]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched.c
sched: disable standard balancer for RT tasks
[mirror_ubuntu-jammy-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
b488893a 47#include <linux/pid_namespace.h>
1da177e4
LT
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
55#include <linux/kthread.h>
56#include <linux/seq_file.h>
e692ab53 57#include <linux/sysctl.h>
1da177e4
LT
58#include <linux/syscalls.h>
59#include <linux/times.h>
8f0ab514 60#include <linux/tsacct_kern.h>
c6fd91f0 61#include <linux/kprobes.h>
0ff92245 62#include <linux/delayacct.h>
5517d86b 63#include <linux/reciprocal_div.h>
dff06c15 64#include <linux/unistd.h>
f5ff8422 65#include <linux/pagemap.h>
1da177e4 66
5517d86b 67#include <asm/tlb.h>
838225b4 68#include <asm/irq_regs.h>
1da177e4 69
b035b6de
AD
70/*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75unsigned long long __attribute__((weak)) sched_clock(void)
76{
d6322faf 77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
78}
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
d6322faf
ED
101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
1da177e4 103
6aa645ea
IM
104#define NICE_0_LOAD SCHED_LOAD_SCALE
105#define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
1da177e4
LT
107/*
108 * These are the 'tuning knobs' of the scheduler:
109 *
a4ec24b4 110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
111 * Timeslices get refilled after they expire.
112 */
1da177e4 113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
e05606d3
IM
136static inline int rt_policy(int policy)
137{
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141}
142
143static inline int task_has_rt_policy(struct task_struct *p)
144{
145 return rt_policy(p->policy);
146}
147
1da177e4 148/*
6aa645ea 149 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 150 */
6aa645ea
IM
151struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154};
155
29f59db3
SV
156#ifdef CONFIG_FAIR_GROUP_SCHED
157
68318b8e
SV
158#include <linux/cgroup.h>
159
29f59db3
SV
160struct cfs_rq;
161
162/* task group related information */
4cf86d77 163struct task_group {
68318b8e
SV
164#ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166#endif
29f59db3
SV
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
6b2d7700
SV
171
172 /*
173 * shares assigned to a task group governs how much of cpu bandwidth
174 * is allocated to the group. The more shares a group has, the more is
175 * the cpu bandwidth allocated to it.
176 *
177 * For ex, lets say that there are three task groups, A, B and C which
178 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
179 * cpu bandwidth allocated by the scheduler to task groups A, B and C
180 * should be:
181 *
182 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
183 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
184 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
185 *
186 * The weight assigned to a task group's schedulable entities on every
187 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
188 * group's shares. For ex: lets say that task group A has been
189 * assigned shares of 1000 and there are two CPUs in a system. Then,
190 *
191 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
192 *
193 * Note: It's not necessary that each of a task's group schedulable
194 * entity have the same weight on all CPUs. If the group
195 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
196 * better distribution of weight could be:
197 *
198 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
199 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
200 *
201 * rebalance_shares() is responsible for distributing the shares of a
202 * task groups like this among the group's schedulable entities across
203 * cpus.
204 *
205 */
29f59db3 206 unsigned long shares;
6b2d7700 207
ae8393e5 208 struct rcu_head rcu;
29f59db3
SV
209};
210
211/* Default task group's sched entity on each cpu */
212static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
213/* Default task group's cfs_rq on each cpu */
214static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
215
9b5b7751
SV
216static struct sched_entity *init_sched_entity_p[NR_CPUS];
217static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3 218
ec2c507f
SV
219/* task_group_mutex serializes add/remove of task groups and also changes to
220 * a task group's cpu shares.
221 */
222static DEFINE_MUTEX(task_group_mutex);
223
a1835615
SV
224/* doms_cur_mutex serializes access to doms_cur[] array */
225static DEFINE_MUTEX(doms_cur_mutex);
226
6b2d7700
SV
227#ifdef CONFIG_SMP
228/* kernel thread that runs rebalance_shares() periodically */
229static struct task_struct *lb_monitor_task;
230static int load_balance_monitor(void *unused);
231#endif
232
233static void set_se_shares(struct sched_entity *se, unsigned long shares);
234
29f59db3 235/* Default task group.
3a252015 236 * Every task in system belong to this group at bootup.
29f59db3 237 */
4cf86d77 238struct task_group init_task_group = {
3a252015
IM
239 .se = init_sched_entity_p,
240 .cfs_rq = init_cfs_rq_p,
241};
9b5b7751 242
24e377a8 243#ifdef CONFIG_FAIR_USER_SCHED
93f992cc 244# define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
24e377a8 245#else
93f992cc 246# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
24e377a8
SV
247#endif
248
6b2d7700
SV
249#define MIN_GROUP_SHARES 2
250
93f992cc 251static int init_task_group_load = INIT_TASK_GROUP_LOAD;
29f59db3
SV
252
253/* return group to which a task belongs */
4cf86d77 254static inline struct task_group *task_group(struct task_struct *p)
29f59db3 255{
4cf86d77 256 struct task_group *tg;
9b5b7751 257
24e377a8
SV
258#ifdef CONFIG_FAIR_USER_SCHED
259 tg = p->user->tg;
68318b8e
SV
260#elif defined(CONFIG_FAIR_CGROUP_SCHED)
261 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
262 struct task_group, css);
24e377a8 263#else
41a2d6cf 264 tg = &init_task_group;
24e377a8 265#endif
9b5b7751 266 return tg;
29f59db3
SV
267}
268
269/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
ce96b5ac 270static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
29f59db3 271{
ce96b5ac
DA
272 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
273 p->se.parent = task_group(p)->se[cpu];
29f59db3
SV
274}
275
ec2c507f
SV
276static inline void lock_task_group_list(void)
277{
278 mutex_lock(&task_group_mutex);
279}
280
281static inline void unlock_task_group_list(void)
282{
283 mutex_unlock(&task_group_mutex);
284}
285
a1835615
SV
286static inline void lock_doms_cur(void)
287{
288 mutex_lock(&doms_cur_mutex);
289}
290
291static inline void unlock_doms_cur(void)
292{
293 mutex_unlock(&doms_cur_mutex);
294}
295
29f59db3
SV
296#else
297
ce96b5ac 298static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
ec2c507f
SV
299static inline void lock_task_group_list(void) { }
300static inline void unlock_task_group_list(void) { }
a1835615
SV
301static inline void lock_doms_cur(void) { }
302static inline void unlock_doms_cur(void) { }
29f59db3
SV
303
304#endif /* CONFIG_FAIR_GROUP_SCHED */
305
6aa645ea
IM
306/* CFS-related fields in a runqueue */
307struct cfs_rq {
308 struct load_weight load;
309 unsigned long nr_running;
310
6aa645ea 311 u64 exec_clock;
e9acbff6 312 u64 min_vruntime;
6aa645ea
IM
313
314 struct rb_root tasks_timeline;
315 struct rb_node *rb_leftmost;
316 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
317 /* 'curr' points to currently running entity on this cfs_rq.
318 * It is set to NULL otherwise (i.e when none are currently running).
319 */
320 struct sched_entity *curr;
ddc97297
PZ
321
322 unsigned long nr_spread_over;
323
62160e3f 324#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
325 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
326
41a2d6cf
IM
327 /*
328 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
329 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
330 * (like users, containers etc.)
331 *
332 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
333 * list is used during load balance.
334 */
41a2d6cf
IM
335 struct list_head leaf_cfs_rq_list;
336 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
337#endif
338};
1da177e4 339
6aa645ea
IM
340/* Real-Time classes' related field in a runqueue: */
341struct rt_rq {
342 struct rt_prio_array active;
343 int rt_load_balance_idx;
344 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
63489e45 345 unsigned long rt_nr_running;
764a9d6f
SR
346 /* highest queued rt task prio */
347 int highest_prio;
6aa645ea
IM
348};
349
1da177e4
LT
350/*
351 * This is the main, per-CPU runqueue data structure.
352 *
353 * Locking rule: those places that want to lock multiple runqueues
354 * (such as the load balancing or the thread migration code), lock
355 * acquire operations must be ordered by ascending &runqueue.
356 */
70b97a7f 357struct rq {
d8016491
IM
358 /* runqueue lock: */
359 spinlock_t lock;
1da177e4
LT
360
361 /*
362 * nr_running and cpu_load should be in the same cacheline because
363 * remote CPUs use both these fields when doing load calculation.
364 */
365 unsigned long nr_running;
6aa645ea
IM
366 #define CPU_LOAD_IDX_MAX 5
367 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 368 unsigned char idle_at_tick;
46cb4b7c
SS
369#ifdef CONFIG_NO_HZ
370 unsigned char in_nohz_recently;
371#endif
d8016491
IM
372 /* capture load from *all* tasks on this cpu: */
373 struct load_weight load;
6aa645ea
IM
374 unsigned long nr_load_updates;
375 u64 nr_switches;
376
377 struct cfs_rq cfs;
378#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
379 /* list of leaf cfs_rq on this cpu: */
380 struct list_head leaf_cfs_rq_list;
1da177e4 381#endif
41a2d6cf 382 struct rt_rq rt;
1da177e4
LT
383
384 /*
385 * This is part of a global counter where only the total sum
386 * over all CPUs matters. A task can increase this counter on
387 * one CPU and if it got migrated afterwards it may decrease
388 * it on another CPU. Always updated under the runqueue lock:
389 */
390 unsigned long nr_uninterruptible;
391
36c8b586 392 struct task_struct *curr, *idle;
c9819f45 393 unsigned long next_balance;
1da177e4 394 struct mm_struct *prev_mm;
6aa645ea 395
6aa645ea
IM
396 u64 clock, prev_clock_raw;
397 s64 clock_max_delta;
398
399 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
400 u64 idle_clock;
401 unsigned int clock_deep_idle_events;
529c7726 402 u64 tick_timestamp;
6aa645ea 403
1da177e4
LT
404 atomic_t nr_iowait;
405
406#ifdef CONFIG_SMP
407 struct sched_domain *sd;
408
409 /* For active balancing */
410 int active_balance;
411 int push_cpu;
d8016491
IM
412 /* cpu of this runqueue: */
413 int cpu;
1da177e4 414
36c8b586 415 struct task_struct *migration_thread;
1da177e4
LT
416 struct list_head migration_queue;
417#endif
418
419#ifdef CONFIG_SCHEDSTATS
420 /* latency stats */
421 struct sched_info rq_sched_info;
422
423 /* sys_sched_yield() stats */
480b9434
KC
424 unsigned int yld_exp_empty;
425 unsigned int yld_act_empty;
426 unsigned int yld_both_empty;
427 unsigned int yld_count;
1da177e4
LT
428
429 /* schedule() stats */
480b9434
KC
430 unsigned int sched_switch;
431 unsigned int sched_count;
432 unsigned int sched_goidle;
1da177e4
LT
433
434 /* try_to_wake_up() stats */
480b9434
KC
435 unsigned int ttwu_count;
436 unsigned int ttwu_local;
b8efb561
IM
437
438 /* BKL stats */
480b9434 439 unsigned int bkl_count;
1da177e4 440#endif
fcb99371 441 struct lock_class_key rq_lock_key;
1da177e4
LT
442};
443
f34e3b61 444static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 445
dd41f596
IM
446static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
447{
448 rq->curr->sched_class->check_preempt_curr(rq, p);
449}
450
0a2966b4
CL
451static inline int cpu_of(struct rq *rq)
452{
453#ifdef CONFIG_SMP
454 return rq->cpu;
455#else
456 return 0;
457#endif
458}
459
20d315d4 460/*
b04a0f4c
IM
461 * Update the per-runqueue clock, as finegrained as the platform can give
462 * us, but without assuming monotonicity, etc.:
20d315d4 463 */
b04a0f4c 464static void __update_rq_clock(struct rq *rq)
20d315d4
IM
465{
466 u64 prev_raw = rq->prev_clock_raw;
467 u64 now = sched_clock();
468 s64 delta = now - prev_raw;
469 u64 clock = rq->clock;
470
b04a0f4c
IM
471#ifdef CONFIG_SCHED_DEBUG
472 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
473#endif
20d315d4
IM
474 /*
475 * Protect against sched_clock() occasionally going backwards:
476 */
477 if (unlikely(delta < 0)) {
478 clock++;
479 rq->clock_warps++;
480 } else {
481 /*
482 * Catch too large forward jumps too:
483 */
529c7726
IM
484 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
485 if (clock < rq->tick_timestamp + TICK_NSEC)
486 clock = rq->tick_timestamp + TICK_NSEC;
487 else
488 clock++;
20d315d4
IM
489 rq->clock_overflows++;
490 } else {
491 if (unlikely(delta > rq->clock_max_delta))
492 rq->clock_max_delta = delta;
493 clock += delta;
494 }
495 }
496
497 rq->prev_clock_raw = now;
498 rq->clock = clock;
b04a0f4c 499}
20d315d4 500
b04a0f4c
IM
501static void update_rq_clock(struct rq *rq)
502{
503 if (likely(smp_processor_id() == cpu_of(rq)))
504 __update_rq_clock(rq);
20d315d4
IM
505}
506
674311d5
NP
507/*
508 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 509 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
510 *
511 * The domain tree of any CPU may only be accessed from within
512 * preempt-disabled sections.
513 */
48f24c4d
IM
514#define for_each_domain(cpu, __sd) \
515 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
516
517#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
518#define this_rq() (&__get_cpu_var(runqueues))
519#define task_rq(p) cpu_rq(task_cpu(p))
520#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
521
bf5c91ba
IM
522/*
523 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
524 */
525#ifdef CONFIG_SCHED_DEBUG
526# define const_debug __read_mostly
527#else
528# define const_debug static const
529#endif
530
531/*
532 * Debugging: various feature bits
533 */
534enum {
bbdba7c0 535 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
536 SCHED_FEAT_WAKEUP_PREEMPT = 2,
537 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
538 SCHED_FEAT_TREE_AVG = 8,
539 SCHED_FEAT_APPROX_AVG = 16,
bf5c91ba
IM
540};
541
542const_debug unsigned int sysctl_sched_features =
8401f775 543 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 544 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
545 SCHED_FEAT_START_DEBIT * 1 |
546 SCHED_FEAT_TREE_AVG * 0 |
9612633a 547 SCHED_FEAT_APPROX_AVG * 0;
bf5c91ba
IM
548
549#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
550
b82d9fdd
PZ
551/*
552 * Number of tasks to iterate in a single balance run.
553 * Limited because this is done with IRQs disabled.
554 */
555const_debug unsigned int sysctl_sched_nr_migrate = 32;
556
e436d800
IM
557/*
558 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
559 * clock constructed from sched_clock():
560 */
561unsigned long long cpu_clock(int cpu)
562{
e436d800
IM
563 unsigned long long now;
564 unsigned long flags;
b04a0f4c 565 struct rq *rq;
e436d800 566
2cd4d0ea 567 local_irq_save(flags);
b04a0f4c 568 rq = cpu_rq(cpu);
8ced5f69
IM
569 /*
570 * Only call sched_clock() if the scheduler has already been
571 * initialized (some code might call cpu_clock() very early):
572 */
573 if (rq->idle)
574 update_rq_clock(rq);
b04a0f4c 575 now = rq->clock;
2cd4d0ea 576 local_irq_restore(flags);
e436d800
IM
577
578 return now;
579}
a58f6f25 580EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 581
1da177e4 582#ifndef prepare_arch_switch
4866cde0
NP
583# define prepare_arch_switch(next) do { } while (0)
584#endif
585#ifndef finish_arch_switch
586# define finish_arch_switch(prev) do { } while (0)
587#endif
588
051a1d1a
DA
589static inline int task_current(struct rq *rq, struct task_struct *p)
590{
591 return rq->curr == p;
592}
593
4866cde0 594#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 595static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 596{
051a1d1a 597 return task_current(rq, p);
4866cde0
NP
598}
599
70b97a7f 600static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
601{
602}
603
70b97a7f 604static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 605{
da04c035
IM
606#ifdef CONFIG_DEBUG_SPINLOCK
607 /* this is a valid case when another task releases the spinlock */
608 rq->lock.owner = current;
609#endif
8a25d5de
IM
610 /*
611 * If we are tracking spinlock dependencies then we have to
612 * fix up the runqueue lock - which gets 'carried over' from
613 * prev into current:
614 */
615 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
616
4866cde0
NP
617 spin_unlock_irq(&rq->lock);
618}
619
620#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 621static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
622{
623#ifdef CONFIG_SMP
624 return p->oncpu;
625#else
051a1d1a 626 return task_current(rq, p);
4866cde0
NP
627#endif
628}
629
70b97a7f 630static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
631{
632#ifdef CONFIG_SMP
633 /*
634 * We can optimise this out completely for !SMP, because the
635 * SMP rebalancing from interrupt is the only thing that cares
636 * here.
637 */
638 next->oncpu = 1;
639#endif
640#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
641 spin_unlock_irq(&rq->lock);
642#else
643 spin_unlock(&rq->lock);
644#endif
645}
646
70b97a7f 647static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
648{
649#ifdef CONFIG_SMP
650 /*
651 * After ->oncpu is cleared, the task can be moved to a different CPU.
652 * We must ensure this doesn't happen until the switch is completely
653 * finished.
654 */
655 smp_wmb();
656 prev->oncpu = 0;
657#endif
658#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
659 local_irq_enable();
1da177e4 660#endif
4866cde0
NP
661}
662#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 663
b29739f9
IM
664/*
665 * __task_rq_lock - lock the runqueue a given task resides on.
666 * Must be called interrupts disabled.
667 */
70b97a7f 668static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
669 __acquires(rq->lock)
670{
3a5c359a
AK
671 for (;;) {
672 struct rq *rq = task_rq(p);
673 spin_lock(&rq->lock);
674 if (likely(rq == task_rq(p)))
675 return rq;
b29739f9 676 spin_unlock(&rq->lock);
b29739f9 677 }
b29739f9
IM
678}
679
1da177e4
LT
680/*
681 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 682 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
683 * explicitly disabling preemption.
684 */
70b97a7f 685static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
686 __acquires(rq->lock)
687{
70b97a7f 688 struct rq *rq;
1da177e4 689
3a5c359a
AK
690 for (;;) {
691 local_irq_save(*flags);
692 rq = task_rq(p);
693 spin_lock(&rq->lock);
694 if (likely(rq == task_rq(p)))
695 return rq;
1da177e4 696 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 697 }
1da177e4
LT
698}
699
a9957449 700static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
701 __releases(rq->lock)
702{
703 spin_unlock(&rq->lock);
704}
705
70b97a7f 706static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
707 __releases(rq->lock)
708{
709 spin_unlock_irqrestore(&rq->lock, *flags);
710}
711
1da177e4 712/*
cc2a73b5 713 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 714 */
a9957449 715static struct rq *this_rq_lock(void)
1da177e4
LT
716 __acquires(rq->lock)
717{
70b97a7f 718 struct rq *rq;
1da177e4
LT
719
720 local_irq_disable();
721 rq = this_rq();
722 spin_lock(&rq->lock);
723
724 return rq;
725}
726
1b9f19c2 727/*
2aa44d05 728 * We are going deep-idle (irqs are disabled):
1b9f19c2 729 */
2aa44d05 730void sched_clock_idle_sleep_event(void)
1b9f19c2 731{
2aa44d05
IM
732 struct rq *rq = cpu_rq(smp_processor_id());
733
734 spin_lock(&rq->lock);
735 __update_rq_clock(rq);
736 spin_unlock(&rq->lock);
737 rq->clock_deep_idle_events++;
738}
739EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
740
741/*
742 * We just idled delta nanoseconds (called with irqs disabled):
743 */
744void sched_clock_idle_wakeup_event(u64 delta_ns)
745{
746 struct rq *rq = cpu_rq(smp_processor_id());
747 u64 now = sched_clock();
1b9f19c2 748
2bacec8c 749 touch_softlockup_watchdog();
2aa44d05
IM
750 rq->idle_clock += delta_ns;
751 /*
752 * Override the previous timestamp and ignore all
753 * sched_clock() deltas that occured while we idled,
754 * and use the PM-provided delta_ns to advance the
755 * rq clock:
756 */
757 spin_lock(&rq->lock);
758 rq->prev_clock_raw = now;
759 rq->clock += delta_ns;
760 spin_unlock(&rq->lock);
1b9f19c2 761}
2aa44d05 762EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 763
c24d20db
IM
764/*
765 * resched_task - mark a task 'to be rescheduled now'.
766 *
767 * On UP this means the setting of the need_resched flag, on SMP it
768 * might also involve a cross-CPU call to trigger the scheduler on
769 * the target CPU.
770 */
771#ifdef CONFIG_SMP
772
773#ifndef tsk_is_polling
774#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
775#endif
776
777static void resched_task(struct task_struct *p)
778{
779 int cpu;
780
781 assert_spin_locked(&task_rq(p)->lock);
782
783 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
784 return;
785
786 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
787
788 cpu = task_cpu(p);
789 if (cpu == smp_processor_id())
790 return;
791
792 /* NEED_RESCHED must be visible before we test polling */
793 smp_mb();
794 if (!tsk_is_polling(p))
795 smp_send_reschedule(cpu);
796}
797
798static void resched_cpu(int cpu)
799{
800 struct rq *rq = cpu_rq(cpu);
801 unsigned long flags;
802
803 if (!spin_trylock_irqsave(&rq->lock, flags))
804 return;
805 resched_task(cpu_curr(cpu));
806 spin_unlock_irqrestore(&rq->lock, flags);
807}
808#else
809static inline void resched_task(struct task_struct *p)
810{
811 assert_spin_locked(&task_rq(p)->lock);
812 set_tsk_need_resched(p);
813}
814#endif
815
45bf76df
IM
816#if BITS_PER_LONG == 32
817# define WMULT_CONST (~0UL)
818#else
819# define WMULT_CONST (1UL << 32)
820#endif
821
822#define WMULT_SHIFT 32
823
194081eb
IM
824/*
825 * Shift right and round:
826 */
cf2ab469 827#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 828
cb1c4fc9 829static unsigned long
45bf76df
IM
830calc_delta_mine(unsigned long delta_exec, unsigned long weight,
831 struct load_weight *lw)
832{
833 u64 tmp;
834
835 if (unlikely(!lw->inv_weight))
194081eb 836 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
837
838 tmp = (u64)delta_exec * weight;
839 /*
840 * Check whether we'd overflow the 64-bit multiplication:
841 */
194081eb 842 if (unlikely(tmp > WMULT_CONST))
cf2ab469 843 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
844 WMULT_SHIFT/2);
845 else
cf2ab469 846 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 847
ecf691da 848 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
849}
850
851static inline unsigned long
852calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
853{
854 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
855}
856
1091985b 857static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
858{
859 lw->weight += inc;
45bf76df
IM
860}
861
1091985b 862static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
863{
864 lw->weight -= dec;
45bf76df
IM
865}
866
2dd73a4f
PW
867/*
868 * To aid in avoiding the subversion of "niceness" due to uneven distribution
869 * of tasks with abnormal "nice" values across CPUs the contribution that
870 * each task makes to its run queue's load is weighted according to its
41a2d6cf 871 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
872 * scaled version of the new time slice allocation that they receive on time
873 * slice expiry etc.
874 */
875
dd41f596
IM
876#define WEIGHT_IDLEPRIO 2
877#define WMULT_IDLEPRIO (1 << 31)
878
879/*
880 * Nice levels are multiplicative, with a gentle 10% change for every
881 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
882 * nice 1, it will get ~10% less CPU time than another CPU-bound task
883 * that remained on nice 0.
884 *
885 * The "10% effect" is relative and cumulative: from _any_ nice level,
886 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
887 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
888 * If a task goes up by ~10% and another task goes down by ~10% then
889 * the relative distance between them is ~25%.)
dd41f596
IM
890 */
891static const int prio_to_weight[40] = {
254753dc
IM
892 /* -20 */ 88761, 71755, 56483, 46273, 36291,
893 /* -15 */ 29154, 23254, 18705, 14949, 11916,
894 /* -10 */ 9548, 7620, 6100, 4904, 3906,
895 /* -5 */ 3121, 2501, 1991, 1586, 1277,
896 /* 0 */ 1024, 820, 655, 526, 423,
897 /* 5 */ 335, 272, 215, 172, 137,
898 /* 10 */ 110, 87, 70, 56, 45,
899 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
900};
901
5714d2de
IM
902/*
903 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
904 *
905 * In cases where the weight does not change often, we can use the
906 * precalculated inverse to speed up arithmetics by turning divisions
907 * into multiplications:
908 */
dd41f596 909static const u32 prio_to_wmult[40] = {
254753dc
IM
910 /* -20 */ 48388, 59856, 76040, 92818, 118348,
911 /* -15 */ 147320, 184698, 229616, 287308, 360437,
912 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
913 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
914 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
915 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
916 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
917 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 918};
2dd73a4f 919
dd41f596
IM
920static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
921
922/*
923 * runqueue iterator, to support SMP load-balancing between different
924 * scheduling classes, without having to expose their internal data
925 * structures to the load-balancing proper:
926 */
927struct rq_iterator {
928 void *arg;
929 struct task_struct *(*start)(void *);
930 struct task_struct *(*next)(void *);
931};
932
e1d1484f
PW
933#ifdef CONFIG_SMP
934static unsigned long
935balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
936 unsigned long max_load_move, struct sched_domain *sd,
937 enum cpu_idle_type idle, int *all_pinned,
938 int *this_best_prio, struct rq_iterator *iterator);
939
940static int
941iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
942 struct sched_domain *sd, enum cpu_idle_type idle,
943 struct rq_iterator *iterator);
e1d1484f 944#endif
dd41f596 945
d842de87
SV
946#ifdef CONFIG_CGROUP_CPUACCT
947static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
948#else
949static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
950#endif
951
58e2d4ca
SV
952static inline void inc_cpu_load(struct rq *rq, unsigned long load)
953{
954 update_load_add(&rq->load, load);
955}
956
957static inline void dec_cpu_load(struct rq *rq, unsigned long load)
958{
959 update_load_sub(&rq->load, load);
960}
961
dd41f596 962#include "sched_stats.h"
dd41f596 963#include "sched_idletask.c"
5522d5d5
IM
964#include "sched_fair.c"
965#include "sched_rt.c"
dd41f596
IM
966#ifdef CONFIG_SCHED_DEBUG
967# include "sched_debug.c"
968#endif
969
970#define sched_class_highest (&rt_sched_class)
971
e5fa2237 972static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
973{
974 rq->nr_running++;
9c217245
IM
975}
976
db53181e 977static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
978{
979 rq->nr_running--;
9c217245
IM
980}
981
45bf76df
IM
982static void set_load_weight(struct task_struct *p)
983{
984 if (task_has_rt_policy(p)) {
dd41f596
IM
985 p->se.load.weight = prio_to_weight[0] * 2;
986 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
987 return;
988 }
45bf76df 989
dd41f596
IM
990 /*
991 * SCHED_IDLE tasks get minimal weight:
992 */
993 if (p->policy == SCHED_IDLE) {
994 p->se.load.weight = WEIGHT_IDLEPRIO;
995 p->se.load.inv_weight = WMULT_IDLEPRIO;
996 return;
997 }
71f8bd46 998
dd41f596
IM
999 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1000 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1001}
1002
8159f87e 1003static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1004{
dd41f596 1005 sched_info_queued(p);
fd390f6a 1006 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1007 p->se.on_rq = 1;
71f8bd46
IM
1008}
1009
69be72c1 1010static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1011{
f02231e5 1012 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1013 p->se.on_rq = 0;
71f8bd46
IM
1014}
1015
14531189 1016/*
dd41f596 1017 * __normal_prio - return the priority that is based on the static prio
14531189 1018 */
14531189
IM
1019static inline int __normal_prio(struct task_struct *p)
1020{
dd41f596 1021 return p->static_prio;
14531189
IM
1022}
1023
b29739f9
IM
1024/*
1025 * Calculate the expected normal priority: i.e. priority
1026 * without taking RT-inheritance into account. Might be
1027 * boosted by interactivity modifiers. Changes upon fork,
1028 * setprio syscalls, and whenever the interactivity
1029 * estimator recalculates.
1030 */
36c8b586 1031static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1032{
1033 int prio;
1034
e05606d3 1035 if (task_has_rt_policy(p))
b29739f9
IM
1036 prio = MAX_RT_PRIO-1 - p->rt_priority;
1037 else
1038 prio = __normal_prio(p);
1039 return prio;
1040}
1041
1042/*
1043 * Calculate the current priority, i.e. the priority
1044 * taken into account by the scheduler. This value might
1045 * be boosted by RT tasks, or might be boosted by
1046 * interactivity modifiers. Will be RT if the task got
1047 * RT-boosted. If not then it returns p->normal_prio.
1048 */
36c8b586 1049static int effective_prio(struct task_struct *p)
b29739f9
IM
1050{
1051 p->normal_prio = normal_prio(p);
1052 /*
1053 * If we are RT tasks or we were boosted to RT priority,
1054 * keep the priority unchanged. Otherwise, update priority
1055 * to the normal priority:
1056 */
1057 if (!rt_prio(p->prio))
1058 return p->normal_prio;
1059 return p->prio;
1060}
1061
1da177e4 1062/*
dd41f596 1063 * activate_task - move a task to the runqueue.
1da177e4 1064 */
dd41f596 1065static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1066{
dd41f596
IM
1067 if (p->state == TASK_UNINTERRUPTIBLE)
1068 rq->nr_uninterruptible--;
1da177e4 1069
8159f87e 1070 enqueue_task(rq, p, wakeup);
e5fa2237 1071 inc_nr_running(p, rq);
1da177e4
LT
1072}
1073
1da177e4
LT
1074/*
1075 * deactivate_task - remove a task from the runqueue.
1076 */
2e1cb74a 1077static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1078{
dd41f596
IM
1079 if (p->state == TASK_UNINTERRUPTIBLE)
1080 rq->nr_uninterruptible++;
1081
69be72c1 1082 dequeue_task(rq, p, sleep);
db53181e 1083 dec_nr_running(p, rq);
1da177e4
LT
1084}
1085
1da177e4
LT
1086/**
1087 * task_curr - is this task currently executing on a CPU?
1088 * @p: the task in question.
