]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched.c
sched: simplify the group load balancer
[mirror_ubuntu-kernels.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
6e0534f2
GH
77#include "sched_cpupri.h"
78
1da177e4
LT
79/*
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
83 */
84#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87
88/*
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
92 */
93#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96
97/*
d7876a08 98 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 99 */
d6322faf 100#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
d0b27fa7
PZ
113/*
114 * single value that denotes runtime == period, ie unlimited time.
115 */
116#define RUNTIME_INF ((u64)~0ULL)
117
5517d86b
ED
118#ifdef CONFIG_SMP
119/*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124{
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126}
127
128/*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133{
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136}
137#endif
138
e05606d3
IM
139static inline int rt_policy(int policy)
140{
3f33a7ce 141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
142 return 1;
143 return 0;
144}
145
146static inline int task_has_rt_policy(struct task_struct *p)
147{
148 return rt_policy(p->policy);
149}
150
1da177e4 151/*
6aa645ea 152 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 153 */
6aa645ea
IM
154struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
20b6331b 156 struct list_head queue[MAX_RT_PRIO];
6aa645ea
IM
157};
158
d0b27fa7 159struct rt_bandwidth {
ea736ed5
IM
160 /* nests inside the rq lock: */
161 spinlock_t rt_runtime_lock;
162 ktime_t rt_period;
163 u64 rt_runtime;
164 struct hrtimer rt_period_timer;
d0b27fa7
PZ
165};
166
167static struct rt_bandwidth def_rt_bandwidth;
168
169static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
170
171static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
172{
173 struct rt_bandwidth *rt_b =
174 container_of(timer, struct rt_bandwidth, rt_period_timer);
175 ktime_t now;
176 int overrun;
177 int idle = 0;
178
179 for (;;) {
180 now = hrtimer_cb_get_time(timer);
181 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
182
183 if (!overrun)
184 break;
185
186 idle = do_sched_rt_period_timer(rt_b, overrun);
187 }
188
189 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
190}
191
192static
193void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
194{
195 rt_b->rt_period = ns_to_ktime(period);
196 rt_b->rt_runtime = runtime;
197
ac086bc2
PZ
198 spin_lock_init(&rt_b->rt_runtime_lock);
199
d0b27fa7
PZ
200 hrtimer_init(&rt_b->rt_period_timer,
201 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
202 rt_b->rt_period_timer.function = sched_rt_period_timer;
203 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
204}
205
206static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
207{
208 ktime_t now;
209
210 if (rt_b->rt_runtime == RUNTIME_INF)
211 return;
212
213 if (hrtimer_active(&rt_b->rt_period_timer))
214 return;
215
216 spin_lock(&rt_b->rt_runtime_lock);
217 for (;;) {
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 break;
220
221 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
222 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
223 hrtimer_start(&rt_b->rt_period_timer,
224 rt_b->rt_period_timer.expires,
225 HRTIMER_MODE_ABS);
226 }
227 spin_unlock(&rt_b->rt_runtime_lock);
228}
229
230#ifdef CONFIG_RT_GROUP_SCHED
231static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
232{
233 hrtimer_cancel(&rt_b->rt_period_timer);
234}
235#endif
236
712555ee
HC
237/*
238 * sched_domains_mutex serializes calls to arch_init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
240 */
241static DEFINE_MUTEX(sched_domains_mutex);
242
052f1dc7 243#ifdef CONFIG_GROUP_SCHED
29f59db3 244
68318b8e
SV
245#include <linux/cgroup.h>
246
29f59db3
SV
247struct cfs_rq;
248
6f505b16
PZ
249static LIST_HEAD(task_groups);
250
29f59db3 251/* task group related information */
4cf86d77 252struct task_group {
052f1dc7 253#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
254 struct cgroup_subsys_state css;
255#endif
052f1dc7
PZ
256
257#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
052f1dc7
PZ
263#endif
264
265#ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
d0b27fa7 269 struct rt_bandwidth rt_bandwidth;
052f1dc7 270#endif
6b2d7700 271
ae8393e5 272 struct rcu_head rcu;
6f505b16 273 struct list_head list;
f473aa5e
PZ
274
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
29f59db3
SV
278};
279
354d60c2 280#ifdef CONFIG_USER_SCHED
eff766a6
PZ
281
282/*
283 * Root task group.
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
286 */
287struct task_group root_task_group;
288
052f1dc7 289#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
290/* Default task group's sched entity on each cpu */
291static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292/* Default task group's cfs_rq on each cpu */
293static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 294#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
295
296#ifdef CONFIG_RT_GROUP_SCHED
297static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
299#endif /* CONFIG_RT_GROUP_SCHED */
300#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 301#define root_task_group init_task_group
6d6bc0ad 302#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 303
8ed36996 304/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
305 * a task group's cpu shares.
306 */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
052f1dc7 309#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
310#ifdef CONFIG_USER_SCHED
311# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 312#else /* !CONFIG_USER_SCHED */
052f1dc7 313# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 314#endif /* CONFIG_USER_SCHED */
052f1dc7 315
cb4ad1ff 316/*
2e084786
LJ
317 * A weight of 0 or 1 can cause arithmetics problems.
318 * A weight of a cfs_rq is the sum of weights of which entities
319 * are queued on this cfs_rq, so a weight of a entity should not be
320 * too large, so as the shares value of a task group.
cb4ad1ff
MX
321 * (The default weight is 1024 - so there's no practical
322 * limitation from this.)
323 */
18d95a28 324#define MIN_SHARES 2
2e084786 325#define MAX_SHARES (1UL << 18)
18d95a28 326
052f1dc7
PZ
327static int init_task_group_load = INIT_TASK_GROUP_LOAD;
328#endif
329
29f59db3 330/* Default task group.
3a252015 331 * Every task in system belong to this group at bootup.
29f59db3 332 */
434d53b0 333struct task_group init_task_group;
29f59db3
SV
334
335/* return group to which a task belongs */
4cf86d77 336static inline struct task_group *task_group(struct task_struct *p)
29f59db3 337{
4cf86d77 338 struct task_group *tg;
9b5b7751 339
052f1dc7 340#ifdef CONFIG_USER_SCHED
24e377a8 341 tg = p->user->tg;
052f1dc7 342#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
343 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
344 struct task_group, css);
24e377a8 345#else
41a2d6cf 346 tg = &init_task_group;
24e377a8 347#endif
9b5b7751 348 return tg;
29f59db3
SV
349}
350
351/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 352static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 353{
052f1dc7 354#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
355 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
356 p->se.parent = task_group(p)->se[cpu];
052f1dc7 357#endif
6f505b16 358
052f1dc7 359#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
360 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
361 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 362#endif
29f59db3
SV
363}
364
365#else
366
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 368
052f1dc7 369#endif /* CONFIG_GROUP_SCHED */
29f59db3 370
6aa645ea
IM
371/* CFS-related fields in a runqueue */
372struct cfs_rq {
373 struct load_weight load;
374 unsigned long nr_running;
375
6aa645ea 376 u64 exec_clock;
e9acbff6 377 u64 min_vruntime;
103638d9 378 u64 pair_start;
6aa645ea
IM
379
380 struct rb_root tasks_timeline;
381 struct rb_node *rb_leftmost;
4a55bd5e
PZ
382
383 struct list_head tasks;
384 struct list_head *balance_iterator;
385
386 /*
387 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
388 * It is set to NULL otherwise (i.e when none are currently running).
389 */
aa2ac252 390 struct sched_entity *curr, *next;
ddc97297
PZ
391
392 unsigned long nr_spread_over;
393
62160e3f 394#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
395 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
396
41a2d6cf
IM
397 /*
398 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
399 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
400 * (like users, containers etc.)
401 *
402 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
403 * list is used during load balance.
404 */
41a2d6cf
IM
405 struct list_head leaf_cfs_rq_list;
406 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
407
408#ifdef CONFIG_SMP
c09595f6 409 /*
c8cba857 410 * the part of load.weight contributed by tasks
c09595f6 411 */
c8cba857 412 unsigned long task_weight;
c09595f6 413
c8cba857
PZ
414 /*
415 * h_load = weight * f(tg)
416 *
417 * Where f(tg) is the recursive weight fraction assigned to
418 * this group.
419 */
420 unsigned long h_load;
c09595f6 421
c8cba857
PZ
422 /*
423 * this cpu's part of tg->shares
424 */
425 unsigned long shares;
c09595f6 426#endif
6aa645ea
IM
427#endif
428};
1da177e4 429
6aa645ea
IM
430/* Real-Time classes' related field in a runqueue: */
431struct rt_rq {
432 struct rt_prio_array active;
63489e45 433 unsigned long rt_nr_running;
052f1dc7 434#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
435 int highest_prio; /* highest queued rt task prio */
436#endif
fa85ae24 437#ifdef CONFIG_SMP
73fe6aae 438 unsigned long rt_nr_migratory;
a22d7fc1 439 int overloaded;
fa85ae24 440#endif
6f505b16 441 int rt_throttled;
fa85ae24 442 u64 rt_time;
ac086bc2 443 u64 rt_runtime;
ea736ed5 444 /* Nests inside the rq lock: */
ac086bc2 445 spinlock_t rt_runtime_lock;
6f505b16 446
052f1dc7 447#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
448 unsigned long rt_nr_boosted;
449
6f505b16
PZ
450 struct rq *rq;
451 struct list_head leaf_rt_rq_list;
452 struct task_group *tg;
453 struct sched_rt_entity *rt_se;
454#endif
6aa645ea
IM
455};
456
57d885fe
GH
457#ifdef CONFIG_SMP
458
459/*
460 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
461 * variables. Each exclusive cpuset essentially defines an island domain by
462 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
463 * exclusive cpuset is created, we also create and attach a new root-domain
464 * object.
465 *
57d885fe
GH
466 */
467struct root_domain {
468 atomic_t refcount;
469 cpumask_t span;
470 cpumask_t online;
637f5085 471
0eab9146 472 /*
637f5085
GH
473 * The "RT overload" flag: it gets set if a CPU has more than
474 * one runnable RT task.
475 */
476 cpumask_t rto_mask;
0eab9146 477 atomic_t rto_count;
6e0534f2
GH
478#ifdef CONFIG_SMP
479 struct cpupri cpupri;
480#endif
57d885fe
GH
481};
482
dc938520
GH
483/*
484 * By default the system creates a single root-domain with all cpus as
485 * members (mimicking the global state we have today).
486 */
57d885fe
GH
487static struct root_domain def_root_domain;
488
489#endif
490
1da177e4
LT
491/*
492 * This is the main, per-CPU runqueue data structure.
493 *
494 * Locking rule: those places that want to lock multiple runqueues
495 * (such as the load balancing or the thread migration code), lock
496 * acquire operations must be ordered by ascending &runqueue.
497 */
70b97a7f 498struct rq {
d8016491
IM
499 /* runqueue lock: */
500 spinlock_t lock;
1da177e4
LT
501
502 /*
503 * nr_running and cpu_load should be in the same cacheline because
504 * remote CPUs use both these fields when doing load calculation.
505 */
506 unsigned long nr_running;
6aa645ea
IM
507 #define CPU_LOAD_IDX_MAX 5
508 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 509 unsigned char idle_at_tick;
46cb4b7c 510#ifdef CONFIG_NO_HZ
15934a37 511 unsigned long last_tick_seen;
46cb4b7c
SS
512 unsigned char in_nohz_recently;
513#endif
d8016491
IM
514 /* capture load from *all* tasks on this cpu: */
515 struct load_weight load;
6aa645ea
IM
516 unsigned long nr_load_updates;
517 u64 nr_switches;
518
519 struct cfs_rq cfs;
6f505b16 520 struct rt_rq rt;
6f505b16 521
6aa645ea 522#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
523 /* list of leaf cfs_rq on this cpu: */
524 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
525#endif
526#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 527 struct list_head leaf_rt_rq_list;
1da177e4 528#endif
1da177e4
LT
529
530 /*
531 * This is part of a global counter where only the total sum
532 * over all CPUs matters. A task can increase this counter on
533 * one CPU and if it got migrated afterwards it may decrease
534 * it on another CPU. Always updated under the runqueue lock:
535 */
536 unsigned long nr_uninterruptible;
537
36c8b586 538 struct task_struct *curr, *idle;
c9819f45 539 unsigned long next_balance;
1da177e4 540 struct mm_struct *prev_mm;
6aa645ea 541
3e51f33f 542 u64 clock;
6aa645ea 543
1da177e4
LT
544 atomic_t nr_iowait;
545
546#ifdef CONFIG_SMP
0eab9146 547 struct root_domain *rd;
1da177e4
LT
548 struct sched_domain *sd;
549
550 /* For active balancing */
551 int active_balance;
552 int push_cpu;
d8016491
IM
553 /* cpu of this runqueue: */
554 int cpu;
1f11eb6a 555 int online;
1da177e4 556
36c8b586 557 struct task_struct *migration_thread;
1da177e4
LT
558 struct list_head migration_queue;
559#endif
560
8f4d37ec
PZ
561#ifdef CONFIG_SCHED_HRTICK
562 unsigned long hrtick_flags;
563 ktime_t hrtick_expire;
564 struct hrtimer hrtick_timer;
565#endif
566
1da177e4
LT
567#ifdef CONFIG_SCHEDSTATS
568 /* latency stats */
569 struct sched_info rq_sched_info;
570
571 /* sys_sched_yield() stats */
480b9434
KC
572 unsigned int yld_exp_empty;
573 unsigned int yld_act_empty;
574 unsigned int yld_both_empty;
575 unsigned int yld_count;
1da177e4
LT
576
577 /* schedule() stats */
480b9434
KC
578 unsigned int sched_switch;
579 unsigned int sched_count;
580 unsigned int sched_goidle;
1da177e4
LT
581
582 /* try_to_wake_up() stats */
480b9434
KC
583 unsigned int ttwu_count;
584 unsigned int ttwu_local;
b8efb561
IM
585
586 /* BKL stats */
480b9434 587 unsigned int bkl_count;
1da177e4 588#endif
fcb99371 589 struct lock_class_key rq_lock_key;
1da177e4
LT
590};
591
f34e3b61 592static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 593
dd41f596
IM
594static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
595{
596 rq->curr->sched_class->check_preempt_curr(rq, p);
597}
598
0a2966b4
CL
599static inline int cpu_of(struct rq *rq)
600{
601#ifdef CONFIG_SMP
602 return rq->cpu;
603#else
604 return 0;
605#endif
606}
607
674311d5
NP
608/*
609 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 610 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
611 *
612 * The domain tree of any CPU may only be accessed from within
613 * preempt-disabled sections.
614 */
48f24c4d
IM
615#define for_each_domain(cpu, __sd) \
616 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
617
618#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
619#define this_rq() (&__get_cpu_var(runqueues))
620#define task_rq(p) cpu_rq(task_cpu(p))
621#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
622
3e51f33f
PZ
623static inline void update_rq_clock(struct rq *rq)
624{
625 rq->clock = sched_clock_cpu(cpu_of(rq));
626}
627
bf5c91ba
IM
628/*
629 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
630 */
631#ifdef CONFIG_SCHED_DEBUG
632# define const_debug __read_mostly
633#else
634# define const_debug static const
635#endif
636
637/*
638 * Debugging: various feature bits
639 */
f00b45c1
PZ
640
641#define SCHED_FEAT(name, enabled) \
642 __SCHED_FEAT_##name ,
643
bf5c91ba 644enum {
f00b45c1 645#include "sched_features.h"
bf5c91ba
IM
646};
647
f00b45c1
PZ
648#undef SCHED_FEAT
649
650#define SCHED_FEAT(name, enabled) \
651 (1UL << __SCHED_FEAT_##name) * enabled |
652
bf5c91ba 653const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
654#include "sched_features.h"
655 0;
656
657#undef SCHED_FEAT
658
659#ifdef CONFIG_SCHED_DEBUG
660#define SCHED_FEAT(name, enabled) \
661 #name ,
662
983ed7a6 663static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
664#include "sched_features.h"
665 NULL
666};
667
668#undef SCHED_FEAT
669
983ed7a6 670static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
671{
672 filp->private_data = inode->i_private;
673 return 0;
674}
675
676static ssize_t
677sched_feat_read(struct file *filp, char __user *ubuf,
678 size_t cnt, loff_t *ppos)
679{
680 char *buf;
681 int r = 0;
682 int len = 0;
683 int i;
684
685 for (i = 0; sched_feat_names[i]; i++) {
686 len += strlen(sched_feat_names[i]);
687 len += 4;
688 }
689
690 buf = kmalloc(len + 2, GFP_KERNEL);
691 if (!buf)
692 return -ENOMEM;
693
694 for (i = 0; sched_feat_names[i]; i++) {
695 if (sysctl_sched_features & (1UL << i))
696 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
697 else
c24b7c52 698 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
699 }
700
701 r += sprintf(buf + r, "\n");
702 WARN_ON(r >= len + 2);
703
704 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
705
706 kfree(buf);
707
708 return r;
709}
710
711static ssize_t
712sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714{
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
719
720 if (cnt > 63)
721 cnt = 63;
722
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
725
726 buf[cnt] = 0;
727
c24b7c52 728 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
729 neg = 1;
730 cmp += 3;
731 }
732
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
735
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
742 }
743 }
744
745 if (!sched_feat_names[i])
746 return -EINVAL;
747
748 filp->f_pos += cnt;
749
750 return cnt;
751}
752
753static struct file_operations sched_feat_fops = {
754 .open = sched_feat_open,
755 .read = sched_feat_read,
756 .write = sched_feat_write,
757};
758
759static __init int sched_init_debug(void)
760{
f00b45c1
PZ
761 debugfs_create_file("sched_features", 0644, NULL, NULL,
762 &sched_feat_fops);
763
764 return 0;
765}
766late_initcall(sched_init_debug);
767
768#endif
769
770#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 771
b82d9fdd
PZ
772/*
773 * Number of tasks to iterate in a single balance run.
774 * Limited because this is done with IRQs disabled.
775 */
776const_debug unsigned int sysctl_sched_nr_migrate = 32;
777
fa85ae24 778/*
9f0c1e56 779 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
780 * default: 1s
781 */
9f0c1e56 782unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 783
6892b75e
IM
784static __read_mostly int scheduler_running;
785
9f0c1e56
PZ
786/*
787 * part of the period that we allow rt tasks to run in us.
788 * default: 0.95s
789 */
790int sysctl_sched_rt_runtime = 950000;
fa85ae24 791
d0b27fa7
PZ
792static inline u64 global_rt_period(void)
793{
794 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
795}
796
797static inline u64 global_rt_runtime(void)
798{
799 if (sysctl_sched_rt_period < 0)
800 return RUNTIME_INF;
801
802 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
803}
fa85ae24 804
1da177e4 805#ifndef prepare_arch_switch
4866cde0
NP
806# define prepare_arch_switch(next) do { } while (0)
807#endif
808#ifndef finish_arch_switch
809# define finish_arch_switch(prev) do { } while (0)
810#endif
811
051a1d1a
DA
812static inline int task_current(struct rq *rq, struct task_struct *p)
813{
814 return rq->curr == p;
815}
816
4866cde0 817#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 818static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 819{
051a1d1a 820 return task_current(rq, p);
4866cde0
NP
821}
822
70b97a7f 823static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
824{
825}
826
70b97a7f 827static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 828{
da04c035
IM
829#ifdef CONFIG_DEBUG_SPINLOCK
830 /* this is a valid case when another task releases the spinlock */
831 rq->lock.owner = current;
832#endif
8a25d5de
IM
833 /*
834 * If we are tracking spinlock dependencies then we have to
835 * fix up the runqueue lock - which gets 'carried over' from
836 * prev into current:
837 */
838 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
839
4866cde0
NP
840 spin_unlock_irq(&rq->lock);
841}
842
843#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 844static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
845{
846#ifdef CONFIG_SMP
847 return p->oncpu;
848#else
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850#endif
851}
852
70b97a7f 853static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
854{
855#ifdef CONFIG_SMP
856 /*
857 * We can optimise this out completely for !SMP, because the
858 * SMP rebalancing from interrupt is the only thing that cares
859 * here.
860 */
861 next->oncpu = 1;
862#endif
863#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
864 spin_unlock_irq(&rq->lock);
865#else
866 spin_unlock(&rq->lock);
867#endif
868}
869
70b97a7f 870static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
871{
872#ifdef CONFIG_SMP
873 /*
874 * After ->oncpu is cleared, the task can be moved to a different CPU.
875 * We must ensure this doesn't happen until the switch is completely
876 * finished.
877 */
878 smp_wmb();
879 prev->oncpu = 0;
880#endif
881#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
882 local_irq_enable();
1da177e4 883#endif
4866cde0
NP
884}
885#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 886
b29739f9
IM
887/*
888 * __task_rq_lock - lock the runqueue a given task resides on.
889 * Must be called interrupts disabled.
890 */
70b97a7f 891static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
892 __acquires(rq->lock)
893{
3a5c359a
AK
894 for (;;) {
895 struct rq *rq = task_rq(p);
896 spin_lock(&rq->lock);
897 if (likely(rq == task_rq(p)))
898 return rq;
b29739f9 899 spin_unlock(&rq->lock);
b29739f9 900 }
b29739f9
IM
901}
902
1da177e4
LT
903/*
904 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 905 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
906 * explicitly disabling preemption.
907 */
70b97a7f 908static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
909 __acquires(rq->lock)
910{
70b97a7f 911 struct rq *rq;
1da177e4 912
3a5c359a
AK
913 for (;;) {
914 local_irq_save(*flags);
915 rq = task_rq(p);
916 spin_lock(&rq->lock);
917 if (likely(rq == task_rq(p)))
918 return rq;
1da177e4 919 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 920 }
1da177e4
LT
921}
922
a9957449 923static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
924 __releases(rq->lock)
925{
926 spin_unlock(&rq->lock);
927}
928
70b97a7f 929static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
930 __releases(rq->lock)
931{
932 spin_unlock_irqrestore(&rq->lock, *flags);
933}
934
1da177e4 935/*
cc2a73b5 936 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 937 */
a9957449 938static struct rq *this_rq_lock(void)
1da177e4
LT
939 __acquires(rq->lock)
940{
70b97a7f 941 struct rq *rq;
1da177e4
LT
942
943 local_irq_disable();
944 rq = this_rq();
945 spin_lock(&rq->lock);
946
947 return rq;
948}
949
8f4d37ec
PZ
950static void __resched_task(struct task_struct *p, int tif_bit);
951
952static inline void resched_task(struct task_struct *p)
953{
954 __resched_task(p, TIF_NEED_RESCHED);
955}
956
957#ifdef CONFIG_SCHED_HRTICK
958/*
959 * Use HR-timers to deliver accurate preemption points.
960 *
961 * Its all a bit involved since we cannot program an hrt while holding the
962 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
963 * reschedule event.
964 *
965 * When we get rescheduled we reprogram the hrtick_timer outside of the
966 * rq->lock.
967 */
968static inline void resched_hrt(struct task_struct *p)
969{
970 __resched_task(p, TIF_HRTICK_RESCHED);
971}
972
973static inline void resched_rq(struct rq *rq)
974{
975 unsigned long flags;
976
977 spin_lock_irqsave(&rq->lock, flags);
978 resched_task(rq->curr);
979 spin_unlock_irqrestore(&rq->lock, flags);
980}
981
982enum {
983 HRTICK_SET, /* re-programm hrtick_timer */
984 HRTICK_RESET, /* not a new slice */
b328ca18 985 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
986};
987
988/*
989 * Use hrtick when:
990 * - enabled by features
991 * - hrtimer is actually high res
992 */
993static inline int hrtick_enabled(struct rq *rq)
994{
995 if (!sched_feat(HRTICK))
996 return 0;
b328ca18
PZ
997 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
998 return 0;
8f4d37ec
PZ
999 return hrtimer_is_hres_active(&rq->hrtick_timer);
1000}
1001
1002/*
1003 * Called to set the hrtick timer state.
1004 *
1005 * called with rq->lock held and irqs disabled
1006 */
1007static void hrtick_start(struct rq *rq, u64 delay, int reset)
1008{
1009 assert_spin_locked(&rq->lock);
1010
1011 /*
1012 * preempt at: now + delay
1013 */
1014 rq->hrtick_expire =
1015 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1016 /*
1017 * indicate we need to program the timer
1018 */
1019 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1020 if (reset)
1021 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1022
1023 /*
1024 * New slices are called from the schedule path and don't need a
1025 * forced reschedule.
1026 */
1027 if (reset)
1028 resched_hrt(rq->curr);
1029}
1030
1031static void hrtick_clear(struct rq *rq)
1032{
1033 if (hrtimer_active(&rq->hrtick_timer))
1034 hrtimer_cancel(&rq->hrtick_timer);
1035}
1036
1037/*
1038 * Update the timer from the possible pending state.
1039 */
1040static void hrtick_set(struct rq *rq)
1041{
1042 ktime_t time;
1043 int set, reset;
1044 unsigned long flags;
1045
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1047
1048 spin_lock_irqsave(&rq->lock, flags);
1049 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1050 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1051 time = rq->hrtick_expire;
1052 clear_thread_flag(TIF_HRTICK_RESCHED);
1053 spin_unlock_irqrestore(&rq->lock, flags);
1054
1055 if (set) {
1056 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1057 if (reset && !hrtimer_active(&rq->hrtick_timer))
1058 resched_rq(rq);
1059 } else
1060 hrtick_clear(rq);
1061}
1062
1063/*
1064 * High-resolution timer tick.
1065 * Runs from hardirq context with interrupts disabled.
1066 */
1067static enum hrtimer_restart hrtick(struct hrtimer *timer)
1068{
1069 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1070
1071 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1072
1073 spin_lock(&rq->lock);
3e51f33f 1074 update_rq_clock(rq);
8f4d37ec
PZ
1075 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1076 spin_unlock(&rq->lock);
1077
1078 return HRTIMER_NORESTART;
1079}
1080
81d41d7e 1081#ifdef CONFIG_SMP
b328ca18
PZ
1082static void hotplug_hrtick_disable(int cpu)
1083{
1084 struct rq *rq = cpu_rq(cpu);
1085 unsigned long flags;
1086
1087 spin_lock_irqsave(&rq->lock, flags);
1088 rq->hrtick_flags = 0;
1089 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1090 spin_unlock_irqrestore(&rq->lock, flags);
1091
1092 hrtick_clear(rq);
1093}
1094
1095static void hotplug_hrtick_enable(int cpu)
1096{
1097 struct rq *rq = cpu_rq(cpu);
1098 unsigned long flags;
1099
1100 spin_lock_irqsave(&rq->lock, flags);
1101 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1102 spin_unlock_irqrestore(&rq->lock, flags);
1103}
1104
1105static int
1106hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1107{
1108 int cpu = (int)(long)hcpu;
1109
1110 switch (action) {
1111 case CPU_UP_CANCELED:
1112 case CPU_UP_CANCELED_FROZEN:
1113 case CPU_DOWN_PREPARE:
1114 case CPU_DOWN_PREPARE_FROZEN:
1115 case CPU_DEAD:
1116 case CPU_DEAD_FROZEN:
1117 hotplug_hrtick_disable(cpu);
1118 return NOTIFY_OK;
1119
1120 case CPU_UP_PREPARE:
1121 case CPU_UP_PREPARE_FROZEN:
1122 case CPU_DOWN_FAILED:
1123 case CPU_DOWN_FAILED_FROZEN:
1124 case CPU_ONLINE:
1125 case CPU_ONLINE_FROZEN:
1126 hotplug_hrtick_enable(cpu);
1127 return NOTIFY_OK;
1128 }
1129
1130 return NOTIFY_DONE;
1131}
1132
1133static void init_hrtick(void)
1134{
1135 hotcpu_notifier(hotplug_hrtick, 0);
1136}
81d41d7e 1137#endif /* CONFIG_SMP */
b328ca18
PZ
1138
1139static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1140{
1141 rq->hrtick_flags = 0;
1142 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1143 rq->hrtick_timer.function = hrtick;
1144 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1145}
1146
1147void hrtick_resched(void)
1148{
1149 struct rq *rq;
1150 unsigned long flags;
1151
1152 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1153 return;
1154
1155 local_irq_save(flags);
1156 rq = cpu_rq(smp_processor_id());
1157 hrtick_set(rq);
1158 local_irq_restore(flags);
1159}
1160#else
1161static inline void hrtick_clear(struct rq *rq)
1162{
1163}
1164
1165static inline void hrtick_set(struct rq *rq)
1166{
1167}
1168
1169static inline void init_rq_hrtick(struct rq *rq)
1170{
1171}
1172
1173void hrtick_resched(void)
1174{
1175}
b328ca18
PZ
1176
1177static inline void init_hrtick(void)
1178{
1179}
8f4d37ec
PZ
1180#endif
1181
c24d20db
IM
1182/*
1183 * resched_task - mark a task 'to be rescheduled now'.
1184 *
1185 * On UP this means the setting of the need_resched flag, on SMP it
1186 * might also involve a cross-CPU call to trigger the scheduler on
1187 * the target CPU.
1188 */
1189#ifdef CONFIG_SMP
1190
1191#ifndef tsk_is_polling
1192#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1193#endif
1194
8f4d37ec 1195static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1196{
1197 int cpu;
1198
1199 assert_spin_locked(&task_rq(p)->lock);
1200
8f4d37ec 1201 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1202 return;
1203
8f4d37ec 1204 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1205
1206 cpu = task_cpu(p);
1207 if (cpu == smp_processor_id())
1208 return;
1209
1210 /* NEED_RESCHED must be visible before we test polling */
1211 smp_mb();
1212 if (!tsk_is_polling(p))
1213 smp_send_reschedule(cpu);
1214}
1215
1216static void resched_cpu(int cpu)
1217{
1218 struct rq *rq = cpu_rq(cpu);
1219 unsigned long flags;
1220
1221 if (!spin_trylock_irqsave(&rq->lock, flags))
1222 return;
1223 resched_task(cpu_curr(cpu));
1224 spin_unlock_irqrestore(&rq->lock, flags);
1225}
06d8308c
TG
1226
1227#ifdef CONFIG_NO_HZ
1228/*
1229 * When add_timer_on() enqueues a timer into the timer wheel of an
1230 * idle CPU then this timer might expire before the next timer event
1231 * which is scheduled to wake up that CPU. In case of a completely
1232 * idle system the next event might even be infinite time into the
1233 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1234 * leaves the inner idle loop so the newly added timer is taken into
1235 * account when the CPU goes back to idle and evaluates the timer
1236 * wheel for the next timer event.
1237 */
1238void wake_up_idle_cpu(int cpu)
1239{
1240 struct rq *rq = cpu_rq(cpu);
1241
1242 if (cpu == smp_processor_id())
1243 return;
1244
1245 /*
1246 * This is safe, as this function is called with the timer
1247 * wheel base lock of (cpu) held. When the CPU is on the way
1248 * to idle and has not yet set rq->curr to idle then it will
1249 * be serialized on the timer wheel base lock and take the new
1250 * timer into account automatically.
1251 */
1252 if (rq->curr != rq->idle)
1253 return;
1254
1255 /*
1256 * We can set TIF_RESCHED on the idle task of the other CPU
1257 * lockless. The worst case is that the other CPU runs the
1258 * idle task through an additional NOOP schedule()
1259 */
1260 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1261
1262 /* NEED_RESCHED must be visible before we test polling */
1263 smp_mb();
1264 if (!tsk_is_polling(rq->idle))
1265 smp_send_reschedule(cpu);
1266}
6d6bc0ad 1267#endif /* CONFIG_NO_HZ */
06d8308c 1268
6d6bc0ad 1269#else /* !CONFIG_SMP */
8f4d37ec 1270static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1271{
1272 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1273 set_tsk_thread_flag(p, tif_bit);
c24d20db 1274}
6d6bc0ad 1275#endif /* CONFIG_SMP */
c24d20db 1276
45bf76df
IM
1277#if BITS_PER_LONG == 32
1278# define WMULT_CONST (~0UL)
1279#else
1280# define WMULT_CONST (1UL << 32)
1281#endif
1282
1283#define WMULT_SHIFT 32
1284
194081eb
IM
1285/*
1286 * Shift right and round:
1287 */
cf2ab469 1288#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1289
a7be37ac
PZ
1290/*
1291 * delta *= weight / lw
1292 */
cb1c4fc9 1293static unsigned long
45bf76df
IM
1294calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1295 struct load_weight *lw)
1296{
1297 u64 tmp;
1298
7a232e03
LJ
1299 if (!lw->inv_weight) {
1300 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1301 lw->inv_weight = 1;
1302 else
1303 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1304 / (lw->weight+1);
1305 }
45bf76df
IM
1306
1307 tmp = (u64)delta_exec * weight;
1308 /*
1309 * Check whether we'd overflow the 64-bit multiplication:
1310 */
194081eb 1311 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1312 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1313 WMULT_SHIFT/2);
1314 else
cf2ab469 1315 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1316
ecf691da 1317 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1318}
1319
1091985b 1320static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1321{
1322 lw->weight += inc;
e89996ae 1323 lw->inv_weight = 0;
45bf76df
IM
1324}
1325
1091985b 1326static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1327{
1328 lw->weight -= dec;
e89996ae 1329 lw->inv_weight = 0;
45bf76df
IM
1330}
1331
2dd73a4f
PW
1332/*
1333 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1334 * of tasks with abnormal "nice" values across CPUs the contribution that
1335 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1336 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1337 * scaled version of the new time slice allocation that they receive on time
1338 * slice expiry etc.
1339 */
1340
dd41f596
IM
1341#define WEIGHT_IDLEPRIO 2
1342#define WMULT_IDLEPRIO (1 << 31)
1343
1344/*
1345 * Nice levels are multiplicative, with a gentle 10% change for every
1346 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1347 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1348 * that remained on nice 0.
