]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: fix shares boost logic
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
6e0534f2
GH
77#include "sched_cpupri.h"
78
1da177e4
LT
79/*
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
83 */
84#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87
88/*
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
92 */
93#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96
97/*
d7876a08 98 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 99 */
d6322faf 100#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
d0b27fa7
PZ
113/*
114 * single value that denotes runtime == period, ie unlimited time.
115 */
116#define RUNTIME_INF ((u64)~0ULL)
117
5517d86b
ED
118#ifdef CONFIG_SMP
119/*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124{
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126}
127
128/*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133{
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136}
137#endif
138
e05606d3
IM
139static inline int rt_policy(int policy)
140{
3f33a7ce 141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
142 return 1;
143 return 0;
144}
145
146static inline int task_has_rt_policy(struct task_struct *p)
147{
148 return rt_policy(p->policy);
149}
150
1da177e4 151/*
6aa645ea 152 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 153 */
6aa645ea
IM
154struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
20b6331b 156 struct list_head queue[MAX_RT_PRIO];
6aa645ea
IM
157};
158
d0b27fa7 159struct rt_bandwidth {
ea736ed5
IM
160 /* nests inside the rq lock: */
161 spinlock_t rt_runtime_lock;
162 ktime_t rt_period;
163 u64 rt_runtime;
164 struct hrtimer rt_period_timer;
d0b27fa7
PZ
165};
166
167static struct rt_bandwidth def_rt_bandwidth;
168
169static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
170
171static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
172{
173 struct rt_bandwidth *rt_b =
174 container_of(timer, struct rt_bandwidth, rt_period_timer);
175 ktime_t now;
176 int overrun;
177 int idle = 0;
178
179 for (;;) {
180 now = hrtimer_cb_get_time(timer);
181 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
182
183 if (!overrun)
184 break;
185
186 idle = do_sched_rt_period_timer(rt_b, overrun);
187 }
188
189 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
190}
191
192static
193void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
194{
195 rt_b->rt_period = ns_to_ktime(period);
196 rt_b->rt_runtime = runtime;
197
ac086bc2
PZ
198 spin_lock_init(&rt_b->rt_runtime_lock);
199
d0b27fa7
PZ
200 hrtimer_init(&rt_b->rt_period_timer,
201 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
202 rt_b->rt_period_timer.function = sched_rt_period_timer;
203 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
204}
205
206static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
207{
208 ktime_t now;
209
210 if (rt_b->rt_runtime == RUNTIME_INF)
211 return;
212
213 if (hrtimer_active(&rt_b->rt_period_timer))
214 return;
215
216 spin_lock(&rt_b->rt_runtime_lock);
217 for (;;) {
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 break;
220
221 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
222 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
223 hrtimer_start(&rt_b->rt_period_timer,
224 rt_b->rt_period_timer.expires,
225 HRTIMER_MODE_ABS);
226 }
227 spin_unlock(&rt_b->rt_runtime_lock);
228}
229
230#ifdef CONFIG_RT_GROUP_SCHED
231static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
232{
233 hrtimer_cancel(&rt_b->rt_period_timer);
234}
235#endif
236
712555ee
HC
237/*
238 * sched_domains_mutex serializes calls to arch_init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
240 */
241static DEFINE_MUTEX(sched_domains_mutex);
242
052f1dc7 243#ifdef CONFIG_GROUP_SCHED
29f59db3 244
68318b8e
SV
245#include <linux/cgroup.h>
246
29f59db3
SV
247struct cfs_rq;
248
6f505b16
PZ
249static LIST_HEAD(task_groups);
250
29f59db3 251/* task group related information */
4cf86d77 252struct task_group {
052f1dc7 253#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
254 struct cgroup_subsys_state css;
255#endif
052f1dc7
PZ
256
257#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
052f1dc7
PZ
263#endif
264
265#ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
d0b27fa7 269 struct rt_bandwidth rt_bandwidth;
052f1dc7 270#endif
6b2d7700 271
ae8393e5 272 struct rcu_head rcu;
6f505b16 273 struct list_head list;
f473aa5e
PZ
274
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
29f59db3
SV
278};
279
354d60c2 280#ifdef CONFIG_USER_SCHED
eff766a6
PZ
281
282/*
283 * Root task group.
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
286 */
287struct task_group root_task_group;
288
052f1dc7 289#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
290/* Default task group's sched entity on each cpu */
291static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292/* Default task group's cfs_rq on each cpu */
293static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 294#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
295
296#ifdef CONFIG_RT_GROUP_SCHED
297static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
299#endif /* CONFIG_RT_GROUP_SCHED */
300#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 301#define root_task_group init_task_group
6d6bc0ad 302#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 303
8ed36996 304/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
305 * a task group's cpu shares.
306 */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
052f1dc7 309#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
310#ifdef CONFIG_USER_SCHED
311# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 312#else /* !CONFIG_USER_SCHED */
052f1dc7 313# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 314#endif /* CONFIG_USER_SCHED */
052f1dc7 315
cb4ad1ff 316/*
2e084786
LJ
317 * A weight of 0 or 1 can cause arithmetics problems.
318 * A weight of a cfs_rq is the sum of weights of which entities
319 * are queued on this cfs_rq, so a weight of a entity should not be
320 * too large, so as the shares value of a task group.
cb4ad1ff
MX
321 * (The default weight is 1024 - so there's no practical
322 * limitation from this.)
323 */
18d95a28 324#define MIN_SHARES 2
2e084786 325#define MAX_SHARES (1UL << 18)
18d95a28 326
052f1dc7
PZ
327static int init_task_group_load = INIT_TASK_GROUP_LOAD;
328#endif
329
29f59db3 330/* Default task group.
3a252015 331 * Every task in system belong to this group at bootup.
29f59db3 332 */
434d53b0 333struct task_group init_task_group;
29f59db3
SV
334
335/* return group to which a task belongs */
4cf86d77 336static inline struct task_group *task_group(struct task_struct *p)
29f59db3 337{
4cf86d77 338 struct task_group *tg;
9b5b7751 339
052f1dc7 340#ifdef CONFIG_USER_SCHED
24e377a8 341 tg = p->user->tg;
052f1dc7 342#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
343 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
344 struct task_group, css);
24e377a8 345#else
41a2d6cf 346 tg = &init_task_group;
24e377a8 347#endif
9b5b7751 348 return tg;
29f59db3
SV
349}
350
351/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 352static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 353{
052f1dc7 354#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
355 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
356 p->se.parent = task_group(p)->se[cpu];
052f1dc7 357#endif
6f505b16 358
052f1dc7 359#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
360 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
361 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 362#endif
29f59db3
SV
363}
364
365#else
366
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 368
052f1dc7 369#endif /* CONFIG_GROUP_SCHED */
29f59db3 370
6aa645ea
IM
371/* CFS-related fields in a runqueue */
372struct cfs_rq {
373 struct load_weight load;
374 unsigned long nr_running;
375
6aa645ea 376 u64 exec_clock;
e9acbff6 377 u64 min_vruntime;
103638d9 378 u64 pair_start;
6aa645ea
IM
379
380 struct rb_root tasks_timeline;
381 struct rb_node *rb_leftmost;
4a55bd5e
PZ
382
383 struct list_head tasks;
384 struct list_head *balance_iterator;
385
386 /*
387 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
388 * It is set to NULL otherwise (i.e when none are currently running).
389 */
aa2ac252 390 struct sched_entity *curr, *next;
ddc97297
PZ
391
392 unsigned long nr_spread_over;
393
62160e3f 394#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
395 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
396
41a2d6cf
IM
397 /*
398 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
399 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
400 * (like users, containers etc.)
401 *
402 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
403 * list is used during load balance.
404 */
41a2d6cf
IM
405 struct list_head leaf_cfs_rq_list;
406 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
407
408#ifdef CONFIG_SMP
c09595f6 409 /*
c8cba857 410 * the part of load.weight contributed by tasks
c09595f6 411 */
c8cba857 412 unsigned long task_weight;
c09595f6 413
c8cba857
PZ
414 /*
415 * h_load = weight * f(tg)
416 *
417 * Where f(tg) is the recursive weight fraction assigned to
418 * this group.
419 */
420 unsigned long h_load;
c09595f6 421
c8cba857
PZ
422 /*
423 * this cpu's part of tg->shares
424 */
425 unsigned long shares;
c09595f6 426#endif
6aa645ea
IM
427#endif
428};
1da177e4 429
6aa645ea
IM
430/* Real-Time classes' related field in a runqueue: */
431struct rt_rq {
432 struct rt_prio_array active;
63489e45 433 unsigned long rt_nr_running;
052f1dc7 434#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
435 int highest_prio; /* highest queued rt task prio */
436#endif
fa85ae24 437#ifdef CONFIG_SMP
73fe6aae 438 unsigned long rt_nr_migratory;
a22d7fc1 439 int overloaded;
fa85ae24 440#endif
6f505b16 441 int rt_throttled;
fa85ae24 442 u64 rt_time;
ac086bc2 443 u64 rt_runtime;
ea736ed5 444 /* Nests inside the rq lock: */
ac086bc2 445 spinlock_t rt_runtime_lock;
6f505b16 446
052f1dc7 447#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
448 unsigned long rt_nr_boosted;
449
6f505b16
PZ
450 struct rq *rq;
451 struct list_head leaf_rt_rq_list;
452 struct task_group *tg;
453 struct sched_rt_entity *rt_se;
454#endif
6aa645ea
IM
455};
456
57d885fe
GH
457#ifdef CONFIG_SMP
458
459/*
460 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
461 * variables. Each exclusive cpuset essentially defines an island domain by
462 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
463 * exclusive cpuset is created, we also create and attach a new root-domain
464 * object.
465 *
57d885fe
GH
466 */
467struct root_domain {
468 atomic_t refcount;
469 cpumask_t span;
470 cpumask_t online;
637f5085 471
0eab9146 472 /*
637f5085
GH
473 * The "RT overload" flag: it gets set if a CPU has more than
474 * one runnable RT task.
475 */
476 cpumask_t rto_mask;
0eab9146 477 atomic_t rto_count;
6e0534f2
GH
478#ifdef CONFIG_SMP
479 struct cpupri cpupri;
480#endif
57d885fe
GH
481};
482
dc938520
GH
483/*
484 * By default the system creates a single root-domain with all cpus as
485 * members (mimicking the global state we have today).
486 */
57d885fe
GH
487static struct root_domain def_root_domain;
488
489#endif
490
1da177e4
LT
491/*
492 * This is the main, per-CPU runqueue data structure.
493 *
494 * Locking rule: those places that want to lock multiple runqueues
495 * (such as the load balancing or the thread migration code), lock
496 * acquire operations must be ordered by ascending &runqueue.
497 */
70b97a7f 498struct rq {
d8016491
IM
499 /* runqueue lock: */
500 spinlock_t lock;
1da177e4
LT
501
502 /*
503 * nr_running and cpu_load should be in the same cacheline because
504 * remote CPUs use both these fields when doing load calculation.
505 */
506 unsigned long nr_running;
6aa645ea
IM
507 #define CPU_LOAD_IDX_MAX 5
508 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 509 unsigned char idle_at_tick;
46cb4b7c 510#ifdef CONFIG_NO_HZ
15934a37 511 unsigned long last_tick_seen;
46cb4b7c
SS
512 unsigned char in_nohz_recently;
513#endif
d8016491
IM
514 /* capture load from *all* tasks on this cpu: */
515 struct load_weight load;
6aa645ea
IM
516 unsigned long nr_load_updates;
517 u64 nr_switches;
518
519 struct cfs_rq cfs;
6f505b16 520 struct rt_rq rt;
6f505b16 521
6aa645ea 522#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
523 /* list of leaf cfs_rq on this cpu: */
524 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
525#endif
526#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 527 struct list_head leaf_rt_rq_list;
1da177e4 528#endif
1da177e4
LT
529
530 /*
531 * This is part of a global counter where only the total sum
532 * over all CPUs matters. A task can increase this counter on
533 * one CPU and if it got migrated afterwards it may decrease
534 * it on another CPU. Always updated under the runqueue lock:
535 */
536 unsigned long nr_uninterruptible;
537
36c8b586 538 struct task_struct *curr, *idle;
c9819f45 539 unsigned long next_balance;
1da177e4 540 struct mm_struct *prev_mm;
6aa645ea 541
3e51f33f 542 u64 clock;
6aa645ea 543
1da177e4
LT
544 atomic_t nr_iowait;
545
546#ifdef CONFIG_SMP
0eab9146 547 struct root_domain *rd;
1da177e4
LT
548 struct sched_domain *sd;
549
550 /* For active balancing */
551 int active_balance;
552 int push_cpu;
d8016491
IM
553 /* cpu of this runqueue: */
554 int cpu;
1f11eb6a 555 int online;
1da177e4 556
a8a51d5e
PZ
557 unsigned long avg_load_per_task;
558
36c8b586 559 struct task_struct *migration_thread;
1da177e4
LT
560 struct list_head migration_queue;
561#endif
562
8f4d37ec
PZ
563#ifdef CONFIG_SCHED_HRTICK
564 unsigned long hrtick_flags;
565 ktime_t hrtick_expire;
566 struct hrtimer hrtick_timer;
567#endif
568
1da177e4
LT
569#ifdef CONFIG_SCHEDSTATS
570 /* latency stats */
571 struct sched_info rq_sched_info;
572
573 /* sys_sched_yield() stats */
480b9434
KC
574 unsigned int yld_exp_empty;
575 unsigned int yld_act_empty;
576 unsigned int yld_both_empty;
577 unsigned int yld_count;
1da177e4
LT
578
579 /* schedule() stats */
480b9434
KC
580 unsigned int sched_switch;
581 unsigned int sched_count;
582 unsigned int sched_goidle;
1da177e4
LT
583
584 /* try_to_wake_up() stats */
480b9434
KC
585 unsigned int ttwu_count;
586 unsigned int ttwu_local;
b8efb561
IM
587
588 /* BKL stats */
480b9434 589 unsigned int bkl_count;
1da177e4 590#endif
fcb99371 591 struct lock_class_key rq_lock_key;
1da177e4
LT
592};
593
f34e3b61 594static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 595
dd41f596
IM
596static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
597{
598 rq->curr->sched_class->check_preempt_curr(rq, p);
599}
600
0a2966b4
CL
601static inline int cpu_of(struct rq *rq)
602{
603#ifdef CONFIG_SMP
604 return rq->cpu;
605#else
606 return 0;
607#endif
608}
609
674311d5
NP
610/*
611 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 612 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
613 *
614 * The domain tree of any CPU may only be accessed from within
615 * preempt-disabled sections.
616 */
48f24c4d
IM
617#define for_each_domain(cpu, __sd) \
618 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
619
620#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
621#define this_rq() (&__get_cpu_var(runqueues))
622#define task_rq(p) cpu_rq(task_cpu(p))
623#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
624
3e51f33f
PZ
625static inline void update_rq_clock(struct rq *rq)
626{
627 rq->clock = sched_clock_cpu(cpu_of(rq));
628}
629
bf5c91ba
IM
630/*
631 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
632 */
633#ifdef CONFIG_SCHED_DEBUG
634# define const_debug __read_mostly
635#else
636# define const_debug static const
637#endif
638
639/*
640 * Debugging: various feature bits
641 */
f00b45c1
PZ
642
643#define SCHED_FEAT(name, enabled) \
644 __SCHED_FEAT_##name ,
645
bf5c91ba 646enum {
f00b45c1 647#include "sched_features.h"
bf5c91ba
IM
648};
649
f00b45c1
PZ
650#undef SCHED_FEAT
651
652#define SCHED_FEAT(name, enabled) \
653 (1UL << __SCHED_FEAT_##name) * enabled |
654
bf5c91ba 655const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
656#include "sched_features.h"
657 0;
658
659#undef SCHED_FEAT
660
661#ifdef CONFIG_SCHED_DEBUG
662#define SCHED_FEAT(name, enabled) \
663 #name ,
664
983ed7a6 665static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
666#include "sched_features.h"
667 NULL
668};
669
670#undef SCHED_FEAT
671
983ed7a6 672static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
673{
674 filp->private_data = inode->i_private;
675 return 0;
676}
677
678static ssize_t
679sched_feat_read(struct file *filp, char __user *ubuf,
680 size_t cnt, loff_t *ppos)
681{
682 char *buf;
683 int r = 0;
684 int len = 0;
685 int i;
686
687 for (i = 0; sched_feat_names[i]; i++) {
688 len += strlen(sched_feat_names[i]);
689 len += 4;
690 }
691
692 buf = kmalloc(len + 2, GFP_KERNEL);
693 if (!buf)
694 return -ENOMEM;
695
696 for (i = 0; sched_feat_names[i]; i++) {
697 if (sysctl_sched_features & (1UL << i))
698 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
699 else
c24b7c52 700 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
701 }
702
703 r += sprintf(buf + r, "\n");
704 WARN_ON(r >= len + 2);
705
706 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
707
708 kfree(buf);
709
710 return r;
711}
712
713static ssize_t
714sched_feat_write(struct file *filp, const char __user *ubuf,
715 size_t cnt, loff_t *ppos)
716{
717 char buf[64];
718 char *cmp = buf;
719 int neg = 0;
720 int i;
721
722 if (cnt > 63)
723 cnt = 63;
724
725 if (copy_from_user(&buf, ubuf, cnt))
726 return -EFAULT;
727
728 buf[cnt] = 0;
729
c24b7c52 730 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
731 neg = 1;
732 cmp += 3;
733 }
734
735 for (i = 0; sched_feat_names[i]; i++) {
736 int len = strlen(sched_feat_names[i]);
737
738 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
739 if (neg)
740 sysctl_sched_features &= ~(1UL << i);
741 else
742 sysctl_sched_features |= (1UL << i);
743 break;
744 }
745 }
746
747 if (!sched_feat_names[i])
748 return -EINVAL;
749
750 filp->f_pos += cnt;
751
752 return cnt;
753}
754
755static struct file_operations sched_feat_fops = {
756 .open = sched_feat_open,
757 .read = sched_feat_read,
758 .write = sched_feat_write,
759};
760
761static __init int sched_init_debug(void)
762{
f00b45c1
PZ
763 debugfs_create_file("sched_features", 0644, NULL, NULL,
764 &sched_feat_fops);
765
766 return 0;
767}
768late_initcall(sched_init_debug);
769
770#endif
771
772#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 773
b82d9fdd
PZ
774/*
775 * Number of tasks to iterate in a single balance run.
776 * Limited because this is done with IRQs disabled.