1089 */
36c8b586 1090inline int task_curr(const struct task_struct *p)
1da177e4
LT
1091{
1092 return cpu_curr(task_cpu(p)) == p;
1093}
1094
2dd73a4f
PW
1095/* Used instead of source_load when we know the type == 0 */
1096unsigned long weighted_cpuload(const int cpu)
1097{
495eca49 1098 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1099}
1100
1101static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1102{
ce96b5ac 1103 set_task_cfs_rq(p, cpu);
dd41f596 1104#ifdef CONFIG_SMP
ce96b5ac
DA
1105 /*
1106 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1107 * successfuly executed on another CPU. We must ensure that updates of
1108 * per-task data have been completed by this moment.
1109 */
1110 smp_wmb();
dd41f596 1111 task_thread_info(p)->cpu = cpu;
dd41f596 1112#endif
2dd73a4f
PW
1113}
1114
1da177e4 1115#ifdef CONFIG_SMP
c65cc870 1116
cc367732
IM
1117/*
1118 * Is this task likely cache-hot:
1119 */
1120static inline int
1121task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1122{
1123 s64 delta;
1124
1125 if (p->sched_class != &fair_sched_class)
1126 return 0;
1127
6bc1665b
IM
1128 if (sysctl_sched_migration_cost == -1)
1129 return 1;
1130 if (sysctl_sched_migration_cost == 0)
1131 return 0;
1132
cc367732
IM
1133 delta = now - p->se.exec_start;
1134
1135 return delta < (s64)sysctl_sched_migration_cost;
1136}
1137
1138
dd41f596 1139void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1140{
dd41f596
IM
1141 int old_cpu = task_cpu(p);
1142 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1143 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1144 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1145 u64 clock_offset;
dd41f596
IM
1146
1147 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1148
1149#ifdef CONFIG_SCHEDSTATS
1150 if (p->se.wait_start)
1151 p->se.wait_start -= clock_offset;
dd41f596
IM
1152 if (p->se.sleep_start)
1153 p->se.sleep_start -= clock_offset;
1154 if (p->se.block_start)
1155 p->se.block_start -= clock_offset;
cc367732
IM
1156 if (old_cpu != new_cpu) {
1157 schedstat_inc(p, se.nr_migrations);
1158 if (task_hot(p, old_rq->clock, NULL))
1159 schedstat_inc(p, se.nr_forced2_migrations);
1160 }
6cfb0d5d 1161#endif
2830cf8c
SV
1162 p->se.vruntime -= old_cfsrq->min_vruntime -
1163 new_cfsrq->min_vruntime;
dd41f596
IM
1164
1165 __set_task_cpu(p, new_cpu);
c65cc870
IM
1166}
1167
70b97a7f 1168struct migration_req {
1da177e4 1169 struct list_head list;
1da177e4 1170
36c8b586 1171 struct task_struct *task;
1da177e4
LT
1172 int dest_cpu;
1173
1da177e4 1174 struct completion done;
70b97a7f 1175};
1da177e4
LT
1176
1177/*
1178 * The task's runqueue lock must be held.
1179 * Returns true if you have to wait for migration thread.
1180 */
36c8b586 1181static int
70b97a7f 1182migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1183{
70b97a7f 1184 struct rq *rq = task_rq(p);
1da177e4
LT
1185
1186 /*
1187 * If the task is not on a runqueue (and not running), then
1188 * it is sufficient to simply update the task's cpu field.
1189 */
dd41f596 1190 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1191 set_task_cpu(p, dest_cpu);
1192 return 0;
1193 }
1194
1195 init_completion(&req->done);
1da177e4
LT
1196 req->task = p;
1197 req->dest_cpu = dest_cpu;
1198 list_add(&req->list, &rq->migration_queue);
48f24c4d 1199
1da177e4
LT
1200 return 1;
1201}
1202
1203/*
1204 * wait_task_inactive - wait for a thread to unschedule.
1205 *
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
36c8b586 1212void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1213{
1214 unsigned long flags;
dd41f596 1215 int running, on_rq;
70b97a7f 1216 struct rq *rq;
1da177e4 1217
3a5c359a
AK
1218 for (;;) {
1219 /*
1220 * We do the initial early heuristics without holding
1221 * any task-queue locks at all. We'll only try to get
1222 * the runqueue lock when things look like they will
1223 * work out!
1224 */
1225 rq = task_rq(p);
fa490cfd 1226
3a5c359a
AK
1227 /*
1228 * If the task is actively running on another CPU
1229 * still, just relax and busy-wait without holding
1230 * any locks.
1231 *
1232 * NOTE! Since we don't hold any locks, it's not
1233 * even sure that "rq" stays as the right runqueue!
1234 * But we don't care, since "task_running()" will
1235 * return false if the runqueue has changed and p
1236 * is actually now running somewhere else!
1237 */
1238 while (task_running(rq, p))
1239 cpu_relax();
fa490cfd 1240
3a5c359a
AK
1241 /*
1242 * Ok, time to look more closely! We need the rq
1243 * lock now, to be *sure*. If we're wrong, we'll
1244 * just go back and repeat.
1245 */
1246 rq = task_rq_lock(p, &flags);
1247 running = task_running(rq, p);
1248 on_rq = p->se.on_rq;
1249 task_rq_unlock(rq, &flags);
fa490cfd 1250
3a5c359a
AK
1251 /*
1252 * Was it really running after all now that we
1253 * checked with the proper locks actually held?
1254 *
1255 * Oops. Go back and try again..
1256 */
1257 if (unlikely(running)) {
1258 cpu_relax();
1259 continue;
1260 }
fa490cfd 1261
3a5c359a
AK
1262 /*
1263 * It's not enough that it's not actively running,
1264 * it must be off the runqueue _entirely_, and not
1265 * preempted!
1266 *
1267 * So if it wa still runnable (but just not actively
1268 * running right now), it's preempted, and we should
1269 * yield - it could be a while.
1270 */
1271 if (unlikely(on_rq)) {
1272 schedule_timeout_uninterruptible(1);
1273 continue;
1274 }
fa490cfd 1275
3a5c359a
AK
1276 /*
1277 * Ahh, all good. It wasn't running, and it wasn't
1278 * runnable, which means that it will never become
1279 * running in the future either. We're all done!
1280 */
1281 break;
1282 }
1da177e4
LT
1283}
1284
1285/***
1286 * kick_process - kick a running thread to enter/exit the kernel
1287 * @p: the to-be-kicked thread
1288 *
1289 * Cause a process which is running on another CPU to enter
1290 * kernel-mode, without any delay. (to get signals handled.)
1291 *
1292 * NOTE: this function doesnt have to take the runqueue lock,
1293 * because all it wants to ensure is that the remote task enters
1294 * the kernel. If the IPI races and the task has been migrated
1295 * to another CPU then no harm is done and the purpose has been
1296 * achieved as well.
1297 */
36c8b586 1298void kick_process(struct task_struct *p)
1da177e4
LT
1299{
1300 int cpu;
1301
1302 preempt_disable();
1303 cpu = task_cpu(p);
1304 if ((cpu != smp_processor_id()) && task_curr(p))
1305 smp_send_reschedule(cpu);
1306 preempt_enable();
1307}
1308
1309/*
2dd73a4f
PW
1310 * Return a low guess at the load of a migration-source cpu weighted
1311 * according to the scheduling class and "nice" value.
1da177e4
LT
1312 *
1313 * We want to under-estimate the load of migration sources, to
1314 * balance conservatively.
1315 */
a9957449 1316static unsigned long source_load(int cpu, int type)
1da177e4 1317{
70b97a7f 1318 struct rq *rq = cpu_rq(cpu);
dd41f596 1319 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1320
3b0bd9bc 1321 if (type == 0)
dd41f596 1322 return total;
b910472d 1323
dd41f596 1324 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1325}
1326
1327/*
2dd73a4f
PW
1328 * Return a high guess at the load of a migration-target cpu weighted
1329 * according to the scheduling class and "nice" value.
1da177e4 1330 */
a9957449 1331static unsigned long target_load(int cpu, int type)
1da177e4 1332{
70b97a7f 1333 struct rq *rq = cpu_rq(cpu);
dd41f596 1334 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1335
7897986b 1336 if (type == 0)
dd41f596 1337 return total;
3b0bd9bc 1338
dd41f596 1339 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1340}
1341
1342/*
1343 * Return the average load per task on the cpu's run queue
1344 */
1345static inline unsigned long cpu_avg_load_per_task(int cpu)
1346{
70b97a7f 1347 struct rq *rq = cpu_rq(cpu);
dd41f596 1348 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1349 unsigned long n = rq->nr_running;
1350
dd41f596 1351 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1352}
1353
147cbb4b
NP
1354/*
1355 * find_idlest_group finds and returns the least busy CPU group within the
1356 * domain.
1357 */
1358static struct sched_group *
1359find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1360{
1361 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1362 unsigned long min_load = ULONG_MAX, this_load = 0;
1363 int load_idx = sd->forkexec_idx;
1364 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1365
1366 do {
1367 unsigned long load, avg_load;
1368 int local_group;
1369 int i;
1370
da5a5522
BD
1371 /* Skip over this group if it has no CPUs allowed */
1372 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1373 continue;
da5a5522 1374
147cbb4b 1375 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1376
1377 /* Tally up the load of all CPUs in the group */
1378 avg_load = 0;
1379
1380 for_each_cpu_mask(i, group->cpumask) {
1381 /* Bias balancing toward cpus of our domain */
1382 if (local_group)
1383 load = source_load(i, load_idx);
1384 else
1385 load = target_load(i, load_idx);
1386
1387 avg_load += load;
1388 }
1389
1390 /* Adjust by relative CPU power of the group */
5517d86b
ED
1391 avg_load = sg_div_cpu_power(group,
1392 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1393
1394 if (local_group) {
1395 this_load = avg_load;
1396 this = group;
1397 } else if (avg_load < min_load) {
1398 min_load = avg_load;
1399 idlest = group;
1400 }
3a5c359a 1401 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1402
1403 if (!idlest || 100*this_load < imbalance*min_load)
1404 return NULL;
1405 return idlest;
1406}
1407
1408/*
0feaece9 1409 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1410 */
95cdf3b7
IM
1411static int
1412find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1413{
da5a5522 1414 cpumask_t tmp;
147cbb4b
NP
1415 unsigned long load, min_load = ULONG_MAX;
1416 int idlest = -1;
1417 int i;
1418
da5a5522
BD
1419 /* Traverse only the allowed CPUs */
1420 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1421
1422 for_each_cpu_mask(i, tmp) {
2dd73a4f 1423 load = weighted_cpuload(i);
147cbb4b
NP
1424
1425 if (load < min_load || (load == min_load && i == this_cpu)) {
1426 min_load = load;
1427 idlest = i;
1428 }
1429 }
1430
1431 return idlest;
1432}
1433
476d139c
NP
1434/*
1435 * sched_balance_self: balance the current task (running on cpu) in domains
1436 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1437 * SD_BALANCE_EXEC.
1438 *
1439 * Balance, ie. select the least loaded group.
1440 *
1441 * Returns the target CPU number, or the same CPU if no balancing is needed.
1442 *
1443 * preempt must be disabled.
1444 */
1445static int sched_balance_self(int cpu, int flag)
1446{
1447 struct task_struct *t = current;
1448 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1449
c96d145e 1450 for_each_domain(cpu, tmp) {
9761eea8
IM
1451 /*
1452 * If power savings logic is enabled for a domain, stop there.
1453 */
5c45bf27
SS
1454 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1455 break;
476d139c
NP
1456 if (tmp->flags & flag)
1457 sd = tmp;
c96d145e 1458 }
476d139c
NP
1459
1460 while (sd) {
1461 cpumask_t span;
1462 struct sched_group *group;
1a848870
SS
1463 int new_cpu, weight;
1464
1465 if (!(sd->flags & flag)) {
1466 sd = sd->child;
1467 continue;
1468 }
476d139c
NP
1469
1470 span = sd->span;
1471 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1472 if (!group) {
1473 sd = sd->child;
1474 continue;
1475 }
476d139c 1476
da5a5522 1477 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1478 if (new_cpu == -1 || new_cpu == cpu) {
1479 /* Now try balancing at a lower domain level of cpu */
1480 sd = sd->child;
1481 continue;
1482 }
476d139c 1483
1a848870 1484 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1485 cpu = new_cpu;
476d139c
NP
1486 sd = NULL;
1487 weight = cpus_weight(span);
1488 for_each_domain(cpu, tmp) {
1489 if (weight <= cpus_weight(tmp->span))
1490 break;
1491 if (tmp->flags & flag)
1492 sd = tmp;
1493 }
1494 /* while loop will break here if sd == NULL */
1495 }
1496
1497 return cpu;
1498}
1499
1500#endif /* CONFIG_SMP */
1da177e4
LT
1501
1502/*
1503 * wake_idle() will wake a task on an idle cpu if task->cpu is
1504 * not idle and an idle cpu is available. The span of cpus to
1505 * search starts with cpus closest then further out as needed,
1506 * so we always favor a closer, idle cpu.
1507 *
1508 * Returns the CPU we should wake onto.
1509 */
1510#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1511static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1512{
1513 cpumask_t tmp;
1514 struct sched_domain *sd;
1515 int i;
1516
4953198b
SS
1517 /*
1518 * If it is idle, then it is the best cpu to run this task.
1519 *
1520 * This cpu is also the best, if it has more than one task already.
1521 * Siblings must be also busy(in most cases) as they didn't already
1522 * pickup the extra load from this cpu and hence we need not check
1523 * sibling runqueue info. This will avoid the checks and cache miss
1524 * penalities associated with that.
1525 */
1526 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1527 return cpu;
1528
1529 for_each_domain(cpu, sd) {
1530 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1531 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4 1532 for_each_cpu_mask(i, tmp) {
cc367732
IM
1533 if (idle_cpu(i)) {
1534 if (i != task_cpu(p)) {
1535 schedstat_inc(p,
1536 se.nr_wakeups_idle);
1537 }
1da177e4 1538 return i;
cc367732 1539 }
1da177e4 1540 }
9761eea8 1541 } else {
e0f364f4 1542 break;
9761eea8 1543 }
1da177e4
LT
1544 }
1545 return cpu;
1546}
1547#else
36c8b586 1548static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1549{
1550 return cpu;
1551}
1552#endif
1553
1554/***
1555 * try_to_wake_up - wake up a thread
1556 * @p: the to-be-woken-up thread
1557 * @state: the mask of task states that can be woken
1558 * @sync: do a synchronous wakeup?
1559 *
1560 * Put it on the run-queue if it's not already there. The "current"
1561 * thread is always on the run-queue (except when the actual
1562 * re-schedule is in progress), and as such you're allowed to do
1563 * the simpler "current->state = TASK_RUNNING" to mark yourself
1564 * runnable without the overhead of this.
1565 *
1566 * returns failure only if the task is already active.
1567 */
36c8b586 1568static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1569{
cc367732 1570 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1571 unsigned long flags;
1572 long old_state;
70b97a7f 1573 struct rq *rq;
1da177e4 1574#ifdef CONFIG_SMP
7897986b 1575 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1576 unsigned long load, this_load;
1da177e4
LT
1577 int new_cpu;
1578#endif
1579
1580 rq = task_rq_lock(p, &flags);
1581 old_state = p->state;
1582 if (!(old_state & state))
1583 goto out;
1584
dd41f596 1585 if (p->se.on_rq)
1da177e4
LT
1586 goto out_running;
1587
1588 cpu = task_cpu(p);
cc367732 1589 orig_cpu = cpu;
1da177e4
LT
1590 this_cpu = smp_processor_id();
1591
1592#ifdef CONFIG_SMP
1593 if (unlikely(task_running(rq, p)))
1594 goto out_activate;
1595
7897986b
NP
1596 new_cpu = cpu;
1597
2d72376b 1598 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1599 if (cpu == this_cpu) {
1600 schedstat_inc(rq, ttwu_local);
7897986b
NP
1601 goto out_set_cpu;
1602 }
1603
1604 for_each_domain(this_cpu, sd) {
1605 if (cpu_isset(cpu, sd->span)) {
1606 schedstat_inc(sd, ttwu_wake_remote);
1607 this_sd = sd;
1608 break;
1da177e4
LT
1609 }
1610 }
1da177e4 1611
7897986b 1612 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1613 goto out_set_cpu;
1614
1da177e4 1615 /*
7897986b 1616 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1617 */
7897986b
NP
1618 if (this_sd) {
1619 int idx = this_sd->wake_idx;
1620 unsigned int imbalance;
1da177e4 1621
a3f21bce
NP
1622 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1623
7897986b
NP
1624 load = source_load(cpu, idx);
1625 this_load = target_load(this_cpu, idx);
1da177e4 1626
7897986b
NP
1627 new_cpu = this_cpu; /* Wake to this CPU if we can */
1628
a3f21bce
NP
1629 if (this_sd->flags & SD_WAKE_AFFINE) {
1630 unsigned long tl = this_load;
33859f7f
MOS
1631 unsigned long tl_per_task;
1632
71e20f18
IM
1633 /*
1634 * Attract cache-cold tasks on sync wakeups:
1635 */
1636 if (sync && !task_hot(p, rq->clock, this_sd))
1637 goto out_set_cpu;
1638
cc367732 1639 schedstat_inc(p, se.nr_wakeups_affine_attempts);
33859f7f 1640 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1641
1da177e4 1642 /*
a3f21bce
NP
1643 * If sync wakeup then subtract the (maximum possible)
1644 * effect of the currently running task from the load
1645 * of the current CPU:
1da177e4 1646 */
a3f21bce 1647 if (sync)
dd41f596 1648 tl -= current->se.load.weight;
a3f21bce
NP
1649
1650 if ((tl <= load &&
2dd73a4f 1651 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1652 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1653 /*
1654 * This domain has SD_WAKE_AFFINE and
1655 * p is cache cold in this domain, and
1656 * there is no bad imbalance.
1657 */
1658 schedstat_inc(this_sd, ttwu_move_affine);
cc367732 1659 schedstat_inc(p, se.nr_wakeups_affine);
a3f21bce
NP
1660 goto out_set_cpu;
1661 }
1662 }
1663
1664 /*
1665 * Start passive balancing when half the imbalance_pct
1666 * limit is reached.
1667 */
1668 if (this_sd->flags & SD_WAKE_BALANCE) {
1669 if (imbalance*this_load <= 100*load) {
1670 schedstat_inc(this_sd, ttwu_move_balance);
cc367732 1671 schedstat_inc(p, se.nr_wakeups_passive);
a3f21bce
NP
1672 goto out_set_cpu;
1673 }
1da177e4
LT
1674 }
1675 }
1676
1677 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1678out_set_cpu:
1679 new_cpu = wake_idle(new_cpu, p);
1680 if (new_cpu != cpu) {
1681 set_task_cpu(p, new_cpu);
1682 task_rq_unlock(rq, &flags);
1683 /* might preempt at this point */
1684 rq = task_rq_lock(p, &flags);
1685 old_state = p->state;
1686 if (!(old_state & state))
1687 goto out;
dd41f596 1688 if (p->se.on_rq)
1da177e4
LT
1689 goto out_running;
1690
1691 this_cpu = smp_processor_id();
1692 cpu = task_cpu(p);
1693 }
1694
1695out_activate:
1696#endif /* CONFIG_SMP */
cc367732
IM
1697 schedstat_inc(p, se.nr_wakeups);
1698 if (sync)
1699 schedstat_inc(p, se.nr_wakeups_sync);
1700 if (orig_cpu != cpu)
1701 schedstat_inc(p, se.nr_wakeups_migrate);
1702 if (cpu == this_cpu)
1703 schedstat_inc(p, se.nr_wakeups_local);
1704 else
1705 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1706 update_rq_clock(rq);
dd41f596 1707 activate_task(rq, p, 1);
9c63d9c0 1708 check_preempt_curr(rq, p);
1da177e4
LT
1709 success = 1;
1710
1711out_running:
1712 p->state = TASK_RUNNING;
4642dafd 1713 wakeup_balance_rt(rq, p);
1da177e4
LT
1714out:
1715 task_rq_unlock(rq, &flags);
1716
1717 return success;
1718}
1719
36c8b586 1720int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1721{
1722 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1723 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1724}
1da177e4
LT
1725EXPORT_SYMBOL(wake_up_process);
1726
36c8b586 1727int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1728{
1729 return try_to_wake_up(p, state, 0);
1730}
1731
1da177e4
LT
1732/*
1733 * Perform scheduler related setup for a newly forked process p.
1734 * p is forked by current.
dd41f596
IM
1735 *
1736 * __sched_fork() is basic setup used by init_idle() too:
1737 */
1738static void __sched_fork(struct task_struct *p)
1739{
dd41f596
IM
1740 p->se.exec_start = 0;
1741 p->se.sum_exec_runtime = 0;
f6cf891c 1742 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1743
1744#ifdef CONFIG_SCHEDSTATS
1745 p->se.wait_start = 0;
dd41f596
IM
1746 p->se.sum_sleep_runtime = 0;
1747 p->se.sleep_start = 0;
dd41f596
IM
1748 p->se.block_start = 0;
1749 p->se.sleep_max = 0;
1750 p->se.block_max = 0;
1751 p->se.exec_max = 0;
eba1ed4b 1752 p->se.slice_max = 0;
dd41f596 1753 p->se.wait_max = 0;
6cfb0d5d 1754#endif
476d139c 1755
dd41f596
IM
1756 INIT_LIST_HEAD(&p->run_list);
1757 p->se.on_rq = 0;
476d139c 1758
e107be36
AK
1759#ifdef CONFIG_PREEMPT_NOTIFIERS
1760 INIT_HLIST_HEAD(&p->preempt_notifiers);
1761#endif
1762
1da177e4
LT
1763 /*
1764 * We mark the process as running here, but have not actually
1765 * inserted it onto the runqueue yet. This guarantees that
1766 * nobody will actually run it, and a signal or other external
1767 * event cannot wake it up and insert it on the runqueue either.
1768 */
1769 p->state = TASK_RUNNING;
dd41f596
IM
1770}
1771
1772/*
1773 * fork()/clone()-time setup:
1774 */
1775void sched_fork(struct task_struct *p, int clone_flags)
1776{
1777 int cpu = get_cpu();
1778
1779 __sched_fork(p);
1780
1781#ifdef CONFIG_SMP
1782 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1783#endif
02e4bac2 1784 set_task_cpu(p, cpu);
b29739f9
IM
1785
1786 /*
1787 * Make sure we do not leak PI boosting priority to the child:
1788 */
1789 p->prio = current->normal_prio;
2ddbf952
HS
1790 if (!rt_prio(p->prio))
1791 p->sched_class = &fair_sched_class;
b29739f9 1792
52f17b6c 1793#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1794 if (likely(sched_info_on()))
52f17b6c 1795 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1796#endif
d6077cb8 1797#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1798 p->oncpu = 0;
1799#endif
1da177e4 1800#ifdef CONFIG_PREEMPT
4866cde0 1801 /* Want to start with kernel preemption disabled. */
a1261f54 1802 task_thread_info(p)->preempt_count = 1;
1da177e4 1803#endif
476d139c 1804 put_cpu();
1da177e4
LT
1805}
1806
1807/*
1808 * wake_up_new_task - wake up a newly created task for the first time.
1809 *
1810 * This function will do some initial scheduler statistics housekeeping
1811 * that must be done for every newly created context, then puts the task
1812 * on the runqueue and wakes it.
1813 */
36c8b586 1814void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1815{
1816 unsigned long flags;
dd41f596 1817 struct rq *rq;
1da177e4
LT
1818
1819 rq = task_rq_lock(p, &flags);
147cbb4b 1820 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1821 update_rq_clock(rq);
1da177e4
LT
1822
1823 p->prio = effective_prio(p);
1824
b9dca1e0 1825 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1826 activate_task(rq, p, 0);
1da177e4 1827 } else {
1da177e4 1828 /*
dd41f596
IM
1829 * Let the scheduling class do new task startup
1830 * management (if any):
1da177e4 1831 */
ee0827d8 1832 p->sched_class->task_new(rq, p);
e5fa2237 1833 inc_nr_running(p, rq);
1da177e4 1834 }
dd41f596
IM
1835 check_preempt_curr(rq, p);
1836 task_rq_unlock(rq, &flags);
1da177e4
LT
1837}
1838
e107be36
AK
1839#ifdef CONFIG_PREEMPT_NOTIFIERS
1840
1841/**
421cee29
RD
1842 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1843 * @notifier: notifier struct to register
e107be36
AK
1844 */
1845void preempt_notifier_register(struct preempt_notifier *notifier)
1846{
1847 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1848}
1849EXPORT_SYMBOL_GPL(preempt_notifier_register);
1850
1851/**
1852 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1853 * @notifier: notifier struct to unregister
e107be36
AK
1854 *
1855 * This is safe to call from within a preemption notifier.
1856 */
1857void preempt_notifier_unregister(struct preempt_notifier *notifier)
1858{
1859 hlist_del(&notifier->link);
1860}
1861EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1862
1863static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1864{
1865 struct preempt_notifier *notifier;
1866 struct hlist_node *node;
1867
1868 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1869 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1870}
1871
1872static void
1873fire_sched_out_preempt_notifiers(struct task_struct *curr,
1874 struct task_struct *next)
1875{
1876 struct preempt_notifier *notifier;
1877 struct hlist_node *node;
1878
1879 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1880 notifier->ops->sched_out(notifier, next);
1881}
1882
1883#else
1884
1885static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1886{
1887}
1888
1889static void
1890fire_sched_out_preempt_notifiers(struct task_struct *curr,
1891 struct task_struct *next)
1892{
1893}
1894
1895#endif
1896
4866cde0
NP
1897/**
1898 * prepare_task_switch - prepare to switch tasks
1899 * @rq: the runqueue preparing to switch
421cee29 1900 * @prev: the current task that is being switched out
4866cde0
NP
1901 * @next: the task we are going to switch to.
1902 *
1903 * This is called with the rq lock held and interrupts off. It must
1904 * be paired with a subsequent finish_task_switch after the context
1905 * switch.
1906 *
1907 * prepare_task_switch sets up locking and calls architecture specific
1908 * hooks.
1909 */
e107be36
AK
1910static inline void
1911prepare_task_switch(struct rq *rq, struct task_struct *prev,
1912 struct task_struct *next)
4866cde0 1913{
e107be36 1914 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1915 prepare_lock_switch(rq, next);
1916 prepare_arch_switch(next);
1917}
1918
1da177e4
LT
1919/**
1920 * finish_task_switch - clean up after a task-switch
344babaa 1921 * @rq: runqueue associated with task-switch
1da177e4
LT
1922 * @prev: the thread we just switched away from.
1923 *
4866cde0
NP
1924 * finish_task_switch must be called after the context switch, paired
1925 * with a prepare_task_switch call before the context switch.
1926 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1927 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1928 *
1929 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1930 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1931 * with the lock held can cause deadlocks; see schedule() for
1932 * details.)
1933 */
a9957449 1934static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1935 __releases(rq->lock)
1936{
1da177e4 1937 struct mm_struct *mm = rq->prev_mm;
55a101f8 1938 long prev_state;
1da177e4
LT
1939
1940 rq->prev_mm = NULL;
1941
1942 /*
1943 * A task struct has one reference for the use as "current".
c394cc9f 1944 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1945 * schedule one last time. The schedule call will never return, and
1946 * the scheduled task must drop that reference.
c394cc9f 1947 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1948 * still held, otherwise prev could be scheduled on another cpu, die
1949 * there before we look at prev->state, and then the reference would
1950 * be dropped twice.
1951 * Manfred Spraul <manfred@colorfullife.com>
1952 */
55a101f8 1953 prev_state = prev->state;
4866cde0
NP
1954 finish_arch_switch(prev);
1955 finish_lock_switch(rq, prev);
e8fa1362
SR
1956 schedule_tail_balance_rt(rq);
1957
e107be36 1958 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1959 if (mm)
1960 mmdrop(mm);
c394cc9f 1961 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1962 /*
1963 * Remove function-return probe instances associated with this
1964 * task and put them back on the free list.
9761eea8 1965 */
c6fd91f0 1966 kprobe_flush_task(prev);
1da177e4 1967 put_task_struct(prev);
c6fd91f0 1968 }
1da177e4
LT
1969}
1970
1971/**
1972 * schedule_tail - first thing a freshly forked thread must call.
1973 * @prev: the thread we just switched away from.
1974 */
36c8b586 1975asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1976 __releases(rq->lock)
1977{
70b97a7f
IM
1978 struct rq *rq = this_rq();
1979
4866cde0
NP
1980 finish_task_switch(rq, prev);
1981#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1982 /* In this case, finish_task_switch does not reenable preemption */
1983 preempt_enable();
1984#endif
1da177e4 1985 if (current->set_child_tid)
b488893a 1986 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1987}
1988
1989/*
1990 * context_switch - switch to the new MM and the new
1991 * thread's register state.
1992 */
dd41f596 1993static inline void
70b97a7f 1994context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1995 struct task_struct *next)
1da177e4 1996{
dd41f596 1997 struct mm_struct *mm, *oldmm;
1da177e4 1998
e107be36 1999 prepare_task_switch(rq, prev, next);
dd41f596
IM
2000 mm = next->mm;
2001 oldmm = prev->active_mm;
9226d125
ZA
2002 /*
2003 * For paravirt, this is coupled with an exit in switch_to to
2004 * combine the page table reload and the switch backend into
2005 * one hypercall.
2006 */
2007 arch_enter_lazy_cpu_mode();
2008
dd41f596 2009 if (unlikely(!mm)) {
1da177e4
LT
2010 next->active_mm = oldmm;
2011 atomic_inc(&oldmm->mm_count);
2012 enter_lazy_tlb(oldmm, next);
2013 } else
2014 switch_mm(oldmm, mm, next);
2015
dd41f596 2016 if (unlikely(!prev->mm)) {
1da177e4 2017 prev->active_mm = NULL;
1da177e4
LT
2018 rq->prev_mm = oldmm;
2019 }
3a5f5e48
IM
2020 /*
2021 * Since the runqueue lock will be released by the next
2022 * task (which is an invalid locking op but in the case
2023 * of the scheduler it's an obvious special-case), so we
2024 * do an early lockdep release here:
2025 */
2026#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2027 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2028#endif
1da177e4
LT
2029
2030 /* Here we just switch the register state and the stack. */
2031 switch_to(prev, next, prev);
2032
dd41f596
IM
2033 barrier();
2034 /*
2035 * this_rq must be evaluated again because prev may have moved
2036 * CPUs since it called schedule(), thus the 'rq' on its stack
2037 * frame will be invalid.