1349 *
1350 * The "10% effect" is relative and cumulative: from _any_ nice level,
1351 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1352 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1353 * If a task goes up by ~10% and another task goes down by ~10% then
1354 * the relative distance between them is ~25%.)
dd41f596
IM
1355 */
1356static const int prio_to_weight[40] = {
254753dc
IM
1357 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1358 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1359 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1360 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1361 /* 0 */ 1024, 820, 655, 526, 423,
1362 /* 5 */ 335, 272, 215, 172, 137,
1363 /* 10 */ 110, 87, 70, 56, 45,
1364 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1365};
1366
5714d2de
IM
1367/*
1368 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1369 *
1370 * In cases where the weight does not change often, we can use the
1371 * precalculated inverse to speed up arithmetics by turning divisions
1372 * into multiplications:
1373 */
dd41f596 1374static const u32 prio_to_wmult[40] = {
254753dc
IM
1375 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1376 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1377 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1378 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1379 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1380 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1381 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1382 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1383};
2dd73a4f 1384
dd41f596
IM
1385static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1386
1387/*
1388 * runqueue iterator, to support SMP load-balancing between different
1389 * scheduling classes, without having to expose their internal data
1390 * structures to the load-balancing proper:
1391 */
1392struct rq_iterator {
1393 void *arg;
1394 struct task_struct *(*start)(void *);
1395 struct task_struct *(*next)(void *);
1396};
1397
e1d1484f
PW
1398#ifdef CONFIG_SMP
1399static unsigned long
1400balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1401 unsigned long max_load_move, struct sched_domain *sd,
1402 enum cpu_idle_type idle, int *all_pinned,
1403 int *this_best_prio, struct rq_iterator *iterator);
1404
1405static int
1406iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 struct sched_domain *sd, enum cpu_idle_type idle,
1408 struct rq_iterator *iterator);
e1d1484f 1409#endif
dd41f596 1410
d842de87
SV
1411#ifdef CONFIG_CGROUP_CPUACCT
1412static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1413#else
1414static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1415#endif
1416
18d95a28
PZ
1417static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1418{
1419 update_load_add(&rq->load, load);
1420}
1421
1422static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1423{
1424 update_load_sub(&rq->load, load);
1425}
1426
e7693a36
GH
1427#ifdef CONFIG_SMP
1428static unsigned long source_load(int cpu, int type);
1429static unsigned long target_load(int cpu, int type);
1430static unsigned long cpu_avg_load_per_task(int cpu);
1431static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
c09595f6
PZ
1432
1433#ifdef CONFIG_FAIR_GROUP_SCHED
1434
c8cba857 1435typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
c09595f6
PZ
1436
1437/*
1438 * Iterate the full tree, calling @down when first entering a node and @up when
1439 * leaving it for the final time.
1440 */
c8cba857
PZ
1441static void
1442walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
c09595f6
PZ
1443{
1444 struct task_group *parent, *child;
1445
1446 rcu_read_lock();
1447 parent = &root_task_group;
1448down:
b6a86c74 1449 (*down)(parent, cpu, sd);
c09595f6
PZ
1450 list_for_each_entry_rcu(child, &parent->children, siblings) {
1451 parent = child;
1452 goto down;
1453
1454up:
1455 continue;
1456 }
b6a86c74 1457 (*up)(parent, cpu, sd);
c09595f6
PZ
1458
1459 child = parent;
1460 parent = parent->parent;
1461 if (parent)
1462 goto up;
1463 rcu_read_unlock();
1464}
1465
c09595f6
PZ
1466static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1467
1468/*
1469 * Calculate and set the cpu's group shares.
1470 */
1471static void
b6a86c74 1472__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1473 unsigned long sd_shares, unsigned long sd_rq_weight)
c09595f6
PZ
1474{
1475 int boost = 0;
1476 unsigned long shares;
1477 unsigned long rq_weight;
1478
c8cba857 1479 if (!tg->se[cpu])
c09595f6
PZ
1480 return;
1481
c8cba857 1482 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1483
1484 /*
1485 * If there are currently no tasks on the cpu pretend there is one of
1486 * average load so that when a new task gets to run here it will not
1487 * get delayed by group starvation.
1488 */
1489 if (!rq_weight) {
1490 boost = 1;
1491 rq_weight = NICE_0_LOAD;
1492 }
1493
c8cba857
PZ
1494 if (unlikely(rq_weight > sd_rq_weight))
1495 rq_weight = sd_rq_weight;
1496
c09595f6
PZ
1497 /*
1498 * \Sum shares * rq_weight
1499 * shares = -----------------------
1500 * \Sum rq_weight
1501 *
1502 */
c8cba857 1503 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1504
1505 /*
1506 * record the actual number of shares, not the boosted amount.
1507 */
c8cba857 1508 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
c09595f6
PZ
1509
1510 if (shares < MIN_SHARES)
1511 shares = MIN_SHARES;
1512 else if (shares > MAX_SHARES)
1513 shares = MAX_SHARES;
1514
c8cba857 1515 __set_se_shares(tg->se[cpu], shares);
c09595f6
PZ
1516}
1517
1518/*
c8cba857
PZ
1519 * Re-compute the task group their per cpu shares over the given domain.
1520 * This needs to be done in a bottom-up fashion because the rq weight of a
1521 * parent group depends on the shares of its child groups.
c09595f6
PZ
1522 */
1523static void
c8cba857 1524tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1525{
c8cba857
PZ
1526 unsigned long rq_weight = 0;
1527 unsigned long shares = 0;
1528 int i;
c09595f6 1529
c8cba857
PZ
1530 for_each_cpu_mask(i, sd->span) {
1531 rq_weight += tg->cfs_rq[i]->load.weight;
1532 shares += tg->cfs_rq[i]->shares;
c09595f6 1533 }
c09595f6 1534
c8cba857
PZ
1535 if ((!shares && rq_weight) || shares > tg->shares)
1536 shares = tg->shares;
1537
1538 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1539 shares = tg->shares;
c09595f6
PZ
1540
1541 for_each_cpu_mask(i, sd->span) {
1542 struct rq *rq = cpu_rq(i);
1543 unsigned long flags;
1544
1545 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1546 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1547 spin_unlock_irqrestore(&rq->lock, flags);
1548 }
c09595f6
PZ
1549}
1550
1551/*
c8cba857
PZ
1552 * Compute the cpu's hierarchical load factor for each task group.
1553 * This needs to be done in a top-down fashion because the load of a child
1554 * group is a fraction of its parents load.
c09595f6 1555 */
b6a86c74 1556static void
c8cba857 1557tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1558{
c8cba857 1559 unsigned long load;
c09595f6 1560
c8cba857
PZ
1561 if (!tg->parent) {
1562 load = cpu_rq(cpu)->load.weight;
1563 } else {
1564 load = tg->parent->cfs_rq[cpu]->h_load;
1565 load *= tg->cfs_rq[cpu]->shares;
1566 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1567 }
c09595f6 1568
c8cba857 1569 tg->cfs_rq[cpu]->h_load = load;
c09595f6
PZ
1570}
1571
c8cba857
PZ
1572static void
1573tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1574{
c09595f6
PZ
1575}
1576
c8cba857 1577static void update_shares(struct sched_domain *sd)
4d8d595d 1578{
c8cba857 1579 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
4d8d595d
PZ
1580}
1581
c8cba857 1582static void update_h_load(int cpu)
c09595f6 1583{
c8cba857 1584 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
c09595f6
PZ
1585}
1586
1587static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1588{
1589 cfs_rq->shares = shares;
1590}
1591
1592#else
1593
c8cba857 1594static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1595{
1596}
1597
c09595f6
PZ
1598#endif
1599
18d95a28
PZ
1600#endif
1601
dd41f596 1602#include "sched_stats.h"
dd41f596 1603#include "sched_idletask.c"
5522d5d5
IM
1604#include "sched_fair.c"
1605#include "sched_rt.c"
dd41f596
IM
1606#ifdef CONFIG_SCHED_DEBUG
1607# include "sched_debug.c"
1608#endif
1609
1610#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1611#define for_each_class(class) \
1612 for (class = sched_class_highest; class; class = class->next)
dd41f596 1613
c09595f6 1614static void inc_nr_running(struct rq *rq)
9c217245
IM
1615{
1616 rq->nr_running++;
9c217245
IM
1617}
1618
c09595f6 1619static void dec_nr_running(struct rq *rq)
9c217245
IM
1620{
1621 rq->nr_running--;
9c217245
IM
1622}
1623
45bf76df
IM
1624static void set_load_weight(struct task_struct *p)
1625{
1626 if (task_has_rt_policy(p)) {
dd41f596
IM
1627 p->se.load.weight = prio_to_weight[0] * 2;
1628 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1629 return;
1630 }
45bf76df 1631
dd41f596
IM
1632 /*
1633 * SCHED_IDLE tasks get minimal weight:
1634 */
1635 if (p->policy == SCHED_IDLE) {
1636 p->se.load.weight = WEIGHT_IDLEPRIO;
1637 p->se.load.inv_weight = WMULT_IDLEPRIO;
1638 return;
1639 }
71f8bd46 1640
dd41f596
IM
1641 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1642 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1643}
1644
8159f87e 1645static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1646{
dd41f596 1647 sched_info_queued(p);
fd390f6a 1648 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1649 p->se.on_rq = 1;
71f8bd46
IM
1650}
1651
69be72c1 1652static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1653{
f02231e5 1654 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1655 p->se.on_rq = 0;
71f8bd46
IM
1656}
1657
14531189 1658/*
dd41f596 1659 * __normal_prio - return the priority that is based on the static prio
14531189 1660 */
14531189
IM
1661static inline int __normal_prio(struct task_struct *p)
1662{
dd41f596 1663 return p->static_prio;
14531189
IM
1664}
1665
b29739f9
IM
1666/*
1667 * Calculate the expected normal priority: i.e. priority
1668 * without taking RT-inheritance into account. Might be
1669 * boosted by interactivity modifiers. Changes upon fork,
1670 * setprio syscalls, and whenever the interactivity
1671 * estimator recalculates.
1672 */
36c8b586 1673static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1674{
1675 int prio;
1676
e05606d3 1677 if (task_has_rt_policy(p))
b29739f9
IM
1678 prio = MAX_RT_PRIO-1 - p->rt_priority;
1679 else
1680 prio = __normal_prio(p);
1681 return prio;
1682}
1683
1684/*
1685 * Calculate the current priority, i.e. the priority
1686 * taken into account by the scheduler. This value might
1687 * be boosted by RT tasks, or might be boosted by
1688 * interactivity modifiers. Will be RT if the task got
1689 * RT-boosted. If not then it returns p->normal_prio.
1690 */
36c8b586 1691static int effective_prio(struct task_struct *p)
b29739f9
IM
1692{
1693 p->normal_prio = normal_prio(p);
1694 /*
1695 * If we are RT tasks or we were boosted to RT priority,
1696 * keep the priority unchanged. Otherwise, update priority
1697 * to the normal priority:
1698 */
1699 if (!rt_prio(p->prio))
1700 return p->normal_prio;
1701 return p->prio;
1702}
1703
1da177e4 1704/*
dd41f596 1705 * activate_task - move a task to the runqueue.
1da177e4 1706 */
dd41f596 1707static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1708{
d9514f6c 1709 if (task_contributes_to_load(p))
dd41f596 1710 rq->nr_uninterruptible--;
1da177e4 1711
8159f87e 1712 enqueue_task(rq, p, wakeup);
c09595f6 1713 inc_nr_running(rq);
1da177e4
LT
1714}
1715
1da177e4
LT
1716/*
1717 * deactivate_task - remove a task from the runqueue.
1718 */
2e1cb74a 1719static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1720{
d9514f6c 1721 if (task_contributes_to_load(p))
dd41f596
IM
1722 rq->nr_uninterruptible++;
1723
69be72c1 1724 dequeue_task(rq, p, sleep);
c09595f6 1725 dec_nr_running(rq);
1da177e4
LT
1726}
1727
1da177e4
LT
1728/**
1729 * task_curr - is this task currently executing on a CPU?
1730 * @p: the task in question.
1731 */
36c8b586 1732inline int task_curr(const struct task_struct *p)
1da177e4
LT
1733{
1734 return cpu_curr(task_cpu(p)) == p;
1735}
1736
dd41f596
IM
1737static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1738{
6f505b16 1739 set_task_rq(p, cpu);
dd41f596 1740#ifdef CONFIG_SMP
ce96b5ac
DA
1741 /*
1742 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1743 * successfuly executed on another CPU. We must ensure that updates of
1744 * per-task data have been completed by this moment.
1745 */
1746 smp_wmb();
dd41f596 1747 task_thread_info(p)->cpu = cpu;
dd41f596 1748#endif
2dd73a4f
PW
1749}
1750
cb469845
SR
1751static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1752 const struct sched_class *prev_class,
1753 int oldprio, int running)
1754{
1755 if (prev_class != p->sched_class) {
1756 if (prev_class->switched_from)
1757 prev_class->switched_from(rq, p, running);
1758 p->sched_class->switched_to(rq, p, running);
1759 } else
1760 p->sched_class->prio_changed(rq, p, oldprio, running);
1761}
1762
1da177e4 1763#ifdef CONFIG_SMP
c65cc870 1764
e958b360
TG
1765/* Used instead of source_load when we know the type == 0 */
1766static unsigned long weighted_cpuload(const int cpu)
1767{
1768 return cpu_rq(cpu)->load.weight;
1769}
1770
cc367732
IM
1771/*
1772 * Is this task likely cache-hot:
1773 */
e7693a36 1774static int
cc367732
IM
1775task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1776{
1777 s64 delta;
1778
f540a608
IM
1779 /*
1780 * Buddy candidates are cache hot:
1781 */
d25ce4cd 1782 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1783 return 1;
1784
cc367732
IM
1785 if (p->sched_class != &fair_sched_class)
1786 return 0;
1787
6bc1665b
IM
1788 if (sysctl_sched_migration_cost == -1)
1789 return 1;
1790 if (sysctl_sched_migration_cost == 0)
1791 return 0;
1792
cc367732
IM
1793 delta = now - p->se.exec_start;
1794
1795 return delta < (s64)sysctl_sched_migration_cost;
1796}
1797
1798
dd41f596 1799void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1800{
dd41f596
IM
1801 int old_cpu = task_cpu(p);
1802 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1803 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1804 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1805 u64 clock_offset;
dd41f596
IM
1806
1807 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1808
1809#ifdef CONFIG_SCHEDSTATS
1810 if (p->se.wait_start)
1811 p->se.wait_start -= clock_offset;
dd41f596
IM
1812 if (p->se.sleep_start)
1813 p->se.sleep_start -= clock_offset;
1814 if (p->se.block_start)
1815 p->se.block_start -= clock_offset;
cc367732
IM
1816 if (old_cpu != new_cpu) {
1817 schedstat_inc(p, se.nr_migrations);
1818 if (task_hot(p, old_rq->clock, NULL))
1819 schedstat_inc(p, se.nr_forced2_migrations);
1820 }
6cfb0d5d 1821#endif
2830cf8c
SV
1822 p->se.vruntime -= old_cfsrq->min_vruntime -
1823 new_cfsrq->min_vruntime;
dd41f596
IM
1824
1825 __set_task_cpu(p, new_cpu);
c65cc870
IM
1826}
1827
70b97a7f 1828struct migration_req {
1da177e4 1829 struct list_head list;
1da177e4 1830
36c8b586 1831 struct task_struct *task;
1da177e4
LT
1832 int dest_cpu;
1833
1da177e4 1834 struct completion done;
70b97a7f 1835};
1da177e4
LT
1836
1837/*
1838 * The task's runqueue lock must be held.
1839 * Returns true if you have to wait for migration thread.
1840 */
36c8b586 1841static int
70b97a7f 1842migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1843{
70b97a7f 1844 struct rq *rq = task_rq(p);
1da177e4
LT
1845
1846 /*
1847 * If the task is not on a runqueue (and not running), then
1848 * it is sufficient to simply update the task's cpu field.
1849 */
dd41f596 1850 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1851 set_task_cpu(p, dest_cpu);
1852 return 0;
1853 }
1854
1855 init_completion(&req->done);
1da177e4
LT
1856 req->task = p;
1857 req->dest_cpu = dest_cpu;
1858 list_add(&req->list, &rq->migration_queue);
48f24c4d 1859
1da177e4
LT
1860 return 1;
1861}
1862
1863/*
1864 * wait_task_inactive - wait for a thread to unschedule.
1865 *
1866 * The caller must ensure that the task *will* unschedule sometime soon,
1867 * else this function might spin for a *long* time. This function can't
1868 * be called with interrupts off, or it may introduce deadlock with
1869 * smp_call_function() if an IPI is sent by the same process we are
1870 * waiting to become inactive.
1871 */
36c8b586 1872void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1873{
1874 unsigned long flags;
dd41f596 1875 int running, on_rq;
70b97a7f 1876 struct rq *rq;
1da177e4 1877
3a5c359a
AK
1878 for (;;) {
1879 /*
1880 * We do the initial early heuristics without holding
1881 * any task-queue locks at all. We'll only try to get
1882 * the runqueue lock when things look like they will
1883 * work out!
1884 */
1885 rq = task_rq(p);
fa490cfd 1886
3a5c359a
AK
1887 /*
1888 * If the task is actively running on another CPU
1889 * still, just relax and busy-wait without holding
1890 * any locks.
1891 *
1892 * NOTE! Since we don't hold any locks, it's not
1893 * even sure that "rq" stays as the right runqueue!
1894 * But we don't care, since "task_running()" will
1895 * return false if the runqueue has changed and p
1896 * is actually now running somewhere else!
1897 */
1898 while (task_running(rq, p))
1899 cpu_relax();
fa490cfd 1900
3a5c359a
AK
1901 /*
1902 * Ok, time to look more closely! We need the rq
1903 * lock now, to be *sure*. If we're wrong, we'll
1904 * just go back and repeat.
1905 */
1906 rq = task_rq_lock(p, &flags);
1907 running = task_running(rq, p);
1908 on_rq = p->se.on_rq;
1909 task_rq_unlock(rq, &flags);
fa490cfd 1910
3a5c359a
AK
1911 /*
1912 * Was it really running after all now that we
1913 * checked with the proper locks actually held?
1914 *
1915 * Oops. Go back and try again..
1916 */
1917 if (unlikely(running)) {
1918 cpu_relax();
1919 continue;
1920 }
fa490cfd 1921
3a5c359a
AK
1922 /*
1923 * It's not enough that it's not actively running,
1924 * it must be off the runqueue _entirely_, and not
1925 * preempted!
1926 *
1927 * So if it wa still runnable (but just not actively
1928 * running right now), it's preempted, and we should
1929 * yield - it could be a while.
1930 */
1931 if (unlikely(on_rq)) {
1932 schedule_timeout_uninterruptible(1);
1933 continue;
1934 }
fa490cfd 1935
3a5c359a
AK
1936 /*
1937 * Ahh, all good. It wasn't running, and it wasn't
1938 * runnable, which means that it will never become
1939 * running in the future either. We're all done!
1940 */
1941 break;
1942 }
1da177e4
LT
1943}
1944
1945/***
1946 * kick_process - kick a running thread to enter/exit the kernel
1947 * @p: the to-be-kicked thread
1948 *
1949 * Cause a process which is running on another CPU to enter
1950 * kernel-mode, without any delay. (to get signals handled.)
1951 *
1952 * NOTE: this function doesnt have to take the runqueue lock,
1953 * because all it wants to ensure is that the remote task enters
1954 * the kernel. If the IPI races and the task has been migrated
1955 * to another CPU then no harm is done and the purpose has been
1956 * achieved as well.
1957 */
36c8b586 1958void kick_process(struct task_struct *p)
1da177e4
LT
1959{
1960 int cpu;
1961
1962 preempt_disable();
1963 cpu = task_cpu(p);
1964 if ((cpu != smp_processor_id()) && task_curr(p))
1965 smp_send_reschedule(cpu);
1966 preempt_enable();
1967}
1968
1969/*
2dd73a4f
PW
1970 * Return a low guess at the load of a migration-source cpu weighted
1971 * according to the scheduling class and "nice" value.
1da177e4
LT
1972 *
1973 * We want to under-estimate the load of migration sources, to
1974 * balance conservatively.
1975 */
a9957449 1976static unsigned long source_load(int cpu, int type)
1da177e4 1977{
70b97a7f 1978 struct rq *rq = cpu_rq(cpu);
dd41f596 1979 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1980
3b0bd9bc 1981 if (type == 0)
dd41f596 1982 return total;
b910472d 1983
dd41f596 1984 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1985}
1986
1987/*
2dd73a4f
PW
1988 * Return a high guess at the load of a migration-target cpu weighted
1989 * according to the scheduling class and "nice" value.
1da177e4 1990 */
a9957449 1991static unsigned long target_load(int cpu, int type)
1da177e4 1992{
70b97a7f 1993 struct rq *rq = cpu_rq(cpu);
dd41f596 1994 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1995
7897986b 1996 if (type == 0)
dd41f596 1997 return total;
3b0bd9bc 1998
dd41f596 1999 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2000}
2001
2002/*
2003 * Return the average load per task on the cpu's run queue
2004 */
e7693a36 2005static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 2006{
70b97a7f 2007 struct rq *rq = cpu_rq(cpu);
dd41f596 2008 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
2009 unsigned long n = rq->nr_running;
2010
dd41f596 2011 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
2012}
2013
147cbb4b
NP
2014/*
2015 * find_idlest_group finds and returns the least busy CPU group within the
2016 * domain.
2017 */
2018static struct sched_group *
2019find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2020{
2021 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2022 unsigned long min_load = ULONG_MAX, this_load = 0;
2023 int load_idx = sd->forkexec_idx;
2024 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2025
2026 do {
2027 unsigned long load, avg_load;
2028 int local_group;
2029 int i;
2030
da5a5522
BD
2031 /* Skip over this group if it has no CPUs allowed */
2032 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2033 continue;
da5a5522 2034
147cbb4b 2035 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2036
2037 /* Tally up the load of all CPUs in the group */
2038 avg_load = 0;
2039
2040 for_each_cpu_mask(i, group->cpumask) {
2041 /* Bias balancing toward cpus of our domain */
2042 if (local_group)
2043 load = source_load(i, load_idx);
2044 else
2045 load = target_load(i, load_idx);
2046
2047 avg_load += load;
2048 }
2049
2050 /* Adjust by relative CPU power of the group */
5517d86b
ED
2051 avg_load = sg_div_cpu_power(group,
2052 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2053
2054 if (local_group) {
2055 this_load = avg_load;
2056 this = group;
2057 } else if (avg_load < min_load) {
2058 min_load = avg_load;
2059 idlest = group;
2060 }
3a5c359a 2061 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2062
2063 if (!idlest || 100*this_load < imbalance*min_load)
2064 return NULL;
2065 return idlest;
2066}
2067
2068/*
0feaece9 2069 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2070 */
95cdf3b7 2071static int
7c16ec58
MT
2072find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2073 cpumask_t *tmp)
147cbb4b
NP
2074{
2075 unsigned long load, min_load = ULONG_MAX;
2076 int idlest = -1;
2077 int i;
2078
da5a5522 2079 /* Traverse only the allowed CPUs */
7c16ec58 2080 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2081
7c16ec58 2082 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2083 load = weighted_cpuload(i);
147cbb4b
NP
2084
2085 if (load < min_load || (load == min_load && i == this_cpu)) {
2086 min_load = load;
2087 idlest = i;
2088 }
2089 }
2090
2091 return idlest;
2092}
2093
476d139c
NP
2094/*
2095 * sched_balance_self: balance the current task (running on cpu) in domains
2096 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2097 * SD_BALANCE_EXEC.
2098 *
2099 * Balance, ie. select the least loaded group.
2100 *
2101 * Returns the target CPU number, or the same CPU if no balancing is needed.
2102 *
2103 * preempt must be disabled.
2104 */
2105static int sched_balance_self(int cpu, int flag)
2106{
2107 struct task_struct *t = current;
2108 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2109
c96d145e 2110 for_each_domain(cpu, tmp) {
9761eea8
IM
2111 /*
2112 * If power savings logic is enabled for a domain, stop there.
2113 */
5c45bf27
SS
2114 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2115 break;
476d139c
NP
2116 if (tmp->flags & flag)
2117 sd = tmp;
c96d145e 2118 }
476d139c
NP
2119
2120 while (sd) {
7c16ec58 2121 cpumask_t span, tmpmask;
476d139c 2122 struct sched_group *group;
1a848870
SS
2123 int new_cpu, weight;
2124
2125 if (!(sd->flags & flag)) {
2126 sd = sd->child;
2127 continue;
2128 }
476d139c
NP
2129
2130 span = sd->span;
2131 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2132 if (!group) {
2133 sd = sd->child;
2134 continue;
2135 }
476d139c 2136
7c16ec58 2137 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2138 if (new_cpu == -1 || new_cpu == cpu) {
2139 /* Now try balancing at a lower domain level of cpu */
2140 sd = sd->child;
2141 continue;
2142 }
476d139c 2143
1a848870 2144 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2145 cpu = new_cpu;
476d139c
NP
2146 sd = NULL;
2147 weight = cpus_weight(span);
2148 for_each_domain(cpu, tmp) {
2149 if (weight <= cpus_weight(tmp->span))
2150 break;
2151 if (tmp->flags & flag)
2152 sd = tmp;
2153 }
2154 /* while loop will break here if sd == NULL */
2155 }
2156
2157 return cpu;
2158}
2159
2160#endif /* CONFIG_SMP */
1da177e4 2161
1da177e4
LT
2162/***
2163 * try_to_wake_up - wake up a thread
2164 * @p: the to-be-woken-up thread
2165 * @state: the mask of task states that can be woken
2166 * @sync: do a synchronous wakeup?
2167 *
2168 * Put it on the run-queue if it's not already there. The "current"
2169 * thread is always on the run-queue (except when the actual
2170 * re-schedule is in progress), and as such you're allowed to do
2171 * the simpler "current->state = TASK_RUNNING" to mark yourself
2172 * runnable without the overhead of this.
2173 *
2174 * returns failure only if the task is already active.
2175 */
36c8b586 2176static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2177{
cc367732 2178 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2179 unsigned long flags;
2180 long old_state;
70b97a7f 2181 struct rq *rq;
1da177e4 2182
b85d0667
IM
2183 if (!sched_feat(SYNC_WAKEUPS))
2184 sync = 0;
2185
04e2f174 2186 smp_wmb();
1da177e4
LT
2187 rq = task_rq_lock(p, &flags);
2188 old_state = p->state;
2189 if (!(old_state & state))
2190 goto out;
2191
dd41f596 2192 if (p->se.on_rq)
1da177e4
LT
2193 goto out_running;
2194
2195 cpu = task_cpu(p);
cc367732 2196 orig_cpu = cpu;
1da177e4
LT
2197 this_cpu = smp_processor_id();
2198
2199#ifdef CONFIG_SMP
2200 if (unlikely(task_running(rq, p)))
2201 goto out_activate;
2202
5d2f5a61
DA
2203 cpu = p->sched_class->select_task_rq(p, sync);
2204 if (cpu != orig_cpu) {
2205 set_task_cpu(p, cpu);
1da177e4
LT
2206 task_rq_unlock(rq, &flags);
2207 /* might preempt at this point */
2208 rq = task_rq_lock(p, &flags);
2209 old_state = p->state;
2210 if (!(old_state & state))
2211 goto out;
dd41f596 2212 if (p->se.on_rq)
1da177e4
LT
2213 goto out_running;
2214
2215 this_cpu = smp_processor_id();
2216 cpu = task_cpu(p);
2217 }
2218
e7693a36
GH
2219#ifdef CONFIG_SCHEDSTATS
2220 schedstat_inc(rq, ttwu_count);
2221 if (cpu == this_cpu)
2222 schedstat_inc(rq, ttwu_local);
2223 else {
2224 struct sched_domain *sd;
2225 for_each_domain(this_cpu, sd) {
2226 if (cpu_isset(cpu, sd->span)) {
2227 schedstat_inc(sd, ttwu_wake_remote);
2228 break;
2229 }
2230 }
2231 }
6d6bc0ad 2232#endif /* CONFIG_SCHEDSTATS */
e7693a36 2233
1da177e4
LT
2234out_activate:
2235#endif /* CONFIG_SMP */
cc367732
IM
2236 schedstat_inc(p, se.nr_wakeups);
2237 if (sync)
2238 schedstat_inc(p, se.nr_wakeups_sync);
2239 if (orig_cpu != cpu)
2240 schedstat_inc(p, se.nr_wakeups_migrate);
2241 if (cpu == this_cpu)
2242 schedstat_inc(p, se.nr_wakeups_local);
2243 else
2244 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2245 update_rq_clock(rq);
dd41f596 2246 activate_task(rq, p, 1);
1da177e4
LT
2247 success = 1;
2248
2249out_running:
4ae7d5ce
IM
2250 check_preempt_curr(rq, p);
2251
1da177e4 2252 p->state = TASK_RUNNING;
9a897c5a
SR
2253#ifdef CONFIG_SMP
2254 if (p->sched_class->task_wake_up)
2255 p->sched_class->task_wake_up(rq, p);
2256#endif
1da177e4
LT
2257out:
2258 task_rq_unlock(rq, &flags);
2259
2260 return success;
2261}
2262
7ad5b3a5 2263int wake_up_process(struct task_struct *p)
1da177e4 2264{
d9514f6c 2265 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2266}
1da177e4
LT
2267EXPORT_SYMBOL(wake_up_process);
2268
7ad5b3a5 2269int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2270{
2271 return try_to_wake_up(p, state, 0);
2272}
2273
1da177e4
LT
2274/*
2275 * Perform scheduler related setup for a newly forked process p.
2276 * p is forked by current.
dd41f596
IM
2277 *
2278 * __sched_fork() is basic setup used by init_idle() too:
2279 */
2280static void __sched_fork(struct task_struct *p)
2281{
dd41f596
IM
2282 p->se.exec_start = 0;
2283 p->se.sum_exec_runtime = 0;
f6cf891c 2284 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2285 p->se.last_wakeup = 0;
2286 p->se.avg_overlap = 0;
6cfb0d5d
IM
2287
2288#ifdef CONFIG_SCHEDSTATS
2289 p->se.wait_start = 0;
dd41f596
IM
2290 p->se.sum_sleep_runtime = 0;
2291 p->se.sleep_start = 0;
dd41f596
IM
2292 p->se.block_start = 0;
2293 p->se.sleep_max = 0;
2294 p->se.block_max = 0;
2295 p->se.exec_max = 0;
eba1ed4b 2296 p->se.slice_max = 0;
dd41f596 2297 p->se.wait_max = 0;
6cfb0d5d 2298#endif
476d139c 2299
fa717060 2300 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2301 p->se.on_rq = 0;
4a55bd5e 2302 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2303
e107be36
AK
2304#ifdef CONFIG_PREEMPT_NOTIFIERS
2305 INIT_HLIST_HEAD(&p->preempt_notifiers);
2306#endif
2307
1da177e4
LT
2308 /*
2309 * We mark the process as running here, but have not actually
2310 * inserted it onto the runqueue yet. This guarantees that
2311 * nobody will actually run it, and a signal or other external
2312 * event cannot wake it up and insert it on the runqueue either.
2313 */
2314 p->state = TASK_RUNNING;
dd41f596
IM
2315}
2316
2317/*
2318 * fork()/clone()-time setup:
2319 */
2320void sched_fork(struct task_struct *p, int clone_flags)
2321{
2322 int cpu = get_cpu();
2323
2324 __sched_fork(p);
2325
2326#ifdef CONFIG_SMP
2327 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2328#endif
02e4bac2 2329 set_task_cpu(p, cpu);
b29739f9
IM
2330
2331 /*
2332 * Make sure we do not leak PI boosting priority to the child:
2333 */
2334 p->prio = current->normal_prio;
2ddbf952
HS
2335 if (!rt_prio(p->prio))
2336 p->sched_class = &fair_sched_class;
b29739f9 2337
52f17b6c 2338#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2339 if (likely(sched_info_on()))
52f17b6c 2340 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2341#endif
d6077cb8 2342#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2343 p->oncpu = 0;
2344#endif
1da177e4 2345#ifdef CONFIG_PREEMPT
4866cde0 2346 /* Want to start with kernel preemption disabled. */
a1261f54 2347 task_thread_info(p)->preempt_count = 1;
1da177e4 2348#endif
476d139c 2349 put_cpu();
1da177e4
LT
2350}
2351
2352/*
2353 * wake_up_new_task - wake up a newly created task for the first time.
2354 *
2355 * This function will do some initial scheduler statistics housekeeping
2356 * that must be done for every newly created context, then puts the task
2357 * on the runqueue and wakes it.
2358 */
7ad5b3a5 2359void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2360{
2361 unsigned long flags;
dd41f596 2362 struct rq *rq;
1da177e4
LT
2363
2364 rq = task_rq_lock(p, &flags);
147cbb4b 2365 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2366 update_rq_clock(rq);
1da177e4
LT
2367
2368 p->prio = effective_prio(p);
2369
b9dca1e0 2370 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2371 activate_task(rq, p, 0);
1da177e4 2372 } else {
1da177e4 2373 /*
dd41f596
IM
2374 * Let the scheduling class do new task startup
2375 * management (if any):
1da177e4 2376 */
ee0827d8 2377 p->sched_class->task_new(rq, p);
c09595f6 2378 inc_nr_running(rq);
1da177e4 2379 }
dd41f596 2380 check_preempt_curr(rq, p);
9a897c5a
SR
2381#ifdef CONFIG_SMP
2382 if (p->sched_class->task_wake_up)
2383 p->sched_class->task_wake_up(rq, p);
2384#endif
dd41f596 2385 task_rq_unlock(rq, &flags);
1da177e4
LT
2386}
2387
e107be36
AK
2388#ifdef CONFIG_PREEMPT_NOTIFIERS
2389
2390/**
421cee29
RD
2391 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2392 * @notifier: notifier struct to register
e107be36
AK
2393 */
2394void preempt_notifier_register(struct preempt_notifier *notifier)
2395{
2396 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2397}
2398EXPORT_SYMBOL_GPL(preempt_notifier_register);
2399
2400/**
2401 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2402 * @notifier: notifier struct to unregister
e107be36
AK
2403 *
2404 * This is safe to call from within a preemption notifier.
2405 */
2406void preempt_notifier_unregister(struct preempt_notifier *notifier)
2407{
2408 hlist_del(&notifier->link);
2409}
2410EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2411
2412static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2413{
2414 struct preempt_notifier *notifier;
2415 struct hlist_node *node;
2416
2417 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2418 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2419}
2420
2421static void
2422fire_sched_out_preempt_notifiers(struct task_struct *curr,
2423 struct task_struct *next)
2424{
2425 struct preempt_notifier *notifier;
2426 struct hlist_node *node;
2427
2428 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2429 notifier->ops->sched_out(notifier, next);
2430}
2431
6d6bc0ad 2432#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2433
2434static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2435{
2436}
2437
2438static void
2439fire_sched_out_preempt_notifiers(struct task_struct *curr,
2440 struct task_struct *next)
2441{
2442}
2443
6d6bc0ad 2444#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2445
4866cde0
NP
2446/**
2447 * prepare_task_switch - prepare to switch tasks
2448 * @rq: the runqueue preparing to switch
421cee29 2449 * @prev: the current task that is being switched out
4866cde0
NP
2450 * @next: the task we are going to switch to.
2451 *
2452 * This is called with the rq lock held and interrupts off. It must
2453 * be paired with a subsequent finish_task_switch after the context
2454 * switch.
2455 *
2456 * prepare_task_switch sets up locking and calls architecture specific
2457 * hooks.