777 */
778const_debug unsigned int sysctl_sched_nr_migrate = 32;
779
fa85ae24 780/*
9f0c1e56 781 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
782 * default: 1s
783 */
9f0c1e56 784unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 785
6892b75e
IM
786static __read_mostly int scheduler_running;
787
9f0c1e56
PZ
788/*
789 * part of the period that we allow rt tasks to run in us.
790 * default: 0.95s
791 */
792int sysctl_sched_rt_runtime = 950000;
fa85ae24 793
d0b27fa7
PZ
794static inline u64 global_rt_period(void)
795{
796 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
797}
798
799static inline u64 global_rt_runtime(void)
800{
801 if (sysctl_sched_rt_period < 0)
802 return RUNTIME_INF;
803
804 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
805}
fa85ae24 806
1da177e4 807#ifndef prepare_arch_switch
4866cde0
NP
808# define prepare_arch_switch(next) do { } while (0)
809#endif
810#ifndef finish_arch_switch
811# define finish_arch_switch(prev) do { } while (0)
812#endif
813
051a1d1a
DA
814static inline int task_current(struct rq *rq, struct task_struct *p)
815{
816 return rq->curr == p;
817}
818
4866cde0 819#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 820static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 821{
051a1d1a 822 return task_current(rq, p);
4866cde0
NP
823}
824
70b97a7f 825static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
826{
827}
828
70b97a7f 829static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 830{
da04c035
IM
831#ifdef CONFIG_DEBUG_SPINLOCK
832 /* this is a valid case when another task releases the spinlock */
833 rq->lock.owner = current;
834#endif
8a25d5de
IM
835 /*
836 * If we are tracking spinlock dependencies then we have to
837 * fix up the runqueue lock - which gets 'carried over' from
838 * prev into current:
839 */
840 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
841
4866cde0
NP
842 spin_unlock_irq(&rq->lock);
843}
844
845#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 846static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
847{
848#ifdef CONFIG_SMP
849 return p->oncpu;
850#else
051a1d1a 851 return task_current(rq, p);
4866cde0
NP
852#endif
853}
854
70b97a7f 855static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
856{
857#ifdef CONFIG_SMP
858 /*
859 * We can optimise this out completely for !SMP, because the
860 * SMP rebalancing from interrupt is the only thing that cares
861 * here.
862 */
863 next->oncpu = 1;
864#endif
865#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
866 spin_unlock_irq(&rq->lock);
867#else
868 spin_unlock(&rq->lock);
869#endif
870}
871
70b97a7f 872static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
873{
874#ifdef CONFIG_SMP
875 /*
876 * After ->oncpu is cleared, the task can be moved to a different CPU.
877 * We must ensure this doesn't happen until the switch is completely
878 * finished.
879 */
880 smp_wmb();
881 prev->oncpu = 0;
882#endif
883#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
884 local_irq_enable();
1da177e4 885#endif
4866cde0
NP
886}
887#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 888
b29739f9
IM
889/*
890 * __task_rq_lock - lock the runqueue a given task resides on.
891 * Must be called interrupts disabled.
892 */
70b97a7f 893static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
894 __acquires(rq->lock)
895{
3a5c359a
AK
896 for (;;) {
897 struct rq *rq = task_rq(p);
898 spin_lock(&rq->lock);
899 if (likely(rq == task_rq(p)))
900 return rq;
b29739f9 901 spin_unlock(&rq->lock);
b29739f9 902 }
b29739f9
IM
903}
904
1da177e4
LT
905/*
906 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 907 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
908 * explicitly disabling preemption.
909 */
70b97a7f 910static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
911 __acquires(rq->lock)
912{
70b97a7f 913 struct rq *rq;
1da177e4 914
3a5c359a
AK
915 for (;;) {
916 local_irq_save(*flags);
917 rq = task_rq(p);
918 spin_lock(&rq->lock);
919 if (likely(rq == task_rq(p)))
920 return rq;
1da177e4 921 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 922 }
1da177e4
LT
923}
924
a9957449 925static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
926 __releases(rq->lock)
927{
928 spin_unlock(&rq->lock);
929}
930
70b97a7f 931static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
932 __releases(rq->lock)
933{
934 spin_unlock_irqrestore(&rq->lock, *flags);
935}
936
1da177e4 937/*
cc2a73b5 938 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 939 */
a9957449 940static struct rq *this_rq_lock(void)
1da177e4
LT
941 __acquires(rq->lock)
942{
70b97a7f 943 struct rq *rq;
1da177e4
LT
944
945 local_irq_disable();
946 rq = this_rq();
947 spin_lock(&rq->lock);
948
949 return rq;
950}
951
8f4d37ec
PZ
952static void __resched_task(struct task_struct *p, int tif_bit);
953
954static inline void resched_task(struct task_struct *p)
955{
956 __resched_task(p, TIF_NEED_RESCHED);
957}
958
959#ifdef CONFIG_SCHED_HRTICK
960/*
961 * Use HR-timers to deliver accurate preemption points.
962 *
963 * Its all a bit involved since we cannot program an hrt while holding the
964 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
965 * reschedule event.
966 *
967 * When we get rescheduled we reprogram the hrtick_timer outside of the
968 * rq->lock.
969 */
970static inline void resched_hrt(struct task_struct *p)
971{
972 __resched_task(p, TIF_HRTICK_RESCHED);
973}
974
975static inline void resched_rq(struct rq *rq)
976{
977 unsigned long flags;
978
979 spin_lock_irqsave(&rq->lock, flags);
980 resched_task(rq->curr);
981 spin_unlock_irqrestore(&rq->lock, flags);
982}
983
984enum {
985 HRTICK_SET, /* re-programm hrtick_timer */
986 HRTICK_RESET, /* not a new slice */
b328ca18 987 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
988};
989
990/*
991 * Use hrtick when:
992 * - enabled by features
993 * - hrtimer is actually high res
994 */
995static inline int hrtick_enabled(struct rq *rq)
996{
997 if (!sched_feat(HRTICK))
998 return 0;
b328ca18
PZ
999 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1000 return 0;
8f4d37ec
PZ
1001 return hrtimer_is_hres_active(&rq->hrtick_timer);
1002}
1003
1004/*
1005 * Called to set the hrtick timer state.
1006 *
1007 * called with rq->lock held and irqs disabled
1008 */
1009static void hrtick_start(struct rq *rq, u64 delay, int reset)
1010{
1011 assert_spin_locked(&rq->lock);
1012
1013 /*
1014 * preempt at: now + delay
1015 */
1016 rq->hrtick_expire =
1017 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1018 /*
1019 * indicate we need to program the timer
1020 */
1021 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1022 if (reset)
1023 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1024
1025 /*
1026 * New slices are called from the schedule path and don't need a
1027 * forced reschedule.
1028 */
1029 if (reset)
1030 resched_hrt(rq->curr);
1031}
1032
1033static void hrtick_clear(struct rq *rq)
1034{
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1037}
1038
1039/*
1040 * Update the timer from the possible pending state.
1041 */
1042static void hrtick_set(struct rq *rq)
1043{
1044 ktime_t time;
1045 int set, reset;
1046 unsigned long flags;
1047
1048 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1049
1050 spin_lock_irqsave(&rq->lock, flags);
1051 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1052 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1053 time = rq->hrtick_expire;
1054 clear_thread_flag(TIF_HRTICK_RESCHED);
1055 spin_unlock_irqrestore(&rq->lock, flags);
1056
1057 if (set) {
1058 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1059 if (reset && !hrtimer_active(&rq->hrtick_timer))
1060 resched_rq(rq);
1061 } else
1062 hrtick_clear(rq);
1063}
1064
1065/*
1066 * High-resolution timer tick.
1067 * Runs from hardirq context with interrupts disabled.
1068 */
1069static enum hrtimer_restart hrtick(struct hrtimer *timer)
1070{
1071 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1072
1073 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1074
1075 spin_lock(&rq->lock);
3e51f33f 1076 update_rq_clock(rq);
8f4d37ec
PZ
1077 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1078 spin_unlock(&rq->lock);
1079
1080 return HRTIMER_NORESTART;
1081}
1082
81d41d7e 1083#ifdef CONFIG_SMP
b328ca18
PZ
1084static void hotplug_hrtick_disable(int cpu)
1085{
1086 struct rq *rq = cpu_rq(cpu);
1087 unsigned long flags;
1088
1089 spin_lock_irqsave(&rq->lock, flags);
1090 rq->hrtick_flags = 0;
1091 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1092 spin_unlock_irqrestore(&rq->lock, flags);
1093
1094 hrtick_clear(rq);
1095}
1096
1097static void hotplug_hrtick_enable(int cpu)
1098{
1099 struct rq *rq = cpu_rq(cpu);
1100 unsigned long flags;
1101
1102 spin_lock_irqsave(&rq->lock, flags);
1103 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1104 spin_unlock_irqrestore(&rq->lock, flags);
1105}
1106
1107static int
1108hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1109{
1110 int cpu = (int)(long)hcpu;
1111
1112 switch (action) {
1113 case CPU_UP_CANCELED:
1114 case CPU_UP_CANCELED_FROZEN:
1115 case CPU_DOWN_PREPARE:
1116 case CPU_DOWN_PREPARE_FROZEN:
1117 case CPU_DEAD:
1118 case CPU_DEAD_FROZEN:
1119 hotplug_hrtick_disable(cpu);
1120 return NOTIFY_OK;
1121
1122 case CPU_UP_PREPARE:
1123 case CPU_UP_PREPARE_FROZEN:
1124 case CPU_DOWN_FAILED:
1125 case CPU_DOWN_FAILED_FROZEN:
1126 case CPU_ONLINE:
1127 case CPU_ONLINE_FROZEN:
1128 hotplug_hrtick_enable(cpu);
1129 return NOTIFY_OK;
1130 }
1131
1132 return NOTIFY_DONE;
1133}
1134
1135static void init_hrtick(void)
1136{
1137 hotcpu_notifier(hotplug_hrtick, 0);
1138}
81d41d7e 1139#endif /* CONFIG_SMP */
b328ca18
PZ
1140
1141static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1142{
1143 rq->hrtick_flags = 0;
1144 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1145 rq->hrtick_timer.function = hrtick;
1146 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1147}
1148
1149void hrtick_resched(void)
1150{
1151 struct rq *rq;
1152 unsigned long flags;
1153
1154 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1155 return;
1156
1157 local_irq_save(flags);
1158 rq = cpu_rq(smp_processor_id());
1159 hrtick_set(rq);
1160 local_irq_restore(flags);
1161}
1162#else
1163static inline void hrtick_clear(struct rq *rq)
1164{
1165}
1166
1167static inline void hrtick_set(struct rq *rq)
1168{
1169}
1170
1171static inline void init_rq_hrtick(struct rq *rq)
1172{
1173}
1174
1175void hrtick_resched(void)
1176{
1177}
b328ca18
PZ
1178
1179static inline void init_hrtick(void)
1180{
1181}
8f4d37ec
PZ
1182#endif
1183
c24d20db
IM
1184/*
1185 * resched_task - mark a task 'to be rescheduled now'.
1186 *
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1189 * the target CPU.
1190 */
1191#ifdef CONFIG_SMP
1192
1193#ifndef tsk_is_polling
1194#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1195#endif
1196
8f4d37ec 1197static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1198{
1199 int cpu;
1200
1201 assert_spin_locked(&task_rq(p)->lock);
1202
8f4d37ec 1203 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1204 return;
1205
8f4d37ec 1206 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1207
1208 cpu = task_cpu(p);
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /* NEED_RESCHED must be visible before we test polling */
1213 smp_mb();
1214 if (!tsk_is_polling(p))
1215 smp_send_reschedule(cpu);
1216}
1217
1218static void resched_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long flags;
1222
1223 if (!spin_trylock_irqsave(&rq->lock, flags))
1224 return;
1225 resched_task(cpu_curr(cpu));
1226 spin_unlock_irqrestore(&rq->lock, flags);
1227}
06d8308c
TG
1228
1229#ifdef CONFIG_NO_HZ
1230/*
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1239 */
1240void wake_up_idle_cpu(int cpu)
1241{
1242 struct rq *rq = cpu_rq(cpu);
1243
1244 if (cpu == smp_processor_id())
1245 return;
1246
1247 /*
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1253 */
1254 if (rq->curr != rq->idle)
1255 return;
1256
1257 /*
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1261 */
1262 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1263
1264 /* NEED_RESCHED must be visible before we test polling */
1265 smp_mb();
1266 if (!tsk_is_polling(rq->idle))
1267 smp_send_reschedule(cpu);
1268}
6d6bc0ad 1269#endif /* CONFIG_NO_HZ */
06d8308c 1270
6d6bc0ad 1271#else /* !CONFIG_SMP */
8f4d37ec 1272static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1273{
1274 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1275 set_tsk_thread_flag(p, tif_bit);
c24d20db 1276}
6d6bc0ad 1277#endif /* CONFIG_SMP */
c24d20db 1278
45bf76df
IM
1279#if BITS_PER_LONG == 32
1280# define WMULT_CONST (~0UL)
1281#else
1282# define WMULT_CONST (1UL << 32)
1283#endif
1284
1285#define WMULT_SHIFT 32
1286
194081eb
IM
1287/*
1288 * Shift right and round:
1289 */
cf2ab469 1290#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1291
a7be37ac
PZ
1292/*
1293 * delta *= weight / lw
1294 */
cb1c4fc9 1295static unsigned long
45bf76df
IM
1296calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1297 struct load_weight *lw)
1298{
1299 u64 tmp;
1300
7a232e03
LJ
1301 if (!lw->inv_weight) {
1302 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1303 lw->inv_weight = 1;
1304 else
1305 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1306 / (lw->weight+1);
1307 }
45bf76df
IM
1308
1309 tmp = (u64)delta_exec * weight;
1310 /*
1311 * Check whether we'd overflow the 64-bit multiplication:
1312 */
194081eb 1313 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1314 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1315 WMULT_SHIFT/2);
1316 else
cf2ab469 1317 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1318
ecf691da 1319 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1320}
1321
1091985b 1322static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1323{
1324 lw->weight += inc;
e89996ae 1325 lw->inv_weight = 0;
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1329{
1330 lw->weight -= dec;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
2dd73a4f
PW
1334/*
1335 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1336 * of tasks with abnormal "nice" values across CPUs the contribution that
1337 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1338 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1339 * scaled version of the new time slice allocation that they receive on time
1340 * slice expiry etc.
1341 */
1342
dd41f596
IM
1343#define WEIGHT_IDLEPRIO 2
1344#define WMULT_IDLEPRIO (1 << 31)
1345
1346/*
1347 * Nice levels are multiplicative, with a gentle 10% change for every
1348 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1349 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1350 * that remained on nice 0.
1351 *
1352 * The "10% effect" is relative and cumulative: from _any_ nice level,
1353 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1354 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1355 * If a task goes up by ~10% and another task goes down by ~10% then
1356 * the relative distance between them is ~25%.)
dd41f596
IM
1357 */
1358static const int prio_to_weight[40] = {
254753dc
IM
1359 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1360 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1361 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1362 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1363 /* 0 */ 1024, 820, 655, 526, 423,
1364 /* 5 */ 335, 272, 215, 172, 137,
1365 /* 10 */ 110, 87, 70, 56, 45,
1366 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1367};
1368
5714d2de
IM
1369/*
1370 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1371 *
1372 * In cases where the weight does not change often, we can use the
1373 * precalculated inverse to speed up arithmetics by turning divisions
1374 * into multiplications:
1375 */
dd41f596 1376static const u32 prio_to_wmult[40] = {
254753dc
IM
1377 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1378 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1379 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1380 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1381 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1382 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1383 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1384 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1385};
2dd73a4f 1386
dd41f596
IM
1387static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1388
1389/*
1390 * runqueue iterator, to support SMP load-balancing between different
1391 * scheduling classes, without having to expose their internal data
1392 * structures to the load-balancing proper:
1393 */
1394struct rq_iterator {
1395 void *arg;
1396 struct task_struct *(*start)(void *);
1397 struct task_struct *(*next)(void *);
1398};
1399
e1d1484f
PW
1400#ifdef CONFIG_SMP
1401static unsigned long
1402balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1403 unsigned long max_load_move, struct sched_domain *sd,
1404 enum cpu_idle_type idle, int *all_pinned,
1405 int *this_best_prio, struct rq_iterator *iterator);
1406
1407static int
1408iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 struct sched_domain *sd, enum cpu_idle_type idle,
1410 struct rq_iterator *iterator);
e1d1484f 1411#endif
dd41f596 1412
d842de87
SV
1413#ifdef CONFIG_CGROUP_CPUACCT
1414static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1415#else
1416static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1417#endif
1418
18d95a28
PZ
1419static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1420{
1421 update_load_add(&rq->load, load);
1422}
1423
1424static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1425{
1426 update_load_sub(&rq->load, load);
1427}
1428
e7693a36
GH
1429#ifdef CONFIG_SMP
1430static unsigned long source_load(int cpu, int type);
1431static unsigned long target_load(int cpu, int type);
e7693a36 1432static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
c09595f6 1433
a8a51d5e
PZ
1434static unsigned long cpu_avg_load_per_task(int cpu)
1435{
1436 struct rq *rq = cpu_rq(cpu);
1437
1438 if (rq->nr_running)
1439 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1440
1441 return rq->avg_load_per_task;
1442}
1443
c09595f6
PZ
1444#ifdef CONFIG_FAIR_GROUP_SCHED
1445
c8cba857 1446typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
c09595f6
PZ
1447
1448/*
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1451 */
c8cba857
PZ
1452static void
1453walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
c09595f6
PZ
1454{
1455 struct task_group *parent, *child;
1456
1457 rcu_read_lock();
1458 parent = &root_task_group;
1459down:
b6a86c74 1460 (*down)(parent, cpu, sd);
c09595f6
PZ
1461 list_for_each_entry_rcu(child, &parent->children, siblings) {
1462 parent = child;
1463 goto down;
1464
1465up:
1466 continue;
1467 }
b6a86c74 1468 (*up)(parent, cpu, sd);
c09595f6
PZ
1469
1470 child = parent;
1471 parent = parent->parent;
1472 if (parent)
1473 goto up;
1474 rcu_read_unlock();
1475}
1476
c09595f6
PZ
1477static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1478
1479/*
1480 * Calculate and set the cpu's group shares.
1481 */
1482static void
b6a86c74 1483__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1484 unsigned long sd_shares, unsigned long sd_rq_weight)
c09595f6
PZ
1485{
1486 int boost = 0;
1487 unsigned long shares;
1488 unsigned long rq_weight;
1489
c8cba857 1490 if (!tg->se[cpu])
c09595f6
PZ
1491 return;
1492
c8cba857 1493 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1494
1495 /*
1496 * If there are currently no tasks on the cpu pretend there is one of
1497 * average load so that when a new task gets to run here it will not
1498 * get delayed by group starvation.
