c 4917 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4918 spin_unlock_irqrestore(&x->wait.lock, flags);
4919}
4920EXPORT_SYMBOL(complete_all);
4921
8cbbe86d
AK
4922static inline long __sched
4923do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4924{
1da177e4
LT
4925 if (!x->done) {
4926 DECLARE_WAITQUEUE(wait, current);
4927
4928 wait.flags |= WQ_FLAG_EXCLUSIVE;
4929 __add_wait_queue_tail(&x->wait, &wait);
4930 do {
94d3d824 4931 if (signal_pending_state(state, current)) {
ea71a546
ON
4932 timeout = -ERESTARTSYS;
4933 break;
8cbbe86d
AK
4934 }
4935 __set_current_state(state);
1da177e4
LT
4936 spin_unlock_irq(&x->wait.lock);
4937 timeout = schedule_timeout(timeout);
4938 spin_lock_irq(&x->wait.lock);
ea71a546 4939 } while (!x->done && timeout);
1da177e4 4940 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4941 if (!x->done)
4942 return timeout;
1da177e4
LT
4943 }
4944 x->done--;
ea71a546 4945 return timeout ?: 1;
1da177e4 4946}
1da177e4 4947
8cbbe86d
AK
4948static long __sched
4949wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4950{
1da177e4
LT
4951 might_sleep();
4952
4953 spin_lock_irq(&x->wait.lock);
8cbbe86d 4954 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4955 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4956 return timeout;
4957}
1da177e4 4958
65eb3dc6
KD
4959/**
4960 * wait_for_completion: - waits for completion of a task
4961 * @x: holds the state of this particular completion
4962 *
4963 * This waits to be signaled for completion of a specific task. It is NOT
4964 * interruptible and there is no timeout.
4965 *
4966 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4967 * and interrupt capability. Also see complete().
4968 */
b15136e9 4969void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4970{
4971 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4972}
8cbbe86d 4973EXPORT_SYMBOL(wait_for_completion);
1da177e4 4974
65eb3dc6
KD
4975/**
4976 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4977 * @x: holds the state of this particular completion
4978 * @timeout: timeout value in jiffies
4979 *
4980 * This waits for either a completion of a specific task to be signaled or for a
4981 * specified timeout to expire. The timeout is in jiffies. It is not
4982 * interruptible.
4983 */
b15136e9 4984unsigned long __sched
8cbbe86d 4985wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4986{
8cbbe86d 4987 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4988}
8cbbe86d 4989EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4990
65eb3dc6
KD
4991/**
4992 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4993 * @x: holds the state of this particular completion
4994 *
4995 * This waits for completion of a specific task to be signaled. It is
4996 * interruptible.
4997 */
8cbbe86d 4998int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4999{
51e97990
AK
5000 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5001 if (t == -ERESTARTSYS)
5002 return t;
5003 return 0;
0fec171c 5004}
8cbbe86d 5005EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5006
65eb3dc6
KD
5007/**
5008 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5009 * @x: holds the state of this particular completion
5010 * @timeout: timeout value in jiffies
5011 *
5012 * This waits for either a completion of a specific task to be signaled or for a
5013 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5014 */
b15136e9 5015unsigned long __sched
8cbbe86d
AK
5016wait_for_completion_interruptible_timeout(struct completion *x,
5017 unsigned long timeout)
0fec171c 5018{
8cbbe86d 5019 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5020}
8cbbe86d 5021EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5022
65eb3dc6
KD
5023/**
5024 * wait_for_completion_killable: - waits for completion of a task (killable)
5025 * @x: holds the state of this particular completion
5026 *
5027 * This waits to be signaled for completion of a specific task. It can be
5028 * interrupted by a kill signal.
5029 */
009e577e
MW
5030int __sched wait_for_completion_killable(struct completion *x)
5031{
5032 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5033 if (t == -ERESTARTSYS)
5034 return t;
5035 return 0;
5036}
5037EXPORT_SYMBOL(wait_for_completion_killable);
5038
be4de352
DC
5039/**
5040 * try_wait_for_completion - try to decrement a completion without blocking
5041 * @x: completion structure
5042 *
5043 * Returns: 0 if a decrement cannot be done without blocking
5044 * 1 if a decrement succeeded.
5045 *
5046 * If a completion is being used as a counting completion,
5047 * attempt to decrement the counter without blocking. This
5048 * enables us to avoid waiting if the resource the completion
5049 * is protecting is not available.
5050 */
5051bool try_wait_for_completion(struct completion *x)
5052{
5053 int ret = 1;
5054
5055 spin_lock_irq(&x->wait.lock);
5056 if (!x->done)
5057 ret = 0;
5058 else
5059 x->done--;
5060 spin_unlock_irq(&x->wait.lock);
5061 return ret;
5062}
5063EXPORT_SYMBOL(try_wait_for_completion);
5064
5065/**
5066 * completion_done - Test to see if a completion has any waiters
5067 * @x: completion structure
5068 *
5069 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5070 * 1 if there are no waiters.
5071 *
5072 */
5073bool completion_done(struct completion *x)
5074{
5075 int ret = 1;
5076
5077 spin_lock_irq(&x->wait.lock);
5078 if (!x->done)
5079 ret = 0;
5080 spin_unlock_irq(&x->wait.lock);
5081 return ret;
5082}
5083EXPORT_SYMBOL(completion_done);
5084
8cbbe86d
AK
5085static long __sched
5086sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5087{
0fec171c
IM
5088 unsigned long flags;
5089 wait_queue_t wait;
5090
5091 init_waitqueue_entry(&wait, current);
1da177e4 5092
8cbbe86d 5093 __set_current_state(state);
1da177e4 5094
8cbbe86d
AK
5095 spin_lock_irqsave(&q->lock, flags);
5096 __add_wait_queue(q, &wait);
5097 spin_unlock(&q->lock);
5098 timeout = schedule_timeout(timeout);
5099 spin_lock_irq(&q->lock);
5100 __remove_wait_queue(q, &wait);
5101 spin_unlock_irqrestore(&q->lock, flags);
5102
5103 return timeout;
5104}
5105
5106void __sched interruptible_sleep_on(wait_queue_head_t *q)
5107{
5108 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5109}
1da177e4
LT
5110EXPORT_SYMBOL(interruptible_sleep_on);
5111
0fec171c 5112long __sched
95cdf3b7 5113interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5114{
8cbbe86d 5115 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5116}
1da177e4
LT
5117EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5118
0fec171c 5119void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5120{
8cbbe86d 5121 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5122}
1da177e4
LT
5123EXPORT_SYMBOL(sleep_on);
5124
0fec171c 5125long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5126{
8cbbe86d 5127 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5128}
1da177e4
LT
5129EXPORT_SYMBOL(sleep_on_timeout);
5130
b29739f9
IM
5131#ifdef CONFIG_RT_MUTEXES
5132
5133/*
5134 * rt_mutex_setprio - set the current priority of a task
5135 * @p: task
5136 * @prio: prio value (kernel-internal form)
5137 *
5138 * This function changes the 'effective' priority of a task. It does
5139 * not touch ->normal_prio like __setscheduler().
5140 *
5141 * Used by the rt_mutex code to implement priority inheritance logic.
5142 */
36c8b586 5143void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5144{
5145 unsigned long flags;
83b699ed 5146 int oldprio, on_rq, running;
70b97a7f 5147 struct rq *rq;
cb469845 5148 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5149
5150 BUG_ON(prio < 0 || prio > MAX_PRIO);
5151
5152 rq = task_rq_lock(p, &flags);
a8e504d2 5153 update_rq_clock(rq);
b29739f9 5154
d5f9f942 5155 oldprio = p->prio;
dd41f596 5156 on_rq = p->se.on_rq;
051a1d1a 5157 running = task_current(rq, p);
0e1f3483 5158 if (on_rq)
69be72c1 5159 dequeue_task(rq, p, 0);
0e1f3483
HS
5160 if (running)
5161 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5162
5163 if (rt_prio(prio))
5164 p->sched_class = &rt_sched_class;
5165 else
5166 p->sched_class = &fair_sched_class;
5167
b29739f9
IM
5168 p->prio = prio;
5169
0e1f3483
HS
5170 if (running)
5171 p->sched_class->set_curr_task(rq);
dd41f596 5172 if (on_rq) {
8159f87e 5173 enqueue_task(rq, p, 0);
cb469845
SR
5174
5175 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5176 }
5177 task_rq_unlock(rq, &flags);
5178}
5179
5180#endif
5181
36c8b586 5182void set_user_nice(struct task_struct *p, long nice)
1da177e4 5183{
dd41f596 5184 int old_prio, delta, on_rq;
1da177e4 5185 unsigned long flags;
70b97a7f 5186 struct rq *rq;
1da177e4
LT
5187
5188 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5189 return;
5190 /*
5191 * We have to be careful, if called from sys_setpriority(),
5192 * the task might be in the middle of scheduling on another CPU.
5193 */
5194 rq = task_rq_lock(p, &flags);
a8e504d2 5195 update_rq_clock(rq);
1da177e4
LT
5196 /*
5197 * The RT priorities are set via sched_setscheduler(), but we still
5198 * allow the 'normal' nice value to be set - but as expected
5199 * it wont have any effect on scheduling until the task is
dd41f596 5200 * SCHED_FIFO/SCHED_RR:
1da177e4 5201 */
e05606d3 5202 if (task_has_rt_policy(p)) {
1da177e4
LT
5203 p->static_prio = NICE_TO_PRIO(nice);
5204 goto out_unlock;
5205 }
dd41f596 5206 on_rq = p->se.on_rq;
c09595f6 5207 if (on_rq)
69be72c1 5208 dequeue_task(rq, p, 0);
1da177e4 5209
1da177e4 5210 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5211 set_load_weight(p);
b29739f9
IM
5212 old_prio = p->prio;
5213 p->prio = effective_prio(p);
5214 delta = p->prio - old_prio;
1da177e4 5215
dd41f596 5216 if (on_rq) {
8159f87e 5217 enqueue_task(rq, p, 0);
1da177e4 5218 /*
d5f9f942
AM
5219 * If the task increased its priority or is running and
5220 * lowered its priority, then reschedule its CPU:
1da177e4 5221 */
d5f9f942 5222 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5223 resched_task(rq->curr);
5224 }
5225out_unlock:
5226 task_rq_unlock(rq, &flags);
5227}
1da177e4
LT
5228EXPORT_SYMBOL(set_user_nice);
5229
e43379f1
MM
5230/*
5231 * can_nice - check if a task can reduce its nice value
5232 * @p: task
5233 * @nice: nice value
5234 */
36c8b586 5235int can_nice(const struct task_struct *p, const int nice)
e43379f1 5236{
024f4747
MM
5237 /* convert nice value [19,-20] to rlimit style value [1,40] */
5238 int nice_rlim = 20 - nice;
48f24c4d 5239
e43379f1
MM
5240 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5241 capable(CAP_SYS_NICE));
5242}
5243
1da177e4
LT
5244#ifdef __ARCH_WANT_SYS_NICE
5245
5246/*
5247 * sys_nice - change the priority of the current process.
5248 * @increment: priority increment
5249 *
5250 * sys_setpriority is a more generic, but much slower function that
5251 * does similar things.
5252 */
5add95d4 5253SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5254{
48f24c4d 5255 long nice, retval;
1da177e4
LT
5256
5257 /*
5258 * Setpriority might change our priority at the same moment.
5259 * We don't have to worry. Conceptually one call occurs first
5260 * and we have a single winner.
5261 */
e43379f1
MM
5262 if (increment < -40)
5263 increment = -40;
1da177e4
LT
5264 if (increment > 40)
5265 increment = 40;
5266
5267 nice = PRIO_TO_NICE(current->static_prio) + increment;
5268 if (nice < -20)
5269 nice = -20;
5270 if (nice > 19)
5271 nice = 19;
5272
e43379f1
MM
5273 if (increment < 0 && !can_nice(current, nice))
5274 return -EPERM;
5275
1da177e4
LT
5276 retval = security_task_setnice(current, nice);
5277 if (retval)
5278 return retval;
5279
5280 set_user_nice(current, nice);
5281 return 0;
5282}
5283
5284#endif
5285
5286/**
5287 * task_prio - return the priority value of a given task.
5288 * @p: the task in question.
5289 *
5290 * This is the priority value as seen by users in /proc.
5291 * RT tasks are offset by -200. Normal tasks are centered
5292 * around 0, value goes from -16 to +15.
5293 */
36c8b586 5294int task_prio(const struct task_struct *p)
1da177e4
LT
5295{
5296 return p->prio - MAX_RT_PRIO;
5297}
5298
5299/**
5300 * task_nice - return the nice value of a given task.
5301 * @p: the task in question.
5302 */
36c8b586 5303int task_nice(const struct task_struct *p)
1da177e4
LT
5304{
5305 return TASK_NICE(p);
5306}
150d8bed 5307EXPORT_SYMBOL(task_nice);
1da177e4
LT
5308
5309/**
5310 * idle_cpu - is a given cpu idle currently?
5311 * @cpu: the processor in question.
5312 */
5313int idle_cpu(int cpu)
5314{
5315 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5316}
5317
1da177e4
LT
5318/**
5319 * idle_task - return the idle task for a given cpu.
5320 * @cpu: the processor in question.
5321 */
36c8b586 5322struct task_struct *idle_task(int cpu)
1da177e4
LT
5323{
5324 return cpu_rq(cpu)->idle;
5325}
5326
5327/**
5328 * find_process_by_pid - find a process with a matching PID value.
5329 * @pid: the pid in question.
5330 */
a9957449 5331static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5332{
228ebcbe 5333 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5334}
5335
5336/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5337static void
5338__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5339{
dd41f596 5340 BUG_ON(p->se.on_rq);
48f24c4d 5341
1da177e4 5342 p->policy = policy;
dd41f596
IM
5343 switch (p->policy) {
5344 case SCHED_NORMAL:
5345 case SCHED_BATCH:
5346 case SCHED_IDLE:
5347 p->sched_class = &fair_sched_class;
5348 break;
5349 case SCHED_FIFO:
5350 case SCHED_RR:
5351 p->sched_class = &rt_sched_class;
5352 break;
5353 }
5354
1da177e4 5355 p->rt_priority = prio;
b29739f9
IM
5356 p->normal_prio = normal_prio(p);
5357 /* we are holding p->pi_lock already */
5358 p->prio = rt_mutex_getprio(p);
2dd73a4f 5359 set_load_weight(p);
1da177e4
LT
5360}
5361
c69e8d9c
DH
5362/*
5363 * check the target process has a UID that matches the current process's
5364 */
5365static bool check_same_owner(struct task_struct *p)
5366{
5367 const struct cred *cred = current_cred(), *pcred;
5368 bool match;
5369
5370 rcu_read_lock();
5371 pcred = __task_cred(p);
5372 match = (cred->euid == pcred->euid ||
5373 cred->euid == pcred->uid);
5374 rcu_read_unlock();
5375 return match;
5376}
5377
961ccddd
RR
5378static int __sched_setscheduler(struct task_struct *p, int policy,
5379 struct sched_param *param, bool user)
1da177e4 5380{
83b699ed 5381 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5382 unsigned long flags;
cb469845 5383 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5384 struct rq *rq;
1da177e4 5385
66e5393a
SR
5386 /* may grab non-irq protected spin_locks */
5387 BUG_ON(in_interrupt());
1da177e4
LT
5388recheck:
5389 /* double check policy once rq lock held */
5390 if (policy < 0)
5391 policy = oldpolicy = p->policy;
5392 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5393 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5394 policy != SCHED_IDLE)
b0a9499c 5395 return -EINVAL;
1da177e4
LT
5396 /*
5397 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5398 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5399 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5400 */
5401 if (param->sched_priority < 0 ||
95cdf3b7 5402 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5403 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5404 return -EINVAL;
e05606d3 5405 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5406 return -EINVAL;
5407
37e4ab3f
OC
5408 /*
5409 * Allow unprivileged RT tasks to decrease priority:
5410 */
961ccddd 5411 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5412 if (rt_policy(policy)) {
8dc3e909 5413 unsigned long rlim_rtprio;
8dc3e909
ON
5414
5415 if (!lock_task_sighand(p, &flags))
5416 return -ESRCH;
5417 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5418 unlock_task_sighand(p, &flags);
5419
5420 /* can't set/change the rt policy */
5421 if (policy != p->policy && !rlim_rtprio)
5422 return -EPERM;
5423
5424 /* can't increase priority */
5425 if (param->sched_priority > p->rt_priority &&
5426 param->sched_priority > rlim_rtprio)
5427 return -EPERM;
5428 }
dd41f596
IM
5429 /*
5430 * Like positive nice levels, dont allow tasks to
5431 * move out of SCHED_IDLE either:
5432 */
5433 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5434 return -EPERM;
5fe1d75f 5435
37e4ab3f 5436 /* can't change other user's priorities */
c69e8d9c 5437 if (!check_same_owner(p))
37e4ab3f
OC
5438 return -EPERM;
5439 }
1da177e4 5440
725aad24 5441 if (user) {
b68aa230 5442#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5443 /*
5444 * Do not allow realtime tasks into groups that have no runtime
5445 * assigned.
5446 */
9a7e0b18
PZ
5447 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5448 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5449 return -EPERM;
b68aa230
PZ
5450#endif
5451
725aad24
JF
5452 retval = security_task_setscheduler(p, policy, param);
5453 if (retval)
5454 return retval;
5455 }
5456
b29739f9
IM
5457 /*
5458 * make sure no PI-waiters arrive (or leave) while we are
5459 * changing the priority of the task:
5460 */
5461 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5462 /*
5463 * To be able to change p->policy safely, the apropriate
5464 * runqueue lock must be held.
5465 */
b29739f9 5466 rq = __task_rq_lock(p);
1da177e4
LT
5467 /* recheck policy now with rq lock held */
5468 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5469 policy = oldpolicy = -1;
b29739f9
IM
5470 __task_rq_unlock(rq);
5471 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5472 goto recheck;
5473 }
2daa3577 5474 update_rq_clock(rq);
dd41f596 5475 on_rq = p->se.on_rq;
051a1d1a 5476 running = task_current(rq, p);
0e1f3483 5477 if (on_rq)
2e1cb74a 5478 deactivate_task(rq, p, 0);
0e1f3483
HS
5479 if (running)
5480 p->sched_class->put_prev_task(rq, p);
f6b53205 5481
1da177e4 5482 oldprio = p->prio;
dd41f596 5483 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5484
0e1f3483
HS
5485 if (running)
5486 p->sched_class->set_curr_task(rq);
dd41f596
IM
5487 if (on_rq) {
5488 activate_task(rq, p, 0);
cb469845
SR
5489
5490 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5491 }
b29739f9
IM
5492 __task_rq_unlock(rq);
5493 spin_unlock_irqrestore(&p->pi_lock, flags);
5494
95e02ca9
TG
5495 rt_mutex_adjust_pi(p);
5496
1da177e4
LT
5497 return 0;
5498}
961ccddd
RR
5499
5500/**
5501 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5502 * @p: the task in question.