2458 */
e107be36
AK
2459static inline void
2460prepare_task_switch(struct rq *rq, struct task_struct *prev,
2461 struct task_struct *next)
4866cde0 2462{
e107be36 2463 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2464 prepare_lock_switch(rq, next);
2465 prepare_arch_switch(next);
2466}
2467
1da177e4
LT
2468/**
2469 * finish_task_switch - clean up after a task-switch
344babaa 2470 * @rq: runqueue associated with task-switch
1da177e4
LT
2471 * @prev: the thread we just switched away from.
2472 *
4866cde0
NP
2473 * finish_task_switch must be called after the context switch, paired
2474 * with a prepare_task_switch call before the context switch.
2475 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2476 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2477 *
2478 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2479 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2480 * with the lock held can cause deadlocks; see schedule() for
2481 * details.)
2482 */
a9957449 2483static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2484 __releases(rq->lock)
2485{
1da177e4 2486 struct mm_struct *mm = rq->prev_mm;
55a101f8 2487 long prev_state;
1da177e4
LT
2488
2489 rq->prev_mm = NULL;
2490
2491 /*
2492 * A task struct has one reference for the use as "current".
c394cc9f 2493 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2494 * schedule one last time. The schedule call will never return, and
2495 * the scheduled task must drop that reference.
c394cc9f 2496 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2497 * still held, otherwise prev could be scheduled on another cpu, die
2498 * there before we look at prev->state, and then the reference would
2499 * be dropped twice.
2500 * Manfred Spraul <manfred@colorfullife.com>
2501 */
55a101f8 2502 prev_state = prev->state;
4866cde0
NP
2503 finish_arch_switch(prev);
2504 finish_lock_switch(rq, prev);
9a897c5a
SR
2505#ifdef CONFIG_SMP
2506 if (current->sched_class->post_schedule)
2507 current->sched_class->post_schedule(rq);
2508#endif
e8fa1362 2509
e107be36 2510 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2511 if (mm)
2512 mmdrop(mm);
c394cc9f 2513 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2514 /*
2515 * Remove function-return probe instances associated with this
2516 * task and put them back on the free list.
9761eea8 2517 */
c6fd91f0 2518 kprobe_flush_task(prev);
1da177e4 2519 put_task_struct(prev);
c6fd91f0 2520 }
1da177e4
LT
2521}
2522
2523/**
2524 * schedule_tail - first thing a freshly forked thread must call.
2525 * @prev: the thread we just switched away from.
2526 */
36c8b586 2527asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2528 __releases(rq->lock)
2529{
70b97a7f
IM
2530 struct rq *rq = this_rq();
2531
4866cde0
NP
2532 finish_task_switch(rq, prev);
2533#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2534 /* In this case, finish_task_switch does not reenable preemption */
2535 preempt_enable();
2536#endif
1da177e4 2537 if (current->set_child_tid)
b488893a 2538 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2539}
2540
2541/*
2542 * context_switch - switch to the new MM and the new
2543 * thread's register state.
2544 */
dd41f596 2545static inline void
70b97a7f 2546context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2547 struct task_struct *next)
1da177e4 2548{
dd41f596 2549 struct mm_struct *mm, *oldmm;
1da177e4 2550
e107be36 2551 prepare_task_switch(rq, prev, next);
dd41f596
IM
2552 mm = next->mm;
2553 oldmm = prev->active_mm;
9226d125
ZA
2554 /*
2555 * For paravirt, this is coupled with an exit in switch_to to
2556 * combine the page table reload and the switch backend into
2557 * one hypercall.
2558 */
2559 arch_enter_lazy_cpu_mode();
2560
dd41f596 2561 if (unlikely(!mm)) {
1da177e4
LT
2562 next->active_mm = oldmm;
2563 atomic_inc(&oldmm->mm_count);
2564 enter_lazy_tlb(oldmm, next);
2565 } else
2566 switch_mm(oldmm, mm, next);
2567
dd41f596 2568 if (unlikely(!prev->mm)) {
1da177e4 2569 prev->active_mm = NULL;
1da177e4
LT
2570 rq->prev_mm = oldmm;
2571 }
3a5f5e48
IM
2572 /*
2573 * Since the runqueue lock will be released by the next
2574 * task (which is an invalid locking op but in the case
2575 * of the scheduler it's an obvious special-case), so we
2576 * do an early lockdep release here:
2577 */
2578#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2579 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2580#endif
1da177e4
LT
2581
2582 /* Here we just switch the register state and the stack. */
2583 switch_to(prev, next, prev);
2584
dd41f596
IM
2585 barrier();
2586 /*
2587 * this_rq must be evaluated again because prev may have moved
2588 * CPUs since it called schedule(), thus the 'rq' on its stack
2589 * frame will be invalid.
2590 */
2591 finish_task_switch(this_rq(), prev);
1da177e4
LT
2592}
2593
2594/*
2595 * nr_running, nr_uninterruptible and nr_context_switches:
2596 *
2597 * externally visible scheduler statistics: current number of runnable
2598 * threads, current number of uninterruptible-sleeping threads, total
2599 * number of context switches performed since bootup.
2600 */
2601unsigned long nr_running(void)
2602{
2603 unsigned long i, sum = 0;
2604
2605 for_each_online_cpu(i)
2606 sum += cpu_rq(i)->nr_running;
2607
2608 return sum;
2609}
2610
2611unsigned long nr_uninterruptible(void)
2612{
2613 unsigned long i, sum = 0;
2614
0a945022 2615 for_each_possible_cpu(i)
1da177e4
LT
2616 sum += cpu_rq(i)->nr_uninterruptible;
2617
2618 /*
2619 * Since we read the counters lockless, it might be slightly
2620 * inaccurate. Do not allow it to go below zero though:
2621 */
2622 if (unlikely((long)sum < 0))
2623 sum = 0;
2624
2625 return sum;
2626}
2627
2628unsigned long long nr_context_switches(void)
2629{
cc94abfc
SR
2630 int i;
2631 unsigned long long sum = 0;
1da177e4 2632
0a945022 2633 for_each_possible_cpu(i)
1da177e4
LT
2634 sum += cpu_rq(i)->nr_switches;
2635
2636 return sum;
2637}
2638
2639unsigned long nr_iowait(void)
2640{
2641 unsigned long i, sum = 0;
2642
0a945022 2643 for_each_possible_cpu(i)
1da177e4
LT
2644 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2645
2646 return sum;
2647}
2648
db1b1fef
JS
2649unsigned long nr_active(void)
2650{
2651 unsigned long i, running = 0, uninterruptible = 0;
2652
2653 for_each_online_cpu(i) {
2654 running += cpu_rq(i)->nr_running;
2655 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2656 }
2657
2658 if (unlikely((long)uninterruptible < 0))
2659 uninterruptible = 0;
2660
2661 return running + uninterruptible;
2662}
2663
48f24c4d 2664/*
dd41f596
IM
2665 * Update rq->cpu_load[] statistics. This function is usually called every
2666 * scheduler tick (TICK_NSEC).
48f24c4d 2667 */
dd41f596 2668static void update_cpu_load(struct rq *this_rq)
48f24c4d 2669{
495eca49 2670 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2671 int i, scale;
2672
2673 this_rq->nr_load_updates++;
dd41f596
IM
2674
2675 /* Update our load: */
2676 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2677 unsigned long old_load, new_load;
2678
2679 /* scale is effectively 1 << i now, and >> i divides by scale */
2680
2681 old_load = this_rq->cpu_load[i];
2682 new_load = this_load;
a25707f3
IM
2683 /*
2684 * Round up the averaging division if load is increasing. This
2685 * prevents us from getting stuck on 9 if the load is 10, for
2686 * example.
2687 */
2688 if (new_load > old_load)
2689 new_load += scale-1;
dd41f596
IM
2690 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2691 }
48f24c4d
IM
2692}
2693
dd41f596
IM
2694#ifdef CONFIG_SMP
2695
1da177e4
LT
2696/*
2697 * double_rq_lock - safely lock two runqueues
2698 *
2699 * Note this does not disable interrupts like task_rq_lock,
2700 * you need to do so manually before calling.
2701 */
70b97a7f 2702static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2703 __acquires(rq1->lock)
2704 __acquires(rq2->lock)
2705{
054b9108 2706 BUG_ON(!irqs_disabled());
1da177e4
LT
2707 if (rq1 == rq2) {
2708 spin_lock(&rq1->lock);
2709 __acquire(rq2->lock); /* Fake it out ;) */
2710 } else {
c96d145e 2711 if (rq1 < rq2) {
1da177e4
LT
2712 spin_lock(&rq1->lock);
2713 spin_lock(&rq2->lock);
2714 } else {
2715 spin_lock(&rq2->lock);
2716 spin_lock(&rq1->lock);
2717 }
2718 }
6e82a3be
IM
2719 update_rq_clock(rq1);
2720 update_rq_clock(rq2);
1da177e4
LT
2721}
2722
2723/*
2724 * double_rq_unlock - safely unlock two runqueues
2725 *
2726 * Note this does not restore interrupts like task_rq_unlock,
2727 * you need to do so manually after calling.
2728 */
70b97a7f 2729static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2730 __releases(rq1->lock)
2731 __releases(rq2->lock)
2732{
2733 spin_unlock(&rq1->lock);
2734 if (rq1 != rq2)
2735 spin_unlock(&rq2->lock);
2736 else
2737 __release(rq2->lock);
2738}
2739
2740/*
2741 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2742 */
e8fa1362 2743static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2744 __releases(this_rq->lock)
2745 __acquires(busiest->lock)
2746 __acquires(this_rq->lock)
2747{
e8fa1362
SR
2748 int ret = 0;
2749
054b9108
KK
2750 if (unlikely(!irqs_disabled())) {
2751 /* printk() doesn't work good under rq->lock */
2752 spin_unlock(&this_rq->lock);
2753 BUG_ON(1);
2754 }
1da177e4 2755 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2756 if (busiest < this_rq) {
1da177e4
LT
2757 spin_unlock(&this_rq->lock);
2758 spin_lock(&busiest->lock);
2759 spin_lock(&this_rq->lock);
e8fa1362 2760 ret = 1;
1da177e4
LT
2761 } else
2762 spin_lock(&busiest->lock);
2763 }
e8fa1362 2764 return ret;
1da177e4
LT
2765}
2766
1da177e4
LT
2767/*
2768 * If dest_cpu is allowed for this process, migrate the task to it.
2769 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2770 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2771 * the cpu_allowed mask is restored.
2772 */
36c8b586 2773static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2774{
70b97a7f 2775 struct migration_req req;
1da177e4 2776 unsigned long flags;
70b97a7f 2777 struct rq *rq;
1da177e4
LT
2778
2779 rq = task_rq_lock(p, &flags);
2780 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2781 || unlikely(cpu_is_offline(dest_cpu)))
2782 goto out;
2783
2784 /* force the process onto the specified CPU */
2785 if (migrate_task(p, dest_cpu, &req)) {
2786 /* Need to wait for migration thread (might exit: take ref). */
2787 struct task_struct *mt = rq->migration_thread;
36c8b586 2788
1da177e4
LT
2789 get_task_struct(mt);
2790 task_rq_unlock(rq, &flags);
2791 wake_up_process(mt);
2792 put_task_struct(mt);
2793 wait_for_completion(&req.done);
36c8b586 2794
1da177e4
LT
2795 return;
2796 }
2797out:
2798 task_rq_unlock(rq, &flags);
2799}
2800
2801/*
476d139c
NP
2802 * sched_exec - execve() is a valuable balancing opportunity, because at
2803 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2804 */
2805void sched_exec(void)
2806{
1da177e4 2807 int new_cpu, this_cpu = get_cpu();
476d139c 2808 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2809 put_cpu();
476d139c
NP
2810 if (new_cpu != this_cpu)
2811 sched_migrate_task(current, new_cpu);
1da177e4
LT
2812}
2813
2814/*
2815 * pull_task - move a task from a remote runqueue to the local runqueue.
2816 * Both runqueues must be locked.
2817 */
dd41f596
IM
2818static void pull_task(struct rq *src_rq, struct task_struct *p,
2819 struct rq *this_rq, int this_cpu)
1da177e4 2820{
2e1cb74a 2821 deactivate_task(src_rq, p, 0);
1da177e4 2822 set_task_cpu(p, this_cpu);
dd41f596 2823 activate_task(this_rq, p, 0);
1da177e4
LT
2824 /*
2825 * Note that idle threads have a prio of MAX_PRIO, for this test
2826 * to be always true for them.
2827 */
dd41f596 2828 check_preempt_curr(this_rq, p);
1da177e4
LT
2829}
2830
2831/*
2832 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2833 */
858119e1 2834static
70b97a7f 2835int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2836 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2837 int *all_pinned)
1da177e4
LT
2838{
2839 /*
2840 * We do not migrate tasks that are:
2841 * 1) running (obviously), or
2842 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2843 * 3) are cache-hot on their current CPU.
2844 */
cc367732
IM
2845 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2846 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2847 return 0;
cc367732 2848 }
81026794
NP
2849 *all_pinned = 0;
2850
cc367732
IM
2851 if (task_running(rq, p)) {
2852 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2853 return 0;
cc367732 2854 }
1da177e4 2855
da84d961
IM
2856 /*
2857 * Aggressive migration if:
2858 * 1) task is cache cold, or
2859 * 2) too many balance attempts have failed.
2860 */
2861
6bc1665b
IM
2862 if (!task_hot(p, rq->clock, sd) ||
2863 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2864#ifdef CONFIG_SCHEDSTATS
cc367732 2865 if (task_hot(p, rq->clock, sd)) {
da84d961 2866 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2867 schedstat_inc(p, se.nr_forced_migrations);
2868 }
da84d961
IM
2869#endif
2870 return 1;
2871 }
2872
cc367732
IM
2873 if (task_hot(p, rq->clock, sd)) {
2874 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2875 return 0;
cc367732 2876 }
1da177e4
LT
2877 return 1;
2878}
2879
e1d1484f
PW
2880static unsigned long
2881balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2882 unsigned long max_load_move, struct sched_domain *sd,
2883 enum cpu_idle_type idle, int *all_pinned,
2884 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2885{
b82d9fdd 2886 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2887 struct task_struct *p;
2888 long rem_load_move = max_load_move;
1da177e4 2889
e1d1484f 2890 if (max_load_move == 0)
1da177e4
LT
2891 goto out;
2892
81026794
NP
2893 pinned = 1;
2894
1da177e4 2895 /*
dd41f596 2896 * Start the load-balancing iterator:
1da177e4 2897 */
dd41f596
IM
2898 p = iterator->start(iterator->arg);
2899next:
b82d9fdd 2900 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2901 goto out;
50ddd969 2902 /*
b82d9fdd 2903 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2904 * skip a task if it will be the highest priority task (i.e. smallest
2905 * prio value) on its new queue regardless of its load weight
2906 */
dd41f596
IM
2907 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2908 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2909 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2910 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2911 p = iterator->next(iterator->arg);
2912 goto next;
1da177e4
LT
2913 }
2914
dd41f596 2915 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2916 pulled++;
dd41f596 2917 rem_load_move -= p->se.load.weight;
1da177e4 2918
2dd73a4f 2919 /*
b82d9fdd 2920 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2921 */
e1d1484f 2922 if (rem_load_move > 0) {
a4ac01c3
PW
2923 if (p->prio < *this_best_prio)
2924 *this_best_prio = p->prio;
dd41f596
IM
2925 p = iterator->next(iterator->arg);
2926 goto next;
1da177e4
LT
2927 }
2928out:
2929 /*
e1d1484f 2930 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2931 * so we can safely collect pull_task() stats here rather than
2932 * inside pull_task().
2933 */
2934 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2935
2936 if (all_pinned)
2937 *all_pinned = pinned;
e1d1484f
PW
2938
2939 return max_load_move - rem_load_move;
1da177e4
LT
2940}
2941
dd41f596 2942/*
43010659
PW
2943 * move_tasks tries to move up to max_load_move weighted load from busiest to
2944 * this_rq, as part of a balancing operation within domain "sd".
2945 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2946 *
2947 * Called with both runqueues locked.
2948 */
2949static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2950 unsigned long max_load_move,
dd41f596
IM
2951 struct sched_domain *sd, enum cpu_idle_type idle,
2952 int *all_pinned)
2953{
5522d5d5 2954 const struct sched_class *class = sched_class_highest;
43010659 2955 unsigned long total_load_moved = 0;
a4ac01c3 2956 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2957
2958 do {
43010659
PW
2959 total_load_moved +=
2960 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2961 max_load_move - total_load_moved,
a4ac01c3 2962 sd, idle, all_pinned, &this_best_prio);
dd41f596 2963 class = class->next;
43010659 2964 } while (class && max_load_move > total_load_moved);
dd41f596 2965
43010659
PW
2966 return total_load_moved > 0;
2967}
2968
e1d1484f
PW
2969static int
2970iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2971 struct sched_domain *sd, enum cpu_idle_type idle,
2972 struct rq_iterator *iterator)
2973{
2974 struct task_struct *p = iterator->start(iterator->arg);
2975 int pinned = 0;
2976
2977 while (p) {
2978 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2979 pull_task(busiest, p, this_rq, this_cpu);
2980 /*
2981 * Right now, this is only the second place pull_task()
2982 * is called, so we can safely collect pull_task()
2983 * stats here rather than inside pull_task().
2984 */
2985 schedstat_inc(sd, lb_gained[idle]);
2986
2987 return 1;
2988 }
2989 p = iterator->next(iterator->arg);
2990 }
2991
2992 return 0;
2993}
2994
43010659
PW
2995/*
2996 * move_one_task tries to move exactly one task from busiest to this_rq, as
2997 * part of active balancing operations within "domain".
2998 * Returns 1 if successful and 0 otherwise.
2999 *
3000 * Called with both runqueues locked.
3001 */
3002static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3003 struct sched_domain *sd, enum cpu_idle_type idle)
3004{
5522d5d5 3005 const struct sched_class *class;
43010659
PW
3006
3007 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3008 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3009 return 1;
3010
3011 return 0;
dd41f596
IM
3012}
3013
1da177e4
LT
3014/*
3015 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3016 * domain. It calculates and returns the amount of weighted load which
3017 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3018 */
3019static struct sched_group *
3020find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3021 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3022 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3023{
3024 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3025 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3026 unsigned long max_pull;
2dd73a4f
PW
3027 unsigned long busiest_load_per_task, busiest_nr_running;
3028 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3029 int load_idx, group_imb = 0;
5c45bf27
SS
3030#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3031 int power_savings_balance = 1;
3032 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3033 unsigned long min_nr_running = ULONG_MAX;
3034 struct sched_group *group_min = NULL, *group_leader = NULL;
3035#endif
1da177e4
LT
3036
3037 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3038 busiest_load_per_task = busiest_nr_running = 0;
3039 this_load_per_task = this_nr_running = 0;
d15bcfdb 3040 if (idle == CPU_NOT_IDLE)
7897986b 3041 load_idx = sd->busy_idx;
d15bcfdb 3042 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3043 load_idx = sd->newidle_idx;
3044 else
3045 load_idx = sd->idle_idx;
1da177e4
LT
3046
3047 do {
908a7c1b 3048 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3049 int local_group;
3050 int i;
908a7c1b 3051 int __group_imb = 0;
783609c6 3052 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3053 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
3054
3055 local_group = cpu_isset(this_cpu, group->cpumask);
3056
783609c6
SS
3057 if (local_group)
3058 balance_cpu = first_cpu(group->cpumask);
3059
1da177e4 3060 /* Tally up the load of all CPUs in the group */
2dd73a4f 3061 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
3062 max_cpu_load = 0;
3063 min_cpu_load = ~0UL;
1da177e4
LT
3064
3065 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3066 struct rq *rq;
3067
3068 if (!cpu_isset(i, *cpus))
3069 continue;
3070
3071 rq = cpu_rq(i);
2dd73a4f 3072
9439aab8 3073 if (*sd_idle && rq->nr_running)
5969fe06
NP
3074 *sd_idle = 0;
3075
1da177e4 3076 /* Bias balancing toward cpus of our domain */
783609c6
SS
3077 if (local_group) {
3078 if (idle_cpu(i) && !first_idle_cpu) {
3079 first_idle_cpu = 1;
3080 balance_cpu = i;
3081 }
3082
a2000572 3083 load = target_load(i, load_idx);
908a7c1b 3084 } else {
a2000572 3085 load = source_load(i, load_idx);
908a7c1b
KC
3086 if (load > max_cpu_load)
3087 max_cpu_load = load;
3088 if (min_cpu_load > load)
3089 min_cpu_load = load;
3090 }
1da177e4
LT
3091
3092 avg_load += load;
2dd73a4f 3093 sum_nr_running += rq->nr_running;
dd41f596 3094 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
3095 }
3096
783609c6
SS
3097 /*
3098 * First idle cpu or the first cpu(busiest) in this sched group
3099 * is eligible for doing load balancing at this and above
9439aab8
SS
3100 * domains. In the newly idle case, we will allow all the cpu's
3101 * to do the newly idle load balance.
783609c6 3102 */
9439aab8
SS
3103 if (idle != CPU_NEWLY_IDLE && local_group &&
3104 balance_cpu != this_cpu && balance) {
783609c6
SS
3105 *balance = 0;
3106 goto ret;
3107 }
3108
1da177e4 3109 total_load += avg_load;
5517d86b 3110 total_pwr += group->__cpu_power;
1da177e4
LT
3111
3112 /* Adjust by relative CPU power of the group */
5517d86b
ED
3113 avg_load = sg_div_cpu_power(group,
3114 avg_load * SCHED_LOAD_SCALE);
1da177e4 3115
908a7c1b
KC
3116 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3117 __group_imb = 1;
3118
5517d86b 3119 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3120
1da177e4
LT
3121 if (local_group) {
3122 this_load = avg_load;
3123 this = group;
2dd73a4f
PW
3124 this_nr_running = sum_nr_running;
3125 this_load_per_task = sum_weighted_load;
3126 } else if (avg_load > max_load &&
908a7c1b 3127 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3128 max_load = avg_load;
3129 busiest = group;
2dd73a4f
PW
3130 busiest_nr_running = sum_nr_running;
3131 busiest_load_per_task = sum_weighted_load;
908a7c1b 3132 group_imb = __group_imb;
1da177e4 3133 }
5c45bf27
SS
3134
3135#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3136 /*
3137 * Busy processors will not participate in power savings
3138 * balance.
3139 */
dd41f596
IM
3140 if (idle == CPU_NOT_IDLE ||
3141 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3142 goto group_next;
5c45bf27
SS
3143
3144 /*
3145 * If the local group is idle or completely loaded
3146 * no need to do power savings balance at this domain
3147 */
3148 if (local_group && (this_nr_running >= group_capacity ||
3149 !this_nr_running))
3150 power_savings_balance = 0;
3151
dd41f596 3152 /*
5c45bf27
SS
3153 * If a group is already running at full capacity or idle,
3154 * don't include that group in power savings calculations
dd41f596
IM
3155 */
3156 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3157 || !sum_nr_running)
dd41f596 3158 goto group_next;
5c45bf27 3159
dd41f596 3160 /*
5c45bf27 3161 * Calculate the group which has the least non-idle load.
dd41f596
IM
3162 * This is the group from where we need to pick up the load
3163 * for saving power
3164 */
3165 if ((sum_nr_running < min_nr_running) ||
3166 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3167 first_cpu(group->cpumask) <
3168 first_cpu(group_min->cpumask))) {
dd41f596
IM
3169 group_min = group;
3170 min_nr_running = sum_nr_running;
5c45bf27
SS
3171 min_load_per_task = sum_weighted_load /
3172 sum_nr_running;
dd41f596 3173 }
5c45bf27 3174
dd41f596 3175 /*
5c45bf27 3176 * Calculate the group which is almost near its
dd41f596
IM
3177 * capacity but still has some space to pick up some load
3178 * from other group and save more power
3179 */
3180 if (sum_nr_running <= group_capacity - 1) {
3181 if (sum_nr_running > leader_nr_running ||
3182 (sum_nr_running == leader_nr_running &&
3183 first_cpu(group->cpumask) >
3184 first_cpu(group_leader->cpumask))) {
3185 group_leader = group;
3186 leader_nr_running = sum_nr_running;
3187 }
48f24c4d 3188 }
5c45bf27
SS
3189group_next:
3190#endif
1da177e4
LT
3191 group = group->next;
3192 } while (group != sd->groups);
3193
2dd73a4f 3194 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3195 goto out_balanced;
3196
3197 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3198
3199 if (this_load >= avg_load ||
3200 100*max_load <= sd->imbalance_pct*this_load)
3201 goto out_balanced;
3202
2dd73a4f 3203 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3204 if (group_imb)
3205 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3206
1da177e4
LT
3207 /*
3208 * We're trying to get all the cpus to the average_load, so we don't
3209 * want to push ourselves above the average load, nor do we wish to
3210 * reduce the max loaded cpu below the average load, as either of these
3211 * actions would just result in more rebalancing later, and ping-pong
3212 * tasks around. Thus we look for the minimum possible imbalance.
3213 * Negative imbalances (*we* are more loaded than anyone else) will
3214 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3215 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3216 * appear as very large values with unsigned longs.
3217 */
2dd73a4f
PW
3218 if (max_load <= busiest_load_per_task)
3219 goto out_balanced;
3220
3221 /*
3222 * In the presence of smp nice balancing, certain scenarios can have
3223 * max load less than avg load(as we skip the groups at or below
3224 * its cpu_power, while calculating max_load..)
3225 */
3226 if (max_load < avg_load) {
3227 *imbalance = 0;
3228 goto small_imbalance;
3229 }
0c117f1b
SS
3230
3231 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3232 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3233
1da177e4 3234 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3235 *imbalance = min(max_pull * busiest->__cpu_power,
3236 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3237 / SCHED_LOAD_SCALE;
3238
2dd73a4f
PW
3239 /*
3240 * if *imbalance is less than the average load per runnable task
3241 * there is no gaurantee that any tasks will be moved so we'll have
3242 * a think about bumping its value to force at least one task to be
3243 * moved
3244 */
7fd0d2dd 3245 if (*imbalance < busiest_load_per_task) {
48f24c4d 3246 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3247 unsigned int imbn;
3248
3249small_imbalance:
3250 pwr_move = pwr_now = 0;
3251 imbn = 2;
3252 if (this_nr_running) {
3253 this_load_per_task /= this_nr_running;
3254 if (busiest_load_per_task > this_load_per_task)
3255 imbn = 1;
3256 } else
3257 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3258
dd41f596
IM
3259 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3260 busiest_load_per_task * imbn) {
2dd73a4f 3261 *imbalance = busiest_load_per_task;
1da177e4
LT
3262 return busiest;
3263 }
3264
3265 /*
3266 * OK, we don't have enough imbalance to justify moving tasks,
3267 * however we may be able to increase total CPU power used by
3268 * moving them.
3269 */
3270
5517d86b
ED
3271 pwr_now += busiest->__cpu_power *
3272 min(busiest_load_per_task, max_load);
3273 pwr_now += this->__cpu_power *
3274 min(this_load_per_task, this_load);
1da177e4
LT
3275 pwr_now /= SCHED_LOAD_SCALE;
3276
3277 /* Amount of load we'd subtract */
5517d86b
ED
3278 tmp = sg_div_cpu_power(busiest,
3279 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3280 if (max_load > tmp)
5517d86b 3281 pwr_move += busiest->__cpu_power *
2dd73a4f 3282 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3283
3284 /* Amount of load we'd add */
5517d86b 3285 if (max_load * busiest->__cpu_power <
33859f7f 3286 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3287 tmp = sg_div_cpu_power(this,
3288 max_load * busiest->__cpu_power);
1da177e4 3289 else
5517d86b
ED
3290 tmp = sg_div_cpu_power(this,
3291 busiest_load_per_task * SCHED_LOAD_SCALE);
3292 pwr_move += this->__cpu_power *
3293 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3294 pwr_move /= SCHED_LOAD_SCALE;
3295
3296 /* Move if we gain throughput */
7fd0d2dd
SS
3297 if (pwr_move > pwr_now)
3298 *imbalance = busiest_load_per_task;
1da177e4
LT
3299 }
3300
1da177e4
LT
3301 return busiest;
3302
3303out_balanced:
5c45bf27 3304#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3305 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3306 goto ret;
1da177e4 3307
5c45bf27
SS
3308 if (this == group_leader && group_leader != group_min) {
3309 *imbalance = min_load_per_task;
3310 return group_min;
3311 }
5c45bf27 3312#endif
783609c6 3313ret:
1da177e4
LT
3314 *imbalance = 0;
3315 return NULL;
3316}
3317
3318/*
3319 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3320 */
70b97a7f 3321static struct rq *
d15bcfdb 3322find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3323 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3324{
70b97a7f 3325 struct rq *busiest = NULL, *rq;
2dd73a4f 3326 unsigned long max_load = 0;
1da177e4
LT
3327 int i;
3328
3329 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3330 unsigned long wl;
0a2966b4
CL
3331
3332 if (!cpu_isset(i, *cpus))
3333 continue;
3334
48f24c4d 3335 rq = cpu_rq(i);
dd41f596 3336 wl = weighted_cpuload(i);
2dd73a4f 3337
dd41f596 3338 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3339 continue;
1da177e4 3340
dd41f596
IM
3341 if (wl > max_load) {
3342 max_load = wl;
48f24c4d 3343 busiest = rq;
1da177e4
LT
3344 }
3345 }
3346
3347 return busiest;
3348}
3349
77391d71
NP
3350/*
3351 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3352 * so long as it is large enough.
3353 */
3354#define MAX_PINNED_INTERVAL 512
3355
1da177e4
LT
3356/*
3357 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3358 * tasks if there is an imbalance.
1da177e4 3359 */
70b97a7f 3360static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3361 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3362 int *balance, cpumask_t *cpus)
1da177e4 3363{
43010659 3364 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3365 struct sched_group *group;
1da177e4 3366 unsigned long imbalance;
70b97a7f 3367 struct rq *busiest;
fe2eea3f 3368 unsigned long flags;
5969fe06 3369
7c16ec58
MT
3370 cpus_setall(*cpus);
3371
89c4710e
SS
3372 /*
3373 * When power savings policy is enabled for the parent domain, idle
3374 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3375 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3376 * portraying it as CPU_NOT_IDLE.
89c4710e 3377 */
d15bcfdb 3378 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3379 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3380 sd_idle = 1;
1da177e4 3381
2d72376b 3382 schedstat_inc(sd, lb_count[idle]);
1da177e4 3383
0a2966b4 3384redo:
c8cba857 3385 update_shares(sd);
0a2966b4 3386 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3387 cpus, balance);
783609c6 3388
06066714 3389 if (*balance == 0)
783609c6 3390 goto out_balanced;
783609c6 3391
1da177e4
LT
3392 if (!group) {
3393 schedstat_inc(sd, lb_nobusyg[idle]);
3394 goto out_balanced;
3395 }
3396
7c16ec58 3397 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3398 if (!busiest) {
3399 schedstat_inc(sd, lb_nobusyq[idle]);
3400 goto out_balanced;
3401 }
3402
db935dbd 3403 BUG_ON(busiest == this_rq);
1da177e4
LT
3404
3405 schedstat_add(sd, lb_imbalance[idle], imbalance);
3406
43010659 3407 ld_moved = 0;
1da177e4
LT
3408 if (busiest->nr_running > 1) {
3409 /*
3410 * Attempt to move tasks. If find_busiest_group has found
3411 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3412 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3413 * correctly treated as an imbalance.
3414 */
fe2eea3f 3415 local_irq_save(flags);
e17224bf 3416 double_rq_lock(this_rq, busiest);
43010659 3417 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3418 imbalance, sd, idle, &all_pinned);
e17224bf 3419 double_rq_unlock(this_rq, busiest);
fe2eea3f 3420 local_irq_restore(flags);
81026794 3421
46cb4b7c
SS
3422 /*
3423 * some other cpu did the load balance for us.
3424 */
43010659 3425 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3426 resched_cpu(this_cpu);
3427
81026794 3428 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3429 if (unlikely(all_pinned)) {
7c16ec58
MT
3430 cpu_clear(cpu_of(busiest), *cpus);
3431 if (!cpus_empty(*cpus))
0a2966b4 3432 goto redo;
81026794 3433 goto out_balanced;
0a2966b4 3434 }
1da177e4 3435 }
81026794 3436
43010659 3437 if (!ld_moved) {
1da177e4
LT
3438 schedstat_inc(sd, lb_failed[idle]);
3439 sd->nr_balance_failed++;
3440
3441 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3442
fe2eea3f 3443 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3444
3445 /* don't kick the migration_thread, if the curr
3446 * task on busiest cpu can't be moved to this_cpu
3447 */
3448 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3449 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3450 all_pinned = 1;
3451 goto out_one_pinned;
3452 }
3453
1da177e4
LT
3454 if (!busiest->active_balance) {
3455 busiest->active_balance = 1;
3456 busiest->push_cpu = this_cpu;
81026794 3457 active_balance = 1;
1da177e4 3458 }
fe2eea3f 3459 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3460 if (active_balance)
1da177e4
LT
3461 wake_up_process(busiest->migration_thread);
3462
3463 /*
3464 * We've kicked active balancing, reset the failure
3465 * counter.
3466 */
39507451 3467 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3468 }
81026794 3469 } else
1da177e4
LT
3470 sd->nr_balance_failed = 0;
3471
81026794 3472 if (likely(!active_balance)) {
1da177e4
LT
3473 /* We were unbalanced, so reset the balancing interval */
3474 sd->balance_interval = sd->min_interval;
81026794
NP
3475 } else {
3476 /*
3477 * If we've begun active balancing, start to back off. This
3478 * case may not be covered by the all_pinned logic if there
3479 * is only 1 task on the busy runqueue (because we don't call
3480 * move_tasks).
3481 */
3482 if (sd->balance_interval < sd->max_interval)
3483 sd->balance_interval *= 2;
1da177e4
LT
3484 }
3485
43010659 3486 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3487 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3488 ld_moved = -1;
3489
3490 goto out;
1da177e4
LT
3491
3492out_balanced:
1da177e4
LT
3493 schedstat_inc(sd, lb_balanced[idle]);
3494
16cfb1c0 3495 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3496
3497out_one_pinned:
1da177e4 3498 /* tune up the balancing interval */
77391d71
NP
3499 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3500 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3501 sd->balance_interval *= 2;
3502
48f24c4d 3503 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3504 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3505 ld_moved = -1;
3506 else
3507 ld_moved = 0;
3508out:
c8cba857
PZ
3509 if (ld_moved)
3510 update_shares(sd);
c09595f6 3511 return ld_moved;
1da177e4
LT
3512}
3513
3514/*
3515 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3516 * tasks if there is an imbalance.
3517 *
d15bcfdb 3518 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3519 * this_rq is locked.