2038 */
2039 finish_task_switch(this_rq(), prev);
1da177e4
LT
2040}
2041
2042/*
2043 * nr_running, nr_uninterruptible and nr_context_switches:
2044 *
2045 * externally visible scheduler statistics: current number of runnable
2046 * threads, current number of uninterruptible-sleeping threads, total
2047 * number of context switches performed since bootup.
2048 */
2049unsigned long nr_running(void)
2050{
2051 unsigned long i, sum = 0;
2052
2053 for_each_online_cpu(i)
2054 sum += cpu_rq(i)->nr_running;
2055
2056 return sum;
2057}
2058
2059unsigned long nr_uninterruptible(void)
2060{
2061 unsigned long i, sum = 0;
2062
0a945022 2063 for_each_possible_cpu(i)
1da177e4
LT
2064 sum += cpu_rq(i)->nr_uninterruptible;
2065
2066 /*
2067 * Since we read the counters lockless, it might be slightly
2068 * inaccurate. Do not allow it to go below zero though:
2069 */
2070 if (unlikely((long)sum < 0))
2071 sum = 0;
2072
2073 return sum;
2074}
2075
2076unsigned long long nr_context_switches(void)
2077{
cc94abfc
SR
2078 int i;
2079 unsigned long long sum = 0;
1da177e4 2080
0a945022 2081 for_each_possible_cpu(i)
1da177e4
LT
2082 sum += cpu_rq(i)->nr_switches;
2083
2084 return sum;
2085}
2086
2087unsigned long nr_iowait(void)
2088{
2089 unsigned long i, sum = 0;
2090
0a945022 2091 for_each_possible_cpu(i)
1da177e4
LT
2092 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2093
2094 return sum;
2095}
2096
db1b1fef
JS
2097unsigned long nr_active(void)
2098{
2099 unsigned long i, running = 0, uninterruptible = 0;
2100
2101 for_each_online_cpu(i) {
2102 running += cpu_rq(i)->nr_running;
2103 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2104 }
2105
2106 if (unlikely((long)uninterruptible < 0))
2107 uninterruptible = 0;
2108
2109 return running + uninterruptible;
2110}
2111
48f24c4d 2112/*
dd41f596
IM
2113 * Update rq->cpu_load[] statistics. This function is usually called every
2114 * scheduler tick (TICK_NSEC).
48f24c4d 2115 */
dd41f596 2116static void update_cpu_load(struct rq *this_rq)
48f24c4d 2117{
495eca49 2118 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2119 int i, scale;
2120
2121 this_rq->nr_load_updates++;
dd41f596
IM
2122
2123 /* Update our load: */
2124 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2125 unsigned long old_load, new_load;
2126
2127 /* scale is effectively 1 << i now, and >> i divides by scale */
2128
2129 old_load = this_rq->cpu_load[i];
2130 new_load = this_load;
a25707f3
IM
2131 /*
2132 * Round up the averaging division if load is increasing. This
2133 * prevents us from getting stuck on 9 if the load is 10, for
2134 * example.
2135 */
2136 if (new_load > old_load)
2137 new_load += scale-1;
dd41f596
IM
2138 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2139 }
48f24c4d
IM
2140}
2141
dd41f596
IM
2142#ifdef CONFIG_SMP
2143
1da177e4
LT
2144/*
2145 * double_rq_lock - safely lock two runqueues
2146 *
2147 * Note this does not disable interrupts like task_rq_lock,
2148 * you need to do so manually before calling.
2149 */
70b97a7f 2150static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2151 __acquires(rq1->lock)
2152 __acquires(rq2->lock)
2153{
054b9108 2154 BUG_ON(!irqs_disabled());
1da177e4
LT
2155 if (rq1 == rq2) {
2156 spin_lock(&rq1->lock);
2157 __acquire(rq2->lock); /* Fake it out ;) */
2158 } else {
c96d145e 2159 if (rq1 < rq2) {
1da177e4
LT
2160 spin_lock(&rq1->lock);
2161 spin_lock(&rq2->lock);
2162 } else {
2163 spin_lock(&rq2->lock);
2164 spin_lock(&rq1->lock);
2165 }
2166 }
6e82a3be
IM
2167 update_rq_clock(rq1);
2168 update_rq_clock(rq2);
1da177e4
LT
2169}
2170
2171/*
2172 * double_rq_unlock - safely unlock two runqueues
2173 *
2174 * Note this does not restore interrupts like task_rq_unlock,
2175 * you need to do so manually after calling.
2176 */
70b97a7f 2177static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2178 __releases(rq1->lock)
2179 __releases(rq2->lock)
2180{
2181 spin_unlock(&rq1->lock);
2182 if (rq1 != rq2)
2183 spin_unlock(&rq2->lock);
2184 else
2185 __release(rq2->lock);
2186}
2187
2188/*
2189 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2190 */
e8fa1362 2191static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2192 __releases(this_rq->lock)
2193 __acquires(busiest->lock)
2194 __acquires(this_rq->lock)
2195{
e8fa1362
SR
2196 int ret = 0;
2197
054b9108
KK
2198 if (unlikely(!irqs_disabled())) {
2199 /* printk() doesn't work good under rq->lock */
2200 spin_unlock(&this_rq->lock);
2201 BUG_ON(1);
2202 }
1da177e4 2203 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2204 if (busiest < this_rq) {
1da177e4
LT
2205 spin_unlock(&this_rq->lock);
2206 spin_lock(&busiest->lock);
2207 spin_lock(&this_rq->lock);
e8fa1362 2208 ret = 1;
1da177e4
LT
2209 } else
2210 spin_lock(&busiest->lock);
2211 }
e8fa1362 2212 return ret;
1da177e4
LT
2213}
2214
1da177e4
LT
2215/*
2216 * If dest_cpu is allowed for this process, migrate the task to it.
2217 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2218 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2219 * the cpu_allowed mask is restored.
2220 */
36c8b586 2221static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2222{
70b97a7f 2223 struct migration_req req;
1da177e4 2224 unsigned long flags;
70b97a7f 2225 struct rq *rq;
1da177e4
LT
2226
2227 rq = task_rq_lock(p, &flags);
2228 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2229 || unlikely(cpu_is_offline(dest_cpu)))
2230 goto out;
2231
2232 /* force the process onto the specified CPU */
2233 if (migrate_task(p, dest_cpu, &req)) {
2234 /* Need to wait for migration thread (might exit: take ref). */
2235 struct task_struct *mt = rq->migration_thread;
36c8b586 2236
1da177e4
LT
2237 get_task_struct(mt);
2238 task_rq_unlock(rq, &flags);
2239 wake_up_process(mt);
2240 put_task_struct(mt);
2241 wait_for_completion(&req.done);
36c8b586 2242
1da177e4
LT
2243 return;
2244 }
2245out:
2246 task_rq_unlock(rq, &flags);
2247}
2248
2249/*
476d139c
NP
2250 * sched_exec - execve() is a valuable balancing opportunity, because at
2251 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2252 */
2253void sched_exec(void)
2254{
1da177e4 2255 int new_cpu, this_cpu = get_cpu();
476d139c 2256 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2257 put_cpu();
476d139c
NP
2258 if (new_cpu != this_cpu)
2259 sched_migrate_task(current, new_cpu);
1da177e4
LT
2260}
2261
2262/*
2263 * pull_task - move a task from a remote runqueue to the local runqueue.
2264 * Both runqueues must be locked.
2265 */
dd41f596
IM
2266static void pull_task(struct rq *src_rq, struct task_struct *p,
2267 struct rq *this_rq, int this_cpu)
1da177e4 2268{
2e1cb74a 2269 deactivate_task(src_rq, p, 0);
1da177e4 2270 set_task_cpu(p, this_cpu);
dd41f596 2271 activate_task(this_rq, p, 0);
1da177e4
LT
2272 /*
2273 * Note that idle threads have a prio of MAX_PRIO, for this test
2274 * to be always true for them.
2275 */
dd41f596 2276 check_preempt_curr(this_rq, p);
1da177e4
LT
2277}
2278
2279/*
2280 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2281 */
858119e1 2282static
70b97a7f 2283int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2284 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2285 int *all_pinned)
1da177e4
LT
2286{
2287 /*
2288 * We do not migrate tasks that are:
2289 * 1) running (obviously), or
2290 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2291 * 3) are cache-hot on their current CPU.
2292 */
cc367732
IM
2293 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2294 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2295 return 0;
cc367732 2296 }
81026794
NP
2297 *all_pinned = 0;
2298
cc367732
IM
2299 if (task_running(rq, p)) {
2300 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2301 return 0;
cc367732 2302 }
1da177e4 2303
da84d961
IM
2304 /*
2305 * Aggressive migration if:
2306 * 1) task is cache cold, or
2307 * 2) too many balance attempts have failed.
2308 */
2309
6bc1665b
IM
2310 if (!task_hot(p, rq->clock, sd) ||
2311 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2312#ifdef CONFIG_SCHEDSTATS
cc367732 2313 if (task_hot(p, rq->clock, sd)) {
da84d961 2314 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2315 schedstat_inc(p, se.nr_forced_migrations);
2316 }
da84d961
IM
2317#endif
2318 return 1;
2319 }
2320
cc367732
IM
2321 if (task_hot(p, rq->clock, sd)) {
2322 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2323 return 0;
cc367732 2324 }
1da177e4
LT
2325 return 1;
2326}
2327
e1d1484f
PW
2328static unsigned long
2329balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2330 unsigned long max_load_move, struct sched_domain *sd,
2331 enum cpu_idle_type idle, int *all_pinned,
2332 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2333{
b82d9fdd 2334 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2335 struct task_struct *p;
2336 long rem_load_move = max_load_move;
1da177e4 2337
e1d1484f 2338 if (max_load_move == 0)
1da177e4
LT
2339 goto out;
2340
81026794
NP
2341 pinned = 1;
2342
1da177e4 2343 /*
dd41f596 2344 * Start the load-balancing iterator:
1da177e4 2345 */
dd41f596
IM
2346 p = iterator->start(iterator->arg);
2347next:
b82d9fdd 2348 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2349 goto out;
50ddd969 2350 /*
b82d9fdd 2351 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2352 * skip a task if it will be the highest priority task (i.e. smallest
2353 * prio value) on its new queue regardless of its load weight
2354 */
dd41f596
IM
2355 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2356 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2357 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2358 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2359 p = iterator->next(iterator->arg);
2360 goto next;
1da177e4
LT
2361 }
2362
dd41f596 2363 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2364 pulled++;
dd41f596 2365 rem_load_move -= p->se.load.weight;
1da177e4 2366
2dd73a4f 2367 /*
b82d9fdd 2368 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2369 */
e1d1484f 2370 if (rem_load_move > 0) {
a4ac01c3
PW
2371 if (p->prio < *this_best_prio)
2372 *this_best_prio = p->prio;
dd41f596
IM
2373 p = iterator->next(iterator->arg);
2374 goto next;
1da177e4
LT
2375 }
2376out:
2377 /*
e1d1484f 2378 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2379 * so we can safely collect pull_task() stats here rather than
2380 * inside pull_task().
2381 */
2382 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2383
2384 if (all_pinned)
2385 *all_pinned = pinned;
e1d1484f
PW
2386
2387 return max_load_move - rem_load_move;
1da177e4
LT
2388}
2389
dd41f596 2390/*
43010659
PW
2391 * move_tasks tries to move up to max_load_move weighted load from busiest to
2392 * this_rq, as part of a balancing operation within domain "sd".
2393 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2394 *
2395 * Called with both runqueues locked.
2396 */
2397static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2398 unsigned long max_load_move,
dd41f596
IM
2399 struct sched_domain *sd, enum cpu_idle_type idle,
2400 int *all_pinned)
2401{
5522d5d5 2402 const struct sched_class *class = sched_class_highest;
43010659 2403 unsigned long total_load_moved = 0;
a4ac01c3 2404 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2405
2406 do {
43010659
PW
2407 total_load_moved +=
2408 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2409 max_load_move - total_load_moved,
a4ac01c3 2410 sd, idle, all_pinned, &this_best_prio);
dd41f596 2411 class = class->next;
43010659 2412 } while (class && max_load_move > total_load_moved);
dd41f596 2413
43010659
PW
2414 return total_load_moved > 0;
2415}
2416
e1d1484f
PW
2417static int
2418iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2419 struct sched_domain *sd, enum cpu_idle_type idle,
2420 struct rq_iterator *iterator)
2421{
2422 struct task_struct *p = iterator->start(iterator->arg);
2423 int pinned = 0;
2424
2425 while (p) {
2426 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2427 pull_task(busiest, p, this_rq, this_cpu);
2428 /*
2429 * Right now, this is only the second place pull_task()
2430 * is called, so we can safely collect pull_task()
2431 * stats here rather than inside pull_task().
2432 */
2433 schedstat_inc(sd, lb_gained[idle]);
2434
2435 return 1;
2436 }
2437 p = iterator->next(iterator->arg);
2438 }
2439
2440 return 0;
2441}
2442
43010659
PW
2443/*
2444 * move_one_task tries to move exactly one task from busiest to this_rq, as
2445 * part of active balancing operations within "domain".
2446 * Returns 1 if successful and 0 otherwise.
2447 *
2448 * Called with both runqueues locked.
2449 */
2450static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2451 struct sched_domain *sd, enum cpu_idle_type idle)
2452{
5522d5d5 2453 const struct sched_class *class;
43010659
PW
2454
2455 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2456 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2457 return 1;
2458
2459 return 0;
dd41f596
IM
2460}
2461
1da177e4
LT
2462/*
2463 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2464 * domain. It calculates and returns the amount of weighted load which
2465 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2466 */
2467static struct sched_group *
2468find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2469 unsigned long *imbalance, enum cpu_idle_type idle,
2470 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2471{
2472 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2473 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2474 unsigned long max_pull;
2dd73a4f
PW
2475 unsigned long busiest_load_per_task, busiest_nr_running;
2476 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2477 int load_idx, group_imb = 0;
5c45bf27
SS
2478#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2479 int power_savings_balance = 1;
2480 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2481 unsigned long min_nr_running = ULONG_MAX;
2482 struct sched_group *group_min = NULL, *group_leader = NULL;
2483#endif
1da177e4
LT
2484
2485 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2486 busiest_load_per_task = busiest_nr_running = 0;
2487 this_load_per_task = this_nr_running = 0;
d15bcfdb 2488 if (idle == CPU_NOT_IDLE)
7897986b 2489 load_idx = sd->busy_idx;
d15bcfdb 2490 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2491 load_idx = sd->newidle_idx;
2492 else
2493 load_idx = sd->idle_idx;
1da177e4
LT
2494
2495 do {
908a7c1b 2496 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2497 int local_group;
2498 int i;
908a7c1b 2499 int __group_imb = 0;
783609c6 2500 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2501 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2502
2503 local_group = cpu_isset(this_cpu, group->cpumask);
2504
783609c6
SS
2505 if (local_group)
2506 balance_cpu = first_cpu(group->cpumask);
2507
1da177e4 2508 /* Tally up the load of all CPUs in the group */
2dd73a4f 2509 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2510 max_cpu_load = 0;
2511 min_cpu_load = ~0UL;
1da177e4
LT
2512
2513 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2514 struct rq *rq;
2515
2516 if (!cpu_isset(i, *cpus))
2517 continue;
2518
2519 rq = cpu_rq(i);
2dd73a4f 2520
9439aab8 2521 if (*sd_idle && rq->nr_running)
5969fe06
NP
2522 *sd_idle = 0;
2523
1da177e4 2524 /* Bias balancing toward cpus of our domain */
783609c6
SS
2525 if (local_group) {
2526 if (idle_cpu(i) && !first_idle_cpu) {
2527 first_idle_cpu = 1;
2528 balance_cpu = i;
2529 }
2530
a2000572 2531 load = target_load(i, load_idx);
908a7c1b 2532 } else {
a2000572 2533 load = source_load(i, load_idx);
908a7c1b
KC
2534 if (load > max_cpu_load)
2535 max_cpu_load = load;
2536 if (min_cpu_load > load)
2537 min_cpu_load = load;
2538 }
1da177e4
LT
2539
2540 avg_load += load;
2dd73a4f 2541 sum_nr_running += rq->nr_running;
dd41f596 2542 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2543 }
2544
783609c6
SS
2545 /*
2546 * First idle cpu or the first cpu(busiest) in this sched group
2547 * is eligible for doing load balancing at this and above
9439aab8
SS
2548 * domains. In the newly idle case, we will allow all the cpu's
2549 * to do the newly idle load balance.
783609c6 2550 */
9439aab8
SS
2551 if (idle != CPU_NEWLY_IDLE && local_group &&
2552 balance_cpu != this_cpu && balance) {
783609c6
SS
2553 *balance = 0;
2554 goto ret;
2555 }
2556
1da177e4 2557 total_load += avg_load;
5517d86b 2558 total_pwr += group->__cpu_power;
1da177e4
LT
2559
2560 /* Adjust by relative CPU power of the group */
5517d86b
ED
2561 avg_load = sg_div_cpu_power(group,
2562 avg_load * SCHED_LOAD_SCALE);
1da177e4 2563
908a7c1b
KC
2564 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2565 __group_imb = 1;
2566
5517d86b 2567 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2568
1da177e4
LT
2569 if (local_group) {
2570 this_load = avg_load;
2571 this = group;
2dd73a4f
PW
2572 this_nr_running = sum_nr_running;
2573 this_load_per_task = sum_weighted_load;
2574 } else if (avg_load > max_load &&
908a7c1b 2575 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2576 max_load = avg_load;
2577 busiest = group;
2dd73a4f
PW
2578 busiest_nr_running = sum_nr_running;
2579 busiest_load_per_task = sum_weighted_load;
908a7c1b 2580 group_imb = __group_imb;
1da177e4 2581 }
5c45bf27
SS
2582
2583#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2584 /*
2585 * Busy processors will not participate in power savings
2586 * balance.
2587 */
dd41f596
IM
2588 if (idle == CPU_NOT_IDLE ||
2589 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2590 goto group_next;
5c45bf27
SS
2591
2592 /*
2593 * If the local group is idle or completely loaded
2594 * no need to do power savings balance at this domain
2595 */
2596 if (local_group && (this_nr_running >= group_capacity ||
2597 !this_nr_running))
2598 power_savings_balance = 0;
2599
dd41f596 2600 /*
5c45bf27
SS
2601 * If a group is already running at full capacity or idle,
2602 * don't include that group in power savings calculations
dd41f596
IM
2603 */
2604 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2605 || !sum_nr_running)
dd41f596 2606 goto group_next;
5c45bf27 2607
dd41f596 2608 /*
5c45bf27 2609 * Calculate the group which has the least non-idle load.
dd41f596
IM
2610 * This is the group from where we need to pick up the load
2611 * for saving power
2612 */
2613 if ((sum_nr_running < min_nr_running) ||
2614 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2615 first_cpu(group->cpumask) <
2616 first_cpu(group_min->cpumask))) {
dd41f596
IM
2617 group_min = group;
2618 min_nr_running = sum_nr_running;
5c45bf27
SS
2619 min_load_per_task = sum_weighted_load /
2620 sum_nr_running;
dd41f596 2621 }
5c45bf27 2622
dd41f596 2623 /*
5c45bf27 2624 * Calculate the group which is almost near its
dd41f596
IM
2625 * capacity but still has some space to pick up some load
2626 * from other group and save more power
2627 */
2628 if (sum_nr_running <= group_capacity - 1) {
2629 if (sum_nr_running > leader_nr_running ||
2630 (sum_nr_running == leader_nr_running &&
2631 first_cpu(group->cpumask) >
2632 first_cpu(group_leader->cpumask))) {
2633 group_leader = group;
2634 leader_nr_running = sum_nr_running;
2635 }
48f24c4d 2636 }
5c45bf27
SS
2637group_next:
2638#endif
1da177e4
LT
2639 group = group->next;
2640 } while (group != sd->groups);
2641
2dd73a4f 2642 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2643 goto out_balanced;
2644
2645 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2646
2647 if (this_load >= avg_load ||
2648 100*max_load <= sd->imbalance_pct*this_load)
2649 goto out_balanced;
2650
2dd73a4f 2651 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2652 if (group_imb)
2653 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2654
1da177e4
LT
2655 /*
2656 * We're trying to get all the cpus to the average_load, so we don't
2657 * want to push ourselves above the average load, nor do we wish to
2658 * reduce the max loaded cpu below the average load, as either of these
2659 * actions would just result in more rebalancing later, and ping-pong
2660 * tasks around. Thus we look for the minimum possible imbalance.
2661 * Negative imbalances (*we* are more loaded than anyone else) will
2662 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2663 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2664 * appear as very large values with unsigned longs.
2665 */
2dd73a4f
PW
2666 if (max_load <= busiest_load_per_task)
2667 goto out_balanced;
2668
2669 /*
2670 * In the presence of smp nice balancing, certain scenarios can have
2671 * max load less than avg load(as we skip the groups at or below
2672 * its cpu_power, while calculating max_load..)
2673 */
2674 if (max_load < avg_load) {
2675 *imbalance = 0;
2676 goto small_imbalance;
2677 }
0c117f1b
SS
2678
2679 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2680 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2681
1da177e4 2682 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2683 *imbalance = min(max_pull * busiest->__cpu_power,
2684 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2685 / SCHED_LOAD_SCALE;
2686
2dd73a4f
PW
2687 /*
2688 * if *imbalance is less than the average load per runnable task
2689 * there is no gaurantee that any tasks will be moved so we'll have
2690 * a think about bumping its value to force at least one task to be
2691 * moved
2692 */
7fd0d2dd 2693 if (*imbalance < busiest_load_per_task) {
48f24c4d 2694 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2695 unsigned int imbn;
2696
2697small_imbalance:
2698 pwr_move = pwr_now = 0;
2699 imbn = 2;
2700 if (this_nr_running) {
2701 this_load_per_task /= this_nr_running;
2702 if (busiest_load_per_task > this_load_per_task)
2703 imbn = 1;
2704 } else
2705 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2706
dd41f596
IM
2707 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2708 busiest_load_per_task * imbn) {
2dd73a4f 2709 *imbalance = busiest_load_per_task;
1da177e4
LT
2710 return busiest;
2711 }
2712
2713 /*
2714 * OK, we don't have enough imbalance to justify moving tasks,
2715 * however we may be able to increase total CPU power used by
2716 * moving them.
2717 */
2718
5517d86b
ED
2719 pwr_now += busiest->__cpu_power *
2720 min(busiest_load_per_task, max_load);
2721 pwr_now += this->__cpu_power *
2722 min(this_load_per_task, this_load);
1da177e4
LT
2723 pwr_now /= SCHED_LOAD_SCALE;
2724
2725 /* Amount of load we'd subtract */
5517d86b
ED
2726 tmp = sg_div_cpu_power(busiest,
2727 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2728 if (max_load > tmp)
5517d86b 2729 pwr_move += busiest->__cpu_power *
2dd73a4f 2730 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2731
2732 /* Amount of load we'd add */
5517d86b 2733 if (max_load * busiest->__cpu_power <
33859f7f 2734 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2735 tmp = sg_div_cpu_power(this,
2736 max_load * busiest->__cpu_power);
1da177e4 2737 else
5517d86b
ED
2738 tmp = sg_div_cpu_power(this,
2739 busiest_load_per_task * SCHED_LOAD_SCALE);
2740 pwr_move += this->__cpu_power *
2741 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2742 pwr_move /= SCHED_LOAD_SCALE;
2743
2744 /* Move if we gain throughput */
7fd0d2dd
SS
2745 if (pwr_move > pwr_now)
2746 *imbalance = busiest_load_per_task;
1da177e4
LT
2747 }
2748
1da177e4
LT
2749 return busiest;
2750
2751out_balanced:
5c45bf27 2752#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2753 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2754 goto ret;
1da177e4 2755
5c45bf27
SS
2756 if (this == group_leader && group_leader != group_min) {
2757 *imbalance = min_load_per_task;
2758 return group_min;
2759 }
5c45bf27 2760#endif
783609c6 2761ret:
1da177e4
LT
2762 *imbalance = 0;
2763 return NULL;
2764}
2765
2766/*
2767 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2768 */
70b97a7f 2769static struct rq *
d15bcfdb 2770find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2771 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2772{
70b97a7f 2773 struct rq *busiest = NULL, *rq;
2dd73a4f 2774 unsigned long max_load = 0;
1da177e4
LT
2775 int i;
2776
2777 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2778 unsigned long wl;
0a2966b4
CL
2779
2780 if (!cpu_isset(i, *cpus))
2781 continue;
2782
48f24c4d 2783 rq = cpu_rq(i);
dd41f596 2784 wl = weighted_cpuload(i);
2dd73a4f 2785
dd41f596 2786 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2787 continue;
1da177e4 2788
dd41f596
IM
2789 if (wl > max_load) {
2790 max_load = wl;
48f24c4d 2791 busiest = rq;
1da177e4
LT
2792 }
2793 }
2794
2795 return busiest;
2796}
2797
77391d71
NP
2798/*
2799 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2800 * so long as it is large enough.
2801 */
2802#define MAX_PINNED_INTERVAL 512
2803
1da177e4
LT
2804/*
2805 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2806 * tasks if there is an imbalance.
1da177e4 2807 */
70b97a7f 2808static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2809 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2810 int *balance)
1da177e4 2811{
43010659 2812 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2813 struct sched_group *group;
1da177e4 2814 unsigned long imbalance;
70b97a7f 2815 struct rq *busiest;
0a2966b4 2816 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2817 unsigned long flags;
5969fe06 2818
89c4710e
SS
2819 /*
2820 * When power savings policy is enabled for the parent domain, idle
2821 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2822 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2823 * portraying it as CPU_NOT_IDLE.
89c4710e 2824 */
d15bcfdb 2825 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2826 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2827 sd_idle = 1;
1da177e4 2828
2d72376b 2829 schedstat_inc(sd, lb_count[idle]);
1da177e4 2830
0a2966b4
CL
2831redo:
2832 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2833 &cpus, balance);
2834
06066714 2835 if (*balance == 0)
783609c6 2836 goto out_balanced;
783609c6 2837
1da177e4
LT
2838 if (!group) {
2839 schedstat_inc(sd, lb_nobusyg[idle]);
2840 goto out_balanced;
2841 }
2842
0a2966b4 2843 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2844 if (!busiest) {
2845 schedstat_inc(sd, lb_nobusyq[idle]);
2846 goto out_balanced;
2847 }
2848
db935dbd 2849 BUG_ON(busiest == this_rq);
1da177e4
LT
2850
2851 schedstat_add(sd, lb_imbalance[idle], imbalance);
2852
43010659 2853 ld_moved = 0;
1da177e4
LT
2854 if (busiest->nr_running > 1) {
2855 /*
2856 * Attempt to move tasks. If find_busiest_group has found
2857 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2858 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2859 * correctly treated as an imbalance.
2860 */
fe2eea3f 2861 local_irq_save(flags);
e17224bf 2862 double_rq_lock(this_rq, busiest);
43010659 2863 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2864 imbalance, sd, idle, &all_pinned);
e17224bf 2865 double_rq_unlock(this_rq, busiest);
fe2eea3f 2866 local_irq_restore(flags);
81026794 2867
46cb4b7c
SS
2868 /*
2869 * some other cpu did the load balance for us.
2870 */
43010659 2871 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2872 resched_cpu(this_cpu);
2873
81026794 2874 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2875 if (unlikely(all_pinned)) {
2876 cpu_clear(cpu_of(busiest), cpus);
2877 if (!cpus_empty(cpus))
2878 goto redo;
81026794 2879 goto out_balanced;
0a2966b4 2880 }
1da177e4 2881 }
81026794 2882
43010659 2883 if (!ld_moved) {
1da177e4
LT
2884 schedstat_inc(sd, lb_failed[idle]);
2885 sd->nr_balance_failed++;
2886
2887 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2888
fe2eea3f 2889 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2890
2891 /* don't kick the migration_thread, if the curr
2892 * task on busiest cpu can't be moved to this_cpu
2893 */
2894 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2895 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2896 all_pinned = 1;
2897 goto out_one_pinned;
2898 }
2899
1da177e4
LT
2900 if (!busiest->active_balance) {
2901 busiest->active_balance = 1;
2902 busiest->push_cpu = this_cpu;
81026794 2903 active_balance = 1;
1da177e4 2904 }
fe2eea3f 2905 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2906 if (active_balance)
1da177e4
LT
2907 wake_up_process(busiest->migration_thread);
2908
2909 /*
2910 * We've kicked active balancing, reset the failure
2911 * counter.
2912 */
39507451 2913 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2914 }
81026794 2915 } else
1da177e4
LT
2916 sd->nr_balance_failed = 0;
2917
81026794 2918 if (likely(!active_balance)) {
1da177e4
LT
2919 /* We were unbalanced, so reset the balancing interval */
2920 sd->balance_interval = sd->min_interval;
81026794
NP
2921 } else {
2922 /*
2923 * If we've begun active balancing, start to back off. This
2924 * case may not be covered by the all_pinned logic if there
2925 * is only 1 task on the busy runqueue (because we don't call
2926 * move_tasks).
2927 */
2928 if (sd->balance_interval < sd->max_interval)
2929 sd->balance_interval *= 2;
1da177e4
LT
2930 }
2931
43010659 2932 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2933 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2934 return -1;
43010659 2935 return ld_moved;
1da177e4
LT
2936
2937out_balanced:
1da177e4
LT
2938 schedstat_inc(sd, lb_balanced[idle]);
2939
16cfb1c0 2940 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2941
2942out_one_pinned:
1da177e4 2943 /* tune up the balancing interval */
77391d71
NP
2944 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2945 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2946 sd->balance_interval *= 2;
2947
48f24c4d 2948 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2949 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2950 return -1;
1da177e4
LT
2951 return 0;
2952}
2953
2954/*
2955 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2956 * tasks if there is an imbalance.
2957 *
d15bcfdb 2958 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2959 * this_rq is locked.