1499 */
1500 if (!rq_weight) {
1501 boost = 1;
1502 rq_weight = NICE_0_LOAD;
1503 }
1504
c8cba857
PZ
1505 if (unlikely(rq_weight > sd_rq_weight))
1506 rq_weight = sd_rq_weight;
1507
c09595f6
PZ
1508 /*
1509 * \Sum shares * rq_weight
1510 * shares = -----------------------
1511 * \Sum rq_weight
1512 *
1513 */
c8cba857 1514 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1515
1516 /*
1517 * record the actual number of shares, not the boosted amount.
1518 */
c8cba857 1519 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
c09595f6
PZ
1520
1521 if (shares < MIN_SHARES)
1522 shares = MIN_SHARES;
1523 else if (shares > MAX_SHARES)
1524 shares = MAX_SHARES;
1525
c8cba857 1526 __set_se_shares(tg->se[cpu], shares);
c09595f6
PZ
1527}
1528
1529/*
c8cba857
PZ
1530 * Re-compute the task group their per cpu shares over the given domain.
1531 * This needs to be done in a bottom-up fashion because the rq weight of a
1532 * parent group depends on the shares of its child groups.
c09595f6
PZ
1533 */
1534static void
c8cba857 1535tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1536{
c8cba857
PZ
1537 unsigned long rq_weight = 0;
1538 unsigned long shares = 0;
1539 int i;
c09595f6 1540
c8cba857
PZ
1541 for_each_cpu_mask(i, sd->span) {
1542 rq_weight += tg->cfs_rq[i]->load.weight;
1543 shares += tg->cfs_rq[i]->shares;
c09595f6 1544 }
c09595f6 1545
c8cba857
PZ
1546 if ((!shares && rq_weight) || shares > tg->shares)
1547 shares = tg->shares;
1548
1549 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1550 shares = tg->shares;
c09595f6 1551
cd80917e
PZ
1552 if (!rq_weight)
1553 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1554
c09595f6
PZ
1555 for_each_cpu_mask(i, sd->span) {
1556 struct rq *rq = cpu_rq(i);
1557 unsigned long flags;
1558
1559 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1560 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1561 spin_unlock_irqrestore(&rq->lock, flags);
1562 }
c09595f6
PZ
1563}
1564
1565/*
c8cba857
PZ
1566 * Compute the cpu's hierarchical load factor for each task group.
1567 * This needs to be done in a top-down fashion because the load of a child
1568 * group is a fraction of its parents load.
c09595f6 1569 */
b6a86c74 1570static void
c8cba857 1571tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1572{
c8cba857 1573 unsigned long load;
c09595f6 1574
c8cba857
PZ
1575 if (!tg->parent) {
1576 load = cpu_rq(cpu)->load.weight;
1577 } else {
1578 load = tg->parent->cfs_rq[cpu]->h_load;
1579 load *= tg->cfs_rq[cpu]->shares;
1580 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1581 }
c09595f6 1582
c8cba857 1583 tg->cfs_rq[cpu]->h_load = load;
c09595f6
PZ
1584}
1585
c8cba857
PZ
1586static void
1587tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1588{
c09595f6
PZ
1589}
1590
c8cba857 1591static void update_shares(struct sched_domain *sd)
4d8d595d 1592{
c8cba857 1593 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
4d8d595d
PZ
1594}
1595
3e5459b4
PZ
1596static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1597{
1598 spin_unlock(&rq->lock);
1599 update_shares(sd);
1600 spin_lock(&rq->lock);
1601}
1602
c8cba857 1603static void update_h_load(int cpu)
c09595f6 1604{
c8cba857 1605 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
c09595f6
PZ
1606}
1607
1608static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1609{
1610 cfs_rq->shares = shares;
1611}
1612
1613#else
1614
c8cba857 1615static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1616{
1617}
1618
3e5459b4
PZ
1619static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1620{
1621}
1622
c09595f6
PZ
1623#endif
1624
18d95a28
PZ
1625#endif
1626
dd41f596 1627#include "sched_stats.h"
dd41f596 1628#include "sched_idletask.c"
5522d5d5
IM
1629#include "sched_fair.c"
1630#include "sched_rt.c"
dd41f596
IM
1631#ifdef CONFIG_SCHED_DEBUG
1632# include "sched_debug.c"
1633#endif
1634
1635#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1636#define for_each_class(class) \
1637 for (class = sched_class_highest; class; class = class->next)
dd41f596 1638
c09595f6 1639static void inc_nr_running(struct rq *rq)
9c217245
IM
1640{
1641 rq->nr_running++;
9c217245
IM
1642}
1643
c09595f6 1644static void dec_nr_running(struct rq *rq)
9c217245
IM
1645{
1646 rq->nr_running--;
9c217245
IM
1647}
1648
45bf76df
IM
1649static void set_load_weight(struct task_struct *p)
1650{
1651 if (task_has_rt_policy(p)) {
dd41f596
IM
1652 p->se.load.weight = prio_to_weight[0] * 2;
1653 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1654 return;
1655 }
45bf76df 1656
dd41f596
IM
1657 /*
1658 * SCHED_IDLE tasks get minimal weight:
1659 */
1660 if (p->policy == SCHED_IDLE) {
1661 p->se.load.weight = WEIGHT_IDLEPRIO;
1662 p->se.load.inv_weight = WMULT_IDLEPRIO;
1663 return;
1664 }
71f8bd46 1665
dd41f596
IM
1666 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1667 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1668}
1669
8159f87e 1670static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1671{
dd41f596 1672 sched_info_queued(p);
fd390f6a 1673 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1674 p->se.on_rq = 1;
71f8bd46
IM
1675}
1676
69be72c1 1677static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1678{
f02231e5 1679 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1680 p->se.on_rq = 0;
71f8bd46
IM
1681}
1682
14531189 1683/*
dd41f596 1684 * __normal_prio - return the priority that is based on the static prio
14531189 1685 */
14531189
IM
1686static inline int __normal_prio(struct task_struct *p)
1687{
dd41f596 1688 return p->static_prio;
14531189
IM
1689}
1690
b29739f9
IM
1691/*
1692 * Calculate the expected normal priority: i.e. priority
1693 * without taking RT-inheritance into account. Might be
1694 * boosted by interactivity modifiers. Changes upon fork,
1695 * setprio syscalls, and whenever the interactivity
1696 * estimator recalculates.
1697 */
36c8b586 1698static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1699{
1700 int prio;
1701
e05606d3 1702 if (task_has_rt_policy(p))
b29739f9
IM
1703 prio = MAX_RT_PRIO-1 - p->rt_priority;
1704 else
1705 prio = __normal_prio(p);
1706 return prio;
1707}
1708
1709/*
1710 * Calculate the current priority, i.e. the priority
1711 * taken into account by the scheduler. This value might
1712 * be boosted by RT tasks, or might be boosted by
1713 * interactivity modifiers. Will be RT if the task got
1714 * RT-boosted. If not then it returns p->normal_prio.
1715 */
36c8b586 1716static int effective_prio(struct task_struct *p)
b29739f9
IM
1717{
1718 p->normal_prio = normal_prio(p);
1719 /*
1720 * If we are RT tasks or we were boosted to RT priority,
1721 * keep the priority unchanged. Otherwise, update priority
1722 * to the normal priority:
1723 */
1724 if (!rt_prio(p->prio))
1725 return p->normal_prio;
1726 return p->prio;
1727}
1728
1da177e4 1729/*
dd41f596 1730 * activate_task - move a task to the runqueue.
1da177e4 1731 */
dd41f596 1732static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1733{
d9514f6c 1734 if (task_contributes_to_load(p))
dd41f596 1735 rq->nr_uninterruptible--;
1da177e4 1736
8159f87e 1737 enqueue_task(rq, p, wakeup);
c09595f6 1738 inc_nr_running(rq);
1da177e4
LT
1739}
1740
1da177e4
LT
1741/*
1742 * deactivate_task - remove a task from the runqueue.
1743 */
2e1cb74a 1744static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1745{
d9514f6c 1746 if (task_contributes_to_load(p))
dd41f596
IM
1747 rq->nr_uninterruptible++;
1748
69be72c1 1749 dequeue_task(rq, p, sleep);
c09595f6 1750 dec_nr_running(rq);
1da177e4
LT
1751}
1752
1da177e4
LT
1753/**
1754 * task_curr - is this task currently executing on a CPU?
1755 * @p: the task in question.
1756 */
36c8b586 1757inline int task_curr(const struct task_struct *p)
1da177e4
LT
1758{
1759 return cpu_curr(task_cpu(p)) == p;
1760}
1761
dd41f596
IM
1762static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1763{
6f505b16 1764 set_task_rq(p, cpu);
dd41f596 1765#ifdef CONFIG_SMP
ce96b5ac
DA
1766 /*
1767 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1768 * successfuly executed on another CPU. We must ensure that updates of
1769 * per-task data have been completed by this moment.
1770 */
1771 smp_wmb();
dd41f596 1772 task_thread_info(p)->cpu = cpu;
dd41f596 1773#endif
2dd73a4f
PW
1774}
1775
cb469845
SR
1776static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1777 const struct sched_class *prev_class,
1778 int oldprio, int running)
1779{
1780 if (prev_class != p->sched_class) {
1781 if (prev_class->switched_from)
1782 prev_class->switched_from(rq, p, running);
1783 p->sched_class->switched_to(rq, p, running);
1784 } else
1785 p->sched_class->prio_changed(rq, p, oldprio, running);
1786}
1787
1da177e4 1788#ifdef CONFIG_SMP
c65cc870 1789
e958b360
TG
1790/* Used instead of source_load when we know the type == 0 */
1791static unsigned long weighted_cpuload(const int cpu)
1792{
1793 return cpu_rq(cpu)->load.weight;
1794}
1795
cc367732
IM
1796/*
1797 * Is this task likely cache-hot:
1798 */
e7693a36 1799static int
cc367732
IM
1800task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1801{
1802 s64 delta;
1803
f540a608
IM
1804 /*
1805 * Buddy candidates are cache hot:
1806 */
d25ce4cd 1807 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1808 return 1;
1809
cc367732
IM
1810 if (p->sched_class != &fair_sched_class)
1811 return 0;
1812
6bc1665b
IM
1813 if (sysctl_sched_migration_cost == -1)
1814 return 1;
1815 if (sysctl_sched_migration_cost == 0)
1816 return 0;
1817
cc367732
IM
1818 delta = now - p->se.exec_start;
1819
1820 return delta < (s64)sysctl_sched_migration_cost;
1821}
1822
1823
dd41f596 1824void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1825{
dd41f596
IM
1826 int old_cpu = task_cpu(p);
1827 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1828 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1829 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1830 u64 clock_offset;
dd41f596
IM
1831
1832 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1833
1834#ifdef CONFIG_SCHEDSTATS
1835 if (p->se.wait_start)
1836 p->se.wait_start -= clock_offset;
dd41f596
IM
1837 if (p->se.sleep_start)
1838 p->se.sleep_start -= clock_offset;
1839 if (p->se.block_start)
1840 p->se.block_start -= clock_offset;
cc367732
IM
1841 if (old_cpu != new_cpu) {
1842 schedstat_inc(p, se.nr_migrations);
1843 if (task_hot(p, old_rq->clock, NULL))
1844 schedstat_inc(p, se.nr_forced2_migrations);
1845 }
6cfb0d5d 1846#endif
2830cf8c
SV
1847 p->se.vruntime -= old_cfsrq->min_vruntime -
1848 new_cfsrq->min_vruntime;
dd41f596
IM
1849
1850 __set_task_cpu(p, new_cpu);
c65cc870
IM
1851}
1852
70b97a7f 1853struct migration_req {
1da177e4 1854 struct list_head list;
1da177e4 1855
36c8b586 1856 struct task_struct *task;
1da177e4
LT
1857 int dest_cpu;
1858
1da177e4 1859 struct completion done;
70b97a7f 1860};
1da177e4
LT
1861
1862/*
1863 * The task's runqueue lock must be held.
1864 * Returns true if you have to wait for migration thread.
1865 */
36c8b586 1866static int
70b97a7f 1867migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1868{
70b97a7f 1869 struct rq *rq = task_rq(p);
1da177e4
LT
1870
1871 /*
1872 * If the task is not on a runqueue (and not running), then
1873 * it is sufficient to simply update the task's cpu field.
1874 */
dd41f596 1875 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1876 set_task_cpu(p, dest_cpu);
1877 return 0;
1878 }
1879
1880 init_completion(&req->done);
1da177e4
LT
1881 req->task = p;
1882 req->dest_cpu = dest_cpu;
1883 list_add(&req->list, &rq->migration_queue);
48f24c4d 1884
1da177e4
LT
1885 return 1;
1886}
1887
1888/*
1889 * wait_task_inactive - wait for a thread to unschedule.
1890 *
1891 * The caller must ensure that the task *will* unschedule sometime soon,
1892 * else this function might spin for a *long* time. This function can't
1893 * be called with interrupts off, or it may introduce deadlock with
1894 * smp_call_function() if an IPI is sent by the same process we are
1895 * waiting to become inactive.
1896 */
36c8b586 1897void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1898{
1899 unsigned long flags;
dd41f596 1900 int running, on_rq;
70b97a7f 1901 struct rq *rq;
1da177e4 1902
3a5c359a
AK
1903 for (;;) {
1904 /*
1905 * We do the initial early heuristics without holding
1906 * any task-queue locks at all. We'll only try to get
1907 * the runqueue lock when things look like they will
1908 * work out!
1909 */
1910 rq = task_rq(p);
fa490cfd 1911
3a5c359a
AK
1912 /*
1913 * If the task is actively running on another CPU
1914 * still, just relax and busy-wait without holding
1915 * any locks.
1916 *
1917 * NOTE! Since we don't hold any locks, it's not
1918 * even sure that "rq" stays as the right runqueue!
1919 * But we don't care, since "task_running()" will
1920 * return false if the runqueue has changed and p
1921 * is actually now running somewhere else!
1922 */
1923 while (task_running(rq, p))
1924 cpu_relax();
fa490cfd 1925
3a5c359a
AK
1926 /*
1927 * Ok, time to look more closely! We need the rq
1928 * lock now, to be *sure*. If we're wrong, we'll
1929 * just go back and repeat.
1930 */
1931 rq = task_rq_lock(p, &flags);
1932 running = task_running(rq, p);
1933 on_rq = p->se.on_rq;
1934 task_rq_unlock(rq, &flags);
fa490cfd 1935
3a5c359a
AK
1936 /*
1937 * Was it really running after all now that we
1938 * checked with the proper locks actually held?
1939 *
1940 * Oops. Go back and try again..
1941 */
1942 if (unlikely(running)) {
1943 cpu_relax();
1944 continue;
1945 }
fa490cfd 1946
3a5c359a
AK
1947 /*
1948 * It's not enough that it's not actively running,
1949 * it must be off the runqueue _entirely_, and not
1950 * preempted!
1951 *
1952 * So if it wa still runnable (but just not actively
1953 * running right now), it's preempted, and we should
1954 * yield - it could be a while.
1955 */
1956 if (unlikely(on_rq)) {
1957 schedule_timeout_uninterruptible(1);
1958 continue;
1959 }
fa490cfd 1960
3a5c359a
AK
1961 /*
1962 * Ahh, all good. It wasn't running, and it wasn't
1963 * runnable, which means that it will never become
1964 * running in the future either. We're all done!
1965 */
1966 break;
1967 }
1da177e4
LT
1968}
1969
1970/***
1971 * kick_process - kick a running thread to enter/exit the kernel
1972 * @p: the to-be-kicked thread
1973 *
1974 * Cause a process which is running on another CPU to enter
1975 * kernel-mode, without any delay. (to get signals handled.)
1976 *
1977 * NOTE: this function doesnt have to take the runqueue lock,
1978 * because all it wants to ensure is that the remote task enters
1979 * the kernel. If the IPI races and the task has been migrated
1980 * to another CPU then no harm is done and the purpose has been
1981 * achieved as well.
1982 */
36c8b586 1983void kick_process(struct task_struct *p)
1da177e4
LT
1984{
1985 int cpu;
1986
1987 preempt_disable();
1988 cpu = task_cpu(p);
1989 if ((cpu != smp_processor_id()) && task_curr(p))
1990 smp_send_reschedule(cpu);
1991 preempt_enable();
1992}
1993
1994/*
2dd73a4f
PW
1995 * Return a low guess at the load of a migration-source cpu weighted
1996 * according to the scheduling class and "nice" value.
1da177e4
LT
1997 *
1998 * We want to under-estimate the load of migration sources, to
1999 * balance conservatively.
2000 */
a9957449 2001static unsigned long source_load(int cpu, int type)
1da177e4 2002{
70b97a7f 2003 struct rq *rq = cpu_rq(cpu);
dd41f596 2004 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2005
93b75217 2006 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2007 return total;
b910472d 2008
dd41f596 2009 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2010}
2011
2012/*
2dd73a4f
PW
2013 * Return a high guess at the load of a migration-target cpu weighted
2014 * according to the scheduling class and "nice" value.
1da177e4 2015 */
a9957449 2016static unsigned long target_load(int cpu, int type)
1da177e4 2017{
70b97a7f 2018 struct rq *rq = cpu_rq(cpu);
dd41f596 2019 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2020
93b75217 2021 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2022 return total;
3b0bd9bc 2023
dd41f596 2024 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2025}
2026
147cbb4b
NP
2027/*
2028 * find_idlest_group finds and returns the least busy CPU group within the
2029 * domain.