5503 * @policy: new policy.
5504 * @param: structure containing the new RT priority.
5505 *
5506 * NOTE that the task may be already dead.
5507 */
5508int sched_setscheduler(struct task_struct *p, int policy,
5509 struct sched_param *param)
5510{
5511 return __sched_setscheduler(p, policy, param, true);
5512}
1da177e4
LT
5513EXPORT_SYMBOL_GPL(sched_setscheduler);
5514
961ccddd
RR
5515/**
5516 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5517 * @p: the task in question.
5518 * @policy: new policy.
5519 * @param: structure containing the new RT priority.
5520 *
5521 * Just like sched_setscheduler, only don't bother checking if the
5522 * current context has permission. For example, this is needed in
5523 * stop_machine(): we create temporary high priority worker threads,
5524 * but our caller might not have that capability.
5525 */
5526int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5527 struct sched_param *param)
5528{
5529 return __sched_setscheduler(p, policy, param, false);
5530}
5531
95cdf3b7
IM
5532static int
5533do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5534{
1da177e4
LT
5535 struct sched_param lparam;
5536 struct task_struct *p;
36c8b586 5537 int retval;
1da177e4
LT
5538
5539 if (!param || pid < 0)
5540 return -EINVAL;
5541 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5542 return -EFAULT;
5fe1d75f
ON
5543
5544 rcu_read_lock();
5545 retval = -ESRCH;
1da177e4 5546 p = find_process_by_pid(pid);
5fe1d75f
ON
5547 if (p != NULL)
5548 retval = sched_setscheduler(p, policy, &lparam);
5549 rcu_read_unlock();
36c8b586 5550
1da177e4
LT
5551 return retval;
5552}
5553
5554/**
5555 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5556 * @pid: the pid in question.
5557 * @policy: new policy.
5558 * @param: structure containing the new RT priority.
5559 */
5add95d4
HC
5560SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5561 struct sched_param __user *, param)
1da177e4 5562{
c21761f1
JB
5563 /* negative values for policy are not valid */
5564 if (policy < 0)
5565 return -EINVAL;
5566
1da177e4
LT
5567 return do_sched_setscheduler(pid, policy, param);
5568}
5569
5570/**
5571 * sys_sched_setparam - set/change the RT priority of a thread
5572 * @pid: the pid in question.
5573 * @param: structure containing the new RT priority.
5574 */
5add95d4 5575SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5576{
5577 return do_sched_setscheduler(pid, -1, param);
5578}
5579
5580/**
5581 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5582 * @pid: the pid in question.
5583 */
5add95d4 5584SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5585{
36c8b586 5586 struct task_struct *p;
3a5c359a 5587 int retval;
1da177e4
LT
5588
5589 if (pid < 0)
3a5c359a 5590 return -EINVAL;
1da177e4
LT
5591
5592 retval = -ESRCH;
5593 read_lock(&tasklist_lock);
5594 p = find_process_by_pid(pid);
5595 if (p) {
5596 retval = security_task_getscheduler(p);
5597 if (!retval)
5598 retval = p->policy;
5599 }
5600 read_unlock(&tasklist_lock);
1da177e4
LT
5601 return retval;
5602}
5603
5604/**
5605 * sys_sched_getscheduler - get the RT priority of a thread
5606 * @pid: the pid in question.
5607 * @param: structure containing the RT priority.
5608 */
5add95d4 5609SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5610{
5611 struct sched_param lp;
36c8b586 5612 struct task_struct *p;
3a5c359a 5613 int retval;
1da177e4
LT
5614
5615 if (!param || pid < 0)
3a5c359a 5616 return -EINVAL;
1da177e4
LT
5617
5618 read_lock(&tasklist_lock);
5619 p = find_process_by_pid(pid);
5620 retval = -ESRCH;
5621 if (!p)
5622 goto out_unlock;
5623
5624 retval = security_task_getscheduler(p);
5625 if (retval)
5626 goto out_unlock;
5627
5628 lp.sched_priority = p->rt_priority;
5629 read_unlock(&tasklist_lock);
5630
5631 /*
5632 * This one might sleep, we cannot do it with a spinlock held ...
5633 */
5634 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5635
1da177e4
LT
5636 return retval;
5637
5638out_unlock:
5639 read_unlock(&tasklist_lock);
5640 return retval;
5641}
5642
96f874e2 5643long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5644{
5a16f3d3 5645 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5646 struct task_struct *p;
5647 int retval;
1da177e4 5648
95402b38 5649 get_online_cpus();
1da177e4
LT
5650 read_lock(&tasklist_lock);
5651
5652 p = find_process_by_pid(pid);
5653 if (!p) {
5654 read_unlock(&tasklist_lock);
95402b38 5655 put_online_cpus();
1da177e4
LT
5656 return -ESRCH;
5657 }
5658
5659 /*
5660 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5661 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5662 * usage count and then drop tasklist_lock.
5663 */
5664 get_task_struct(p);
5665 read_unlock(&tasklist_lock);
5666
5a16f3d3
RR
5667 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5668 retval = -ENOMEM;
5669 goto out_put_task;
5670 }
5671 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5672 retval = -ENOMEM;
5673 goto out_free_cpus_allowed;
5674 }
1da177e4 5675 retval = -EPERM;
c69e8d9c 5676 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5677 goto out_unlock;
5678
e7834f8f
DQ
5679 retval = security_task_setscheduler(p, 0, NULL);
5680 if (retval)
5681 goto out_unlock;
5682
5a16f3d3
RR
5683 cpuset_cpus_allowed(p, cpus_allowed);
5684 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5685 again:
5a16f3d3 5686 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5687
8707d8b8 5688 if (!retval) {
5a16f3d3
RR
5689 cpuset_cpus_allowed(p, cpus_allowed);
5690 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5691 /*
5692 * We must have raced with a concurrent cpuset
5693 * update. Just reset the cpus_allowed to the
5694 * cpuset's cpus_allowed
5695 */
5a16f3d3 5696 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5697 goto again;
5698 }
5699 }
1da177e4 5700out_unlock:
5a16f3d3
RR
5701 free_cpumask_var(new_mask);
5702out_free_cpus_allowed:
5703 free_cpumask_var(cpus_allowed);
5704out_put_task:
1da177e4 5705 put_task_struct(p);
95402b38 5706 put_online_cpus();
1da177e4
LT
5707 return retval;
5708}
5709
5710static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5711 struct cpumask *new_mask)
1da177e4 5712{
96f874e2
RR
5713 if (len < cpumask_size())
5714 cpumask_clear(new_mask);
5715 else if (len > cpumask_size())
5716 len = cpumask_size();
5717
1da177e4
LT
5718 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5719}
5720
5721/**
5722 * sys_sched_setaffinity - set the cpu affinity of a process
5723 * @pid: pid of the process
5724 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5725 * @user_mask_ptr: user-space pointer to the new cpu mask
5726 */
5add95d4
HC
5727SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5728 unsigned long __user *, user_mask_ptr)
1da177e4 5729{
5a16f3d3 5730 cpumask_var_t new_mask;
1da177e4
LT
5731 int retval;
5732
5a16f3d3
RR
5733 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5734 return -ENOMEM;
1da177e4 5735
5a16f3d3
RR
5736 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5737 if (retval == 0)
5738 retval = sched_setaffinity(pid, new_mask);
5739 free_cpumask_var(new_mask);
5740 return retval;
1da177e4
LT
5741}
5742
96f874e2 5743long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5744{
36c8b586 5745 struct task_struct *p;
1da177e4 5746 int retval;
1da177e4 5747
95402b38 5748 get_online_cpus();
1da177e4
LT
5749 read_lock(&tasklist_lock);
5750
5751 retval = -ESRCH;
5752 p = find_process_by_pid(pid);
5753 if (!p)
5754 goto out_unlock;
5755
e7834f8f
DQ
5756 retval = security_task_getscheduler(p);
5757 if (retval)
5758 goto out_unlock;
5759
96f874e2 5760 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5761
5762out_unlock:
5763 read_unlock(&tasklist_lock);
95402b38 5764 put_online_cpus();
1da177e4 5765
9531b62f 5766 return retval;
1da177e4
LT
5767}
5768
5769/**
5770 * sys_sched_getaffinity - get the cpu affinity of a process
5771 * @pid: pid of the process
5772 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5773 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5774 */
5add95d4
HC
5775SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5776 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5777{
5778 int ret;
f17c8607 5779 cpumask_var_t mask;
1da177e4 5780
f17c8607 5781 if (len < cpumask_size())
1da177e4
LT
5782 return -EINVAL;
5783
f17c8607
RR
5784 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5785 return -ENOMEM;
1da177e4 5786
f17c8607
RR
5787 ret = sched_getaffinity(pid, mask);
5788 if (ret == 0) {
5789 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5790 ret = -EFAULT;
5791 else
5792 ret = cpumask_size();
5793 }
5794 free_cpumask_var(mask);
1da177e4 5795
f17c8607 5796 return ret;
1da177e4
LT
5797}
5798
5799/**
5800 * sys_sched_yield - yield the current processor to other threads.
5801 *
dd41f596
IM
5802 * This function yields the current CPU to other tasks. If there are no
5803 * other threads running on this CPU then this function will return.
1da177e4 5804 */
5add95d4 5805SYSCALL_DEFINE0(sched_yield)
1da177e4 5806{
70b97a7f 5807 struct rq *rq = this_rq_lock();
1da177e4 5808
2d72376b 5809 schedstat_inc(rq, yld_count);
4530d7ab 5810 current->sched_class->yield_task(rq);
1da177e4
LT
5811
5812 /*
5813 * Since we are going to call schedule() anyway, there's
5814 * no need to preempt or enable interrupts:
5815 */
5816 __release(rq->lock);
8a25d5de 5817 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5818 _raw_spin_unlock(&rq->lock);
5819 preempt_enable_no_resched();
5820
5821 schedule();
5822
5823 return 0;
5824}
5825
e7b38404 5826static void __cond_resched(void)
1da177e4 5827{
8e0a43d8
IM
5828#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5829 __might_sleep(__FILE__, __LINE__);
5830#endif
5bbcfd90
IM
5831 /*
5832 * The BKS might be reacquired before we have dropped
5833 * PREEMPT_ACTIVE, which could trigger a second
5834 * cond_resched() call.
5835 */
1da177e4
LT
5836 do {
5837 add_preempt_count(PREEMPT_ACTIVE);
5838 schedule();
5839 sub_preempt_count(PREEMPT_ACTIVE);
5840 } while (need_resched());
5841}
5842
02b67cc3 5843int __sched _cond_resched(void)
1da177e4 5844{
9414232f
IM
5845 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5846 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5847 __cond_resched();
5848 return 1;
5849 }
5850 return 0;
5851}
02b67cc3 5852EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5853
5854/*
5855 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5856 * call schedule, and on return reacquire the lock.
5857 *
41a2d6cf 5858 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5859 * operations here to prevent schedule() from being called twice (once via
5860 * spin_unlock(), once by hand).
5861 */
95cdf3b7 5862int cond_resched_lock(spinlock_t *lock)
1da177e4 5863{
95c354fe 5864 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5865 int ret = 0;
5866
95c354fe 5867 if (spin_needbreak(lock) || resched) {
1da177e4 5868 spin_unlock(lock);
95c354fe
NP
5869 if (resched && need_resched())
5870 __cond_resched();
5871 else
5872 cpu_relax();
6df3cecb 5873 ret = 1;
1da177e4 5874 spin_lock(lock);
1da177e4 5875 }
6df3cecb 5876 return ret;
1da177e4 5877}
1da177e4
LT
5878EXPORT_SYMBOL(cond_resched_lock);
5879
5880int __sched cond_resched_softirq(void)
5881{
5882 BUG_ON(!in_softirq());
5883
9414232f 5884 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5885 local_bh_enable();
1da177e4
LT
5886 __cond_resched();
5887 local_bh_disable();
5888 return 1;
5889 }
5890 return 0;
5891}
1da177e4
LT
5892EXPORT_SYMBOL(cond_resched_softirq);
5893
1da177e4
LT
5894/**
5895 * yield - yield the current processor to other threads.
5896 *
72fd4a35 5897 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5898 * thread runnable and calls sys_sched_yield().
5899 */
5900void __sched yield(void)
5901{
5902 set_current_state(TASK_RUNNING);
5903 sys_sched_yield();
5904}
1da177e4
LT
5905EXPORT_SYMBOL(yield);
5906
5907/*
41a2d6cf 5908 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5909 * that process accounting knows that this is a task in IO wait state.
5910 *
5911 * But don't do that if it is a deliberate, throttling IO wait (this task
5912 * has set its backing_dev_info: the queue against which it should throttle)
5913 */
5914void __sched io_schedule(void)
5915{
70b97a7f 5916 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5917
0ff92245 5918 delayacct_blkio_start();
1da177e4
LT
5919 atomic_inc(&rq->nr_iowait);
5920 schedule();
5921 atomic_dec(&rq->nr_iowait);
0ff92245 5922 delayacct_blkio_end();
1da177e4 5923}
1da177e4
LT
5924EXPORT_SYMBOL(io_schedule);
5925
5926long __sched io_schedule_timeout(long timeout)
5927{
70b97a7f 5928 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5929 long ret;
5930
0ff92245 5931 delayacct_blkio_start();
1da177e4
LT
5932 atomic_inc(&rq->nr_iowait);
5933 ret = schedule_timeout(timeout);
5934 atomic_dec(&rq->nr_iowait);
0ff92245 5935 delayacct_blkio_end();
1da177e4
LT
5936 return ret;
5937}
5938
5939/**
5940 * sys_sched_get_priority_max - return maximum RT priority.
5941 * @policy: scheduling class.
5942 *
5943 * this syscall returns the maximum rt_priority that can be used
5944 * by a given scheduling class.
5945 */
5add95d4 5946SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5947{
5948 int ret = -EINVAL;
5949
5950 switch (policy) {
5951 case SCHED_FIFO:
5952 case SCHED_RR:
5953 ret = MAX_USER_RT_PRIO-1;
5954 break;
5955 case SCHED_NORMAL:
b0a9499c 5956 case SCHED_BATCH:
dd41f596 5957 case SCHED_IDLE:
1da177e4
LT
5958 ret = 0;
5959 break;
5960 }
5961 return ret;
5962}
5963
5964/**
5965 * sys_sched_get_priority_min - return minimum RT priority.
5966 * @policy: scheduling class.
5967 *
5968 * this syscall returns the minimum rt_priority that can be used
5969 * by a given scheduling class.
5970 */
5add95d4 5971SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5972{
5973 int ret = -EINVAL;
5974
5975 switch (policy) {
5976 case SCHED_FIFO:
5977 case SCHED_RR:
5978 ret = 1;
5979 break;
5980 case SCHED_NORMAL:
b0a9499c 5981 case SCHED_BATCH:
dd41f596 5982 case SCHED_IDLE:
1da177e4
LT
5983 ret = 0;
5984 }
5985 return ret;
5986}
5987
5988/**
5989 * sys_sched_rr_get_interval - return the default timeslice of a process.
5990 * @pid: pid of the process.
5991 * @interval: userspace pointer to the timeslice value.
5992 *
5993 * this syscall writes the default timeslice value of a given process
5994 * into the user-space timespec buffer. A value of '0' means infinity.
5995 */
17da2bd9 5996SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5997 struct timespec __user *, interval)
1da177e4 5998{
36c8b586 5999 struct task_struct *p;
a4ec24b4 6000 unsigned int time_slice;
3a5c359a 6001 int retval;
1da177e4 6002 struct timespec t;
1da177e4
LT
6003
6004 if (pid < 0)
3a5c359a 6005 return -EINVAL;
1da177e4
LT
6006
6007 retval = -ESRCH;
6008 read_lock(&tasklist_lock);
6009 p = find_process_by_pid(pid);
6010 if (!p)
6011 goto out_unlock;
6012
6013 retval = security_task_getscheduler(p);
6014 if (retval)
6015 goto out_unlock;
6016
77034937
IM
6017 /*
6018 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6019 * tasks that are on an otherwise idle runqueue:
6020 */
6021 time_slice = 0;
6022 if (p->policy == SCHED_RR) {
a4ec24b4 6023 time_slice = DEF_TIMESLICE;
1868f958 6024 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6025 struct sched_entity *se = &p->se;
6026 unsigned long flags;
6027 struct rq *rq;
6028
6029 rq = task_rq_lock(p, &flags);
77034937
IM
6030 if (rq->cfs.load.weight)
6031 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6032 task_rq_unlock(rq, &flags);
6033 }
1da177e4 6034 read_unlock(&tasklist_lock);
a4ec24b4 6035 jiffies_to_timespec(time_slice, &t);
1da177e4 6036 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6037 return retval;
3a5c359a 6038
1da177e4
LT
6039out_unlock:
6040 read_unlock(&tasklist_lock);
6041 return retval;
6042}
6043
7c731e0a 6044static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6045
82a1fcb9 6046void sched_show_task(struct task_struct *p)
1da177e4 6047{
1da177e4 6048 unsigned long free = 0;
36c8b586 6049 unsigned state;
1da177e4 6050
1da177e4 6051 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6052 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6053 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6054#if BITS_PER_LONG == 32
1da177e4 6055 if (state == TASK_RUNNING)
cc4ea795 6056 printk(KERN_CONT " running ");
1da177e4 6057 else
cc4ea795 6058 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6059#else
6060 if (state == TASK_RUNNING)
cc4ea795 6061 printk(KERN_CONT " running task ");
1da177e4 6062 else
cc4ea795 6063 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6064#endif
6065#ifdef CONFIG_DEBUG_STACK_USAGE
6066 {
10ebffde 6067 unsigned long *n = end_of_stack(p);
1da177e4
LT
6068 while (!*n)
6069 n++;
10ebffde 6070 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
6071 }
6072#endif
ba25f9dc 6073 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6074 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6075
5fb5e6de 6076 show_stack(p, NULL);
1da177e4
LT
6077}
6078
e59e2ae2 6079void show_state_filter(unsigned long state_filter)
1da177e4 6080{
36c8b586 6081 struct task_struct *g, *p;
1da177e4 6082
4bd77321
IM
6083#if BITS_PER_LONG == 32
6084 printk(KERN_INFO
6085 " task PC stack pid father\n");
1da177e4 6086#else
4bd77321
IM
6087 printk(KERN_INFO
6088 " task PC stack pid father\n");
1da177e4
LT
6089#endif
6090 read_lock(&tasklist_lock);
6091 do_each_thread(g, p) {
6092 /*
6093 * reset the NMI-timeout, listing all files on a slow
6094 * console might take alot of time:
6095 */
6096 touch_nmi_watchdog();
39bc89fd 6097 if (!state_filter || (p->state & state_filter))
82a1fcb9 6098 sched_show_task(p);
1da177e4
LT
6099 } while_each_thread(g, p);
6100
04c9167f
JF
6101 touch_all_softlockup_watchdogs();
6102
dd41f596
IM
6103#ifdef CONFIG_SCHED_DEBUG
6104 sysrq_sched_debug_show();
6105#endif
1da177e4 6106 read_unlock(&tasklist_lock);
e59e2ae2
IM
6107 /*
6108 * Only show locks if all tasks are dumped:
6109 */
6110 if (state_filter == -1)
6111 debug_show_all_locks();
1da177e4
LT
6112}
6113
1df21055
IM
6114void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6115{
dd41f596 6116 idle->sched_class = &idle_sched_class;
1df21055
IM
6117}
6118
f340c0d1
IM
6119/**
6120 * init_idle - set up an idle thread for a given CPU
6121 * @idle: task in question
6122 * @cpu: cpu the idle task belongs to
6123 *
6124 * NOTE: this function does not set the idle thread's NEED_RESCHED
6125 * flag, to make booting more robust.