2960 */
48f24c4d 2961static int
70b97a7f 2962load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2963{
2964 struct sched_group *group;
70b97a7f 2965 struct rq *busiest = NULL;
1da177e4 2966 unsigned long imbalance;
43010659 2967 int ld_moved = 0;
5969fe06 2968 int sd_idle = 0;
969bb4e4 2969 int all_pinned = 0;
0a2966b4 2970 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2971
89c4710e
SS
2972 /*
2973 * When power savings policy is enabled for the parent domain, idle
2974 * sibling can pick up load irrespective of busy siblings. In this case,
2975 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2976 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2977 */
2978 if (sd->flags & SD_SHARE_CPUPOWER &&
2979 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2980 sd_idle = 1;
1da177e4 2981
2d72376b 2982 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2983redo:
d15bcfdb 2984 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2985 &sd_idle, &cpus, NULL);
1da177e4 2986 if (!group) {
d15bcfdb 2987 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2988 goto out_balanced;
1da177e4
LT
2989 }
2990
d15bcfdb 2991 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2992 &cpus);
db935dbd 2993 if (!busiest) {
d15bcfdb 2994 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2995 goto out_balanced;
1da177e4
LT
2996 }
2997
db935dbd
NP
2998 BUG_ON(busiest == this_rq);
2999
d15bcfdb 3000 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3001
43010659 3002 ld_moved = 0;
d6d5cfaf
NP
3003 if (busiest->nr_running > 1) {
3004 /* Attempt to move tasks */
3005 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3006 /* this_rq->clock is already updated */
3007 update_rq_clock(busiest);
43010659 3008 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3009 imbalance, sd, CPU_NEWLY_IDLE,
3010 &all_pinned);
d6d5cfaf 3011 spin_unlock(&busiest->lock);
0a2966b4 3012
969bb4e4 3013 if (unlikely(all_pinned)) {
0a2966b4
CL
3014 cpu_clear(cpu_of(busiest), cpus);
3015 if (!cpus_empty(cpus))
3016 goto redo;
3017 }
d6d5cfaf
NP
3018 }
3019
43010659 3020 if (!ld_moved) {
d15bcfdb 3021 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3022 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3023 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3024 return -1;
3025 } else
16cfb1c0 3026 sd->nr_balance_failed = 0;
1da177e4 3027
43010659 3028 return ld_moved;
16cfb1c0
NP
3029
3030out_balanced:
d15bcfdb 3031 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3032 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3033 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3034 return -1;
16cfb1c0 3035 sd->nr_balance_failed = 0;
48f24c4d 3036
16cfb1c0 3037 return 0;
1da177e4
LT
3038}
3039
3040/*
3041 * idle_balance is called by schedule() if this_cpu is about to become
3042 * idle. Attempts to pull tasks from other CPUs.
3043 */
70b97a7f 3044static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3045{
3046 struct sched_domain *sd;
dd41f596
IM
3047 int pulled_task = -1;
3048 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
3049
3050 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3051 unsigned long interval;
3052
3053 if (!(sd->flags & SD_LOAD_BALANCE))
3054 continue;
3055
3056 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3057 /* If we've pulled tasks over stop searching: */
1bd77f2d 3058 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
3059 this_rq, sd);
3060
3061 interval = msecs_to_jiffies(sd->balance_interval);
3062 if (time_after(next_balance, sd->last_balance + interval))
3063 next_balance = sd->last_balance + interval;
3064 if (pulled_task)
3065 break;
1da177e4 3066 }
dd41f596 3067 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3068 /*
3069 * We are going idle. next_balance may be set based on
3070 * a busy processor. So reset next_balance.
3071 */
3072 this_rq->next_balance = next_balance;
dd41f596 3073 }
1da177e4
LT
3074}
3075
3076/*
3077 * active_load_balance is run by migration threads. It pushes running tasks
3078 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3079 * running on each physical CPU where possible, and avoids physical /
3080 * logical imbalances.
3081 *
3082 * Called with busiest_rq locked.
3083 */
70b97a7f 3084static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3085{
39507451 3086 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3087 struct sched_domain *sd;
3088 struct rq *target_rq;
39507451 3089
48f24c4d 3090 /* Is there any task to move? */
39507451 3091 if (busiest_rq->nr_running <= 1)
39507451
NP
3092 return;
3093
3094 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3095
3096 /*
39507451 3097 * This condition is "impossible", if it occurs
41a2d6cf 3098 * we need to fix it. Originally reported by
39507451 3099 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3100 */
39507451 3101 BUG_ON(busiest_rq == target_rq);
1da177e4 3102
39507451
NP
3103 /* move a task from busiest_rq to target_rq */
3104 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3105 update_rq_clock(busiest_rq);
3106 update_rq_clock(target_rq);
39507451
NP
3107
3108 /* Search for an sd spanning us and the target CPU. */
c96d145e 3109 for_each_domain(target_cpu, sd) {
39507451 3110 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3111 cpu_isset(busiest_cpu, sd->span))
39507451 3112 break;
c96d145e 3113 }
39507451 3114
48f24c4d 3115 if (likely(sd)) {
2d72376b 3116 schedstat_inc(sd, alb_count);
39507451 3117
43010659
PW
3118 if (move_one_task(target_rq, target_cpu, busiest_rq,
3119 sd, CPU_IDLE))
48f24c4d
IM
3120 schedstat_inc(sd, alb_pushed);
3121 else
3122 schedstat_inc(sd, alb_failed);
3123 }
39507451 3124 spin_unlock(&target_rq->lock);
1da177e4
LT
3125}
3126
46cb4b7c
SS
3127#ifdef CONFIG_NO_HZ
3128static struct {
3129 atomic_t load_balancer;
41a2d6cf 3130 cpumask_t cpu_mask;
46cb4b7c
SS
3131} nohz ____cacheline_aligned = {
3132 .load_balancer = ATOMIC_INIT(-1),
3133 .cpu_mask = CPU_MASK_NONE,
3134};
3135
7835b98b 3136/*
46cb4b7c
SS
3137 * This routine will try to nominate the ilb (idle load balancing)
3138 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3139 * load balancing on behalf of all those cpus. If all the cpus in the system
3140 * go into this tickless mode, then there will be no ilb owner (as there is
3141 * no need for one) and all the cpus will sleep till the next wakeup event
3142 * arrives...
3143 *
3144 * For the ilb owner, tick is not stopped. And this tick will be used
3145 * for idle load balancing. ilb owner will still be part of
3146 * nohz.cpu_mask..
7835b98b 3147 *
46cb4b7c
SS
3148 * While stopping the tick, this cpu will become the ilb owner if there
3149 * is no other owner. And will be the owner till that cpu becomes busy
3150 * or if all cpus in the system stop their ticks at which point
3151 * there is no need for ilb owner.
3152 *
3153 * When the ilb owner becomes busy, it nominates another owner, during the
3154 * next busy scheduler_tick()
3155 */
3156int select_nohz_load_balancer(int stop_tick)
3157{
3158 int cpu = smp_processor_id();
3159
3160 if (stop_tick) {
3161 cpu_set(cpu, nohz.cpu_mask);
3162 cpu_rq(cpu)->in_nohz_recently = 1;
3163
3164 /*
3165 * If we are going offline and still the leader, give up!
3166 */
3167 if (cpu_is_offline(cpu) &&
3168 atomic_read(&nohz.load_balancer) == cpu) {
3169 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3170 BUG();
3171 return 0;
3172 }
3173
3174 /* time for ilb owner also to sleep */
3175 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3176 if (atomic_read(&nohz.load_balancer) == cpu)
3177 atomic_set(&nohz.load_balancer, -1);
3178 return 0;
3179 }
3180
3181 if (atomic_read(&nohz.load_balancer) == -1) {
3182 /* make me the ilb owner */
3183 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3184 return 1;
3185 } else if (atomic_read(&nohz.load_balancer) == cpu)
3186 return 1;
3187 } else {
3188 if (!cpu_isset(cpu, nohz.cpu_mask))
3189 return 0;
3190
3191 cpu_clear(cpu, nohz.cpu_mask);
3192
3193 if (atomic_read(&nohz.load_balancer) == cpu)
3194 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3195 BUG();
3196 }
3197 return 0;
3198}
3199#endif
3200
3201static DEFINE_SPINLOCK(balancing);
3202
3203/*
7835b98b
CL
3204 * It checks each scheduling domain to see if it is due to be balanced,
3205 * and initiates a balancing operation if so.
3206 *
3207 * Balancing parameters are set up in arch_init_sched_domains.
3208 */
a9957449 3209static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3210{
46cb4b7c
SS
3211 int balance = 1;
3212 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3213 unsigned long interval;
3214 struct sched_domain *sd;
46cb4b7c 3215 /* Earliest time when we have to do rebalance again */
c9819f45 3216 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3217 int update_next_balance = 0;
1da177e4 3218
46cb4b7c 3219 for_each_domain(cpu, sd) {
1da177e4
LT
3220 if (!(sd->flags & SD_LOAD_BALANCE))
3221 continue;
3222
3223 interval = sd->balance_interval;
d15bcfdb 3224 if (idle != CPU_IDLE)
1da177e4
LT
3225 interval *= sd->busy_factor;
3226
3227 /* scale ms to jiffies */
3228 interval = msecs_to_jiffies(interval);
3229 if (unlikely(!interval))
3230 interval = 1;
dd41f596
IM
3231 if (interval > HZ*NR_CPUS/10)
3232 interval = HZ*NR_CPUS/10;
3233
1da177e4 3234
08c183f3
CL
3235 if (sd->flags & SD_SERIALIZE) {
3236 if (!spin_trylock(&balancing))
3237 goto out;
3238 }
3239
c9819f45 3240 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3241 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3242 /*
3243 * We've pulled tasks over so either we're no
5969fe06
NP
3244 * longer idle, or one of our SMT siblings is
3245 * not idle.
3246 */
d15bcfdb 3247 idle = CPU_NOT_IDLE;
1da177e4 3248 }
1bd77f2d 3249 sd->last_balance = jiffies;
1da177e4 3250 }
08c183f3
CL
3251 if (sd->flags & SD_SERIALIZE)
3252 spin_unlock(&balancing);
3253out:
f549da84 3254 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3255 next_balance = sd->last_balance + interval;
f549da84
SS
3256 update_next_balance = 1;
3257 }
783609c6
SS
3258
3259 /*
3260 * Stop the load balance at this level. There is another
3261 * CPU in our sched group which is doing load balancing more
3262 * actively.
3263 */
3264 if (!balance)
3265 break;
1da177e4 3266 }
f549da84
SS
3267
3268 /*
3269 * next_balance will be updated only when there is a need.
3270 * When the cpu is attached to null domain for ex, it will not be
3271 * updated.
3272 */
3273 if (likely(update_next_balance))
3274 rq->next_balance = next_balance;
46cb4b7c
SS
3275}
3276
3277/*
3278 * run_rebalance_domains is triggered when needed from the scheduler tick.
3279 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3280 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3281 */
3282static void run_rebalance_domains(struct softirq_action *h)
3283{
dd41f596
IM
3284 int this_cpu = smp_processor_id();
3285 struct rq *this_rq = cpu_rq(this_cpu);
3286 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3287 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3288
dd41f596 3289 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3290
3291#ifdef CONFIG_NO_HZ
3292 /*
3293 * If this cpu is the owner for idle load balancing, then do the
3294 * balancing on behalf of the other idle cpus whose ticks are
3295 * stopped.
3296 */
dd41f596
IM
3297 if (this_rq->idle_at_tick &&
3298 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3299 cpumask_t cpus = nohz.cpu_mask;
3300 struct rq *rq;
3301 int balance_cpu;
3302
dd41f596 3303 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3304 for_each_cpu_mask(balance_cpu, cpus) {
3305 /*
3306 * If this cpu gets work to do, stop the load balancing
3307 * work being done for other cpus. Next load
3308 * balancing owner will pick it up.
3309 */
3310 if (need_resched())
3311 break;
3312
de0cf899 3313 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3314
3315 rq = cpu_rq(balance_cpu);
dd41f596
IM
3316 if (time_after(this_rq->next_balance, rq->next_balance))
3317 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3318 }
3319 }
3320#endif
3321}
3322
3323/*
3324 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3325 *
3326 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3327 * idle load balancing owner or decide to stop the periodic load balancing,
3328 * if the whole system is idle.
3329 */
dd41f596 3330static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3331{
46cb4b7c
SS
3332#ifdef CONFIG_NO_HZ
3333 /*
3334 * If we were in the nohz mode recently and busy at the current
3335 * scheduler tick, then check if we need to nominate new idle
3336 * load balancer.
3337 */
3338 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3339 rq->in_nohz_recently = 0;
3340
3341 if (atomic_read(&nohz.load_balancer) == cpu) {
3342 cpu_clear(cpu, nohz.cpu_mask);
3343 atomic_set(&nohz.load_balancer, -1);
3344 }
3345
3346 if (atomic_read(&nohz.load_balancer) == -1) {
3347 /*
3348 * simple selection for now: Nominate the
3349 * first cpu in the nohz list to be the next
3350 * ilb owner.
3351 *
3352 * TBD: Traverse the sched domains and nominate
3353 * the nearest cpu in the nohz.cpu_mask.
3354 */
3355 int ilb = first_cpu(nohz.cpu_mask);
3356
3357 if (ilb != NR_CPUS)
3358 resched_cpu(ilb);
3359 }
3360 }
3361
3362 /*
3363 * If this cpu is idle and doing idle load balancing for all the
3364 * cpus with ticks stopped, is it time for that to stop?
3365 */
3366 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3367 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3368 resched_cpu(cpu);
3369 return;
3370 }
3371
3372 /*
3373 * If this cpu is idle and the idle load balancing is done by
3374 * someone else, then no need raise the SCHED_SOFTIRQ
3375 */
3376 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3377 cpu_isset(cpu, nohz.cpu_mask))
3378 return;
3379#endif
3380 if (time_after_eq(jiffies, rq->next_balance))
3381 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3382}
dd41f596
IM
3383
3384#else /* CONFIG_SMP */
3385
1da177e4
LT
3386/*
3387 * on UP we do not need to balance between CPUs:
3388 */
70b97a7f 3389static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3390{
3391}
dd41f596 3392
1da177e4
LT
3393#endif
3394
1da177e4
LT
3395DEFINE_PER_CPU(struct kernel_stat, kstat);
3396
3397EXPORT_PER_CPU_SYMBOL(kstat);
3398
3399/*
41b86e9c
IM
3400 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3401 * that have not yet been banked in case the task is currently running.
1da177e4 3402 */
41b86e9c 3403unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3404{
1da177e4 3405 unsigned long flags;
41b86e9c
IM
3406 u64 ns, delta_exec;
3407 struct rq *rq;
48f24c4d 3408
41b86e9c
IM
3409 rq = task_rq_lock(p, &flags);
3410 ns = p->se.sum_exec_runtime;
051a1d1a 3411 if (task_current(rq, p)) {
a8e504d2
IM
3412 update_rq_clock(rq);
3413 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3414 if ((s64)delta_exec > 0)
3415 ns += delta_exec;
3416 }
3417 task_rq_unlock(rq, &flags);
48f24c4d 3418
1da177e4
LT
3419 return ns;
3420}
3421
1da177e4
LT
3422/*
3423 * Account user cpu time to a process.
3424 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3425 * @cputime: the cpu time spent in user space since the last update
3426 */
3427void account_user_time(struct task_struct *p, cputime_t cputime)
3428{
3429 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3430 cputime64_t tmp;
3431
3432 p->utime = cputime_add(p->utime, cputime);
3433
3434 /* Add user time to cpustat. */
3435 tmp = cputime_to_cputime64(cputime);
3436 if (TASK_NICE(p) > 0)
3437 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3438 else
3439 cpustat->user = cputime64_add(cpustat->user, tmp);
3440}
3441
94886b84
LV
3442/*
3443 * Account guest cpu time to a process.
3444 * @p: the process that the cpu time gets accounted to
3445 * @cputime: the cpu time spent in virtual machine since the last update
3446 */
f7402e03 3447static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3448{
3449 cputime64_t tmp;
3450 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3451
3452 tmp = cputime_to_cputime64(cputime);
3453
3454 p->utime = cputime_add(p->utime, cputime);
3455 p->gtime = cputime_add(p->gtime, cputime);
3456
3457 cpustat->user = cputime64_add(cpustat->user, tmp);
3458 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3459}
3460
c66f08be
MN
3461/*
3462 * Account scaled user cpu time to a process.
3463 * @p: the process that the cpu time gets accounted to
3464 * @cputime: the cpu time spent in user space since the last update
3465 */
3466void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3467{
3468 p->utimescaled = cputime_add(p->utimescaled, cputime);
3469}
3470
1da177e4
LT
3471/*
3472 * Account system cpu time to a process.
3473 * @p: the process that the cpu time gets accounted to
3474 * @hardirq_offset: the offset to subtract from hardirq_count()
3475 * @cputime: the cpu time spent in kernel space since the last update
3476 */
3477void account_system_time(struct task_struct *p, int hardirq_offset,
3478 cputime_t cputime)
3479{
3480 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3481 struct rq *rq = this_rq();
1da177e4
LT
3482 cputime64_t tmp;
3483
9778385d
CB
3484 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3485 return account_guest_time(p, cputime);
94886b84 3486
1da177e4
LT
3487 p->stime = cputime_add(p->stime, cputime);
3488
3489 /* Add system time to cpustat. */
3490 tmp = cputime_to_cputime64(cputime);
3491 if (hardirq_count() - hardirq_offset)
3492 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3493 else if (softirq_count())
3494 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3495 else if (p != rq->idle)
1da177e4 3496 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3497 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3498 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3499 else
3500 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3501 /* Account for system time used */
3502 acct_update_integrals(p);
1da177e4
LT
3503}
3504
c66f08be
MN
3505/*
3506 * Account scaled system cpu time to a process.
3507 * @p: the process that the cpu time gets accounted to
3508 * @hardirq_offset: the offset to subtract from hardirq_count()
3509 * @cputime: the cpu time spent in kernel space since the last update
3510 */
3511void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3512{
3513 p->stimescaled = cputime_add(p->stimescaled, cputime);
3514}
3515
1da177e4
LT
3516/*
3517 * Account for involuntary wait time.
3518 * @p: the process from which the cpu time has been stolen
3519 * @steal: the cpu time spent in involuntary wait
3520 */
3521void account_steal_time(struct task_struct *p, cputime_t steal)
3522{
3523 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3524 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3525 struct rq *rq = this_rq();
1da177e4
LT
3526
3527 if (p == rq->idle) {
3528 p->stime = cputime_add(p->stime, steal);
3529 if (atomic_read(&rq->nr_iowait) > 0)
3530 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3531 else
3532 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3533 } else
1da177e4
LT
3534 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3535}
3536
7835b98b
CL
3537/*
3538 * This function gets called by the timer code, with HZ frequency.
3539 * We call it with interrupts disabled.
3540 *
3541 * It also gets called by the fork code, when changing the parent's
3542 * timeslices.
3543 */
3544void scheduler_tick(void)
3545{
7835b98b
CL
3546 int cpu = smp_processor_id();
3547 struct rq *rq = cpu_rq(cpu);
dd41f596 3548 struct task_struct *curr = rq->curr;
529c7726 3549 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3550
3551 spin_lock(&rq->lock);
546fe3c9 3552 __update_rq_clock(rq);
529c7726
IM
3553 /*
3554 * Let rq->clock advance by at least TICK_NSEC:
3555 */
3556 if (unlikely(rq->clock < next_tick))
3557 rq->clock = next_tick;
3558 rq->tick_timestamp = rq->clock;
f1a438d8 3559 update_cpu_load(rq);
dd41f596
IM
3560 if (curr != rq->idle) /* FIXME: needed? */
3561 curr->sched_class->task_tick(rq, curr);
dd41f596 3562 spin_unlock(&rq->lock);
7835b98b 3563
e418e1c2 3564#ifdef CONFIG_SMP
dd41f596
IM
3565 rq->idle_at_tick = idle_cpu(cpu);
3566 trigger_load_balance(rq, cpu);
e418e1c2 3567#endif
1da177e4
LT
3568}
3569
1da177e4
LT
3570#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3571
3572void fastcall add_preempt_count(int val)
3573{
3574 /*
3575 * Underflow?
3576 */
9a11b49a
IM
3577 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3578 return;
1da177e4
LT
3579 preempt_count() += val;
3580 /*
3581 * Spinlock count overflowing soon?
3582 */
33859f7f
MOS
3583 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3584 PREEMPT_MASK - 10);
1da177e4
LT
3585}
3586EXPORT_SYMBOL(add_preempt_count);
3587
3588void fastcall sub_preempt_count(int val)
3589{
3590 /*
3591 * Underflow?
3592 */
9a11b49a
IM
3593 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3594 return;
1da177e4
LT
3595 /*
3596 * Is the spinlock portion underflowing?
3597 */
9a11b49a
IM
3598 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3599 !(preempt_count() & PREEMPT_MASK)))
3600 return;
3601
1da177e4
LT
3602 preempt_count() -= val;
3603}
3604EXPORT_SYMBOL(sub_preempt_count);
3605
3606#endif
3607
3608/*
dd41f596 3609 * Print scheduling while atomic bug:
1da177e4 3610 */
dd41f596 3611static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3612{
838225b4
SS
3613 struct pt_regs *regs = get_irq_regs();
3614
3615 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3616 prev->comm, prev->pid, preempt_count());
3617
dd41f596
IM
3618 debug_show_held_locks(prev);
3619 if (irqs_disabled())
3620 print_irqtrace_events(prev);
838225b4
SS
3621
3622 if (regs)
3623 show_regs(regs);
3624 else
3625 dump_stack();
dd41f596 3626}
1da177e4 3627
dd41f596
IM
3628/*
3629 * Various schedule()-time debugging checks and statistics:
3630 */
3631static inline void schedule_debug(struct task_struct *prev)
3632{
1da177e4 3633 /*
41a2d6cf 3634 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3635 * schedule() atomically, we ignore that path for now.
3636 * Otherwise, whine if we are scheduling when we should not be.
3637 */
dd41f596
IM
3638 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3639 __schedule_bug(prev);
3640
1da177e4
LT
3641 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3642
2d72376b 3643 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3644#ifdef CONFIG_SCHEDSTATS
3645 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3646 schedstat_inc(this_rq(), bkl_count);
3647 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3648 }
3649#endif
dd41f596
IM
3650}
3651
3652/*
3653 * Pick up the highest-prio task:
3654 */
3655static inline struct task_struct *
ff95f3df 3656pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3657{
5522d5d5 3658 const struct sched_class *class;
dd41f596 3659 struct task_struct *p;
1da177e4
LT
3660
3661 /*
dd41f596
IM
3662 * Optimization: we know that if all tasks are in
3663 * the fair class we can call that function directly:
1da177e4 3664 */
dd41f596 3665 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3666 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3667 if (likely(p))
3668 return p;
1da177e4
LT
3669 }
3670
dd41f596
IM
3671 class = sched_class_highest;
3672 for ( ; ; ) {
fb8d4724 3673 p = class->pick_next_task(rq);
dd41f596
IM
3674 if (p)
3675 return p;
3676 /*
3677 * Will never be NULL as the idle class always
3678 * returns a non-NULL p:
3679 */
3680 class = class->next;
3681 }
3682}
1da177e4 3683
dd41f596
IM
3684/*
3685 * schedule() is the main scheduler function.
3686 */
3687asmlinkage void __sched schedule(void)
3688{
3689 struct task_struct *prev, *next;
3690 long *switch_count;
3691 struct rq *rq;
dd41f596
IM
3692 int cpu;
3693
3694need_resched:
3695 preempt_disable();
3696 cpu = smp_processor_id();
3697 rq = cpu_rq(cpu);
3698 rcu_qsctr_inc(cpu);
3699 prev = rq->curr;
3700 switch_count = &prev->nivcsw;
3701
3702 release_kernel_lock(prev);
3703need_resched_nonpreemptible:
3704
3705 schedule_debug(prev);
1da177e4 3706
1e819950
IM
3707 /*
3708 * Do the rq-clock update outside the rq lock:
3709 */
3710 local_irq_disable();
c1b3da3e 3711 __update_rq_clock(rq);
1e819950
IM
3712 spin_lock(&rq->lock);
3713 clear_tsk_need_resched(prev);
1da177e4 3714
1da177e4 3715 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3716 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3717 unlikely(signal_pending(prev)))) {
1da177e4 3718 prev->state = TASK_RUNNING;
dd41f596 3719 } else {
2e1cb74a 3720 deactivate_task(rq, prev, 1);
1da177e4 3721 }
dd41f596 3722 switch_count = &prev->nvcsw;
1da177e4
LT
3723 }
3724
f65eda4f
SR
3725 schedule_balance_rt(rq, prev);
3726
dd41f596 3727 if (unlikely(!rq->nr_running))
1da177e4 3728 idle_balance(cpu, rq);
1da177e4 3729
31ee529c 3730 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3731 next = pick_next_task(rq, prev);
1da177e4
LT
3732
3733 sched_info_switch(prev, next);
dd41f596 3734
1da177e4 3735 if (likely(prev != next)) {
1da177e4
LT
3736 rq->nr_switches++;
3737 rq->curr = next;
3738 ++*switch_count;
3739
dd41f596 3740 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3741 } else
3742 spin_unlock_irq(&rq->lock);
3743
dd41f596
IM
3744 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3745 cpu = smp_processor_id();
3746 rq = cpu_rq(cpu);
1da177e4 3747 goto need_resched_nonpreemptible;
dd41f596 3748 }
1da177e4
LT
3749 preempt_enable_no_resched();
3750 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3751 goto need_resched;
3752}
1da177e4
LT
3753EXPORT_SYMBOL(schedule);
3754
3755#ifdef CONFIG_PREEMPT
3756/*
2ed6e34f 3757 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3758 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3759 * occur there and call schedule directly.
3760 */
3761asmlinkage void __sched preempt_schedule(void)
3762{
3763 struct thread_info *ti = current_thread_info();
3764#ifdef CONFIG_PREEMPT_BKL
3765 struct task_struct *task = current;
3766 int saved_lock_depth;
3767#endif
3768 /*
3769 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3770 * we do not want to preempt the current task. Just return..
1da177e4 3771 */
beed33a8 3772 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3773 return;
3774
3a5c359a
AK
3775 do {
3776 add_preempt_count(PREEMPT_ACTIVE);
3777
3778 /*
3779 * We keep the big kernel semaphore locked, but we
3780 * clear ->lock_depth so that schedule() doesnt
3781 * auto-release the semaphore:
3782 */
1da177e4 3783#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3784 saved_lock_depth = task->lock_depth;
3785 task->lock_depth = -1;
1da177e4 3786#endif
3a5c359a 3787 schedule();
1da177e4 3788#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3789 task->lock_depth = saved_lock_depth;
1da177e4 3790#endif
3a5c359a 3791 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3792
3a5c359a
AK
3793 /*
3794 * Check again in case we missed a preemption opportunity
3795 * between schedule and now.
3796 */
3797 barrier();
3798 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3799}
1da177e4
LT
3800EXPORT_SYMBOL(preempt_schedule);
3801
3802/*
2ed6e34f 3803 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3804 * off of irq context.
3805 * Note, that this is called and return with irqs disabled. This will
3806 * protect us against recursive calling from irq.
3807 */
3808asmlinkage void __sched preempt_schedule_irq(void)
3809{
3810 struct thread_info *ti = current_thread_info();
3811#ifdef CONFIG_PREEMPT_BKL
3812 struct task_struct *task = current;
3813 int saved_lock_depth;
3814#endif
2ed6e34f 3815 /* Catch callers which need to be fixed */
1da177e4
LT
3816 BUG_ON(ti->preempt_count || !irqs_disabled());
3817
3a5c359a
AK
3818 do {
3819 add_preempt_count(PREEMPT_ACTIVE);
3820
3821 /*
3822 * We keep the big kernel semaphore locked, but we
3823 * clear ->lock_depth so that schedule() doesnt
3824 * auto-release the semaphore:
3825 */
1da177e4 3826#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3827 saved_lock_depth = task->lock_depth;
3828 task->lock_depth = -1;
1da177e4 3829#endif
3a5c359a
AK
3830 local_irq_enable();
3831 schedule();
3832 local_irq_disable();
1da177e4 3833#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3834 task->lock_depth = saved_lock_depth;
1da177e4 3835#endif
3a5c359a 3836 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3837
3a5c359a
AK
3838 /*
3839 * Check again in case we missed a preemption opportunity
3840 * between schedule and now.
3841 */
3842 barrier();
3843 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3844}
3845
3846#endif /* CONFIG_PREEMPT */
3847
95cdf3b7
IM
3848int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3849 void *key)
1da177e4 3850{
48f24c4d 3851 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3852}
1da177e4
LT
3853EXPORT_SYMBOL(default_wake_function);
3854
3855/*
41a2d6cf
IM
3856 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3857 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3858 * number) then we wake all the non-exclusive tasks and one exclusive task.
3859 *
3860 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3861 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3862 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3863 */
3864static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3865 int nr_exclusive, int sync, void *key)
3866{
2e45874c 3867 wait_queue_t *curr, *next;
1da177e4 3868
2e45874c 3869 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3870 unsigned flags = curr->flags;
3871
1da177e4 3872 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3873 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3874 break;
3875 }
3876}
3877
3878/**
3879 * __wake_up - wake up threads blocked on a waitqueue.
3880 * @q: the waitqueue
3881 * @mode: which threads
3882 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3883 * @key: is directly passed to the wakeup function
1da177e4
LT
3884 */
3885void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3886 int nr_exclusive, void *key)
1da177e4
LT
3887{
3888 unsigned long flags;
3889
3890 spin_lock_irqsave(&q->lock, flags);
3891 __wake_up_common(q, mode, nr_exclusive, 0, key);
3892 spin_unlock_irqrestore(&q->lock, flags);
3893}
1da177e4
LT
3894EXPORT_SYMBOL(__wake_up);
3895
3896/*
3897 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3898 */
3899void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3900{
3901 __wake_up_common(q, mode, 1, 0, NULL);
3902}
3903
3904/**
67be2dd1 3905 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3906 * @q: the waitqueue
3907 * @mode: which threads
3908 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3909 *
3910 * The sync wakeup differs that the waker knows that it will schedule
3911 * away soon, so while the target thread will be woken up, it will not
3912 * be migrated to another CPU - ie. the two threads are 'synchronized'
3913 * with each other. This can prevent needless bouncing between CPUs.
3914 *
3915 * On UP it can prevent extra preemption.