2030 */
2031static struct sched_group *
2032find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2033{
2034 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2035 unsigned long min_load = ULONG_MAX, this_load = 0;
2036 int load_idx = sd->forkexec_idx;
2037 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2038
2039 do {
2040 unsigned long load, avg_load;
2041 int local_group;
2042 int i;
2043
da5a5522
BD
2044 /* Skip over this group if it has no CPUs allowed */
2045 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2046 continue;
da5a5522 2047
147cbb4b 2048 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2049
2050 /* Tally up the load of all CPUs in the group */
2051 avg_load = 0;
2052
2053 for_each_cpu_mask(i, group->cpumask) {
2054 /* Bias balancing toward cpus of our domain */
2055 if (local_group)
2056 load = source_load(i, load_idx);
2057 else
2058 load = target_load(i, load_idx);
2059
2060 avg_load += load;
2061 }
2062
2063 /* Adjust by relative CPU power of the group */
5517d86b
ED
2064 avg_load = sg_div_cpu_power(group,
2065 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2066
2067 if (local_group) {
2068 this_load = avg_load;
2069 this = group;
2070 } else if (avg_load < min_load) {
2071 min_load = avg_load;
2072 idlest = group;
2073 }
3a5c359a 2074 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2075
2076 if (!idlest || 100*this_load < imbalance*min_load)
2077 return NULL;
2078 return idlest;
2079}
2080
2081/*
0feaece9 2082 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2083 */
95cdf3b7 2084static int
7c16ec58
MT
2085find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2086 cpumask_t *tmp)
147cbb4b
NP
2087{
2088 unsigned long load, min_load = ULONG_MAX;
2089 int idlest = -1;
2090 int i;
2091
da5a5522 2092 /* Traverse only the allowed CPUs */
7c16ec58 2093 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2094
7c16ec58 2095 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2096 load = weighted_cpuload(i);
147cbb4b
NP
2097
2098 if (load < min_load || (load == min_load && i == this_cpu)) {
2099 min_load = load;
2100 idlest = i;
2101 }
2102 }
2103
2104 return idlest;
2105}
2106
476d139c
NP
2107/*
2108 * sched_balance_self: balance the current task (running on cpu) in domains
2109 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2110 * SD_BALANCE_EXEC.
2111 *
2112 * Balance, ie. select the least loaded group.
2113 *
2114 * Returns the target CPU number, or the same CPU if no balancing is needed.
2115 *
2116 * preempt must be disabled.
2117 */
2118static int sched_balance_self(int cpu, int flag)
2119{
2120 struct task_struct *t = current;
2121 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2122
c96d145e 2123 for_each_domain(cpu, tmp) {
9761eea8
IM
2124 /*
2125 * If power savings logic is enabled for a domain, stop there.
2126 */
5c45bf27
SS
2127 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2128 break;
476d139c
NP
2129 if (tmp->flags & flag)
2130 sd = tmp;
c96d145e 2131 }
476d139c 2132
039a1c41
PZ
2133 if (sd)
2134 update_shares(sd);
2135
476d139c 2136 while (sd) {
7c16ec58 2137 cpumask_t span, tmpmask;
476d139c 2138 struct sched_group *group;
1a848870
SS
2139 int new_cpu, weight;
2140
2141 if (!(sd->flags & flag)) {
2142 sd = sd->child;
2143 continue;
2144 }
476d139c
NP
2145
2146 span = sd->span;
2147 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2148 if (!group) {
2149 sd = sd->child;
2150 continue;
2151 }
476d139c 2152
7c16ec58 2153 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2154 if (new_cpu == -1 || new_cpu == cpu) {
2155 /* Now try balancing at a lower domain level of cpu */
2156 sd = sd->child;
2157 continue;
2158 }
476d139c 2159
1a848870 2160 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2161 cpu = new_cpu;
476d139c
NP
2162 sd = NULL;
2163 weight = cpus_weight(span);
2164 for_each_domain(cpu, tmp) {
2165 if (weight <= cpus_weight(tmp->span))
2166 break;
2167 if (tmp->flags & flag)
2168 sd = tmp;
2169 }
2170 /* while loop will break here if sd == NULL */
2171 }
2172
2173 return cpu;
2174}
2175
2176#endif /* CONFIG_SMP */
1da177e4 2177
1da177e4
LT
2178/***
2179 * try_to_wake_up - wake up a thread
2180 * @p: the to-be-woken-up thread
2181 * @state: the mask of task states that can be woken
2182 * @sync: do a synchronous wakeup?
2183 *
2184 * Put it on the run-queue if it's not already there. The "current"
2185 * thread is always on the run-queue (except when the actual
2186 * re-schedule is in progress), and as such you're allowed to do
2187 * the simpler "current->state = TASK_RUNNING" to mark yourself
2188 * runnable without the overhead of this.
2189 *
2190 * returns failure only if the task is already active.
2191 */
36c8b586 2192static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2193{
cc367732 2194 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2195 unsigned long flags;
2196 long old_state;
70b97a7f 2197 struct rq *rq;
1da177e4 2198
b85d0667
IM
2199 if (!sched_feat(SYNC_WAKEUPS))
2200 sync = 0;
2201
04e2f174 2202 smp_wmb();
1da177e4
LT
2203 rq = task_rq_lock(p, &flags);
2204 old_state = p->state;
2205 if (!(old_state & state))
2206 goto out;
2207
dd41f596 2208 if (p->se.on_rq)
1da177e4
LT
2209 goto out_running;
2210
2211 cpu = task_cpu(p);
cc367732 2212 orig_cpu = cpu;
1da177e4
LT
2213 this_cpu = smp_processor_id();
2214
2215#ifdef CONFIG_SMP
2216 if (unlikely(task_running(rq, p)))
2217 goto out_activate;
2218
5d2f5a61
DA
2219 cpu = p->sched_class->select_task_rq(p, sync);
2220 if (cpu != orig_cpu) {
2221 set_task_cpu(p, cpu);
1da177e4
LT
2222 task_rq_unlock(rq, &flags);
2223 /* might preempt at this point */
2224 rq = task_rq_lock(p, &flags);
2225 old_state = p->state;
2226 if (!(old_state & state))
2227 goto out;
dd41f596 2228 if (p->se.on_rq)
1da177e4
LT
2229 goto out_running;
2230
2231 this_cpu = smp_processor_id();
2232 cpu = task_cpu(p);
2233 }
2234
e7693a36
GH
2235#ifdef CONFIG_SCHEDSTATS
2236 schedstat_inc(rq, ttwu_count);
2237 if (cpu == this_cpu)
2238 schedstat_inc(rq, ttwu_local);
2239 else {
2240 struct sched_domain *sd;
2241 for_each_domain(this_cpu, sd) {
2242 if (cpu_isset(cpu, sd->span)) {
2243 schedstat_inc(sd, ttwu_wake_remote);
2244 break;
2245 }
2246 }
2247 }
6d6bc0ad 2248#endif /* CONFIG_SCHEDSTATS */
e7693a36 2249
1da177e4
LT
2250out_activate:
2251#endif /* CONFIG_SMP */
cc367732
IM
2252 schedstat_inc(p, se.nr_wakeups);
2253 if (sync)
2254 schedstat_inc(p, se.nr_wakeups_sync);
2255 if (orig_cpu != cpu)
2256 schedstat_inc(p, se.nr_wakeups_migrate);
2257 if (cpu == this_cpu)
2258 schedstat_inc(p, se.nr_wakeups_local);
2259 else
2260 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2261 update_rq_clock(rq);
dd41f596 2262 activate_task(rq, p, 1);
1da177e4
LT
2263 success = 1;
2264
2265out_running:
4ae7d5ce
IM
2266 check_preempt_curr(rq, p);
2267
1da177e4 2268 p->state = TASK_RUNNING;
9a897c5a
SR
2269#ifdef CONFIG_SMP
2270 if (p->sched_class->task_wake_up)
2271 p->sched_class->task_wake_up(rq, p);
2272#endif
1da177e4
LT
2273out:
2274 task_rq_unlock(rq, &flags);
2275
2276 return success;
2277}
2278
7ad5b3a5 2279int wake_up_process(struct task_struct *p)
1da177e4 2280{
d9514f6c 2281 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2282}
1da177e4
LT
2283EXPORT_SYMBOL(wake_up_process);
2284
7ad5b3a5 2285int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2286{
2287 return try_to_wake_up(p, state, 0);
2288}
2289
1da177e4
LT
2290/*
2291 * Perform scheduler related setup for a newly forked process p.
2292 * p is forked by current.
dd41f596
IM
2293 *
2294 * __sched_fork() is basic setup used by init_idle() too:
2295 */
2296static void __sched_fork(struct task_struct *p)
2297{
dd41f596
IM
2298 p->se.exec_start = 0;
2299 p->se.sum_exec_runtime = 0;
f6cf891c 2300 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2301 p->se.last_wakeup = 0;
2302 p->se.avg_overlap = 0;
6cfb0d5d
IM
2303
2304#ifdef CONFIG_SCHEDSTATS
2305 p->se.wait_start = 0;
dd41f596
IM
2306 p->se.sum_sleep_runtime = 0;
2307 p->se.sleep_start = 0;
dd41f596
IM
2308 p->se.block_start = 0;
2309 p->se.sleep_max = 0;
2310 p->se.block_max = 0;
2311 p->se.exec_max = 0;
eba1ed4b 2312 p->se.slice_max = 0;
dd41f596 2313 p->se.wait_max = 0;
6cfb0d5d 2314#endif
476d139c 2315
fa717060 2316 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2317 p->se.on_rq = 0;
4a55bd5e 2318 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2319
e107be36
AK
2320#ifdef CONFIG_PREEMPT_NOTIFIERS
2321 INIT_HLIST_HEAD(&p->preempt_notifiers);
2322#endif
2323
1da177e4
LT
2324 /*
2325 * We mark the process as running here, but have not actually
2326 * inserted it onto the runqueue yet. This guarantees that
2327 * nobody will actually run it, and a signal or other external
2328 * event cannot wake it up and insert it on the runqueue either.
2329 */
2330 p->state = TASK_RUNNING;
dd41f596
IM
2331}
2332
2333/*
2334 * fork()/clone()-time setup:
2335 */
2336void sched_fork(struct task_struct *p, int clone_flags)
2337{
2338 int cpu = get_cpu();
2339
2340 __sched_fork(p);
2341
2342#ifdef CONFIG_SMP
2343 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2344#endif
02e4bac2 2345 set_task_cpu(p, cpu);
b29739f9
IM
2346
2347 /*
2348 * Make sure we do not leak PI boosting priority to the child:
2349 */
2350 p->prio = current->normal_prio;
2ddbf952
HS
2351 if (!rt_prio(p->prio))
2352 p->sched_class = &fair_sched_class;
b29739f9 2353
52f17b6c 2354#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2355 if (likely(sched_info_on()))
52f17b6c 2356 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2357#endif
d6077cb8 2358#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2359 p->oncpu = 0;
2360#endif
1da177e4 2361#ifdef CONFIG_PREEMPT
4866cde0 2362 /* Want to start with kernel preemption disabled. */
a1261f54 2363 task_thread_info(p)->preempt_count = 1;
1da177e4 2364#endif
476d139c 2365 put_cpu();
1da177e4
LT
2366}
2367
2368/*
2369 * wake_up_new_task - wake up a newly created task for the first time.
2370 *
2371 * This function will do some initial scheduler statistics housekeeping
2372 * that must be done for every newly created context, then puts the task
2373 * on the runqueue and wakes it.
2374 */
7ad5b3a5 2375void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2376{
2377 unsigned long flags;
dd41f596 2378 struct rq *rq;
1da177e4
LT
2379
2380 rq = task_rq_lock(p, &flags);
147cbb4b 2381 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2382 update_rq_clock(rq);
1da177e4
LT
2383
2384 p->prio = effective_prio(p);
2385
b9dca1e0 2386 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2387 activate_task(rq, p, 0);
1da177e4 2388 } else {
1da177e4 2389 /*
dd41f596
IM
2390 * Let the scheduling class do new task startup
2391 * management (if any):
1da177e4 2392 */
ee0827d8 2393 p->sched_class->task_new(rq, p);
c09595f6 2394 inc_nr_running(rq);
1da177e4 2395 }
dd41f596 2396 check_preempt_curr(rq, p);
9a897c5a
SR
2397#ifdef CONFIG_SMP
2398 if (p->sched_class->task_wake_up)
2399 p->sched_class->task_wake_up(rq, p);
2400#endif
dd41f596 2401 task_rq_unlock(rq, &flags);
1da177e4
LT
2402}
2403
e107be36
AK
2404#ifdef CONFIG_PREEMPT_NOTIFIERS
2405
2406/**
421cee29
RD
2407 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2408 * @notifier: notifier struct to register
e107be36
AK
2409 */
2410void preempt_notifier_register(struct preempt_notifier *notifier)
2411{
2412 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2413}
2414EXPORT_SYMBOL_GPL(preempt_notifier_register);
2415
2416/**
2417 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2418 * @notifier: notifier struct to unregister
e107be36
AK
2419 *
2420 * This is safe to call from within a preemption notifier.
2421 */
2422void preempt_notifier_unregister(struct preempt_notifier *notifier)
2423{
2424 hlist_del(&notifier->link);
2425}
2426EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2427
2428static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2429{
2430 struct preempt_notifier *notifier;
2431 struct hlist_node *node;
2432
2433 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2434 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2435}
2436
2437static void
2438fire_sched_out_preempt_notifiers(struct task_struct *curr,
2439 struct task_struct *next)
2440{
2441 struct preempt_notifier *notifier;
2442 struct hlist_node *node;
2443
2444 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2445 notifier->ops->sched_out(notifier, next);
2446}
2447
6d6bc0ad 2448#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2449
2450static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2451{
2452}
2453
2454static void
2455fire_sched_out_preempt_notifiers(struct task_struct *curr,
2456 struct task_struct *next)
2457{
2458}
2459
6d6bc0ad 2460#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2461
4866cde0
NP
2462/**
2463 * prepare_task_switch - prepare to switch tasks
2464 * @rq: the runqueue preparing to switch
421cee29 2465 * @prev: the current task that is being switched out
4866cde0
NP
2466 * @next: the task we are going to switch to.
2467 *
2468 * This is called with the rq lock held and interrupts off. It must
2469 * be paired with a subsequent finish_task_switch after the context
2470 * switch.
2471 *
2472 * prepare_task_switch sets up locking and calls architecture specific
2473 * hooks.
2474 */
e107be36
AK
2475static inline void
2476prepare_task_switch(struct rq *rq, struct task_struct *prev,
2477 struct task_struct *next)
4866cde0 2478{
e107be36 2479 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2480 prepare_lock_switch(rq, next);
2481 prepare_arch_switch(next);
2482}
2483
1da177e4
LT
2484/**
2485 * finish_task_switch - clean up after a task-switch
344babaa 2486 * @rq: runqueue associated with task-switch
1da177e4
LT
2487 * @prev: the thread we just switched away from.
2488 *
4866cde0
NP
2489 * finish_task_switch must be called after the context switch, paired
2490 * with a prepare_task_switch call before the context switch.
2491 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2492 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2493 *
2494 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2495 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2496 * with the lock held can cause deadlocks; see schedule() for
2497 * details.)
2498 */
a9957449 2499static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2500 __releases(rq->lock)
2501{
1da177e4 2502 struct mm_struct *mm = rq->prev_mm;
55a101f8 2503 long prev_state;
1da177e4
LT
2504
2505 rq->prev_mm = NULL;
2506
2507 /*
2508 * A task struct has one reference for the use as "current".
c394cc9f 2509 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2510 * schedule one last time. The schedule call will never return, and
2511 * the scheduled task must drop that reference.
c394cc9f 2512 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2513 * still held, otherwise prev could be scheduled on another cpu, die
2514 * there before we look at prev->state, and then the reference would
2515 * be dropped twice.
2516 * Manfred Spraul <manfred@colorfullife.com>
2517 */
55a101f8 2518 prev_state = prev->state;
4866cde0
NP
2519 finish_arch_switch(prev);
2520 finish_lock_switch(rq, prev);
9a897c5a
SR
2521#ifdef CONFIG_SMP
2522 if (current->sched_class->post_schedule)
2523 current->sched_class->post_schedule(rq);
2524#endif
e8fa1362 2525
e107be36 2526 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2527 if (mm)
2528 mmdrop(mm);
c394cc9f 2529 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2530 /*
2531 * Remove function-return probe instances associated with this
2532 * task and put them back on the free list.
9761eea8 2533 */
c6fd91f0 2534 kprobe_flush_task(prev);
1da177e4 2535 put_task_struct(prev);
c6fd91f0 2536 }
1da177e4
LT
2537}
2538
2539/**
2540 * schedule_tail - first thing a freshly forked thread must call.
2541 * @prev: the thread we just switched away from.
2542 */
36c8b586 2543asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2544 __releases(rq->lock)
2545{
70b97a7f
IM
2546 struct rq *rq = this_rq();
2547
4866cde0
NP
2548 finish_task_switch(rq, prev);
2549#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2550 /* In this case, finish_task_switch does not reenable preemption */
2551 preempt_enable();
2552#endif
1da177e4 2553 if (current->set_child_tid)
b488893a 2554 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2555}
2556
2557/*
2558 * context_switch - switch to the new MM and the new
2559 * thread's register state.
2560 */
dd41f596 2561static inline void
70b97a7f 2562context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2563 struct task_struct *next)
1da177e4 2564{
dd41f596 2565 struct mm_struct *mm, *oldmm;
1da177e4 2566
e107be36 2567 prepare_task_switch(rq, prev, next);
dd41f596
IM
2568 mm = next->mm;
2569 oldmm = prev->active_mm;
9226d125
ZA
2570 /*
2571 * For paravirt, this is coupled with an exit in switch_to to
2572 * combine the page table reload and the switch backend into
2573 * one hypercall.
2574 */
2575 arch_enter_lazy_cpu_mode();
2576
dd41f596 2577 if (unlikely(!mm)) {
1da177e4
LT
2578 next->active_mm = oldmm;
2579 atomic_inc(&oldmm->mm_count);
2580 enter_lazy_tlb(oldmm, next);
2581 } else
2582 switch_mm(oldmm, mm, next);
2583
dd41f596 2584 if (unlikely(!prev->mm)) {
1da177e4 2585 prev->active_mm = NULL;
1da177e4
LT
2586 rq->prev_mm = oldmm;
2587 }
3a5f5e48
IM
2588 /*
2589 * Since the runqueue lock will be released by the next
2590 * task (which is an invalid locking op but in the case
2591 * of the scheduler it's an obvious special-case), so we
2592 * do an early lockdep release here:
2593 */
2594#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2595 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2596#endif
1da177e4
LT
2597
2598 /* Here we just switch the register state and the stack. */
2599 switch_to(prev, next, prev);
2600
dd41f596
IM
2601 barrier();
2602 /*
2603 * this_rq must be evaluated again because prev may have moved
2604 * CPUs since it called schedule(), thus the 'rq' on its stack
2605 * frame will be invalid.
2606 */
2607 finish_task_switch(this_rq(), prev);
1da177e4
LT
2608}
2609
2610/*
2611 * nr_running, nr_uninterruptible and nr_context_switches:
2612 *
2613 * externally visible scheduler statistics: current number of runnable
2614 * threads, current number of uninterruptible-sleeping threads, total
2615 * number of context switches performed since bootup.