6126 */
5c1e1767 6127void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6128{
70b97a7f 6129 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6130 unsigned long flags;
6131
5cbd54ef
IM
6132 spin_lock_irqsave(&rq->lock, flags);
6133
dd41f596
IM
6134 __sched_fork(idle);
6135 idle->se.exec_start = sched_clock();
6136
b29739f9 6137 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6138 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6139 __set_task_cpu(idle, cpu);
1da177e4 6140
1da177e4 6141 rq->curr = rq->idle = idle;
4866cde0
NP
6142#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6143 idle->oncpu = 1;
6144#endif
1da177e4
LT
6145 spin_unlock_irqrestore(&rq->lock, flags);
6146
6147 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6148#if defined(CONFIG_PREEMPT)
6149 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6150#else
a1261f54 6151 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6152#endif
dd41f596
IM
6153 /*
6154 * The idle tasks have their own, simple scheduling class:
6155 */
6156 idle->sched_class = &idle_sched_class;
fb52607a 6157 ftrace_graph_init_task(idle);
1da177e4
LT
6158}
6159
6160/*
6161 * In a system that switches off the HZ timer nohz_cpu_mask
6162 * indicates which cpus entered this state. This is used
6163 * in the rcu update to wait only for active cpus. For system
6164 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6165 * always be CPU_BITS_NONE.
1da177e4 6166 */
6a7b3dc3 6167cpumask_var_t nohz_cpu_mask;
1da177e4 6168
19978ca6
IM
6169/*
6170 * Increase the granularity value when there are more CPUs,
6171 * because with more CPUs the 'effective latency' as visible
6172 * to users decreases. But the relationship is not linear,
6173 * so pick a second-best guess by going with the log2 of the
6174 * number of CPUs.
6175 *
6176 * This idea comes from the SD scheduler of Con Kolivas:
6177 */
6178static inline void sched_init_granularity(void)
6179{
6180 unsigned int factor = 1 + ilog2(num_online_cpus());
6181 const unsigned long limit = 200000000;
6182
6183 sysctl_sched_min_granularity *= factor;
6184 if (sysctl_sched_min_granularity > limit)
6185 sysctl_sched_min_granularity = limit;
6186
6187 sysctl_sched_latency *= factor;
6188 if (sysctl_sched_latency > limit)
6189 sysctl_sched_latency = limit;
6190
6191 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6192
6193 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6194}
6195
1da177e4
LT
6196#ifdef CONFIG_SMP
6197/*
6198 * This is how migration works:
6199 *
70b97a7f 6200 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6201 * runqueue and wake up that CPU's migration thread.
6202 * 2) we down() the locked semaphore => thread blocks.
6203 * 3) migration thread wakes up (implicitly it forces the migrated
6204 * thread off the CPU)
6205 * 4) it gets the migration request and checks whether the migrated
6206 * task is still in the wrong runqueue.
6207 * 5) if it's in the wrong runqueue then the migration thread removes
6208 * it and puts it into the right queue.
6209 * 6) migration thread up()s the semaphore.
6210 * 7) we wake up and the migration is done.
6211 */
6212
6213/*
6214 * Change a given task's CPU affinity. Migrate the thread to a
6215 * proper CPU and schedule it away if the CPU it's executing on
6216 * is removed from the allowed bitmask.
6217 *
6218 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6219 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6220 * call is not atomic; no spinlocks may be held.
6221 */
96f874e2 6222int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6223{
70b97a7f 6224 struct migration_req req;
1da177e4 6225 unsigned long flags;
70b97a7f 6226 struct rq *rq;
48f24c4d 6227 int ret = 0;
1da177e4
LT
6228
6229 rq = task_rq_lock(p, &flags);
96f874e2 6230 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6231 ret = -EINVAL;
6232 goto out;
6233 }
6234
9985b0ba 6235 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6236 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6237 ret = -EINVAL;
6238 goto out;
6239 }
6240
73fe6aae 6241 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6242 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6243 else {
96f874e2
RR
6244 cpumask_copy(&p->cpus_allowed, new_mask);
6245 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6246 }
6247
1da177e4 6248 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6249 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6250 goto out;
6251
1e5ce4f4 6252 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6253 /* Need help from migration thread: drop lock and wait. */
6254 task_rq_unlock(rq, &flags);
6255 wake_up_process(rq->migration_thread);
6256 wait_for_completion(&req.done);
6257 tlb_migrate_finish(p->mm);
6258 return 0;
6259 }
6260out:
6261 task_rq_unlock(rq, &flags);
48f24c4d 6262
1da177e4
LT
6263 return ret;
6264}
cd8ba7cd 6265EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6266
6267/*
41a2d6cf 6268 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6269 * this because either it can't run here any more (set_cpus_allowed()
6270 * away from this CPU, or CPU going down), or because we're
6271 * attempting to rebalance this task on exec (sched_exec).
6272 *
6273 * So we race with normal scheduler movements, but that's OK, as long
6274 * as the task is no longer on this CPU.
efc30814
KK
6275 *
6276 * Returns non-zero if task was successfully migrated.
1da177e4 6277 */
efc30814 6278static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6279{
70b97a7f 6280 struct rq *rq_dest, *rq_src;
dd41f596 6281 int ret = 0, on_rq;
1da177e4 6282
e761b772 6283 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6284 return ret;
1da177e4
LT
6285
6286 rq_src = cpu_rq(src_cpu);
6287 rq_dest = cpu_rq(dest_cpu);
6288
6289 double_rq_lock(rq_src, rq_dest);
6290 /* Already moved. */
6291 if (task_cpu(p) != src_cpu)
b1e38734 6292 goto done;
1da177e4 6293 /* Affinity changed (again). */
96f874e2 6294 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6295 goto fail;
1da177e4 6296
dd41f596 6297 on_rq = p->se.on_rq;
6e82a3be 6298 if (on_rq)
2e1cb74a 6299 deactivate_task(rq_src, p, 0);
6e82a3be 6300
1da177e4 6301 set_task_cpu(p, dest_cpu);
dd41f596
IM
6302 if (on_rq) {
6303 activate_task(rq_dest, p, 0);
15afe09b 6304 check_preempt_curr(rq_dest, p, 0);
1da177e4 6305 }
b1e38734 6306done:
efc30814 6307 ret = 1;
b1e38734 6308fail:
1da177e4 6309 double_rq_unlock(rq_src, rq_dest);
efc30814 6310 return ret;
1da177e4
LT
6311}
6312
6313/*
6314 * migration_thread - this is a highprio system thread that performs
6315 * thread migration by bumping thread off CPU then 'pushing' onto
6316 * another runqueue.
6317 */
95cdf3b7 6318static int migration_thread(void *data)
1da177e4 6319{
1da177e4 6320 int cpu = (long)data;
70b97a7f 6321 struct rq *rq;
1da177e4
LT
6322
6323 rq = cpu_rq(cpu);
6324 BUG_ON(rq->migration_thread != current);
6325
6326 set_current_state(TASK_INTERRUPTIBLE);
6327 while (!kthread_should_stop()) {
70b97a7f 6328 struct migration_req *req;
1da177e4 6329 struct list_head *head;
1da177e4 6330
1da177e4
LT
6331 spin_lock_irq(&rq->lock);
6332
6333 if (cpu_is_offline(cpu)) {
6334 spin_unlock_irq(&rq->lock);
6335 goto wait_to_die;
6336 }
6337
6338 if (rq->active_balance) {
6339 active_load_balance(rq, cpu);
6340 rq->active_balance = 0;
6341 }
6342
6343 head = &rq->migration_queue;
6344
6345 if (list_empty(head)) {
6346 spin_unlock_irq(&rq->lock);
6347 schedule();
6348 set_current_state(TASK_INTERRUPTIBLE);
6349 continue;
6350 }
70b97a7f 6351 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6352 list_del_init(head->next);
6353
674311d5
NP
6354 spin_unlock(&rq->lock);
6355 __migrate_task(req->task, cpu, req->dest_cpu);
6356 local_irq_enable();
1da177e4
LT
6357
6358 complete(&req->done);
6359 }
6360 __set_current_state(TASK_RUNNING);
6361 return 0;
6362
6363wait_to_die:
6364 /* Wait for kthread_stop */
6365 set_current_state(TASK_INTERRUPTIBLE);
6366 while (!kthread_should_stop()) {
6367 schedule();
6368 set_current_state(TASK_INTERRUPTIBLE);
6369 }
6370 __set_current_state(TASK_RUNNING);
6371 return 0;
6372}
6373
6374#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6375
6376static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6377{
6378 int ret;
6379
6380 local_irq_disable();
6381 ret = __migrate_task(p, src_cpu, dest_cpu);
6382 local_irq_enable();
6383 return ret;
6384}
6385
054b9108 6386/*
3a4fa0a2 6387 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6388 */
48f24c4d 6389static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6390{
70b97a7f 6391 int dest_cpu;
6ca09dfc 6392 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6393
6394again:
6395 /* Look for allowed, online CPU in same node. */
6396 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6397 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6398 goto move;
6399
6400 /* Any allowed, online CPU? */
6401 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6402 if (dest_cpu < nr_cpu_ids)
6403 goto move;
6404
6405 /* No more Mr. Nice Guy. */
6406 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6407 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6408 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6409
e76bd8d9
RR
6410 /*
6411 * Don't tell them about moving exiting tasks or
6412 * kernel threads (both mm NULL), since they never
6413 * leave kernel.
6414 */
6415 if (p->mm && printk_ratelimit()) {
6416 printk(KERN_INFO "process %d (%s) no "
6417 "longer affine to cpu%d\n",
6418 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6419 }
e76bd8d9
RR
6420 }
6421
6422move:
6423 /* It can have affinity changed while we were choosing. */
6424 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6425 goto again;
1da177e4
LT
6426}
6427
6428/*
6429 * While a dead CPU has no uninterruptible tasks queued at this point,
6430 * it might still have a nonzero ->nr_uninterruptible counter, because
6431 * for performance reasons the counter is not stricly tracking tasks to
6432 * their home CPUs. So we just add the counter to another CPU's counter,
6433 * to keep the global sum constant after CPU-down:
6434 */
70b97a7f 6435static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6436{
1e5ce4f4 6437 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6438 unsigned long flags;
6439
6440 local_irq_save(flags);
6441 double_rq_lock(rq_src, rq_dest);
6442 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6443 rq_src->nr_uninterruptible = 0;
6444 double_rq_unlock(rq_src, rq_dest);
6445 local_irq_restore(flags);
6446}
6447
6448/* Run through task list and migrate tasks from the dead cpu. */
6449static void migrate_live_tasks(int src_cpu)
6450{
48f24c4d 6451 struct task_struct *p, *t;
1da177e4 6452
f7b4cddc 6453 read_lock(&tasklist_lock);
1da177e4 6454
48f24c4d
IM
6455 do_each_thread(t, p) {
6456 if (p == current)
1da177e4
LT
6457 continue;
6458
48f24c4d
IM
6459 if (task_cpu(p) == src_cpu)
6460 move_task_off_dead_cpu(src_cpu, p);
6461 } while_each_thread(t, p);
1da177e4 6462
f7b4cddc 6463 read_unlock(&tasklist_lock);
1da177e4
LT
6464}
6465
dd41f596
IM
6466/*
6467 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6468 * It does so by boosting its priority to highest possible.
6469 * Used by CPU offline code.
1da177e4
LT
6470 */
6471void sched_idle_next(void)
6472{
48f24c4d 6473 int this_cpu = smp_processor_id();
70b97a7f 6474 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6475 struct task_struct *p = rq->idle;
6476 unsigned long flags;
6477
6478 /* cpu has to be offline */
48f24c4d 6479 BUG_ON(cpu_online(this_cpu));
1da177e4 6480
48f24c4d
IM
6481 /*
6482 * Strictly not necessary since rest of the CPUs are stopped by now
6483 * and interrupts disabled on the current cpu.
1da177e4
LT
6484 */
6485 spin_lock_irqsave(&rq->lock, flags);
6486
dd41f596 6487 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6488
94bc9a7b
DA
6489 update_rq_clock(rq);
6490 activate_task(rq, p, 0);
1da177e4
LT
6491
6492 spin_unlock_irqrestore(&rq->lock, flags);
6493}
6494
48f24c4d
IM
6495/*
6496 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6497 * offline.
6498 */
6499void idle_task_exit(void)
6500{
6501 struct mm_struct *mm = current->active_mm;
6502
6503 BUG_ON(cpu_online(smp_processor_id()));
6504
6505 if (mm != &init_mm)
6506 switch_mm(mm, &init_mm, current);
6507 mmdrop(mm);
6508}
6509
054b9108 6510/* called under rq->lock with disabled interrupts */
36c8b586 6511static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6512{
70b97a7f 6513 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6514
6515 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6516 BUG_ON(!p->exit_state);
1da177e4
LT
6517
6518 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6519 BUG_ON(p->state == TASK_DEAD);
1da177e4 6520
48f24c4d 6521 get_task_struct(p);
1da177e4
LT
6522
6523 /*
6524 * Drop lock around migration; if someone else moves it,
41a2d6cf 6525 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6526 * fine.
6527 */
f7b4cddc 6528 spin_unlock_irq(&rq->lock);
48f24c4d 6529 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6530 spin_lock_irq(&rq->lock);
1da177e4 6531
48f24c4d 6532 put_task_struct(p);
1da177e4
LT
6533}
6534
6535/* release_task() removes task from tasklist, so we won't find dead tasks. */
6536static void migrate_dead_tasks(unsigned int dead_cpu)
6537{
70b97a7f 6538 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6539 struct task_struct *next;
48f24c4d 6540
dd41f596
IM
6541 for ( ; ; ) {
6542 if (!rq->nr_running)
6543 break;
a8e504d2 6544 update_rq_clock(rq);
ff95f3df 6545 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6546 if (!next)
6547 break;
79c53799 6548 next->sched_class->put_prev_task(rq, next);
dd41f596 6549 migrate_dead(dead_cpu, next);
e692ab53 6550
1da177e4
LT
6551 }
6552}
6553#endif /* CONFIG_HOTPLUG_CPU */
6554
e692ab53
NP
6555#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6556
6557static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6558 {
6559 .procname = "sched_domain",
c57baf1e 6560 .mode = 0555,
e0361851 6561 },
38605cae 6562 {0, },
e692ab53
NP
6563};
6564
6565static struct ctl_table sd_ctl_root[] = {
e0361851 6566 {
c57baf1e 6567 .ctl_name = CTL_KERN,
e0361851 6568 .procname = "kernel",
c57baf1e 6569 .mode = 0555,
e0361851
AD
6570 .child = sd_ctl_dir,
6571 },
38605cae 6572 {0, },
e692ab53
NP
6573};
6574
6575static struct ctl_table *sd_alloc_ctl_entry(int n)
6576{
6577 struct ctl_table *entry =
5cf9f062 6578 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6579
e692ab53
NP
6580 return entry;
6581}
6582
6382bc90
MM
6583static void sd_free_ctl_entry(struct ctl_table **tablep)
6584{
cd790076 6585 struct ctl_table *entry;
6382bc90 6586
cd790076
MM
6587 /*
6588 * In the intermediate directories, both the child directory and
6589 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6590 * will always be set. In the lowest directory the names are
cd790076
MM
6591 * static strings and all have proc handlers.
6592 */
6593 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6594 if (entry->child)
6595 sd_free_ctl_entry(&entry->child);
cd790076
MM
6596 if (entry->proc_handler == NULL)
6597 kfree(entry->procname);
6598 }
6382bc90
MM
6599
6600 kfree(*tablep);
6601 *tablep = NULL;
6602}
6603
e692ab53 6604static void
e0361851 6605set_table_entry(struct ctl_table *entry,
e692ab53
NP
6606 const char *procname, void *data, int maxlen,
6607 mode_t mode, proc_handler *proc_handler)
6608{
e692ab53
NP
6609 entry->procname = procname;
6610 entry->data = data;
6611 entry->maxlen = maxlen;
6612 entry->mode = mode;
6613 entry->proc_handler = proc_handler;
6614}
6615
6616static struct ctl_table *
6617sd_alloc_ctl_domain_table(struct sched_domain *sd)
6618{
a5d8c348 6619 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6620
ad1cdc1d
MM
6621 if (table == NULL)
6622 return NULL;
6623
e0361851 6624 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6625 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6626 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6627 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6628 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6629 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6630 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6631 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6632 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6633 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6634 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6635 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6636 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6637 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6638 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6639 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6640 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6641 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6642 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6643 &sd->cache_nice_tries,
6644 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6645 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6646 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6647 set_table_entry(&table[11], "name", sd->name,
6648 CORENAME_MAX_SIZE, 0444, proc_dostring);
6649 /* &table[12] is terminator */
e692ab53
NP
6650
6651 return table;
6652}
6653
9a4e7159 6654static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6655{
6656 struct ctl_table *entry, *table;
6657 struct sched_domain *sd;
6658 int domain_num = 0, i;
6659 char buf[32];
6660
6661 for_each_domain(cpu, sd)
6662 domain_num++;
6663 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6664 if (table == NULL)
6665 return NULL;
e692ab53
NP
6666
6667 i = 0;
6668 for_each_domain(cpu, sd) {
6669 snprintf(buf, 32, "domain%d", i);
e692ab53 6670 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6671 entry->mode = 0555;
e692ab53
NP
6672 entry->child = sd_alloc_ctl_domain_table(sd);
6673 entry++;
6674 i++;
6675 }
6676 return table;
6677}
6678
6679static struct ctl_table_header *sd_sysctl_header;
6382bc90 6680static void register_sched_domain_sysctl(void)
e692ab53
NP
6681{
6682 int i, cpu_num = num_online_cpus();
6683 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6684 char buf[32];
6685
7378547f
MM
6686 WARN_ON(sd_ctl_dir[0].child);
6687 sd_ctl_dir[0].child = entry;
6688
ad1cdc1d
MM
6689 if (entry == NULL)
6690 return;
6691
97b6ea7b 6692 for_each_online_cpu(i) {
e692ab53 6693 snprintf(buf, 32, "cpu%d", i);
e692ab53 6694 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6695 entry->mode = 0555;
e692ab53 6696 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6697 entry++;
e692ab53 6698 }
7378547f
MM
6699
6700 WARN_ON(sd_sysctl_header);
e692ab53
NP
6701 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6702}
6382bc90 6703
7378547f 6704/* may be called multiple times per register */
6382bc90
MM
6705static void unregister_sched_domain_sysctl(void)
6706{
7378547f
MM
6707 if (sd_sysctl_header)
6708 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6709 sd_sysctl_header = NULL;
7378547f
MM
6710 if (sd_ctl_dir[0].child)
6711 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6712}
e692ab53 6713#else
6382bc90
MM
6714static void register_sched_domain_sysctl(void)
6715{
6716}
6717static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6718{
6719}
6720#endif
6721
1f11eb6a
GH
6722static void set_rq_online(struct rq *rq)
6723{
6724 if (!rq->online) {
6725 const struct sched_class *class;
6726
c6c4927b 6727 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6728 rq->online = 1;
6729
6730 for_each_class(class) {
6731 if (class->rq_online)
6732 class->rq_online(rq);
6733 }
6734 }
6735}
6736
6737static void set_rq_offline(struct rq *rq)
6738{
6739 if (rq->online) {
6740 const struct sched_class *class;
6741
6742 for_each_class(class) {
6743 if (class->rq_offline)
6744 class->rq_offline(rq);
6745 }
6746
c6c4927b 6747 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6748 rq->online = 0;
6749 }
6750}
6751
1da177e4
LT
6752/*
6753 * migration_call - callback that gets triggered when a CPU is added.