3916 */
95cdf3b7
IM
3917void fastcall
3918__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3919{
3920 unsigned long flags;
3921 int sync = 1;
3922
3923 if (unlikely(!q))
3924 return;
3925
3926 if (unlikely(!nr_exclusive))
3927 sync = 0;
3928
3929 spin_lock_irqsave(&q->lock, flags);
3930 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3931 spin_unlock_irqrestore(&q->lock, flags);
3932}
3933EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3934
b15136e9 3935void complete(struct completion *x)
1da177e4
LT
3936{
3937 unsigned long flags;
3938
3939 spin_lock_irqsave(&x->wait.lock, flags);
3940 x->done++;
3941 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3942 1, 0, NULL);
3943 spin_unlock_irqrestore(&x->wait.lock, flags);
3944}
3945EXPORT_SYMBOL(complete);
3946
b15136e9 3947void complete_all(struct completion *x)
1da177e4
LT
3948{
3949 unsigned long flags;
3950
3951 spin_lock_irqsave(&x->wait.lock, flags);
3952 x->done += UINT_MAX/2;
3953 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3954 0, 0, NULL);
3955 spin_unlock_irqrestore(&x->wait.lock, flags);
3956}
3957EXPORT_SYMBOL(complete_all);
3958
8cbbe86d
AK
3959static inline long __sched
3960do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3961{
1da177e4
LT
3962 if (!x->done) {
3963 DECLARE_WAITQUEUE(wait, current);
3964
3965 wait.flags |= WQ_FLAG_EXCLUSIVE;
3966 __add_wait_queue_tail(&x->wait, &wait);
3967 do {
8cbbe86d
AK
3968 if (state == TASK_INTERRUPTIBLE &&
3969 signal_pending(current)) {
3970 __remove_wait_queue(&x->wait, &wait);
3971 return -ERESTARTSYS;
3972 }
3973 __set_current_state(state);
1da177e4
LT
3974 spin_unlock_irq(&x->wait.lock);
3975 timeout = schedule_timeout(timeout);
3976 spin_lock_irq(&x->wait.lock);
3977 if (!timeout) {
3978 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3979 return timeout;
1da177e4
LT
3980 }
3981 } while (!x->done);
3982 __remove_wait_queue(&x->wait, &wait);
3983 }
3984 x->done--;
1da177e4
LT
3985 return timeout;
3986}
1da177e4 3987
8cbbe86d
AK
3988static long __sched
3989wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3990{
1da177e4
LT
3991 might_sleep();
3992
3993 spin_lock_irq(&x->wait.lock);
8cbbe86d 3994 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3995 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3996 return timeout;
3997}
1da177e4 3998
b15136e9 3999void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4000{
4001 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4002}
8cbbe86d 4003EXPORT_SYMBOL(wait_for_completion);
1da177e4 4004
b15136e9 4005unsigned long __sched
8cbbe86d 4006wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4007{
8cbbe86d 4008 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4009}
8cbbe86d 4010EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4011
8cbbe86d 4012int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4013{
51e97990
AK
4014 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4015 if (t == -ERESTARTSYS)
4016 return t;
4017 return 0;
0fec171c 4018}
8cbbe86d 4019EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4020
b15136e9 4021unsigned long __sched
8cbbe86d
AK
4022wait_for_completion_interruptible_timeout(struct completion *x,
4023 unsigned long timeout)
0fec171c 4024{
8cbbe86d 4025 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4026}
8cbbe86d 4027EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4028
8cbbe86d
AK
4029static long __sched
4030sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4031{
0fec171c
IM
4032 unsigned long flags;
4033 wait_queue_t wait;
4034
4035 init_waitqueue_entry(&wait, current);
1da177e4 4036
8cbbe86d 4037 __set_current_state(state);
1da177e4 4038
8cbbe86d
AK
4039 spin_lock_irqsave(&q->lock, flags);
4040 __add_wait_queue(q, &wait);
4041 spin_unlock(&q->lock);
4042 timeout = schedule_timeout(timeout);
4043 spin_lock_irq(&q->lock);
4044 __remove_wait_queue(q, &wait);
4045 spin_unlock_irqrestore(&q->lock, flags);
4046
4047 return timeout;
4048}
4049
4050void __sched interruptible_sleep_on(wait_queue_head_t *q)
4051{
4052 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4053}
1da177e4
LT
4054EXPORT_SYMBOL(interruptible_sleep_on);
4055
0fec171c 4056long __sched
95cdf3b7 4057interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4058{
8cbbe86d 4059 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4060}
1da177e4
LT
4061EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4062
0fec171c 4063void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4064{
8cbbe86d 4065 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4066}
1da177e4
LT
4067EXPORT_SYMBOL(sleep_on);
4068
0fec171c 4069long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4070{
8cbbe86d 4071 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4072}
1da177e4
LT
4073EXPORT_SYMBOL(sleep_on_timeout);
4074
b29739f9
IM
4075#ifdef CONFIG_RT_MUTEXES
4076
4077/*
4078 * rt_mutex_setprio - set the current priority of a task
4079 * @p: task
4080 * @prio: prio value (kernel-internal form)
4081 *
4082 * This function changes the 'effective' priority of a task. It does
4083 * not touch ->normal_prio like __setscheduler().
4084 *
4085 * Used by the rt_mutex code to implement priority inheritance logic.
4086 */
36c8b586 4087void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4088{
4089 unsigned long flags;
83b699ed 4090 int oldprio, on_rq, running;
70b97a7f 4091 struct rq *rq;
b29739f9
IM
4092
4093 BUG_ON(prio < 0 || prio > MAX_PRIO);
4094
4095 rq = task_rq_lock(p, &flags);
a8e504d2 4096 update_rq_clock(rq);
b29739f9 4097
d5f9f942 4098 oldprio = p->prio;
dd41f596 4099 on_rq = p->se.on_rq;
051a1d1a 4100 running = task_current(rq, p);
83b699ed 4101 if (on_rq) {
69be72c1 4102 dequeue_task(rq, p, 0);
83b699ed
SV
4103 if (running)
4104 p->sched_class->put_prev_task(rq, p);
4105 }
dd41f596
IM
4106
4107 if (rt_prio(prio))
4108 p->sched_class = &rt_sched_class;
4109 else
4110 p->sched_class = &fair_sched_class;
4111
b29739f9
IM
4112 p->prio = prio;
4113
dd41f596 4114 if (on_rq) {
83b699ed
SV
4115 if (running)
4116 p->sched_class->set_curr_task(rq);
8159f87e 4117 enqueue_task(rq, p, 0);
b29739f9
IM
4118 /*
4119 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4120 * our priority decreased, or if we are not currently running on
4121 * this runqueue and our priority is higher than the current's
b29739f9 4122 */
83b699ed 4123 if (running) {
d5f9f942
AM
4124 if (p->prio > oldprio)
4125 resched_task(rq->curr);
dd41f596
IM
4126 } else {
4127 check_preempt_curr(rq, p);
4128 }
b29739f9
IM
4129 }
4130 task_rq_unlock(rq, &flags);
4131}
4132
4133#endif
4134
36c8b586 4135void set_user_nice(struct task_struct *p, long nice)
1da177e4 4136{
dd41f596 4137 int old_prio, delta, on_rq;
1da177e4 4138 unsigned long flags;
70b97a7f 4139 struct rq *rq;
1da177e4
LT
4140
4141 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4142 return;
4143 /*
4144 * We have to be careful, if called from sys_setpriority(),
4145 * the task might be in the middle of scheduling on another CPU.
4146 */
4147 rq = task_rq_lock(p, &flags);
a8e504d2 4148 update_rq_clock(rq);
1da177e4
LT
4149 /*
4150 * The RT priorities are set via sched_setscheduler(), but we still
4151 * allow the 'normal' nice value to be set - but as expected
4152 * it wont have any effect on scheduling until the task is
dd41f596 4153 * SCHED_FIFO/SCHED_RR:
1da177e4 4154 */
e05606d3 4155 if (task_has_rt_policy(p)) {
1da177e4
LT
4156 p->static_prio = NICE_TO_PRIO(nice);
4157 goto out_unlock;
4158 }
dd41f596 4159 on_rq = p->se.on_rq;
58e2d4ca 4160 if (on_rq)
69be72c1 4161 dequeue_task(rq, p, 0);
1da177e4 4162
1da177e4 4163 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4164 set_load_weight(p);
b29739f9
IM
4165 old_prio = p->prio;
4166 p->prio = effective_prio(p);
4167 delta = p->prio - old_prio;
1da177e4 4168
dd41f596 4169 if (on_rq) {
8159f87e 4170 enqueue_task(rq, p, 0);
1da177e4 4171 /*
d5f9f942
AM
4172 * If the task increased its priority or is running and
4173 * lowered its priority, then reschedule its CPU:
1da177e4 4174 */
d5f9f942 4175 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4176 resched_task(rq->curr);
4177 }
4178out_unlock:
4179 task_rq_unlock(rq, &flags);
4180}
1da177e4
LT
4181EXPORT_SYMBOL(set_user_nice);
4182
e43379f1
MM
4183/*
4184 * can_nice - check if a task can reduce its nice value
4185 * @p: task
4186 * @nice: nice value
4187 */
36c8b586 4188int can_nice(const struct task_struct *p, const int nice)
e43379f1 4189{
024f4747
MM
4190 /* convert nice value [19,-20] to rlimit style value [1,40] */
4191 int nice_rlim = 20 - nice;
48f24c4d 4192
e43379f1
MM
4193 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4194 capable(CAP_SYS_NICE));
4195}
4196
1da177e4
LT
4197#ifdef __ARCH_WANT_SYS_NICE
4198
4199/*
4200 * sys_nice - change the priority of the current process.
4201 * @increment: priority increment
4202 *
4203 * sys_setpriority is a more generic, but much slower function that
4204 * does similar things.
4205 */
4206asmlinkage long sys_nice(int increment)
4207{
48f24c4d 4208 long nice, retval;
1da177e4
LT
4209
4210 /*
4211 * Setpriority might change our priority at the same moment.
4212 * We don't have to worry. Conceptually one call occurs first
4213 * and we have a single winner.
4214 */
e43379f1
MM
4215 if (increment < -40)
4216 increment = -40;
1da177e4
LT
4217 if (increment > 40)
4218 increment = 40;
4219
4220 nice = PRIO_TO_NICE(current->static_prio) + increment;
4221 if (nice < -20)
4222 nice = -20;
4223 if (nice > 19)
4224 nice = 19;
4225
e43379f1
MM
4226 if (increment < 0 && !can_nice(current, nice))
4227 return -EPERM;
4228
1da177e4
LT
4229 retval = security_task_setnice(current, nice);
4230 if (retval)
4231 return retval;
4232
4233 set_user_nice(current, nice);
4234 return 0;
4235}
4236
4237#endif
4238
4239/**
4240 * task_prio - return the priority value of a given task.
4241 * @p: the task in question.
4242 *
4243 * This is the priority value as seen by users in /proc.
4244 * RT tasks are offset by -200. Normal tasks are centered
4245 * around 0, value goes from -16 to +15.
4246 */
36c8b586 4247int task_prio(const struct task_struct *p)
1da177e4
LT
4248{
4249 return p->prio - MAX_RT_PRIO;
4250}
4251
4252/**
4253 * task_nice - return the nice value of a given task.
4254 * @p: the task in question.
4255 */
36c8b586 4256int task_nice(const struct task_struct *p)
1da177e4
LT
4257{
4258 return TASK_NICE(p);
4259}
1da177e4 4260EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4261
4262/**
4263 * idle_cpu - is a given cpu idle currently?
4264 * @cpu: the processor in question.
4265 */
4266int idle_cpu(int cpu)
4267{
4268 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4269}
4270
1da177e4
LT
4271/**
4272 * idle_task - return the idle task for a given cpu.
4273 * @cpu: the processor in question.
4274 */
36c8b586 4275struct task_struct *idle_task(int cpu)
1da177e4
LT
4276{
4277 return cpu_rq(cpu)->idle;
4278}
4279
4280/**
4281 * find_process_by_pid - find a process with a matching PID value.
4282 * @pid: the pid in question.
4283 */
a9957449 4284static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4285{
228ebcbe 4286 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4287}
4288
4289/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4290static void
4291__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4292{
dd41f596 4293 BUG_ON(p->se.on_rq);
48f24c4d 4294
1da177e4 4295 p->policy = policy;
dd41f596
IM
4296 switch (p->policy) {
4297 case SCHED_NORMAL:
4298 case SCHED_BATCH:
4299 case SCHED_IDLE:
4300 p->sched_class = &fair_sched_class;
4301 break;
4302 case SCHED_FIFO:
4303 case SCHED_RR:
4304 p->sched_class = &rt_sched_class;
4305 break;
4306 }
4307
1da177e4 4308 p->rt_priority = prio;
b29739f9
IM
4309 p->normal_prio = normal_prio(p);
4310 /* we are holding p->pi_lock already */
4311 p->prio = rt_mutex_getprio(p);
2dd73a4f 4312 set_load_weight(p);
1da177e4
LT
4313}
4314
4315/**
72fd4a35 4316 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4317 * @p: the task in question.
4318 * @policy: new policy.
4319 * @param: structure containing the new RT priority.
5fe1d75f 4320 *
72fd4a35 4321 * NOTE that the task may be already dead.
1da177e4 4322 */
95cdf3b7
IM
4323int sched_setscheduler(struct task_struct *p, int policy,
4324 struct sched_param *param)
1da177e4 4325{
83b699ed 4326 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4327 unsigned long flags;
70b97a7f 4328 struct rq *rq;
1da177e4 4329
66e5393a
SR
4330 /* may grab non-irq protected spin_locks */
4331 BUG_ON(in_interrupt());
1da177e4
LT
4332recheck:
4333 /* double check policy once rq lock held */
4334 if (policy < 0)
4335 policy = oldpolicy = p->policy;
4336 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4337 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4338 policy != SCHED_IDLE)
b0a9499c 4339 return -EINVAL;
1da177e4
LT
4340 /*
4341 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4342 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4343 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4344 */
4345 if (param->sched_priority < 0 ||
95cdf3b7 4346 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4347 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4348 return -EINVAL;
e05606d3 4349 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4350 return -EINVAL;
4351
37e4ab3f
OC
4352 /*
4353 * Allow unprivileged RT tasks to decrease priority:
4354 */
4355 if (!capable(CAP_SYS_NICE)) {
e05606d3 4356 if (rt_policy(policy)) {
8dc3e909 4357 unsigned long rlim_rtprio;
8dc3e909
ON
4358
4359 if (!lock_task_sighand(p, &flags))
4360 return -ESRCH;
4361 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4362 unlock_task_sighand(p, &flags);
4363
4364 /* can't set/change the rt policy */
4365 if (policy != p->policy && !rlim_rtprio)
4366 return -EPERM;
4367
4368 /* can't increase priority */
4369 if (param->sched_priority > p->rt_priority &&
4370 param->sched_priority > rlim_rtprio)
4371 return -EPERM;
4372 }
dd41f596
IM
4373 /*
4374 * Like positive nice levels, dont allow tasks to
4375 * move out of SCHED_IDLE either:
4376 */
4377 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4378 return -EPERM;
5fe1d75f 4379
37e4ab3f
OC
4380 /* can't change other user's priorities */
4381 if ((current->euid != p->euid) &&
4382 (current->euid != p->uid))
4383 return -EPERM;
4384 }
1da177e4
LT
4385
4386 retval = security_task_setscheduler(p, policy, param);
4387 if (retval)
4388 return retval;
b29739f9
IM
4389 /*
4390 * make sure no PI-waiters arrive (or leave) while we are
4391 * changing the priority of the task:
4392 */
4393 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4394 /*
4395 * To be able to change p->policy safely, the apropriate
4396 * runqueue lock must be held.
4397 */
b29739f9 4398 rq = __task_rq_lock(p);
1da177e4
LT
4399 /* recheck policy now with rq lock held */
4400 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4401 policy = oldpolicy = -1;
b29739f9
IM
4402 __task_rq_unlock(rq);
4403 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4404 goto recheck;
4405 }
2daa3577 4406 update_rq_clock(rq);
dd41f596 4407 on_rq = p->se.on_rq;
051a1d1a 4408 running = task_current(rq, p);
83b699ed 4409 if (on_rq) {
2e1cb74a 4410 deactivate_task(rq, p, 0);
83b699ed
SV
4411 if (running)
4412 p->sched_class->put_prev_task(rq, p);
4413 }
f6b53205 4414
1da177e4 4415 oldprio = p->prio;
dd41f596 4416 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4417
dd41f596 4418 if (on_rq) {
83b699ed
SV
4419 if (running)
4420 p->sched_class->set_curr_task(rq);
dd41f596 4421 activate_task(rq, p, 0);
1da177e4
LT
4422 /*
4423 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4424 * our priority decreased, or if we are not currently running on
4425 * this runqueue and our priority is higher than the current's
1da177e4 4426 */
83b699ed 4427 if (running) {
d5f9f942
AM
4428 if (p->prio > oldprio)
4429 resched_task(rq->curr);
dd41f596
IM
4430 } else {
4431 check_preempt_curr(rq, p);
4432 }
1da177e4 4433 }
b29739f9
IM
4434 __task_rq_unlock(rq);
4435 spin_unlock_irqrestore(&p->pi_lock, flags);
4436
95e02ca9
TG
4437 rt_mutex_adjust_pi(p);
4438
1da177e4
LT
4439 return 0;
4440}
4441EXPORT_SYMBOL_GPL(sched_setscheduler);
4442
95cdf3b7
IM
4443static int
4444do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4445{
1da177e4
LT
4446 struct sched_param lparam;
4447 struct task_struct *p;
36c8b586 4448 int retval;
1da177e4
LT
4449
4450 if (!param || pid < 0)
4451 return -EINVAL;
4452 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4453 return -EFAULT;
5fe1d75f
ON
4454
4455 rcu_read_lock();
4456 retval = -ESRCH;
1da177e4 4457 p = find_process_by_pid(pid);
5fe1d75f
ON
4458 if (p != NULL)
4459 retval = sched_setscheduler(p, policy, &lparam);
4460 rcu_read_unlock();
36c8b586 4461
1da177e4
LT
4462 return retval;
4463}
4464
4465/**
4466 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4467 * @pid: the pid in question.
4468 * @policy: new policy.
4469 * @param: structure containing the new RT priority.
4470 */
41a2d6cf
IM
4471asmlinkage long
4472sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4473{
c21761f1
JB
4474 /* negative values for policy are not valid */
4475 if (policy < 0)
4476 return -EINVAL;
4477
1da177e4
LT
4478 return do_sched_setscheduler(pid, policy, param);
4479}
4480
4481/**
4482 * sys_sched_setparam - set/change the RT priority of a thread
4483 * @pid: the pid in question.
4484 * @param: structure containing the new RT priority.
4485 */
4486asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4487{
4488 return do_sched_setscheduler(pid, -1, param);
4489}
4490
4491/**
4492 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4493 * @pid: the pid in question.
4494 */
4495asmlinkage long sys_sched_getscheduler(pid_t pid)
4496{
36c8b586 4497 struct task_struct *p;
3a5c359a 4498 int retval;
1da177e4
LT
4499
4500 if (pid < 0)
3a5c359a 4501 return -EINVAL;
1da177e4
LT
4502
4503 retval = -ESRCH;
4504 read_lock(&tasklist_lock);
4505 p = find_process_by_pid(pid);
4506 if (p) {
4507 retval = security_task_getscheduler(p);
4508 if (!retval)
4509 retval = p->policy;
4510 }
4511 read_unlock(&tasklist_lock);
1da177e4
LT
4512 return retval;
4513}
4514
4515/**
4516 * sys_sched_getscheduler - get the RT priority of a thread
4517 * @pid: the pid in question.
4518 * @param: structure containing the RT priority.
4519 */
4520asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4521{
4522 struct sched_param lp;
36c8b586 4523 struct task_struct *p;
3a5c359a 4524 int retval;
1da177e4
LT
4525
4526 if (!param || pid < 0)
3a5c359a 4527 return -EINVAL;
1da177e4
LT
4528
4529 read_lock(&tasklist_lock);
4530 p = find_process_by_pid(pid);
4531 retval = -ESRCH;
4532 if (!p)
4533 goto out_unlock;
4534
4535 retval = security_task_getscheduler(p);
4536 if (retval)
4537 goto out_unlock;
4538
4539 lp.sched_priority = p->rt_priority;
4540 read_unlock(&tasklist_lock);
4541
4542 /*
4543 * This one might sleep, we cannot do it with a spinlock held ...
4544 */
4545 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4546
1da177e4
LT
4547 return retval;
4548
4549out_unlock:
4550 read_unlock(&tasklist_lock);
4551 return retval;
4552}
4553
4554long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4555{
1da177e4 4556 cpumask_t cpus_allowed;
36c8b586
IM
4557 struct task_struct *p;
4558 int retval;
1da177e4 4559
95402b38 4560 get_online_cpus();
1da177e4
LT
4561 read_lock(&tasklist_lock);
4562
4563 p = find_process_by_pid(pid);
4564 if (!p) {
4565 read_unlock(&tasklist_lock);
95402b38 4566 put_online_cpus();
1da177e4
LT
4567 return -ESRCH;
4568 }
4569
4570 /*
4571 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4572 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4573 * usage count and then drop tasklist_lock.
4574 */
4575 get_task_struct(p);
4576 read_unlock(&tasklist_lock);
4577
4578 retval = -EPERM;
4579 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4580 !capable(CAP_SYS_NICE))
4581 goto out_unlock;
4582
e7834f8f
DQ
4583 retval = security_task_setscheduler(p, 0, NULL);
4584 if (retval)
4585 goto out_unlock;
4586
1da177e4
LT
4587 cpus_allowed = cpuset_cpus_allowed(p);
4588 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4589 again:
1da177e4
LT
4590 retval = set_cpus_allowed(p, new_mask);
4591
8707d8b8
PM
4592 if (!retval) {
4593 cpus_allowed = cpuset_cpus_allowed(p);
4594 if (!cpus_subset(new_mask, cpus_allowed)) {
4595 /*
4596 * We must have raced with a concurrent cpuset
4597 * update. Just reset the cpus_allowed to the
4598 * cpuset's cpus_allowed
4599 */
4600 new_mask = cpus_allowed;
4601 goto again;
4602 }
4603 }
1da177e4
LT
4604out_unlock:
4605 put_task_struct(p);
95402b38 4606 put_online_cpus();
1da177e4
LT
4607 return retval;
4608}
4609
4610static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4611 cpumask_t *new_mask)
4612{
4613 if (len < sizeof(cpumask_t)) {
4614 memset(new_mask, 0, sizeof(cpumask_t));
4615 } else if (len > sizeof(cpumask_t)) {
4616 len = sizeof(cpumask_t);
4617 }
4618 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4619}
4620
4621/**
4622 * sys_sched_setaffinity - set the cpu affinity of a process
4623 * @pid: pid of the process
4624 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4625 * @user_mask_ptr: user-space pointer to the new cpu mask
4626 */
4627asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4628 unsigned long __user *user_mask_ptr)
4629{
4630 cpumask_t new_mask;
4631 int retval;
4632
4633 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4634 if (retval)
4635 return retval;
4636
4637 return sched_setaffinity(pid, new_mask);
4638}
4639
4640/*
4641 * Represents all cpu's present in the system
4642 * In systems capable of hotplug, this map could dynamically grow
4643 * as new cpu's are detected in the system via any platform specific
4644 * method, such as ACPI for e.g.
4645 */
4646
4cef0c61 4647cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4648EXPORT_SYMBOL(cpu_present_map);
4649
4650#ifndef CONFIG_SMP
4cef0c61 4651cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4652EXPORT_SYMBOL(cpu_online_map);
4653
4cef0c61 4654cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4655EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4656#endif
4657
4658long sched_getaffinity(pid_t pid, cpumask_t *mask)
4659{
36c8b586 4660 struct task_struct *p;
1da177e4 4661 int retval;
1da177e4 4662
95402b38 4663 get_online_cpus();
1da177e4
LT
4664 read_lock(&tasklist_lock);
4665
4666 retval = -ESRCH;
4667 p = find_process_by_pid(pid);
4668 if (!p)
4669 goto out_unlock;
4670
e7834f8f
DQ
4671 retval = security_task_getscheduler(p);
4672 if (retval)
4673 goto out_unlock;
4674
2f7016d9 4675 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4676
4677out_unlock:
4678 read_unlock(&tasklist_lock);
95402b38 4679 put_online_cpus();
1da177e4 4680
9531b62f 4681 return retval;
1da177e4
LT
4682}
4683
4684/**
4685 * sys_sched_getaffinity - get the cpu affinity of a process
4686 * @pid: pid of the process
4687 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4688 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4689 */
4690asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4691 unsigned long __user *user_mask_ptr)
4692{
4693 int ret;
4694 cpumask_t mask;
4695
4696 if (len < sizeof(cpumask_t))
4697 return -EINVAL;
4698
4699 ret = sched_getaffinity(pid, &mask);
4700 if (ret < 0)
4701 return ret;
4702
4703 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4704 return -EFAULT;
4705
4706 return sizeof(cpumask_t);
4707}
4708
4709/**
4710 * sys_sched_yield - yield the current processor to other threads.
4711 *
dd41f596
IM
4712 * This function yields the current CPU to other tasks. If there are no
4713 * other threads running on this CPU then this function will return.
1da177e4
LT
4714 */
4715asmlinkage long sys_sched_yield(void)
4716{
70b97a7f 4717 struct rq *rq = this_rq_lock();
1da177e4 4718
2d72376b 4719 schedstat_inc(rq, yld_count);
4530d7ab 4720 current->sched_class->yield_task(rq);
1da177e4
LT
4721
4722 /*
4723 * Since we are going to call schedule() anyway, there's
4724 * no need to preempt or enable interrupts:
4725 */
4726 __release(rq->lock);
8a25d5de 4727 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4728 _raw_spin_unlock(&rq->lock);
4729 preempt_enable_no_resched();
4730
4731 schedule();
4732
4733 return 0;
4734}
4735
e7b38404 4736static void __cond_resched(void)
1da177e4 4737{
8e0a43d8
IM
4738#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4739 __might_sleep(__FILE__, __LINE__);
4740#endif
5bbcfd90
IM
4741 /*
4742 * The BKS might be reacquired before we have dropped
4743 * PREEMPT_ACTIVE, which could trigger a second
4744 * cond_resched() call.
4745 */
1da177e4
LT
4746 do {
4747 add_preempt_count(PREEMPT_ACTIVE);
4748 schedule();
4749 sub_preempt_count(PREEMPT_ACTIVE);
4750 } while (need_resched());
4751}
4752
4753int __sched cond_resched(void)
4754{
9414232f
IM
4755 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4756 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4757 __cond_resched();
4758 return 1;
4759 }
4760 return 0;
4761}
1da177e4
LT
4762EXPORT_SYMBOL(cond_resched);
4763
4764/*
4765 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4766 * call schedule, and on return reacquire the lock.
4767 *
41a2d6cf 4768 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4769 * operations here to prevent schedule() from being called twice (once via
4770 * spin_unlock(), once by hand).
4771 */
95cdf3b7 4772int cond_resched_lock(spinlock_t *lock)
1da177e4 4773{
6df3cecb
JK
4774 int ret = 0;
4775
1da177e4
LT
4776 if (need_lockbreak(lock)) {
4777 spin_unlock(lock);
4778 cpu_relax();
6df3cecb 4779 ret = 1;
1da177e4
LT
4780 spin_lock(lock);
4781 }
9414232f 4782 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4783 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4784 _raw_spin_unlock(lock);
4785 preempt_enable_no_resched();
4786 __cond_resched();
6df3cecb 4787 ret = 1;
1da177e4 4788 spin_lock(lock);
1da177e4 4789 }
6df3cecb 4790 return ret;
1da177e4 4791}
1da177e4
LT
4792EXPORT_SYMBOL(cond_resched_lock);
4793
4794int __sched cond_resched_softirq(void)
4795{
4796 BUG_ON(!in_softirq());
4797
9414232f 4798 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4799 local_bh_enable();
1da177e4
LT
4800 __cond_resched();
4801 local_bh_disable();
4802 return 1;
4803 }
4804 return 0;
4805}
1da177e4
LT
4806EXPORT_SYMBOL(cond_resched_softirq);
4807
1da177e4
LT
4808/**
4809 * yield - yield the current processor to other threads.
4810 *
72fd4a35 4811 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4812 * thread runnable and calls sys_sched_yield().
4813 */
4814void __sched yield(void)
4815{
4816 set_current_state(TASK_RUNNING);
4817 sys_sched_yield();
4818}
1da177e4
LT
4819EXPORT_SYMBOL(yield);
4820
4821/*
41a2d6cf 4822 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4823 * that process accounting knows that this is a task in IO wait state.
4824 *
4825 * But don't do that if it is a deliberate, throttling IO wait (this task
4826 * has set its backing_dev_info: the queue against which it should throttle)
4827 */
4828void __sched io_schedule(void)
4829{
70b97a7f 4830 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4831
0ff92245 4832 delayacct_blkio_start();
1da177e4
LT
4833 atomic_inc(&rq->nr_iowait);
4834 schedule();
4835 atomic_dec(&rq->nr_iowait);
0ff92245 4836 delayacct_blkio_end();
1da177e4 4837}
1da177e4
LT
4838EXPORT_SYMBOL(io_schedule);
4839
4840long __sched io_schedule_timeout(long timeout)
4841{
70b97a7f 4842 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4843 long ret;
4844
0ff92245 4845 delayacct_blkio_start();
1da177e4
LT
4846 atomic_inc(&rq->nr_iowait);
4847 ret = schedule_timeout(timeout);
4848 atomic_dec(&rq->nr_iowait);
0ff92245 4849 delayacct_blkio_end();
1da177e4
LT
4850 return ret;
4851}
4852
4853/**
4854 * sys_sched_get_priority_max - return maximum RT priority.
4855 * @policy: scheduling class.
4856 *
4857 * this syscall returns the maximum rt_priority that can be used
4858 * by a given scheduling class.
4859 */
4860asmlinkage long sys_sched_get_priority_max(int policy)
4861{
4862 int ret = -EINVAL;
4863
4864 switch (policy) {
4865 case SCHED_FIFO:
4866 case SCHED_RR:
4867 ret = MAX_USER_RT_PRIO-1;
4868 break;
4869 case SCHED_NORMAL:
b0a9499c 4870 case SCHED_BATCH:
dd41f596 4871 case SCHED_IDLE:
1da177e4
LT
4872 ret = 0;
4873 break;
4874 }
4875 return ret;
4876}
4877
4878/**
4879 * sys_sched_get_priority_min - return minimum RT priority.