2616 */
2617unsigned long nr_running(void)
2618{
2619 unsigned long i, sum = 0;
2620
2621 for_each_online_cpu(i)
2622 sum += cpu_rq(i)->nr_running;
2623
2624 return sum;
2625}
2626
2627unsigned long nr_uninterruptible(void)
2628{
2629 unsigned long i, sum = 0;
2630
0a945022 2631 for_each_possible_cpu(i)
1da177e4
LT
2632 sum += cpu_rq(i)->nr_uninterruptible;
2633
2634 /*
2635 * Since we read the counters lockless, it might be slightly
2636 * inaccurate. Do not allow it to go below zero though:
2637 */
2638 if (unlikely((long)sum < 0))
2639 sum = 0;
2640
2641 return sum;
2642}
2643
2644unsigned long long nr_context_switches(void)
2645{
cc94abfc
SR
2646 int i;
2647 unsigned long long sum = 0;
1da177e4 2648
0a945022 2649 for_each_possible_cpu(i)
1da177e4
LT
2650 sum += cpu_rq(i)->nr_switches;
2651
2652 return sum;
2653}
2654
2655unsigned long nr_iowait(void)
2656{
2657 unsigned long i, sum = 0;
2658
0a945022 2659 for_each_possible_cpu(i)
1da177e4
LT
2660 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2661
2662 return sum;
2663}
2664
db1b1fef
JS
2665unsigned long nr_active(void)
2666{
2667 unsigned long i, running = 0, uninterruptible = 0;
2668
2669 for_each_online_cpu(i) {
2670 running += cpu_rq(i)->nr_running;
2671 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2672 }
2673
2674 if (unlikely((long)uninterruptible < 0))
2675 uninterruptible = 0;
2676
2677 return running + uninterruptible;
2678}
2679
48f24c4d 2680/*
dd41f596
IM
2681 * Update rq->cpu_load[] statistics. This function is usually called every
2682 * scheduler tick (TICK_NSEC).
48f24c4d 2683 */
dd41f596 2684static void update_cpu_load(struct rq *this_rq)
48f24c4d 2685{
495eca49 2686 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2687 int i, scale;
2688
2689 this_rq->nr_load_updates++;
dd41f596
IM
2690
2691 /* Update our load: */
2692 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2693 unsigned long old_load, new_load;
2694
2695 /* scale is effectively 1 << i now, and >> i divides by scale */
2696
2697 old_load = this_rq->cpu_load[i];
2698 new_load = this_load;
a25707f3
IM
2699 /*
2700 * Round up the averaging division if load is increasing. This
2701 * prevents us from getting stuck on 9 if the load is 10, for
2702 * example.
2703 */
2704 if (new_load > old_load)
2705 new_load += scale-1;
dd41f596
IM
2706 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2707 }
48f24c4d
IM
2708}
2709
dd41f596
IM
2710#ifdef CONFIG_SMP
2711
1da177e4
LT
2712/*
2713 * double_rq_lock - safely lock two runqueues
2714 *
2715 * Note this does not disable interrupts like task_rq_lock,
2716 * you need to do so manually before calling.
2717 */
70b97a7f 2718static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2719 __acquires(rq1->lock)
2720 __acquires(rq2->lock)
2721{
054b9108 2722 BUG_ON(!irqs_disabled());
1da177e4
LT
2723 if (rq1 == rq2) {
2724 spin_lock(&rq1->lock);
2725 __acquire(rq2->lock); /* Fake it out ;) */
2726 } else {
c96d145e 2727 if (rq1 < rq2) {
1da177e4
LT
2728 spin_lock(&rq1->lock);
2729 spin_lock(&rq2->lock);
2730 } else {
2731 spin_lock(&rq2->lock);
2732 spin_lock(&rq1->lock);
2733 }
2734 }
6e82a3be
IM
2735 update_rq_clock(rq1);
2736 update_rq_clock(rq2);
1da177e4
LT
2737}
2738
2739/*
2740 * double_rq_unlock - safely unlock two runqueues
2741 *
2742 * Note this does not restore interrupts like task_rq_unlock,
2743 * you need to do so manually after calling.
2744 */
70b97a7f 2745static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2746 __releases(rq1->lock)
2747 __releases(rq2->lock)
2748{
2749 spin_unlock(&rq1->lock);
2750 if (rq1 != rq2)
2751 spin_unlock(&rq2->lock);
2752 else
2753 __release(rq2->lock);
2754}
2755
2756/*
2757 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2758 */
e8fa1362 2759static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2760 __releases(this_rq->lock)
2761 __acquires(busiest->lock)
2762 __acquires(this_rq->lock)
2763{
e8fa1362
SR
2764 int ret = 0;
2765
054b9108
KK
2766 if (unlikely(!irqs_disabled())) {
2767 /* printk() doesn't work good under rq->lock */
2768 spin_unlock(&this_rq->lock);
2769 BUG_ON(1);
2770 }
1da177e4 2771 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2772 if (busiest < this_rq) {
1da177e4
LT
2773 spin_unlock(&this_rq->lock);
2774 spin_lock(&busiest->lock);
2775 spin_lock(&this_rq->lock);
e8fa1362 2776 ret = 1;
1da177e4
LT
2777 } else
2778 spin_lock(&busiest->lock);
2779 }
e8fa1362 2780 return ret;
1da177e4
LT
2781}
2782
1da177e4
LT
2783/*
2784 * If dest_cpu is allowed for this process, migrate the task to it.
2785 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2786 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2787 * the cpu_allowed mask is restored.
2788 */
36c8b586 2789static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2790{
70b97a7f 2791 struct migration_req req;
1da177e4 2792 unsigned long flags;
70b97a7f 2793 struct rq *rq;
1da177e4
LT
2794
2795 rq = task_rq_lock(p, &flags);
2796 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2797 || unlikely(cpu_is_offline(dest_cpu)))
2798 goto out;
2799
2800 /* force the process onto the specified CPU */
2801 if (migrate_task(p, dest_cpu, &req)) {
2802 /* Need to wait for migration thread (might exit: take ref). */
2803 struct task_struct *mt = rq->migration_thread;
36c8b586 2804
1da177e4
LT
2805 get_task_struct(mt);
2806 task_rq_unlock(rq, &flags);
2807 wake_up_process(mt);
2808 put_task_struct(mt);
2809 wait_for_completion(&req.done);
36c8b586 2810
1da177e4
LT
2811 return;
2812 }
2813out:
2814 task_rq_unlock(rq, &flags);
2815}
2816
2817/*
476d139c
NP
2818 * sched_exec - execve() is a valuable balancing opportunity, because at
2819 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2820 */
2821void sched_exec(void)
2822{
1da177e4 2823 int new_cpu, this_cpu = get_cpu();
476d139c 2824 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2825 put_cpu();
476d139c
NP
2826 if (new_cpu != this_cpu)
2827 sched_migrate_task(current, new_cpu);
1da177e4
LT
2828}
2829
2830/*
2831 * pull_task - move a task from a remote runqueue to the local runqueue.
2832 * Both runqueues must be locked.
2833 */
dd41f596
IM
2834static void pull_task(struct rq *src_rq, struct task_struct *p,
2835 struct rq *this_rq, int this_cpu)
1da177e4 2836{
2e1cb74a 2837 deactivate_task(src_rq, p, 0);
1da177e4 2838 set_task_cpu(p, this_cpu);
dd41f596 2839 activate_task(this_rq, p, 0);
1da177e4
LT
2840 /*
2841 * Note that idle threads have a prio of MAX_PRIO, for this test
2842 * to be always true for them.
2843 */
dd41f596 2844 check_preempt_curr(this_rq, p);
1da177e4
LT
2845}
2846
2847/*
2848 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2849 */
858119e1 2850static
70b97a7f 2851int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2852 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2853 int *all_pinned)
1da177e4
LT
2854{
2855 /*
2856 * We do not migrate tasks that are:
2857 * 1) running (obviously), or
2858 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2859 * 3) are cache-hot on their current CPU.
2860 */
cc367732
IM
2861 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2862 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2863 return 0;
cc367732 2864 }
81026794
NP
2865 *all_pinned = 0;
2866
cc367732
IM
2867 if (task_running(rq, p)) {
2868 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2869 return 0;
cc367732 2870 }
1da177e4 2871
da84d961
IM
2872 /*
2873 * Aggressive migration if:
2874 * 1) task is cache cold, or
2875 * 2) too many balance attempts have failed.
2876 */
2877
6bc1665b
IM
2878 if (!task_hot(p, rq->clock, sd) ||
2879 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2880#ifdef CONFIG_SCHEDSTATS
cc367732 2881 if (task_hot(p, rq->clock, sd)) {
da84d961 2882 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2883 schedstat_inc(p, se.nr_forced_migrations);
2884 }
da84d961
IM
2885#endif
2886 return 1;
2887 }
2888
cc367732
IM
2889 if (task_hot(p, rq->clock, sd)) {
2890 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2891 return 0;
cc367732 2892 }
1da177e4
LT
2893 return 1;
2894}
2895
e1d1484f
PW
2896static unsigned long
2897balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2898 unsigned long max_load_move, struct sched_domain *sd,
2899 enum cpu_idle_type idle, int *all_pinned,
2900 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2901{
051c6764 2902 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2903 struct task_struct *p;
2904 long rem_load_move = max_load_move;
1da177e4 2905
e1d1484f 2906 if (max_load_move == 0)
1da177e4
LT
2907 goto out;
2908
81026794
NP
2909 pinned = 1;
2910
1da177e4 2911 /*
dd41f596 2912 * Start the load-balancing iterator:
1da177e4 2913 */
dd41f596
IM
2914 p = iterator->start(iterator->arg);
2915next:
b82d9fdd 2916 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2917 goto out;
051c6764
PZ
2918
2919 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2920 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2921 p = iterator->next(iterator->arg);
2922 goto next;
1da177e4
LT
2923 }
2924
dd41f596 2925 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2926 pulled++;
dd41f596 2927 rem_load_move -= p->se.load.weight;
1da177e4 2928
2dd73a4f 2929 /*
b82d9fdd 2930 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2931 */
e1d1484f 2932 if (rem_load_move > 0) {
a4ac01c3
PW
2933 if (p->prio < *this_best_prio)
2934 *this_best_prio = p->prio;
dd41f596
IM
2935 p = iterator->next(iterator->arg);
2936 goto next;
1da177e4
LT
2937 }
2938out:
2939 /*
e1d1484f 2940 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2941 * so we can safely collect pull_task() stats here rather than
2942 * inside pull_task().
2943 */
2944 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2945
2946 if (all_pinned)
2947 *all_pinned = pinned;
e1d1484f
PW
2948
2949 return max_load_move - rem_load_move;
1da177e4
LT
2950}
2951
dd41f596 2952/*
43010659
PW
2953 * move_tasks tries to move up to max_load_move weighted load from busiest to
2954 * this_rq, as part of a balancing operation within domain "sd".
2955 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2956 *
2957 * Called with both runqueues locked.
2958 */
2959static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2960 unsigned long max_load_move,
dd41f596
IM
2961 struct sched_domain *sd, enum cpu_idle_type idle,
2962 int *all_pinned)
2963{
5522d5d5 2964 const struct sched_class *class = sched_class_highest;
43010659 2965 unsigned long total_load_moved = 0;
a4ac01c3 2966 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2967
2968 do {
43010659
PW
2969 total_load_moved +=
2970 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2971 max_load_move - total_load_moved,
a4ac01c3 2972 sd, idle, all_pinned, &this_best_prio);
dd41f596 2973 class = class->next;
43010659 2974 } while (class && max_load_move > total_load_moved);
dd41f596 2975
43010659
PW
2976 return total_load_moved > 0;
2977}
2978
e1d1484f
PW
2979static int
2980iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2981 struct sched_domain *sd, enum cpu_idle_type idle,
2982 struct rq_iterator *iterator)
2983{
2984 struct task_struct *p = iterator->start(iterator->arg);
2985 int pinned = 0;
2986
2987 while (p) {
2988 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2989 pull_task(busiest, p, this_rq, this_cpu);
2990 /*
2991 * Right now, this is only the second place pull_task()
2992 * is called, so we can safely collect pull_task()
2993 * stats here rather than inside pull_task().
2994 */
2995 schedstat_inc(sd, lb_gained[idle]);
2996
2997 return 1;
2998 }
2999 p = iterator->next(iterator->arg);
3000 }
3001
3002 return 0;
3003}
3004
43010659
PW
3005/*
3006 * move_one_task tries to move exactly one task from busiest to this_rq, as
3007 * part of active balancing operations within "domain".
3008 * Returns 1 if successful and 0 otherwise.
3009 *
3010 * Called with both runqueues locked.
3011 */
3012static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3013 struct sched_domain *sd, enum cpu_idle_type idle)
3014{
5522d5d5 3015 const struct sched_class *class;
43010659
PW
3016
3017 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3018 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3019 return 1;
3020
3021 return 0;
dd41f596
IM
3022}
3023
1da177e4
LT
3024/*
3025 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3026 * domain. It calculates and returns the amount of weighted load which
3027 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3028 */
3029static struct sched_group *
3030find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3031 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3032 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3033{
3034 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3035 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3036 unsigned long max_pull;
2dd73a4f
PW
3037 unsigned long busiest_load_per_task, busiest_nr_running;
3038 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3039 int load_idx, group_imb = 0;
5c45bf27
SS
3040#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3041 int power_savings_balance = 1;
3042 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3043 unsigned long min_nr_running = ULONG_MAX;
3044 struct sched_group *group_min = NULL, *group_leader = NULL;
3045#endif
1da177e4
LT
3046
3047 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3048 busiest_load_per_task = busiest_nr_running = 0;
3049 this_load_per_task = this_nr_running = 0;
408ed066 3050
d15bcfdb 3051 if (idle == CPU_NOT_IDLE)
7897986b 3052 load_idx = sd->busy_idx;
d15bcfdb 3053 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3054 load_idx = sd->newidle_idx;
3055 else
3056 load_idx = sd->idle_idx;
1da177e4
LT
3057
3058 do {
908a7c1b 3059 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3060 int local_group;
3061 int i;
908a7c1b 3062 int __group_imb = 0;
783609c6 3063 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3064 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3065 unsigned long sum_avg_load_per_task;
3066 unsigned long avg_load_per_task;
1da177e4
LT
3067
3068 local_group = cpu_isset(this_cpu, group->cpumask);
3069
783609c6
SS
3070 if (local_group)
3071 balance_cpu = first_cpu(group->cpumask);
3072
1da177e4 3073 /* Tally up the load of all CPUs in the group */
2dd73a4f 3074 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3075 sum_avg_load_per_task = avg_load_per_task = 0;
3076
908a7c1b
KC
3077 max_cpu_load = 0;
3078 min_cpu_load = ~0UL;
1da177e4
LT
3079
3080 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3081 struct rq *rq;
3082
3083 if (!cpu_isset(i, *cpus))
3084 continue;
3085
3086 rq = cpu_rq(i);
2dd73a4f 3087
9439aab8 3088 if (*sd_idle && rq->nr_running)
5969fe06
NP
3089 *sd_idle = 0;
3090
1da177e4 3091 /* Bias balancing toward cpus of our domain */
783609c6
SS
3092 if (local_group) {
3093 if (idle_cpu(i) && !first_idle_cpu) {
3094 first_idle_cpu = 1;
3095 balance_cpu = i;
3096 }
3097
a2000572 3098 load = target_load(i, load_idx);
908a7c1b 3099 } else {
a2000572 3100 load = source_load(i, load_idx);
908a7c1b
KC
3101 if (load > max_cpu_load)
3102 max_cpu_load = load;
3103 if (min_cpu_load > load)
3104 min_cpu_load = load;
3105 }
1da177e4
LT
3106
3107 avg_load += load;
2dd73a4f 3108 sum_nr_running += rq->nr_running;
dd41f596 3109 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3110
3111 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3112 }
3113
783609c6
SS
3114 /*
3115 * First idle cpu or the first cpu(busiest) in this sched group
3116 * is eligible for doing load balancing at this and above
9439aab8
SS
3117 * domains. In the newly idle case, we will allow all the cpu's
3118 * to do the newly idle load balance.
783609c6 3119 */
9439aab8
SS
3120 if (idle != CPU_NEWLY_IDLE && local_group &&
3121 balance_cpu != this_cpu && balance) {
783609c6
SS
3122 *balance = 0;
3123 goto ret;
3124 }
3125
1da177e4 3126 total_load += avg_load;
5517d86b 3127 total_pwr += group->__cpu_power;
1da177e4
LT
3128
3129 /* Adjust by relative CPU power of the group */
5517d86b
ED
3130 avg_load = sg_div_cpu_power(group,
3131 avg_load * SCHED_LOAD_SCALE);
1da177e4 3132
408ed066
PZ
3133
3134 /*
3135 * Consider the group unbalanced when the imbalance is larger
3136 * than the average weight of two tasks.
3137 *
3138 * APZ: with cgroup the avg task weight can vary wildly and
3139 * might not be a suitable number - should we keep a
3140 * normalized nr_running number somewhere that negates
3141 * the hierarchy?
3142 */
3143 avg_load_per_task = sg_div_cpu_power(group,
3144 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3145
3146 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3147 __group_imb = 1;
3148
5517d86b 3149 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3150
1da177e4
LT
3151 if (local_group) {
3152 this_load = avg_load;
3153 this = group;
2dd73a4f
PW
3154 this_nr_running = sum_nr_running;
3155 this_load_per_task = sum_weighted_load;
3156 } else if (avg_load > max_load &&
908a7c1b 3157 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3158 max_load = avg_load;
3159 busiest = group;
2dd73a4f
PW
3160 busiest_nr_running = sum_nr_running;
3161 busiest_load_per_task = sum_weighted_load;
908a7c1b 3162 group_imb = __group_imb;
1da177e4 3163 }
5c45bf27
SS
3164
3165#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3166 /*
3167 * Busy processors will not participate in power savings
3168 * balance.