6754 * Here we can start up the necessary migration thread for the new CPU.
6755 */
48f24c4d
IM
6756static int __cpuinit
6757migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6758{
1da177e4 6759 struct task_struct *p;
48f24c4d 6760 int cpu = (long)hcpu;
1da177e4 6761 unsigned long flags;
70b97a7f 6762 struct rq *rq;
1da177e4
LT
6763
6764 switch (action) {
5be9361c 6765
1da177e4 6766 case CPU_UP_PREPARE:
8bb78442 6767 case CPU_UP_PREPARE_FROZEN:
dd41f596 6768 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6769 if (IS_ERR(p))
6770 return NOTIFY_BAD;
1da177e4
LT
6771 kthread_bind(p, cpu);
6772 /* Must be high prio: stop_machine expects to yield to it. */
6773 rq = task_rq_lock(p, &flags);
dd41f596 6774 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6775 task_rq_unlock(rq, &flags);
6776 cpu_rq(cpu)->migration_thread = p;
6777 break;
48f24c4d 6778
1da177e4 6779 case CPU_ONLINE:
8bb78442 6780 case CPU_ONLINE_FROZEN:
3a4fa0a2 6781 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6782 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6783
6784 /* Update our root-domain */
6785 rq = cpu_rq(cpu);
6786 spin_lock_irqsave(&rq->lock, flags);
6787 if (rq->rd) {
c6c4927b 6788 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6789
6790 set_rq_online(rq);
1f94ef59
GH
6791 }
6792 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6793 break;
48f24c4d 6794
1da177e4
LT
6795#ifdef CONFIG_HOTPLUG_CPU
6796 case CPU_UP_CANCELED:
8bb78442 6797 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6798 if (!cpu_rq(cpu)->migration_thread)
6799 break;
41a2d6cf 6800 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6801 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6802 cpumask_any(cpu_online_mask));
1da177e4
LT
6803 kthread_stop(cpu_rq(cpu)->migration_thread);
6804 cpu_rq(cpu)->migration_thread = NULL;
6805 break;
48f24c4d 6806
1da177e4 6807 case CPU_DEAD:
8bb78442 6808 case CPU_DEAD_FROZEN:
470fd646 6809 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6810 migrate_live_tasks(cpu);
6811 rq = cpu_rq(cpu);
6812 kthread_stop(rq->migration_thread);
6813 rq->migration_thread = NULL;
6814 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6815 spin_lock_irq(&rq->lock);
a8e504d2 6816 update_rq_clock(rq);
2e1cb74a 6817 deactivate_task(rq, rq->idle, 0);
1da177e4 6818 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6819 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6820 rq->idle->sched_class = &idle_sched_class;
1da177e4 6821 migrate_dead_tasks(cpu);
d2da272a 6822 spin_unlock_irq(&rq->lock);
470fd646 6823 cpuset_unlock();
1da177e4
LT
6824 migrate_nr_uninterruptible(rq);
6825 BUG_ON(rq->nr_running != 0);
6826
41a2d6cf
IM
6827 /*
6828 * No need to migrate the tasks: it was best-effort if
6829 * they didn't take sched_hotcpu_mutex. Just wake up
6830 * the requestors.
6831 */
1da177e4
LT
6832 spin_lock_irq(&rq->lock);
6833 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6834 struct migration_req *req;
6835
1da177e4 6836 req = list_entry(rq->migration_queue.next,
70b97a7f 6837 struct migration_req, list);
1da177e4 6838 list_del_init(&req->list);
9a2bd244 6839 spin_unlock_irq(&rq->lock);
1da177e4 6840 complete(&req->done);
9a2bd244 6841 spin_lock_irq(&rq->lock);
1da177e4
LT
6842 }
6843 spin_unlock_irq(&rq->lock);
6844 break;
57d885fe 6845
08f503b0
GH
6846 case CPU_DYING:
6847 case CPU_DYING_FROZEN:
57d885fe
GH
6848 /* Update our root-domain */
6849 rq = cpu_rq(cpu);
6850 spin_lock_irqsave(&rq->lock, flags);
6851 if (rq->rd) {
c6c4927b 6852 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6853 set_rq_offline(rq);
57d885fe
GH
6854 }
6855 spin_unlock_irqrestore(&rq->lock, flags);
6856 break;
1da177e4
LT
6857#endif
6858 }
6859 return NOTIFY_OK;
6860}
6861
6862/* Register at highest priority so that task migration (migrate_all_tasks)
6863 * happens before everything else.
6864 */
26c2143b 6865static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6866 .notifier_call = migration_call,
6867 .priority = 10
6868};
6869
7babe8db 6870static int __init migration_init(void)
1da177e4
LT
6871{
6872 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6873 int err;
48f24c4d
IM
6874
6875 /* Start one for the boot CPU: */
07dccf33
AM
6876 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6877 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6878 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6879 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6880
6881 return err;
1da177e4 6882}
7babe8db 6883early_initcall(migration_init);
1da177e4
LT
6884#endif
6885
6886#ifdef CONFIG_SMP
476f3534 6887
3e9830dc 6888#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6889
7c16ec58 6890static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6891 struct cpumask *groupmask)
1da177e4 6892{
4dcf6aff 6893 struct sched_group *group = sd->groups;
434d53b0 6894 char str[256];
1da177e4 6895
968ea6d8 6896 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6897 cpumask_clear(groupmask);
4dcf6aff
IM
6898
6899 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6900
6901 if (!(sd->flags & SD_LOAD_BALANCE)) {
6902 printk("does not load-balance\n");
6903 if (sd->parent)
6904 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6905 " has parent");
6906 return -1;
41c7ce9a
NP
6907 }
6908
eefd796a 6909 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6910
758b2cdc 6911 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6912 printk(KERN_ERR "ERROR: domain->span does not contain "
6913 "CPU%d\n", cpu);
6914 }
758b2cdc 6915 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6916 printk(KERN_ERR "ERROR: domain->groups does not contain"
6917 " CPU%d\n", cpu);
6918 }
1da177e4 6919
4dcf6aff 6920 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6921 do {
4dcf6aff
IM
6922 if (!group) {
6923 printk("\n");
6924 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6925 break;
6926 }
6927
4dcf6aff
IM
6928 if (!group->__cpu_power) {
6929 printk(KERN_CONT "\n");
6930 printk(KERN_ERR "ERROR: domain->cpu_power not "
6931 "set\n");
6932 break;
6933 }
1da177e4 6934
758b2cdc 6935 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6936 printk(KERN_CONT "\n");
6937 printk(KERN_ERR "ERROR: empty group\n");
6938 break;
6939 }
1da177e4 6940
758b2cdc 6941 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6942 printk(KERN_CONT "\n");
6943 printk(KERN_ERR "ERROR: repeated CPUs\n");
6944 break;
6945 }
1da177e4 6946
758b2cdc 6947 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6948
968ea6d8 6949 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6950 printk(KERN_CONT " %s", str);
1da177e4 6951
4dcf6aff
IM
6952 group = group->next;
6953 } while (group != sd->groups);
6954 printk(KERN_CONT "\n");
1da177e4 6955
758b2cdc 6956 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6957 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6958
758b2cdc
RR
6959 if (sd->parent &&
6960 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6961 printk(KERN_ERR "ERROR: parent span is not a superset "
6962 "of domain->span\n");
6963 return 0;
6964}
1da177e4 6965
4dcf6aff
IM
6966static void sched_domain_debug(struct sched_domain *sd, int cpu)
6967{
d5dd3db1 6968 cpumask_var_t groupmask;
4dcf6aff 6969 int level = 0;
1da177e4 6970
4dcf6aff
IM
6971 if (!sd) {
6972 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6973 return;
6974 }
1da177e4 6975
4dcf6aff
IM
6976 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6977
d5dd3db1 6978 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6979 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6980 return;
6981 }
6982
4dcf6aff 6983 for (;;) {
7c16ec58 6984 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6985 break;
1da177e4
LT
6986 level++;
6987 sd = sd->parent;
33859f7f 6988 if (!sd)
4dcf6aff
IM
6989 break;
6990 }
d5dd3db1 6991 free_cpumask_var(groupmask);
1da177e4 6992}
6d6bc0ad 6993#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6994# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6995#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6996
1a20ff27 6997static int sd_degenerate(struct sched_domain *sd)
245af2c7 6998{
758b2cdc 6999 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7000 return 1;
7001
7002 /* Following flags need at least 2 groups */
7003 if (sd->flags & (SD_LOAD_BALANCE |
7004 SD_BALANCE_NEWIDLE |
7005 SD_BALANCE_FORK |
89c4710e
SS
7006 SD_BALANCE_EXEC |
7007 SD_SHARE_CPUPOWER |
7008 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7009 if (sd->groups != sd->groups->next)
7010 return 0;
7011 }
7012
7013 /* Following flags don't use groups */
7014 if (sd->flags & (SD_WAKE_IDLE |
7015 SD_WAKE_AFFINE |
7016 SD_WAKE_BALANCE))
7017 return 0;
7018
7019 return 1;
7020}
7021
48f24c4d
IM
7022static int
7023sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7024{
7025 unsigned long cflags = sd->flags, pflags = parent->flags;
7026
7027 if (sd_degenerate(parent))
7028 return 1;
7029
758b2cdc 7030 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7031 return 0;
7032
7033 /* Does parent contain flags not in child? */
7034 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7035 if (cflags & SD_WAKE_AFFINE)
7036 pflags &= ~SD_WAKE_BALANCE;
7037 /* Flags needing groups don't count if only 1 group in parent */
7038 if (parent->groups == parent->groups->next) {
7039 pflags &= ~(SD_LOAD_BALANCE |
7040 SD_BALANCE_NEWIDLE |
7041 SD_BALANCE_FORK |
89c4710e
SS
7042 SD_BALANCE_EXEC |
7043 SD_SHARE_CPUPOWER |
7044 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7045 if (nr_node_ids == 1)
7046 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7047 }
7048 if (~cflags & pflags)
7049 return 0;
7050
7051 return 1;
7052}
7053
c6c4927b
RR
7054static void free_rootdomain(struct root_domain *rd)
7055{
68e74568
RR
7056 cpupri_cleanup(&rd->cpupri);
7057
c6c4927b
RR
7058 free_cpumask_var(rd->rto_mask);
7059 free_cpumask_var(rd->online);
7060 free_cpumask_var(rd->span);
7061 kfree(rd);
7062}
7063
57d885fe
GH
7064static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7065{
7066 unsigned long flags;
57d885fe
GH
7067
7068 spin_lock_irqsave(&rq->lock, flags);
7069
7070 if (rq->rd) {
7071 struct root_domain *old_rd = rq->rd;
7072
c6c4927b 7073 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7074 set_rq_offline(rq);
57d885fe 7075
c6c4927b 7076 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7077
57d885fe 7078 if (atomic_dec_and_test(&old_rd->refcount))
c6c4927b 7079 free_rootdomain(old_rd);
57d885fe
GH
7080 }
7081
7082 atomic_inc(&rd->refcount);
7083 rq->rd = rd;
7084
c6c4927b
RR
7085 cpumask_set_cpu(rq->cpu, rd->span);
7086 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7087 set_rq_online(rq);
57d885fe
GH
7088
7089 spin_unlock_irqrestore(&rq->lock, flags);
7090}
7091
db2f59c8 7092static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7093{
7094 memset(rd, 0, sizeof(*rd));
7095
c6c4927b
RR
7096 if (bootmem) {
7097 alloc_bootmem_cpumask_var(&def_root_domain.span);
7098 alloc_bootmem_cpumask_var(&def_root_domain.online);
7099 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7100 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7101 return 0;
7102 }
7103
7104 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7105 goto out;
c6c4927b
RR
7106 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7107 goto free_span;
7108 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7109 goto free_online;
6e0534f2 7110
68e74568
RR
7111 if (cpupri_init(&rd->cpupri, false) != 0)
7112 goto free_rto_mask;
c6c4927b 7113 return 0;
6e0534f2 7114
68e74568
RR
7115free_rto_mask:
7116 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7117free_online:
7118 free_cpumask_var(rd->online);
7119free_span:
7120 free_cpumask_var(rd->span);
0c910d28 7121out:
c6c4927b 7122 return -ENOMEM;
57d885fe
GH
7123}
7124
7125static void init_defrootdomain(void)
7126{
c6c4927b
RR
7127 init_rootdomain(&def_root_domain, true);
7128
57d885fe
GH
7129 atomic_set(&def_root_domain.refcount, 1);
7130}
7131
dc938520 7132static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7133{
7134 struct root_domain *rd;
7135
7136 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7137 if (!rd)
7138 return NULL;
7139
c6c4927b
RR
7140 if (init_rootdomain(rd, false) != 0) {
7141 kfree(rd);
7142 return NULL;
7143 }
57d885fe
GH
7144
7145 return rd;
7146}
7147
1da177e4 7148/*
0eab9146 7149 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7150 * hold the hotplug lock.
7151 */
0eab9146
IM
7152static void
7153cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7154{
70b97a7f 7155 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7156 struct sched_domain *tmp;
7157
7158 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7159 for (tmp = sd; tmp; ) {
245af2c7
SS
7160 struct sched_domain *parent = tmp->parent;
7161 if (!parent)
7162 break;
f29c9b1c 7163
1a848870 7164 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7165 tmp->parent = parent->parent;
1a848870
SS
7166 if (parent->parent)
7167 parent->parent->child = tmp;
f29c9b1c
LZ
7168 } else
7169 tmp = tmp->parent;
245af2c7
SS
7170 }
7171
1a848870 7172 if (sd && sd_degenerate(sd)) {
245af2c7 7173 sd = sd->parent;
1a848870
SS
7174 if (sd)
7175 sd->child = NULL;
7176 }
1da177e4
LT
7177
7178 sched_domain_debug(sd, cpu);
7179
57d885fe 7180 rq_attach_root(rq, rd);
674311d5 7181 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7182}
7183
7184/* cpus with isolated domains */
dcc30a35 7185static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7186
7187/* Setup the mask of cpus configured for isolated domains */
7188static int __init isolated_cpu_setup(char *str)
7189{
968ea6d8 7190 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7191 return 1;
7192}
7193
8927f494 7194__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7195
7196/*
6711cab4
SS
7197 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7198 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7199 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7200 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7201 *
7202 * init_sched_build_groups will build a circular linked list of the groups
7203 * covered by the given span, and will set each group's ->cpumask correctly,
7204 * and ->cpu_power to 0.
7205 */
a616058b 7206static void
96f874e2
RR
7207init_sched_build_groups(const struct cpumask *span,
7208 const struct cpumask *cpu_map,
7209 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7210 struct sched_group **sg,
96f874e2
RR
7211 struct cpumask *tmpmask),
7212 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7213{
7214 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7215 int i;
7216
96f874e2 7217 cpumask_clear(covered);
7c16ec58 7218
abcd083a 7219 for_each_cpu(i, span) {
6711cab4 7220 struct sched_group *sg;
7c16ec58 7221 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7222 int j;
7223
758b2cdc 7224 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7225 continue;
7226
758b2cdc 7227 cpumask_clear(sched_group_cpus(sg));
5517d86b 7228 sg->__cpu_power = 0;
1da177e4 7229
abcd083a 7230 for_each_cpu(j, span) {
7c16ec58 7231 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7232 continue;
7233
96f874e2 7234 cpumask_set_cpu(j, covered);
758b2cdc 7235 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7236 }
7237 if (!first)
7238 first = sg;
7239 if (last)
7240 last->next = sg;
7241 last = sg;
7242 }
7243 last->next = first;
7244}
7245
9c1cfda2 7246#define SD_NODES_PER_DOMAIN 16
1da177e4 7247
9c1cfda2 7248#ifdef CONFIG_NUMA
198e2f18 7249
9c1cfda2
JH
7250/**
7251 * find_next_best_node - find the next node to include in a sched_domain
7252 * @node: node whose sched_domain we're building
7253 * @used_nodes: nodes already in the sched_domain
7254 *
41a2d6cf 7255 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7256 * finds the closest node not already in the @used_nodes map.
7257 *
7258 * Should use nodemask_t.
7259 */
c5f59f08 7260static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7261{
7262 int i, n, val, min_val, best_node = 0;
7263
7264 min_val = INT_MAX;
7265
076ac2af 7266 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7267 /* Start at @node */
076ac2af 7268 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7269
7270 if (!nr_cpus_node(n))
7271 continue;
7272
7273 /* Skip already used nodes */
c5f59f08 7274 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7275 continue;
7276
7277 /* Simple min distance search */
7278 val = node_distance(node, n);
7279
7280 if (val < min_val) {
7281 min_val = val;
7282 best_node = n;
7283 }
7284 }
7285
c5f59f08 7286 node_set(best_node, *used_nodes);
9c1cfda2
JH
7287 return best_node;
7288}
7289
7290/**
7291 * sched_domain_node_span - get a cpumask for a node's sched_domain
7292 * @node: node whose cpumask we're constructing
73486722 7293 * @span: resulting cpumask
9c1cfda2 7294 *
41a2d6cf 7295 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7296 * should be one that prevents unnecessary balancing, but also spreads tasks
7297 * out optimally.