4880 * @policy: scheduling class.
4881 *
4882 * this syscall returns the minimum rt_priority that can be used
4883 * by a given scheduling class.
4884 */
4885asmlinkage long sys_sched_get_priority_min(int policy)
4886{
4887 int ret = -EINVAL;
4888
4889 switch (policy) {
4890 case SCHED_FIFO:
4891 case SCHED_RR:
4892 ret = 1;
4893 break;
4894 case SCHED_NORMAL:
b0a9499c 4895 case SCHED_BATCH:
dd41f596 4896 case SCHED_IDLE:
1da177e4
LT
4897 ret = 0;
4898 }
4899 return ret;
4900}
4901
4902/**
4903 * sys_sched_rr_get_interval - return the default timeslice of a process.
4904 * @pid: pid of the process.
4905 * @interval: userspace pointer to the timeslice value.
4906 *
4907 * this syscall writes the default timeslice value of a given process
4908 * into the user-space timespec buffer. A value of '0' means infinity.
4909 */
4910asmlinkage
4911long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4912{
36c8b586 4913 struct task_struct *p;
a4ec24b4 4914 unsigned int time_slice;
3a5c359a 4915 int retval;
1da177e4 4916 struct timespec t;
1da177e4
LT
4917
4918 if (pid < 0)
3a5c359a 4919 return -EINVAL;
1da177e4
LT
4920
4921 retval = -ESRCH;
4922 read_lock(&tasklist_lock);
4923 p = find_process_by_pid(pid);
4924 if (!p)
4925 goto out_unlock;
4926
4927 retval = security_task_getscheduler(p);
4928 if (retval)
4929 goto out_unlock;
4930
77034937
IM
4931 /*
4932 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4933 * tasks that are on an otherwise idle runqueue:
4934 */
4935 time_slice = 0;
4936 if (p->policy == SCHED_RR) {
a4ec24b4 4937 time_slice = DEF_TIMESLICE;
77034937 4938 } else {
a4ec24b4
DA
4939 struct sched_entity *se = &p->se;
4940 unsigned long flags;
4941 struct rq *rq;
4942
4943 rq = task_rq_lock(p, &flags);
77034937
IM
4944 if (rq->cfs.load.weight)
4945 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
4946 task_rq_unlock(rq, &flags);
4947 }
1da177e4 4948 read_unlock(&tasklist_lock);
a4ec24b4 4949 jiffies_to_timespec(time_slice, &t);
1da177e4 4950 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4951 return retval;
3a5c359a 4952
1da177e4
LT
4953out_unlock:
4954 read_unlock(&tasklist_lock);
4955 return retval;
4956}
4957
2ed6e34f 4958static const char stat_nam[] = "RSDTtZX";
36c8b586 4959
82a1fcb9 4960void sched_show_task(struct task_struct *p)
1da177e4 4961{
1da177e4 4962 unsigned long free = 0;
36c8b586 4963 unsigned state;
1da177e4 4964
1da177e4 4965 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4966 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4967 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4968#if BITS_PER_LONG == 32
1da177e4 4969 if (state == TASK_RUNNING)
cc4ea795 4970 printk(KERN_CONT " running ");
1da177e4 4971 else
cc4ea795 4972 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4973#else
4974 if (state == TASK_RUNNING)
cc4ea795 4975 printk(KERN_CONT " running task ");
1da177e4 4976 else
cc4ea795 4977 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4978#endif
4979#ifdef CONFIG_DEBUG_STACK_USAGE
4980 {
10ebffde 4981 unsigned long *n = end_of_stack(p);
1da177e4
LT
4982 while (!*n)
4983 n++;
10ebffde 4984 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4985 }
4986#endif
ba25f9dc 4987 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 4988 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4
LT
4989
4990 if (state != TASK_RUNNING)
4991 show_stack(p, NULL);
4992}
4993
e59e2ae2 4994void show_state_filter(unsigned long state_filter)
1da177e4 4995{
36c8b586 4996 struct task_struct *g, *p;
1da177e4 4997
4bd77321
IM
4998#if BITS_PER_LONG == 32
4999 printk(KERN_INFO
5000 " task PC stack pid father\n");
1da177e4 5001#else
4bd77321
IM
5002 printk(KERN_INFO
5003 " task PC stack pid father\n");
1da177e4
LT
5004#endif
5005 read_lock(&tasklist_lock);
5006 do_each_thread(g, p) {
5007 /*
5008 * reset the NMI-timeout, listing all files on a slow
5009 * console might take alot of time:
5010 */
5011 touch_nmi_watchdog();
39bc89fd 5012 if (!state_filter || (p->state & state_filter))
82a1fcb9 5013 sched_show_task(p);
1da177e4
LT
5014 } while_each_thread(g, p);
5015
04c9167f
JF
5016 touch_all_softlockup_watchdogs();
5017
dd41f596
IM
5018#ifdef CONFIG_SCHED_DEBUG
5019 sysrq_sched_debug_show();
5020#endif
1da177e4 5021 read_unlock(&tasklist_lock);
e59e2ae2
IM
5022 /*
5023 * Only show locks if all tasks are dumped:
5024 */
5025 if (state_filter == -1)
5026 debug_show_all_locks();
1da177e4
LT
5027}
5028
1df21055
IM
5029void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5030{
dd41f596 5031 idle->sched_class = &idle_sched_class;
1df21055
IM
5032}
5033
f340c0d1
IM
5034/**
5035 * init_idle - set up an idle thread for a given CPU
5036 * @idle: task in question
5037 * @cpu: cpu the idle task belongs to
5038 *
5039 * NOTE: this function does not set the idle thread's NEED_RESCHED
5040 * flag, to make booting more robust.
5041 */
5c1e1767 5042void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5043{
70b97a7f 5044 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5045 unsigned long flags;
5046
dd41f596
IM
5047 __sched_fork(idle);
5048 idle->se.exec_start = sched_clock();
5049
b29739f9 5050 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5051 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5052 __set_task_cpu(idle, cpu);
1da177e4
LT
5053
5054 spin_lock_irqsave(&rq->lock, flags);
5055 rq->curr = rq->idle = idle;
4866cde0
NP
5056#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5057 idle->oncpu = 1;
5058#endif
1da177e4
LT
5059 spin_unlock_irqrestore(&rq->lock, flags);
5060
5061 /* Set the preempt count _outside_ the spinlocks! */
5062#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 5063 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 5064#else
a1261f54 5065 task_thread_info(idle)->preempt_count = 0;
1da177e4 5066#endif
dd41f596
IM
5067 /*
5068 * The idle tasks have their own, simple scheduling class:
5069 */
5070 idle->sched_class = &idle_sched_class;
1da177e4
LT
5071}
5072
5073/*
5074 * In a system that switches off the HZ timer nohz_cpu_mask
5075 * indicates which cpus entered this state. This is used
5076 * in the rcu update to wait only for active cpus. For system
5077 * which do not switch off the HZ timer nohz_cpu_mask should
5078 * always be CPU_MASK_NONE.
5079 */
5080cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5081
19978ca6
IM
5082/*
5083 * Increase the granularity value when there are more CPUs,
5084 * because with more CPUs the 'effective latency' as visible
5085 * to users decreases. But the relationship is not linear,
5086 * so pick a second-best guess by going with the log2 of the
5087 * number of CPUs.
5088 *
5089 * This idea comes from the SD scheduler of Con Kolivas:
5090 */
5091static inline void sched_init_granularity(void)
5092{
5093 unsigned int factor = 1 + ilog2(num_online_cpus());
5094 const unsigned long limit = 200000000;
5095
5096 sysctl_sched_min_granularity *= factor;
5097 if (sysctl_sched_min_granularity > limit)
5098 sysctl_sched_min_granularity = limit;
5099
5100 sysctl_sched_latency *= factor;
5101 if (sysctl_sched_latency > limit)
5102 sysctl_sched_latency = limit;
5103
5104 sysctl_sched_wakeup_granularity *= factor;
5105 sysctl_sched_batch_wakeup_granularity *= factor;
5106}
5107
1da177e4
LT
5108#ifdef CONFIG_SMP
5109/*
5110 * This is how migration works:
5111 *
70b97a7f 5112 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5113 * runqueue and wake up that CPU's migration thread.
5114 * 2) we down() the locked semaphore => thread blocks.
5115 * 3) migration thread wakes up (implicitly it forces the migrated
5116 * thread off the CPU)
5117 * 4) it gets the migration request and checks whether the migrated
5118 * task is still in the wrong runqueue.
5119 * 5) if it's in the wrong runqueue then the migration thread removes
5120 * it and puts it into the right queue.
5121 * 6) migration thread up()s the semaphore.
5122 * 7) we wake up and the migration is done.
5123 */
5124
5125/*
5126 * Change a given task's CPU affinity. Migrate the thread to a
5127 * proper CPU and schedule it away if the CPU it's executing on
5128 * is removed from the allowed bitmask.
5129 *
5130 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5131 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5132 * call is not atomic; no spinlocks may be held.
5133 */
36c8b586 5134int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5135{
70b97a7f 5136 struct migration_req req;
1da177e4 5137 unsigned long flags;
70b97a7f 5138 struct rq *rq;
48f24c4d 5139 int ret = 0;
1da177e4
LT
5140
5141 rq = task_rq_lock(p, &flags);
5142 if (!cpus_intersects(new_mask, cpu_online_map)) {
5143 ret = -EINVAL;
5144 goto out;
5145 }
5146
5147 p->cpus_allowed = new_mask;
5148 /* Can the task run on the task's current CPU? If so, we're done */
5149 if (cpu_isset(task_cpu(p), new_mask))
5150 goto out;
5151
5152 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5153 /* Need help from migration thread: drop lock and wait. */
5154 task_rq_unlock(rq, &flags);
5155 wake_up_process(rq->migration_thread);
5156 wait_for_completion(&req.done);
5157 tlb_migrate_finish(p->mm);
5158 return 0;
5159 }
5160out:
5161 task_rq_unlock(rq, &flags);
48f24c4d 5162
1da177e4
LT
5163 return ret;
5164}
1da177e4
LT
5165EXPORT_SYMBOL_GPL(set_cpus_allowed);
5166
5167/*
41a2d6cf 5168 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5169 * this because either it can't run here any more (set_cpus_allowed()
5170 * away from this CPU, or CPU going down), or because we're
5171 * attempting to rebalance this task on exec (sched_exec).
5172 *
5173 * So we race with normal scheduler movements, but that's OK, as long
5174 * as the task is no longer on this CPU.
efc30814
KK
5175 *
5176 * Returns non-zero if task was successfully migrated.
1da177e4 5177 */
efc30814 5178static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5179{
70b97a7f 5180 struct rq *rq_dest, *rq_src;
dd41f596 5181 int ret = 0, on_rq;
1da177e4
LT
5182
5183 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5184 return ret;
1da177e4
LT
5185
5186 rq_src = cpu_rq(src_cpu);
5187 rq_dest = cpu_rq(dest_cpu);
5188
5189 double_rq_lock(rq_src, rq_dest);
5190 /* Already moved. */
5191 if (task_cpu(p) != src_cpu)
5192 goto out;
5193 /* Affinity changed (again). */
5194 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5195 goto out;
5196
dd41f596 5197 on_rq = p->se.on_rq;
6e82a3be 5198 if (on_rq)
2e1cb74a 5199 deactivate_task(rq_src, p, 0);
6e82a3be 5200
1da177e4 5201 set_task_cpu(p, dest_cpu);
dd41f596
IM
5202 if (on_rq) {
5203 activate_task(rq_dest, p, 0);
5204 check_preempt_curr(rq_dest, p);
1da177e4 5205 }
efc30814 5206 ret = 1;
1da177e4
LT
5207out:
5208 double_rq_unlock(rq_src, rq_dest);
efc30814 5209 return ret;
1da177e4
LT
5210}
5211
5212/*
5213 * migration_thread - this is a highprio system thread that performs
5214 * thread migration by bumping thread off CPU then 'pushing' onto
5215 * another runqueue.
5216 */
95cdf3b7 5217static int migration_thread(void *data)
1da177e4 5218{
1da177e4 5219 int cpu = (long)data;
70b97a7f 5220 struct rq *rq;
1da177e4
LT
5221
5222 rq = cpu_rq(cpu);
5223 BUG_ON(rq->migration_thread != current);
5224
5225 set_current_state(TASK_INTERRUPTIBLE);
5226 while (!kthread_should_stop()) {
70b97a7f 5227 struct migration_req *req;
1da177e4 5228 struct list_head *head;
1da177e4 5229
1da177e4
LT
5230 spin_lock_irq(&rq->lock);
5231
5232 if (cpu_is_offline(cpu)) {
5233 spin_unlock_irq(&rq->lock);
5234 goto wait_to_die;
5235 }
5236
5237 if (rq->active_balance) {
5238 active_load_balance(rq, cpu);
5239 rq->active_balance = 0;
5240 }
5241
5242 head = &rq->migration_queue;
5243
5244 if (list_empty(head)) {
5245 spin_unlock_irq(&rq->lock);
5246 schedule();
5247 set_current_state(TASK_INTERRUPTIBLE);
5248 continue;
5249 }
70b97a7f 5250 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5251 list_del_init(head->next);
5252
674311d5
NP
5253 spin_unlock(&rq->lock);
5254 __migrate_task(req->task, cpu, req->dest_cpu);
5255 local_irq_enable();
1da177e4
LT
5256
5257 complete(&req->done);
5258 }
5259 __set_current_state(TASK_RUNNING);
5260 return 0;
5261
5262wait_to_die:
5263 /* Wait for kthread_stop */
5264 set_current_state(TASK_INTERRUPTIBLE);
5265 while (!kthread_should_stop()) {
5266 schedule();
5267 set_current_state(TASK_INTERRUPTIBLE);
5268 }
5269 __set_current_state(TASK_RUNNING);
5270 return 0;
5271}
5272
5273#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5274
5275static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5276{
5277 int ret;
5278
5279 local_irq_disable();
5280 ret = __migrate_task(p, src_cpu, dest_cpu);
5281 local_irq_enable();
5282 return ret;
5283}
5284
054b9108 5285/*
3a4fa0a2 5286 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5287 * NOTE: interrupts should be disabled by the caller
5288 */
48f24c4d 5289static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5290{
efc30814 5291 unsigned long flags;
1da177e4 5292 cpumask_t mask;
70b97a7f
IM
5293 struct rq *rq;
5294 int dest_cpu;
1da177e4 5295
3a5c359a
AK
5296 do {
5297 /* On same node? */
5298 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5299 cpus_and(mask, mask, p->cpus_allowed);
5300 dest_cpu = any_online_cpu(mask);
5301
5302 /* On any allowed CPU? */
5303 if (dest_cpu == NR_CPUS)
5304 dest_cpu = any_online_cpu(p->cpus_allowed);
5305
5306 /* No more Mr. Nice Guy. */
5307 if (dest_cpu == NR_CPUS) {
470fd646
CW
5308 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5309 /*
5310 * Try to stay on the same cpuset, where the
5311 * current cpuset may be a subset of all cpus.
5312 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5313 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5314 * called within calls to cpuset_lock/cpuset_unlock.
5315 */
3a5c359a 5316 rq = task_rq_lock(p, &flags);
470fd646 5317 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5318 dest_cpu = any_online_cpu(p->cpus_allowed);
5319 task_rq_unlock(rq, &flags);
1da177e4 5320
3a5c359a
AK
5321 /*
5322 * Don't tell them about moving exiting tasks or
5323 * kernel threads (both mm NULL), since they never
5324 * leave kernel.
5325 */
41a2d6cf 5326 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5327 printk(KERN_INFO "process %d (%s) no "
5328 "longer affine to cpu%d\n",
41a2d6cf
IM
5329 task_pid_nr(p), p->comm, dead_cpu);
5330 }
3a5c359a 5331 }
f7b4cddc 5332 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5333}
5334
5335/*
5336 * While a dead CPU has no uninterruptible tasks queued at this point,
5337 * it might still have a nonzero ->nr_uninterruptible counter, because
5338 * for performance reasons the counter is not stricly tracking tasks to
5339 * their home CPUs. So we just add the counter to another CPU's counter,
5340 * to keep the global sum constant after CPU-down:
5341 */
70b97a7f 5342static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5343{
70b97a7f 5344 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5345 unsigned long flags;
5346
5347 local_irq_save(flags);
5348 double_rq_lock(rq_src, rq_dest);
5349 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5350 rq_src->nr_uninterruptible = 0;
5351 double_rq_unlock(rq_src, rq_dest);
5352 local_irq_restore(flags);
5353}
5354
5355/* Run through task list and migrate tasks from the dead cpu. */
5356static void migrate_live_tasks(int src_cpu)
5357{
48f24c4d 5358 struct task_struct *p, *t;
1da177e4 5359
f7b4cddc 5360 read_lock(&tasklist_lock);
1da177e4 5361
48f24c4d
IM
5362 do_each_thread(t, p) {
5363 if (p == current)
1da177e4
LT
5364 continue;
5365
48f24c4d
IM
5366 if (task_cpu(p) == src_cpu)
5367 move_task_off_dead_cpu(src_cpu, p);
5368 } while_each_thread(t, p);
1da177e4 5369
f7b4cddc 5370 read_unlock(&tasklist_lock);
1da177e4
LT
5371}
5372
dd41f596
IM
5373/*
5374 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5375 * It does so by boosting its priority to highest possible.
5376 * Used by CPU offline code.
1da177e4
LT
5377 */
5378void sched_idle_next(void)
5379{
48f24c4d 5380 int this_cpu = smp_processor_id();
70b97a7f 5381 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5382 struct task_struct *p = rq->idle;
5383 unsigned long flags;
5384
5385 /* cpu has to be offline */
48f24c4d 5386 BUG_ON(cpu_online(this_cpu));
1da177e4 5387
48f24c4d
IM
5388 /*
5389 * Strictly not necessary since rest of the CPUs are stopped by now
5390 * and interrupts disabled on the current cpu.
1da177e4
LT
5391 */
5392 spin_lock_irqsave(&rq->lock, flags);
5393
dd41f596 5394 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5395
94bc9a7b
DA
5396 update_rq_clock(rq);
5397 activate_task(rq, p, 0);
1da177e4
LT
5398
5399 spin_unlock_irqrestore(&rq->lock, flags);
5400}
5401
48f24c4d
IM
5402/*
5403 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5404 * offline.
5405 */
5406void idle_task_exit(void)
5407{
5408 struct mm_struct *mm = current->active_mm;
5409
5410 BUG_ON(cpu_online(smp_processor_id()));
5411
5412 if (mm != &init_mm)
5413 switch_mm(mm, &init_mm, current);
5414 mmdrop(mm);
5415}
5416
054b9108 5417/* called under rq->lock with disabled interrupts */
36c8b586 5418static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5419{
70b97a7f 5420 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5421
5422 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5423 BUG_ON(!p->exit_state);
1da177e4
LT
5424
5425 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5426 BUG_ON(p->state == TASK_DEAD);
1da177e4 5427
48f24c4d 5428 get_task_struct(p);
1da177e4
LT
5429
5430 /*
5431 * Drop lock around migration; if someone else moves it,
41a2d6cf 5432 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5433 * fine.
5434 */
f7b4cddc 5435 spin_unlock_irq(&rq->lock);
48f24c4d 5436 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5437 spin_lock_irq(&rq->lock);
1da177e4 5438
48f24c4d 5439 put_task_struct(p);
1da177e4
LT
5440}
5441
5442/* release_task() removes task from tasklist, so we won't find dead tasks. */
5443static void migrate_dead_tasks(unsigned int dead_cpu)
5444{
70b97a7f 5445 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5446 struct task_struct *next;
48f24c4d 5447
dd41f596
IM
5448 for ( ; ; ) {
5449 if (!rq->nr_running)
5450 break;
a8e504d2 5451 update_rq_clock(rq);
ff95f3df 5452 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5453 if (!next)
5454 break;
5455 migrate_dead(dead_cpu, next);
e692ab53 5456
1da177e4
LT
5457 }
5458}
5459#endif /* CONFIG_HOTPLUG_CPU */
5460
e692ab53
NP
5461#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5462
5463static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5464 {
5465 .procname = "sched_domain",
c57baf1e 5466 .mode = 0555,
e0361851 5467 },
38605cae 5468 {0, },
e692ab53
NP
5469};
5470
5471static struct ctl_table sd_ctl_root[] = {
e0361851 5472 {
c57baf1e 5473 .ctl_name = CTL_KERN,
e0361851 5474 .procname = "kernel",
c57baf1e 5475 .mode = 0555,
e0361851
AD
5476 .child = sd_ctl_dir,
5477 },
38605cae 5478 {0, },
e692ab53
NP
5479};
5480
5481static struct ctl_table *sd_alloc_ctl_entry(int n)
5482{
5483 struct ctl_table *entry =
5cf9f062 5484 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5485
e692ab53
NP
5486 return entry;
5487}
5488
6382bc90
MM
5489static void sd_free_ctl_entry(struct ctl_table **tablep)
5490{
cd790076 5491 struct ctl_table *entry;
6382bc90 5492
cd790076
MM
5493 /*
5494 * In the intermediate directories, both the child directory and
5495 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5496 * will always be set. In the lowest directory the names are
cd790076
MM
5497 * static strings and all have proc handlers.
5498 */
5499 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5500 if (entry->child)
5501 sd_free_ctl_entry(&entry->child);
cd790076
MM
5502 if (entry->proc_handler == NULL)
5503 kfree(entry->procname);
5504 }
6382bc90
MM
5505
5506 kfree(*tablep);
5507 *tablep = NULL;
5508}
5509
e692ab53 5510static void
e0361851 5511set_table_entry(struct ctl_table *entry,
e692ab53
NP
5512 const char *procname, void *data, int maxlen,
5513 mode_t mode, proc_handler *proc_handler)
5514{
e692ab53
NP
5515 entry->procname = procname;
5516 entry->data = data;
5517 entry->maxlen = maxlen;
5518 entry->mode = mode;
5519 entry->proc_handler = proc_handler;
5520}
5521
5522static struct ctl_table *
5523sd_alloc_ctl_domain_table(struct sched_domain *sd)
5524{
ace8b3d6 5525 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5526
ad1cdc1d
MM
5527 if (table == NULL)
5528 return NULL;
5529
e0361851 5530 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5531 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5532 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5533 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5534 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5535 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5536 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5537 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5538 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5539 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5540 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5541 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5542 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5543 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5544 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5545 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5546 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5547 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5548 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5549 &sd->cache_nice_tries,
5550 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5551 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5552 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5553 /* &table[11] is terminator */
e692ab53
NP
5554
5555 return table;
5556}
5557
9a4e7159 5558static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5559{
5560 struct ctl_table *entry, *table;
5561 struct sched_domain *sd;
5562 int domain_num = 0, i;
5563 char buf[32];
5564
5565 for_each_domain(cpu, sd)
5566 domain_num++;
5567 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5568 if (table == NULL)
5569 return NULL;
e692ab53
NP
5570
5571 i = 0;
5572 for_each_domain(cpu, sd) {
5573 snprintf(buf, 32, "domain%d", i);
e692ab53 5574 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5575 entry->mode = 0555;
e692ab53
NP
5576 entry->child = sd_alloc_ctl_domain_table(sd);
5577 entry++;
5578 i++;
5579 }
5580 return table;
5581}
5582
5583static struct ctl_table_header *sd_sysctl_header;
6382bc90 5584static void register_sched_domain_sysctl(void)
e692ab53
NP
5585{
5586 int i, cpu_num = num_online_cpus();
5587 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5588 char buf[32];
5589
7378547f
MM
5590 WARN_ON(sd_ctl_dir[0].child);
5591 sd_ctl_dir[0].child = entry;
5592
ad1cdc1d
MM
5593 if (entry == NULL)
5594 return;
5595
97b6ea7b 5596 for_each_online_cpu(i) {
e692ab53 5597 snprintf(buf, 32, "cpu%d", i);
e692ab53 5598 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5599 entry->mode = 0555;
e692ab53 5600 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5601 entry++;
e692ab53 5602 }
7378547f
MM
5603
5604 WARN_ON(sd_sysctl_header);
e692ab53
NP
5605 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5606}
6382bc90 5607
7378547f 5608/* may be called multiple times per register */
6382bc90
MM
5609static void unregister_sched_domain_sysctl(void)
5610{
7378547f
MM
5611 if (sd_sysctl_header)
5612 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5613 sd_sysctl_header = NULL;
7378547f
MM
5614 if (sd_ctl_dir[0].child)
5615 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5616}
e692ab53 5617#else
6382bc90
MM
5618static void register_sched_domain_sysctl(void)
5619{
5620}
5621static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5622{
5623}
5624#endif
5625
1da177e4
LT
5626/*
5627 * migration_call - callback that gets triggered when a CPU is added.
5628 * Here we can start up the necessary migration thread for the new CPU.
5629 */
48f24c4d
IM
5630static int __cpuinit
5631migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5632{
1da177e4 5633 struct task_struct *p;
48f24c4d 5634 int cpu = (long)hcpu;
1da177e4 5635 unsigned long flags;
70b97a7f 5636 struct rq *rq;
1da177e4
LT
5637
5638 switch (action) {
5be9361c 5639
1da177e4 5640 case CPU_UP_PREPARE:
8bb78442 5641 case CPU_UP_PREPARE_FROZEN:
dd41f596 5642 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5643 if (IS_ERR(p))
5644 return NOTIFY_BAD;
1da177e4
LT
5645 kthread_bind(p, cpu);
5646 /* Must be high prio: stop_machine expects to yield to it. */
5647 rq = task_rq_lock(p, &flags);
dd41f596 5648 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5649 task_rq_unlock(rq, &flags);
5650 cpu_rq(cpu)->migration_thread = p;
5651 break;
48f24c4d 5652
1da177e4 5653 case CPU_ONLINE:
8bb78442 5654 case CPU_ONLINE_FROZEN:
3a4fa0a2 5655 /* Strictly unnecessary, as first user will wake it. */
1da177e4
LT
5656 wake_up_process(cpu_rq(cpu)->migration_thread);
5657 break;
48f24c4d 5658
1da177e4
LT
5659#ifdef CONFIG_HOTPLUG_CPU
5660 case CPU_UP_CANCELED:
8bb78442 5661 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5662 if (!cpu_rq(cpu)->migration_thread)
5663 break;
41a2d6cf 5664 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5665 kthread_bind(cpu_rq(cpu)->migration_thread,
5666 any_online_cpu(cpu_online_map));
1da177e4
LT
5667 kthread_stop(cpu_rq(cpu)->migration_thread);
5668 cpu_rq(cpu)->migration_thread = NULL;
5669 break;
48f24c4d 5670
1da177e4 5671 case CPU_DEAD:
8bb78442 5672 case CPU_DEAD_FROZEN:
470fd646 5673 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5674 migrate_live_tasks(cpu);
5675 rq = cpu_rq(cpu);
5676 kthread_stop(rq->migration_thread);
5677 rq->migration_thread = NULL;
5678 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5679 spin_lock_irq(&rq->lock);
a8e504d2 5680 update_rq_clock(rq);
2e1cb74a 5681 deactivate_task(rq, rq->idle, 0);
1da177e4 5682 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5683 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5684 rq->idle->sched_class = &idle_sched_class;
1da177e4 5685 migrate_dead_tasks(cpu);
d2da272a 5686 spin_unlock_irq(&rq->lock);
470fd646 5687 cpuset_unlock();
1da177e4
LT
5688 migrate_nr_uninterruptible(rq);
5689 BUG_ON(rq->nr_running != 0);
5690
41a2d6cf
IM
5691 /*
5692 * No need to migrate the tasks: it was best-effort if
5693 * they didn't take sched_hotcpu_mutex. Just wake up
5694 * the requestors.
5695 */
1da177e4
LT
5696 spin_lock_irq(&rq->lock);
5697 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5698 struct migration_req *req;
5699
1da177e4 5700 req = list_entry(rq->migration_queue.next,
70b97a7f 5701 struct migration_req, list);
1da177e4
LT
5702 list_del_init(&req->list);
5703 complete(&req->done);
5704 }
5705 spin_unlock_irq(&rq->lock);
5706 break;
5707#endif
5708 }
5709 return NOTIFY_OK;
5710}
5711
5712/* Register at highest priority so that task migration (migrate_all_tasks)
5713 * happens before everything else.