3169 */
dd41f596
IM
3170 if (idle == CPU_NOT_IDLE ||
3171 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3172 goto group_next;
5c45bf27
SS
3173
3174 /*
3175 * If the local group is idle or completely loaded
3176 * no need to do power savings balance at this domain
3177 */
3178 if (local_group && (this_nr_running >= group_capacity ||
3179 !this_nr_running))
3180 power_savings_balance = 0;
3181
dd41f596 3182 /*
5c45bf27
SS
3183 * If a group is already running at full capacity or idle,
3184 * don't include that group in power savings calculations
dd41f596
IM
3185 */
3186 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3187 || !sum_nr_running)
dd41f596 3188 goto group_next;
5c45bf27 3189
dd41f596 3190 /*
5c45bf27 3191 * Calculate the group which has the least non-idle load.
dd41f596
IM
3192 * This is the group from where we need to pick up the load
3193 * for saving power
3194 */
3195 if ((sum_nr_running < min_nr_running) ||
3196 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3197 first_cpu(group->cpumask) <
3198 first_cpu(group_min->cpumask))) {
dd41f596
IM
3199 group_min = group;
3200 min_nr_running = sum_nr_running;
5c45bf27
SS
3201 min_load_per_task = sum_weighted_load /
3202 sum_nr_running;
dd41f596 3203 }
5c45bf27 3204
dd41f596 3205 /*
5c45bf27 3206 * Calculate the group which is almost near its
dd41f596
IM
3207 * capacity but still has some space to pick up some load
3208 * from other group and save more power
3209 */
3210 if (sum_nr_running <= group_capacity - 1) {
3211 if (sum_nr_running > leader_nr_running ||
3212 (sum_nr_running == leader_nr_running &&
3213 first_cpu(group->cpumask) >
3214 first_cpu(group_leader->cpumask))) {
3215 group_leader = group;
3216 leader_nr_running = sum_nr_running;
3217 }
48f24c4d 3218 }
5c45bf27
SS
3219group_next:
3220#endif
1da177e4
LT
3221 group = group->next;
3222 } while (group != sd->groups);
3223
2dd73a4f 3224 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3225 goto out_balanced;
3226
3227 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3228
3229 if (this_load >= avg_load ||
3230 100*max_load <= sd->imbalance_pct*this_load)
3231 goto out_balanced;
3232
2dd73a4f 3233 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3234 if (group_imb)
3235 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3236
1da177e4
LT
3237 /*
3238 * We're trying to get all the cpus to the average_load, so we don't
3239 * want to push ourselves above the average load, nor do we wish to
3240 * reduce the max loaded cpu below the average load, as either of these
3241 * actions would just result in more rebalancing later, and ping-pong
3242 * tasks around. Thus we look for the minimum possible imbalance.
3243 * Negative imbalances (*we* are more loaded than anyone else) will
3244 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3245 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3246 * appear as very large values with unsigned longs.
3247 */
2dd73a4f
PW
3248 if (max_load <= busiest_load_per_task)
3249 goto out_balanced;
3250
3251 /*
3252 * In the presence of smp nice balancing, certain scenarios can have
3253 * max load less than avg load(as we skip the groups at or below
3254 * its cpu_power, while calculating max_load..)
3255 */
3256 if (max_load < avg_load) {
3257 *imbalance = 0;
3258 goto small_imbalance;
3259 }
0c117f1b
SS
3260
3261 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3262 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3263
1da177e4 3264 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3265 *imbalance = min(max_pull * busiest->__cpu_power,
3266 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3267 / SCHED_LOAD_SCALE;
3268
2dd73a4f
PW
3269 /*
3270 * if *imbalance is less than the average load per runnable task
3271 * there is no gaurantee that any tasks will be moved so we'll have
3272 * a think about bumping its value to force at least one task to be
3273 * moved
3274 */
7fd0d2dd 3275 if (*imbalance < busiest_load_per_task) {
48f24c4d 3276 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3277 unsigned int imbn;
3278
3279small_imbalance:
3280 pwr_move = pwr_now = 0;
3281 imbn = 2;
3282 if (this_nr_running) {
3283 this_load_per_task /= this_nr_running;
3284 if (busiest_load_per_task > this_load_per_task)
3285 imbn = 1;
3286 } else
408ed066 3287 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3288
408ed066 3289 if (max_load - this_load + 2*busiest_load_per_task >=
dd41f596 3290 busiest_load_per_task * imbn) {
2dd73a4f 3291 *imbalance = busiest_load_per_task;
1da177e4
LT
3292 return busiest;
3293 }
3294
3295 /*
3296 * OK, we don't have enough imbalance to justify moving tasks,
3297 * however we may be able to increase total CPU power used by
3298 * moving them.
3299 */
3300
5517d86b
ED
3301 pwr_now += busiest->__cpu_power *
3302 min(busiest_load_per_task, max_load);
3303 pwr_now += this->__cpu_power *
3304 min(this_load_per_task, this_load);
1da177e4
LT
3305 pwr_now /= SCHED_LOAD_SCALE;
3306
3307 /* Amount of load we'd subtract */
5517d86b
ED
3308 tmp = sg_div_cpu_power(busiest,
3309 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3310 if (max_load > tmp)
5517d86b 3311 pwr_move += busiest->__cpu_power *
2dd73a4f 3312 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3313
3314 /* Amount of load we'd add */
5517d86b 3315 if (max_load * busiest->__cpu_power <
33859f7f 3316 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3317 tmp = sg_div_cpu_power(this,
3318 max_load * busiest->__cpu_power);
1da177e4 3319 else
5517d86b
ED
3320 tmp = sg_div_cpu_power(this,
3321 busiest_load_per_task * SCHED_LOAD_SCALE);
3322 pwr_move += this->__cpu_power *
3323 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3324 pwr_move /= SCHED_LOAD_SCALE;
3325
3326 /* Move if we gain throughput */
7fd0d2dd
SS
3327 if (pwr_move > pwr_now)
3328 *imbalance = busiest_load_per_task;
1da177e4
LT
3329 }
3330
1da177e4
LT
3331 return busiest;
3332
3333out_balanced:
5c45bf27 3334#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3335 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3336 goto ret;
1da177e4 3337
5c45bf27
SS
3338 if (this == group_leader && group_leader != group_min) {
3339 *imbalance = min_load_per_task;
3340 return group_min;
3341 }
5c45bf27 3342#endif
783609c6 3343ret:
1da177e4
LT
3344 *imbalance = 0;
3345 return NULL;
3346}
3347
3348/*
3349 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3350 */
70b97a7f 3351static struct rq *
d15bcfdb 3352find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3353 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3354{
70b97a7f 3355 struct rq *busiest = NULL, *rq;
2dd73a4f 3356 unsigned long max_load = 0;
1da177e4
LT
3357 int i;
3358
3359 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3360 unsigned long wl;
0a2966b4
CL
3361
3362 if (!cpu_isset(i, *cpus))
3363 continue;
3364
48f24c4d 3365 rq = cpu_rq(i);
dd41f596 3366 wl = weighted_cpuload(i);
2dd73a4f 3367
dd41f596 3368 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3369 continue;
1da177e4 3370
dd41f596
IM
3371 if (wl > max_load) {
3372 max_load = wl;
48f24c4d 3373 busiest = rq;
1da177e4
LT
3374 }
3375 }
3376
3377 return busiest;
3378}
3379
77391d71
NP
3380/*
3381 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3382 * so long as it is large enough.
3383 */
3384#define MAX_PINNED_INTERVAL 512
3385
1da177e4
LT
3386/*
3387 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3388 * tasks if there is an imbalance.
1da177e4 3389 */
70b97a7f 3390static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3391 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3392 int *balance, cpumask_t *cpus)
1da177e4 3393{
43010659 3394 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3395 struct sched_group *group;
1da177e4 3396 unsigned long imbalance;
70b97a7f 3397 struct rq *busiest;
fe2eea3f 3398 unsigned long flags;
5969fe06 3399
7c16ec58
MT
3400 cpus_setall(*cpus);
3401
89c4710e
SS
3402 /*
3403 * When power savings policy is enabled for the parent domain, idle
3404 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3405 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3406 * portraying it as CPU_NOT_IDLE.
89c4710e 3407 */
d15bcfdb 3408 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3409 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3410 sd_idle = 1;
1da177e4 3411
2d72376b 3412 schedstat_inc(sd, lb_count[idle]);
1da177e4 3413
0a2966b4 3414redo:
c8cba857 3415 update_shares(sd);
0a2966b4 3416 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3417 cpus, balance);
783609c6 3418
06066714 3419 if (*balance == 0)
783609c6 3420 goto out_balanced;
783609c6 3421
1da177e4
LT
3422 if (!group) {
3423 schedstat_inc(sd, lb_nobusyg[idle]);
3424 goto out_balanced;
3425 }
3426
7c16ec58 3427 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3428 if (!busiest) {
3429 schedstat_inc(sd, lb_nobusyq[idle]);
3430 goto out_balanced;
3431 }
3432
db935dbd 3433 BUG_ON(busiest == this_rq);
1da177e4
LT
3434
3435 schedstat_add(sd, lb_imbalance[idle], imbalance);
3436
43010659 3437 ld_moved = 0;
1da177e4
LT
3438 if (busiest->nr_running > 1) {
3439 /*
3440 * Attempt to move tasks. If find_busiest_group has found
3441 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3442 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3443 * correctly treated as an imbalance.
3444 */
fe2eea3f 3445 local_irq_save(flags);
e17224bf 3446 double_rq_lock(this_rq, busiest);
43010659 3447 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3448 imbalance, sd, idle, &all_pinned);
e17224bf 3449 double_rq_unlock(this_rq, busiest);
fe2eea3f 3450 local_irq_restore(flags);
81026794 3451
46cb4b7c
SS
3452 /*
3453 * some other cpu did the load balance for us.
3454 */
43010659 3455 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3456 resched_cpu(this_cpu);
3457
81026794 3458 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3459 if (unlikely(all_pinned)) {
7c16ec58
MT
3460 cpu_clear(cpu_of(busiest), *cpus);
3461 if (!cpus_empty(*cpus))
0a2966b4 3462 goto redo;
81026794 3463 goto out_balanced;
0a2966b4 3464 }
1da177e4 3465 }
81026794 3466
43010659 3467 if (!ld_moved) {
1da177e4
LT
3468 schedstat_inc(sd, lb_failed[idle]);
3469 sd->nr_balance_failed++;
3470
3471 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3472
fe2eea3f 3473 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3474
3475 /* don't kick the migration_thread, if the curr
3476 * task on busiest cpu can't be moved to this_cpu
3477 */
3478 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3479 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3480 all_pinned = 1;
3481 goto out_one_pinned;
3482 }
3483
1da177e4
LT
3484 if (!busiest->active_balance) {
3485 busiest->active_balance = 1;
3486 busiest->push_cpu = this_cpu;
81026794 3487 active_balance = 1;
1da177e4 3488 }
fe2eea3f 3489 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3490 if (active_balance)
1da177e4
LT
3491 wake_up_process(busiest->migration_thread);
3492
3493 /*
3494 * We've kicked active balancing, reset the failure
3495 * counter.
3496 */
39507451 3497 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3498 }
81026794 3499 } else
1da177e4
LT
3500 sd->nr_balance_failed = 0;
3501
81026794 3502 if (likely(!active_balance)) {
1da177e4
LT
3503 /* We were unbalanced, so reset the balancing interval */
3504 sd->balance_interval = sd->min_interval;
81026794
NP
3505 } else {
3506 /*
3507 * If we've begun active balancing, start to back off. This
3508 * case may not be covered by the all_pinned logic if there
3509 * is only 1 task on the busy runqueue (because we don't call
3510 * move_tasks).
3511 */
3512 if (sd->balance_interval < sd->max_interval)
3513 sd->balance_interval *= 2;
1da177e4
LT
3514 }
3515
43010659 3516 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3517 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3518 ld_moved = -1;
3519
3520 goto out;
1da177e4
LT
3521
3522out_balanced:
1da177e4
LT
3523 schedstat_inc(sd, lb_balanced[idle]);
3524
16cfb1c0 3525 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3526
3527out_one_pinned:
1da177e4 3528 /* tune up the balancing interval */
77391d71
NP
3529 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3530 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3531 sd->balance_interval *= 2;
3532
48f24c4d 3533 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3534 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3535 ld_moved = -1;
3536 else
3537 ld_moved = 0;
3538out:
c8cba857
PZ
3539 if (ld_moved)
3540 update_shares(sd);
c09595f6 3541 return ld_moved;
1da177e4
LT
3542}
3543
3544/*
3545 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3546 * tasks if there is an imbalance.
3547 *
d15bcfdb 3548 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3549 * this_rq is locked.
3550 */
48f24c4d 3551static int
7c16ec58
MT
3552load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3553 cpumask_t *cpus)
1da177e4
LT
3554{
3555 struct sched_group *group;
70b97a7f 3556 struct rq *busiest = NULL;
1da177e4 3557 unsigned long imbalance;
43010659 3558 int ld_moved = 0;
5969fe06 3559 int sd_idle = 0;
969bb4e4 3560 int all_pinned = 0;
7c16ec58
MT
3561
3562 cpus_setall(*cpus);
5969fe06 3563
89c4710e
SS
3564 /*
3565 * When power savings policy is enabled for the parent domain, idle
3566 * sibling can pick up load irrespective of busy siblings. In this case,
3567 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3568 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3569 */
3570 if (sd->flags & SD_SHARE_CPUPOWER &&
3571 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3572 sd_idle = 1;
1da177e4 3573
2d72376b 3574 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3575redo:
3e5459b4 3576 update_shares_locked(this_rq, sd);
d15bcfdb 3577 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3578 &sd_idle, cpus, NULL);
1da177e4 3579 if (!group) {
d15bcfdb 3580 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3581 goto out_balanced;
1da177e4
LT
3582 }
3583
7c16ec58 3584 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3585 if (!busiest) {
d15bcfdb 3586 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3587 goto out_balanced;
1da177e4
LT
3588 }
3589
db935dbd
NP
3590 BUG_ON(busiest == this_rq);
3591
d15bcfdb 3592 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3593
43010659 3594 ld_moved = 0;
d6d5cfaf
NP
3595 if (busiest->nr_running > 1) {
3596 /* Attempt to move tasks */
3597 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3598 /* this_rq->clock is already updated */
3599 update_rq_clock(busiest);
43010659 3600 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3601 imbalance, sd, CPU_NEWLY_IDLE,
3602 &all_pinned);
d6d5cfaf 3603 spin_unlock(&busiest->lock);
0a2966b4 3604
969bb4e4 3605 if (unlikely(all_pinned)) {
7c16ec58
MT
3606 cpu_clear(cpu_of(busiest), *cpus);
3607 if (!cpus_empty(*cpus))
0a2966b4
CL
3608 goto redo;
3609 }
d6d5cfaf
NP
3610 }
3611
43010659 3612 if (!ld_moved) {
d15bcfdb 3613 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3614 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3615 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3616 return -1;
3617 } else
16cfb1c0 3618 sd->nr_balance_failed = 0;
1da177e4 3619
3e5459b4 3620 update_shares_locked(this_rq, sd);
43010659 3621 return ld_moved;
16cfb1c0
NP
3622
3623out_balanced:
d15bcfdb 3624 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3625 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3626 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3627 return -1;
16cfb1c0 3628 sd->nr_balance_failed = 0;
48f24c4d 3629
16cfb1c0 3630 return 0;
1da177e4
LT
3631}
3632
3633/*
3634 * idle_balance is called by schedule() if this_cpu is about to become
3635 * idle. Attempts to pull tasks from other CPUs.
3636 */
70b97a7f 3637static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3638{
3639 struct sched_domain *sd;
dd41f596
IM
3640 int pulled_task = -1;
3641 unsigned long next_balance = jiffies + HZ;
7c16ec58 3642 cpumask_t tmpmask;
1da177e4
LT
3643
3644 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3645 unsigned long interval;
3646
3647 if (!(sd->flags & SD_LOAD_BALANCE))
3648 continue;
3649
3650 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3651 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3652 pulled_task = load_balance_newidle(this_cpu, this_rq,
3653 sd, &tmpmask);
92c4ca5c
CL
3654
3655 interval = msecs_to_jiffies(sd->balance_interval);
3656 if (time_after(next_balance, sd->last_balance + interval))
3657 next_balance = sd->last_balance + interval;
3658 if (pulled_task)
3659 break;
1da177e4 3660 }
dd41f596 3661 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3662 /*
3663 * We are going idle. next_balance may be set based on
3664 * a busy processor. So reset next_balance.
3665 */
3666 this_rq->next_balance = next_balance;
dd41f596 3667 }
1da177e4
LT
3668}
3669
3670/*
3671 * active_load_balance is run by migration threads. It pushes running tasks
3672 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3673 * running on each physical CPU where possible, and avoids physical /
3674 * logical imbalances.
3675 *
3676 * Called with busiest_rq locked.
3677 */
70b97a7f 3678static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3679{
39507451 3680 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3681 struct sched_domain *sd;
3682 struct rq *target_rq;
39507451 3683
48f24c4d 3684 /* Is there any task to move? */
39507451 3685 if (busiest_rq->nr_running <= 1)
39507451
NP
3686 return;
3687
3688 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3689
3690 /*
39507451 3691 * This condition is "impossible", if it occurs
41a2d6cf 3692 * we need to fix it. Originally reported by
39507451 3693 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3694 */
39507451 3695 BUG_ON(busiest_rq == target_rq);
1da177e4 3696
39507451
NP
3697 /* move a task from busiest_rq to target_rq */
3698 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3699 update_rq_clock(busiest_rq);
3700 update_rq_clock(target_rq);
39507451
NP
3701
3702 /* Search for an sd spanning us and the target CPU. */
c96d145e 3703 for_each_domain(target_cpu, sd) {
39507451 3704 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3705 cpu_isset(busiest_cpu, sd->span))
39507451 3706 break;
c96d145e 3707 }
39507451 3708
48f24c4d 3709 if (likely(sd)) {
2d72376b 3710 schedstat_inc(sd, alb_count);
39507451 3711
43010659
PW
3712 if (move_one_task(target_rq, target_cpu, busiest_rq,
3713 sd, CPU_IDLE))
48f24c4d
IM
3714 schedstat_inc(sd, alb_pushed);
3715 else
3716 schedstat_inc(sd, alb_failed);
3717 }
39507451 3718 spin_unlock(&target_rq->lock);
1da177e4
LT
3719}
3720
46cb4b7c
SS
3721#ifdef CONFIG_NO_HZ
3722static struct {
3723 atomic_t load_balancer;
41a2d6cf 3724 cpumask_t cpu_mask;
46cb4b7c
SS
3725} nohz ____cacheline_aligned = {
3726 .load_balancer = ATOMIC_INIT(-1),
3727 .cpu_mask = CPU_MASK_NONE,
3728};
3729
7835b98b 3730/*
46cb4b7c
SS
3731 * This routine will try to nominate the ilb (idle load balancing)
3732 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3733 * load balancing on behalf of all those cpus. If all the cpus in the system
3734 * go into this tickless mode, then there will be no ilb owner (as there is
3735 * no need for one) and all the cpus will sleep till the next wakeup event
3736 * arrives...
3737 *
3738 * For the ilb owner, tick is not stopped. And this tick will be used
3739 * for idle load balancing. ilb owner will still be part of
3740 * nohz.cpu_mask..