7298 */
96f874e2 7299static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7300{
c5f59f08 7301 nodemask_t used_nodes;
48f24c4d 7302 int i;
9c1cfda2 7303
6ca09dfc 7304 cpumask_clear(span);
c5f59f08 7305 nodes_clear(used_nodes);
9c1cfda2 7306
6ca09dfc 7307 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7308 node_set(node, used_nodes);
9c1cfda2
JH
7309
7310 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7311 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7312
6ca09dfc 7313 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7314 }
9c1cfda2 7315}
6d6bc0ad 7316#endif /* CONFIG_NUMA */
9c1cfda2 7317
5c45bf27 7318int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7319
6c99e9ad
RR
7320/*
7321 * The cpus mask in sched_group and sched_domain hangs off the end.
7322 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7323 * for nr_cpu_ids < CONFIG_NR_CPUS.
7324 */
7325struct static_sched_group {
7326 struct sched_group sg;
7327 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7328};
7329
7330struct static_sched_domain {
7331 struct sched_domain sd;
7332 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7333};
7334
9c1cfda2 7335/*
48f24c4d 7336 * SMT sched-domains:
9c1cfda2 7337 */
1da177e4 7338#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7339static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7340static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7341
41a2d6cf 7342static int
96f874e2
RR
7343cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7344 struct sched_group **sg, struct cpumask *unused)
1da177e4 7345{
6711cab4 7346 if (sg)
6c99e9ad 7347 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7348 return cpu;
7349}
6d6bc0ad 7350#endif /* CONFIG_SCHED_SMT */
1da177e4 7351
48f24c4d
IM
7352/*
7353 * multi-core sched-domains:
7354 */
1e9f28fa 7355#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7356static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7357static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7358#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7359
7360#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7361static int
96f874e2
RR
7362cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7363 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7364{
6711cab4 7365 int group;
7c16ec58 7366
96f874e2
RR
7367 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7368 group = cpumask_first(mask);
6711cab4 7369 if (sg)
6c99e9ad 7370 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7371 return group;
1e9f28fa
SS
7372}
7373#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7374static int
96f874e2
RR
7375cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7376 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7377{
6711cab4 7378 if (sg)
6c99e9ad 7379 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7380 return cpu;
7381}
7382#endif
7383
6c99e9ad
RR
7384static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7385static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7386
41a2d6cf 7387static int
96f874e2
RR
7388cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7389 struct sched_group **sg, struct cpumask *mask)
1da177e4 7390{
6711cab4 7391 int group;
48f24c4d 7392#ifdef CONFIG_SCHED_MC
6ca09dfc 7393 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7394 group = cpumask_first(mask);
1e9f28fa 7395#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7396 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7397 group = cpumask_first(mask);
1da177e4 7398#else
6711cab4 7399 group = cpu;
1da177e4 7400#endif
6711cab4 7401 if (sg)
6c99e9ad 7402 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7403 return group;
1da177e4
LT
7404}
7405
7406#ifdef CONFIG_NUMA
1da177e4 7407/*
9c1cfda2
JH
7408 * The init_sched_build_groups can't handle what we want to do with node
7409 * groups, so roll our own. Now each node has its own list of groups which
7410 * gets dynamically allocated.
1da177e4 7411 */
62ea9ceb 7412static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7413static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7414
62ea9ceb 7415static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7416static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7417
96f874e2
RR
7418static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7419 struct sched_group **sg,
7420 struct cpumask *nodemask)
9c1cfda2 7421{
6711cab4
SS
7422 int group;
7423
6ca09dfc 7424 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7425 group = cpumask_first(nodemask);
6711cab4
SS
7426
7427 if (sg)
6c99e9ad 7428 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7429 return group;
1da177e4 7430}
6711cab4 7431
08069033
SS
7432static void init_numa_sched_groups_power(struct sched_group *group_head)
7433{
7434 struct sched_group *sg = group_head;
7435 int j;
7436
7437 if (!sg)
7438 return;
3a5c359a 7439 do {
758b2cdc 7440 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7441 struct sched_domain *sd;
08069033 7442
6c99e9ad 7443 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7444 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7445 /*
7446 * Only add "power" once for each
7447 * physical package.
7448 */
7449 continue;
7450 }
08069033 7451
3a5c359a
AK
7452 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7453 }
7454 sg = sg->next;
7455 } while (sg != group_head);
08069033 7456}
6d6bc0ad 7457#endif /* CONFIG_NUMA */
1da177e4 7458
a616058b 7459#ifdef CONFIG_NUMA
51888ca2 7460/* Free memory allocated for various sched_group structures */
96f874e2
RR
7461static void free_sched_groups(const struct cpumask *cpu_map,
7462 struct cpumask *nodemask)
51888ca2 7463{
a616058b 7464 int cpu, i;
51888ca2 7465
abcd083a 7466 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7467 struct sched_group **sched_group_nodes
7468 = sched_group_nodes_bycpu[cpu];
7469
51888ca2
SV
7470 if (!sched_group_nodes)
7471 continue;
7472
076ac2af 7473 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7474 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7475
6ca09dfc 7476 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7477 if (cpumask_empty(nodemask))
51888ca2
SV
7478 continue;
7479
7480 if (sg == NULL)
7481 continue;
7482 sg = sg->next;
7483next_sg:
7484 oldsg = sg;
7485 sg = sg->next;
7486 kfree(oldsg);
7487 if (oldsg != sched_group_nodes[i])
7488 goto next_sg;
7489 }
7490 kfree(sched_group_nodes);
7491 sched_group_nodes_bycpu[cpu] = NULL;
7492 }
51888ca2 7493}
6d6bc0ad 7494#else /* !CONFIG_NUMA */
96f874e2
RR
7495static void free_sched_groups(const struct cpumask *cpu_map,
7496 struct cpumask *nodemask)
a616058b
SS
7497{
7498}
6d6bc0ad 7499#endif /* CONFIG_NUMA */
51888ca2 7500
89c4710e
SS
7501/*
7502 * Initialize sched groups cpu_power.
7503 *
7504 * cpu_power indicates the capacity of sched group, which is used while
7505 * distributing the load between different sched groups in a sched domain.
7506 * Typically cpu_power for all the groups in a sched domain will be same unless
7507 * there are asymmetries in the topology. If there are asymmetries, group
7508 * having more cpu_power will pickup more load compared to the group having
7509 * less cpu_power.
7510 *
7511 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7512 * the maximum number of tasks a group can handle in the presence of other idle
7513 * or lightly loaded groups in the same sched domain.
7514 */
7515static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7516{
7517 struct sched_domain *child;
7518 struct sched_group *group;
7519
7520 WARN_ON(!sd || !sd->groups);
7521
758b2cdc 7522 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7523 return;
7524
7525 child = sd->child;
7526
5517d86b
ED
7527 sd->groups->__cpu_power = 0;
7528
89c4710e
SS
7529 /*
7530 * For perf policy, if the groups in child domain share resources
7531 * (for example cores sharing some portions of the cache hierarchy
7532 * or SMT), then set this domain groups cpu_power such that each group
7533 * can handle only one task, when there are other idle groups in the
7534 * same sched domain.
7535 */
7536 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7537 (child->flags &
7538 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7539 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7540 return;
7541 }
7542
89c4710e
SS
7543 /*
7544 * add cpu_power of each child group to this groups cpu_power
7545 */
7546 group = child->groups;
7547 do {
5517d86b 7548 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7549 group = group->next;
7550 } while (group != child->groups);
7551}
7552
7c16ec58
MT
7553/*
7554 * Initializers for schedule domains
7555 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7556 */
7557
a5d8c348
IM
7558#ifdef CONFIG_SCHED_DEBUG
7559# define SD_INIT_NAME(sd, type) sd->name = #type
7560#else
7561# define SD_INIT_NAME(sd, type) do { } while (0)
7562#endif
7563
7c16ec58 7564#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7565
7c16ec58
MT
7566#define SD_INIT_FUNC(type) \
7567static noinline void sd_init_##type(struct sched_domain *sd) \
7568{ \
7569 memset(sd, 0, sizeof(*sd)); \
7570 *sd = SD_##type##_INIT; \
1d3504fc 7571 sd->level = SD_LV_##type; \
a5d8c348 7572 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7573}
7574
7575SD_INIT_FUNC(CPU)
7576#ifdef CONFIG_NUMA
7577 SD_INIT_FUNC(ALLNODES)
7578 SD_INIT_FUNC(NODE)
7579#endif
7580#ifdef CONFIG_SCHED_SMT
7581 SD_INIT_FUNC(SIBLING)
7582#endif
7583#ifdef CONFIG_SCHED_MC
7584 SD_INIT_FUNC(MC)
7585#endif
7586
1d3504fc
HS
7587static int default_relax_domain_level = -1;
7588
7589static int __init setup_relax_domain_level(char *str)
7590{
30e0e178
LZ
7591 unsigned long val;
7592
7593 val = simple_strtoul(str, NULL, 0);
7594 if (val < SD_LV_MAX)
7595 default_relax_domain_level = val;
7596
1d3504fc
HS
7597 return 1;
7598}
7599__setup("relax_domain_level=", setup_relax_domain_level);
7600
7601static void set_domain_attribute(struct sched_domain *sd,
7602 struct sched_domain_attr *attr)
7603{
7604 int request;
7605
7606 if (!attr || attr->relax_domain_level < 0) {
7607 if (default_relax_domain_level < 0)
7608 return;
7609 else
7610 request = default_relax_domain_level;
7611 } else
7612 request = attr->relax_domain_level;
7613 if (request < sd->level) {
7614 /* turn off idle balance on this domain */
7615 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7616 } else {
7617 /* turn on idle balance on this domain */
7618 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7619 }
7620}
7621
1da177e4 7622/*
1a20ff27
DG
7623 * Build sched domains for a given set of cpus and attach the sched domains
7624 * to the individual cpus
1da177e4 7625 */
96f874e2 7626static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7627 struct sched_domain_attr *attr)
1da177e4 7628{
3404c8d9 7629 int i, err = -ENOMEM;
57d885fe 7630 struct root_domain *rd;
3404c8d9
RR
7631 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7632 tmpmask;
d1b55138 7633#ifdef CONFIG_NUMA
3404c8d9 7634 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7635 struct sched_group **sched_group_nodes = NULL;
6711cab4 7636 int sd_allnodes = 0;
d1b55138 7637
3404c8d9
RR
7638 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7639 goto out;
7640 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7641 goto free_domainspan;
7642 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7643 goto free_covered;
7644#endif
7645
7646 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7647 goto free_notcovered;
7648 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7649 goto free_nodemask;
7650 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7651 goto free_this_sibling_map;
7652 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7653 goto free_this_core_map;
7654 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7655 goto free_send_covered;
7656
7657#ifdef CONFIG_NUMA
d1b55138
JH
7658 /*
7659 * Allocate the per-node list of sched groups
7660 */
076ac2af 7661 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7662 GFP_KERNEL);
d1b55138
JH
7663 if (!sched_group_nodes) {
7664 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7665 goto free_tmpmask;
d1b55138 7666 }
d1b55138 7667#endif
1da177e4 7668
dc938520 7669 rd = alloc_rootdomain();
57d885fe
GH
7670 if (!rd) {
7671 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7672 goto free_sched_groups;
57d885fe
GH
7673 }
7674
7c16ec58 7675#ifdef CONFIG_NUMA
96f874e2 7676 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7677#endif
7678
1da177e4 7679 /*
1a20ff27 7680 * Set up domains for cpus specified by the cpu_map.
1da177e4 7681 */
abcd083a 7682 for_each_cpu(i, cpu_map) {
1da177e4 7683 struct sched_domain *sd = NULL, *p;
1da177e4 7684
6ca09dfc 7685 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7686
7687#ifdef CONFIG_NUMA
96f874e2
RR
7688 if (cpumask_weight(cpu_map) >
7689 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7690 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7691 SD_INIT(sd, ALLNODES);
1d3504fc 7692 set_domain_attribute(sd, attr);
758b2cdc 7693 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7694 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7695 p = sd;
6711cab4 7696 sd_allnodes = 1;
9c1cfda2
JH
7697 } else
7698 p = NULL;
7699
62ea9ceb 7700 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7701 SD_INIT(sd, NODE);
1d3504fc 7702 set_domain_attribute(sd, attr);
758b2cdc 7703 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7704 sd->parent = p;
1a848870
SS
7705 if (p)
7706 p->child = sd;
758b2cdc
RR
7707 cpumask_and(sched_domain_span(sd),
7708 sched_domain_span(sd), cpu_map);
1da177e4
LT
7709#endif
7710
7711 p = sd;
6c99e9ad 7712 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7713 SD_INIT(sd, CPU);
1d3504fc 7714 set_domain_attribute(sd, attr);
758b2cdc 7715 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7716 sd->parent = p;
1a848870
SS
7717 if (p)
7718 p->child = sd;
7c16ec58 7719 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7720
1e9f28fa
SS
7721#ifdef CONFIG_SCHED_MC
7722 p = sd;
6c99e9ad 7723 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7724 SD_INIT(sd, MC);
1d3504fc 7725 set_domain_attribute(sd, attr);
6ca09dfc
MT
7726 cpumask_and(sched_domain_span(sd), cpu_map,
7727 cpu_coregroup_mask(i));
1e9f28fa 7728 sd->parent = p;
1a848870 7729 p->child = sd;
7c16ec58 7730 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7731#endif
7732
1da177e4
LT
7733#ifdef CONFIG_SCHED_SMT
7734 p = sd;
6c99e9ad 7735 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7736 SD_INIT(sd, SIBLING);
1d3504fc 7737 set_domain_attribute(sd, attr);
758b2cdc
RR
7738 cpumask_and(sched_domain_span(sd),
7739 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7740 sd->parent = p;
1a848870 7741 p->child = sd;
7c16ec58 7742 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7743#endif
7744 }
7745
7746#ifdef CONFIG_SCHED_SMT
7747 /* Set up CPU (sibling) groups */
abcd083a 7748 for_each_cpu(i, cpu_map) {
96f874e2
RR
7749 cpumask_and(this_sibling_map,
7750 &per_cpu(cpu_sibling_map, i), cpu_map);
7751 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7752 continue;
7753
dd41f596 7754 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7755 &cpu_to_cpu_group,
7756 send_covered, tmpmask);
1da177e4
LT
7757 }
7758#endif
7759
1e9f28fa
SS
7760#ifdef CONFIG_SCHED_MC
7761 /* Set up multi-core groups */
abcd083a 7762 for_each_cpu(i, cpu_map) {
6ca09dfc 7763 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7764 if (i != cpumask_first(this_core_map))
1e9f28fa 7765 continue;
7c16ec58 7766
dd41f596 7767 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7768 &cpu_to_core_group,
7769 send_covered, tmpmask);
1e9f28fa
SS
7770 }
7771#endif
7772
1da177e4 7773 /* Set up physical groups */
076ac2af 7774 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7775 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7776 if (cpumask_empty(nodemask))
1da177e4
LT
7777 continue;
7778
7c16ec58
MT
7779 init_sched_build_groups(nodemask, cpu_map,
7780 &cpu_to_phys_group,
7781 send_covered, tmpmask);
1da177e4
LT
7782 }
7783
7784#ifdef CONFIG_NUMA
7785 /* Set up node groups */
7c16ec58 7786 if (sd_allnodes) {
7c16ec58
MT
7787 init_sched_build_groups(cpu_map, cpu_map,
7788 &cpu_to_allnodes_group,
7789 send_covered, tmpmask);
7790 }
9c1cfda2 7791
076ac2af 7792 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7793 /* Set up node groups */
7794 struct sched_group *sg, *prev;
9c1cfda2
JH
7795 int j;
7796
96f874e2 7797 cpumask_clear(covered);
6ca09dfc 7798 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7799 if (cpumask_empty(nodemask)) {
d1b55138 7800 sched_group_nodes[i] = NULL;
9c1cfda2 7801 continue;
d1b55138 7802 }
9c1cfda2 7803
4bdbaad3 7804 sched_domain_node_span(i, domainspan);
96f874e2 7805 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7806
6c99e9ad
RR
7807 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7808 GFP_KERNEL, i);
51888ca2
SV
7809 if (!sg) {
7810 printk(KERN_WARNING "Can not alloc domain group for "
7811 "node %d\n", i);
7812 goto error;
7813 }
9c1cfda2 7814 sched_group_nodes[i] = sg;
abcd083a 7815 for_each_cpu(j, nodemask) {
9c1cfda2 7816 struct sched_domain *sd;
9761eea8 7817
62ea9ceb 7818 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 7819 sd->groups = sg;
9c1cfda2 7820 }
5517d86b 7821 sg->__cpu_power = 0;
758b2cdc 7822 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7823 sg->next = sg;
96f874e2 7824 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7825 prev = sg;
7826
076ac2af 7827 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7828 int n = (i + j) % nr_node_ids;
9c1cfda2 7829
96f874e2
RR
7830 cpumask_complement(notcovered, covered);
7831 cpumask_and(tmpmask, notcovered, cpu_map);
7832 cpumask_and(tmpmask, tmpmask, domainspan);
7833 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7834 break;
7835
6ca09dfc 7836 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 7837 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7838 continue;
7839
6c99e9ad
RR
7840 sg = kmalloc_node(sizeof(struct sched_group) +
7841 cpumask_size(),
15f0b676 7842 GFP_KERNEL, i);
9c1cfda2
JH
7843 if (!sg) {
7844 printk(KERN_WARNING
7845 "Can not alloc domain group for node %d\n", j);
51888ca2 7846 goto error;
9c1cfda2 7847 }
5517d86b 7848 sg->__cpu_power = 0;
758b2cdc 7849 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7850 sg->next = prev->next;
96f874e2 7851 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7852 prev->next = sg;
7853 prev = sg;
7854 }
9c1cfda2 7855 }
1da177e4
LT
7856#endif
7857
7858 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7859#ifdef CONFIG_SCHED_SMT
abcd083a 7860 for_each_cpu(i, cpu_map) {
6c99e9ad 7861 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7862
89c4710e 7863 init_sched_groups_power(i, sd);
5c45bf27 7864 }
1da177e4 7865#endif
1e9f28fa 7866#ifdef CONFIG_SCHED_MC
abcd083a 7867 for_each_cpu(i, cpu_map) {
6c99e9ad 7868 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7869
89c4710e 7870 init_sched_groups_power(i, sd);
5c45bf27
SS
7871 }
7872#endif
1e9f28fa 7873
abcd083a 7874 for_each_cpu(i, cpu_map) {
6c99e9ad 7875 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7876
89c4710e 7877 init_sched_groups_power(i, sd);
1da177e4
LT
7878 }
7879
9c1cfda2 7880#ifdef CONFIG_NUMA
076ac2af 7881 for (i = 0; i < nr_node_ids; i++)
08069033 7882 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7883
6711cab4
SS
7884 if (sd_allnodes) {
7885 struct sched_group *sg;
f712c0c7 7886
96f874e2 7887 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7888 tmpmask);
f712c0c7
SS
7889 init_numa_sched_groups_power(sg);
7890 }
9c1cfda2
JH
7891#endif
7892
1da177e4 7893 /* Attach the domains */
abcd083a 7894 for_each_cpu(i, cpu_map) {
1da177e4
LT
7895 struct sched_domain *sd;
7896#ifdef CONFIG_SCHED_SMT
6c99e9ad 7897 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7898#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7899 sd = &per_cpu(core_domains, i).sd;
1da177e4 7900#else
6c99e9ad 7901 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7902#endif
57d885fe 7903 cpu_attach_domain(sd, rd, i);
1da177e4 7904 }
51888ca2 7905
3404c8d9
RR
7906 err = 0;
7907
7908free_tmpmask:
7909 free_cpumask_var(tmpmask);
7910free_send_covered:
7911 free_cpumask_var(send_covered);
7912free_this_core_map:
7913 free_cpumask_var(this_core_map);
7914free_this_sibling_map:
7915 free_cpumask_var(this_sibling_map);
7916free_nodemask:
7917 free_cpumask_var(nodemask);
7918free_notcovered:
7919#ifdef CONFIG_NUMA
7920 free_cpumask_var(notcovered);
7921free_covered:
7922 free_cpumask_var(covered);
7923free_domainspan:
7924 free_cpumask_var(domainspan);
7925out:
7926#endif
7927 return err;
7928
7929free_sched_groups:
7930#ifdef CONFIG_NUMA
7931 kfree(sched_group_nodes);
7932#endif
7933 goto free_tmpmask;
51888ca2 7934
a616058b 7935#ifdef CONFIG_NUMA
51888ca2 7936error:
7c16ec58 7937 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7938 free_rootdomain(rd);
3404c8d9 7939 goto free_tmpmask;
a616058b 7940#endif
1da177e4 7941}
029190c5 7942
96f874e2 7943static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7944{
7945 return __build_sched_domains(cpu_map, NULL);
7946}
7947
96f874e2 7948static struct cpumask *doms_cur; /* current sched domains */
029190c5 7949static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7950static struct sched_domain_attr *dattr_cur;
7951 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7952
7953/*
7954 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7955 * cpumask) fails, then fallback to a single sched domain,
7956 * as determined by the single cpumask fallback_doms.