5714 */
26c2143b 5715static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5716 .notifier_call = migration_call,
5717 .priority = 10
5718};
5719
e6fe6649 5720void __init migration_init(void)
1da177e4
LT
5721{
5722 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5723 int err;
48f24c4d
IM
5724
5725 /* Start one for the boot CPU: */
07dccf33
AM
5726 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5727 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5728 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5729 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5730}
5731#endif
5732
5733#ifdef CONFIG_SMP
476f3534
CL
5734
5735/* Number of possible processor ids */
5736int nr_cpu_ids __read_mostly = NR_CPUS;
5737EXPORT_SYMBOL(nr_cpu_ids);
5738
3e9830dc 5739#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5740
5741static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5742{
4dcf6aff
IM
5743 struct sched_group *group = sd->groups;
5744 cpumask_t groupmask;
5745 char str[NR_CPUS];
1da177e4 5746
4dcf6aff
IM
5747 cpumask_scnprintf(str, NR_CPUS, sd->span);
5748 cpus_clear(groupmask);
5749
5750 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5751
5752 if (!(sd->flags & SD_LOAD_BALANCE)) {
5753 printk("does not load-balance\n");
5754 if (sd->parent)
5755 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5756 " has parent");
5757 return -1;
41c7ce9a
NP
5758 }
5759
4dcf6aff
IM
5760 printk(KERN_CONT "span %s\n", str);
5761
5762 if (!cpu_isset(cpu, sd->span)) {
5763 printk(KERN_ERR "ERROR: domain->span does not contain "
5764 "CPU%d\n", cpu);
5765 }
5766 if (!cpu_isset(cpu, group->cpumask)) {
5767 printk(KERN_ERR "ERROR: domain->groups does not contain"
5768 " CPU%d\n", cpu);
5769 }
1da177e4 5770
4dcf6aff 5771 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5772 do {
4dcf6aff
IM
5773 if (!group) {
5774 printk("\n");
5775 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5776 break;
5777 }
5778
4dcf6aff
IM
5779 if (!group->__cpu_power) {
5780 printk(KERN_CONT "\n");
5781 printk(KERN_ERR "ERROR: domain->cpu_power not "
5782 "set\n");
5783 break;
5784 }
1da177e4 5785
4dcf6aff
IM
5786 if (!cpus_weight(group->cpumask)) {
5787 printk(KERN_CONT "\n");
5788 printk(KERN_ERR "ERROR: empty group\n");
5789 break;
5790 }
1da177e4 5791
4dcf6aff
IM
5792 if (cpus_intersects(groupmask, group->cpumask)) {
5793 printk(KERN_CONT "\n");
5794 printk(KERN_ERR "ERROR: repeated CPUs\n");
5795 break;
5796 }
1da177e4 5797
4dcf6aff 5798 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5799
4dcf6aff
IM
5800 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5801 printk(KERN_CONT " %s", str);
1da177e4 5802
4dcf6aff
IM
5803 group = group->next;
5804 } while (group != sd->groups);
5805 printk(KERN_CONT "\n");
1da177e4 5806
4dcf6aff
IM
5807 if (!cpus_equal(sd->span, groupmask))
5808 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5809
4dcf6aff
IM
5810 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5811 printk(KERN_ERR "ERROR: parent span is not a superset "
5812 "of domain->span\n");
5813 return 0;
5814}
1da177e4 5815
4dcf6aff
IM
5816static void sched_domain_debug(struct sched_domain *sd, int cpu)
5817{
5818 int level = 0;
1da177e4 5819
4dcf6aff
IM
5820 if (!sd) {
5821 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5822 return;
5823 }
1da177e4 5824
4dcf6aff
IM
5825 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5826
5827 for (;;) {
5828 if (sched_domain_debug_one(sd, cpu, level))
5829 break;
1da177e4
LT
5830 level++;
5831 sd = sd->parent;
33859f7f 5832 if (!sd)
4dcf6aff
IM
5833 break;
5834 }
1da177e4
LT
5835}
5836#else
48f24c4d 5837# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5838#endif
5839
1a20ff27 5840static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5841{
5842 if (cpus_weight(sd->span) == 1)
5843 return 1;
5844
5845 /* Following flags need at least 2 groups */
5846 if (sd->flags & (SD_LOAD_BALANCE |
5847 SD_BALANCE_NEWIDLE |
5848 SD_BALANCE_FORK |
89c4710e
SS
5849 SD_BALANCE_EXEC |
5850 SD_SHARE_CPUPOWER |
5851 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5852 if (sd->groups != sd->groups->next)
5853 return 0;
5854 }
5855
5856 /* Following flags don't use groups */
5857 if (sd->flags & (SD_WAKE_IDLE |
5858 SD_WAKE_AFFINE |
5859 SD_WAKE_BALANCE))
5860 return 0;
5861
5862 return 1;
5863}
5864
48f24c4d
IM
5865static int
5866sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5867{
5868 unsigned long cflags = sd->flags, pflags = parent->flags;
5869
5870 if (sd_degenerate(parent))
5871 return 1;
5872
5873 if (!cpus_equal(sd->span, parent->span))
5874 return 0;
5875
5876 /* Does parent contain flags not in child? */
5877 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5878 if (cflags & SD_WAKE_AFFINE)
5879 pflags &= ~SD_WAKE_BALANCE;
5880 /* Flags needing groups don't count if only 1 group in parent */
5881 if (parent->groups == parent->groups->next) {
5882 pflags &= ~(SD_LOAD_BALANCE |
5883 SD_BALANCE_NEWIDLE |
5884 SD_BALANCE_FORK |
89c4710e
SS
5885 SD_BALANCE_EXEC |
5886 SD_SHARE_CPUPOWER |
5887 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5888 }
5889 if (~cflags & pflags)
5890 return 0;
5891
5892 return 1;
5893}
5894
1da177e4
LT
5895/*
5896 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5897 * hold the hotplug lock.
5898 */
9c1cfda2 5899static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5900{
70b97a7f 5901 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5902 struct sched_domain *tmp;
5903
5904 /* Remove the sched domains which do not contribute to scheduling. */
5905 for (tmp = sd; tmp; tmp = tmp->parent) {
5906 struct sched_domain *parent = tmp->parent;
5907 if (!parent)
5908 break;
1a848870 5909 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5910 tmp->parent = parent->parent;
1a848870
SS
5911 if (parent->parent)
5912 parent->parent->child = tmp;
5913 }
245af2c7
SS
5914 }
5915
1a848870 5916 if (sd && sd_degenerate(sd)) {
245af2c7 5917 sd = sd->parent;
1a848870
SS
5918 if (sd)
5919 sd->child = NULL;
5920 }
1da177e4
LT
5921
5922 sched_domain_debug(sd, cpu);
5923
674311d5 5924 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5925}
5926
5927/* cpus with isolated domains */
67af63a6 5928static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5929
5930/* Setup the mask of cpus configured for isolated domains */
5931static int __init isolated_cpu_setup(char *str)
5932{
5933 int ints[NR_CPUS], i;
5934
5935 str = get_options(str, ARRAY_SIZE(ints), ints);
5936 cpus_clear(cpu_isolated_map);
5937 for (i = 1; i <= ints[0]; i++)
5938 if (ints[i] < NR_CPUS)
5939 cpu_set(ints[i], cpu_isolated_map);
5940 return 1;
5941}
5942
8927f494 5943__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5944
5945/*
6711cab4
SS
5946 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5947 * to a function which identifies what group(along with sched group) a CPU
5948 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5949 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5950 *
5951 * init_sched_build_groups will build a circular linked list of the groups
5952 * covered by the given span, and will set each group's ->cpumask correctly,
5953 * and ->cpu_power to 0.
5954 */
a616058b 5955static void
6711cab4
SS
5956init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5957 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5958 struct sched_group **sg))
1da177e4
LT
5959{
5960 struct sched_group *first = NULL, *last = NULL;
5961 cpumask_t covered = CPU_MASK_NONE;
5962 int i;
5963
5964 for_each_cpu_mask(i, span) {
6711cab4
SS
5965 struct sched_group *sg;
5966 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5967 int j;
5968
5969 if (cpu_isset(i, covered))
5970 continue;
5971
5972 sg->cpumask = CPU_MASK_NONE;
5517d86b 5973 sg->__cpu_power = 0;
1da177e4
LT
5974
5975 for_each_cpu_mask(j, span) {
6711cab4 5976 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5977 continue;
5978
5979 cpu_set(j, covered);
5980 cpu_set(j, sg->cpumask);
5981 }
5982 if (!first)
5983 first = sg;
5984 if (last)
5985 last->next = sg;
5986 last = sg;
5987 }
5988 last->next = first;
5989}
5990
9c1cfda2 5991#define SD_NODES_PER_DOMAIN 16
1da177e4 5992
9c1cfda2 5993#ifdef CONFIG_NUMA
198e2f18 5994
9c1cfda2
JH
5995/**
5996 * find_next_best_node - find the next node to include in a sched_domain
5997 * @node: node whose sched_domain we're building
5998 * @used_nodes: nodes already in the sched_domain
5999 *
41a2d6cf 6000 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6001 * finds the closest node not already in the @used_nodes map.
6002 *
6003 * Should use nodemask_t.
6004 */
6005static int find_next_best_node(int node, unsigned long *used_nodes)
6006{
6007 int i, n, val, min_val, best_node = 0;
6008
6009 min_val = INT_MAX;
6010
6011 for (i = 0; i < MAX_NUMNODES; i++) {
6012 /* Start at @node */
6013 n = (node + i) % MAX_NUMNODES;
6014
6015 if (!nr_cpus_node(n))
6016 continue;
6017
6018 /* Skip already used nodes */
6019 if (test_bit(n, used_nodes))
6020 continue;
6021
6022 /* Simple min distance search */
6023 val = node_distance(node, n);
6024
6025 if (val < min_val) {
6026 min_val = val;
6027 best_node = n;
6028 }
6029 }
6030
6031 set_bit(best_node, used_nodes);
6032 return best_node;
6033}
6034
6035/**
6036 * sched_domain_node_span - get a cpumask for a node's sched_domain
6037 * @node: node whose cpumask we're constructing
6038 * @size: number of nodes to include in this span
6039 *
41a2d6cf 6040 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6041 * should be one that prevents unnecessary balancing, but also spreads tasks
6042 * out optimally.
6043 */
6044static cpumask_t sched_domain_node_span(int node)
6045{
9c1cfda2 6046 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6047 cpumask_t span, nodemask;
6048 int i;
9c1cfda2
JH
6049
6050 cpus_clear(span);
6051 bitmap_zero(used_nodes, MAX_NUMNODES);
6052
6053 nodemask = node_to_cpumask(node);
6054 cpus_or(span, span, nodemask);
6055 set_bit(node, used_nodes);
6056
6057 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6058 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6059
9c1cfda2
JH
6060 nodemask = node_to_cpumask(next_node);
6061 cpus_or(span, span, nodemask);
6062 }
6063
6064 return span;
6065}
6066#endif
6067
5c45bf27 6068int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6069
9c1cfda2 6070/*
48f24c4d 6071 * SMT sched-domains:
9c1cfda2 6072 */
1da177e4
LT
6073#ifdef CONFIG_SCHED_SMT
6074static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6075static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6076
41a2d6cf
IM
6077static int
6078cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6079{
6711cab4
SS
6080 if (sg)
6081 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6082 return cpu;
6083}
6084#endif
6085
48f24c4d
IM
6086/*
6087 * multi-core sched-domains:
6088 */
1e9f28fa
SS
6089#ifdef CONFIG_SCHED_MC
6090static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6091static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6092#endif
6093
6094#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6095static int
6096cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6097{
6711cab4 6098 int group;
d5a7430d 6099 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6100 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6101 group = first_cpu(mask);
6102 if (sg)
6103 *sg = &per_cpu(sched_group_core, group);
6104 return group;
1e9f28fa
SS
6105}
6106#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6107static int
6108cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6109{
6711cab4
SS
6110 if (sg)
6111 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6112 return cpu;
6113}
6114#endif
6115
1da177e4 6116static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6117static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6118
41a2d6cf
IM
6119static int
6120cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6121{
6711cab4 6122 int group;
48f24c4d 6123#ifdef CONFIG_SCHED_MC
1e9f28fa 6124 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6125 cpus_and(mask, mask, *cpu_map);
6711cab4 6126 group = first_cpu(mask);
1e9f28fa 6127#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6128 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6129 cpus_and(mask, mask, *cpu_map);
6711cab4 6130 group = first_cpu(mask);
1da177e4 6131#else
6711cab4 6132 group = cpu;
1da177e4 6133#endif
6711cab4
SS
6134 if (sg)
6135 *sg = &per_cpu(sched_group_phys, group);
6136 return group;
1da177e4
LT
6137}
6138
6139#ifdef CONFIG_NUMA
1da177e4 6140/*
9c1cfda2
JH
6141 * The init_sched_build_groups can't handle what we want to do with node
6142 * groups, so roll our own. Now each node has its own list of groups which
6143 * gets dynamically allocated.
1da177e4 6144 */
9c1cfda2 6145static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6146static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6147
9c1cfda2 6148static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6149static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6150
6711cab4
SS
6151static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6152 struct sched_group **sg)
9c1cfda2 6153{
6711cab4
SS
6154 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6155 int group;
6156
6157 cpus_and(nodemask, nodemask, *cpu_map);
6158 group = first_cpu(nodemask);
6159
6160 if (sg)
6161 *sg = &per_cpu(sched_group_allnodes, group);
6162 return group;
1da177e4 6163}
6711cab4 6164
08069033
SS
6165static void init_numa_sched_groups_power(struct sched_group *group_head)
6166{
6167 struct sched_group *sg = group_head;
6168 int j;
6169
6170 if (!sg)
6171 return;
3a5c359a
AK
6172 do {
6173 for_each_cpu_mask(j, sg->cpumask) {
6174 struct sched_domain *sd;
08069033 6175
3a5c359a
AK
6176 sd = &per_cpu(phys_domains, j);
6177 if (j != first_cpu(sd->groups->cpumask)) {
6178 /*
6179 * Only add "power" once for each
6180 * physical package.
6181 */
6182 continue;
6183 }
08069033 6184
3a5c359a
AK
6185 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6186 }
6187 sg = sg->next;
6188 } while (sg != group_head);
08069033 6189}
1da177e4
LT
6190#endif
6191
a616058b 6192#ifdef CONFIG_NUMA
51888ca2
SV
6193/* Free memory allocated for various sched_group structures */
6194static void free_sched_groups(const cpumask_t *cpu_map)
6195{
a616058b 6196 int cpu, i;
51888ca2
SV
6197
6198 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6199 struct sched_group **sched_group_nodes
6200 = sched_group_nodes_bycpu[cpu];
6201
51888ca2
SV
6202 if (!sched_group_nodes)
6203 continue;
6204
6205 for (i = 0; i < MAX_NUMNODES; i++) {
6206 cpumask_t nodemask = node_to_cpumask(i);
6207 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6208
6209 cpus_and(nodemask, nodemask, *cpu_map);
6210 if (cpus_empty(nodemask))
6211 continue;
6212
6213 if (sg == NULL)
6214 continue;
6215 sg = sg->next;
6216next_sg:
6217 oldsg = sg;
6218 sg = sg->next;
6219 kfree(oldsg);
6220 if (oldsg != sched_group_nodes[i])
6221 goto next_sg;
6222 }
6223 kfree(sched_group_nodes);
6224 sched_group_nodes_bycpu[cpu] = NULL;
6225 }
51888ca2 6226}
a616058b
SS
6227#else
6228static void free_sched_groups(const cpumask_t *cpu_map)
6229{
6230}
6231#endif
51888ca2 6232
89c4710e
SS
6233/*
6234 * Initialize sched groups cpu_power.
6235 *
6236 * cpu_power indicates the capacity of sched group, which is used while
6237 * distributing the load between different sched groups in a sched domain.
6238 * Typically cpu_power for all the groups in a sched domain will be same unless
6239 * there are asymmetries in the topology. If there are asymmetries, group
6240 * having more cpu_power will pickup more load compared to the group having
6241 * less cpu_power.
6242 *
6243 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6244 * the maximum number of tasks a group can handle in the presence of other idle
6245 * or lightly loaded groups in the same sched domain.
6246 */
6247static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6248{
6249 struct sched_domain *child;
6250 struct sched_group *group;
6251
6252 WARN_ON(!sd || !sd->groups);
6253
6254 if (cpu != first_cpu(sd->groups->cpumask))
6255 return;
6256
6257 child = sd->child;
6258
5517d86b
ED
6259 sd->groups->__cpu_power = 0;
6260
89c4710e
SS
6261 /*
6262 * For perf policy, if the groups in child domain share resources
6263 * (for example cores sharing some portions of the cache hierarchy
6264 * or SMT), then set this domain groups cpu_power such that each group
6265 * can handle only one task, when there are other idle groups in the
6266 * same sched domain.
6267 */
6268 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6269 (child->flags &
6270 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6271 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6272 return;
6273 }
6274
89c4710e
SS
6275 /*
6276 * add cpu_power of each child group to this groups cpu_power
6277 */
6278 group = child->groups;
6279 do {
5517d86b 6280 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6281 group = group->next;
6282 } while (group != child->groups);
6283}
6284
1da177e4 6285/*
1a20ff27
DG
6286 * Build sched domains for a given set of cpus and attach the sched domains
6287 * to the individual cpus
1da177e4 6288 */
51888ca2 6289static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6290{
6291 int i;
d1b55138
JH
6292#ifdef CONFIG_NUMA
6293 struct sched_group **sched_group_nodes = NULL;
6711cab4 6294 int sd_allnodes = 0;
d1b55138
JH
6295
6296 /*
6297 * Allocate the per-node list of sched groups
6298 */
5cf9f062 6299 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6300 GFP_KERNEL);
d1b55138
JH
6301 if (!sched_group_nodes) {
6302 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6303 return -ENOMEM;
d1b55138
JH
6304 }
6305 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6306#endif
1da177e4
LT
6307
6308 /*
1a20ff27 6309 * Set up domains for cpus specified by the cpu_map.
1da177e4 6310 */
1a20ff27 6311 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6312 struct sched_domain *sd = NULL, *p;
6313 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6314
1a20ff27 6315 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6316
6317#ifdef CONFIG_NUMA
dd41f596
IM
6318 if (cpus_weight(*cpu_map) >
6319 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6320 sd = &per_cpu(allnodes_domains, i);
6321 *sd = SD_ALLNODES_INIT;
6322 sd->span = *cpu_map;
6711cab4 6323 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6324 p = sd;
6711cab4 6325 sd_allnodes = 1;
9c1cfda2
JH
6326 } else
6327 p = NULL;
6328
1da177e4 6329 sd = &per_cpu(node_domains, i);
1da177e4 6330 *sd = SD_NODE_INIT;
9c1cfda2
JH
6331 sd->span = sched_domain_node_span(cpu_to_node(i));
6332 sd->parent = p;
1a848870
SS
6333 if (p)
6334 p->child = sd;
9c1cfda2 6335 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6336#endif
6337
6338 p = sd;
6339 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6340 *sd = SD_CPU_INIT;
6341 sd->span = nodemask;
6342 sd->parent = p;
1a848870
SS
6343 if (p)
6344 p->child = sd;
6711cab4 6345 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6346
1e9f28fa
SS
6347#ifdef CONFIG_SCHED_MC
6348 p = sd;
6349 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6350 *sd = SD_MC_INIT;
6351 sd->span = cpu_coregroup_map(i);
6352 cpus_and(sd->span, sd->span, *cpu_map);
6353 sd->parent = p;
1a848870 6354 p->child = sd;
6711cab4 6355 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6356#endif
6357
1da177e4
LT
6358#ifdef CONFIG_SCHED_SMT
6359 p = sd;
6360 sd = &per_cpu(cpu_domains, i);
1da177e4 6361 *sd = SD_SIBLING_INIT;
d5a7430d 6362 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6363 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6364 sd->parent = p;
1a848870 6365 p->child = sd;
6711cab4 6366 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6367#endif
6368 }
6369
6370#ifdef CONFIG_SCHED_SMT
6371 /* Set up CPU (sibling) groups */
9c1cfda2 6372 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6373 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6374 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6375 if (i != first_cpu(this_sibling_map))
6376 continue;
6377
dd41f596
IM
6378 init_sched_build_groups(this_sibling_map, cpu_map,
6379 &cpu_to_cpu_group);
1da177e4
LT
6380 }
6381#endif
6382
1e9f28fa
SS
6383#ifdef CONFIG_SCHED_MC
6384 /* Set up multi-core groups */
6385 for_each_cpu_mask(i, *cpu_map) {
6386 cpumask_t this_core_map = cpu_coregroup_map(i);
6387 cpus_and(this_core_map, this_core_map, *cpu_map);
6388 if (i != first_cpu(this_core_map))
6389 continue;
dd41f596
IM
6390 init_sched_build_groups(this_core_map, cpu_map,
6391 &cpu_to_core_group);
1e9f28fa
SS
6392 }
6393#endif
6394
1da177e4
LT
6395 /* Set up physical groups */
6396 for (i = 0; i < MAX_NUMNODES; i++) {
6397 cpumask_t nodemask = node_to_cpumask(i);
6398
1a20ff27 6399 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6400 if (cpus_empty(nodemask))
6401 continue;
6402
6711cab4 6403 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6404 }
6405
6406#ifdef CONFIG_NUMA
6407 /* Set up node groups */
6711cab4 6408 if (sd_allnodes)
dd41f596
IM
6409 init_sched_build_groups(*cpu_map, cpu_map,
6410 &cpu_to_allnodes_group);
9c1cfda2
JH
6411
6412 for (i = 0; i < MAX_NUMNODES; i++) {
6413 /* Set up node groups */
6414 struct sched_group *sg, *prev;
6415 cpumask_t nodemask = node_to_cpumask(i);
6416 cpumask_t domainspan;
6417 cpumask_t covered = CPU_MASK_NONE;
6418 int j;
6419
6420 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6421 if (cpus_empty(nodemask)) {
6422 sched_group_nodes[i] = NULL;
9c1cfda2 6423 continue;
d1b55138 6424 }
9c1cfda2
JH
6425
6426 domainspan = sched_domain_node_span(i);
6427 cpus_and(domainspan, domainspan, *cpu_map);
6428
15f0b676 6429 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6430 if (!sg) {
6431 printk(KERN_WARNING "Can not alloc domain group for "
6432 "node %d\n", i);
6433 goto error;
6434 }
9c1cfda2
JH
6435 sched_group_nodes[i] = sg;
6436 for_each_cpu_mask(j, nodemask) {
6437 struct sched_domain *sd;
9761eea8 6438
9c1cfda2
JH
6439 sd = &per_cpu(node_domains, j);
6440 sd->groups = sg;
9c1cfda2 6441 }
5517d86b 6442 sg->__cpu_power = 0;
9c1cfda2 6443 sg->cpumask = nodemask;
51888ca2 6444 sg->next = sg;
9c1cfda2
JH
6445 cpus_or(covered, covered, nodemask);
6446 prev = sg;
6447
6448 for (j = 0; j < MAX_NUMNODES; j++) {
6449 cpumask_t tmp, notcovered;
6450 int n = (i + j) % MAX_NUMNODES;
6451
6452 cpus_complement(notcovered, covered);
6453 cpus_and(tmp, notcovered, *cpu_map);
6454 cpus_and(tmp, tmp, domainspan);
6455 if (cpus_empty(tmp))
6456 break;
6457
6458 nodemask = node_to_cpumask(n);
6459 cpus_and(tmp, tmp, nodemask);
6460 if (cpus_empty(tmp))
6461 continue;
6462
15f0b676
SV
6463 sg = kmalloc_node(sizeof(struct sched_group),
6464 GFP_KERNEL, i);
9c1cfda2
JH
6465 if (!sg) {
6466 printk(KERN_WARNING
6467 "Can not alloc domain group for node %d\n", j);
51888ca2 6468 goto error;
9c1cfda2 6469 }
5517d86b 6470 sg->__cpu_power = 0;
9c1cfda2 6471 sg->cpumask = tmp;
51888ca2 6472 sg->next = prev->next;
9c1cfda2
JH
6473 cpus_or(covered, covered, tmp);
6474 prev->next = sg;
6475 prev = sg;
6476 }
9c1cfda2 6477 }
1da177e4
LT
6478#endif
6479
6480 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6481#ifdef CONFIG_SCHED_SMT
1a20ff27 6482 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6483 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6484
89c4710e 6485 init_sched_groups_power(i, sd);
5c45bf27 6486 }
1da177e4 6487#endif
1e9f28fa 6488#ifdef CONFIG_SCHED_MC
5c45bf27 6489 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6490 struct sched_domain *sd = &per_cpu(core_domains, i);
6491
89c4710e 6492 init_sched_groups_power(i, sd);
5c45bf27
SS
6493 }
6494#endif
1e9f28fa 6495
5c45bf27 6496 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6497 struct sched_domain *sd = &per_cpu(phys_domains, i);
6498
89c4710e 6499 init_sched_groups_power(i, sd);
1da177e4
LT
6500 }
6501
9c1cfda2 6502#ifdef CONFIG_NUMA
08069033
SS
6503 for (i = 0; i < MAX_NUMNODES; i++)
6504 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6505
6711cab4
SS
6506 if (sd_allnodes) {
6507 struct sched_group *sg;
f712c0c7 6508
6711cab4 6509 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6510 init_numa_sched_groups_power(sg);
6511 }
9c1cfda2
JH
6512#endif
6513
1da177e4 6514 /* Attach the domains */
1a20ff27 6515 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6516 struct sched_domain *sd;
6517#ifdef CONFIG_SCHED_SMT
6518 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6519#elif defined(CONFIG_SCHED_MC)
6520 sd = &per_cpu(core_domains, i);
1da177e4
LT
6521#else
6522 sd = &per_cpu(phys_domains, i);
6523#endif
6524 cpu_attach_domain(sd, i);
6525 }
51888ca2
SV
6526
6527 return 0;
6528
a616058b 6529#ifdef CONFIG_NUMA
51888ca2
SV
6530error:
6531 free_sched_groups(cpu_map);
6532 return -ENOMEM;
a616058b 6533#endif
1da177e4 6534}
029190c5
PJ
6535
6536static cpumask_t *doms_cur; /* current sched domains */
6537static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6538
6539/*
6540 * Special case: If a kmalloc of a doms_cur partition (array of
6541 * cpumask_t) fails, then fallback to a single sched domain,
6542 * as determined by the single cpumask_t fallback_doms.
6543 */
6544static cpumask_t fallback_doms;
6545
1a20ff27 6546/*
41a2d6cf 6547 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6548 * For now this just excludes isolated cpus, but could be used to
6549 * exclude other special cases in the future.
1a20ff27 6550 */
51888ca2 6551static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6552{
7378547f
MM
6553 int err;
6554
029190c5
PJ
6555 ndoms_cur = 1;
6556 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6557 if (!doms_cur)
6558 doms_cur = &fallback_doms;
6559 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6560 err = build_sched_domains(doms_cur);
6382bc90 6561 register_sched_domain_sysctl();
7378547f
MM
6562
6563 return err;
1a20ff27
DG
6564}
6565
6566static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6567{
51888ca2 6568 free_sched_groups(cpu_map);
9c1cfda2 6569}
1da177e4 6570
1a20ff27
DG
6571/*
6572 * Detach sched domains from a group of cpus specified in cpu_map
6573 * These cpus will now be attached to the NULL domain
6574 */
858119e1 6575static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6576{
6577 int i;
6578
6382bc90
MM
6579 unregister_sched_domain_sysctl();
6580
1a20ff27
DG
6581 for_each_cpu_mask(i, *cpu_map)
6582 cpu_attach_domain(NULL, i);
6583 synchronize_sched();
6584 arch_destroy_sched_domains(cpu_map);
6585}
6586
029190c5
PJ
6587/*
6588 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6589 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6590 * doms_new[] to the current sched domain partitioning, doms_cur[].
6591 * It destroys each deleted domain and builds each new domain.
6592 *
6593 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6594 * The masks don't intersect (don't overlap.) We should setup one
6595 * sched domain for each mask. CPUs not in any of the cpumasks will
6596 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6597 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6598 * it as it is.
6599 *
41a2d6cf
IM
6600 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6601 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6602 * failed the kmalloc call, then it can pass in doms_new == NULL,
6603 * and partition_sched_domains() will fallback to the single partition
6604 * 'fallback_doms'.
6605 *
6606 * Call with hotplug lock held
6607 */
6608void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6609{
6610 int i, j;
6611
a1835615
SV
6612 lock_doms_cur();
6613
7378547f
MM
6614 /* always unregister in case we don't destroy any domains */
6615 unregister_sched_domain_sysctl();
6616
029190c5
PJ
6617 if (doms_new == NULL) {
6618 ndoms_new = 1;
6619 doms_new = &fallback_doms;
6620 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6621 }
6622
6623 /* Destroy deleted domains */
6624 for (i = 0; i < ndoms_cur; i++) {
6625 for (j = 0; j < ndoms_new; j++) {
6626 if (cpus_equal(doms_cur[i], doms_new[j]))
6627 goto match1;
6628 }
6629 /* no match - a current sched domain not in new doms_new[] */
6630 detach_destroy_domains(doms_cur + i);
6631match1:
6632 ;
6633 }
6634
6635 /* Build new domains */
6636 for (i = 0; i < ndoms_new; i++) {
6637 for (j = 0; j < ndoms_cur; j++) {
6638 if (cpus_equal(doms_new[i], doms_cur[j]))
6639 goto match2;
6640 }
6641 /* no match - add a new doms_new */
6642 build_sched_domains(doms_new + i);
6643match2:
6644 ;
6645 }
6646
6647 /* Remember the new sched domains */
6648 if (doms_cur != &fallback_doms)
6649 kfree(doms_cur);
6650 doms_cur = doms_new;
6651 ndoms_cur = ndoms_new;
7378547f
MM
6652
6653 register_sched_domain_sysctl();
a1835615
SV
6654
6655 unlock_doms_cur();
029190c5
PJ
6656}
6657
5c45bf27 6658#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6659static int arch_reinit_sched_domains(void)
5c45bf27
SS
6660{
6661 int err;
6662
95402b38 6663 get_online_cpus();
5c45bf27
SS
6664 detach_destroy_domains(&cpu_online_map);
6665 err = arch_init_sched_domains(&cpu_online_map);
95402b38 6666 put_online_cpus();
5c45bf27
SS
6667
6668 return err;
6669}
6670
6671static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6672{
6673 int ret;
6674
6675 if (buf[0] != '0' && buf[0] != '1')
6676 return -EINVAL;
6677
6678 if (smt)
6679 sched_smt_power_savings = (buf[0] == '1');
6680 else
6681 sched_mc_power_savings = (buf[0] == '1');
6682
6683 ret = arch_reinit_sched_domains();
6684
6685 return ret ? ret : count;
6686}
6687
5c45bf27
SS
6688#ifdef CONFIG_SCHED_MC
6689static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6690{
6691 return sprintf(page, "%u\n", sched_mc_power_savings);
6692}
48f24c4d
IM
6693static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6694 const char *buf, size_t count)
5c45bf27
SS
6695{
6696 return sched_power_savings_store(buf, count, 0);
6697}
6707de00
AB
6698static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6699 sched_mc_power_savings_store);
5c45bf27
SS
6700#endif
6701
6702#ifdef CONFIG_SCHED_SMT
6703static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6704{
6705 return sprintf(page, "%u\n", sched_smt_power_savings);
6706}
48f24c4d
IM
6707static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6708 const char *buf, size_t count)
5c45bf27
SS
6709{
6710 return sched_power_savings_store(buf, count, 1);
6711}
6707de00
AB
6712static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6713 sched_smt_power_savings_store);
6714#endif
6715
6716int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6717{
6718 int err = 0;
6719
6720#ifdef CONFIG_SCHED_SMT
6721 if (smt_capable())
6722 err = sysfs_create_file(&cls->kset.kobj,
6723 &attr_sched_smt_power_savings.attr);
6724#endif
6725#ifdef CONFIG_SCHED_MC
6726 if (!err && mc_capable())
6727 err = sysfs_create_file(&cls->kset.kobj,
6728 &attr_sched_mc_power_savings.attr);
6729#endif
6730 return err;
6731}
5c45bf27
SS
6732#endif
6733
1da177e4 6734/*
41a2d6cf 6735 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6736 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6737 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6738 * which will prevent rebalancing while the sched domains are recalculated.