3520 */
48f24c4d 3521static int
7c16ec58
MT
3522load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3523 cpumask_t *cpus)
1da177e4
LT
3524{
3525 struct sched_group *group;
70b97a7f 3526 struct rq *busiest = NULL;
1da177e4 3527 unsigned long imbalance;
43010659 3528 int ld_moved = 0;
5969fe06 3529 int sd_idle = 0;
969bb4e4 3530 int all_pinned = 0;
7c16ec58
MT
3531
3532 cpus_setall(*cpus);
5969fe06 3533
89c4710e
SS
3534 /*
3535 * When power savings policy is enabled for the parent domain, idle
3536 * sibling can pick up load irrespective of busy siblings. In this case,
3537 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3538 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3539 */
3540 if (sd->flags & SD_SHARE_CPUPOWER &&
3541 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3542 sd_idle = 1;
1da177e4 3543
2d72376b 3544 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3545redo:
d15bcfdb 3546 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3547 &sd_idle, cpus, NULL);
1da177e4 3548 if (!group) {
d15bcfdb 3549 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3550 goto out_balanced;
1da177e4
LT
3551 }
3552
7c16ec58 3553 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3554 if (!busiest) {
d15bcfdb 3555 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3556 goto out_balanced;
1da177e4
LT
3557 }
3558
db935dbd
NP
3559 BUG_ON(busiest == this_rq);
3560
d15bcfdb 3561 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3562
43010659 3563 ld_moved = 0;
d6d5cfaf
NP
3564 if (busiest->nr_running > 1) {
3565 /* Attempt to move tasks */
3566 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3567 /* this_rq->clock is already updated */
3568 update_rq_clock(busiest);
43010659 3569 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3570 imbalance, sd, CPU_NEWLY_IDLE,
3571 &all_pinned);
d6d5cfaf 3572 spin_unlock(&busiest->lock);
0a2966b4 3573
969bb4e4 3574 if (unlikely(all_pinned)) {
7c16ec58
MT
3575 cpu_clear(cpu_of(busiest), *cpus);
3576 if (!cpus_empty(*cpus))
0a2966b4
CL
3577 goto redo;
3578 }
d6d5cfaf
NP
3579 }
3580
43010659 3581 if (!ld_moved) {
d15bcfdb 3582 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3583 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3584 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3585 return -1;
3586 } else
16cfb1c0 3587 sd->nr_balance_failed = 0;
1da177e4 3588
43010659 3589 return ld_moved;
16cfb1c0
NP
3590
3591out_balanced:
d15bcfdb 3592 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3593 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3594 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3595 return -1;
16cfb1c0 3596 sd->nr_balance_failed = 0;
48f24c4d 3597
16cfb1c0 3598 return 0;
1da177e4
LT
3599}
3600
3601/*
3602 * idle_balance is called by schedule() if this_cpu is about to become
3603 * idle. Attempts to pull tasks from other CPUs.
3604 */
70b97a7f 3605static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3606{
3607 struct sched_domain *sd;
dd41f596
IM
3608 int pulled_task = -1;
3609 unsigned long next_balance = jiffies + HZ;
7c16ec58 3610 cpumask_t tmpmask;
1da177e4
LT
3611
3612 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3613 unsigned long interval;
3614
3615 if (!(sd->flags & SD_LOAD_BALANCE))
3616 continue;
3617
3618 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3619 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3620 pulled_task = load_balance_newidle(this_cpu, this_rq,
3621 sd, &tmpmask);
92c4ca5c
CL
3622
3623 interval = msecs_to_jiffies(sd->balance_interval);
3624 if (time_after(next_balance, sd->last_balance + interval))
3625 next_balance = sd->last_balance + interval;
3626 if (pulled_task)
3627 break;
1da177e4 3628 }
dd41f596 3629 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3630 /*
3631 * We are going idle. next_balance may be set based on
3632 * a busy processor. So reset next_balance.
3633 */
3634 this_rq->next_balance = next_balance;
dd41f596 3635 }
1da177e4
LT
3636}
3637
3638/*
3639 * active_load_balance is run by migration threads. It pushes running tasks
3640 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3641 * running on each physical CPU where possible, and avoids physical /
3642 * logical imbalances.
3643 *
3644 * Called with busiest_rq locked.
3645 */
70b97a7f 3646static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3647{
39507451 3648 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3649 struct sched_domain *sd;
3650 struct rq *target_rq;
39507451 3651
48f24c4d 3652 /* Is there any task to move? */
39507451 3653 if (busiest_rq->nr_running <= 1)
39507451
NP
3654 return;
3655
3656 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3657
3658 /*
39507451 3659 * This condition is "impossible", if it occurs
41a2d6cf 3660 * we need to fix it. Originally reported by
39507451 3661 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3662 */
39507451 3663 BUG_ON(busiest_rq == target_rq);
1da177e4 3664
39507451
NP
3665 /* move a task from busiest_rq to target_rq */
3666 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3667 update_rq_clock(busiest_rq);
3668 update_rq_clock(target_rq);
39507451
NP
3669
3670 /* Search for an sd spanning us and the target CPU. */
c96d145e 3671 for_each_domain(target_cpu, sd) {
39507451 3672 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3673 cpu_isset(busiest_cpu, sd->span))
39507451 3674 break;
c96d145e 3675 }
39507451 3676
48f24c4d 3677 if (likely(sd)) {
2d72376b 3678 schedstat_inc(sd, alb_count);
39507451 3679
43010659
PW
3680 if (move_one_task(target_rq, target_cpu, busiest_rq,
3681 sd, CPU_IDLE))
48f24c4d
IM
3682 schedstat_inc(sd, alb_pushed);
3683 else
3684 schedstat_inc(sd, alb_failed);
3685 }
39507451 3686 spin_unlock(&target_rq->lock);
1da177e4
LT
3687}
3688
46cb4b7c
SS
3689#ifdef CONFIG_NO_HZ
3690static struct {
3691 atomic_t load_balancer;
41a2d6cf 3692 cpumask_t cpu_mask;
46cb4b7c
SS
3693} nohz ____cacheline_aligned = {
3694 .load_balancer = ATOMIC_INIT(-1),
3695 .cpu_mask = CPU_MASK_NONE,
3696};
3697
7835b98b 3698/*
46cb4b7c
SS
3699 * This routine will try to nominate the ilb (idle load balancing)
3700 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3701 * load balancing on behalf of all those cpus. If all the cpus in the system
3702 * go into this tickless mode, then there will be no ilb owner (as there is
3703 * no need for one) and all the cpus will sleep till the next wakeup event
3704 * arrives...
3705 *
3706 * For the ilb owner, tick is not stopped. And this tick will be used
3707 * for idle load balancing. ilb owner will still be part of
3708 * nohz.cpu_mask..
7835b98b 3709 *
46cb4b7c
SS
3710 * While stopping the tick, this cpu will become the ilb owner if there
3711 * is no other owner. And will be the owner till that cpu becomes busy
3712 * or if all cpus in the system stop their ticks at which point
3713 * there is no need for ilb owner.
3714 *
3715 * When the ilb owner becomes busy, it nominates another owner, during the
3716 * next busy scheduler_tick()
3717 */
3718int select_nohz_load_balancer(int stop_tick)
3719{
3720 int cpu = smp_processor_id();
3721
3722 if (stop_tick) {
3723 cpu_set(cpu, nohz.cpu_mask);
3724 cpu_rq(cpu)->in_nohz_recently = 1;
3725
3726 /*
3727 * If we are going offline and still the leader, give up!
3728 */
3729 if (cpu_is_offline(cpu) &&
3730 atomic_read(&nohz.load_balancer) == cpu) {
3731 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3732 BUG();
3733 return 0;
3734 }
3735
3736 /* time for ilb owner also to sleep */
3737 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3738 if (atomic_read(&nohz.load_balancer) == cpu)
3739 atomic_set(&nohz.load_balancer, -1);
3740 return 0;
3741 }
3742
3743 if (atomic_read(&nohz.load_balancer) == -1) {
3744 /* make me the ilb owner */
3745 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3746 return 1;
3747 } else if (atomic_read(&nohz.load_balancer) == cpu)
3748 return 1;
3749 } else {
3750 if (!cpu_isset(cpu, nohz.cpu_mask))
3751 return 0;
3752
3753 cpu_clear(cpu, nohz.cpu_mask);
3754
3755 if (atomic_read(&nohz.load_balancer) == cpu)
3756 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3757 BUG();
3758 }
3759 return 0;
3760}
3761#endif
3762
3763static DEFINE_SPINLOCK(balancing);
3764
3765/*
7835b98b
CL
3766 * It checks each scheduling domain to see if it is due to be balanced,
3767 * and initiates a balancing operation if so.
3768 *
3769 * Balancing parameters are set up in arch_init_sched_domains.
3770 */
a9957449 3771static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3772{
46cb4b7c
SS
3773 int balance = 1;
3774 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3775 unsigned long interval;
3776 struct sched_domain *sd;
46cb4b7c 3777 /* Earliest time when we have to do rebalance again */
c9819f45 3778 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3779 int update_next_balance = 0;
d07355f5 3780 int need_serialize;
7c16ec58 3781 cpumask_t tmp;
1da177e4 3782
46cb4b7c 3783 for_each_domain(cpu, sd) {
1da177e4
LT
3784 if (!(sd->flags & SD_LOAD_BALANCE))
3785 continue;
3786
3787 interval = sd->balance_interval;
d15bcfdb 3788 if (idle != CPU_IDLE)
1da177e4
LT
3789 interval *= sd->busy_factor;
3790
3791 /* scale ms to jiffies */
3792 interval = msecs_to_jiffies(interval);
3793 if (unlikely(!interval))
3794 interval = 1;
dd41f596
IM
3795 if (interval > HZ*NR_CPUS/10)
3796 interval = HZ*NR_CPUS/10;
3797
d07355f5 3798 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3799
d07355f5 3800 if (need_serialize) {
08c183f3
CL
3801 if (!spin_trylock(&balancing))
3802 goto out;
3803 }
3804
c9819f45 3805 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3806 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3807 /*
3808 * We've pulled tasks over so either we're no
5969fe06
NP
3809 * longer idle, or one of our SMT siblings is
3810 * not idle.
3811 */
d15bcfdb 3812 idle = CPU_NOT_IDLE;
1da177e4 3813 }
1bd77f2d 3814 sd->last_balance = jiffies;
1da177e4 3815 }
d07355f5 3816 if (need_serialize)
08c183f3
CL
3817 spin_unlock(&balancing);
3818out:
f549da84 3819 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3820 next_balance = sd->last_balance + interval;
f549da84
SS
3821 update_next_balance = 1;
3822 }
783609c6
SS
3823
3824 /*
3825 * Stop the load balance at this level. There is another
3826 * CPU in our sched group which is doing load balancing more
3827 * actively.
3828 */
3829 if (!balance)
3830 break;
1da177e4 3831 }
f549da84
SS
3832
3833 /*
3834 * next_balance will be updated only when there is a need.
3835 * When the cpu is attached to null domain for ex, it will not be
3836 * updated.
3837 */
3838 if (likely(update_next_balance))
3839 rq->next_balance = next_balance;
46cb4b7c
SS
3840}
3841
3842/*
3843 * run_rebalance_domains is triggered when needed from the scheduler tick.
3844 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3845 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3846 */
3847static void run_rebalance_domains(struct softirq_action *h)
3848{
dd41f596
IM
3849 int this_cpu = smp_processor_id();
3850 struct rq *this_rq = cpu_rq(this_cpu);
3851 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3852 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3853
dd41f596 3854 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3855
3856#ifdef CONFIG_NO_HZ
3857 /*
3858 * If this cpu is the owner for idle load balancing, then do the
3859 * balancing on behalf of the other idle cpus whose ticks are
3860 * stopped.
3861 */
dd41f596
IM
3862 if (this_rq->idle_at_tick &&
3863 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3864 cpumask_t cpus = nohz.cpu_mask;
3865 struct rq *rq;
3866 int balance_cpu;
3867
dd41f596 3868 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3869 for_each_cpu_mask(balance_cpu, cpus) {
3870 /*
3871 * If this cpu gets work to do, stop the load balancing
3872 * work being done for other cpus. Next load
3873 * balancing owner will pick it up.
3874 */
3875 if (need_resched())
3876 break;
3877
de0cf899 3878 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3879
3880 rq = cpu_rq(balance_cpu);
dd41f596
IM
3881 if (time_after(this_rq->next_balance, rq->next_balance))
3882 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3883 }
3884 }
3885#endif
3886}
3887
3888/*
3889 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3890 *
3891 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3892 * idle load balancing owner or decide to stop the periodic load balancing,
3893 * if the whole system is idle.
3894 */
dd41f596 3895static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3896{
46cb4b7c
SS
3897#ifdef CONFIG_NO_HZ
3898 /*
3899 * If we were in the nohz mode recently and busy at the current
3900 * scheduler tick, then check if we need to nominate new idle
3901 * load balancer.
3902 */
3903 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3904 rq->in_nohz_recently = 0;
3905
3906 if (atomic_read(&nohz.load_balancer) == cpu) {
3907 cpu_clear(cpu, nohz.cpu_mask);
3908 atomic_set(&nohz.load_balancer, -1);
3909 }
3910
3911 if (atomic_read(&nohz.load_balancer) == -1) {
3912 /*
3913 * simple selection for now: Nominate the
3914 * first cpu in the nohz list to be the next
3915 * ilb owner.
3916 *
3917 * TBD: Traverse the sched domains and nominate
3918 * the nearest cpu in the nohz.cpu_mask.
3919 */
3920 int ilb = first_cpu(nohz.cpu_mask);
3921
434d53b0 3922 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3923 resched_cpu(ilb);
3924 }
3925 }
3926
3927 /*
3928 * If this cpu is idle and doing idle load balancing for all the
3929 * cpus with ticks stopped, is it time for that to stop?
3930 */
3931 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3932 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3933 resched_cpu(cpu);
3934 return;
3935 }
3936
3937 /*
3938 * If this cpu is idle and the idle load balancing is done by
3939 * someone else, then no need raise the SCHED_SOFTIRQ
3940 */
3941 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3942 cpu_isset(cpu, nohz.cpu_mask))
3943 return;
3944#endif
3945 if (time_after_eq(jiffies, rq->next_balance))
3946 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3947}
dd41f596
IM
3948
3949#else /* CONFIG_SMP */
3950
1da177e4
LT
3951/*
3952 * on UP we do not need to balance between CPUs:
3953 */
70b97a7f 3954static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3955{
3956}
dd41f596 3957
1da177e4
LT
3958#endif
3959
1da177e4
LT
3960DEFINE_PER_CPU(struct kernel_stat, kstat);
3961
3962EXPORT_PER_CPU_SYMBOL(kstat);
3963
3964/*
41b86e9c
IM
3965 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3966 * that have not yet been banked in case the task is currently running.
1da177e4 3967 */
41b86e9c 3968unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3969{
1da177e4 3970 unsigned long flags;
41b86e9c
IM
3971 u64 ns, delta_exec;
3972 struct rq *rq;
48f24c4d 3973
41b86e9c
IM
3974 rq = task_rq_lock(p, &flags);
3975 ns = p->se.sum_exec_runtime;
051a1d1a 3976 if (task_current(rq, p)) {
a8e504d2
IM
3977 update_rq_clock(rq);
3978 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3979 if ((s64)delta_exec > 0)
3980 ns += delta_exec;
3981 }
3982 task_rq_unlock(rq, &flags);
48f24c4d 3983
1da177e4
LT
3984 return ns;
3985}
3986
1da177e4
LT
3987/*
3988 * Account user cpu time to a process.
3989 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3990 * @cputime: the cpu time spent in user space since the last update
3991 */
3992void account_user_time(struct task_struct *p, cputime_t cputime)
3993{
3994 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3995 cputime64_t tmp;
3996
3997 p->utime = cputime_add(p->utime, cputime);
3998
3999 /* Add user time to cpustat. */
4000 tmp = cputime_to_cputime64(cputime);
4001 if (TASK_NICE(p) > 0)
4002 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4003 else
4004 cpustat->user = cputime64_add(cpustat->user, tmp);
4005}
4006
94886b84
LV
4007/*
4008 * Account guest cpu time to a process.
4009 * @p: the process that the cpu time gets accounted to
4010 * @cputime: the cpu time spent in virtual machine since the last update
4011 */
f7402e03 4012static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4013{
4014 cputime64_t tmp;
4015 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4016
4017 tmp = cputime_to_cputime64(cputime);
4018
4019 p->utime = cputime_add(p->utime, cputime);
4020 p->gtime = cputime_add(p->gtime, cputime);
4021
4022 cpustat->user = cputime64_add(cpustat->user, tmp);
4023 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4024}
4025
c66f08be
MN
4026/*
4027 * Account scaled user cpu time to a process.
4028 * @p: the process that the cpu time gets accounted to
4029 * @cputime: the cpu time spent in user space since the last update
4030 */
4031void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4032{
4033 p->utimescaled = cputime_add(p->utimescaled, cputime);
4034}
4035
1da177e4
LT
4036/*
4037 * Account system cpu time to a process.
4038 * @p: the process that the cpu time gets accounted to
4039 * @hardirq_offset: the offset to subtract from hardirq_count()
4040 * @cputime: the cpu time spent in kernel space since the last update
4041 */
4042void account_system_time(struct task_struct *p, int hardirq_offset,
4043 cputime_t cputime)
4044{
4045 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4046 struct rq *rq = this_rq();
1da177e4
LT
4047 cputime64_t tmp;
4048
983ed7a6
HH
4049 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4050 account_guest_time(p, cputime);
4051 return;
4052 }
94886b84 4053
1da177e4
LT
4054 p->stime = cputime_add(p->stime, cputime);
4055
4056 /* Add system time to cpustat. */
4057 tmp = cputime_to_cputime64(cputime);
4058 if (hardirq_count() - hardirq_offset)
4059 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4060 else if (softirq_count())
4061 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4062 else if (p != rq->idle)
1da177e4 4063 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4064 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4065 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4066 else
4067 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4068 /* Account for system time used */
4069 acct_update_integrals(p);
1da177e4
LT
4070}
4071
c66f08be
MN
4072/*
4073 * Account scaled system cpu time to a process.
4074 * @p: the process that the cpu time gets accounted to
4075 * @hardirq_offset: the offset to subtract from hardirq_count()
4076 * @cputime: the cpu time spent in kernel space since the last update
4077 */
4078void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4079{
4080 p->stimescaled = cputime_add(p->stimescaled, cputime);
4081}
4082
1da177e4
LT
4083/*
4084 * Account for involuntary wait time.
4085 * @p: the process from which the cpu time has been stolen
4086 * @steal: the cpu time spent in involuntary wait
4087 */
4088void account_steal_time(struct task_struct *p, cputime_t steal)
4089{
4090 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4091 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4092 struct rq *rq = this_rq();
1da177e4
LT
4093
4094 if (p == rq->idle) {
4095 p->stime = cputime_add(p->stime, steal);
4096 if (atomic_read(&rq->nr_iowait) > 0)
4097 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4098 else
4099 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4100 } else
1da177e4
LT
4101 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4102}
4103
7835b98b
CL
4104/*
4105 * This function gets called by the timer code, with HZ frequency.
4106 * We call it with interrupts disabled.
4107 *
4108 * It also gets called by the fork code, when changing the parent's
4109 * timeslices.
4110 */
4111void scheduler_tick(void)
4112{
7835b98b
CL
4113 int cpu = smp_processor_id();
4114 struct rq *rq = cpu_rq(cpu);
dd41f596 4115 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4116
4117 sched_clock_tick();
dd41f596
IM
4118
4119 spin_lock(&rq->lock);
3e51f33f 4120 update_rq_clock(rq);
f1a438d8 4121 update_cpu_load(rq);
fa85ae24 4122 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4123 spin_unlock(&rq->lock);
7835b98b 4124
e418e1c2 4125#ifdef CONFIG_SMP
dd41f596
IM
4126 rq->idle_at_tick = idle_cpu(cpu);
4127 trigger_load_balance(rq, cpu);
e418e1c2 4128#endif
1da177e4
LT
4129}
4130
1da177e4
LT
4131#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4132
43627582 4133void __kprobes add_preempt_count(int val)
1da177e4
LT
4134{
4135 /*
4136 * Underflow?
4137 */
9a11b49a
IM
4138 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4139 return;
1da177e4
LT
4140 preempt_count() += val;
4141 /*
4142 * Spinlock count overflowing soon?
4143 */
33859f7f
MOS
4144 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4145 PREEMPT_MASK - 10);
1da177e4
LT
4146}
4147EXPORT_SYMBOL(add_preempt_count);
4148
43627582 4149void __kprobes sub_preempt_count(int val)
1da177e4
LT
4150{
4151 /*
4152 * Underflow?
4153 */
9a11b49a
IM
4154 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4155 return;
1da177e4
LT
4156 /*
4157 * Is the spinlock portion underflowing?
4158 */
9a11b49a
IM
4159 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4160 !(preempt_count() & PREEMPT_MASK)))
4161 return;
4162
1da177e4
LT
4163 preempt_count() -= val;
4164}
4165EXPORT_SYMBOL(sub_preempt_count);
4166
4167#endif
4168
4169/*
dd41f596 4170 * Print scheduling while atomic bug:
1da177e4 4171 */
dd41f596 4172static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4173{
838225b4
SS
4174 struct pt_regs *regs = get_irq_regs();
4175
4176 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4177 prev->comm, prev->pid, preempt_count());
4178
dd41f596 4179 debug_show_held_locks(prev);
e21f5b15 4180 print_modules();
dd41f596
IM
4181 if (irqs_disabled())
4182 print_irqtrace_events(prev);
838225b4
SS
4183
4184 if (regs)
4185 show_regs(regs);
4186 else
4187 dump_stack();
dd41f596 4188}
1da177e4 4189
dd41f596
IM
4190/*
4191 * Various schedule()-time debugging checks and statistics:
4192 */
4193static inline void schedule_debug(struct task_struct *prev)
4194{
1da177e4 4195 /*
41a2d6cf 4196 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4197 * schedule() atomically, we ignore that path for now.
4198 * Otherwise, whine if we are scheduling when we should not be.
4199 */
3f33a7ce 4200 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4201 __schedule_bug(prev);
4202
1da177e4
LT
4203 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4204
2d72376b 4205 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4206#ifdef CONFIG_SCHEDSTATS
4207 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4208 schedstat_inc(this_rq(), bkl_count);
4209 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4210 }
4211#endif
dd41f596
IM
4212}
4213
4214/*
4215 * Pick up the highest-prio task:
4216 */
4217static inline struct task_struct *
ff95f3df 4218pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4219{
5522d5d5 4220 const struct sched_class *class;
dd41f596 4221 struct task_struct *p;
1da177e4
LT
4222
4223 /*
dd41f596
IM
4224 * Optimization: we know that if all tasks are in
4225 * the fair class we can call that function directly:
1da177e4 4226 */
dd41f596 4227 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4228 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4229 if (likely(p))
4230 return p;
1da177e4
LT
4231 }
4232
dd41f596
IM
4233 class = sched_class_highest;
4234 for ( ; ; ) {
fb8d4724 4235 p = class->pick_next_task(rq);
dd41f596
IM
4236 if (p)
4237 return p;
4238 /*
4239 * Will never be NULL as the idle class always
4240 * returns a non-NULL p:
4241 */
4242 class = class->next;
4243 }
4244}
1da177e4 4245
dd41f596
IM
4246/*
4247 * schedule() is the main scheduler function.
4248 */
4249asmlinkage void __sched schedule(void)
4250{
4251 struct task_struct *prev, *next;
67ca7bde 4252 unsigned long *switch_count;
dd41f596 4253 struct rq *rq;
f333fdc9 4254 int cpu, hrtick = sched_feat(HRTICK);
dd41f596
IM
4255
4256need_resched:
4257 preempt_disable();
4258 cpu = smp_processor_id();
4259 rq = cpu_rq(cpu);
4260 rcu_qsctr_inc(cpu);
4261 prev = rq->curr;
4262 switch_count = &prev->nivcsw;
4263
4264 release_kernel_lock(prev);
4265need_resched_nonpreemptible:
4266
4267 schedule_debug(prev);
1da177e4 4268
f333fdc9
MG
4269 if (hrtick)
4270 hrtick_clear(rq);
8f4d37ec 4271
1e819950
IM
4272 /*
4273 * Do the rq-clock update outside the rq lock:
4274 */
4275 local_irq_disable();
3e51f33f 4276 update_rq_clock(rq);
1e819950
IM
4277 spin_lock(&rq->lock);
4278 clear_tsk_need_resched(prev);
1da177e4 4279
1da177e4 4280 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4281 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4282 prev->state = TASK_RUNNING;
16882c1e 4283 else
2e1cb74a 4284 deactivate_task(rq, prev, 1);
dd41f596 4285 switch_count = &prev->nvcsw;
1da177e4
LT
4286 }
4287
9a897c5a
SR
4288#ifdef CONFIG_SMP
4289 if (prev->sched_class->pre_schedule)
4290 prev->sched_class->pre_schedule(rq, prev);
4291#endif
f65eda4f 4292
dd41f596 4293 if (unlikely(!rq->nr_running))
1da177e4 4294 idle_balance(cpu, rq);
1da177e4 4295
31ee529c 4296 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4297 next = pick_next_task(rq, prev);
1da177e4 4298
1da177e4 4299 if (likely(prev != next)) {
673a90a1
DS
4300 sched_info_switch(prev, next);
4301
1da177e4
LT
4302 rq->nr_switches++;
4303 rq->curr = next;
4304 ++*switch_count;
4305
dd41f596 4306 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4307 /*
4308 * the context switch might have flipped the stack from under
4309 * us, hence refresh the local variables.
4310 */
4311 cpu = smp_processor_id();
4312 rq = cpu_rq(cpu);
1da177e4
LT
4313 } else
4314 spin_unlock_irq(&rq->lock);
4315
f333fdc9
MG
4316 if (hrtick)
4317 hrtick_set(rq);
8f4d37ec
PZ
4318
4319 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4320 goto need_resched_nonpreemptible;
8f4d37ec 4321
1da177e4
LT
4322 preempt_enable_no_resched();
4323 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4324 goto need_resched;
4325}
1da177e4
LT
4326EXPORT_SYMBOL(schedule);
4327
4328#ifdef CONFIG_PREEMPT
4329/*
2ed6e34f 4330 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4331 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4332 * occur there and call schedule directly.
4333 */
4334asmlinkage void __sched preempt_schedule(void)
4335{
4336 struct thread_info *ti = current_thread_info();
6478d880 4337
1da177e4
LT
4338 /*
4339 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4340 * we do not want to preempt the current task. Just return..
1da177e4 4341 */
beed33a8 4342 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4343 return;
4344
3a5c359a
AK
4345 do {
4346 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4347 schedule();
3a5c359a 4348 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4349
3a5c359a
AK
4350 /*
4351 * Check again in case we missed a preemption opportunity
4352 * between schedule and now.
4353 */
4354 barrier();
4355 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4356}
1da177e4
LT
4357EXPORT_SYMBOL(preempt_schedule);
4358
4359/*
2ed6e34f 4360 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4361 * off of irq context.
4362 * Note, that this is called and return with irqs disabled. This will
4363 * protect us against recursive calling from irq.
4364 */
4365asmlinkage void __sched preempt_schedule_irq(void)
4366{
4367 struct thread_info *ti = current_thread_info();
6478d880 4368
2ed6e34f 4369 /* Catch callers which need to be fixed */
1da177e4
LT
4370 BUG_ON(ti->preempt_count || !irqs_disabled());
4371
3a5c359a
AK
4372 do {
4373 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4374 local_irq_enable();
4375 schedule();
4376 local_irq_disable();
3a5c359a 4377 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4378
3a5c359a
AK
4379 /*
4380 * Check again in case we missed a preemption opportunity
4381 * between schedule and now.
4382 */
4383 barrier();
4384 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4385}
4386
4387#endif /* CONFIG_PREEMPT */
4388
95cdf3b7
IM
4389int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4390 void *key)
1da177e4 4391{
48f24c4d 4392 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4393}
1da177e4
LT
4394EXPORT_SYMBOL(default_wake_function);
4395
4396/*
41a2d6cf
IM
4397 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4398 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4399 * number) then we wake all the non-exclusive tasks and one exclusive task.
4400 *
4401 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4402 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4403 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4404 */
4405static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4406 int nr_exclusive, int sync, void *key)
4407{
2e45874c 4408 wait_queue_t *curr, *next;
1da177e4 4409
2e45874c 4410 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4411 unsigned flags = curr->flags;
4412
1da177e4 4413 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4414 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4415 break;
4416 }
4417}
4418
4419/**
4420 * __wake_up - wake up threads blocked on a waitqueue.
4421 * @q: the waitqueue
4422 * @mode: which threads
4423 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4424 * @key: is directly passed to the wakeup function
1da177e4 4425 */
7ad5b3a5 4426void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4427 int nr_exclusive, void *key)
1da177e4
LT
4428{
4429 unsigned long flags;
4430
4431 spin_lock_irqsave(&q->lock, flags);
4432 __wake_up_common(q, mode, nr_exclusive, 0, key);
4433 spin_unlock_irqrestore(&q->lock, flags);
4434}
1da177e4
LT
4435EXPORT_SYMBOL(__wake_up);
4436
4437/*
4438 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4439 */
7ad5b3a5 4440void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4441{
4442 __wake_up_common(q, mode, 1, 0, NULL);
4443}
4444
4445/**
67be2dd1 4446 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4447 * @q: the waitqueue
4448 * @mode: which threads
4449 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4450 *
4451 * The sync wakeup differs that the waker knows that it will schedule
4452 * away soon, so while the target thread will be woken up, it will not
4453 * be migrated to another CPU - ie. the two threads are 'synchronized'
4454 * with each other. This can prevent needless bouncing between CPUs.
4455 *
4456 * On UP it can prevent extra preemption.
4457 */
7ad5b3a5 4458void
95cdf3b7 4459__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4460{
4461 unsigned long flags;
4462 int sync = 1;
4463
4464 if (unlikely(!q))
4465 return;
4466
4467 if (unlikely(!nr_exclusive))
4468 sync = 0;
4469
4470 spin_lock_irqsave(&q->lock, flags);
4471 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4472 spin_unlock_irqrestore(&q->lock, flags);
4473}
4474EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4475
b15136e9 4476void complete(struct completion *x)
1da177e4
LT
4477{
4478 unsigned long flags;
4479
4480 spin_lock_irqsave(&x->wait.lock, flags);
4481 x->done++;
d9514f6c 4482 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4483 spin_unlock_irqrestore(&x->wait.lock, flags);
4484}
4485EXPORT_SYMBOL(complete);
4486
b15136e9 4487void complete_all(struct completion *x)
1da177e4
LT
4488{
4489 unsigned long flags;
4490
4491 spin_lock_irqsave(&x->wait.lock, flags);
4492 x->done += UINT_MAX/2;
d9514f6c 4493 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4494 spin_unlock_irqrestore(&x->wait.lock, flags);
4495}
4496EXPORT_SYMBOL(complete_all);
4497
8cbbe86d
AK
4498static inline long __sched
4499do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4500{
1da177e4
LT
4501 if (!x->done) {
4502 DECLARE_WAITQUEUE(wait, current);
4503
4504 wait.flags |= WQ_FLAG_EXCLUSIVE;
4505 __add_wait_queue_tail(&x->wait, &wait);
4506 do {
009e577e
MW
4507 if ((state == TASK_INTERRUPTIBLE &&
4508 signal_pending(current)) ||
4509 (state == TASK_KILLABLE &&
4510 fatal_signal_pending(current))) {
ea71a546
ON
4511 timeout = -ERESTARTSYS;
4512 break;
8cbbe86d
AK
4513 }
4514 __set_current_state(state);
1da177e4
LT
4515 spin_unlock_irq(&x->wait.lock);
4516 timeout = schedule_timeout(timeout);
4517 spin_lock_irq(&x->wait.lock);
ea71a546 4518 } while (!x->done && timeout);
1da177e4 4519 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4520 if (!x->done)
4521 return timeout;
1da177e4
LT
4522 }
4523 x->done--;
ea71a546 4524 return timeout ?: 1;
1da177e4 4525}
1da177e4 4526
8cbbe86d
AK
4527static long __sched
4528wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4529{
1da177e4
LT
4530 might_sleep();
4531
4532 spin_lock_irq(&x->wait.lock);
8cbbe86d 4533 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4534 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4535 return timeout;
4536}
1da177e4 4537
b15136e9 4538void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4539{
4540 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4541}
8cbbe86d 4542EXPORT_SYMBOL(wait_for_completion);
1da177e4 4543
b15136e9 4544unsigned long __sched
8cbbe86d 4545wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4546{
8cbbe86d 4547 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4548}
8cbbe86d 4549EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4550
8cbbe86d 4551int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4552{
51e97990
AK
4553 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4554 if (t == -ERESTARTSYS)
4555 return t;
4556 return 0;
0fec171c 4557}
8cbbe86d 4558EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4559
b15136e9 4560unsigned long __sched
8cbbe86d
AK
4561wait_for_completion_interruptible_timeout(struct completion *x,
4562 unsigned long timeout)
0fec171c 4563{
8cbbe86d 4564 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4565}
8cbbe86d 4566EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4567
009e577e
MW
4568int __sched wait_for_completion_killable(struct completion *x)
4569{
4570 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4571 if (t == -ERESTARTSYS)
4572 return t;
4573 return 0;
4574}
4575EXPORT_SYMBOL(wait_for_completion_killable);
4576
8cbbe86d
AK
4577static long __sched
4578sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4579{
0fec171c
IM
4580 unsigned long flags;
4581 wait_queue_t wait;
4582
4583 init_waitqueue_entry(&wait, current);
1da177e4 4584
8cbbe86d 4585 __set_current_state(state);
1da177e4 4586
8cbbe86d
AK
4587 spin_lock_irqsave(&q->lock, flags);
4588 __add_wait_queue(q, &wait);
4589 spin_unlock(&q->lock);
4590 timeout = schedule_timeout(timeout);
4591 spin_lock_irq(&q->lock);
4592 __remove_wait_queue(q, &wait);
4593 spin_unlock_irqrestore(&q->lock, flags);
4594
4595 return timeout;
4596}
4597
4598void __sched interruptible_sleep_on(wait_queue_head_t *q)
4599{
4600 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4601}
1da177e4
LT
4602EXPORT_SYMBOL(interruptible_sleep_on);
4603
0fec171c 4604long __sched
95cdf3b7 4605interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4606{
8cbbe86d 4607 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4608}
1da177e4
LT
4609EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4610
0fec171c 4611void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4612{
8cbbe86d 4613 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4614}
1da177e4
LT
4615EXPORT_SYMBOL(sleep_on);
4616
0fec171c 4617long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4618{
8cbbe86d 4619 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4620}
1da177e4
LT
4621EXPORT_SYMBOL(sleep_on_timeout);
4622
b29739f9
IM
4623#ifdef CONFIG_RT_MUTEXES
4624
4625/*
4626 * rt_mutex_setprio - set the current priority of a task
4627 * @p: task
4628 * @prio: prio value (kernel-internal form)
4629 *
4630 * This function changes the 'effective' priority of a task. It does
4631 * not touch ->normal_prio like __setscheduler().