029190c5 7957 */
4212823f 7958static cpumask_var_t fallback_doms;
029190c5 7959
ee79d1bd
HC
7960/*
7961 * arch_update_cpu_topology lets virtualized architectures update the
7962 * cpu core maps. It is supposed to return 1 if the topology changed
7963 * or 0 if it stayed the same.
7964 */
7965int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7966{
ee79d1bd 7967 return 0;
22e52b07
HC
7968}
7969
1a20ff27 7970/*
41a2d6cf 7971 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7972 * For now this just excludes isolated cpus, but could be used to
7973 * exclude other special cases in the future.
1a20ff27 7974 */
96f874e2 7975static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7976{
7378547f
MM
7977 int err;
7978
22e52b07 7979 arch_update_cpu_topology();
029190c5 7980 ndoms_cur = 1;
96f874e2 7981 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7982 if (!doms_cur)
4212823f 7983 doms_cur = fallback_doms;
dcc30a35 7984 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7985 dattr_cur = NULL;
7378547f 7986 err = build_sched_domains(doms_cur);
6382bc90 7987 register_sched_domain_sysctl();
7378547f
MM
7988
7989 return err;
1a20ff27
DG
7990}
7991
96f874e2
RR
7992static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7993 struct cpumask *tmpmask)
1da177e4 7994{
7c16ec58 7995 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7996}
1da177e4 7997
1a20ff27
DG
7998/*
7999 * Detach sched domains from a group of cpus specified in cpu_map
8000 * These cpus will now be attached to the NULL domain
8001 */
96f874e2 8002static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8003{
96f874e2
RR
8004 /* Save because hotplug lock held. */
8005 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8006 int i;
8007
abcd083a 8008 for_each_cpu(i, cpu_map)
57d885fe 8009 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8010 synchronize_sched();
96f874e2 8011 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8012}
8013
1d3504fc
HS
8014/* handle null as "default" */
8015static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8016 struct sched_domain_attr *new, int idx_new)
8017{
8018 struct sched_domain_attr tmp;
8019
8020 /* fast path */
8021 if (!new && !cur)
8022 return 1;
8023
8024 tmp = SD_ATTR_INIT;
8025 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8026 new ? (new + idx_new) : &tmp,
8027 sizeof(struct sched_domain_attr));
8028}
8029
029190c5
PJ
8030/*
8031 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8032 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8033 * doms_new[] to the current sched domain partitioning, doms_cur[].
8034 * It destroys each deleted domain and builds each new domain.
8035 *
96f874e2 8036 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8037 * The masks don't intersect (don't overlap.) We should setup one
8038 * sched domain for each mask. CPUs not in any of the cpumasks will
8039 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8040 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8041 * it as it is.
8042 *
41a2d6cf
IM
8043 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8044 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8045 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8046 * ndoms_new == 1, and partition_sched_domains() will fallback to
8047 * the single partition 'fallback_doms', it also forces the domains
8048 * to be rebuilt.
029190c5 8049 *
96f874e2 8050 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8051 * ndoms_new == 0 is a special case for destroying existing domains,
8052 * and it will not create the default domain.
dfb512ec 8053 *
029190c5
PJ
8054 * Call with hotplug lock held
8055 */
96f874e2
RR
8056/* FIXME: Change to struct cpumask *doms_new[] */
8057void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8058 struct sched_domain_attr *dattr_new)
029190c5 8059{
dfb512ec 8060 int i, j, n;
d65bd5ec 8061 int new_topology;
029190c5 8062
712555ee 8063 mutex_lock(&sched_domains_mutex);
a1835615 8064
7378547f
MM
8065 /* always unregister in case we don't destroy any domains */
8066 unregister_sched_domain_sysctl();
8067
d65bd5ec
HC
8068 /* Let architecture update cpu core mappings. */
8069 new_topology = arch_update_cpu_topology();
8070
dfb512ec 8071 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8072
8073 /* Destroy deleted domains */
8074 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8075 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8076 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8077 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8078 goto match1;
8079 }
8080 /* no match - a current sched domain not in new doms_new[] */
8081 detach_destroy_domains(doms_cur + i);
8082match1:
8083 ;
8084 }
8085
e761b772
MK
8086 if (doms_new == NULL) {
8087 ndoms_cur = 0;
4212823f 8088 doms_new = fallback_doms;
dcc30a35 8089 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8090 WARN_ON_ONCE(dattr_new);
e761b772
MK
8091 }
8092
029190c5
PJ
8093 /* Build new domains */
8094 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8095 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8096 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8097 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8098 goto match2;
8099 }
8100 /* no match - add a new doms_new */
1d3504fc
HS
8101 __build_sched_domains(doms_new + i,
8102 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8103match2:
8104 ;
8105 }
8106
8107 /* Remember the new sched domains */
4212823f 8108 if (doms_cur != fallback_doms)
029190c5 8109 kfree(doms_cur);
1d3504fc 8110 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8111 doms_cur = doms_new;
1d3504fc 8112 dattr_cur = dattr_new;
029190c5 8113 ndoms_cur = ndoms_new;
7378547f
MM
8114
8115 register_sched_domain_sysctl();
a1835615 8116
712555ee 8117 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8118}
8119
5c45bf27 8120#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8121static void arch_reinit_sched_domains(void)
5c45bf27 8122{
95402b38 8123 get_online_cpus();
dfb512ec
MK
8124
8125 /* Destroy domains first to force the rebuild */
8126 partition_sched_domains(0, NULL, NULL);
8127
e761b772 8128 rebuild_sched_domains();
95402b38 8129 put_online_cpus();
5c45bf27
SS
8130}
8131
8132static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8133{
afb8a9b7 8134 unsigned int level = 0;
5c45bf27 8135
afb8a9b7
GS
8136 if (sscanf(buf, "%u", &level) != 1)
8137 return -EINVAL;
8138
8139 /*
8140 * level is always be positive so don't check for
8141 * level < POWERSAVINGS_BALANCE_NONE which is 0
8142 * What happens on 0 or 1 byte write,
8143 * need to check for count as well?
8144 */
8145
8146 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8147 return -EINVAL;
8148
8149 if (smt)
afb8a9b7 8150 sched_smt_power_savings = level;
5c45bf27 8151 else
afb8a9b7 8152 sched_mc_power_savings = level;
5c45bf27 8153
c70f22d2 8154 arch_reinit_sched_domains();
5c45bf27 8155
c70f22d2 8156 return count;
5c45bf27
SS
8157}
8158
5c45bf27 8159#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8160static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8161 char *page)
5c45bf27
SS
8162{
8163 return sprintf(page, "%u\n", sched_mc_power_savings);
8164}
f718cd4a 8165static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8166 const char *buf, size_t count)
5c45bf27
SS
8167{
8168 return sched_power_savings_store(buf, count, 0);
8169}
f718cd4a
AK
8170static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8171 sched_mc_power_savings_show,
8172 sched_mc_power_savings_store);
5c45bf27
SS
8173#endif
8174
8175#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8176static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8177 char *page)
5c45bf27
SS
8178{
8179 return sprintf(page, "%u\n", sched_smt_power_savings);
8180}
f718cd4a 8181static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8182 const char *buf, size_t count)
5c45bf27
SS
8183{
8184 return sched_power_savings_store(buf, count, 1);
8185}
f718cd4a
AK
8186static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8187 sched_smt_power_savings_show,
6707de00
AB
8188 sched_smt_power_savings_store);
8189#endif
8190
39aac648 8191int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8192{
8193 int err = 0;
8194
8195#ifdef CONFIG_SCHED_SMT
8196 if (smt_capable())
8197 err = sysfs_create_file(&cls->kset.kobj,
8198 &attr_sched_smt_power_savings.attr);
8199#endif
8200#ifdef CONFIG_SCHED_MC
8201 if (!err && mc_capable())
8202 err = sysfs_create_file(&cls->kset.kobj,
8203 &attr_sched_mc_power_savings.attr);
8204#endif
8205 return err;
8206}
6d6bc0ad 8207#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8208
e761b772 8209#ifndef CONFIG_CPUSETS
1da177e4 8210/*
e761b772
MK
8211 * Add online and remove offline CPUs from the scheduler domains.
8212 * When cpusets are enabled they take over this function.
1da177e4
LT
8213 */
8214static int update_sched_domains(struct notifier_block *nfb,
8215 unsigned long action, void *hcpu)
e761b772
MK
8216{
8217 switch (action) {
8218 case CPU_ONLINE:
8219 case CPU_ONLINE_FROZEN:
8220 case CPU_DEAD:
8221 case CPU_DEAD_FROZEN:
dfb512ec 8222 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8223 return NOTIFY_OK;
8224
8225 default:
8226 return NOTIFY_DONE;
8227 }
8228}
8229#endif
8230
8231static int update_runtime(struct notifier_block *nfb,
8232 unsigned long action, void *hcpu)
1da177e4 8233{
7def2be1
PZ
8234 int cpu = (int)(long)hcpu;
8235
1da177e4 8236 switch (action) {
1da177e4 8237 case CPU_DOWN_PREPARE:
8bb78442 8238 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8239 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8240 return NOTIFY_OK;
8241
1da177e4 8242 case CPU_DOWN_FAILED:
8bb78442 8243 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8244 case CPU_ONLINE:
8bb78442 8245 case CPU_ONLINE_FROZEN:
7def2be1 8246 enable_runtime(cpu_rq(cpu));
e761b772
MK
8247 return NOTIFY_OK;
8248
1da177e4
LT
8249 default:
8250 return NOTIFY_DONE;
8251 }
1da177e4 8252}
1da177e4
LT
8253
8254void __init sched_init_smp(void)
8255{
dcc30a35
RR
8256 cpumask_var_t non_isolated_cpus;
8257
8258 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8259
434d53b0
MT
8260#if defined(CONFIG_NUMA)
8261 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8262 GFP_KERNEL);
8263 BUG_ON(sched_group_nodes_bycpu == NULL);
8264#endif
95402b38 8265 get_online_cpus();
712555ee 8266 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8267 arch_init_sched_domains(cpu_online_mask);
8268 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8269 if (cpumask_empty(non_isolated_cpus))
8270 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8271 mutex_unlock(&sched_domains_mutex);
95402b38 8272 put_online_cpus();
e761b772
MK
8273
8274#ifndef CONFIG_CPUSETS
1da177e4
LT
8275 /* XXX: Theoretical race here - CPU may be hotplugged now */
8276 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8277#endif
8278
8279 /* RT runtime code needs to handle some hotplug events */
8280 hotcpu_notifier(update_runtime, 0);
8281
b328ca18 8282 init_hrtick();
5c1e1767
NP
8283
8284 /* Move init over to a non-isolated CPU */
dcc30a35 8285 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8286 BUG();
19978ca6 8287 sched_init_granularity();
dcc30a35 8288 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8289
8290 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8291 init_sched_rt_class();
1da177e4
LT
8292}
8293#else
8294void __init sched_init_smp(void)
8295{
19978ca6 8296 sched_init_granularity();
1da177e4
LT
8297}
8298#endif /* CONFIG_SMP */
8299
8300int in_sched_functions(unsigned long addr)
8301{
1da177e4
LT
8302 return in_lock_functions(addr) ||
8303 (addr >= (unsigned long)__sched_text_start
8304 && addr < (unsigned long)__sched_text_end);
8305}
8306
a9957449 8307static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8308{
8309 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8310 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8311#ifdef CONFIG_FAIR_GROUP_SCHED
8312 cfs_rq->rq = rq;
8313#endif
67e9fb2a 8314 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8315}
8316
fa85ae24
PZ
8317static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8318{
8319 struct rt_prio_array *array;
8320 int i;
8321
8322 array = &rt_rq->active;
8323 for (i = 0; i < MAX_RT_PRIO; i++) {
8324 INIT_LIST_HEAD(array->queue + i);
8325 __clear_bit(i, array->bitmap);
8326 }
8327 /* delimiter for bitsearch: */
8328 __set_bit(MAX_RT_PRIO, array->bitmap);
8329
052f1dc7 8330#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8331 rt_rq->highest_prio = MAX_RT_PRIO;
8332#endif
fa85ae24
PZ
8333#ifdef CONFIG_SMP
8334 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8335 rt_rq->overloaded = 0;
8336#endif
8337
8338 rt_rq->rt_time = 0;
8339 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8340 rt_rq->rt_runtime = 0;
8341 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8342
052f1dc7 8343#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8344 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8345 rt_rq->rq = rq;
8346#endif
fa85ae24
PZ
8347}
8348
6f505b16 8349#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8350static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8351 struct sched_entity *se, int cpu, int add,
8352 struct sched_entity *parent)
6f505b16 8353{
ec7dc8ac 8354 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8355 tg->cfs_rq[cpu] = cfs_rq;
8356 init_cfs_rq(cfs_rq, rq);
8357 cfs_rq->tg = tg;
8358 if (add)
8359 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8360
8361 tg->se[cpu] = se;
354d60c2
DG
8362 /* se could be NULL for init_task_group */
8363 if (!se)
8364 return;
8365
ec7dc8ac
DG
8366 if (!parent)
8367 se->cfs_rq = &rq->cfs;
8368 else
8369 se->cfs_rq = parent->my_q;
8370
6f505b16
PZ
8371 se->my_q = cfs_rq;
8372 se->load.weight = tg->shares;
e05510d0 8373 se->load.inv_weight = 0;
ec7dc8ac 8374 se->parent = parent;
6f505b16 8375}
052f1dc7 8376#endif
6f505b16 8377
052f1dc7 8378#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8379static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8380 struct sched_rt_entity *rt_se, int cpu, int add,
8381 struct sched_rt_entity *parent)
6f505b16 8382{
ec7dc8ac
DG
8383 struct rq *rq = cpu_rq(cpu);
8384
6f505b16
PZ
8385 tg->rt_rq[cpu] = rt_rq;
8386 init_rt_rq(rt_rq, rq);
8387 rt_rq->tg = tg;
8388 rt_rq->rt_se = rt_se;
ac086bc2 8389 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8390 if (add)
8391 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8392
8393 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8394 if (!rt_se)
8395 return;
8396
ec7dc8ac
DG
8397 if (!parent)
8398 rt_se->rt_rq = &rq->rt;
8399 else
8400 rt_se->rt_rq = parent->my_q;
8401
6f505b16 8402 rt_se->my_q = rt_rq;
ec7dc8ac 8403 rt_se->parent = parent;
6f505b16
PZ
8404 INIT_LIST_HEAD(&rt_se->run_list);
8405}
8406#endif
8407
1da177e4
LT
8408void __init sched_init(void)
8409{
dd41f596 8410 int i, j;
434d53b0
MT
8411 unsigned long alloc_size = 0, ptr;
8412
8413#ifdef CONFIG_FAIR_GROUP_SCHED
8414 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8415#endif
8416#ifdef CONFIG_RT_GROUP_SCHED
8417 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8418#endif
8419#ifdef CONFIG_USER_SCHED
8420 alloc_size *= 2;
434d53b0
MT
8421#endif
8422 /*
8423 * As sched_init() is called before page_alloc is setup,
8424 * we use alloc_bootmem().