7835b98b 3741 *
46cb4b7c
SS
3742 * While stopping the tick, this cpu will become the ilb owner if there
3743 * is no other owner. And will be the owner till that cpu becomes busy
3744 * or if all cpus in the system stop their ticks at which point
3745 * there is no need for ilb owner.
3746 *
3747 * When the ilb owner becomes busy, it nominates another owner, during the
3748 * next busy scheduler_tick()
3749 */
3750int select_nohz_load_balancer(int stop_tick)
3751{
3752 int cpu = smp_processor_id();
3753
3754 if (stop_tick) {
3755 cpu_set(cpu, nohz.cpu_mask);
3756 cpu_rq(cpu)->in_nohz_recently = 1;
3757
3758 /*
3759 * If we are going offline and still the leader, give up!
3760 */
3761 if (cpu_is_offline(cpu) &&
3762 atomic_read(&nohz.load_balancer) == cpu) {
3763 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3764 BUG();
3765 return 0;
3766 }
3767
3768 /* time for ilb owner also to sleep */
3769 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3770 if (atomic_read(&nohz.load_balancer) == cpu)
3771 atomic_set(&nohz.load_balancer, -1);
3772 return 0;
3773 }
3774
3775 if (atomic_read(&nohz.load_balancer) == -1) {
3776 /* make me the ilb owner */
3777 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3778 return 1;
3779 } else if (atomic_read(&nohz.load_balancer) == cpu)
3780 return 1;
3781 } else {
3782 if (!cpu_isset(cpu, nohz.cpu_mask))
3783 return 0;
3784
3785 cpu_clear(cpu, nohz.cpu_mask);
3786
3787 if (atomic_read(&nohz.load_balancer) == cpu)
3788 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3789 BUG();
3790 }
3791 return 0;
3792}
3793#endif
3794
3795static DEFINE_SPINLOCK(balancing);
3796
3797/*
7835b98b
CL
3798 * It checks each scheduling domain to see if it is due to be balanced,
3799 * and initiates a balancing operation if so.
3800 *
3801 * Balancing parameters are set up in arch_init_sched_domains.
3802 */
a9957449 3803static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3804{
46cb4b7c
SS
3805 int balance = 1;
3806 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3807 unsigned long interval;
3808 struct sched_domain *sd;
46cb4b7c 3809 /* Earliest time when we have to do rebalance again */
c9819f45 3810 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3811 int update_next_balance = 0;
d07355f5 3812 int need_serialize;
7c16ec58 3813 cpumask_t tmp;
1da177e4 3814
46cb4b7c 3815 for_each_domain(cpu, sd) {
1da177e4
LT
3816 if (!(sd->flags & SD_LOAD_BALANCE))
3817 continue;
3818
3819 interval = sd->balance_interval;
d15bcfdb 3820 if (idle != CPU_IDLE)
1da177e4
LT
3821 interval *= sd->busy_factor;
3822
3823 /* scale ms to jiffies */
3824 interval = msecs_to_jiffies(interval);
3825 if (unlikely(!interval))
3826 interval = 1;
dd41f596
IM
3827 if (interval > HZ*NR_CPUS/10)
3828 interval = HZ*NR_CPUS/10;
3829
d07355f5 3830 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3831
d07355f5 3832 if (need_serialize) {
08c183f3
CL
3833 if (!spin_trylock(&balancing))
3834 goto out;
3835 }
3836
c9819f45 3837 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3838 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3839 /*
3840 * We've pulled tasks over so either we're no
5969fe06
NP
3841 * longer idle, or one of our SMT siblings is
3842 * not idle.
3843 */
d15bcfdb 3844 idle = CPU_NOT_IDLE;
1da177e4 3845 }
1bd77f2d 3846 sd->last_balance = jiffies;
1da177e4 3847 }
d07355f5 3848 if (need_serialize)
08c183f3
CL
3849 spin_unlock(&balancing);
3850out:
f549da84 3851 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3852 next_balance = sd->last_balance + interval;
f549da84
SS
3853 update_next_balance = 1;
3854 }
783609c6
SS
3855
3856 /*
3857 * Stop the load balance at this level. There is another
3858 * CPU in our sched group which is doing load balancing more
3859 * actively.
3860 */
3861 if (!balance)
3862 break;
1da177e4 3863 }
f549da84
SS
3864
3865 /*
3866 * next_balance will be updated only when there is a need.
3867 * When the cpu is attached to null domain for ex, it will not be
3868 * updated.
3869 */
3870 if (likely(update_next_balance))
3871 rq->next_balance = next_balance;
46cb4b7c
SS
3872}
3873
3874/*
3875 * run_rebalance_domains is triggered when needed from the scheduler tick.
3876 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3877 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3878 */
3879static void run_rebalance_domains(struct softirq_action *h)
3880{
dd41f596
IM
3881 int this_cpu = smp_processor_id();
3882 struct rq *this_rq = cpu_rq(this_cpu);
3883 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3884 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3885
dd41f596 3886 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3887
3888#ifdef CONFIG_NO_HZ
3889 /*
3890 * If this cpu is the owner for idle load balancing, then do the
3891 * balancing on behalf of the other idle cpus whose ticks are
3892 * stopped.
3893 */
dd41f596
IM
3894 if (this_rq->idle_at_tick &&
3895 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3896 cpumask_t cpus = nohz.cpu_mask;
3897 struct rq *rq;
3898 int balance_cpu;
3899
dd41f596 3900 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3901 for_each_cpu_mask(balance_cpu, cpus) {
3902 /*
3903 * If this cpu gets work to do, stop the load balancing
3904 * work being done for other cpus. Next load
3905 * balancing owner will pick it up.
3906 */
3907 if (need_resched())
3908 break;
3909
de0cf899 3910 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3911
3912 rq = cpu_rq(balance_cpu);
dd41f596
IM
3913 if (time_after(this_rq->next_balance, rq->next_balance))
3914 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3915 }
3916 }
3917#endif
3918}
3919
3920/*
3921 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3922 *
3923 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3924 * idle load balancing owner or decide to stop the periodic load balancing,
3925 * if the whole system is idle.
3926 */
dd41f596 3927static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3928{
46cb4b7c
SS
3929#ifdef CONFIG_NO_HZ
3930 /*
3931 * If we were in the nohz mode recently and busy at the current
3932 * scheduler tick, then check if we need to nominate new idle
3933 * load balancer.
3934 */
3935 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3936 rq->in_nohz_recently = 0;
3937
3938 if (atomic_read(&nohz.load_balancer) == cpu) {
3939 cpu_clear(cpu, nohz.cpu_mask);
3940 atomic_set(&nohz.load_balancer, -1);
3941 }
3942
3943 if (atomic_read(&nohz.load_balancer) == -1) {
3944 /*
3945 * simple selection for now: Nominate the
3946 * first cpu in the nohz list to be the next
3947 * ilb owner.
3948 *
3949 * TBD: Traverse the sched domains and nominate
3950 * the nearest cpu in the nohz.cpu_mask.
3951 */
3952 int ilb = first_cpu(nohz.cpu_mask);
3953
434d53b0 3954 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3955 resched_cpu(ilb);
3956 }
3957 }
3958
3959 /*
3960 * If this cpu is idle and doing idle load balancing for all the
3961 * cpus with ticks stopped, is it time for that to stop?
3962 */
3963 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3964 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3965 resched_cpu(cpu);
3966 return;
3967 }
3968
3969 /*
3970 * If this cpu is idle and the idle load balancing is done by
3971 * someone else, then no need raise the SCHED_SOFTIRQ
3972 */
3973 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3974 cpu_isset(cpu, nohz.cpu_mask))
3975 return;
3976#endif
3977 if (time_after_eq(jiffies, rq->next_balance))
3978 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3979}
dd41f596
IM
3980
3981#else /* CONFIG_SMP */
3982
1da177e4
LT
3983/*
3984 * on UP we do not need to balance between CPUs:
3985 */
70b97a7f 3986static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3987{
3988}
dd41f596 3989
1da177e4
LT
3990#endif
3991
1da177e4
LT
3992DEFINE_PER_CPU(struct kernel_stat, kstat);
3993
3994EXPORT_PER_CPU_SYMBOL(kstat);
3995
3996/*
41b86e9c
IM
3997 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3998 * that have not yet been banked in case the task is currently running.
1da177e4 3999 */
41b86e9c 4000unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4001{
1da177e4 4002 unsigned long flags;
41b86e9c
IM
4003 u64 ns, delta_exec;
4004 struct rq *rq;
48f24c4d 4005
41b86e9c
IM
4006 rq = task_rq_lock(p, &flags);
4007 ns = p->se.sum_exec_runtime;
051a1d1a 4008 if (task_current(rq, p)) {
a8e504d2
IM
4009 update_rq_clock(rq);
4010 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4011 if ((s64)delta_exec > 0)
4012 ns += delta_exec;
4013 }
4014 task_rq_unlock(rq, &flags);
48f24c4d 4015
1da177e4
LT
4016 return ns;
4017}
4018
1da177e4
LT
4019/*
4020 * Account user cpu time to a process.
4021 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4022 * @cputime: the cpu time spent in user space since the last update
4023 */
4024void account_user_time(struct task_struct *p, cputime_t cputime)
4025{
4026 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4027 cputime64_t tmp;
4028
4029 p->utime = cputime_add(p->utime, cputime);
4030
4031 /* Add user time to cpustat. */
4032 tmp = cputime_to_cputime64(cputime);
4033 if (TASK_NICE(p) > 0)
4034 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4035 else
4036 cpustat->user = cputime64_add(cpustat->user, tmp);
4037}
4038
94886b84
LV
4039/*
4040 * Account guest cpu time to a process.
4041 * @p: the process that the cpu time gets accounted to
4042 * @cputime: the cpu time spent in virtual machine since the last update
4043 */
f7402e03 4044static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4045{
4046 cputime64_t tmp;
4047 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4048
4049 tmp = cputime_to_cputime64(cputime);
4050
4051 p->utime = cputime_add(p->utime, cputime);
4052 p->gtime = cputime_add(p->gtime, cputime);
4053
4054 cpustat->user = cputime64_add(cpustat->user, tmp);
4055 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4056}
4057
c66f08be
MN
4058/*
4059 * Account scaled user cpu time to a process.
4060 * @p: the process that the cpu time gets accounted to
4061 * @cputime: the cpu time spent in user space since the last update
4062 */
4063void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4064{
4065 p->utimescaled = cputime_add(p->utimescaled, cputime);
4066}
4067
1da177e4
LT
4068/*
4069 * Account system cpu time to a process.
4070 * @p: the process that the cpu time gets accounted to
4071 * @hardirq_offset: the offset to subtract from hardirq_count()
4072 * @cputime: the cpu time spent in kernel space since the last update
4073 */
4074void account_system_time(struct task_struct *p, int hardirq_offset,
4075 cputime_t cputime)
4076{
4077 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4078 struct rq *rq = this_rq();
1da177e4
LT
4079 cputime64_t tmp;
4080
983ed7a6
HH
4081 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4082 account_guest_time(p, cputime);
4083 return;
4084 }
94886b84 4085
1da177e4
LT
4086 p->stime = cputime_add(p->stime, cputime);
4087
4088 /* Add system time to cpustat. */
4089 tmp = cputime_to_cputime64(cputime);
4090 if (hardirq_count() - hardirq_offset)
4091 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4092 else if (softirq_count())
4093 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4094 else if (p != rq->idle)
1da177e4 4095 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4096 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4097 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4098 else
4099 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4100 /* Account for system time used */
4101 acct_update_integrals(p);
1da177e4
LT
4102}
4103
c66f08be
MN
4104/*
4105 * Account scaled system cpu time to a process.
4106 * @p: the process that the cpu time gets accounted to
4107 * @hardirq_offset: the offset to subtract from hardirq_count()
4108 * @cputime: the cpu time spent in kernel space since the last update
4109 */
4110void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4111{
4112 p->stimescaled = cputime_add(p->stimescaled, cputime);
4113}
4114
1da177e4
LT
4115/*
4116 * Account for involuntary wait time.
4117 * @p: the process from which the cpu time has been stolen
4118 * @steal: the cpu time spent in involuntary wait
4119 */
4120void account_steal_time(struct task_struct *p, cputime_t steal)
4121{
4122 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4123 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4124 struct rq *rq = this_rq();
1da177e4
LT
4125
4126 if (p == rq->idle) {
4127 p->stime = cputime_add(p->stime, steal);
4128 if (atomic_read(&rq->nr_iowait) > 0)
4129 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4130 else
4131 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4132 } else
1da177e4
LT
4133 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4134}
4135
7835b98b
CL
4136/*
4137 * This function gets called by the timer code, with HZ frequency.
4138 * We call it with interrupts disabled.
4139 *
4140 * It also gets called by the fork code, when changing the parent's
4141 * timeslices.
4142 */
4143void scheduler_tick(void)
4144{
7835b98b
CL
4145 int cpu = smp_processor_id();
4146 struct rq *rq = cpu_rq(cpu);
dd41f596 4147 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4148
4149 sched_clock_tick();
dd41f596
IM
4150
4151 spin_lock(&rq->lock);
3e51f33f 4152 update_rq_clock(rq);
f1a438d8 4153 update_cpu_load(rq);
fa85ae24 4154 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4155 spin_unlock(&rq->lock);
7835b98b 4156
e418e1c2 4157#ifdef CONFIG_SMP
dd41f596
IM
4158 rq->idle_at_tick = idle_cpu(cpu);
4159 trigger_load_balance(rq, cpu);
e418e1c2 4160#endif
1da177e4
LT
4161}
4162
1da177e4
LT
4163#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4164
43627582 4165void __kprobes add_preempt_count(int val)
1da177e4
LT
4166{
4167 /*
4168 * Underflow?
4169 */
9a11b49a
IM
4170 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4171 return;
1da177e4
LT
4172 preempt_count() += val;
4173 /*
4174 * Spinlock count overflowing soon?
4175 */
33859f7f
MOS
4176 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4177 PREEMPT_MASK - 10);
1da177e4
LT
4178}
4179EXPORT_SYMBOL(add_preempt_count);
4180
43627582 4181void __kprobes sub_preempt_count(int val)
1da177e4
LT
4182{
4183 /*
4184 * Underflow?
4185 */
9a11b49a
IM
4186 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4187 return;
1da177e4
LT
4188 /*
4189 * Is the spinlock portion underflowing?
4190 */
9a11b49a
IM
4191 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4192 !(preempt_count() & PREEMPT_MASK)))
4193 return;
4194
1da177e4
LT
4195 preempt_count() -= val;
4196}
4197EXPORT_SYMBOL(sub_preempt_count);
4198
4199#endif
4200
4201/*
dd41f596 4202 * Print scheduling while atomic bug:
1da177e4 4203 */
dd41f596 4204static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4205{
838225b4
SS
4206 struct pt_regs *regs = get_irq_regs();
4207
4208 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4209 prev->comm, prev->pid, preempt_count());
4210
dd41f596 4211 debug_show_held_locks(prev);
e21f5b15 4212 print_modules();
dd41f596
IM
4213 if (irqs_disabled())
4214 print_irqtrace_events(prev);
838225b4
SS
4215
4216 if (regs)
4217 show_regs(regs);
4218 else
4219 dump_stack();
dd41f596 4220}
1da177e4 4221
dd41f596
IM
4222/*
4223 * Various schedule()-time debugging checks and statistics:
4224 */
4225static inline void schedule_debug(struct task_struct *prev)
4226{
1da177e4 4227 /*
41a2d6cf 4228 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4229 * schedule() atomically, we ignore that path for now.
4230 * Otherwise, whine if we are scheduling when we should not be.
4231 */
3f33a7ce 4232 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4233 __schedule_bug(prev);
4234
1da177e4
LT
4235 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4236
2d72376b 4237 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4238#ifdef CONFIG_SCHEDSTATS
4239 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4240 schedstat_inc(this_rq(), bkl_count);
4241 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4242 }
4243#endif
dd41f596
IM
4244}
4245
4246/*
4247 * Pick up the highest-prio task:
4248 */
4249static inline struct task_struct *
ff95f3df 4250pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4251{
5522d5d5 4252 const struct sched_class *class;
dd41f596 4253 struct task_struct *p;
1da177e4
LT
4254
4255 /*
dd41f596
IM
4256 * Optimization: we know that if all tasks are in
4257 * the fair class we can call that function directly:
1da177e4 4258 */
dd41f596 4259 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4260 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4261 if (likely(p))
4262 return p;
1da177e4
LT
4263 }
4264
dd41f596
IM
4265 class = sched_class_highest;
4266 for ( ; ; ) {
fb8d4724 4267 p = class->pick_next_task(rq);
dd41f596
IM
4268 if (p)
4269 return p;
4270 /*
4271 * Will never be NULL as the idle class always
4272 * returns a non-NULL p:
4273 */
4274 class = class->next;
4275 }
4276}
1da177e4 4277
dd41f596
IM
4278/*
4279 * schedule() is the main scheduler function.
4280 */
4281asmlinkage void __sched schedule(void)
4282{
4283 struct task_struct *prev, *next;
67ca7bde 4284 unsigned long *switch_count;
dd41f596 4285 struct rq *rq;
f333fdc9 4286 int cpu, hrtick = sched_feat(HRTICK);
dd41f596
IM
4287
4288need_resched:
4289 preempt_disable();
4290 cpu = smp_processor_id();
4291 rq = cpu_rq(cpu);
4292 rcu_qsctr_inc(cpu);
4293 prev = rq->curr;
4294 switch_count = &prev->nivcsw;
4295
4296 release_kernel_lock(prev);
4297need_resched_nonpreemptible:
4298
4299 schedule_debug(prev);
1da177e4 4300
f333fdc9
MG
4301 if (hrtick)
4302 hrtick_clear(rq);
8f4d37ec 4303
1e819950
IM
4304 /*
4305 * Do the rq-clock update outside the rq lock:
4306 */
4307 local_irq_disable();
3e51f33f 4308 update_rq_clock(rq);
1e819950
IM
4309 spin_lock(&rq->lock);
4310 clear_tsk_need_resched(prev);
1da177e4 4311
1da177e4 4312 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4313 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4314 prev->state = TASK_RUNNING;
16882c1e 4315 else
2e1cb74a 4316 deactivate_task(rq, prev, 1);
dd41f596 4317 switch_count = &prev->nvcsw;
1da177e4
LT
4318 }
4319
9a897c5a
SR
4320#ifdef CONFIG_SMP
4321 if (prev->sched_class->pre_schedule)
4322 prev->sched_class->pre_schedule(rq, prev);
4323#endif
f65eda4f 4324
dd41f596 4325 if (unlikely(!rq->nr_running))
1da177e4 4326 idle_balance(cpu, rq);
1da177e4 4327
31ee529c 4328 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4329 next = pick_next_task(rq, prev);
1da177e4 4330
1da177e4 4331 if (likely(prev != next)) {
673a90a1
DS
4332 sched_info_switch(prev, next);
4333
1da177e4
LT
4334 rq->nr_switches++;
4335 rq->curr = next;
4336 ++*switch_count;
4337
dd41f596 4338 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4339 /*
4340 * the context switch might have flipped the stack from under
4341 * us, hence refresh the local variables.