6739 */
6740static int update_sched_domains(struct notifier_block *nfb,
6741 unsigned long action, void *hcpu)
6742{
1da177e4
LT
6743 switch (action) {
6744 case CPU_UP_PREPARE:
8bb78442 6745 case CPU_UP_PREPARE_FROZEN:
1da177e4 6746 case CPU_DOWN_PREPARE:
8bb78442 6747 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6748 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6749 return NOTIFY_OK;
6750
6751 case CPU_UP_CANCELED:
8bb78442 6752 case CPU_UP_CANCELED_FROZEN:
1da177e4 6753 case CPU_DOWN_FAILED:
8bb78442 6754 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6755 case CPU_ONLINE:
8bb78442 6756 case CPU_ONLINE_FROZEN:
1da177e4 6757 case CPU_DEAD:
8bb78442 6758 case CPU_DEAD_FROZEN:
1da177e4
LT
6759 /*
6760 * Fall through and re-initialise the domains.
6761 */
6762 break;
6763 default:
6764 return NOTIFY_DONE;
6765 }
6766
6767 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6768 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6769
6770 return NOTIFY_OK;
6771}
1da177e4
LT
6772
6773void __init sched_init_smp(void)
6774{
5c1e1767
NP
6775 cpumask_t non_isolated_cpus;
6776
95402b38 6777 get_online_cpus();
1a20ff27 6778 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6779 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6780 if (cpus_empty(non_isolated_cpus))
6781 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 6782 put_online_cpus();
1da177e4
LT
6783 /* XXX: Theoretical race here - CPU may be hotplugged now */
6784 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6785
6786 /* Move init over to a non-isolated CPU */
6787 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6788 BUG();
19978ca6 6789 sched_init_granularity();
6b2d7700
SV
6790
6791#ifdef CONFIG_FAIR_GROUP_SCHED
6792 if (nr_cpu_ids == 1)
6793 return;
6794
6795 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6796 "group_balance");
6797 if (!IS_ERR(lb_monitor_task)) {
6798 lb_monitor_task->flags |= PF_NOFREEZE;
6799 wake_up_process(lb_monitor_task);
6800 } else {
6801 printk(KERN_ERR "Could not create load balance monitor thread"
6802 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6803 }
6804#endif
1da177e4
LT
6805}
6806#else
6807void __init sched_init_smp(void)
6808{
19978ca6 6809 sched_init_granularity();
1da177e4
LT
6810}
6811#endif /* CONFIG_SMP */
6812
6813int in_sched_functions(unsigned long addr)
6814{
1da177e4
LT
6815 return in_lock_functions(addr) ||
6816 (addr >= (unsigned long)__sched_text_start
6817 && addr < (unsigned long)__sched_text_end);
6818}
6819
a9957449 6820static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6821{
6822 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6823#ifdef CONFIG_FAIR_GROUP_SCHED
6824 cfs_rq->rq = rq;
6825#endif
67e9fb2a 6826 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6827}
6828
1da177e4
LT
6829void __init sched_init(void)
6830{
476f3534 6831 int highest_cpu = 0;
dd41f596
IM
6832 int i, j;
6833
0a945022 6834 for_each_possible_cpu(i) {
dd41f596 6835 struct rt_prio_array *array;
70b97a7f 6836 struct rq *rq;
1da177e4
LT
6837
6838 rq = cpu_rq(i);
6839 spin_lock_init(&rq->lock);
fcb99371 6840 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6841 rq->nr_running = 0;
dd41f596
IM
6842 rq->clock = 1;
6843 init_cfs_rq(&rq->cfs, rq);
6844#ifdef CONFIG_FAIR_GROUP_SCHED
6845 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6846 {
6847 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6848 struct sched_entity *se =
6849 &per_cpu(init_sched_entity, i);
6850
6851 init_cfs_rq_p[i] = cfs_rq;
6852 init_cfs_rq(cfs_rq, rq);
4cf86d77 6853 cfs_rq->tg = &init_task_group;
3a252015 6854 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6855 &rq->leaf_cfs_rq_list);
6856
3a252015
IM
6857 init_sched_entity_p[i] = se;
6858 se->cfs_rq = &rq->cfs;
6859 se->my_q = cfs_rq;
4cf86d77 6860 se->load.weight = init_task_group_load;
9b5b7751 6861 se->load.inv_weight =
4cf86d77 6862 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6863 se->parent = NULL;
6864 }
4cf86d77 6865 init_task_group.shares = init_task_group_load;
dd41f596 6866#endif
1da177e4 6867
dd41f596
IM
6868 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6869 rq->cpu_load[j] = 0;
1da177e4 6870#ifdef CONFIG_SMP
41c7ce9a 6871 rq->sd = NULL;
1da177e4 6872 rq->active_balance = 0;
dd41f596 6873 rq->next_balance = jiffies;
1da177e4 6874 rq->push_cpu = 0;
0a2966b4 6875 rq->cpu = i;
1da177e4
LT
6876 rq->migration_thread = NULL;
6877 INIT_LIST_HEAD(&rq->migration_queue);
764a9d6f 6878 rq->rt.highest_prio = MAX_RT_PRIO;
1da177e4
LT
6879#endif
6880 atomic_set(&rq->nr_iowait, 0);
6881
dd41f596
IM
6882 array = &rq->rt.active;
6883 for (j = 0; j < MAX_RT_PRIO; j++) {
6884 INIT_LIST_HEAD(array->queue + j);
6885 __clear_bit(j, array->bitmap);
1da177e4 6886 }
476f3534 6887 highest_cpu = i;
dd41f596
IM
6888 /* delimiter for bitsearch: */
6889 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6890 }
6891
2dd73a4f 6892 set_load_weight(&init_task);
b50f60ce 6893
e107be36
AK
6894#ifdef CONFIG_PREEMPT_NOTIFIERS
6895 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6896#endif
6897
c9819f45 6898#ifdef CONFIG_SMP
476f3534 6899 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6900 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6901#endif
6902
b50f60ce
HC
6903#ifdef CONFIG_RT_MUTEXES
6904 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6905#endif
6906
1da177e4
LT
6907 /*
6908 * The boot idle thread does lazy MMU switching as well:
6909 */
6910 atomic_inc(&init_mm.mm_count);
6911 enter_lazy_tlb(&init_mm, current);
6912
6913 /*
6914 * Make us the idle thread. Technically, schedule() should not be
6915 * called from this thread, however somewhere below it might be,
6916 * but because we are the idle thread, we just pick up running again
6917 * when this runqueue becomes "idle".
6918 */
6919 init_idle(current, smp_processor_id());
dd41f596
IM
6920 /*
6921 * During early bootup we pretend to be a normal task:
6922 */
6923 current->sched_class = &fair_sched_class;
1da177e4
LT
6924}
6925
6926#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6927void __might_sleep(char *file, int line)
6928{
48f24c4d 6929#ifdef in_atomic
1da177e4
LT
6930 static unsigned long prev_jiffy; /* ratelimiting */
6931
6932 if ((in_atomic() || irqs_disabled()) &&
6933 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6934 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6935 return;
6936 prev_jiffy = jiffies;
91368d73 6937 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6938 " context at %s:%d\n", file, line);
6939 printk("in_atomic():%d, irqs_disabled():%d\n",
6940 in_atomic(), irqs_disabled());
a4c410f0 6941 debug_show_held_locks(current);
3117df04
IM
6942 if (irqs_disabled())
6943 print_irqtrace_events(current);
1da177e4
LT
6944 dump_stack();
6945 }
6946#endif
6947}
6948EXPORT_SYMBOL(__might_sleep);
6949#endif
6950
6951#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6952static void normalize_task(struct rq *rq, struct task_struct *p)
6953{
6954 int on_rq;
6955 update_rq_clock(rq);
6956 on_rq = p->se.on_rq;
6957 if (on_rq)
6958 deactivate_task(rq, p, 0);
6959 __setscheduler(rq, p, SCHED_NORMAL, 0);
6960 if (on_rq) {
6961 activate_task(rq, p, 0);
6962 resched_task(rq->curr);
6963 }
6964}
6965
1da177e4
LT
6966void normalize_rt_tasks(void)
6967{
a0f98a1c 6968 struct task_struct *g, *p;
1da177e4 6969 unsigned long flags;
70b97a7f 6970 struct rq *rq;
1da177e4
LT
6971
6972 read_lock_irq(&tasklist_lock);
a0f98a1c 6973 do_each_thread(g, p) {
178be793
IM
6974 /*
6975 * Only normalize user tasks:
6976 */
6977 if (!p->mm)
6978 continue;
6979
6cfb0d5d 6980 p->se.exec_start = 0;
6cfb0d5d 6981#ifdef CONFIG_SCHEDSTATS
dd41f596 6982 p->se.wait_start = 0;
dd41f596 6983 p->se.sleep_start = 0;
dd41f596 6984 p->se.block_start = 0;
6cfb0d5d 6985#endif
dd41f596
IM
6986 task_rq(p)->clock = 0;
6987
6988 if (!rt_task(p)) {
6989 /*
6990 * Renice negative nice level userspace
6991 * tasks back to 0:
6992 */
6993 if (TASK_NICE(p) < 0 && p->mm)
6994 set_user_nice(p, 0);
1da177e4 6995 continue;
dd41f596 6996 }
1da177e4 6997
b29739f9
IM
6998 spin_lock_irqsave(&p->pi_lock, flags);
6999 rq = __task_rq_lock(p);
1da177e4 7000
178be793 7001 normalize_task(rq, p);
3a5e4dc1 7002
b29739f9
IM
7003 __task_rq_unlock(rq);
7004 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
7005 } while_each_thread(g, p);
7006
1da177e4
LT
7007 read_unlock_irq(&tasklist_lock);
7008}
7009
7010#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7011
7012#ifdef CONFIG_IA64
7013/*
7014 * These functions are only useful for the IA64 MCA handling.
7015 *
7016 * They can only be called when the whole system has been
7017 * stopped - every CPU needs to be quiescent, and no scheduling
7018 * activity can take place. Using them for anything else would
7019 * be a serious bug, and as a result, they aren't even visible
7020 * under any other configuration.
7021 */
7022
7023/**
7024 * curr_task - return the current task for a given cpu.
7025 * @cpu: the processor in question.
7026 *
7027 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7028 */
36c8b586 7029struct task_struct *curr_task(int cpu)
1df5c10a
LT
7030{
7031 return cpu_curr(cpu);
7032}
7033
7034/**
7035 * set_curr_task - set the current task for a given cpu.
7036 * @cpu: the processor in question.
7037 * @p: the task pointer to set.
7038 *
7039 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7040 * are serviced on a separate stack. It allows the architecture to switch the
7041 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7042 * must be called with all CPU's synchronized, and interrupts disabled, the
7043 * and caller must save the original value of the current task (see
7044 * curr_task() above) and restore that value before reenabling interrupts and
7045 * re-starting the system.
7046 *
7047 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7048 */
36c8b586 7049void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7050{
7051 cpu_curr(cpu) = p;
7052}
7053
7054#endif
29f59db3
SV
7055
7056#ifdef CONFIG_FAIR_GROUP_SCHED
7057
6b2d7700
SV
7058#ifdef CONFIG_SMP
7059/*
7060 * distribute shares of all task groups among their schedulable entities,
7061 * to reflect load distrbution across cpus.
7062 */
7063static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7064{
7065 struct cfs_rq *cfs_rq;
7066 struct rq *rq = cpu_rq(this_cpu);
7067 cpumask_t sdspan = sd->span;
7068 int balanced = 1;
7069
7070 /* Walk thr' all the task groups that we have */
7071 for_each_leaf_cfs_rq(rq, cfs_rq) {
7072 int i;
7073 unsigned long total_load = 0, total_shares;
7074 struct task_group *tg = cfs_rq->tg;
7075
7076 /* Gather total task load of this group across cpus */
7077 for_each_cpu_mask(i, sdspan)
7078 total_load += tg->cfs_rq[i]->load.weight;
7079
7080 /* Nothing to do if this group has no load */
7081 if (!total_load)
7082 continue;
7083
7084 /*
7085 * tg->shares represents the number of cpu shares the task group
7086 * is eligible to hold on a single cpu. On N cpus, it is
7087 * eligible to hold (N * tg->shares) number of cpu shares.
7088 */
7089 total_shares = tg->shares * cpus_weight(sdspan);
7090
7091 /*
7092 * redistribute total_shares across cpus as per the task load
7093 * distribution.
7094 */
7095 for_each_cpu_mask(i, sdspan) {
7096 unsigned long local_load, local_shares;
7097
7098 local_load = tg->cfs_rq[i]->load.weight;
7099 local_shares = (local_load * total_shares) / total_load;
7100 if (!local_shares)
7101 local_shares = MIN_GROUP_SHARES;
7102 if (local_shares == tg->se[i]->load.weight)
7103 continue;
7104
7105 spin_lock_irq(&cpu_rq(i)->lock);
7106 set_se_shares(tg->se[i], local_shares);
7107 spin_unlock_irq(&cpu_rq(i)->lock);
7108 balanced = 0;
7109 }
7110 }
7111
7112 return balanced;
7113}
7114
7115/*
7116 * How frequently should we rebalance_shares() across cpus?
7117 *
7118 * The more frequently we rebalance shares, the more accurate is the fairness
7119 * of cpu bandwidth distribution between task groups. However higher frequency
7120 * also implies increased scheduling overhead.
7121 *
7122 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7123 * consecutive calls to rebalance_shares() in the same sched domain.
7124 *
7125 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7126 * consecutive calls to rebalance_shares() in the same sched domain.
7127 *
7128 * These settings allows for the appropriate tradeoff between accuracy of
7129 * fairness and the associated overhead.
7130 *
7131 */
7132
7133/* default: 8ms, units: milliseconds */
7134const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7135
7136/* default: 128ms, units: milliseconds */
7137const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7138
7139/* kernel thread that runs rebalance_shares() periodically */
7140static int load_balance_monitor(void *unused)
7141{
7142 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7143 struct sched_param schedparm;
7144 int ret;
7145
7146 /*
7147 * We don't want this thread's execution to be limited by the shares
7148 * assigned to default group (init_task_group). Hence make it run
7149 * as a SCHED_RR RT task at the lowest priority.
7150 */
7151 schedparm.sched_priority = 1;
7152 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7153 if (ret)
7154 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7155 " monitor thread (error = %d) \n", ret);
7156
7157 while (!kthread_should_stop()) {
7158 int i, cpu, balanced = 1;
7159
7160 /* Prevent cpus going down or coming up */
86ef5c9a 7161 get_online_cpus();
6b2d7700
SV
7162 /* lockout changes to doms_cur[] array */
7163 lock_doms_cur();
7164 /*
7165 * Enter a rcu read-side critical section to safely walk rq->sd
7166 * chain on various cpus and to walk task group list
7167 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7168 */
7169 rcu_read_lock();
7170
7171 for (i = 0; i < ndoms_cur; i++) {
7172 cpumask_t cpumap = doms_cur[i];
7173 struct sched_domain *sd = NULL, *sd_prev = NULL;
7174
7175 cpu = first_cpu(cpumap);
7176
7177 /* Find the highest domain at which to balance shares */
7178 for_each_domain(cpu, sd) {
7179 if (!(sd->flags & SD_LOAD_BALANCE))
7180 continue;
7181 sd_prev = sd;
7182 }
7183
7184 sd = sd_prev;
7185 /* sd == NULL? No load balance reqd in this domain */
7186 if (!sd)
7187 continue;
7188
7189 balanced &= rebalance_shares(sd, cpu);
7190 }
7191
7192 rcu_read_unlock();
7193
7194 unlock_doms_cur();
86ef5c9a 7195 put_online_cpus();
6b2d7700
SV
7196
7197 if (!balanced)
7198 timeout = sysctl_sched_min_bal_int_shares;
7199 else if (timeout < sysctl_sched_max_bal_int_shares)
7200 timeout *= 2;
7201
7202 msleep_interruptible(timeout);
7203 }
7204
7205 return 0;
7206}
7207#endif /* CONFIG_SMP */
7208
29f59db3 7209/* allocate runqueue etc for a new task group */
4cf86d77 7210struct task_group *sched_create_group(void)
29f59db3 7211{
4cf86d77 7212 struct task_group *tg;
29f59db3
SV
7213 struct cfs_rq *cfs_rq;
7214 struct sched_entity *se;
9b5b7751 7215 struct rq *rq;
29f59db3
SV
7216 int i;
7217
29f59db3
SV
7218 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7219 if (!tg)
7220 return ERR_PTR(-ENOMEM);
7221
9b5b7751 7222 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7223 if (!tg->cfs_rq)
7224 goto err;
9b5b7751 7225 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7226 if (!tg->se)
7227 goto err;
7228
7229 for_each_possible_cpu(i) {
9b5b7751 7230 rq = cpu_rq(i);
29f59db3
SV
7231
7232 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7233 cpu_to_node(i));
7234 if (!cfs_rq)
7235 goto err;
7236
7237 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7238 cpu_to_node(i));
7239 if (!se)
7240 goto err;
7241
7242 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7243 memset(se, 0, sizeof(struct sched_entity));
7244
7245 tg->cfs_rq[i] = cfs_rq;
7246 init_cfs_rq(cfs_rq, rq);
7247 cfs_rq->tg = tg;
29f59db3
SV
7248
7249 tg->se[i] = se;
7250 se->cfs_rq = &rq->cfs;
7251 se->my_q = cfs_rq;
7252 se->load.weight = NICE_0_LOAD;
7253 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7254 se->parent = NULL;
7255 }
7256
ec2c507f
SV
7257 tg->shares = NICE_0_LOAD;
7258
7259 lock_task_group_list();
9b5b7751
SV
7260 for_each_possible_cpu(i) {
7261 rq = cpu_rq(i);
7262 cfs_rq = tg->cfs_rq[i];
7263 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7264 }
ec2c507f 7265 unlock_task_group_list();
29f59db3 7266
9b5b7751 7267 return tg;
29f59db3
SV
7268
7269err:
7270 for_each_possible_cpu(i) {
a65914b3 7271 if (tg->cfs_rq)
29f59db3 7272 kfree(tg->cfs_rq[i]);
a65914b3 7273 if (tg->se)
29f59db3
SV
7274 kfree(tg->se[i]);
7275 }
a65914b3
IM
7276 kfree(tg->cfs_rq);
7277 kfree(tg->se);
7278 kfree(tg);
29f59db3
SV
7279
7280 return ERR_PTR(-ENOMEM);
7281}
7282
9b5b7751
SV
7283/* rcu callback to free various structures associated with a task group */
7284static void free_sched_group(struct rcu_head *rhp)
29f59db3 7285{
ae8393e5
SV
7286 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7287 struct cfs_rq *cfs_rq;
29f59db3
SV
7288 struct sched_entity *se;
7289 int i;
7290
29f59db3
SV
7291 /* now it should be safe to free those cfs_rqs */
7292 for_each_possible_cpu(i) {
7293 cfs_rq = tg->cfs_rq[i];
7294 kfree(cfs_rq);
7295
7296 se = tg->se[i];
7297 kfree(se);
7298 }
7299
7300 kfree(tg->cfs_rq);
7301 kfree(tg->se);
7302 kfree(tg);
7303}
7304
9b5b7751 7305/* Destroy runqueue etc associated with a task group */
4cf86d77 7306void sched_destroy_group(struct task_group *tg)
29f59db3 7307{
7bae49d4 7308 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7309 int i;
29f59db3 7310
ec2c507f 7311 lock_task_group_list();
9b5b7751
SV
7312 for_each_possible_cpu(i) {
7313 cfs_rq = tg->cfs_rq[i];
7314 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7315 }
ec2c507f 7316 unlock_task_group_list();
9b5b7751 7317
7bae49d4 7318 BUG_ON(!cfs_rq);
9b5b7751
SV
7319
7320 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7321 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7322}
7323
9b5b7751 7324/* change task's runqueue when it moves between groups.
3a252015
IM
7325 * The caller of this function should have put the task in its new group
7326 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7327 * reflect its new group.
9b5b7751
SV
7328 */
7329void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7330{
7331 int on_rq, running;
7332 unsigned long flags;
7333 struct rq *rq;
7334
7335 rq = task_rq_lock(tsk, &flags);
7336
dae51f56 7337 if (tsk->sched_class != &fair_sched_class) {
ce96b5ac 7338 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7339 goto done;
dae51f56 7340 }
29f59db3
SV
7341
7342 update_rq_clock(rq);
7343
051a1d1a 7344 running = task_current(rq, tsk);
29f59db3
SV
7345 on_rq = tsk->se.on_rq;
7346
83b699ed 7347 if (on_rq) {
29f59db3 7348 dequeue_task(rq, tsk, 0);
83b699ed
SV
7349 if (unlikely(running))
7350 tsk->sched_class->put_prev_task(rq, tsk);
7351 }
29f59db3 7352
ce96b5ac 7353 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7354
83b699ed
SV
7355 if (on_rq) {
7356 if (unlikely(running))
7357 tsk->sched_class->set_curr_task(rq);
7074badb 7358 enqueue_task(rq, tsk, 0);
83b699ed 7359 }
29f59db3
SV
7360
7361done:
7362 task_rq_unlock(rq, &flags);
7363}
7364
6b2d7700 7365/* rq->lock to be locked by caller */
29f59db3
SV
7366static void set_se_shares(struct sched_entity *se, unsigned long shares)
7367{
7368 struct cfs_rq *cfs_rq = se->cfs_rq;
7369 struct rq *rq = cfs_rq->rq;
7370 int on_rq;
7371
6b2d7700
SV
7372 if (!shares)
7373 shares = MIN_GROUP_SHARES;
29f59db3
SV
7374
7375 on_rq = se->on_rq;
6b2d7700 7376 if (on_rq) {
29f59db3 7377 dequeue_entity(cfs_rq, se, 0);
6b2d7700
SV
7378 dec_cpu_load(rq, se->load.weight);
7379 }
29f59db3
SV
7380
7381 se->load.weight = shares;
7382 se->load.inv_weight = div64_64((1ULL<<32), shares);
7383
6b2d7700 7384 if (on_rq) {
29f59db3 7385 enqueue_entity(cfs_rq, se, 0);
6b2d7700
SV
7386 inc_cpu_load(rq, se->load.weight);
7387 }
29f59db3
SV
7388}
7389
4cf86d77 7390int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7391{
7392 int i;
6b2d7700
SV
7393 struct cfs_rq *cfs_rq;
7394 struct rq *rq;
c61935fd 7395
ec2c507f 7396 lock_task_group_list();
9b5b7751 7397 if (tg->shares == shares)
5cb350ba 7398 goto done;
29f59db3 7399
6b2d7700
SV
7400 if (shares < MIN_GROUP_SHARES)
7401 shares = MIN_GROUP_SHARES;
7402
7403 /*
7404 * Prevent any load balance activity (rebalance_shares,
7405 * load_balance_fair) from referring to this group first,
7406 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7407 */
7408 for_each_possible_cpu(i) {
7409 cfs_rq = tg->cfs_rq[i];
7410 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7411 }
7412
7413 /* wait for any ongoing reference to this group to finish */
7414 synchronize_sched();
7415
7416 /*
7417 * Now we are free to modify the group's share on each cpu
7418 * w/o tripping rebalance_share or load_balance_fair.
7419 */
9b5b7751 7420 tg->shares = shares;
6b2d7700
SV
7421 for_each_possible_cpu(i) {
7422 spin_lock_irq(&cpu_rq(i)->lock);
9b5b7751 7423 set_se_shares(tg->se[i], shares);
6b2d7700
SV
7424 spin_unlock_irq(&cpu_rq(i)->lock);
7425 }
29f59db3 7426
6b2d7700
SV
7427 /*
7428 * Enable load balance activity on this group, by inserting it back on
7429 * each cpu's rq->leaf_cfs_rq_list.
7430 */
7431 for_each_possible_cpu(i) {
7432 rq = cpu_rq(i);
7433 cfs_rq = tg->cfs_rq[i];
7434 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7435 }
5cb350ba 7436done:
ec2c507f 7437 unlock_task_group_list();
9b5b7751 7438 return 0;
29f59db3
SV
7439}
7440
5cb350ba
DG
7441unsigned long sched_group_shares(struct task_group *tg)
7442{
7443 return tg->shares;
7444}
7445
3a252015 7446#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7447
7448#ifdef CONFIG_FAIR_CGROUP_SCHED
7449
7450/* return corresponding task_group object of a cgroup */
2b01dfe3 7451static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7452{
2b01dfe3
PM
7453 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7454 struct task_group, css);
68318b8e
SV
7455}
7456
7457static struct cgroup_subsys_state *
2b01dfe3 7458cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7459{
7460 struct task_group *tg;
7461
2b01dfe3 7462 if (!cgrp->parent) {
68318b8e 7463 /* This is early initialization for the top cgroup */
2b01dfe3 7464 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7465 return &init_task_group.css;
7466 }
7467
7468 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7469 if (cgrp->parent->parent)
68318b8e
SV
7470 return ERR_PTR(-EINVAL);
7471
7472 tg = sched_create_group();
7473 if (IS_ERR(tg))
7474 return ERR_PTR(-ENOMEM);
7475
7476 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7477 tg->css.cgroup = cgrp;
68318b8e
SV
7478
7479 return &tg->css;
7480}
7481
41a2d6cf
IM
7482static void
7483cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7484{
2b01dfe3 7485 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7486
7487 sched_destroy_group(tg);
7488}
7489
41a2d6cf
IM
7490static int
7491cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7492 struct task_struct *tsk)
68318b8e
SV
7493{
7494 /* We don't support RT-tasks being in separate groups */
7495 if (tsk->sched_class != &fair_sched_class)
7496 return -EINVAL;
7497
7498 return 0;
7499}
7500
7501static void
2b01dfe3 7502cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7503 struct cgroup *old_cont, struct task_struct *tsk)
7504{
7505 sched_move_task(tsk);
7506}
7507
2b01dfe3
PM
7508static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7509 u64 shareval)
68318b8e 7510{
2b01dfe3 7511 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7512}
7513
2b01dfe3 7514static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7515{
2b01dfe3 7516 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7517
7518 return (u64) tg->shares;
7519}
7520
fe5c7cc2
PM
7521static struct cftype cpu_files[] = {
7522 {
7523 .name = "shares",
7524 .read_uint = cpu_shares_read_uint,
7525 .write_uint = cpu_shares_write_uint,
7526 },
68318b8e
SV
7527};
7528
7529static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7530{
fe5c7cc2 7531 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7532}
7533
7534struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7535 .name = "cpu",
7536 .create = cpu_cgroup_create,
7537 .destroy = cpu_cgroup_destroy,
7538 .can_attach = cpu_cgroup_can_attach,
7539 .attach = cpu_cgroup_attach,
7540 .populate = cpu_cgroup_populate,
7541 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7542 .early_init = 1,
7543};
7544
7545#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7546
7547#ifdef CONFIG_CGROUP_CPUACCT
7548
7549/*
7550 * CPU accounting code for task groups.
7551 *
7552 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7553 * (balbir@in.ibm.com).
7554 */
7555
7556/* track cpu usage of a group of tasks */
7557struct cpuacct {
7558 struct cgroup_subsys_state css;
7559 /* cpuusage holds pointer to a u64-type object on every cpu */
7560 u64 *cpuusage;
7561};
7562
7563struct cgroup_subsys cpuacct_subsys;
7564
7565/* return cpu accounting group corresponding to this container */
7566static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7567{
7568 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7569 struct cpuacct, css);
7570}
7571
7572/* return cpu accounting group to which this task belongs */
7573static inline struct cpuacct *task_ca(struct task_struct *tsk)
7574{
7575 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7576 struct cpuacct, css);
7577}
7578
7579/* create a new cpu accounting group */
7580static struct cgroup_subsys_state *cpuacct_create(
7581 struct cgroup_subsys *ss, struct cgroup *cont)
7582{
7583 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7584
7585 if (!ca)
7586 return ERR_PTR(-ENOMEM);
7587
7588 ca->cpuusage = alloc_percpu(u64);
7589 if (!ca->cpuusage) {
7590 kfree(ca);
7591 return ERR_PTR(-ENOMEM);
7592 }
7593
7594 return &ca->css;
7595}
7596
7597/* destroy an existing cpu accounting group */
41a2d6cf
IM
7598static void
7599cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7600{
7601 struct cpuacct *ca = cgroup_ca(cont);
7602
7603 free_percpu(ca->cpuusage);
7604 kfree(ca);
7605}
7606
7607/* return total cpu usage (in nanoseconds) of a group */
7608static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7609{
7610 struct cpuacct *ca = cgroup_ca(cont);
7611 u64 totalcpuusage = 0;
7612 int i;
7613
7614 for_each_possible_cpu(i) {
7615 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7616
7617 /*
7618 * Take rq->lock to make 64-bit addition safe on 32-bit
7619 * platforms.
7620 */
7621 spin_lock_irq(&cpu_rq(i)->lock);
7622 totalcpuusage += *cpuusage;
7623 spin_unlock_irq(&cpu_rq(i)->lock);
7624 }
7625
7626 return totalcpuusage;
7627}
7628
7629static struct cftype files[] = {
7630 {
7631 .name = "usage",
7632 .read_uint = cpuusage_read,
7633 },
7634};
7635
7636static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7637{
7638 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7639}
7640
7641/*
7642 * charge this task's execution time to its accounting group.
7643 *
7644 * called with rq->lock held.
7645 */
7646static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7647{
7648 struct cpuacct *ca;
7649
7650 if (!cpuacct_subsys.active)
7651 return;
7652
7653 ca = task_ca(tsk);
7654 if (ca) {
7655 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7656
7657 *cpuusage += cputime;
7658 }
7659}
7660
7661struct cgroup_subsys cpuacct_subsys = {
7662 .name = "cpuacct",
7663 .create = cpuacct_create,
7664 .destroy = cpuacct_destroy,
7665 .populate = cpuacct_populate,
7666 .subsys_id = cpuacct_subsys_id,
7667};
7668#endif /* CONFIG_CGROUP_CPUACCT */