8425 */
8426 if (alloc_size) {
5a9d3225 8427 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8428
8429#ifdef CONFIG_FAIR_GROUP_SCHED
8430 init_task_group.se = (struct sched_entity **)ptr;
8431 ptr += nr_cpu_ids * sizeof(void **);
8432
8433 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8434 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8435
8436#ifdef CONFIG_USER_SCHED
8437 root_task_group.se = (struct sched_entity **)ptr;
8438 ptr += nr_cpu_ids * sizeof(void **);
8439
8440 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8441 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8442#endif /* CONFIG_USER_SCHED */
8443#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8444#ifdef CONFIG_RT_GROUP_SCHED
8445 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8446 ptr += nr_cpu_ids * sizeof(void **);
8447
8448 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8449 ptr += nr_cpu_ids * sizeof(void **);
8450
8451#ifdef CONFIG_USER_SCHED
8452 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8453 ptr += nr_cpu_ids * sizeof(void **);
8454
8455 root_task_group.rt_rq = (struct rt_rq **)ptr;
8456 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8457#endif /* CONFIG_USER_SCHED */
8458#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8459 }
dd41f596 8460
57d885fe
GH
8461#ifdef CONFIG_SMP
8462 init_defrootdomain();
8463#endif
8464
d0b27fa7
PZ
8465 init_rt_bandwidth(&def_rt_bandwidth,
8466 global_rt_period(), global_rt_runtime());
8467
8468#ifdef CONFIG_RT_GROUP_SCHED
8469 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8470 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8471#ifdef CONFIG_USER_SCHED
8472 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8473 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8474#endif /* CONFIG_USER_SCHED */
8475#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8476
052f1dc7 8477#ifdef CONFIG_GROUP_SCHED
6f505b16 8478 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8479 INIT_LIST_HEAD(&init_task_group.children);
8480
8481#ifdef CONFIG_USER_SCHED
8482 INIT_LIST_HEAD(&root_task_group.children);
8483 init_task_group.parent = &root_task_group;
8484 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8485#endif /* CONFIG_USER_SCHED */
8486#endif /* CONFIG_GROUP_SCHED */
6f505b16 8487
0a945022 8488 for_each_possible_cpu(i) {
70b97a7f 8489 struct rq *rq;
1da177e4
LT
8490
8491 rq = cpu_rq(i);
8492 spin_lock_init(&rq->lock);
7897986b 8493 rq->nr_running = 0;
dd41f596 8494 init_cfs_rq(&rq->cfs, rq);
6f505b16 8495 init_rt_rq(&rq->rt, rq);
dd41f596 8496#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8497 init_task_group.shares = init_task_group_load;
6f505b16 8498 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8499#ifdef CONFIG_CGROUP_SCHED
8500 /*
8501 * How much cpu bandwidth does init_task_group get?
8502 *
8503 * In case of task-groups formed thr' the cgroup filesystem, it
8504 * gets 100% of the cpu resources in the system. This overall
8505 * system cpu resource is divided among the tasks of
8506 * init_task_group and its child task-groups in a fair manner,
8507 * based on each entity's (task or task-group's) weight
8508 * (se->load.weight).
8509 *
8510 * In other words, if init_task_group has 10 tasks of weight
8511 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8512 * then A0's share of the cpu resource is:
8513 *
8514 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8515 *
8516 * We achieve this by letting init_task_group's tasks sit
8517 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8518 */
ec7dc8ac 8519 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8520#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8521 root_task_group.shares = NICE_0_LOAD;
8522 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8523 /*
8524 * In case of task-groups formed thr' the user id of tasks,
8525 * init_task_group represents tasks belonging to root user.
8526 * Hence it forms a sibling of all subsequent groups formed.
8527 * In this case, init_task_group gets only a fraction of overall
8528 * system cpu resource, based on the weight assigned to root
8529 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8530 * by letting tasks of init_task_group sit in a separate cfs_rq
8531 * (init_cfs_rq) and having one entity represent this group of
8532 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8533 */
ec7dc8ac 8534 init_tg_cfs_entry(&init_task_group,
6f505b16 8535 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8536 &per_cpu(init_sched_entity, i), i, 1,
8537 root_task_group.se[i]);
6f505b16 8538
052f1dc7 8539#endif
354d60c2
DG
8540#endif /* CONFIG_FAIR_GROUP_SCHED */
8541
8542 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8543#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8544 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8545#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8546 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8547#elif defined CONFIG_USER_SCHED
eff766a6 8548 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8549 init_tg_rt_entry(&init_task_group,
6f505b16 8550 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8551 &per_cpu(init_sched_rt_entity, i), i, 1,
8552 root_task_group.rt_se[i]);
354d60c2 8553#endif
dd41f596 8554#endif
1da177e4 8555
dd41f596
IM
8556 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8557 rq->cpu_load[j] = 0;
1da177e4 8558#ifdef CONFIG_SMP
41c7ce9a 8559 rq->sd = NULL;
57d885fe 8560 rq->rd = NULL;
1da177e4 8561 rq->active_balance = 0;
dd41f596 8562 rq->next_balance = jiffies;
1da177e4 8563 rq->push_cpu = 0;
0a2966b4 8564 rq->cpu = i;
1f11eb6a 8565 rq->online = 0;
1da177e4
LT
8566 rq->migration_thread = NULL;
8567 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8568 rq_attach_root(rq, &def_root_domain);
1da177e4 8569#endif
8f4d37ec 8570 init_rq_hrtick(rq);
1da177e4 8571 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8572 }
8573
2dd73a4f 8574 set_load_weight(&init_task);
b50f60ce 8575
e107be36
AK
8576#ifdef CONFIG_PREEMPT_NOTIFIERS
8577 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8578#endif
8579
c9819f45 8580#ifdef CONFIG_SMP
962cf36c 8581 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8582#endif
8583
b50f60ce
HC
8584#ifdef CONFIG_RT_MUTEXES
8585 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8586#endif
8587
1da177e4
LT
8588 /*
8589 * The boot idle thread does lazy MMU switching as well:
8590 */
8591 atomic_inc(&init_mm.mm_count);
8592 enter_lazy_tlb(&init_mm, current);
8593
8594 /*
8595 * Make us the idle thread. Technically, schedule() should not be
8596 * called from this thread, however somewhere below it might be,
8597 * but because we are the idle thread, we just pick up running again
8598 * when this runqueue becomes "idle".
8599 */
8600 init_idle(current, smp_processor_id());
dd41f596
IM
8601 /*
8602 * During early bootup we pretend to be a normal task:
8603 */
8604 current->sched_class = &fair_sched_class;
6892b75e 8605
6a7b3dc3
RR
8606 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8607 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8608#ifdef CONFIG_SMP
7d1e6a9b
RR
8609#ifdef CONFIG_NO_HZ
8610 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8611#endif
dcc30a35 8612 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8613#endif /* SMP */
6a7b3dc3 8614
6892b75e 8615 scheduler_running = 1;
1da177e4
LT
8616}
8617
8618#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8619void __might_sleep(char *file, int line)
8620{
48f24c4d 8621#ifdef in_atomic
1da177e4
LT
8622 static unsigned long prev_jiffy; /* ratelimiting */
8623
aef745fc
IM
8624 if ((!in_atomic() && !irqs_disabled()) ||
8625 system_state != SYSTEM_RUNNING || oops_in_progress)
8626 return;
8627 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8628 return;
8629 prev_jiffy = jiffies;
8630
8631 printk(KERN_ERR
8632 "BUG: sleeping function called from invalid context at %s:%d\n",
8633 file, line);
8634 printk(KERN_ERR
8635 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8636 in_atomic(), irqs_disabled(),
8637 current->pid, current->comm);
8638
8639 debug_show_held_locks(current);
8640 if (irqs_disabled())
8641 print_irqtrace_events(current);
8642 dump_stack();
1da177e4
LT
8643#endif
8644}
8645EXPORT_SYMBOL(__might_sleep);
8646#endif
8647
8648#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8649static void normalize_task(struct rq *rq, struct task_struct *p)
8650{
8651 int on_rq;
3e51f33f 8652
3a5e4dc1
AK
8653 update_rq_clock(rq);
8654 on_rq = p->se.on_rq;
8655 if (on_rq)
8656 deactivate_task(rq, p, 0);
8657 __setscheduler(rq, p, SCHED_NORMAL, 0);
8658 if (on_rq) {
8659 activate_task(rq, p, 0);
8660 resched_task(rq->curr);
8661 }
8662}
8663
1da177e4
LT
8664void normalize_rt_tasks(void)
8665{
a0f98a1c 8666 struct task_struct *g, *p;
1da177e4 8667 unsigned long flags;
70b97a7f 8668 struct rq *rq;
1da177e4 8669
4cf5d77a 8670 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8671 do_each_thread(g, p) {
178be793
IM
8672 /*
8673 * Only normalize user tasks:
8674 */
8675 if (!p->mm)
8676 continue;
8677
6cfb0d5d 8678 p->se.exec_start = 0;
6cfb0d5d 8679#ifdef CONFIG_SCHEDSTATS
dd41f596 8680 p->se.wait_start = 0;
dd41f596 8681 p->se.sleep_start = 0;
dd41f596 8682 p->se.block_start = 0;
6cfb0d5d 8683#endif
dd41f596
IM
8684
8685 if (!rt_task(p)) {
8686 /*
8687 * Renice negative nice level userspace
8688 * tasks back to 0:
8689 */
8690 if (TASK_NICE(p) < 0 && p->mm)
8691 set_user_nice(p, 0);
1da177e4 8692 continue;
dd41f596 8693 }
1da177e4 8694
4cf5d77a 8695 spin_lock(&p->pi_lock);
b29739f9 8696 rq = __task_rq_lock(p);
1da177e4 8697
178be793 8698 normalize_task(rq, p);
3a5e4dc1 8699
b29739f9 8700 __task_rq_unlock(rq);
4cf5d77a 8701 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8702 } while_each_thread(g, p);
8703
4cf5d77a 8704 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8705}
8706
8707#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8708
8709#ifdef CONFIG_IA64
8710/*
8711 * These functions are only useful for the IA64 MCA handling.
8712 *
8713 * They can only be called when the whole system has been
8714 * stopped - every CPU needs to be quiescent, and no scheduling
8715 * activity can take place. Using them for anything else would
8716 * be a serious bug, and as a result, they aren't even visible
8717 * under any other configuration.
8718 */
8719
8720/**
8721 * curr_task - return the current task for a given cpu.
8722 * @cpu: the processor in question.
8723 *
8724 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8725 */
36c8b586 8726struct task_struct *curr_task(int cpu)
1df5c10a
LT
8727{
8728 return cpu_curr(cpu);
8729}
8730
8731/**
8732 * set_curr_task - set the current task for a given cpu.
8733 * @cpu: the processor in question.
8734 * @p: the task pointer to set.
8735 *
8736 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8737 * are serviced on a separate stack. It allows the architecture to switch the
8738 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8739 * must be called with all CPU's synchronized, and interrupts disabled, the
8740 * and caller must save the original value of the current task (see
8741 * curr_task() above) and restore that value before reenabling interrupts and
8742 * re-starting the system.
8743 *
8744 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8745 */
36c8b586 8746void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8747{
8748 cpu_curr(cpu) = p;
8749}
8750
8751#endif
29f59db3 8752
bccbe08a
PZ
8753#ifdef CONFIG_FAIR_GROUP_SCHED
8754static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8755{
8756 int i;
8757
8758 for_each_possible_cpu(i) {
8759 if (tg->cfs_rq)
8760 kfree(tg->cfs_rq[i]);
8761 if (tg->se)
8762 kfree(tg->se[i]);
6f505b16
PZ
8763 }
8764
8765 kfree(tg->cfs_rq);
8766 kfree(tg->se);
6f505b16
PZ
8767}
8768
ec7dc8ac
DG
8769static
8770int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8771{
29f59db3 8772 struct cfs_rq *cfs_rq;
eab17229 8773 struct sched_entity *se;
9b5b7751 8774 struct rq *rq;
29f59db3
SV
8775 int i;
8776
434d53b0 8777 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8778 if (!tg->cfs_rq)
8779 goto err;
434d53b0 8780 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8781 if (!tg->se)
8782 goto err;
052f1dc7
PZ
8783
8784 tg->shares = NICE_0_LOAD;
29f59db3
SV
8785
8786 for_each_possible_cpu(i) {
9b5b7751 8787 rq = cpu_rq(i);
29f59db3 8788
eab17229
LZ
8789 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8790 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8791 if (!cfs_rq)
8792 goto err;
8793
eab17229
LZ
8794 se = kzalloc_node(sizeof(struct sched_entity),
8795 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8796 if (!se)
8797 goto err;
8798
eab17229 8799 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8800 }
8801
8802 return 1;
8803
8804 err:
8805 return 0;
8806}
8807
8808static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8809{
8810 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8811 &cpu_rq(cpu)->leaf_cfs_rq_list);
8812}
8813
8814static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8815{
8816 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8817}
6d6bc0ad 8818#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8819static inline void free_fair_sched_group(struct task_group *tg)
8820{
8821}
8822
ec7dc8ac
DG
8823static inline
8824int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8825{
8826 return 1;
8827}
8828
8829static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8830{
8831}
8832
8833static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8834{
8835}
6d6bc0ad 8836#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8837
8838#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8839static void free_rt_sched_group(struct task_group *tg)
8840{
8841 int i;
8842
d0b27fa7
PZ
8843 destroy_rt_bandwidth(&tg->rt_bandwidth);
8844
bccbe08a
PZ
8845 for_each_possible_cpu(i) {
8846 if (tg->rt_rq)
8847 kfree(tg->rt_rq[i]);
8848 if (tg->rt_se)
8849 kfree(tg->rt_se[i]);
8850 }
8851
8852 kfree(tg->rt_rq);
8853 kfree(tg->rt_se);
8854}
8855
ec7dc8ac
DG
8856static
8857int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8858{
8859 struct rt_rq *rt_rq;
eab17229 8860 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8861 struct rq *rq;
8862 int i;
8863
434d53b0 8864 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8865 if (!tg->rt_rq)
8866 goto err;
434d53b0 8867 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8868 if (!tg->rt_se)
8869 goto err;
8870
d0b27fa7
PZ
8871 init_rt_bandwidth(&tg->rt_bandwidth,
8872 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8873
8874 for_each_possible_cpu(i) {
8875 rq = cpu_rq(i);
8876
eab17229
LZ
8877 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8878 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8879 if (!rt_rq)
8880 goto err;
29f59db3 8881
eab17229
LZ
8882 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8883 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8884 if (!rt_se)
8885 goto err;
29f59db3 8886
eab17229 8887 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8888 }
8889
bccbe08a
PZ
8890 return 1;
8891
8892 err:
8893 return 0;
8894}
8895
8896static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8897{
8898 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8899 &cpu_rq(cpu)->leaf_rt_rq_list);
8900}
8901
8902static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8903{
8904 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8905}
6d6bc0ad 8906#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8907static inline void free_rt_sched_group(struct task_group *tg)
8908{
8909}
8910
ec7dc8ac
DG
8911static inline
8912int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8913{
8914 return 1;
8915}
8916
8917static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8918{
8919}
8920
8921static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8922{
8923}
6d6bc0ad 8924#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8925
d0b27fa7 8926#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8927static void free_sched_group(struct task_group *tg)
8928{
8929 free_fair_sched_group(tg);
8930 free_rt_sched_group(tg);
8931 kfree(tg);
8932}
8933
8934/* allocate runqueue etc for a new task group */
ec7dc8ac 8935struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8936{
8937 struct task_group *tg;
8938 unsigned long flags;
8939 int i;
8940
8941 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8942 if (!tg)
8943 return ERR_PTR(-ENOMEM);
8944
ec7dc8ac 8945 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8946 goto err;
8947
ec7dc8ac 8948 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8949 goto err;
8950
8ed36996 8951 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8952 for_each_possible_cpu(i) {
bccbe08a
PZ
8953 register_fair_sched_group(tg, i);
8954 register_rt_sched_group(tg, i);
9b5b7751 8955 }
6f505b16 8956 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8957
8958 WARN_ON(!parent); /* root should already exist */
8959
8960 tg->parent = parent;
f473aa5e 8961 INIT_LIST_HEAD(&tg->children);
09f2724a 8962 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8963 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8964
9b5b7751 8965 return tg;
29f59db3
SV
8966
8967err:
6f505b16 8968 free_sched_group(tg);
29f59db3
SV
8969 return ERR_PTR(-ENOMEM);
8970}
8971
9b5b7751 8972/* rcu callback to free various structures associated with a task group */
6f505b16 8973static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8974{
29f59db3 8975 /* now it should be safe to free those cfs_rqs */
6f505b16 8976 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8977}
8978
9b5b7751 8979/* Destroy runqueue etc associated with a task group */
4cf86d77 8980void sched_destroy_group(struct task_group *tg)
29f59db3 8981{
8ed36996 8982 unsigned long flags;
9b5b7751 8983 int i;
29f59db3 8984
8ed36996 8985 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8986 for_each_possible_cpu(i) {
bccbe08a
PZ
8987 unregister_fair_sched_group(tg, i);
8988 unregister_rt_sched_group(tg, i);
9b5b7751 8989 }
6f505b16 8990 list_del_rcu(&tg->list);
f473aa5e 8991 list_del_rcu(&tg->siblings);
8ed36996 8992 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8993
9b5b7751 8994 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8995 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8996}
8997
9b5b7751 8998/* change task's runqueue when it moves between groups.
3a252015
IM
8999 * The caller of this function should have put the task in its new group
9000 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9001 * reflect its new group.
9b5b7751
SV
9002 */
9003void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9004{
9005 int on_rq, running;
9006 unsigned long flags;
9007 struct rq *rq;
9008
9009 rq = task_rq_lock(tsk, &flags);
9010
29f59db3
SV
9011 update_rq_clock(rq);
9012
051a1d1a 9013 running = task_current(rq, tsk);
29f59db3
SV
9014 on_rq = tsk->se.on_rq;
9015
0e1f3483 9016 if (on_rq)
29f59db3 9017 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9018 if (unlikely(running))
9019 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9020
6f505b16 9021 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9022
810b3817
PZ
9023#ifdef CONFIG_FAIR_GROUP_SCHED
9024 if (tsk->sched_class->moved_group)
9025 tsk->sched_class->moved_group(tsk);
9026#endif
9027
0e1f3483
HS
9028 if (unlikely(running))
9029 tsk->sched_class->set_curr_task(rq);
9030 if (on_rq)
7074badb 9031 enqueue_task(rq, tsk, 0);
29f59db3 9032
29f59db3
SV
9033 task_rq_unlock(rq, &flags);
9034}
6d6bc0ad 9035#endif /* CONFIG_GROUP_SCHED */
29f59db3 9036
052f1dc7 9037#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9038static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9039{
9040 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9041 int on_rq;
9042
29f59db3 9043 on_rq = se->on_rq;
62fb1851 9044 if (on_rq)
29f59db3
SV
9045 dequeue_entity(cfs_rq, se, 0);
9046
9047 se->load.weight = shares;
e05510d0 9048 se->load.inv_weight = 0;
29f59db3 9049
62fb1851 9050 if (on_rq)
29f59db3 9051 enqueue_entity(cfs_rq, se, 0);
c09595f6 9052}
62fb1851 9053
c09595f6
PZ
9054static void set_se_shares(struct sched_entity *se, unsigned long shares)
9055{
9056 struct cfs_rq *cfs_rq = se->cfs_rq;
9057 struct rq *rq = cfs_rq->rq;
9058 unsigned long flags;
9059
9060 spin_lock_irqsave(&rq->lock, flags);
9061 __set_se_shares(se, shares);
9062 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9063}
9064
8ed36996
PZ
9065static DEFINE_MUTEX(shares_mutex);
9066
4cf86d77 9067int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9068{
9069 int i;
8ed36996 9070 unsigned long flags;
c61935fd 9071
ec7dc8ac
DG
9072 /*
9073 * We can't change the weight of the root cgroup.