4632 *
4633 * Used by the rt_mutex code to implement priority inheritance logic.
4634 */
36c8b586 4635void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4636{
4637 unsigned long flags;
83b699ed 4638 int oldprio, on_rq, running;
70b97a7f 4639 struct rq *rq;
cb469845 4640 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4641
4642 BUG_ON(prio < 0 || prio > MAX_PRIO);
4643
4644 rq = task_rq_lock(p, &flags);
a8e504d2 4645 update_rq_clock(rq);
b29739f9 4646
d5f9f942 4647 oldprio = p->prio;
dd41f596 4648 on_rq = p->se.on_rq;
051a1d1a 4649 running = task_current(rq, p);
0e1f3483 4650 if (on_rq)
69be72c1 4651 dequeue_task(rq, p, 0);
0e1f3483
HS
4652 if (running)
4653 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4654
4655 if (rt_prio(prio))
4656 p->sched_class = &rt_sched_class;
4657 else
4658 p->sched_class = &fair_sched_class;
4659
b29739f9
IM
4660 p->prio = prio;
4661
0e1f3483
HS
4662 if (running)
4663 p->sched_class->set_curr_task(rq);
dd41f596 4664 if (on_rq) {
8159f87e 4665 enqueue_task(rq, p, 0);
cb469845
SR
4666
4667 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4668 }
4669 task_rq_unlock(rq, &flags);
4670}
4671
4672#endif
4673
36c8b586 4674void set_user_nice(struct task_struct *p, long nice)
1da177e4 4675{
dd41f596 4676 int old_prio, delta, on_rq;
1da177e4 4677 unsigned long flags;
70b97a7f 4678 struct rq *rq;
1da177e4
LT
4679
4680 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4681 return;
4682 /*
4683 * We have to be careful, if called from sys_setpriority(),
4684 * the task might be in the middle of scheduling on another CPU.
4685 */
4686 rq = task_rq_lock(p, &flags);
a8e504d2 4687 update_rq_clock(rq);
1da177e4
LT
4688 /*
4689 * The RT priorities are set via sched_setscheduler(), but we still
4690 * allow the 'normal' nice value to be set - but as expected
4691 * it wont have any effect on scheduling until the task is
dd41f596 4692 * SCHED_FIFO/SCHED_RR:
1da177e4 4693 */
e05606d3 4694 if (task_has_rt_policy(p)) {
1da177e4
LT
4695 p->static_prio = NICE_TO_PRIO(nice);
4696 goto out_unlock;
4697 }
dd41f596 4698 on_rq = p->se.on_rq;
c09595f6 4699 if (on_rq)
69be72c1 4700 dequeue_task(rq, p, 0);
1da177e4 4701
1da177e4 4702 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4703 set_load_weight(p);
b29739f9
IM
4704 old_prio = p->prio;
4705 p->prio = effective_prio(p);
4706 delta = p->prio - old_prio;
1da177e4 4707
dd41f596 4708 if (on_rq) {
8159f87e 4709 enqueue_task(rq, p, 0);
1da177e4 4710 /*
d5f9f942
AM
4711 * If the task increased its priority or is running and
4712 * lowered its priority, then reschedule its CPU:
1da177e4 4713 */
d5f9f942 4714 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4715 resched_task(rq->curr);
4716 }
4717out_unlock:
4718 task_rq_unlock(rq, &flags);
4719}
1da177e4
LT
4720EXPORT_SYMBOL(set_user_nice);
4721
e43379f1
MM
4722/*
4723 * can_nice - check if a task can reduce its nice value
4724 * @p: task
4725 * @nice: nice value
4726 */
36c8b586 4727int can_nice(const struct task_struct *p, const int nice)
e43379f1 4728{
024f4747
MM
4729 /* convert nice value [19,-20] to rlimit style value [1,40] */
4730 int nice_rlim = 20 - nice;
48f24c4d 4731
e43379f1
MM
4732 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4733 capable(CAP_SYS_NICE));
4734}
4735
1da177e4
LT
4736#ifdef __ARCH_WANT_SYS_NICE
4737
4738/*
4739 * sys_nice - change the priority of the current process.
4740 * @increment: priority increment
4741 *
4742 * sys_setpriority is a more generic, but much slower function that
4743 * does similar things.
4744 */
4745asmlinkage long sys_nice(int increment)
4746{
48f24c4d 4747 long nice, retval;
1da177e4
LT
4748
4749 /*
4750 * Setpriority might change our priority at the same moment.
4751 * We don't have to worry. Conceptually one call occurs first
4752 * and we have a single winner.
4753 */
e43379f1
MM
4754 if (increment < -40)
4755 increment = -40;
1da177e4
LT
4756 if (increment > 40)
4757 increment = 40;
4758
4759 nice = PRIO_TO_NICE(current->static_prio) + increment;
4760 if (nice < -20)
4761 nice = -20;
4762 if (nice > 19)
4763 nice = 19;
4764
e43379f1
MM
4765 if (increment < 0 && !can_nice(current, nice))
4766 return -EPERM;
4767
1da177e4
LT
4768 retval = security_task_setnice(current, nice);
4769 if (retval)
4770 return retval;
4771
4772 set_user_nice(current, nice);
4773 return 0;
4774}
4775
4776#endif
4777
4778/**
4779 * task_prio - return the priority value of a given task.
4780 * @p: the task in question.
4781 *
4782 * This is the priority value as seen by users in /proc.
4783 * RT tasks are offset by -200. Normal tasks are centered
4784 * around 0, value goes from -16 to +15.
4785 */
36c8b586 4786int task_prio(const struct task_struct *p)
1da177e4
LT
4787{
4788 return p->prio - MAX_RT_PRIO;
4789}
4790
4791/**
4792 * task_nice - return the nice value of a given task.
4793 * @p: the task in question.
4794 */
36c8b586 4795int task_nice(const struct task_struct *p)
1da177e4
LT
4796{
4797 return TASK_NICE(p);
4798}
150d8bed 4799EXPORT_SYMBOL(task_nice);
1da177e4
LT
4800
4801/**
4802 * idle_cpu - is a given cpu idle currently?
4803 * @cpu: the processor in question.
4804 */
4805int idle_cpu(int cpu)
4806{
4807 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4808}
4809
1da177e4
LT
4810/**
4811 * idle_task - return the idle task for a given cpu.
4812 * @cpu: the processor in question.
4813 */
36c8b586 4814struct task_struct *idle_task(int cpu)
1da177e4
LT
4815{
4816 return cpu_rq(cpu)->idle;
4817}
4818
4819/**
4820 * find_process_by_pid - find a process with a matching PID value.
4821 * @pid: the pid in question.
4822 */
a9957449 4823static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4824{
228ebcbe 4825 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4826}
4827
4828/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4829static void
4830__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4831{
dd41f596 4832 BUG_ON(p->se.on_rq);
48f24c4d 4833
1da177e4 4834 p->policy = policy;
dd41f596
IM
4835 switch (p->policy) {
4836 case SCHED_NORMAL:
4837 case SCHED_BATCH:
4838 case SCHED_IDLE:
4839 p->sched_class = &fair_sched_class;
4840 break;
4841 case SCHED_FIFO:
4842 case SCHED_RR:
4843 p->sched_class = &rt_sched_class;
4844 break;
4845 }
4846
1da177e4 4847 p->rt_priority = prio;
b29739f9
IM
4848 p->normal_prio = normal_prio(p);
4849 /* we are holding p->pi_lock already */
4850 p->prio = rt_mutex_getprio(p);
2dd73a4f 4851 set_load_weight(p);
1da177e4
LT
4852}
4853
4854/**
72fd4a35 4855 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4856 * @p: the task in question.
4857 * @policy: new policy.
4858 * @param: structure containing the new RT priority.
5fe1d75f 4859 *
72fd4a35 4860 * NOTE that the task may be already dead.
1da177e4 4861 */
95cdf3b7
IM
4862int sched_setscheduler(struct task_struct *p, int policy,
4863 struct sched_param *param)
1da177e4 4864{
83b699ed 4865 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4866 unsigned long flags;
cb469845 4867 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4868 struct rq *rq;
1da177e4 4869
66e5393a
SR
4870 /* may grab non-irq protected spin_locks */
4871 BUG_ON(in_interrupt());
1da177e4
LT
4872recheck:
4873 /* double check policy once rq lock held */
4874 if (policy < 0)
4875 policy = oldpolicy = p->policy;
4876 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4877 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4878 policy != SCHED_IDLE)
b0a9499c 4879 return -EINVAL;
1da177e4
LT
4880 /*
4881 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4882 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4883 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4884 */
4885 if (param->sched_priority < 0 ||
95cdf3b7 4886 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4887 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4888 return -EINVAL;
e05606d3 4889 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4890 return -EINVAL;
4891
37e4ab3f
OC
4892 /*
4893 * Allow unprivileged RT tasks to decrease priority:
4894 */
4895 if (!capable(CAP_SYS_NICE)) {
e05606d3 4896 if (rt_policy(policy)) {
8dc3e909 4897 unsigned long rlim_rtprio;
8dc3e909
ON
4898
4899 if (!lock_task_sighand(p, &flags))
4900 return -ESRCH;
4901 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4902 unlock_task_sighand(p, &flags);
4903
4904 /* can't set/change the rt policy */
4905 if (policy != p->policy && !rlim_rtprio)
4906 return -EPERM;
4907
4908 /* can't increase priority */
4909 if (param->sched_priority > p->rt_priority &&
4910 param->sched_priority > rlim_rtprio)
4911 return -EPERM;
4912 }
dd41f596
IM
4913 /*
4914 * Like positive nice levels, dont allow tasks to
4915 * move out of SCHED_IDLE either:
4916 */
4917 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4918 return -EPERM;
5fe1d75f 4919
37e4ab3f
OC
4920 /* can't change other user's priorities */
4921 if ((current->euid != p->euid) &&
4922 (current->euid != p->uid))
4923 return -EPERM;
4924 }
1da177e4 4925
b68aa230
PZ
4926#ifdef CONFIG_RT_GROUP_SCHED
4927 /*
4928 * Do not allow realtime tasks into groups that have no runtime
4929 * assigned.
4930 */
d0b27fa7 4931 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4932 return -EPERM;
4933#endif
4934
1da177e4
LT
4935 retval = security_task_setscheduler(p, policy, param);
4936 if (retval)
4937 return retval;
b29739f9
IM
4938 /*
4939 * make sure no PI-waiters arrive (or leave) while we are
4940 * changing the priority of the task:
4941 */
4942 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4943 /*
4944 * To be able to change p->policy safely, the apropriate
4945 * runqueue lock must be held.
4946 */
b29739f9 4947 rq = __task_rq_lock(p);
1da177e4
LT
4948 /* recheck policy now with rq lock held */
4949 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4950 policy = oldpolicy = -1;
b29739f9
IM
4951 __task_rq_unlock(rq);
4952 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4953 goto recheck;
4954 }
2daa3577 4955 update_rq_clock(rq);
dd41f596 4956 on_rq = p->se.on_rq;
051a1d1a 4957 running = task_current(rq, p);
0e1f3483 4958 if (on_rq)
2e1cb74a 4959 deactivate_task(rq, p, 0);
0e1f3483
HS
4960 if (running)
4961 p->sched_class->put_prev_task(rq, p);
f6b53205 4962
1da177e4 4963 oldprio = p->prio;
dd41f596 4964 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4965
0e1f3483
HS
4966 if (running)
4967 p->sched_class->set_curr_task(rq);
dd41f596
IM
4968 if (on_rq) {
4969 activate_task(rq, p, 0);
cb469845
SR
4970
4971 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4972 }
b29739f9
IM
4973 __task_rq_unlock(rq);
4974 spin_unlock_irqrestore(&p->pi_lock, flags);
4975
95e02ca9
TG
4976 rt_mutex_adjust_pi(p);
4977
1da177e4
LT
4978 return 0;
4979}
4980EXPORT_SYMBOL_GPL(sched_setscheduler);
4981
95cdf3b7
IM
4982static int
4983do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4984{
1da177e4
LT
4985 struct sched_param lparam;
4986 struct task_struct *p;
36c8b586 4987 int retval;
1da177e4
LT
4988
4989 if (!param || pid < 0)
4990 return -EINVAL;
4991 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4992 return -EFAULT;
5fe1d75f
ON
4993
4994 rcu_read_lock();
4995 retval = -ESRCH;
1da177e4 4996 p = find_process_by_pid(pid);
5fe1d75f
ON
4997 if (p != NULL)
4998 retval = sched_setscheduler(p, policy, &lparam);
4999 rcu_read_unlock();
36c8b586 5000
1da177e4
LT
5001 return retval;
5002}
5003
5004/**
5005 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5006 * @pid: the pid in question.
5007 * @policy: new policy.
5008 * @param: structure containing the new RT priority.
5009 */
41a2d6cf
IM
5010asmlinkage long
5011sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5012{
c21761f1
JB
5013 /* negative values for policy are not valid */
5014 if (policy < 0)
5015 return -EINVAL;
5016
1da177e4
LT
5017 return do_sched_setscheduler(pid, policy, param);
5018}
5019
5020/**
5021 * sys_sched_setparam - set/change the RT priority of a thread
5022 * @pid: the pid in question.
5023 * @param: structure containing the new RT priority.
5024 */
5025asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5026{
5027 return do_sched_setscheduler(pid, -1, param);
5028}
5029
5030/**
5031 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5032 * @pid: the pid in question.
5033 */
5034asmlinkage long sys_sched_getscheduler(pid_t pid)
5035{
36c8b586 5036 struct task_struct *p;
3a5c359a 5037 int retval;
1da177e4
LT
5038
5039 if (pid < 0)
3a5c359a 5040 return -EINVAL;
1da177e4
LT
5041
5042 retval = -ESRCH;
5043 read_lock(&tasklist_lock);
5044 p = find_process_by_pid(pid);
5045 if (p) {
5046 retval = security_task_getscheduler(p);
5047 if (!retval)
5048 retval = p->policy;
5049 }
5050 read_unlock(&tasklist_lock);
1da177e4
LT
5051 return retval;
5052}
5053
5054/**
5055 * sys_sched_getscheduler - get the RT priority of a thread
5056 * @pid: the pid in question.
5057 * @param: structure containing the RT priority.
5058 */
5059asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5060{
5061 struct sched_param lp;
36c8b586 5062 struct task_struct *p;
3a5c359a 5063 int retval;
1da177e4
LT
5064
5065 if (!param || pid < 0)
3a5c359a 5066 return -EINVAL;
1da177e4
LT
5067
5068 read_lock(&tasklist_lock);
5069 p = find_process_by_pid(pid);
5070 retval = -ESRCH;
5071 if (!p)
5072 goto out_unlock;
5073
5074 retval = security_task_getscheduler(p);
5075 if (retval)
5076 goto out_unlock;
5077
5078 lp.sched_priority = p->rt_priority;
5079 read_unlock(&tasklist_lock);
5080
5081 /*
5082 * This one might sleep, we cannot do it with a spinlock held ...
5083 */
5084 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5085
1da177e4
LT
5086 return retval;
5087
5088out_unlock:
5089 read_unlock(&tasklist_lock);
5090 return retval;
5091}
5092
b53e921b 5093long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5094{
1da177e4 5095 cpumask_t cpus_allowed;
b53e921b 5096 cpumask_t new_mask = *in_mask;
36c8b586
IM
5097 struct task_struct *p;
5098 int retval;
1da177e4 5099
95402b38 5100 get_online_cpus();
1da177e4
LT
5101 read_lock(&tasklist_lock);
5102
5103 p = find_process_by_pid(pid);
5104 if (!p) {
5105 read_unlock(&tasklist_lock);
95402b38 5106 put_online_cpus();
1da177e4
LT
5107 return -ESRCH;
5108 }
5109
5110 /*
5111 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5112 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5113 * usage count and then drop tasklist_lock.
5114 */
5115 get_task_struct(p);
5116 read_unlock(&tasklist_lock);
5117
5118 retval = -EPERM;
5119 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5120 !capable(CAP_SYS_NICE))
5121 goto out_unlock;
5122
e7834f8f
DQ
5123 retval = security_task_setscheduler(p, 0, NULL);
5124 if (retval)
5125 goto out_unlock;
5126
f9a86fcb 5127 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5128 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5129 again:
7c16ec58 5130 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5131
8707d8b8 5132 if (!retval) {
f9a86fcb 5133 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5134 if (!cpus_subset(new_mask, cpus_allowed)) {
5135 /*
5136 * We must have raced with a concurrent cpuset
5137 * update. Just reset the cpus_allowed to the
5138 * cpuset's cpus_allowed
5139 */
5140 new_mask = cpus_allowed;
5141 goto again;
5142 }
5143 }
1da177e4
LT
5144out_unlock:
5145 put_task_struct(p);
95402b38 5146 put_online_cpus();
1da177e4
LT
5147 return retval;
5148}
5149
5150static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5151 cpumask_t *new_mask)
5152{
5153 if (len < sizeof(cpumask_t)) {
5154 memset(new_mask, 0, sizeof(cpumask_t));
5155 } else if (len > sizeof(cpumask_t)) {
5156 len = sizeof(cpumask_t);
5157 }
5158 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5159}
5160
5161/**
5162 * sys_sched_setaffinity - set the cpu affinity of a process
5163 * @pid: pid of the process
5164 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5165 * @user_mask_ptr: user-space pointer to the new cpu mask
5166 */
5167asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5168 unsigned long __user *user_mask_ptr)
5169{
5170 cpumask_t new_mask;
5171 int retval;
5172
5173 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5174 if (retval)
5175 return retval;
5176
b53e921b 5177 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5178}
5179
1da177e4
LT
5180long sched_getaffinity(pid_t pid, cpumask_t *mask)
5181{
36c8b586 5182 struct task_struct *p;
1da177e4 5183 int retval;
1da177e4 5184
95402b38 5185 get_online_cpus();
1da177e4
LT
5186 read_lock(&tasklist_lock);
5187
5188 retval = -ESRCH;
5189 p = find_process_by_pid(pid);
5190 if (!p)
5191 goto out_unlock;
5192
e7834f8f
DQ
5193 retval = security_task_getscheduler(p);
5194 if (retval)
5195 goto out_unlock;
5196
2f7016d9 5197 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5198
5199out_unlock:
5200 read_unlock(&tasklist_lock);
95402b38 5201 put_online_cpus();
1da177e4 5202
9531b62f 5203 return retval;
1da177e4
LT
5204}
5205
5206/**
5207 * sys_sched_getaffinity - get the cpu affinity of a process
5208 * @pid: pid of the process
5209 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5210 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5211 */
5212asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5213 unsigned long __user *user_mask_ptr)
5214{
5215 int ret;
5216 cpumask_t mask;
5217
5218 if (len < sizeof(cpumask_t))
5219 return -EINVAL;
5220
5221 ret = sched_getaffinity(pid, &mask);
5222 if (ret < 0)
5223 return ret;
5224
5225 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5226 return -EFAULT;
5227
5228 return sizeof(cpumask_t);
5229}
5230
5231/**
5232 * sys_sched_yield - yield the current processor to other threads.
5233 *
dd41f596
IM
5234 * This function yields the current CPU to other tasks. If there are no
5235 * other threads running on this CPU then this function will return.
1da177e4
LT
5236 */
5237asmlinkage long sys_sched_yield(void)
5238{
70b97a7f 5239 struct rq *rq = this_rq_lock();
1da177e4 5240
2d72376b 5241 schedstat_inc(rq, yld_count);
4530d7ab 5242 current->sched_class->yield_task(rq);
1da177e4
LT
5243
5244 /*
5245 * Since we are going to call schedule() anyway, there's
5246 * no need to preempt or enable interrupts:
5247 */
5248 __release(rq->lock);
8a25d5de 5249 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5250 _raw_spin_unlock(&rq->lock);
5251 preempt_enable_no_resched();
5252
5253 schedule();
5254
5255 return 0;
5256}
5257
e7b38404 5258static void __cond_resched(void)
1da177e4 5259{
8e0a43d8
IM
5260#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5261 __might_sleep(__FILE__, __LINE__);
5262#endif
5bbcfd90
IM
5263 /*
5264 * The BKS might be reacquired before we have dropped
5265 * PREEMPT_ACTIVE, which could trigger a second
5266 * cond_resched() call.
5267 */
1da177e4
LT
5268 do {
5269 add_preempt_count(PREEMPT_ACTIVE);
5270 schedule();
5271 sub_preempt_count(PREEMPT_ACTIVE);
5272 } while (need_resched());
5273}
5274
02b67cc3 5275int __sched _cond_resched(void)
1da177e4 5276{
9414232f
IM
5277 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5278 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5279 __cond_resched();
5280 return 1;
5281 }
5282 return 0;
5283}
02b67cc3 5284EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5285
5286/*
5287 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5288 * call schedule, and on return reacquire the lock.
5289 *
41a2d6cf 5290 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5291 * operations here to prevent schedule() from being called twice (once via
5292 * spin_unlock(), once by hand).
5293 */
95cdf3b7 5294int cond_resched_lock(spinlock_t *lock)
1da177e4 5295{
95c354fe 5296 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5297 int ret = 0;
5298
95c354fe 5299 if (spin_needbreak(lock) || resched) {
1da177e4 5300 spin_unlock(lock);
95c354fe
NP
5301 if (resched && need_resched())
5302 __cond_resched();
5303 else
5304 cpu_relax();
6df3cecb 5305 ret = 1;
1da177e4 5306 spin_lock(lock);
1da177e4 5307 }
6df3cecb 5308 return ret;
1da177e4 5309}
1da177e4
LT
5310EXPORT_SYMBOL(cond_resched_lock);
5311
5312int __sched cond_resched_softirq(void)
5313{
5314 BUG_ON(!in_softirq());
5315
9414232f 5316 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5317 local_bh_enable();
1da177e4
LT
5318 __cond_resched();
5319 local_bh_disable();
5320 return 1;
5321 }
5322 return 0;
5323}
1da177e4
LT
5324EXPORT_SYMBOL(cond_resched_softirq);
5325
1da177e4
LT
5326/**
5327 * yield - yield the current processor to other threads.
5328 *
72fd4a35 5329 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5330 * thread runnable and calls sys_sched_yield().
5331 */
5332void __sched yield(void)
5333{
5334 set_current_state(TASK_RUNNING);
5335 sys_sched_yield();
5336}
1da177e4
LT
5337EXPORT_SYMBOL(yield);
5338
5339/*
41a2d6cf 5340 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5341 * that process accounting knows that this is a task in IO wait state.
5342 *
5343 * But don't do that if it is a deliberate, throttling IO wait (this task
5344 * has set its backing_dev_info: the queue against which it should throttle)
5345 */
5346void __sched io_schedule(void)
5347{
70b97a7f 5348 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5349
0ff92245 5350 delayacct_blkio_start();
1da177e4
LT
5351 atomic_inc(&rq->nr_iowait);
5352 schedule();
5353 atomic_dec(&rq->nr_iowait);
0ff92245 5354 delayacct_blkio_end();
1da177e4 5355}
1da177e4
LT
5356EXPORT_SYMBOL(io_schedule);
5357
5358long __sched io_schedule_timeout(long timeout)
5359{
70b97a7f 5360 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5361 long ret;
5362
0ff92245 5363 delayacct_blkio_start();
1da177e4
LT
5364 atomic_inc(&rq->nr_iowait);
5365 ret = schedule_timeout(timeout);
5366 atomic_dec(&rq->nr_iowait);
0ff92245 5367 delayacct_blkio_end();
1da177e4
LT
5368 return ret;
5369}
5370
5371/**
5372 * sys_sched_get_priority_max - return maximum RT priority.
5373 * @policy: scheduling class.
5374 *
5375 * this syscall returns the maximum rt_priority that can be used
5376 * by a given scheduling class.
5377 */
5378asmlinkage long sys_sched_get_priority_max(int policy)
5379{
5380 int ret = -EINVAL;
5381
5382 switch (policy) {
5383 case SCHED_FIFO:
5384 case SCHED_RR:
5385 ret = MAX_USER_RT_PRIO-1;
5386 break;
5387 case SCHED_NORMAL:
b0a9499c 5388 case SCHED_BATCH:
dd41f596 5389 case SCHED_IDLE:
1da177e4
LT
5390 ret = 0;
5391 break;
5392 }
5393 return ret;
5394}
5395
5396/**
5397 * sys_sched_get_priority_min - return minimum RT priority.
5398 * @policy: scheduling class.
5399 *
5400 * this syscall returns the minimum rt_priority that can be used
5401 * by a given scheduling class.
5402 */
5403asmlinkage long sys_sched_get_priority_min(int policy)
5404{
5405 int ret = -EINVAL;
5406
5407 switch (policy) {
5408 case SCHED_FIFO:
5409 case SCHED_RR:
5410 ret = 1;
5411 break;
5412 case SCHED_NORMAL:
b0a9499c 5413 case SCHED_BATCH:
dd41f596 5414 case SCHED_IDLE:
1da177e4
LT
5415 ret = 0;
5416 }
5417 return ret;
5418}
5419
5420/**
5421 * sys_sched_rr_get_interval - return the default timeslice of a process.
5422 * @pid: pid of the process.
5423 * @interval: userspace pointer to the timeslice value.
5424 *
5425 * this syscall writes the default timeslice value of a given process
5426 * into the user-space timespec buffer. A value of '0' means infinity.
5427 */
5428asmlinkage
5429long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5430{
36c8b586 5431 struct task_struct *p;
a4ec24b4 5432 unsigned int time_slice;
3a5c359a 5433 int retval;
1da177e4 5434 struct timespec t;
1da177e4
LT
5435
5436 if (pid < 0)
3a5c359a 5437 return -EINVAL;
1da177e4
LT
5438
5439 retval = -ESRCH;
5440 read_lock(&tasklist_lock);
5441 p = find_process_by_pid(pid);
5442 if (!p)
5443 goto out_unlock;
5444
5445 retval = security_task_getscheduler(p);
5446 if (retval)
5447 goto out_unlock;
5448
77034937
IM
5449 /*
5450 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5451 * tasks that are on an otherwise idle runqueue:
5452 */
5453 time_slice = 0;
5454 if (p->policy == SCHED_RR) {
a4ec24b4 5455 time_slice = DEF_TIMESLICE;
1868f958 5456 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5457 struct sched_entity *se = &p->se;
5458 unsigned long flags;
5459 struct rq *rq;
5460
5461 rq = task_rq_lock(p, &flags);
77034937
IM
5462 if (rq->cfs.load.weight)
5463 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5464 task_rq_unlock(rq, &flags);
5465 }
1da177e4 5466 read_unlock(&tasklist_lock);
a4ec24b4 5467 jiffies_to_timespec(time_slice, &t);
1da177e4 5468 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5469 return retval;
3a5c359a 5470
1da177e4
LT
5471out_unlock:
5472 read_unlock(&tasklist_lock);
5473 return retval;
5474}
5475
2ed6e34f 5476static const char stat_nam[] = "RSDTtZX";
36c8b586 5477
82a1fcb9 5478void sched_show_task(struct task_struct *p)
1da177e4 5479{
1da177e4 5480 unsigned long free = 0;
36c8b586 5481 unsigned state;
1da177e4 5482
1da177e4 5483 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5484 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5485 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5486#if BITS_PER_LONG == 32
1da177e4 5487 if (state == TASK_RUNNING)
cc4ea795 5488 printk(KERN_CONT " running ");
1da177e4 5489 else
cc4ea795 5490 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5491#else
5492 if (state == TASK_RUNNING)
cc4ea795 5493 printk(KERN_CONT " running task ");
1da177e4 5494 else
cc4ea795 5495 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5496#endif
5497#ifdef CONFIG_DEBUG_STACK_USAGE
5498 {
10ebffde 5499 unsigned long *n = end_of_stack(p);
1da177e4
LT
5500 while (!*n)
5501 n++;
10ebffde 5502 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5503 }
5504#endif
ba25f9dc 5505 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5506 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5507
5fb5e6de 5508 show_stack(p, NULL);
1da177e4
LT
5509}
5510
e59e2ae2 5511void show_state_filter(unsigned long state_filter)
1da177e4 5512{
36c8b586 5513 struct task_struct *g, *p;
1da177e4 5514
4bd77321
IM
5515#if BITS_PER_LONG == 32
5516 printk(KERN_INFO
5517 " task PC stack pid father\n");
1da177e4 5518#else
4bd77321
IM
5519 printk(KERN_INFO
5520 " task PC stack pid father\n");
1da177e4
LT
5521#endif
5522 read_lock(&tasklist_lock);
5523 do_each_thread(g, p) {
5524 /*
5525 * reset the NMI-timeout, listing all files on a slow
5526 * console might take alot of time:
5527 */
5528 touch_nmi_watchdog();
39bc89fd 5529 if (!state_filter || (p->state & state_filter))
82a1fcb9 5530 sched_show_task(p);
1da177e4
LT
5531 } while_each_thread(g, p);
5532
04c9167f
JF
5533 touch_all_softlockup_watchdogs();
5534
dd41f596
IM
5535#ifdef CONFIG_SCHED_DEBUG
5536 sysrq_sched_debug_show();
5537#endif
1da177e4 5538 read_unlock(&tasklist_lock);
e59e2ae2
IM
5539 /*
5540 * Only show locks if all tasks are dumped:
5541 */
5542 if (state_filter == -1)
5543 debug_show_all_locks();
1da177e4
LT
5544}
5545
1df21055
IM
5546void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5547{
dd41f596 5548 idle->sched_class = &idle_sched_class;
1df21055
IM
5549}
5550
f340c0d1
IM
5551/**
5552 * init_idle - set up an idle thread for a given CPU
5553 * @idle: task in question
5554 * @cpu: cpu the idle task belongs to
5555 *
5556 * NOTE: this function does not set the idle thread's NEED_RESCHED
5557 * flag, to make booting more robust.
5558 */
5c1e1767 5559void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5560{
70b97a7f 5561 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5562 unsigned long flags;
5563
dd41f596
IM
5564 __sched_fork(idle);
5565 idle->se.exec_start = sched_clock();
5566
b29739f9 5567 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5568 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5569 __set_task_cpu(idle, cpu);
1da177e4
LT
5570
5571 spin_lock_irqsave(&rq->lock, flags);
5572 rq->curr = rq->idle = idle;
4866cde0
NP
5573#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5574 idle->oncpu = 1;
5575#endif
1da177e4
LT
5576 spin_unlock_irqrestore(&rq->lock, flags);
5577
5578 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5579#if defined(CONFIG_PREEMPT)
5580 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5581#else
a1261f54 5582 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5583#endif
dd41f596
IM
5584 /*
5585 * The idle tasks have their own, simple scheduling class:
5586 */
5587 idle->sched_class = &idle_sched_class;
1da177e4
LT
5588}
5589
5590/*
5591 * In a system that switches off the HZ timer nohz_cpu_mask
5592 * indicates which cpus entered this state. This is used
5593 * in the rcu update to wait only for active cpus. For system
5594 * which do not switch off the HZ timer nohz_cpu_mask should
5595 * always be CPU_MASK_NONE.
5596 */
5597cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5598
19978ca6
IM
5599/*
5600 * Increase the granularity value when there are more CPUs,
5601 * because with more CPUs the 'effective latency' as visible
5602 * to users decreases. But the relationship is not linear,
5603 * so pick a second-best guess by going with the log2 of the
5604 * number of CPUs.
5605 *
5606 * This idea comes from the SD scheduler of Con Kolivas:
5607 */
5608static inline void sched_init_granularity(void)
5609{
5610 unsigned int factor = 1 + ilog2(num_online_cpus());
5611 const unsigned long limit = 200000000;
5612
5613 sysctl_sched_min_granularity *= factor;
5614 if (sysctl_sched_min_granularity > limit)
5615 sysctl_sched_min_granularity = limit;
5616
5617 sysctl_sched_latency *= factor;
5618 if (sysctl_sched_latency > limit)
5619 sysctl_sched_latency = limit;
5620
5621 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5622}
5623
1da177e4
LT
5624#ifdef CONFIG_SMP
5625/*
5626 * This is how migration works:
5627 *
70b97a7f 5628 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5629 * runqueue and wake up that CPU's migration thread.
5630 * 2) we down() the locked semaphore => thread blocks.
5631 * 3) migration thread wakes up (implicitly it forces the migrated
5632 * thread off the CPU)
5633 * 4) it gets the migration request and checks whether the migrated
5634 * task is still in the wrong runqueue.
5635 * 5) if it's in the wrong runqueue then the migration thread removes
5636 * it and puts it into the right queue.
5637 * 6) migration thread up()s the semaphore.
5638 * 7) we wake up and the migration is done.
5639 */
5640
5641/*
5642 * Change a given task's CPU affinity. Migrate the thread to a
5643 * proper CPU and schedule it away if the CPU it's executing on
5644 * is removed from the allowed bitmask.
5645 *
5646 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5647 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5648 * call is not atomic; no spinlocks may be held.
5649 */
cd8ba7cd 5650int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5651{
70b97a7f 5652 struct migration_req req;
1da177e4 5653 unsigned long flags;
70b97a7f 5654 struct rq *rq;
48f24c4d 5655 int ret = 0;
1da177e4
LT
5656
5657 rq = task_rq_lock(p, &flags);
cd8ba7cd 5658 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5659 ret = -EINVAL;
5660 goto out;
5661 }
5662
9985b0ba
DR
5663 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5664 !cpus_equal(p->cpus_allowed, *new_mask))) {
5665 ret = -EINVAL;
5666 goto out;
5667 }
5668
73fe6aae 5669 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5670 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5671 else {
cd8ba7cd
MT
5672 p->cpus_allowed = *new_mask;
5673 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5674 }
5675
1da177e4 5676 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5677 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5678 goto out;
5679
cd8ba7cd 5680 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5681 /* Need help from migration thread: drop lock and wait. */
5682 task_rq_unlock(rq, &flags);
5683 wake_up_process(rq->migration_thread);
5684 wait_for_completion(&req.done);
5685 tlb_migrate_finish(p->mm);
5686 return 0;
5687 }
5688out:
5689 task_rq_unlock(rq, &flags);
48f24c4d 5690
1da177e4
LT
5691 return ret;
5692}
cd8ba7cd 5693EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5694
5695/*
41a2d6cf 5696 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5697 * this because either it can't run here any more (set_cpus_allowed()
5698 * away from this CPU, or CPU going down), or because we're
5699 * attempting to rebalance this task on exec (sched_exec).