9074 */
9075 if (!tg->se[0])
9076 return -EINVAL;
9077
18d95a28
PZ
9078 if (shares < MIN_SHARES)
9079 shares = MIN_SHARES;
cb4ad1ff
MX
9080 else if (shares > MAX_SHARES)
9081 shares = MAX_SHARES;
62fb1851 9082
8ed36996 9083 mutex_lock(&shares_mutex);
9b5b7751 9084 if (tg->shares == shares)
5cb350ba 9085 goto done;
29f59db3 9086
8ed36996 9087 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9088 for_each_possible_cpu(i)
9089 unregister_fair_sched_group(tg, i);
f473aa5e 9090 list_del_rcu(&tg->siblings);
8ed36996 9091 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9092
9093 /* wait for any ongoing reference to this group to finish */
9094 synchronize_sched();
9095
9096 /*
9097 * Now we are free to modify the group's share on each cpu
9098 * w/o tripping rebalance_share or load_balance_fair.
9099 */
9b5b7751 9100 tg->shares = shares;
c09595f6
PZ
9101 for_each_possible_cpu(i) {
9102 /*
9103 * force a rebalance
9104 */
9105 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9106 set_se_shares(tg->se[i], shares);
c09595f6 9107 }
29f59db3 9108
6b2d7700
SV
9109 /*
9110 * Enable load balance activity on this group, by inserting it back on
9111 * each cpu's rq->leaf_cfs_rq_list.
9112 */
8ed36996 9113 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9114 for_each_possible_cpu(i)
9115 register_fair_sched_group(tg, i);
f473aa5e 9116 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9117 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9118done:
8ed36996 9119 mutex_unlock(&shares_mutex);
9b5b7751 9120 return 0;
29f59db3
SV
9121}
9122
5cb350ba
DG
9123unsigned long sched_group_shares(struct task_group *tg)
9124{
9125 return tg->shares;
9126}
052f1dc7 9127#endif
5cb350ba 9128
052f1dc7 9129#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9130/*
9f0c1e56 9131 * Ensure that the real time constraints are schedulable.
6f505b16 9132 */
9f0c1e56
PZ
9133static DEFINE_MUTEX(rt_constraints_mutex);
9134
9135static unsigned long to_ratio(u64 period, u64 runtime)
9136{
9137 if (runtime == RUNTIME_INF)
9a7e0b18 9138 return 1ULL << 20;
9f0c1e56 9139
9a7e0b18 9140 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9141}
9142
9a7e0b18
PZ
9143/* Must be called with tasklist_lock held */
9144static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9145{
9a7e0b18 9146 struct task_struct *g, *p;
b40b2e8e 9147
9a7e0b18
PZ
9148 do_each_thread(g, p) {
9149 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9150 return 1;
9151 } while_each_thread(g, p);
b40b2e8e 9152
9a7e0b18
PZ
9153 return 0;
9154}
b40b2e8e 9155
9a7e0b18
PZ
9156struct rt_schedulable_data {
9157 struct task_group *tg;
9158 u64 rt_period;
9159 u64 rt_runtime;
9160};
b40b2e8e 9161
9a7e0b18
PZ
9162static int tg_schedulable(struct task_group *tg, void *data)
9163{
9164 struct rt_schedulable_data *d = data;
9165 struct task_group *child;
9166 unsigned long total, sum = 0;
9167 u64 period, runtime;
b40b2e8e 9168
9a7e0b18
PZ
9169 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9170 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9171
9a7e0b18
PZ
9172 if (tg == d->tg) {
9173 period = d->rt_period;
9174 runtime = d->rt_runtime;
b40b2e8e 9175 }
b40b2e8e 9176
98a4826b
PZ
9177#ifdef CONFIG_USER_SCHED
9178 if (tg == &root_task_group) {
9179 period = global_rt_period();
9180 runtime = global_rt_runtime();
9181 }
9182#endif
9183
4653f803
PZ
9184 /*
9185 * Cannot have more runtime than the period.
9186 */
9187 if (runtime > period && runtime != RUNTIME_INF)
9188 return -EINVAL;
6f505b16 9189
4653f803
PZ
9190 /*
9191 * Ensure we don't starve existing RT tasks.
9192 */
9a7e0b18
PZ
9193 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9194 return -EBUSY;
6f505b16 9195
9a7e0b18 9196 total = to_ratio(period, runtime);
6f505b16 9197
4653f803
PZ
9198 /*
9199 * Nobody can have more than the global setting allows.
9200 */
9201 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9202 return -EINVAL;
6f505b16 9203
4653f803
PZ
9204 /*
9205 * The sum of our children's runtime should not exceed our own.
9206 */
9a7e0b18
PZ
9207 list_for_each_entry_rcu(child, &tg->children, siblings) {
9208 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9209 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9210
9a7e0b18
PZ
9211 if (child == d->tg) {
9212 period = d->rt_period;
9213 runtime = d->rt_runtime;
9214 }
6f505b16 9215
9a7e0b18 9216 sum += to_ratio(period, runtime);
9f0c1e56 9217 }
6f505b16 9218
9a7e0b18
PZ
9219 if (sum > total)
9220 return -EINVAL;
9221
9222 return 0;
6f505b16
PZ
9223}
9224
9a7e0b18 9225static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9226{
9a7e0b18
PZ
9227 struct rt_schedulable_data data = {
9228 .tg = tg,
9229 .rt_period = period,
9230 .rt_runtime = runtime,
9231 };
9232
9233 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9234}
9235
d0b27fa7
PZ
9236static int tg_set_bandwidth(struct task_group *tg,
9237 u64 rt_period, u64 rt_runtime)
6f505b16 9238{
ac086bc2 9239 int i, err = 0;
9f0c1e56 9240
9f0c1e56 9241 mutex_lock(&rt_constraints_mutex);
521f1a24 9242 read_lock(&tasklist_lock);
9a7e0b18
PZ
9243 err = __rt_schedulable(tg, rt_period, rt_runtime);
9244 if (err)
9f0c1e56 9245 goto unlock;
ac086bc2
PZ
9246
9247 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9248 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9249 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9250
9251 for_each_possible_cpu(i) {
9252 struct rt_rq *rt_rq = tg->rt_rq[i];
9253
9254 spin_lock(&rt_rq->rt_runtime_lock);
9255 rt_rq->rt_runtime = rt_runtime;
9256 spin_unlock(&rt_rq->rt_runtime_lock);
9257 }
9258 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9259 unlock:
521f1a24 9260 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9261 mutex_unlock(&rt_constraints_mutex);
9262
9263 return err;
6f505b16
PZ
9264}
9265
d0b27fa7
PZ
9266int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9267{
9268 u64 rt_runtime, rt_period;
9269
9270 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9271 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9272 if (rt_runtime_us < 0)
9273 rt_runtime = RUNTIME_INF;
9274
9275 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9276}
9277
9f0c1e56
PZ
9278long sched_group_rt_runtime(struct task_group *tg)
9279{
9280 u64 rt_runtime_us;
9281
d0b27fa7 9282 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9283 return -1;
9284
d0b27fa7 9285 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9286 do_div(rt_runtime_us, NSEC_PER_USEC);
9287 return rt_runtime_us;
9288}
d0b27fa7
PZ
9289
9290int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9291{
9292 u64 rt_runtime, rt_period;
9293
9294 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9295 rt_runtime = tg->rt_bandwidth.rt_runtime;
9296
619b0488
R
9297 if (rt_period == 0)
9298 return -EINVAL;
9299
d0b27fa7
PZ
9300 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9301}
9302
9303long sched_group_rt_period(struct task_group *tg)
9304{
9305 u64 rt_period_us;
9306
9307 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9308 do_div(rt_period_us, NSEC_PER_USEC);
9309 return rt_period_us;
9310}
9311
9312static int sched_rt_global_constraints(void)
9313{
4653f803 9314 u64 runtime, period;
d0b27fa7
PZ
9315 int ret = 0;
9316
ec5d4989
HS
9317 if (sysctl_sched_rt_period <= 0)
9318 return -EINVAL;
9319
4653f803
PZ
9320 runtime = global_rt_runtime();
9321 period = global_rt_period();
9322
9323 /*
9324 * Sanity check on the sysctl variables.
9325 */
9326 if (runtime > period && runtime != RUNTIME_INF)
9327 return -EINVAL;
10b612f4 9328
d0b27fa7 9329 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9330 read_lock(&tasklist_lock);
4653f803 9331 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9332 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9333 mutex_unlock(&rt_constraints_mutex);
9334
9335 return ret;
9336}
6d6bc0ad 9337#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9338static int sched_rt_global_constraints(void)
9339{
ac086bc2
PZ
9340 unsigned long flags;
9341 int i;
9342
ec5d4989
HS
9343 if (sysctl_sched_rt_period <= 0)
9344 return -EINVAL;
9345
ac086bc2
PZ
9346 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9347 for_each_possible_cpu(i) {
9348 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9349
9350 spin_lock(&rt_rq->rt_runtime_lock);
9351 rt_rq->rt_runtime = global_rt_runtime();
9352 spin_unlock(&rt_rq->rt_runtime_lock);
9353 }
9354 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9355
d0b27fa7
PZ
9356 return 0;
9357}
6d6bc0ad 9358#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9359
9360int sched_rt_handler(struct ctl_table *table, int write,
9361 struct file *filp, void __user *buffer, size_t *lenp,
9362 loff_t *ppos)
9363{
9364 int ret;
9365 int old_period, old_runtime;
9366 static DEFINE_MUTEX(mutex);
9367
9368 mutex_lock(&mutex);
9369 old_period = sysctl_sched_rt_period;
9370 old_runtime = sysctl_sched_rt_runtime;
9371
9372 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9373
9374 if (!ret && write) {
9375 ret = sched_rt_global_constraints();
9376 if (ret) {
9377 sysctl_sched_rt_period = old_period;
9378 sysctl_sched_rt_runtime = old_runtime;
9379 } else {
9380 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9381 def_rt_bandwidth.rt_period =
9382 ns_to_ktime(global_rt_period());
9383 }
9384 }
9385 mutex_unlock(&mutex);
9386
9387 return ret;
9388}
68318b8e 9389
052f1dc7 9390#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9391
9392/* return corresponding task_group object of a cgroup */
2b01dfe3 9393static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9394{
2b01dfe3
PM
9395 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9396 struct task_group, css);
68318b8e
SV
9397}
9398
9399static struct cgroup_subsys_state *
2b01dfe3 9400cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9401{
ec7dc8ac 9402 struct task_group *tg, *parent;
68318b8e 9403
2b01dfe3 9404 if (!cgrp->parent) {
68318b8e 9405 /* This is early initialization for the top cgroup */
68318b8e
SV
9406 return &init_task_group.css;
9407 }
9408
ec7dc8ac
DG
9409 parent = cgroup_tg(cgrp->parent);
9410 tg = sched_create_group(parent);
68318b8e
SV
9411 if (IS_ERR(tg))
9412 return ERR_PTR(-ENOMEM);
9413
68318b8e
SV
9414 return &tg->css;
9415}
9416
41a2d6cf
IM
9417static void
9418cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9419{
2b01dfe3 9420 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9421
9422 sched_destroy_group(tg);
9423}
9424
41a2d6cf
IM
9425static int
9426cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9427 struct task_struct *tsk)
68318b8e 9428{
b68aa230
PZ
9429#ifdef CONFIG_RT_GROUP_SCHED
9430 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9431 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9432 return -EINVAL;
9433#else
68318b8e
SV
9434 /* We don't support RT-tasks being in separate groups */
9435 if (tsk->sched_class != &fair_sched_class)
9436 return -EINVAL;
b68aa230 9437#endif
68318b8e
SV
9438
9439 return 0;
9440}
9441
9442static void
2b01dfe3 9443cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9444 struct cgroup *old_cont, struct task_struct *tsk)
9445{
9446 sched_move_task(tsk);
9447}
9448
052f1dc7 9449#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9450static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9451 u64 shareval)
68318b8e 9452{
2b01dfe3 9453 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9454}
9455
f4c753b7 9456static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9457{
2b01dfe3 9458 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9459
9460 return (u64) tg->shares;
9461}
6d6bc0ad 9462#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9463
052f1dc7 9464#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9465static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9466 s64 val)
6f505b16 9467{
06ecb27c 9468 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9469}
9470
06ecb27c 9471static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9472{
06ecb27c 9473 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9474}
d0b27fa7
PZ
9475
9476static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9477 u64 rt_period_us)
9478{
9479 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9480}
9481
9482static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9483{
9484 return sched_group_rt_period(cgroup_tg(cgrp));
9485}
6d6bc0ad 9486#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9487
fe5c7cc2 9488static struct cftype cpu_files[] = {
052f1dc7 9489#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9490 {
9491 .name = "shares",
f4c753b7
PM
9492 .read_u64 = cpu_shares_read_u64,
9493 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9494 },
052f1dc7
PZ
9495#endif
9496#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9497 {
9f0c1e56 9498 .name = "rt_runtime_us",
06ecb27c
PM
9499 .read_s64 = cpu_rt_runtime_read,
9500 .write_s64 = cpu_rt_runtime_write,
6f505b16 9501 },
d0b27fa7
PZ
9502 {
9503 .name = "rt_period_us",
f4c753b7
PM
9504 .read_u64 = cpu_rt_period_read_uint,
9505 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9506 },
052f1dc7 9507#endif
68318b8e
SV
9508};
9509
9510static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9511{
fe5c7cc2 9512 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9513}
9514
9515struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9516 .name = "cpu",
9517 .create = cpu_cgroup_create,
9518 .destroy = cpu_cgroup_destroy,
9519 .can_attach = cpu_cgroup_can_attach,
9520 .attach = cpu_cgroup_attach,
9521 .populate = cpu_cgroup_populate,
9522 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9523 .early_init = 1,
9524};
9525
052f1dc7 9526#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9527
9528#ifdef CONFIG_CGROUP_CPUACCT
9529
9530/*
9531 * CPU accounting code for task groups.
9532 *
9533 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9534 * (balbir@in.ibm.com).
9535 */
9536
934352f2 9537/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9538struct cpuacct {
9539 struct cgroup_subsys_state css;
9540 /* cpuusage holds pointer to a u64-type object on every cpu */
9541 u64 *cpuusage;
934352f2 9542 struct cpuacct *parent;
d842de87
SV
9543};
9544
9545struct cgroup_subsys cpuacct_subsys;
9546
9547/* return cpu accounting group corresponding to this container */
32cd756a 9548static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9549{
32cd756a 9550 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9551 struct cpuacct, css);
9552}
9553
9554/* return cpu accounting group to which this task belongs */
9555static inline struct cpuacct *task_ca(struct task_struct *tsk)
9556{
9557 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9558 struct cpuacct, css);
9559}
9560
9561/* create a new cpu accounting group */
9562static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9563 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9564{
9565 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9566
9567 if (!ca)
9568 return ERR_PTR(-ENOMEM);
9569
9570 ca->cpuusage = alloc_percpu(u64);
9571 if (!ca->cpuusage) {
9572 kfree(ca);
9573 return ERR_PTR(-ENOMEM);
9574 }
9575
934352f2
BR
9576 if (cgrp->parent)
9577 ca->parent = cgroup_ca(cgrp->parent);
9578
d842de87
SV
9579 return &ca->css;
9580}
9581
9582/* destroy an existing cpu accounting group */
41a2d6cf 9583static void
32cd756a 9584cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9585{
32cd756a 9586 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9587
9588 free_percpu(ca->cpuusage);
9589 kfree(ca);
9590}
9591
720f5498
KC
9592static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9593{
9594 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9595 u64 data;
9596
9597#ifndef CONFIG_64BIT
9598 /*
9599 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9600 */
9601 spin_lock_irq(&cpu_rq(cpu)->lock);
9602 data = *cpuusage;
9603 spin_unlock_irq(&cpu_rq(cpu)->lock);
9604#else
9605 data = *cpuusage;
9606#endif
9607
9608 return data;
9609}
9610
9611static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9612{
9613 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9614
9615#ifndef CONFIG_64BIT
9616 /*
9617 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9618 */
9619 spin_lock_irq(&cpu_rq(cpu)->lock);
9620 *cpuusage = val;
9621 spin_unlock_irq(&cpu_rq(cpu)->lock);
9622#else
9623 *cpuusage = val;
9624#endif
9625}
9626
d842de87 9627/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9628static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9629{
32cd756a 9630 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9631 u64 totalcpuusage = 0;
9632 int i;
9633
720f5498
KC
9634 for_each_present_cpu(i)
9635 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9636
9637 return totalcpuusage;
9638}
9639
0297b803
DG
9640static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9641 u64 reset)
9642{
9643 struct cpuacct *ca = cgroup_ca(cgrp);
9644 int err = 0;
9645 int i;
9646
9647 if (reset) {
9648 err = -EINVAL;
9649 goto out;
9650 }
9651
720f5498
KC
9652 for_each_present_cpu(i)
9653 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9654
0297b803
DG
9655out:
9656 return err;
9657}
9658
e9515c3c
KC
9659static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9660 struct seq_file *m)
9661{
9662 struct cpuacct *ca = cgroup_ca(cgroup);
9663 u64 percpu;
9664 int i;
9665
9666 for_each_present_cpu(i) {
9667 percpu = cpuacct_cpuusage_read(ca, i);
9668 seq_printf(m, "%llu ", (unsigned long long) percpu);
9669 }
9670 seq_printf(m, "\n");
9671 return 0;
9672}
9673
d842de87
SV
9674static struct cftype files[] = {
9675 {
9676 .name = "usage",
f4c753b7
PM
9677 .read_u64 = cpuusage_read,
9678 .write_u64 = cpuusage_write,
d842de87 9679 },
e9515c3c
KC
9680 {
9681 .name = "usage_percpu",
9682 .read_seq_string = cpuacct_percpu_seq_read,
9683 },
9684
d842de87
SV
9685};
9686
32cd756a 9687static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9688{
32cd756a 9689 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9690}
9691
9692/*
9693 * charge this task's execution time to its accounting group.
9694 *
9695 * called with rq->lock held.
9696 */
9697static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9698{
9699 struct cpuacct *ca;
934352f2 9700 int cpu;
d842de87
SV
9701
9702 if (!cpuacct_subsys.active)
9703 return;
9704
934352f2 9705 cpu = task_cpu(tsk);
a18b83b7
BR
9706
9707 rcu_read_lock();
9708
d842de87 9709 ca = task_ca(tsk);
d842de87 9710
934352f2
BR
9711 for (; ca; ca = ca->parent) {
9712 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9713 *cpuusage += cputime;
9714 }
a18b83b7
BR
9715
9716 rcu_read_unlock();
d842de87
SV
9717}
9718
9719struct cgroup_subsys cpuacct_subsys = {
9720 .name = "cpuacct",
9721 .create = cpuacct_create,
9722 .destroy = cpuacct_destroy,
9723 .populate = cpuacct_populate,
9724 .subsys_id = cpuacct_subsys_id,
9725};
9726#endif /* CONFIG_CGROUP_CPUACCT */