5700 *
5701 * So we race with normal scheduler movements, but that's OK, as long
5702 * as the task is no longer on this CPU.
efc30814
KK
5703 *
5704 * Returns non-zero if task was successfully migrated.
1da177e4 5705 */
efc30814 5706static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5707{
70b97a7f 5708 struct rq *rq_dest, *rq_src;
dd41f596 5709 int ret = 0, on_rq;
1da177e4
LT
5710
5711 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5712 return ret;
1da177e4
LT
5713
5714 rq_src = cpu_rq(src_cpu);
5715 rq_dest = cpu_rq(dest_cpu);
5716
5717 double_rq_lock(rq_src, rq_dest);
5718 /* Already moved. */
5719 if (task_cpu(p) != src_cpu)
5720 goto out;
5721 /* Affinity changed (again). */
5722 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5723 goto out;
5724
dd41f596 5725 on_rq = p->se.on_rq;
6e82a3be 5726 if (on_rq)
2e1cb74a 5727 deactivate_task(rq_src, p, 0);
6e82a3be 5728
1da177e4 5729 set_task_cpu(p, dest_cpu);
dd41f596
IM
5730 if (on_rq) {
5731 activate_task(rq_dest, p, 0);
5732 check_preempt_curr(rq_dest, p);
1da177e4 5733 }
efc30814 5734 ret = 1;
1da177e4
LT
5735out:
5736 double_rq_unlock(rq_src, rq_dest);
efc30814 5737 return ret;
1da177e4
LT
5738}
5739
5740/*
5741 * migration_thread - this is a highprio system thread that performs
5742 * thread migration by bumping thread off CPU then 'pushing' onto
5743 * another runqueue.
5744 */
95cdf3b7 5745static int migration_thread(void *data)
1da177e4 5746{
1da177e4 5747 int cpu = (long)data;
70b97a7f 5748 struct rq *rq;
1da177e4
LT
5749
5750 rq = cpu_rq(cpu);
5751 BUG_ON(rq->migration_thread != current);
5752
5753 set_current_state(TASK_INTERRUPTIBLE);
5754 while (!kthread_should_stop()) {
70b97a7f 5755 struct migration_req *req;
1da177e4 5756 struct list_head *head;
1da177e4 5757
1da177e4
LT
5758 spin_lock_irq(&rq->lock);
5759
5760 if (cpu_is_offline(cpu)) {
5761 spin_unlock_irq(&rq->lock);
5762 goto wait_to_die;
5763 }
5764
5765 if (rq->active_balance) {
5766 active_load_balance(rq, cpu);
5767 rq->active_balance = 0;
5768 }
5769
5770 head = &rq->migration_queue;
5771
5772 if (list_empty(head)) {
5773 spin_unlock_irq(&rq->lock);
5774 schedule();
5775 set_current_state(TASK_INTERRUPTIBLE);
5776 continue;
5777 }
70b97a7f 5778 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5779 list_del_init(head->next);
5780
674311d5
NP
5781 spin_unlock(&rq->lock);
5782 __migrate_task(req->task, cpu, req->dest_cpu);
5783 local_irq_enable();
1da177e4
LT
5784
5785 complete(&req->done);
5786 }
5787 __set_current_state(TASK_RUNNING);
5788 return 0;
5789
5790wait_to_die:
5791 /* Wait for kthread_stop */
5792 set_current_state(TASK_INTERRUPTIBLE);
5793 while (!kthread_should_stop()) {
5794 schedule();
5795 set_current_state(TASK_INTERRUPTIBLE);
5796 }
5797 __set_current_state(TASK_RUNNING);
5798 return 0;
5799}
5800
5801#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5802
5803static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5804{
5805 int ret;
5806
5807 local_irq_disable();
5808 ret = __migrate_task(p, src_cpu, dest_cpu);
5809 local_irq_enable();
5810 return ret;
5811}
5812
054b9108 5813/*
3a4fa0a2 5814 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5815 * NOTE: interrupts should be disabled by the caller
5816 */
48f24c4d 5817static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5818{
efc30814 5819 unsigned long flags;
1da177e4 5820 cpumask_t mask;
70b97a7f
IM
5821 struct rq *rq;
5822 int dest_cpu;
1da177e4 5823
3a5c359a
AK
5824 do {
5825 /* On same node? */
5826 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5827 cpus_and(mask, mask, p->cpus_allowed);
5828 dest_cpu = any_online_cpu(mask);
5829
5830 /* On any allowed CPU? */
434d53b0 5831 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5832 dest_cpu = any_online_cpu(p->cpus_allowed);
5833
5834 /* No more Mr. Nice Guy. */
434d53b0 5835 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5836 cpumask_t cpus_allowed;
5837
5838 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5839 /*
5840 * Try to stay on the same cpuset, where the
5841 * current cpuset may be a subset of all cpus.
5842 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5843 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5844 * called within calls to cpuset_lock/cpuset_unlock.
5845 */
3a5c359a 5846 rq = task_rq_lock(p, &flags);
470fd646 5847 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5848 dest_cpu = any_online_cpu(p->cpus_allowed);
5849 task_rq_unlock(rq, &flags);
1da177e4 5850
3a5c359a
AK
5851 /*
5852 * Don't tell them about moving exiting tasks or
5853 * kernel threads (both mm NULL), since they never
5854 * leave kernel.
5855 */
41a2d6cf 5856 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5857 printk(KERN_INFO "process %d (%s) no "
5858 "longer affine to cpu%d\n",
41a2d6cf
IM
5859 task_pid_nr(p), p->comm, dead_cpu);
5860 }
3a5c359a 5861 }
f7b4cddc 5862 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5863}
5864
5865/*
5866 * While a dead CPU has no uninterruptible tasks queued at this point,
5867 * it might still have a nonzero ->nr_uninterruptible counter, because
5868 * for performance reasons the counter is not stricly tracking tasks to
5869 * their home CPUs. So we just add the counter to another CPU's counter,
5870 * to keep the global sum constant after CPU-down:
5871 */
70b97a7f 5872static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5873{
7c16ec58 5874 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5875 unsigned long flags;
5876
5877 local_irq_save(flags);
5878 double_rq_lock(rq_src, rq_dest);
5879 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5880 rq_src->nr_uninterruptible = 0;
5881 double_rq_unlock(rq_src, rq_dest);
5882 local_irq_restore(flags);
5883}
5884
5885/* Run through task list and migrate tasks from the dead cpu. */
5886static void migrate_live_tasks(int src_cpu)
5887{
48f24c4d 5888 struct task_struct *p, *t;
1da177e4 5889
f7b4cddc 5890 read_lock(&tasklist_lock);
1da177e4 5891
48f24c4d
IM
5892 do_each_thread(t, p) {
5893 if (p == current)
1da177e4
LT
5894 continue;
5895
48f24c4d
IM
5896 if (task_cpu(p) == src_cpu)
5897 move_task_off_dead_cpu(src_cpu, p);
5898 } while_each_thread(t, p);
1da177e4 5899
f7b4cddc 5900 read_unlock(&tasklist_lock);
1da177e4
LT
5901}
5902
dd41f596
IM
5903/*
5904 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5905 * It does so by boosting its priority to highest possible.
5906 * Used by CPU offline code.
1da177e4
LT
5907 */
5908void sched_idle_next(void)
5909{
48f24c4d 5910 int this_cpu = smp_processor_id();
70b97a7f 5911 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5912 struct task_struct *p = rq->idle;
5913 unsigned long flags;
5914
5915 /* cpu has to be offline */
48f24c4d 5916 BUG_ON(cpu_online(this_cpu));
1da177e4 5917
48f24c4d
IM
5918 /*
5919 * Strictly not necessary since rest of the CPUs are stopped by now
5920 * and interrupts disabled on the current cpu.
1da177e4
LT
5921 */
5922 spin_lock_irqsave(&rq->lock, flags);
5923
dd41f596 5924 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5925
94bc9a7b
DA
5926 update_rq_clock(rq);
5927 activate_task(rq, p, 0);
1da177e4
LT
5928
5929 spin_unlock_irqrestore(&rq->lock, flags);
5930}
5931
48f24c4d
IM
5932/*
5933 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5934 * offline.
5935 */
5936void idle_task_exit(void)
5937{
5938 struct mm_struct *mm = current->active_mm;
5939
5940 BUG_ON(cpu_online(smp_processor_id()));
5941
5942 if (mm != &init_mm)
5943 switch_mm(mm, &init_mm, current);
5944 mmdrop(mm);
5945}
5946
054b9108 5947/* called under rq->lock with disabled interrupts */
36c8b586 5948static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5949{
70b97a7f 5950 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5951
5952 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5953 BUG_ON(!p->exit_state);
1da177e4
LT
5954
5955 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5956 BUG_ON(p->state == TASK_DEAD);
1da177e4 5957
48f24c4d 5958 get_task_struct(p);
1da177e4
LT
5959
5960 /*
5961 * Drop lock around migration; if someone else moves it,
41a2d6cf 5962 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5963 * fine.
5964 */
f7b4cddc 5965 spin_unlock_irq(&rq->lock);
48f24c4d 5966 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5967 spin_lock_irq(&rq->lock);
1da177e4 5968
48f24c4d 5969 put_task_struct(p);
1da177e4
LT
5970}
5971
5972/* release_task() removes task from tasklist, so we won't find dead tasks. */
5973static void migrate_dead_tasks(unsigned int dead_cpu)
5974{
70b97a7f 5975 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5976 struct task_struct *next;
48f24c4d 5977
dd41f596
IM
5978 for ( ; ; ) {
5979 if (!rq->nr_running)
5980 break;
a8e504d2 5981 update_rq_clock(rq);
ff95f3df 5982 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5983 if (!next)
5984 break;
5985 migrate_dead(dead_cpu, next);
e692ab53 5986
1da177e4
LT
5987 }
5988}
5989#endif /* CONFIG_HOTPLUG_CPU */
5990
e692ab53
NP
5991#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5992
5993static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5994 {
5995 .procname = "sched_domain",
c57baf1e 5996 .mode = 0555,
e0361851 5997 },
38605cae 5998 {0, },
e692ab53
NP
5999};
6000
6001static struct ctl_table sd_ctl_root[] = {
e0361851 6002 {
c57baf1e 6003 .ctl_name = CTL_KERN,
e0361851 6004 .procname = "kernel",
c57baf1e 6005 .mode = 0555,
e0361851
AD
6006 .child = sd_ctl_dir,
6007 },
38605cae 6008 {0, },
e692ab53
NP
6009};
6010
6011static struct ctl_table *sd_alloc_ctl_entry(int n)
6012{
6013 struct ctl_table *entry =
5cf9f062 6014 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6015
e692ab53
NP
6016 return entry;
6017}
6018
6382bc90
MM
6019static void sd_free_ctl_entry(struct ctl_table **tablep)
6020{
cd790076 6021 struct ctl_table *entry;
6382bc90 6022
cd790076
MM
6023 /*
6024 * In the intermediate directories, both the child directory and
6025 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6026 * will always be set. In the lowest directory the names are
cd790076
MM
6027 * static strings and all have proc handlers.
6028 */
6029 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6030 if (entry->child)
6031 sd_free_ctl_entry(&entry->child);
cd790076
MM
6032 if (entry->proc_handler == NULL)
6033 kfree(entry->procname);
6034 }
6382bc90
MM
6035
6036 kfree(*tablep);
6037 *tablep = NULL;
6038}
6039
e692ab53 6040static void
e0361851 6041set_table_entry(struct ctl_table *entry,
e692ab53
NP
6042 const char *procname, void *data, int maxlen,
6043 mode_t mode, proc_handler *proc_handler)
6044{
e692ab53
NP
6045 entry->procname = procname;
6046 entry->data = data;
6047 entry->maxlen = maxlen;
6048 entry->mode = mode;
6049 entry->proc_handler = proc_handler;
6050}
6051
6052static struct ctl_table *
6053sd_alloc_ctl_domain_table(struct sched_domain *sd)
6054{
ace8b3d6 6055 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6056
ad1cdc1d
MM
6057 if (table == NULL)
6058 return NULL;
6059
e0361851 6060 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6061 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6062 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6063 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6064 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6065 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6066 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6067 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6068 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6069 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6070 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6071 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6072 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6073 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6074 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6075 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6076 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6077 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6078 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6079 &sd->cache_nice_tries,
6080 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6081 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6082 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6083 /* &table[11] is terminator */
e692ab53
NP
6084
6085 return table;
6086}
6087
9a4e7159 6088static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6089{
6090 struct ctl_table *entry, *table;
6091 struct sched_domain *sd;
6092 int domain_num = 0, i;
6093 char buf[32];
6094
6095 for_each_domain(cpu, sd)
6096 domain_num++;
6097 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6098 if (table == NULL)
6099 return NULL;
e692ab53
NP
6100
6101 i = 0;
6102 for_each_domain(cpu, sd) {
6103 snprintf(buf, 32, "domain%d", i);
e692ab53 6104 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6105 entry->mode = 0555;
e692ab53
NP
6106 entry->child = sd_alloc_ctl_domain_table(sd);
6107 entry++;
6108 i++;
6109 }
6110 return table;
6111}
6112
6113static struct ctl_table_header *sd_sysctl_header;
6382bc90 6114static void register_sched_domain_sysctl(void)
e692ab53
NP
6115{
6116 int i, cpu_num = num_online_cpus();
6117 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6118 char buf[32];
6119
7378547f
MM
6120 WARN_ON(sd_ctl_dir[0].child);
6121 sd_ctl_dir[0].child = entry;
6122
ad1cdc1d
MM
6123 if (entry == NULL)
6124 return;
6125
97b6ea7b 6126 for_each_online_cpu(i) {
e692ab53 6127 snprintf(buf, 32, "cpu%d", i);
e692ab53 6128 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6129 entry->mode = 0555;
e692ab53 6130 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6131 entry++;
e692ab53 6132 }
7378547f
MM
6133
6134 WARN_ON(sd_sysctl_header);
e692ab53
NP
6135 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6136}
6382bc90 6137
7378547f 6138/* may be called multiple times per register */
6382bc90
MM
6139static void unregister_sched_domain_sysctl(void)
6140{
7378547f
MM
6141 if (sd_sysctl_header)
6142 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6143 sd_sysctl_header = NULL;
7378547f
MM
6144 if (sd_ctl_dir[0].child)
6145 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6146}
e692ab53 6147#else
6382bc90
MM
6148static void register_sched_domain_sysctl(void)
6149{
6150}
6151static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6152{
6153}
6154#endif
6155
1f11eb6a
GH
6156static void set_rq_online(struct rq *rq)
6157{
6158 if (!rq->online) {
6159 const struct sched_class *class;
6160
6161 cpu_set(rq->cpu, rq->rd->online);
6162 rq->online = 1;
6163
6164 for_each_class(class) {
6165 if (class->rq_online)
6166 class->rq_online(rq);
6167 }
6168 }
6169}
6170
6171static void set_rq_offline(struct rq *rq)
6172{
6173 if (rq->online) {
6174 const struct sched_class *class;
6175
6176 for_each_class(class) {
6177 if (class->rq_offline)
6178 class->rq_offline(rq);
6179 }
6180
6181 cpu_clear(rq->cpu, rq->rd->online);
6182 rq->online = 0;
6183 }
6184}
6185
1da177e4
LT
6186/*
6187 * migration_call - callback that gets triggered when a CPU is added.
6188 * Here we can start up the necessary migration thread for the new CPU.
6189 */
48f24c4d
IM
6190static int __cpuinit
6191migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6192{
1da177e4 6193 struct task_struct *p;
48f24c4d 6194 int cpu = (long)hcpu;
1da177e4 6195 unsigned long flags;
70b97a7f 6196 struct rq *rq;
1da177e4
LT
6197
6198 switch (action) {
5be9361c 6199
1da177e4 6200 case CPU_UP_PREPARE:
8bb78442 6201 case CPU_UP_PREPARE_FROZEN:
dd41f596 6202 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6203 if (IS_ERR(p))
6204 return NOTIFY_BAD;
1da177e4
LT
6205 kthread_bind(p, cpu);
6206 /* Must be high prio: stop_machine expects to yield to it. */
6207 rq = task_rq_lock(p, &flags);
dd41f596 6208 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6209 task_rq_unlock(rq, &flags);
6210 cpu_rq(cpu)->migration_thread = p;
6211 break;
48f24c4d 6212
1da177e4 6213 case CPU_ONLINE:
8bb78442 6214 case CPU_ONLINE_FROZEN:
3a4fa0a2 6215 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6216 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6217
6218 /* Update our root-domain */
6219 rq = cpu_rq(cpu);
6220 spin_lock_irqsave(&rq->lock, flags);
6221 if (rq->rd) {
6222 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6223
6224 set_rq_online(rq);
1f94ef59
GH
6225 }
6226 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6227 break;
48f24c4d 6228
1da177e4
LT
6229#ifdef CONFIG_HOTPLUG_CPU
6230 case CPU_UP_CANCELED:
8bb78442 6231 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6232 if (!cpu_rq(cpu)->migration_thread)
6233 break;
41a2d6cf 6234 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6235 kthread_bind(cpu_rq(cpu)->migration_thread,
6236 any_online_cpu(cpu_online_map));
1da177e4
LT
6237 kthread_stop(cpu_rq(cpu)->migration_thread);
6238 cpu_rq(cpu)->migration_thread = NULL;
6239 break;
48f24c4d 6240
1da177e4 6241 case CPU_DEAD:
8bb78442 6242 case CPU_DEAD_FROZEN:
470fd646 6243 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6244 migrate_live_tasks(cpu);
6245 rq = cpu_rq(cpu);
6246 kthread_stop(rq->migration_thread);
6247 rq->migration_thread = NULL;
6248 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6249 spin_lock_irq(&rq->lock);
a8e504d2 6250 update_rq_clock(rq);
2e1cb74a 6251 deactivate_task(rq, rq->idle, 0);
1da177e4 6252 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6253 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6254 rq->idle->sched_class = &idle_sched_class;
1da177e4 6255 migrate_dead_tasks(cpu);
d2da272a 6256 spin_unlock_irq(&rq->lock);
470fd646 6257 cpuset_unlock();
1da177e4
LT
6258 migrate_nr_uninterruptible(rq);
6259 BUG_ON(rq->nr_running != 0);
6260
41a2d6cf
IM
6261 /*
6262 * No need to migrate the tasks: it was best-effort if
6263 * they didn't take sched_hotcpu_mutex. Just wake up
6264 * the requestors.
6265 */
1da177e4
LT
6266 spin_lock_irq(&rq->lock);
6267 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6268 struct migration_req *req;
6269
1da177e4 6270 req = list_entry(rq->migration_queue.next,
70b97a7f 6271 struct migration_req, list);
1da177e4
LT
6272 list_del_init(&req->list);
6273 complete(&req->done);
6274 }
6275 spin_unlock_irq(&rq->lock);
6276 break;
57d885fe 6277
08f503b0
GH
6278 case CPU_DYING:
6279 case CPU_DYING_FROZEN:
57d885fe
GH
6280 /* Update our root-domain */
6281 rq = cpu_rq(cpu);
6282 spin_lock_irqsave(&rq->lock, flags);
6283 if (rq->rd) {
6284 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6285 set_rq_offline(rq);
57d885fe
GH
6286 }
6287 spin_unlock_irqrestore(&rq->lock, flags);
6288 break;
1da177e4
LT
6289#endif
6290 }
6291 return NOTIFY_OK;
6292}
6293
6294/* Register at highest priority so that task migration (migrate_all_tasks)
6295 * happens before everything else.
6296 */
26c2143b 6297static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6298 .notifier_call = migration_call,
6299 .priority = 10
6300};
6301
e6fe6649 6302void __init migration_init(void)
1da177e4
LT
6303{
6304 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6305 int err;
48f24c4d
IM
6306
6307 /* Start one for the boot CPU: */
07dccf33
AM
6308 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6309 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6310 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6311 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6312}
6313#endif
6314
6315#ifdef CONFIG_SMP
476f3534 6316
3e9830dc 6317#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6318
099f98c8
GS
6319static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6320{
6321 switch (lvl) {
6322 case SD_LV_NONE:
6323 return "NONE";
6324 case SD_LV_SIBLING:
6325 return "SIBLING";
6326 case SD_LV_MC:
6327 return "MC";
6328 case SD_LV_CPU:
6329 return "CPU";
6330 case SD_LV_NODE:
6331 return "NODE";
6332 case SD_LV_ALLNODES:
6333 return "ALLNODES";
6334 case SD_LV_MAX:
6335 return "MAX";
6336
6337 }
6338 return "MAX";
6339}
6340
7c16ec58
MT
6341static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6342 cpumask_t *groupmask)
1da177e4 6343{
4dcf6aff 6344 struct sched_group *group = sd->groups;
434d53b0 6345 char str[256];
1da177e4 6346
434d53b0 6347 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6348 cpus_clear(*groupmask);
4dcf6aff
IM
6349
6350 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6351
6352 if (!(sd->flags & SD_LOAD_BALANCE)) {
6353 printk("does not load-balance\n");
6354 if (sd->parent)
6355 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6356 " has parent");
6357 return -1;
41c7ce9a
NP
6358 }
6359
099f98c8
GS
6360 printk(KERN_CONT "span %s level %s\n",
6361 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6362
6363 if (!cpu_isset(cpu, sd->span)) {
6364 printk(KERN_ERR "ERROR: domain->span does not contain "
6365 "CPU%d\n", cpu);
6366 }
6367 if (!cpu_isset(cpu, group->cpumask)) {
6368 printk(KERN_ERR "ERROR: domain->groups does not contain"
6369 " CPU%d\n", cpu);
6370 }
1da177e4 6371
4dcf6aff 6372 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6373 do {
4dcf6aff
IM
6374 if (!group) {
6375 printk("\n");
6376 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6377 break;
6378 }
6379
4dcf6aff
IM
6380 if (!group->__cpu_power) {
6381 printk(KERN_CONT "\n");
6382 printk(KERN_ERR "ERROR: domain->cpu_power not "
6383 "set\n");
6384 break;
6385 }
1da177e4 6386
4dcf6aff
IM
6387 if (!cpus_weight(group->cpumask)) {
6388 printk(KERN_CONT "\n");
6389 printk(KERN_ERR "ERROR: empty group\n");
6390 break;
6391 }
1da177e4 6392
7c16ec58 6393 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6394 printk(KERN_CONT "\n");
6395 printk(KERN_ERR "ERROR: repeated CPUs\n");
6396 break;
6397 }
1da177e4 6398
7c16ec58 6399 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6400
434d53b0 6401 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6402 printk(KERN_CONT " %s", str);
1da177e4 6403
4dcf6aff
IM
6404 group = group->next;
6405 } while (group != sd->groups);
6406 printk(KERN_CONT "\n");
1da177e4 6407
7c16ec58 6408 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6409 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6410
7c16ec58 6411 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6412 printk(KERN_ERR "ERROR: parent span is not a superset "
6413 "of domain->span\n");
6414 return 0;
6415}
1da177e4 6416
4dcf6aff
IM
6417static void sched_domain_debug(struct sched_domain *sd, int cpu)
6418{
7c16ec58 6419 cpumask_t *groupmask;
4dcf6aff 6420 int level = 0;
1da177e4 6421
4dcf6aff
IM
6422 if (!sd) {
6423 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6424 return;
6425 }
1da177e4 6426
4dcf6aff
IM
6427 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6428
7c16ec58
MT
6429 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6430 if (!groupmask) {
6431 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6432 return;
6433 }
6434
4dcf6aff 6435 for (;;) {
7c16ec58 6436 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6437 break;
1da177e4
LT
6438 level++;
6439 sd = sd->parent;
33859f7f 6440 if (!sd)
4dcf6aff
IM
6441 break;
6442 }
7c16ec58 6443 kfree(groupmask);
1da177e4 6444}
6d6bc0ad 6445#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6446# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6447#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6448
1a20ff27 6449static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6450{
6451 if (cpus_weight(sd->span) == 1)
6452 return 1;
6453
6454 /* Following flags need at least 2 groups */
6455 if (sd->flags & (SD_LOAD_BALANCE |
6456 SD_BALANCE_NEWIDLE |
6457 SD_BALANCE_FORK |
89c4710e
SS
6458 SD_BALANCE_EXEC |
6459 SD_SHARE_CPUPOWER |
6460 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6461 if (sd->groups != sd->groups->next)
6462 return 0;
6463 }
6464
6465 /* Following flags don't use groups */
6466 if (sd->flags & (SD_WAKE_IDLE |
6467 SD_WAKE_AFFINE |
6468 SD_WAKE_BALANCE))
6469 return 0;
6470
6471 return 1;
6472}
6473
48f24c4d
IM
6474static int
6475sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6476{
6477 unsigned long cflags = sd->flags, pflags = parent->flags;
6478
6479 if (sd_degenerate(parent))
6480 return 1;
6481
6482 if (!cpus_equal(sd->span, parent->span))
6483 return 0;
6484
6485 /* Does parent contain flags not in child? */
6486 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6487 if (cflags & SD_WAKE_AFFINE)
6488 pflags &= ~SD_WAKE_BALANCE;
6489 /* Flags needing groups don't count if only 1 group in parent */
6490 if (parent->groups == parent->groups->next) {
6491 pflags &= ~(SD_LOAD_BALANCE |
6492 SD_BALANCE_NEWIDLE |
6493 SD_BALANCE_FORK |
89c4710e
SS
6494 SD_BALANCE_EXEC |
6495 SD_SHARE_CPUPOWER |
6496 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6497 }
6498 if (~cflags & pflags)
6499 return 0;
6500
6501 return 1;
6502}
6503
57d885fe
GH
6504static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6505{
6506 unsigned long flags;
57d885fe
GH
6507
6508 spin_lock_irqsave(&rq->lock, flags);
6509
6510 if (rq->rd) {
6511 struct root_domain *old_rd = rq->rd;
6512
1f11eb6a
GH
6513 if (cpu_isset(rq->cpu, old_rd->online))
6514 set_rq_offline(rq);
57d885fe 6515
dc938520 6516 cpu_clear(rq->cpu, old_rd->span);
dc938520 6517
57d885fe
GH
6518 if (atomic_dec_and_test(&old_rd->refcount))
6519 kfree(old_rd);
6520 }
6521
6522 atomic_inc(&rd->refcount);
6523 rq->rd = rd;
6524
dc938520 6525 cpu_set(rq->cpu, rd->span);
1f94ef59 6526 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6527 set_rq_online(rq);
57d885fe
GH
6528
6529 spin_unlock_irqrestore(&rq->lock, flags);
6530}
6531
dc938520 6532static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6533{
6534 memset(rd, 0, sizeof(*rd));
6535
dc938520
GH
6536 cpus_clear(rd->span);
6537 cpus_clear(rd->online);
6e0534f2
GH
6538
6539 cpupri_init(&rd->cpupri);
57d885fe
GH
6540}
6541
6542static void init_defrootdomain(void)
6543{
dc938520 6544 init_rootdomain(&def_root_domain);
57d885fe
GH
6545 atomic_set(&def_root_domain.refcount, 1);
6546}
6547
dc938520 6548static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6549{
6550 struct root_domain *rd;
6551
6552 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6553 if (!rd)
6554 return NULL;
6555
dc938520 6556 init_rootdomain(rd);
57d885fe
GH
6557
6558 return rd;
6559}
6560
1da177e4 6561/*
0eab9146 6562 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6563 * hold the hotplug lock.
6564 */
0eab9146
IM
6565static void
6566cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6567{
70b97a7f 6568 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6569 struct sched_domain *tmp;
6570
6571 /* Remove the sched domains which do not contribute to scheduling. */
6572 for (tmp = sd; tmp; tmp = tmp->parent) {
6573 struct sched_domain *parent = tmp->parent;
6574 if (!parent)
6575 break;
1a848870 6576 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6577 tmp->parent = parent->parent;
1a848870
SS
6578 if (parent->parent)
6579 parent->parent->child = tmp;
6580 }
245af2c7
SS
6581 }
6582
1a848870 6583 if (sd && sd_degenerate(sd)) {
245af2c7 6584 sd = sd->parent;
1a848870
SS
6585 if (sd)
6586 sd->child = NULL;
6587 }
1da177e4
LT
6588
6589 sched_domain_debug(sd, cpu);
6590
57d885fe 6591 rq_attach_root(rq, rd);
674311d5 6592 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6593}
6594
6595/* cpus with isolated domains */
67af63a6 6596static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6597
6598/* Setup the mask of cpus configured for isolated domains */
6599static int __init isolated_cpu_setup(char *str)
6600{
6601 int ints[NR_CPUS], i;
6602
6603 str = get_options(str, ARRAY_SIZE(ints), ints);
6604 cpus_clear(cpu_isolated_map);
6605 for (i = 1; i <= ints[0]; i++)
6606 if (ints[i] < NR_CPUS)
6607 cpu_set(ints[i], cpu_isolated_map);
6608 return 1;
6609}
6610
8927f494 6611__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6612
6613/*
6711cab4
SS
6614 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6615 * to a function which identifies what group(along with sched group) a CPU
6616 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6617 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6618 *
6619 * init_sched_build_groups will build a circular linked list of the groups
6620 * covered by the given span, and will set each group's ->cpumask correctly,
6621 * and ->cpu_power to 0.
6622 */
a616058b 6623static void
7c16ec58 6624init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6625 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6626 struct sched_group **sg,
6627 cpumask_t *tmpmask),
6628 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6629{
6630 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6631 int i;
6632
7c16ec58
MT
6633 cpus_clear(*covered);
6634
6635 for_each_cpu_mask(i, *span) {
6711cab4 6636 struct sched_group *sg;
7c16ec58 6637 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6638 int j;
6639
7c16ec58 6640 if (cpu_isset(i, *covered))
1da177e4
LT
6641 continue;
6642
7c16ec58 6643 cpus_clear(sg->cpumask);
5517d86b 6644 sg->__cpu_power = 0;
1da177e4 6645
7c16ec58
MT
6646 for_each_cpu_mask(j, *span) {
6647 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6648 continue;
6649
7c16ec58 6650 cpu_set(j, *covered);
1da177e4
LT
6651 cpu_set(j, sg->cpumask);
6652 }
6653 if (!first)
6654 first = sg;
6655 if (last)
6656 last->next = sg;
6657 last = sg;
6658 }
6659 last->next = first;
6660}
6661
9c1cfda2 6662#define SD_NODES_PER_DOMAIN 16
1da177e4 6663
9c1cfda2 6664#ifdef CONFIG_NUMA
198e2f18 6665
9c1cfda2
JH
6666/**
6667 * find_next_best_node - find the next node to include in a sched_domain
6668 * @node: node whose sched_domain we're building
6669 * @used_nodes: nodes already in the sched_domain
6670 *
41a2d6cf 6671 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6672 * finds the closest node not already in the @used_nodes map.
6673 *
6674 * Should use nodemask_t.
6675 */
c5f59f08 6676static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6677{
6678 int i, n, val, min_val, best_node = 0;
6679
6680 min_val = INT_MAX;
6681
6682 for (i = 0; i < MAX_NUMNODES; i++) {
6683 /* Start at @node */
6684 n = (node + i) % MAX_NUMNODES;
6685
6686 if (!nr_cpus_node(n))
6687 continue;
6688
6689 /* Skip already used nodes */
c5f59f08 6690 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6691 continue;
6692
6693 /* Simple min distance search */
6694 val = node_distance(node, n);
6695
6696 if (val < min_val) {
6697 min_val = val;
6698 best_node = n;
6699 }
6700 }
6701
c5f59f08 6702 node_set(best_node, *used_nodes);
9c1cfda2
JH
6703 return best_node;
6704}
6705
6706/**
6707 * sched_domain_node_span - get a cpumask for a node's sched_domain
6708 * @node: node whose cpumask we're constructing
73486722 6709 * @span: resulting cpumask
9c1cfda2 6710 *
41a2d6cf 6711 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6712 * should be one that prevents unnecessary balancing, but also spreads tasks
6713 * out optimally.
6714 */
4bdbaad3 6715static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6716{
c5f59f08 6717 nodemask_t used_nodes;
c5f59f08 6718 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6719 int i;
9c1cfda2 6720
4bdbaad3 6721 cpus_clear(*span);
c5f59f08 6722 nodes_clear(used_nodes);
9c1cfda2 6723
4bdbaad3 6724 cpus_or(*span, *span, *nodemask);
c5f59f08 6725 node_set(node, used_nodes);
9c1cfda2
JH
6726
6727 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6728 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6729
c5f59f08 6730 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6731 cpus_or(*span, *span, *nodemask);
9c1cfda2 6732 }
9c1cfda2 6733}
6d6bc0ad 6734#endif /* CONFIG_NUMA */
9c1cfda2 6735
5c45bf27 6736int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6737
9c1cfda2 6738/*
48f24c4d 6739 * SMT sched-domains:
9c1cfda2 6740 */
1da177e4
LT
6741#ifdef CONFIG_SCHED_SMT
6742static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6743static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6744
41a2d6cf 6745static int
7c16ec58
MT
6746cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6747 cpumask_t *unused)
1da177e4 6748{
6711cab4
SS
6749 if (sg)
6750 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6751 return cpu;
6752}
6d6bc0ad 6753#endif /* CONFIG_SCHED_SMT */
1da177e4 6754
48f24c4d
IM
6755/*
6756 * multi-core sched-domains:
6757 */
1e9f28fa
SS
6758#ifdef CONFIG_SCHED_MC
6759static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6760static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6761#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6762
6763#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6764static int
7c16ec58
MT
6765cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6766 cpumask_t *mask)
1e9f28fa 6767{
6711cab4 6768 int group;
7c16ec58
MT
6769
6770 *mask = per_cpu(cpu_sibling_map, cpu);
6771 cpus_and(*mask, *mask, *cpu_map);
6772 group = first_cpu(*mask);
6711cab4
SS
6773 if (sg)
6774 *sg = &per_cpu(sched_group_core, group);
6775 return group;
1e9f28fa
SS
6776}
6777#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6778static int
7c16ec58
MT
6779cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6780 cpumask_t *unused)
1e9f28fa 6781{
6711cab4
SS
6782 if (sg)
6783 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6784 return cpu;
6785}
6786#endif
6787
1da177e4 6788static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6789static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6790
41a2d6cf 6791static int
7c16ec58
MT
6792cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6793 cpumask_t *mask)
1da177e4 6794{
6711cab4 6795 int group;
48f24c4d 6796#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6797 *mask = cpu_coregroup_map(cpu);
6798 cpus_and(*mask, *mask, *cpu_map);
6799 group = first_cpu(*mask);
1e9f28fa 6800#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6801 *mask = per_cpu(cpu_sibling_map, cpu);
6802 cpus_and(*mask, *mask, *cpu_map);
6803 group = first_cpu(*mask);
1da177e4 6804#else
6711cab4 6805 group = cpu;
1da177e4 6806#endif
6711cab4
SS
6807 if (sg)
6808 *sg = &per_cpu(sched_group_phys, group);
6809 return group;
1da177e4
LT
6810}
6811
6812#ifdef CONFIG_NUMA
1da177e4 6813/*
9c1cfda2
JH
6814 * The init_sched_build_groups can't handle what we want to do with node
6815 * groups, so roll our own. Now each node has its own list of groups which
6816 * gets dynamically allocated.
1da177e4 6817 */
9c1cfda2 6818static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6819static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6820
9c1cfda2 6821static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6822static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6823
6711cab4 6824static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6825 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6826{
6711cab4
SS
6827 int group;
6828
7c16ec58
MT
6829 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6830 cpus_and(*nodemask, *nodemask, *cpu_map);
6831 group = first_cpu(*nodemask);
6711cab4
SS
6832
6833 if (sg)
6834 *sg = &per_cpu(sched_group_allnodes, group);
6835 return group;
1da177e4 6836}
6711cab4 6837
08069033
SS
6838static void init_numa_sched_groups_power(struct sched_group *group_head)
6839{
6840 struct sched_group *sg = group_head;
6841 int j;
6842
6843 if (!sg)
6844 return;
3a5c359a
AK
6845 do {
6846 for_each_cpu_mask(j, sg->cpumask) {
6847 struct sched_domain *sd;
08069033 6848
3a5c359a
AK
6849 sd = &per_cpu(phys_domains, j);
6850 if (j != first_cpu(sd->groups->cpumask)) {
6851 /*
6852 * Only add "power" once for each
6853 * physical package.
6854 */
6855 continue;
6856 }
08069033 6857
3a5c359a
AK
6858 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6859 }
6860 sg = sg->next;
6861 } while (sg != group_head);
08069033 6862}
6d6bc0ad 6863#endif /* CONFIG_NUMA */
1da177e4 6864
a616058b 6865#ifdef CONFIG_NUMA
51888ca2 6866/* Free memory allocated for various sched_group structures */
7c16ec58 6867static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6868{
a616058b 6869 int cpu, i;
51888ca2
SV
6870
6871 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6872 struct sched_group **sched_group_nodes
6873 = sched_group_nodes_bycpu[cpu];
6874
51888ca2
SV
6875 if (!sched_group_nodes)
6876 continue;
6877
6878 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6879 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6880
7c16ec58
MT
6881 *nodemask = node_to_cpumask(i);
6882 cpus_and(*nodemask, *nodemask, *cpu_map);
6883 if (cpus_empty(*nodemask))
51888ca2
SV
6884 continue;
6885
6886 if (sg == NULL)
6887 continue;
6888 sg = sg->next;
6889next_sg:
6890 oldsg = sg;
6891 sg = sg->next;
6892 kfree(oldsg);
6893 if (oldsg != sched_group_nodes[i])
6894 goto next_sg;
6895 }
6896 kfree(sched_group_nodes);
6897 sched_group_nodes_bycpu[cpu] = NULL;
6898 }
51888ca2 6899}
6d6bc0ad 6900#else /* !CONFIG_NUMA */
7c16ec58 6901static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6902{
6903}
6d6bc0ad 6904#endif /* CONFIG_NUMA */
51888ca2 6905
89c4710e
SS
6906/*
6907 * Initialize sched groups cpu_power.
6908 *
6909 * cpu_power indicates the capacity of sched group, which is used while
6910 * distributing the load between different sched groups in a sched domain.
6911 * Typically cpu_power for all the groups in a sched domain will be same unless
6912 * there are asymmetries in the topology. If there are asymmetries, group
6913 * having more cpu_power will pickup more load compared to the group having
6914 * less cpu_power.
6915 *
6916 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6917 * the maximum number of tasks a group can handle in the presence of other idle
6918 * or lightly loaded groups in the same sched domain.
6919 */
6920static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6921{
6922 struct sched_domain *child;
6923 struct sched_group *group;
6924
6925 WARN_ON(!sd || !sd->groups);
6926
6927 if (cpu != first_cpu(sd->groups->cpumask))
6928 return;
6929
6930 child = sd->child;
6931
5517d86b
ED
6932 sd->groups->__cpu_power = 0;
6933
89c4710e
SS
6934 /*
6935 * For perf policy, if the groups in child domain share resources
6936 * (for example cores sharing some portions of the cache hierarchy
6937 * or SMT), then set this domain groups cpu_power such that each group
6938 * can handle only one task, when there are other idle groups in the
6939 * same sched domain.
6940 */
6941 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6942 (child->flags &
6943 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6944 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6945 return;
6946 }
6947
89c4710e
SS
6948 /*
6949 * add cpu_power of each child group to this groups cpu_power
6950 */
6951 group = child->groups;
6952 do {
5517d86b 6953 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6954 group = group->next;
6955 } while (group != child->groups);
6956}
6957
7c16ec58
MT
6958/*
6959 * Initializers for schedule domains
6960 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6961 */
6962
6963#define SD_INIT(sd, type) sd_init_##type(sd)
6964#define SD_INIT_FUNC(type) \
6965static noinline void sd_init_##type(struct sched_domain *sd) \
6966{ \
6967 memset(sd, 0, sizeof(*sd)); \
6968 *sd = SD_##type##_INIT; \
1d3504fc 6969 sd->level = SD_LV_##type; \
7c16ec58
MT
6970}
6971
6972SD_INIT_FUNC(CPU)
6973#ifdef CONFIG_NUMA
6974 SD_INIT_FUNC(ALLNODES)
6975 SD_INIT_FUNC(NODE)
6976#endif
6977#ifdef CONFIG_SCHED_SMT
6978 SD_INIT_FUNC(SIBLING)
6979#endif
6980#ifdef CONFIG_SCHED_MC
6981 SD_INIT_FUNC(MC)
6982#endif
6983
6984/*
6985 * To minimize stack usage kmalloc room for cpumasks and share the
6986 * space as the usage in build_sched_domains() dictates. Used only
6987 * if the amount of space is significant.
6988 */
6989struct allmasks {
6990 cpumask_t tmpmask; /* make this one first */
6991 union {
6992 cpumask_t nodemask;
6993 cpumask_t this_sibling_map;
6994 cpumask_t this_core_map;
6995 };
6996 cpumask_t send_covered;
6997
6998#ifdef CONFIG_NUMA
6999 cpumask_t domainspan;
7000 cpumask_t covered;
7001 cpumask_t notcovered;
7002#endif
7003};
7004
7005#if NR_CPUS > 128
7006#define SCHED_CPUMASK_ALLOC 1
7007#define SCHED_CPUMASK_FREE(v) kfree(v)
7008#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7009#else
7010#define SCHED_CPUMASK_ALLOC 0
7011#define SCHED_CPUMASK_FREE(v)
7012#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7013#endif
7014
7015#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7016 ((unsigned long)(a) + offsetof(struct allmasks, v))
7017
1d3504fc
HS
7018static int default_relax_domain_level = -1;
7019
7020static int __init setup_relax_domain_level(char *str)
7021{
30e0e178
LZ
7022 unsigned long val;
7023
7024 val = simple_strtoul(str, NULL, 0);
7025 if (val < SD_LV_MAX)
7026 default_relax_domain_level = val;
7027
1d3504fc
HS
7028 return 1;
7029}
7030__setup("relax_domain_level=", setup_relax_domain_level);
7031
7032static void set_domain_attribute(struct sched_domain *sd,
7033 struct sched_domain_attr *attr)
7034{
7035 int request;
7036
7037 if (!attr || attr->relax_domain_level < 0) {
7038 if (default_relax_domain_level < 0)
7039 return;
7040 else
7041 request = default_relax_domain_level;
7042 } else
7043 request = attr->relax_domain_level;
7044 if (request < sd->level) {
7045 /* turn off idle balance on this domain */
7046 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7047 } else {
7048 /* turn on idle balance on this domain */
7049 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7050 }
7051}
7052
1da177e4 7053/*
1a20ff27
DG
7054 * Build sched domains for a given set of cpus and attach the sched domains
7055 * to the individual cpus
1da177e4 7056 */
1d3504fc
HS
7057static int __build_sched_domains(const cpumask_t *cpu_map,
7058 struct sched_domain_attr *attr)
1da177e4
LT
7059{
7060 int i;
57d885fe 7061 struct root_domain *rd;
7c16ec58
MT
7062 SCHED_CPUMASK_DECLARE(allmasks);
7063 cpumask_t *tmpmask;
d1b55138
JH
7064#ifdef CONFIG_NUMA
7065 struct sched_group **sched_group_nodes = NULL;
6711cab4 7066 int sd_allnodes = 0;
d1b55138
JH
7067
7068 /*
7069 * Allocate the per-node list of sched groups
7070 */
5cf9f062 7071 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 7072 GFP_KERNEL);
d1b55138
JH
7073 if (!sched_group_nodes) {
7074 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7075 return -ENOMEM;
d1b55138 7076 }
d1b55138 7077#endif
1da177e4 7078
dc938520 7079 rd = alloc_rootdomain();
57d885fe
GH
7080 if (!rd) {
7081 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7082#ifdef CONFIG_NUMA
7083 kfree(sched_group_nodes);
7084#endif
57d885fe
GH
7085 return -ENOMEM;
7086 }
7087
7c16ec58
MT
7088#if SCHED_CPUMASK_ALLOC
7089 /* get space for all scratch cpumask variables */
7090 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7091 if (!allmasks) {
7092 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7093 kfree(rd);
7094#ifdef CONFIG_NUMA
7095 kfree(sched_group_nodes);
7096#endif
7097 return -ENOMEM;
7098 }
7099#endif
7100 tmpmask = (cpumask_t *)allmasks;
7101
7102
7103#ifdef CONFIG_NUMA
7104 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7105#endif
7106
1da177e4 7107 /*
1a20ff27 7108 * Set up domains for cpus specified by the cpu_map.
1da177e4 7109 */
1a20ff27 7110 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7111 struct sched_domain *sd = NULL, *p;
7c16ec58 7112 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7113
7c16ec58
MT
7114 *nodemask = node_to_cpumask(cpu_to_node(i));
7115 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7116
7117#ifdef CONFIG_NUMA
dd41f596 7118 if (cpus_weight(*cpu_map) >
7c16ec58 7119 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7120 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7121 SD_INIT(sd, ALLNODES);
1d3504fc 7122 set_domain_attribute(sd, attr);
9c1cfda2 7123 sd->span = *cpu_map;
7c16ec58 7124 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7125 p = sd;
6711cab4 7126 sd_allnodes = 1;
9c1cfda2
JH
7127 } else
7128 p = NULL;
7129
1da177e4 7130 sd = &per_cpu(node_domains, i);
7c16ec58 7131 SD_INIT(sd, NODE);
1d3504fc 7132 set_domain_attribute(sd, attr);
4bdbaad3 7133 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7134 sd->parent = p;
1a848870
SS
7135 if (p)
7136 p->child = sd;
9c1cfda2 7137 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7138#endif
7139
7140 p = sd;
7141 sd = &per_cpu(phys_domains, i);
7c16ec58 7142 SD_INIT(sd, CPU);
1d3504fc 7143 set_domain_attribute(sd, attr);
7c16ec58 7144 sd->span = *nodemask;
1da177e4 7145 sd->parent = p;
1a848870
SS
7146 if (p)
7147 p->child = sd;
7c16ec58 7148 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7149
1e9f28fa
SS
7150#ifdef CONFIG_SCHED_MC
7151 p = sd;
7152 sd = &per_cpu(core_domains, i);
7c16ec58 7153 SD_INIT(sd, MC);
1d3504fc 7154 set_domain_attribute(sd, attr);
1e9f28fa
SS
7155 sd->span = cpu_coregroup_map(i);
7156 cpus_and(sd->span, sd->span, *cpu_map);
7157 sd->parent = p;
1a848870 7158 p->child = sd;
7c16ec58 7159 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7160#endif
7161
1da177e4
LT
7162#ifdef CONFIG_SCHED_SMT
7163 p = sd;
7164 sd = &per_cpu(cpu_domains, i);
7c16ec58 7165 SD_INIT(sd, SIBLING);
1d3504fc 7166 set_domain_attribute(sd, attr);
d5a7430d 7167 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7168 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7169 sd->parent = p;
1a848870 7170 p->child = sd;
7c16ec58 7171 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7172#endif
7173 }
7174
7175#ifdef CONFIG_SCHED_SMT
7176 /* Set up CPU (sibling) groups */
9c1cfda2 7177 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7178 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7179 SCHED_CPUMASK_VAR(send_covered, allmasks);
7180
7181 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7182 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7183 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7184 continue;
7185
dd41f596 7186 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7187 &cpu_to_cpu_group,
7188 send_covered, tmpmask);
1da177e4
LT
7189 }
7190#endif
7191
1e9f28fa
SS
7192#ifdef CONFIG_SCHED_MC
7193 /* Set up multi-core groups */
7194 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7195 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7196 SCHED_CPUMASK_VAR(send_covered, allmasks);
7197
7198 *this_core_map = cpu_coregroup_map(i);
7199 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7200 if (i != first_cpu(*this_core_map))
1e9f28fa 7201 continue;
7c16ec58 7202
dd41f596 7203 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7204 &cpu_to_core_group,
7205 send_covered, tmpmask);
1e9f28fa
SS
7206 }
7207#endif
7208
1da177e4
LT
7209 /* Set up physical groups */
7210 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7211 SCHED_CPUMASK_VAR(nodemask, allmasks);
7212 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7213
7c16ec58
MT
7214 *nodemask = node_to_cpumask(i);
7215 cpus_and(*nodemask, *nodemask, *cpu_map);
7216 if (cpus_empty(*nodemask))
1da177e4
LT
7217 continue;
7218
7c16ec58
MT
7219 init_sched_build_groups(nodemask, cpu_map,
7220 &cpu_to_phys_group,
7221 send_covered, tmpmask);
1da177e4
LT
7222 }
7223
7224#ifdef CONFIG_NUMA
7225 /* Set up node groups */
7c16ec58
MT
7226 if (sd_allnodes) {
7227 SCHED_CPUMASK_VAR(send_covered, allmasks);
7228
7229 init_sched_build_groups(cpu_map, cpu_map,
7230 &cpu_to_allnodes_group,
7231 send_covered, tmpmask);
7232 }
9c1cfda2
JH
7233
7234 for (i = 0; i < MAX_NUMNODES; i++) {
7235 /* Set up node groups */
7236 struct sched_group *sg, *prev;
7c16ec58
MT
7237 SCHED_CPUMASK_VAR(nodemask, allmasks);
7238 SCHED_CPUMASK_VAR(domainspan, allmasks);
7239 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7240 int j;
7241
7c16ec58
MT
7242 *nodemask = node_to_cpumask(i);
7243 cpus_clear(*covered);
7244
7245 cpus_and(*nodemask, *nodemask, *cpu_map);
7246 if (cpus_empty(*nodemask)) {
d1b55138 7247 sched_group_nodes[i] = NULL;
9c1cfda2 7248 continue;
d1b55138 7249 }
9c1cfda2 7250
4bdbaad3 7251 sched_domain_node_span(i, domainspan);
7c16ec58 7252 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7253
15f0b676 7254 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7255 if (!sg) {
7256 printk(KERN_WARNING "Can not alloc domain group for "
7257 "node %d\n", i);
7258 goto error;
7259 }
9c1cfda2 7260 sched_group_nodes[i] = sg;
7c16ec58 7261 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7262 struct sched_domain *sd;
9761eea8 7263
9c1cfda2
JH
7264 sd = &per_cpu(node_domains, j);
7265 sd->groups = sg;
9c1cfda2 7266 }
5517d86b 7267 sg->__cpu_power = 0;
7c16ec58 7268 sg->cpumask = *nodemask;
51888ca2 7269 sg->next = sg;
7c16ec58 7270 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7271 prev = sg;
7272
7273 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7274 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7275 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7276 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7277
7c16ec58
MT
7278 cpus_complement(*notcovered, *covered);
7279 cpus_and(*tmpmask, *notcovered, *cpu_map);
7280 cpus_and(*tmpmask, *tmpmask, *domainspan);
7281 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7282 break;
7283
7c16ec58
MT
7284 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7285 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7286 continue;
7287
15f0b676
SV
7288 sg = kmalloc_node(sizeof(struct sched_group),
7289 GFP_KERNEL, i);
9c1cfda2
JH
7290 if (!sg) {
7291 printk(KERN_WARNING
7292 "Can not alloc domain group for node %d\n", j);
51888ca2 7293 goto error;
9c1cfda2 7294 }
5517d86b 7295 sg->__cpu_power = 0;
7c16ec58 7296 sg->cpumask = *tmpmask;
51888ca2 7297 sg->next = prev->next;
7c16ec58 7298 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7299 prev->next = sg;
7300 prev = sg;
7301 }
9c1cfda2 7302 }
1da177e4
LT
7303#endif
7304
7305 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7306#ifdef CONFIG_SCHED_SMT
1a20ff27 7307 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7308 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7309
89c4710e 7310 init_sched_groups_power(i, sd);
5c45bf27 7311 }
1da177e4 7312#endif
1e9f28fa 7313#ifdef CONFIG_SCHED_MC
5c45bf27 7314 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7315 struct sched_domain *sd = &per_cpu(core_domains, i);
7316
89c4710e 7317 init_sched_groups_power(i, sd);
5c45bf27
SS
7318 }
7319#endif
1e9f28fa 7320
5c45bf27 7321 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7322 struct sched_domain *sd = &per_cpu(phys_domains, i);
7323
89c4710e 7324 init_sched_groups_power(i, sd);
1da177e4
LT
7325 }
7326
9c1cfda2 7327#ifdef CONFIG_NUMA
08069033
SS
7328 for (i = 0; i < MAX_NUMNODES; i++)
7329 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7330
6711cab4
SS
7331 if (sd_allnodes) {
7332 struct sched_group *sg;
f712c0c7 7333
7c16ec58
MT
7334 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7335 tmpmask);
f712c0c7
SS
7336 init_numa_sched_groups_power(sg);
7337 }
9c1cfda2
JH
7338#endif
7339
1da177e4 7340 /* Attach the domains */
1a20ff27 7341 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7342 struct sched_domain *sd;
7343#ifdef CONFIG_SCHED_SMT
7344 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7345#elif defined(CONFIG_SCHED_MC)
7346 sd = &per_cpu(core_domains, i);
1da177e4
LT
7347#else
7348 sd = &per_cpu(phys_domains, i);
7349#endif
57d885fe 7350 cpu_attach_domain(sd, rd, i);
1da177e4 7351 }
51888ca2 7352
7c16ec58 7353 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7354 return 0;
7355
a616058b 7356#ifdef CONFIG_NUMA
51888ca2 7357error:
7c16ec58
MT
7358 free_sched_groups(cpu_map, tmpmask);
7359 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7360 return -ENOMEM;
a616058b 7361#endif
1da177e4 7362}
029190c5 7363
1d3504fc
HS
7364static int build_sched_domains(const cpumask_t *cpu_map)
7365{
7366 return __build_sched_domains(cpu_map, NULL);
7367}
7368
029190c5
PJ
7369static cpumask_t *doms_cur; /* current sched domains */
7370static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7371static struct sched_domain_attr *dattr_cur;
7372 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7373
7374/*
7375 * Special case: If a kmalloc of a doms_cur partition (array of
7376 * cpumask_t) fails, then fallback to a single sched domain,
7377 * as determined by the single cpumask_t fallback_doms.
7378 */
7379static cpumask_t fallback_doms;
7380
22e52b07
HC
7381void __attribute__((weak)) arch_update_cpu_topology(void)
7382{
7383}
7384
5c8e1ed1
MK
7385/*
7386 * Free current domain masks.
7387 * Called after all cpus are attached to NULL domain.
7388 */
7389static void free_sched_domains(void)
7390{
7391 ndoms_cur = 0;
7392 if (doms_cur != &fallback_doms)
7393 kfree(doms_cur);
7394 doms_cur = &fallback_doms;
7395}
7396
1a20ff27 7397/*
41a2d6cf 7398 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7399 * For now this just excludes isolated cpus, but could be used to
7400 * exclude other special cases in the future.
1a20ff27 7401 */
51888ca2 7402static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7403{
7378547f
MM
7404 int err;
7405
22e52b07 7406 arch_update_cpu_topology();
029190c5
PJ
7407 ndoms_cur = 1;
7408 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7409 if (!doms_cur)
7410 doms_cur = &fallback_doms;
7411 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7412 dattr_cur = NULL;
7378547f 7413 err = build_sched_domains(doms_cur);
6382bc90 7414 register_sched_domain_sysctl();
7378547f
MM
7415
7416 return err;
1a20ff27
DG
7417}
7418
7c16ec58
MT
7419static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7420 cpumask_t *tmpmask)
1da177e4 7421{
7c16ec58 7422 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7423}
1da177e4 7424
1a20ff27
DG
7425/*
7426 * Detach sched domains from a group of cpus specified in cpu_map
7427 * These cpus will now be attached to the NULL domain
7428 */
858119e1 7429static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7430{
7c16ec58 7431 cpumask_t tmpmask;
1a20ff27
DG
7432 int i;
7433
6382bc90
MM
7434 unregister_sched_domain_sysctl();
7435
1a20ff27 7436 for_each_cpu_mask(i, *cpu_map)
57d885fe 7437 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7438 synchronize_sched();
7c16ec58 7439 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7440}
7441
1d3504fc
HS
7442/* handle null as "default" */
7443static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7444 struct sched_domain_attr *new, int idx_new)
7445{
7446 struct sched_domain_attr tmp;
7447
7448 /* fast path */
7449 if (!new && !cur)
7450 return 1;
7451
7452 tmp = SD_ATTR_INIT;
7453 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7454 new ? (new + idx_new) : &tmp,
7455 sizeof(struct sched_domain_attr));
7456}
7457
029190c5
PJ
7458/*
7459 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7460 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7461 * doms_new[] to the current sched domain partitioning, doms_cur[].
7462 * It destroys each deleted domain and builds each new domain.
7463 *
7464 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7465 * The masks don't intersect (don't overlap.) We should setup one
7466 * sched domain for each mask. CPUs not in any of the cpumasks will
7467 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7468 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7469 * it as it is.
7470 *
41a2d6cf
IM
7471 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7472 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7473 * failed the kmalloc call, then it can pass in doms_new == NULL,
7474 * and partition_sched_domains() will fallback to the single partition
7475 * 'fallback_doms'.
7476 *
7477 * Call with hotplug lock held
7478 */
1d3504fc
HS
7479void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7480 struct sched_domain_attr *dattr_new)
029190c5
PJ
7481{
7482 int i, j;
7483
712555ee 7484 mutex_lock(&sched_domains_mutex);
a1835615 7485
7378547f
MM
7486 /* always unregister in case we don't destroy any domains */
7487 unregister_sched_domain_sysctl();
7488
029190c5
PJ
7489 if (doms_new == NULL) {
7490 ndoms_new = 1;
7491 doms_new = &fallback_doms;
7492 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7493 dattr_new = NULL;
029190c5
PJ
7494 }
7495
7496 /* Destroy deleted domains */
7497 for (i = 0; i < ndoms_cur; i++) {
7498 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7499 if (cpus_equal(doms_cur[i], doms_new[j])
7500 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7501 goto match1;
7502 }
7503 /* no match - a current sched domain not in new doms_new[] */
7504 detach_destroy_domains(doms_cur + i);
7505match1:
7506 ;
7507 }
7508
7509 /* Build new domains */
7510 for (i = 0; i < ndoms_new; i++) {
7511 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7512 if (cpus_equal(doms_new[i], doms_cur[j])
7513 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7514 goto match2;
7515 }
7516 /* no match - add a new doms_new */
1d3504fc
HS
7517 __build_sched_domains(doms_new + i,
7518 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7519match2:
7520 ;
7521 }
7522
7523 /* Remember the new sched domains */
7524 if (doms_cur != &fallback_doms)
7525 kfree(doms_cur);
1d3504fc 7526 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7527 doms_cur = doms_new;
1d3504fc 7528 dattr_cur = dattr_new;
029190c5 7529 ndoms_cur = ndoms_new;
7378547f
MM
7530
7531 register_sched_domain_sysctl();
a1835615 7532
712555ee 7533 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7534}
7535
5c45bf27 7536#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7537int arch_reinit_sched_domains(void)
5c45bf27
SS
7538{
7539 int err;
7540
95402b38 7541 get_online_cpus();
712555ee 7542 mutex_lock(&sched_domains_mutex);
5c45bf27 7543 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7544 free_sched_domains();
5c45bf27 7545 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7546 mutex_unlock(&sched_domains_mutex);
95402b38 7547 put_online_cpus();
5c45bf27
SS
7548
7549 return err;
7550}
7551
7552static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7553{
7554 int ret;
7555
7556 if (buf[0] != '0' && buf[0] != '1')
7557 return -EINVAL;
7558
7559 if (smt)
7560 sched_smt_power_savings = (buf[0] == '1');
7561 else
7562 sched_mc_power_savings = (buf[0] == '1');
7563
7564 ret = arch_reinit_sched_domains();
7565
7566 return ret ? ret : count;
7567}
7568
5c45bf27
SS
7569#ifdef CONFIG_SCHED_MC
7570static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7571{
7572 return sprintf(page, "%u\n", sched_mc_power_savings);
7573}
48f24c4d
IM
7574static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7575 const char *buf, size_t count)
5c45bf27
SS
7576{
7577 return sched_power_savings_store(buf, count, 0);
7578}
6707de00
AB
7579static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7580 sched_mc_power_savings_store);
5c45bf27
SS
7581#endif
7582
7583#ifdef CONFIG_SCHED_SMT
7584static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7585{
7586 return sprintf(page, "%u\n", sched_smt_power_savings);
7587}
48f24c4d
IM
7588static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7589 const char *buf, size_t count)
5c45bf27
SS
7590{
7591 return sched_power_savings_store(buf, count, 1);
7592}
6707de00
AB
7593static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7594 sched_smt_power_savings_store);
7595#endif
7596
7597int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7598{
7599 int err = 0;
7600
7601#ifdef CONFIG_SCHED_SMT
7602 if (smt_capable())
7603 err = sysfs_create_file(&cls->kset.kobj,
7604 &attr_sched_smt_power_savings.attr);
7605#endif
7606#ifdef CONFIG_SCHED_MC
7607 if (!err && mc_capable())
7608 err = sysfs_create_file(&cls->kset.kobj,
7609 &attr_sched_mc_power_savings.attr);
7610#endif
7611 return err;
7612}
6d6bc0ad 7613#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7614
1da177e4 7615/*
41a2d6cf 7616 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7617 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7618 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7619 * which will prevent rebalancing while the sched domains are recalculated.
7620 */
7621static int update_sched_domains(struct notifier_block *nfb,
7622 unsigned long action, void *hcpu)
7623{
7def2be1
PZ
7624 int cpu = (int)(long)hcpu;
7625
1da177e4 7626 switch (action) {
1da177e4 7627 case CPU_DOWN_PREPARE:
8bb78442 7628 case CPU_DOWN_PREPARE_FROZEN:
7def2be1
PZ
7629 disable_runtime(cpu_rq(cpu));
7630 /* fall-through */
7631 case CPU_UP_PREPARE:
7632 case CPU_UP_PREPARE_FROZEN:
1a20ff27 7633 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7634 free_sched_domains();
1da177e4
LT
7635 return NOTIFY_OK;
7636
7def2be1 7637
1da177e4 7638 case CPU_DOWN_FAILED:
8bb78442 7639 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7640 case CPU_ONLINE:
8bb78442 7641 case CPU_ONLINE_FROZEN:
7def2be1
PZ
7642 enable_runtime(cpu_rq(cpu));
7643 /* fall-through */
7644 case CPU_UP_CANCELED:
7645 case CPU_UP_CANCELED_FROZEN:
1da177e4 7646 case CPU_DEAD:
8bb78442 7647 case CPU_DEAD_FROZEN:
1da177e4
LT
7648 /*
7649 * Fall through and re-initialise the domains.
7650 */
7651 break;
7652 default:
7653 return NOTIFY_DONE;
7654 }
7655
5c8e1ed1
MK
7656#ifndef CONFIG_CPUSETS
7657 /*
7658 * Create default domain partitioning if cpusets are disabled.
7659 * Otherwise we let cpusets rebuild the domains based on the
7660 * current setup.
7661 */
7662
1da177e4 7663 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7664 arch_init_sched_domains(&cpu_online_map);
5c8e1ed1 7665#endif
1da177e4
LT
7666
7667 return NOTIFY_OK;
7668}
1da177e4
LT
7669
7670void __init sched_init_smp(void)
7671{
5c1e1767
NP
7672 cpumask_t non_isolated_cpus;
7673
434d53b0
MT
7674#if defined(CONFIG_NUMA)
7675 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7676 GFP_KERNEL);
7677 BUG_ON(sched_group_nodes_bycpu == NULL);
7678#endif
95402b38 7679 get_online_cpus();
712555ee 7680 mutex_lock(&sched_domains_mutex);
1a20ff27 7681 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7682 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7683 if (cpus_empty(non_isolated_cpus))
7684 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7685 mutex_unlock(&sched_domains_mutex);
95402b38 7686 put_online_cpus();
1da177e4
LT
7687 /* XXX: Theoretical race here - CPU may be hotplugged now */
7688 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7689 init_hrtick();
5c1e1767
NP
7690
7691 /* Move init over to a non-isolated CPU */
7c16ec58 7692 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7693 BUG();
19978ca6 7694 sched_init_granularity();
1da177e4
LT
7695}
7696#else
7697void __init sched_init_smp(void)
7698{
19978ca6 7699 sched_init_granularity();
1da177e4
LT
7700}
7701#endif /* CONFIG_SMP */
7702
7703int in_sched_functions(unsigned long addr)
7704{
1da177e4
LT
7705 return in_lock_functions(addr) ||
7706 (addr >= (unsigned long)__sched_text_start
7707 && addr < (unsigned long)__sched_text_end);
7708}
7709
a9957449 7710static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7711{
7712 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7713 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7714#ifdef CONFIG_FAIR_GROUP_SCHED
7715 cfs_rq->rq = rq;
7716#endif
67e9fb2a 7717 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7718}
7719
fa85ae24
PZ
7720static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7721{
7722 struct rt_prio_array *array;
7723 int i;
7724
7725 array = &rt_rq->active;
7726 for (i = 0; i < MAX_RT_PRIO; i++) {
20b6331b 7727 INIT_LIST_HEAD(array->queue + i);
fa85ae24
PZ
7728 __clear_bit(i, array->bitmap);
7729 }
7730 /* delimiter for bitsearch: */
7731 __set_bit(MAX_RT_PRIO, array->bitmap);
7732
052f1dc7 7733#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7734 rt_rq->highest_prio = MAX_RT_PRIO;
7735#endif
fa85ae24
PZ
7736#ifdef CONFIG_SMP
7737 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7738 rt_rq->overloaded = 0;
7739#endif
7740
7741 rt_rq->rt_time = 0;
7742 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7743 rt_rq->rt_runtime = 0;
7744 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7745
052f1dc7 7746#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7747 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7748 rt_rq->rq = rq;
7749#endif
fa85ae24
PZ
7750}
7751
6f505b16 7752#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7753static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7754 struct sched_entity *se, int cpu, int add,
7755 struct sched_entity *parent)
6f505b16 7756{
ec7dc8ac 7757 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7758 tg->cfs_rq[cpu] = cfs_rq;
7759 init_cfs_rq(cfs_rq, rq);
7760 cfs_rq->tg = tg;
7761 if (add)
7762 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7763
7764 tg->se[cpu] = se;
354d60c2
DG
7765 /* se could be NULL for init_task_group */
7766 if (!se)
7767 return;
7768
ec7dc8ac
DG
7769 if (!parent)
7770 se->cfs_rq = &rq->cfs;
7771 else
7772 se->cfs_rq = parent->my_q;
7773
6f505b16
PZ
7774 se->my_q = cfs_rq;
7775 se->load.weight = tg->shares;
e05510d0 7776 se->load.inv_weight = 0;
ec7dc8ac 7777 se->parent = parent;
6f505b16 7778}
052f1dc7 7779#endif
6f505b16 7780
052f1dc7 7781#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7782static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7783 struct sched_rt_entity *rt_se, int cpu, int add,
7784 struct sched_rt_entity *parent)
6f505b16 7785{
ec7dc8ac
DG
7786 struct rq *rq = cpu_rq(cpu);
7787
6f505b16
PZ
7788 tg->rt_rq[cpu] = rt_rq;
7789 init_rt_rq(rt_rq, rq);
7790 rt_rq->tg = tg;
7791 rt_rq->rt_se = rt_se;
ac086bc2 7792 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7793 if (add)
7794 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7795
7796 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7797 if (!rt_se)
7798 return;
7799
ec7dc8ac
DG
7800 if (!parent)
7801 rt_se->rt_rq = &rq->rt;
7802 else
7803 rt_se->rt_rq = parent->my_q;
7804
6f505b16 7805 rt_se->my_q = rt_rq;
ec7dc8ac 7806 rt_se->parent = parent;
6f505b16
PZ
7807 INIT_LIST_HEAD(&rt_se->run_list);
7808}
7809#endif
7810
1da177e4
LT
7811void __init sched_init(void)
7812{
dd41f596 7813 int i, j;
434d53b0
MT
7814 unsigned long alloc_size = 0, ptr;
7815
7816#ifdef CONFIG_FAIR_GROUP_SCHED
7817 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7818#endif
7819#ifdef CONFIG_RT_GROUP_SCHED
7820 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7821#endif
7822#ifdef CONFIG_USER_SCHED
7823 alloc_size *= 2;
434d53b0
MT
7824#endif
7825 /*
7826 * As sched_init() is called before page_alloc is setup,
7827 * we use alloc_bootmem().
7828 */
7829 if (alloc_size) {
5a9d3225 7830 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7831
7832#ifdef CONFIG_FAIR_GROUP_SCHED
7833 init_task_group.se = (struct sched_entity **)ptr;
7834 ptr += nr_cpu_ids * sizeof(void **);
7835
7836 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7837 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7838
7839#ifdef CONFIG_USER_SCHED
7840 root_task_group.se = (struct sched_entity **)ptr;
7841 ptr += nr_cpu_ids * sizeof(void **);
7842
7843 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7844 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7845#endif /* CONFIG_USER_SCHED */
7846#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7847#ifdef CONFIG_RT_GROUP_SCHED
7848 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7849 ptr += nr_cpu_ids * sizeof(void **);
7850
7851 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7852 ptr += nr_cpu_ids * sizeof(void **);
7853
7854#ifdef CONFIG_USER_SCHED
7855 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7856 ptr += nr_cpu_ids * sizeof(void **);
7857
7858 root_task_group.rt_rq = (struct rt_rq **)ptr;
7859 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7860#endif /* CONFIG_USER_SCHED */
7861#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 7862 }
dd41f596 7863
57d885fe
GH
7864#ifdef CONFIG_SMP
7865 init_defrootdomain();
7866#endif
7867
d0b27fa7
PZ
7868 init_rt_bandwidth(&def_rt_bandwidth,
7869 global_rt_period(), global_rt_runtime());
7870
7871#ifdef CONFIG_RT_GROUP_SCHED
7872 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7873 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7874#ifdef CONFIG_USER_SCHED
7875 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7876 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7877#endif /* CONFIG_USER_SCHED */
7878#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7879
052f1dc7 7880#ifdef CONFIG_GROUP_SCHED
6f505b16 7881 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7882 INIT_LIST_HEAD(&init_task_group.children);
7883
7884#ifdef CONFIG_USER_SCHED
7885 INIT_LIST_HEAD(&root_task_group.children);
7886 init_task_group.parent = &root_task_group;
7887 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7888#endif /* CONFIG_USER_SCHED */
7889#endif /* CONFIG_GROUP_SCHED */
6f505b16 7890
0a945022 7891 for_each_possible_cpu(i) {
70b97a7f 7892 struct rq *rq;
1da177e4
LT
7893
7894 rq = cpu_rq(i);
7895 spin_lock_init(&rq->lock);
fcb99371 7896 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7897 rq->nr_running = 0;
dd41f596 7898 init_cfs_rq(&rq->cfs, rq);
6f505b16 7899 init_rt_rq(&rq->rt, rq);
dd41f596 7900#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7901 init_task_group.shares = init_task_group_load;
6f505b16 7902 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7903#ifdef CONFIG_CGROUP_SCHED
7904 /*
7905 * How much cpu bandwidth does init_task_group get?
7906 *
7907 * In case of task-groups formed thr' the cgroup filesystem, it
7908 * gets 100% of the cpu resources in the system. This overall
7909 * system cpu resource is divided among the tasks of
7910 * init_task_group and its child task-groups in a fair manner,
7911 * based on each entity's (task or task-group's) weight
7912 * (se->load.weight).
7913 *
7914 * In other words, if init_task_group has 10 tasks of weight
7915 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7916 * then A0's share of the cpu resource is:
7917 *
7918 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7919 *
7920 * We achieve this by letting init_task_group's tasks sit
7921 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7922 */
ec7dc8ac 7923 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7924#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7925 root_task_group.shares = NICE_0_LOAD;
7926 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7927 /*
7928 * In case of task-groups formed thr' the user id of tasks,
7929 * init_task_group represents tasks belonging to root user.
7930 * Hence it forms a sibling of all subsequent groups formed.
7931 * In this case, init_task_group gets only a fraction of overall
7932 * system cpu resource, based on the weight assigned to root
7933 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7934 * by letting tasks of init_task_group sit in a separate cfs_rq
7935 * (init_cfs_rq) and having one entity represent this group of
7936 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7937 */
ec7dc8ac 7938 init_tg_cfs_entry(&init_task_group,
6f505b16 7939 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7940 &per_cpu(init_sched_entity, i), i, 1,
7941 root_task_group.se[i]);
6f505b16 7942
052f1dc7 7943#endif
354d60c2
DG
7944#endif /* CONFIG_FAIR_GROUP_SCHED */
7945
7946 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7947#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7948 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7949#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7950 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7951#elif defined CONFIG_USER_SCHED
eff766a6 7952 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7953 init_tg_rt_entry(&init_task_group,
6f505b16 7954 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7955 &per_cpu(init_sched_rt_entity, i), i, 1,
7956 root_task_group.rt_se[i]);
354d60c2 7957#endif
dd41f596 7958#endif
1da177e4 7959
dd41f596
IM
7960 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7961 rq->cpu_load[j] = 0;
1da177e4 7962#ifdef CONFIG_SMP
41c7ce9a 7963 rq->sd = NULL;
57d885fe 7964 rq->rd = NULL;
1da177e4 7965 rq->active_balance = 0;
dd41f596 7966 rq->next_balance = jiffies;
1da177e4 7967 rq->push_cpu = 0;
0a2966b4 7968 rq->cpu = i;
1f11eb6a 7969 rq->online = 0;
1da177e4
LT
7970 rq->migration_thread = NULL;
7971 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7972 rq_attach_root(rq, &def_root_domain);
1da177e4 7973#endif
8f4d37ec 7974 init_rq_hrtick(rq);
1da177e4 7975 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7976 }
7977
2dd73a4f 7978 set_load_weight(&init_task);
b50f60ce 7979
e107be36
AK
7980#ifdef CONFIG_PREEMPT_NOTIFIERS
7981 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7982#endif
7983
c9819f45
CL
7984#ifdef CONFIG_SMP
7985 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7986#endif
7987
b50f60ce
HC
7988#ifdef CONFIG_RT_MUTEXES
7989 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7990#endif
7991
1da177e4
LT
7992 /*
7993 * The boot idle thread does lazy MMU switching as well:
7994 */
7995 atomic_inc(&init_mm.mm_count);
7996 enter_lazy_tlb(&init_mm, current);
7997
7998 /*
7999 * Make us the idle thread. Technically, schedule() should not be
8000 * called from this thread, however somewhere below it might be,
8001 * but because we are the idle thread, we just pick up running again
8002 * when this runqueue becomes "idle".
8003 */
8004 init_idle(current, smp_processor_id());
dd41f596
IM
8005 /*
8006 * During early bootup we pretend to be a normal task:
8007 */
8008 current->sched_class = &fair_sched_class;
6892b75e
IM
8009
8010 scheduler_running = 1;
1da177e4
LT
8011}
8012
8013#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8014void __might_sleep(char *file, int line)
8015{
48f24c4d 8016#ifdef in_atomic
1da177e4
LT
8017 static unsigned long prev_jiffy; /* ratelimiting */
8018
8019 if ((in_atomic() || irqs_disabled()) &&
8020 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8021 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8022 return;
8023 prev_jiffy = jiffies;
91368d73 8024 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8025 " context at %s:%d\n", file, line);
8026 printk("in_atomic():%d, irqs_disabled():%d\n",
8027 in_atomic(), irqs_disabled());
a4c410f0 8028 debug_show_held_locks(current);
3117df04
IM
8029 if (irqs_disabled())
8030 print_irqtrace_events(current);
1da177e4
LT
8031 dump_stack();
8032 }
8033#endif
8034}
8035EXPORT_SYMBOL(__might_sleep);
8036#endif
8037
8038#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8039static void normalize_task(struct rq *rq, struct task_struct *p)
8040{
8041 int on_rq;
3e51f33f 8042
3a5e4dc1
AK
8043 update_rq_clock(rq);
8044 on_rq = p->se.on_rq;
8045 if (on_rq)
8046 deactivate_task(rq, p, 0);
8047 __setscheduler(rq, p, SCHED_NORMAL, 0);
8048 if (on_rq) {
8049 activate_task(rq, p, 0);
8050 resched_task(rq->curr);
8051 }
8052}
8053
1da177e4
LT
8054void normalize_rt_tasks(void)
8055{
a0f98a1c 8056 struct task_struct *g, *p;
1da177e4 8057 unsigned long flags;
70b97a7f 8058 struct rq *rq;
1da177e4 8059
4cf5d77a 8060 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8061 do_each_thread(g, p) {
178be793
IM
8062 /*
8063 * Only normalize user tasks:
8064 */
8065 if (!p->mm)
8066 continue;
8067
6cfb0d5d 8068 p->se.exec_start = 0;
6cfb0d5d 8069#ifdef CONFIG_SCHEDSTATS
dd41f596 8070 p->se.wait_start = 0;
dd41f596 8071 p->se.sleep_start = 0;
dd41f596 8072 p->se.block_start = 0;
6cfb0d5d 8073#endif
dd41f596
IM
8074
8075 if (!rt_task(p)) {
8076 /*
8077 * Renice negative nice level userspace
8078 * tasks back to 0:
8079 */
8080 if (TASK_NICE(p) < 0 && p->mm)
8081 set_user_nice(p, 0);
1da177e4 8082 continue;
dd41f596 8083 }
1da177e4 8084
4cf5d77a 8085 spin_lock(&p->pi_lock);
b29739f9 8086 rq = __task_rq_lock(p);
1da177e4 8087
178be793 8088 normalize_task(rq, p);
3a5e4dc1 8089
b29739f9 8090 __task_rq_unlock(rq);
4cf5d77a 8091 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8092 } while_each_thread(g, p);
8093
4cf5d77a 8094 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8095}
8096
8097#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8098
8099#ifdef CONFIG_IA64
8100/*
8101 * These functions are only useful for the IA64 MCA handling.
8102 *
8103 * They can only be called when the whole system has been
8104 * stopped - every CPU needs to be quiescent, and no scheduling
8105 * activity can take place. Using them for anything else would
8106 * be a serious bug, and as a result, they aren't even visible
8107 * under any other configuration.
8108 */
8109
8110/**
8111 * curr_task - return the current task for a given cpu.
8112 * @cpu: the processor in question.
8113 *
8114 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8115 */
36c8b586 8116struct task_struct *curr_task(int cpu)
1df5c10a
LT
8117{
8118 return cpu_curr(cpu);
8119}
8120
8121/**
8122 * set_curr_task - set the current task for a given cpu.
8123 * @cpu: the processor in question.
8124 * @p: the task pointer to set.
8125 *
8126 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8127 * are serviced on a separate stack. It allows the architecture to switch the
8128 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8129 * must be called with all CPU's synchronized, and interrupts disabled, the
8130 * and caller must save the original value of the current task (see
8131 * curr_task() above) and restore that value before reenabling interrupts and
8132 * re-starting the system.
8133 *
8134 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8135 */
36c8b586 8136void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8137{
8138 cpu_curr(cpu) = p;
8139}
8140
8141#endif
29f59db3 8142
bccbe08a
PZ
8143#ifdef CONFIG_FAIR_GROUP_SCHED
8144static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8145{
8146 int i;
8147
8148 for_each_possible_cpu(i) {
8149 if (tg->cfs_rq)
8150 kfree(tg->cfs_rq[i]);
8151 if (tg->se)
8152 kfree(tg->se[i]);
6f505b16
PZ
8153 }
8154
8155 kfree(tg->cfs_rq);
8156 kfree(tg->se);
6f505b16
PZ
8157}
8158
ec7dc8ac
DG
8159static
8160int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8161{
29f59db3 8162 struct cfs_rq *cfs_rq;
ec7dc8ac 8163 struct sched_entity *se, *parent_se;
9b5b7751 8164 struct rq *rq;
29f59db3
SV
8165 int i;
8166
434d53b0 8167 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8168 if (!tg->cfs_rq)
8169 goto err;
434d53b0 8170 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8171 if (!tg->se)
8172 goto err;
052f1dc7
PZ
8173
8174 tg->shares = NICE_0_LOAD;
29f59db3
SV
8175
8176 for_each_possible_cpu(i) {
9b5b7751 8177 rq = cpu_rq(i);
29f59db3 8178
6f505b16
PZ
8179 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8180 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8181 if (!cfs_rq)
8182 goto err;
8183
6f505b16
PZ
8184 se = kmalloc_node(sizeof(struct sched_entity),
8185 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8186 if (!se)
8187 goto err;
8188
ec7dc8ac
DG
8189 parent_se = parent ? parent->se[i] : NULL;
8190 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8191 }
8192
8193 return 1;
8194
8195 err:
8196 return 0;
8197}
8198
8199static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8200{
8201 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8202 &cpu_rq(cpu)->leaf_cfs_rq_list);
8203}
8204
8205static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8206{
8207 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8208}
6d6bc0ad 8209#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8210static inline void free_fair_sched_group(struct task_group *tg)
8211{
8212}
8213
ec7dc8ac
DG
8214static inline
8215int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8216{
8217 return 1;
8218}
8219
8220static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8221{
8222}
8223
8224static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8225{
8226}
6d6bc0ad 8227#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8228
8229#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8230static void free_rt_sched_group(struct task_group *tg)
8231{
8232 int i;
8233
d0b27fa7
PZ
8234 destroy_rt_bandwidth(&tg->rt_bandwidth);
8235
bccbe08a
PZ
8236 for_each_possible_cpu(i) {
8237 if (tg->rt_rq)
8238 kfree(tg->rt_rq[i]);
8239 if (tg->rt_se)
8240 kfree(tg->rt_se[i]);
8241 }
8242
8243 kfree(tg->rt_rq);
8244 kfree(tg->rt_se);
8245}
8246
ec7dc8ac
DG
8247static
8248int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8249{
8250 struct rt_rq *rt_rq;
ec7dc8ac 8251 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8252 struct rq *rq;
8253 int i;
8254
434d53b0 8255 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8256 if (!tg->rt_rq)
8257 goto err;
434d53b0 8258 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8259 if (!tg->rt_se)
8260 goto err;
8261
d0b27fa7
PZ
8262 init_rt_bandwidth(&tg->rt_bandwidth,
8263 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8264
8265 for_each_possible_cpu(i) {
8266 rq = cpu_rq(i);
8267
6f505b16
PZ
8268 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8269 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8270 if (!rt_rq)
8271 goto err;
29f59db3 8272
6f505b16
PZ
8273 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8274 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8275 if (!rt_se)
8276 goto err;
29f59db3 8277
ec7dc8ac
DG
8278 parent_se = parent ? parent->rt_se[i] : NULL;
8279 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8280 }
8281
bccbe08a
PZ
8282 return 1;
8283
8284 err:
8285 return 0;
8286}
8287
8288static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8289{
8290 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8291 &cpu_rq(cpu)->leaf_rt_rq_list);
8292}
8293
8294static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8295{
8296 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8297}
6d6bc0ad 8298#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8299static inline void free_rt_sched_group(struct task_group *tg)
8300{
8301}
8302
ec7dc8ac
DG
8303static inline
8304int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8305{
8306 return 1;
8307}
8308
8309static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8310{
8311}
8312
8313static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8314{
8315}
6d6bc0ad 8316#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8317
d0b27fa7 8318#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8319static void free_sched_group(struct task_group *tg)
8320{
8321 free_fair_sched_group(tg);
8322 free_rt_sched_group(tg);
8323 kfree(tg);
8324}
8325
8326/* allocate runqueue etc for a new task group */
ec7dc8ac 8327struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8328{
8329 struct task_group *tg;
8330 unsigned long flags;
8331 int i;
8332
8333 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8334 if (!tg)
8335 return ERR_PTR(-ENOMEM);
8336
ec7dc8ac 8337 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8338 goto err;
8339
ec7dc8ac 8340 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8341 goto err;
8342
8ed36996 8343 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8344 for_each_possible_cpu(i) {
bccbe08a
PZ
8345 register_fair_sched_group(tg, i);
8346 register_rt_sched_group(tg, i);
9b5b7751 8347 }
6f505b16 8348 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8349
8350 WARN_ON(!parent); /* root should already exist */
8351
8352 tg->parent = parent;
8353 list_add_rcu(&tg->siblings, &parent->children);
8354 INIT_LIST_HEAD(&tg->children);
8ed36996 8355 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8356
9b5b7751 8357 return tg;
29f59db3
SV
8358
8359err:
6f505b16 8360 free_sched_group(tg);
29f59db3
SV
8361 return ERR_PTR(-ENOMEM);
8362}
8363
9b5b7751 8364/* rcu callback to free various structures associated with a task group */
6f505b16 8365static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8366{
29f59db3 8367 /* now it should be safe to free those cfs_rqs */
6f505b16 8368 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8369}
8370
9b5b7751 8371/* Destroy runqueue etc associated with a task group */
4cf86d77 8372void sched_destroy_group(struct task_group *tg)
29f59db3 8373{
8ed36996 8374 unsigned long flags;
9b5b7751 8375 int i;
29f59db3 8376
8ed36996 8377 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8378 for_each_possible_cpu(i) {
bccbe08a
PZ
8379 unregister_fair_sched_group(tg, i);
8380 unregister_rt_sched_group(tg, i);
9b5b7751 8381 }
6f505b16 8382 list_del_rcu(&tg->list);
f473aa5e 8383 list_del_rcu(&tg->siblings);
8ed36996 8384 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8385
9b5b7751 8386 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8387 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8388}
8389
9b5b7751 8390/* change task's runqueue when it moves between groups.
3a252015
IM
8391 * The caller of this function should have put the task in its new group
8392 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8393 * reflect its new group.
9b5b7751
SV
8394 */
8395void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8396{
8397 int on_rq, running;
8398 unsigned long flags;
8399 struct rq *rq;
8400
8401 rq = task_rq_lock(tsk, &flags);
8402
29f59db3
SV
8403 update_rq_clock(rq);
8404
051a1d1a 8405 running = task_current(rq, tsk);
29f59db3
SV
8406 on_rq = tsk->se.on_rq;
8407
0e1f3483 8408 if (on_rq)
29f59db3 8409 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8410 if (unlikely(running))
8411 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8412
6f505b16 8413 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8414
810b3817
PZ
8415#ifdef CONFIG_FAIR_GROUP_SCHED
8416 if (tsk->sched_class->moved_group)
8417 tsk->sched_class->moved_group(tsk);
8418#endif
8419
0e1f3483
HS
8420 if (unlikely(running))
8421 tsk->sched_class->set_curr_task(rq);
8422 if (on_rq)
7074badb 8423 enqueue_task(rq, tsk, 0);
29f59db3 8424
29f59db3
SV
8425 task_rq_unlock(rq, &flags);
8426}
6d6bc0ad 8427#endif /* CONFIG_GROUP_SCHED */
29f59db3 8428
052f1dc7 8429#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8430static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8431{
8432 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8433 int on_rq;
8434
29f59db3 8435 on_rq = se->on_rq;
62fb1851 8436 if (on_rq)
29f59db3
SV
8437 dequeue_entity(cfs_rq, se, 0);
8438
8439 se->load.weight = shares;
e05510d0 8440 se->load.inv_weight = 0;
29f59db3 8441
62fb1851 8442 if (on_rq)
29f59db3 8443 enqueue_entity(cfs_rq, se, 0);
c09595f6 8444}
62fb1851 8445
c09595f6
PZ
8446static void set_se_shares(struct sched_entity *se, unsigned long shares)
8447{
8448 struct cfs_rq *cfs_rq = se->cfs_rq;
8449 struct rq *rq = cfs_rq->rq;
8450 unsigned long flags;
8451
8452 spin_lock_irqsave(&rq->lock, flags);
8453 __set_se_shares(se, shares);
8454 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8455}
8456
8ed36996
PZ
8457static DEFINE_MUTEX(shares_mutex);
8458
4cf86d77 8459int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8460{
8461 int i;
8ed36996 8462 unsigned long flags;
c61935fd 8463
ec7dc8ac
DG
8464 /*
8465 * We can't change the weight of the root cgroup.
8466 */
8467 if (!tg->se[0])
8468 return -EINVAL;
8469
18d95a28
PZ
8470 if (shares < MIN_SHARES)
8471 shares = MIN_SHARES;
cb4ad1ff
MX
8472 else if (shares > MAX_SHARES)
8473 shares = MAX_SHARES;
62fb1851 8474
8ed36996 8475 mutex_lock(&shares_mutex);
9b5b7751 8476 if (tg->shares == shares)
5cb350ba 8477 goto done;
29f59db3 8478
8ed36996 8479 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8480 for_each_possible_cpu(i)
8481 unregister_fair_sched_group(tg, i);
f473aa5e 8482 list_del_rcu(&tg->siblings);
8ed36996 8483 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8484
8485 /* wait for any ongoing reference to this group to finish */
8486 synchronize_sched();
8487
8488 /*
8489 * Now we are free to modify the group's share on each cpu
8490 * w/o tripping rebalance_share or load_balance_fair.
8491 */
9b5b7751 8492 tg->shares = shares;
c09595f6
PZ
8493 for_each_possible_cpu(i) {
8494 /*
8495 * force a rebalance
8496 */
8497 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8498 set_se_shares(tg->se[i], shares);
c09595f6 8499 }
29f59db3 8500
6b2d7700
SV
8501 /*
8502 * Enable load balance activity on this group, by inserting it back on
8503 * each cpu's rq->leaf_cfs_rq_list.
8504 */
8ed36996 8505 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8506 for_each_possible_cpu(i)
8507 register_fair_sched_group(tg, i);
f473aa5e 8508 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8509 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8510done:
8ed36996 8511 mutex_unlock(&shares_mutex);
9b5b7751 8512 return 0;
29f59db3
SV
8513}
8514
5cb350ba
DG
8515unsigned long sched_group_shares(struct task_group *tg)
8516{
8517 return tg->shares;
8518}
052f1dc7 8519#endif
5cb350ba 8520
052f1dc7 8521#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8522/*
9f0c1e56 8523 * Ensure that the real time constraints are schedulable.
6f505b16 8524 */
9f0c1e56
PZ
8525static DEFINE_MUTEX(rt_constraints_mutex);
8526
8527static unsigned long to_ratio(u64 period, u64 runtime)
8528{
8529 if (runtime == RUNTIME_INF)
8530 return 1ULL << 16;
8531
6f6d6a1a 8532 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8533}
8534
b40b2e8e
PZ
8535#ifdef CONFIG_CGROUP_SCHED
8536static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8537{
10b612f4 8538 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8539 unsigned long total = 0;
8540
8541 if (!parent) {
8542 if (global_rt_period() < period)
8543 return 0;
8544
8545 return to_ratio(period, runtime) <
8546 to_ratio(global_rt_period(), global_rt_runtime());
8547 }
8548
8549 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8550 return 0;
8551
8552 rcu_read_lock();
8553 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8554 if (tgi == tg)
8555 continue;
8556
8557 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8558 tgi->rt_bandwidth.rt_runtime);
8559 }
8560 rcu_read_unlock();
8561
10b612f4 8562 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8563 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8564 parent->rt_bandwidth.rt_runtime);
8565}
8566#elif defined CONFIG_USER_SCHED
9f0c1e56 8567static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8568{
8569 struct task_group *tgi;
8570 unsigned long total = 0;
9f0c1e56 8571 unsigned long global_ratio =
d0b27fa7 8572 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8573
8574 rcu_read_lock();
9f0c1e56
PZ
8575 list_for_each_entry_rcu(tgi, &task_groups, list) {
8576 if (tgi == tg)
8577 continue;
6f505b16 8578
d0b27fa7
PZ
8579 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8580 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8581 }
8582 rcu_read_unlock();
6f505b16 8583
9f0c1e56 8584 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8585}
b40b2e8e 8586#endif
6f505b16 8587
521f1a24
DG
8588/* Must be called with tasklist_lock held */
8589static inline int tg_has_rt_tasks(struct task_group *tg)
8590{
8591 struct task_struct *g, *p;
8592 do_each_thread(g, p) {
8593 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8594 return 1;
8595 } while_each_thread(g, p);
8596 return 0;
8597}
8598
d0b27fa7
PZ
8599static int tg_set_bandwidth(struct task_group *tg,
8600 u64 rt_period, u64 rt_runtime)
6f505b16 8601{
ac086bc2 8602 int i, err = 0;
9f0c1e56 8603
9f0c1e56 8604 mutex_lock(&rt_constraints_mutex);
521f1a24 8605 read_lock(&tasklist_lock);
ac086bc2 8606 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8607 err = -EBUSY;
8608 goto unlock;
8609 }
9f0c1e56
PZ
8610 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8611 err = -EINVAL;
8612 goto unlock;
8613 }
ac086bc2
PZ
8614
8615 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8616 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8617 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8618
8619 for_each_possible_cpu(i) {
8620 struct rt_rq *rt_rq = tg->rt_rq[i];
8621
8622 spin_lock(&rt_rq->rt_runtime_lock);
8623 rt_rq->rt_runtime = rt_runtime;
8624 spin_unlock(&rt_rq->rt_runtime_lock);
8625 }
8626 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8627 unlock:
521f1a24 8628 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8629 mutex_unlock(&rt_constraints_mutex);
8630
8631 return err;
6f505b16
PZ
8632}
8633
d0b27fa7
PZ
8634int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8635{
8636 u64 rt_runtime, rt_period;
8637
8638 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8639 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8640 if (rt_runtime_us < 0)
8641 rt_runtime = RUNTIME_INF;
8642
8643 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8644}
8645
9f0c1e56
PZ
8646long sched_group_rt_runtime(struct task_group *tg)
8647{
8648 u64 rt_runtime_us;
8649
d0b27fa7 8650 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8651 return -1;
8652
d0b27fa7 8653 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8654 do_div(rt_runtime_us, NSEC_PER_USEC);
8655 return rt_runtime_us;
8656}
d0b27fa7
PZ
8657
8658int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8659{
8660 u64 rt_runtime, rt_period;
8661
8662 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8663 rt_runtime = tg->rt_bandwidth.rt_runtime;
8664
8665 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8666}
8667
8668long sched_group_rt_period(struct task_group *tg)
8669{
8670 u64 rt_period_us;
8671
8672 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8673 do_div(rt_period_us, NSEC_PER_USEC);
8674 return rt_period_us;
8675}
8676
8677static int sched_rt_global_constraints(void)
8678{
10b612f4
PZ
8679 struct task_group *tg = &root_task_group;
8680 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8681 int ret = 0;
8682
10b612f4
PZ
8683 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8684 rt_runtime = tg->rt_bandwidth.rt_runtime;
8685
d0b27fa7 8686 mutex_lock(&rt_constraints_mutex);
10b612f4 8687 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8688 ret = -EINVAL;
8689 mutex_unlock(&rt_constraints_mutex);
8690
8691 return ret;
8692}
6d6bc0ad 8693#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8694static int sched_rt_global_constraints(void)
8695{
ac086bc2
PZ
8696 unsigned long flags;
8697 int i;
8698
8699 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8700 for_each_possible_cpu(i) {
8701 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8702
8703 spin_lock(&rt_rq->rt_runtime_lock);
8704 rt_rq->rt_runtime = global_rt_runtime();
8705 spin_unlock(&rt_rq->rt_runtime_lock);
8706 }
8707 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8708
d0b27fa7
PZ
8709 return 0;
8710}
6d6bc0ad 8711#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8712
8713int sched_rt_handler(struct ctl_table *table, int write,
8714 struct file *filp, void __user *buffer, size_t *lenp,
8715 loff_t *ppos)
8716{
8717 int ret;
8718 int old_period, old_runtime;
8719 static DEFINE_MUTEX(mutex);
8720
8721 mutex_lock(&mutex);
8722 old_period = sysctl_sched_rt_period;
8723 old_runtime = sysctl_sched_rt_runtime;
8724
8725 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8726
8727 if (!ret && write) {
8728 ret = sched_rt_global_constraints();
8729 if (ret) {
8730 sysctl_sched_rt_period = old_period;
8731 sysctl_sched_rt_runtime = old_runtime;
8732 } else {
8733 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8734 def_rt_bandwidth.rt_period =
8735 ns_to_ktime(global_rt_period());
8736 }
8737 }
8738 mutex_unlock(&mutex);
8739
8740 return ret;
8741}
68318b8e 8742
052f1dc7 8743#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8744
8745/* return corresponding task_group object of a cgroup */
2b01dfe3 8746static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8747{
2b01dfe3
PM
8748 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8749 struct task_group, css);
68318b8e
SV
8750}
8751
8752static struct cgroup_subsys_state *
2b01dfe3 8753cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8754{
ec7dc8ac 8755 struct task_group *tg, *parent;
68318b8e 8756
2b01dfe3 8757 if (!cgrp->parent) {
68318b8e 8758 /* This is early initialization for the top cgroup */
2b01dfe3 8759 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8760 return &init_task_group.css;
8761 }
8762
ec7dc8ac
DG
8763 parent = cgroup_tg(cgrp->parent);
8764 tg = sched_create_group(parent);
68318b8e
SV
8765 if (IS_ERR(tg))
8766 return ERR_PTR(-ENOMEM);
8767
8768 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8769 tg->css.cgroup = cgrp;
68318b8e
SV
8770
8771 return &tg->css;
8772}
8773
41a2d6cf
IM
8774static void
8775cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8776{
2b01dfe3 8777 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8778
8779 sched_destroy_group(tg);
8780}
8781
41a2d6cf
IM
8782static int
8783cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8784 struct task_struct *tsk)
68318b8e 8785{
b68aa230
PZ
8786#ifdef CONFIG_RT_GROUP_SCHED
8787 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8788 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8789 return -EINVAL;
8790#else
68318b8e
SV
8791 /* We don't support RT-tasks being in separate groups */
8792 if (tsk->sched_class != &fair_sched_class)
8793 return -EINVAL;
b68aa230 8794#endif
68318b8e
SV
8795
8796 return 0;
8797}
8798
8799static void
2b01dfe3 8800cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8801 struct cgroup *old_cont, struct task_struct *tsk)
8802{
8803 sched_move_task(tsk);
8804}
8805
052f1dc7 8806#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8807static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8808 u64 shareval)
68318b8e 8809{
2b01dfe3 8810 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8811}
8812
f4c753b7 8813static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8814{
2b01dfe3 8815 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8816
8817 return (u64) tg->shares;
8818}
6d6bc0ad 8819#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8820
052f1dc7 8821#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8822static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8823 s64 val)
6f505b16 8824{
06ecb27c 8825 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8826}
8827
06ecb27c 8828static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8829{
06ecb27c 8830 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8831}
d0b27fa7
PZ
8832
8833static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8834 u64 rt_period_us)
8835{
8836 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8837}
8838
8839static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8840{
8841 return sched_group_rt_period(cgroup_tg(cgrp));
8842}
6d6bc0ad 8843#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8844
fe5c7cc2 8845static struct cftype cpu_files[] = {
052f1dc7 8846#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8847 {
8848 .name = "shares",
f4c753b7
PM
8849 .read_u64 = cpu_shares_read_u64,
8850 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8851 },
052f1dc7
PZ
8852#endif
8853#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8854 {
9f0c1e56 8855 .name = "rt_runtime_us",
06ecb27c
PM
8856 .read_s64 = cpu_rt_runtime_read,
8857 .write_s64 = cpu_rt_runtime_write,
6f505b16 8858 },
d0b27fa7
PZ
8859 {
8860 .name = "rt_period_us",
f4c753b7
PM
8861 .read_u64 = cpu_rt_period_read_uint,
8862 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8863 },
052f1dc7 8864#endif
68318b8e
SV
8865};
8866
8867static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8868{
fe5c7cc2 8869 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8870}
8871
8872struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8873 .name = "cpu",
8874 .create = cpu_cgroup_create,
8875 .destroy = cpu_cgroup_destroy,
8876 .can_attach = cpu_cgroup_can_attach,
8877 .attach = cpu_cgroup_attach,
8878 .populate = cpu_cgroup_populate,
8879 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8880 .early_init = 1,
8881};
8882
052f1dc7 8883#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8884
8885#ifdef CONFIG_CGROUP_CPUACCT
8886
8887/*
8888 * CPU accounting code for task groups.
8889 *
8890 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8891 * (balbir@in.ibm.com).
8892 */
8893
8894/* track cpu usage of a group of tasks */
8895struct cpuacct {
8896 struct cgroup_subsys_state css;
8897 /* cpuusage holds pointer to a u64-type object on every cpu */
8898 u64 *cpuusage;
8899};
8900
8901struct cgroup_subsys cpuacct_subsys;
8902
8903/* return cpu accounting group corresponding to this container */
32cd756a 8904static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8905{
32cd756a 8906 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8907 struct cpuacct, css);
8908}
8909
8910/* return cpu accounting group to which this task belongs */
8911static inline struct cpuacct *task_ca(struct task_struct *tsk)
8912{
8913 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8914 struct cpuacct, css);
8915}
8916
8917/* create a new cpu accounting group */
8918static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8919 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8920{
8921 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8922
8923 if (!ca)
8924 return ERR_PTR(-ENOMEM);
8925
8926 ca->cpuusage = alloc_percpu(u64);
8927 if (!ca->cpuusage) {
8928 kfree(ca);
8929 return ERR_PTR(-ENOMEM);
8930 }
8931
8932 return &ca->css;
8933}
8934
8935/* destroy an existing cpu accounting group */
41a2d6cf 8936static void
32cd756a 8937cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8938{
32cd756a 8939 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8940
8941 free_percpu(ca->cpuusage);
8942 kfree(ca);
8943}
8944
8945/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8946static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8947{
32cd756a 8948 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8949 u64 totalcpuusage = 0;
8950 int i;
8951
8952 for_each_possible_cpu(i) {
8953 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8954
8955 /*
8956 * Take rq->lock to make 64-bit addition safe on 32-bit
8957 * platforms.
8958 */
8959 spin_lock_irq(&cpu_rq(i)->lock);
8960 totalcpuusage += *cpuusage;
8961 spin_unlock_irq(&cpu_rq(i)->lock);
8962 }
8963
8964 return totalcpuusage;
8965}
8966
0297b803
DG
8967static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8968 u64 reset)
8969{
8970 struct cpuacct *ca = cgroup_ca(cgrp);
8971 int err = 0;
8972 int i;
8973
8974 if (reset) {
8975 err = -EINVAL;
8976 goto out;
8977 }
8978
8979 for_each_possible_cpu(i) {
8980 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8981
8982 spin_lock_irq(&cpu_rq(i)->lock);
8983 *cpuusage = 0;
8984 spin_unlock_irq(&cpu_rq(i)->lock);
8985 }
8986out:
8987 return err;
8988}
8989
d842de87
SV
8990static struct cftype files[] = {
8991 {
8992 .name = "usage",
f4c753b7
PM
8993 .read_u64 = cpuusage_read,
8994 .write_u64 = cpuusage_write,
d842de87
SV
8995 },
8996};
8997
32cd756a 8998static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8999{
32cd756a 9000 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9001}
9002
9003/*
9004 * charge this task's execution time to its accounting group.
9005 *
9006 * called with rq->lock held.
9007 */
9008static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9009{
9010 struct cpuacct *ca;
9011
9012 if (!cpuacct_subsys.active)
9013 return;
9014
9015 ca = task_ca(tsk);
9016 if (ca) {
9017 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9018
9019 *cpuusage += cputime;
9020 }
9021}
9022
9023struct cgroup_subsys cpuacct_subsys = {
9024 .name = "cpuacct",
9025 .create = cpuacct_create,
9026 .destroy = cpuacct_destroy,
9027 .populate = cpuacct_populate,
9028 .subsys_id = cpuacct_subsys_id,
9029};
9030#endif /* CONFIG_CGROUP_CPUACCT */