4342 */
4343 cpu = smp_processor_id();
4344 rq = cpu_rq(cpu);
1da177e4
LT
4345 } else
4346 spin_unlock_irq(&rq->lock);
4347
f333fdc9
MG
4348 if (hrtick)
4349 hrtick_set(rq);
8f4d37ec
PZ
4350
4351 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4352 goto need_resched_nonpreemptible;
8f4d37ec 4353
1da177e4
LT
4354 preempt_enable_no_resched();
4355 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4356 goto need_resched;
4357}
1da177e4
LT
4358EXPORT_SYMBOL(schedule);
4359
4360#ifdef CONFIG_PREEMPT
4361/*
2ed6e34f 4362 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4363 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4364 * occur there and call schedule directly.
4365 */
4366asmlinkage void __sched preempt_schedule(void)
4367{
4368 struct thread_info *ti = current_thread_info();
6478d880 4369
1da177e4
LT
4370 /*
4371 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4372 * we do not want to preempt the current task. Just return..
1da177e4 4373 */
beed33a8 4374 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4375 return;
4376
3a5c359a
AK
4377 do {
4378 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4379 schedule();
3a5c359a 4380 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4381
3a5c359a
AK
4382 /*
4383 * Check again in case we missed a preemption opportunity
4384 * between schedule and now.
4385 */
4386 barrier();
4387 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4388}
1da177e4
LT
4389EXPORT_SYMBOL(preempt_schedule);
4390
4391/*
2ed6e34f 4392 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4393 * off of irq context.
4394 * Note, that this is called and return with irqs disabled. This will
4395 * protect us against recursive calling from irq.
4396 */
4397asmlinkage void __sched preempt_schedule_irq(void)
4398{
4399 struct thread_info *ti = current_thread_info();
6478d880 4400
2ed6e34f 4401 /* Catch callers which need to be fixed */
1da177e4
LT
4402 BUG_ON(ti->preempt_count || !irqs_disabled());
4403
3a5c359a
AK
4404 do {
4405 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4406 local_irq_enable();
4407 schedule();
4408 local_irq_disable();
3a5c359a 4409 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4410
3a5c359a
AK
4411 /*
4412 * Check again in case we missed a preemption opportunity
4413 * between schedule and now.
4414 */
4415 barrier();
4416 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4417}
4418
4419#endif /* CONFIG_PREEMPT */
4420
95cdf3b7
IM
4421int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4422 void *key)
1da177e4 4423{
48f24c4d 4424 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4425}
1da177e4
LT
4426EXPORT_SYMBOL(default_wake_function);
4427
4428/*
41a2d6cf
IM
4429 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4430 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4431 * number) then we wake all the non-exclusive tasks and one exclusive task.
4432 *
4433 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4434 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4435 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4436 */
4437static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4438 int nr_exclusive, int sync, void *key)
4439{
2e45874c 4440 wait_queue_t *curr, *next;
1da177e4 4441
2e45874c 4442 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4443 unsigned flags = curr->flags;
4444
1da177e4 4445 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4446 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4447 break;
4448 }
4449}
4450
4451/**
4452 * __wake_up - wake up threads blocked on a waitqueue.
4453 * @q: the waitqueue
4454 * @mode: which threads
4455 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4456 * @key: is directly passed to the wakeup function
1da177e4 4457 */
7ad5b3a5 4458void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4459 int nr_exclusive, void *key)
1da177e4
LT
4460{
4461 unsigned long flags;
4462
4463 spin_lock_irqsave(&q->lock, flags);
4464 __wake_up_common(q, mode, nr_exclusive, 0, key);
4465 spin_unlock_irqrestore(&q->lock, flags);
4466}
1da177e4
LT
4467EXPORT_SYMBOL(__wake_up);
4468
4469/*
4470 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4471 */
7ad5b3a5 4472void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4473{
4474 __wake_up_common(q, mode, 1, 0, NULL);
4475}
4476
4477/**
67be2dd1 4478 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4479 * @q: the waitqueue
4480 * @mode: which threads
4481 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4482 *
4483 * The sync wakeup differs that the waker knows that it will schedule
4484 * away soon, so while the target thread will be woken up, it will not
4485 * be migrated to another CPU - ie. the two threads are 'synchronized'
4486 * with each other. This can prevent needless bouncing between CPUs.
4487 *
4488 * On UP it can prevent extra preemption.
4489 */
7ad5b3a5 4490void
95cdf3b7 4491__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4492{
4493 unsigned long flags;
4494 int sync = 1;
4495
4496 if (unlikely(!q))
4497 return;
4498
4499 if (unlikely(!nr_exclusive))
4500 sync = 0;
4501
4502 spin_lock_irqsave(&q->lock, flags);
4503 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4504 spin_unlock_irqrestore(&q->lock, flags);
4505}
4506EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4507
b15136e9 4508void complete(struct completion *x)
1da177e4
LT
4509{
4510 unsigned long flags;
4511
4512 spin_lock_irqsave(&x->wait.lock, flags);
4513 x->done++;
d9514f6c 4514 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4515 spin_unlock_irqrestore(&x->wait.lock, flags);
4516}
4517EXPORT_SYMBOL(complete);
4518
b15136e9 4519void complete_all(struct completion *x)
1da177e4
LT
4520{
4521 unsigned long flags;
4522
4523 spin_lock_irqsave(&x->wait.lock, flags);
4524 x->done += UINT_MAX/2;
d9514f6c 4525 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4526 spin_unlock_irqrestore(&x->wait.lock, flags);
4527}
4528EXPORT_SYMBOL(complete_all);
4529
8cbbe86d
AK
4530static inline long __sched
4531do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4532{
1da177e4
LT
4533 if (!x->done) {
4534 DECLARE_WAITQUEUE(wait, current);
4535
4536 wait.flags |= WQ_FLAG_EXCLUSIVE;
4537 __add_wait_queue_tail(&x->wait, &wait);
4538 do {
009e577e
MW
4539 if ((state == TASK_INTERRUPTIBLE &&
4540 signal_pending(current)) ||
4541 (state == TASK_KILLABLE &&
4542 fatal_signal_pending(current))) {
ea71a546
ON
4543 timeout = -ERESTARTSYS;
4544 break;
8cbbe86d
AK
4545 }
4546 __set_current_state(state);
1da177e4
LT
4547 spin_unlock_irq(&x->wait.lock);
4548 timeout = schedule_timeout(timeout);
4549 spin_lock_irq(&x->wait.lock);
ea71a546 4550 } while (!x->done && timeout);
1da177e4 4551 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4552 if (!x->done)
4553 return timeout;
1da177e4
LT
4554 }
4555 x->done--;
ea71a546 4556 return timeout ?: 1;
1da177e4 4557}
1da177e4 4558
8cbbe86d
AK
4559static long __sched
4560wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4561{
1da177e4
LT
4562 might_sleep();
4563
4564 spin_lock_irq(&x->wait.lock);
8cbbe86d 4565 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4566 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4567 return timeout;
4568}
1da177e4 4569
b15136e9 4570void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4571{
4572 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4573}
8cbbe86d 4574EXPORT_SYMBOL(wait_for_completion);
1da177e4 4575
b15136e9 4576unsigned long __sched
8cbbe86d 4577wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4578{
8cbbe86d 4579 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4580}
8cbbe86d 4581EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4582
8cbbe86d 4583int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4584{
51e97990
AK
4585 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4586 if (t == -ERESTARTSYS)
4587 return t;
4588 return 0;
0fec171c 4589}
8cbbe86d 4590EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4591
b15136e9 4592unsigned long __sched
8cbbe86d
AK
4593wait_for_completion_interruptible_timeout(struct completion *x,
4594 unsigned long timeout)
0fec171c 4595{
8cbbe86d 4596 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4597}
8cbbe86d 4598EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4599
009e577e
MW
4600int __sched wait_for_completion_killable(struct completion *x)
4601{
4602 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4603 if (t == -ERESTARTSYS)
4604 return t;
4605 return 0;
4606}
4607EXPORT_SYMBOL(wait_for_completion_killable);
4608
8cbbe86d
AK
4609static long __sched
4610sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4611{
0fec171c
IM
4612 unsigned long flags;
4613 wait_queue_t wait;
4614
4615 init_waitqueue_entry(&wait, current);
1da177e4 4616
8cbbe86d 4617 __set_current_state(state);
1da177e4 4618
8cbbe86d
AK
4619 spin_lock_irqsave(&q->lock, flags);
4620 __add_wait_queue(q, &wait);
4621 spin_unlock(&q->lock);
4622 timeout = schedule_timeout(timeout);
4623 spin_lock_irq(&q->lock);
4624 __remove_wait_queue(q, &wait);
4625 spin_unlock_irqrestore(&q->lock, flags);
4626
4627 return timeout;
4628}
4629
4630void __sched interruptible_sleep_on(wait_queue_head_t *q)
4631{
4632 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4633}
1da177e4
LT
4634EXPORT_SYMBOL(interruptible_sleep_on);
4635
0fec171c 4636long __sched
95cdf3b7 4637interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4638{
8cbbe86d 4639 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4640}
1da177e4
LT
4641EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4642
0fec171c 4643void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4644{
8cbbe86d 4645 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4646}
1da177e4
LT
4647EXPORT_SYMBOL(sleep_on);
4648
0fec171c 4649long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4650{
8cbbe86d 4651 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4652}
1da177e4
LT
4653EXPORT_SYMBOL(sleep_on_timeout);
4654
b29739f9
IM
4655#ifdef CONFIG_RT_MUTEXES
4656
4657/*
4658 * rt_mutex_setprio - set the current priority of a task
4659 * @p: task
4660 * @prio: prio value (kernel-internal form)
4661 *
4662 * This function changes the 'effective' priority of a task. It does
4663 * not touch ->normal_prio like __setscheduler().
4664 *
4665 * Used by the rt_mutex code to implement priority inheritance logic.
4666 */
36c8b586 4667void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4668{
4669 unsigned long flags;
83b699ed 4670 int oldprio, on_rq, running;
70b97a7f 4671 struct rq *rq;
cb469845 4672 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4673
4674 BUG_ON(prio < 0 || prio > MAX_PRIO);
4675
4676 rq = task_rq_lock(p, &flags);
a8e504d2 4677 update_rq_clock(rq);
b29739f9 4678
d5f9f942 4679 oldprio = p->prio;
dd41f596 4680 on_rq = p->se.on_rq;
051a1d1a 4681 running = task_current(rq, p);
0e1f3483 4682 if (on_rq)
69be72c1 4683 dequeue_task(rq, p, 0);
0e1f3483
HS
4684 if (running)
4685 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4686
4687 if (rt_prio(prio))
4688 p->sched_class = &rt_sched_class;
4689 else
4690 p->sched_class = &fair_sched_class;
4691
b29739f9
IM
4692 p->prio = prio;
4693
0e1f3483
HS
4694 if (running)
4695 p->sched_class->set_curr_task(rq);
dd41f596 4696 if (on_rq) {
8159f87e 4697 enqueue_task(rq, p, 0);
cb469845
SR
4698
4699 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4700 }
4701 task_rq_unlock(rq, &flags);
4702}
4703
4704#endif
4705
36c8b586 4706void set_user_nice(struct task_struct *p, long nice)
1da177e4 4707{
dd41f596 4708 int old_prio, delta, on_rq;
1da177e4 4709 unsigned long flags;
70b97a7f 4710 struct rq *rq;
1da177e4
LT
4711
4712 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4713 return;
4714 /*
4715 * We have to be careful, if called from sys_setpriority(),
4716 * the task might be in the middle of scheduling on another CPU.
4717 */
4718 rq = task_rq_lock(p, &flags);
a8e504d2 4719 update_rq_clock(rq);
1da177e4
LT
4720 /*
4721 * The RT priorities are set via sched_setscheduler(), but we still
4722 * allow the 'normal' nice value to be set - but as expected
4723 * it wont have any effect on scheduling until the task is
dd41f596 4724 * SCHED_FIFO/SCHED_RR:
1da177e4 4725 */
e05606d3 4726 if (task_has_rt_policy(p)) {
1da177e4
LT
4727 p->static_prio = NICE_TO_PRIO(nice);
4728 goto out_unlock;
4729 }
dd41f596 4730 on_rq = p->se.on_rq;
c09595f6 4731 if (on_rq)
69be72c1 4732 dequeue_task(rq, p, 0);
1da177e4 4733
1da177e4 4734 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4735 set_load_weight(p);
b29739f9
IM
4736 old_prio = p->prio;
4737 p->prio = effective_prio(p);
4738 delta = p->prio - old_prio;
1da177e4 4739
dd41f596 4740 if (on_rq) {
8159f87e 4741 enqueue_task(rq, p, 0);
1da177e4 4742 /*
d5f9f942
AM
4743 * If the task increased its priority or is running and
4744 * lowered its priority, then reschedule its CPU:
1da177e4 4745 */
d5f9f942 4746 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4747 resched_task(rq->curr);
4748 }
4749out_unlock:
4750 task_rq_unlock(rq, &flags);
4751}
1da177e4
LT
4752EXPORT_SYMBOL(set_user_nice);
4753
e43379f1
MM
4754/*
4755 * can_nice - check if a task can reduce its nice value
4756 * @p: task
4757 * @nice: nice value
4758 */
36c8b586 4759int can_nice(const struct task_struct *p, const int nice)
e43379f1 4760{
024f4747
MM
4761 /* convert nice value [19,-20] to rlimit style value [1,40] */
4762 int nice_rlim = 20 - nice;
48f24c4d 4763
e43379f1
MM
4764 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4765 capable(CAP_SYS_NICE));
4766}
4767
1da177e4
LT
4768#ifdef __ARCH_WANT_SYS_NICE
4769
4770/*
4771 * sys_nice - change the priority of the current process.
4772 * @increment: priority increment
4773 *
4774 * sys_setpriority is a more generic, but much slower function that
4775 * does similar things.
4776 */
4777asmlinkage long sys_nice(int increment)
4778{
48f24c4d 4779 long nice, retval;
1da177e4
LT
4780
4781 /*
4782 * Setpriority might change our priority at the same moment.
4783 * We don't have to worry. Conceptually one call occurs first
4784 * and we have a single winner.
4785 */
e43379f1
MM
4786 if (increment < -40)
4787 increment = -40;
1da177e4
LT
4788 if (increment > 40)
4789 increment = 40;
4790
4791 nice = PRIO_TO_NICE(current->static_prio) + increment;
4792 if (nice < -20)
4793 nice = -20;
4794 if (nice > 19)
4795 nice = 19;
4796
e43379f1
MM
4797 if (increment < 0 && !can_nice(current, nice))
4798 return -EPERM;
4799
1da177e4
LT
4800 retval = security_task_setnice(current, nice);
4801 if (retval)
4802 return retval;
4803
4804 set_user_nice(current, nice);
4805 return 0;
4806}
4807
4808#endif
4809
4810/**
4811 * task_prio - return the priority value of a given task.
4812 * @p: the task in question.
4813 *
4814 * This is the priority value as seen by users in /proc.
4815 * RT tasks are offset by -200. Normal tasks are centered
4816 * around 0, value goes from -16 to +15.
4817 */
36c8b586 4818int task_prio(const struct task_struct *p)
1da177e4
LT
4819{
4820 return p->prio - MAX_RT_PRIO;
4821}
4822
4823/**
4824 * task_nice - return the nice value of a given task.
4825 * @p: the task in question.
4826 */
36c8b586 4827int task_nice(const struct task_struct *p)
1da177e4
LT
4828{
4829 return TASK_NICE(p);
4830}
150d8bed 4831EXPORT_SYMBOL(task_nice);
1da177e4
LT
4832
4833/**
4834 * idle_cpu - is a given cpu idle currently?
4835 * @cpu: the processor in question.
4836 */
4837int idle_cpu(int cpu)
4838{
4839 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4840}
4841
1da177e4
LT
4842/**
4843 * idle_task - return the idle task for a given cpu.
4844 * @cpu: the processor in question.
4845 */
36c8b586 4846struct task_struct *idle_task(int cpu)
1da177e4
LT
4847{
4848 return cpu_rq(cpu)->idle;
4849}
4850
4851/**
4852 * find_process_by_pid - find a process with a matching PID value.
4853 * @pid: the pid in question.
4854 */
a9957449 4855static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4856{
228ebcbe 4857 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4858}
4859
4860/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4861static void
4862__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4863{
dd41f596 4864 BUG_ON(p->se.on_rq);
48f24c4d 4865
1da177e4 4866 p->policy = policy;
dd41f596
IM
4867 switch (p->policy) {
4868 case SCHED_NORMAL:
4869 case SCHED_BATCH:
4870 case SCHED_IDLE:
4871 p->sched_class = &fair_sched_class;
4872 break;
4873 case SCHED_FIFO:
4874 case SCHED_RR:
4875 p->sched_class = &rt_sched_class;
4876 break;
4877 }
4878
1da177e4 4879 p->rt_priority = prio;
b29739f9
IM
4880 p->normal_prio = normal_prio(p);
4881 /* we are holding p->pi_lock already */
4882 p->prio = rt_mutex_getprio(p);
2dd73a4f 4883 set_load_weight(p);
1da177e4
LT
4884}
4885
4886/**
72fd4a35 4887 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4888 * @p: the task in question.
4889 * @policy: new policy.
4890 * @param: structure containing the new RT priority.
5fe1d75f 4891 *
72fd4a35 4892 * NOTE that the task may be already dead.
1da177e4 4893 */
95cdf3b7
IM
4894int sched_setscheduler(struct task_struct *p, int policy,
4895 struct sched_param *param)
1da177e4 4896{
83b699ed 4897 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4898 unsigned long flags;
cb469845 4899 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4900 struct rq *rq;
1da177e4 4901
66e5393a
SR
4902 /* may grab non-irq protected spin_locks */
4903 BUG_ON(in_interrupt());
1da177e4
LT
4904recheck:
4905 /* double check policy once rq lock held */
4906 if (policy < 0)
4907 policy = oldpolicy = p->policy;
4908 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4909 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4910 policy != SCHED_IDLE)
b0a9499c 4911 return -EINVAL;
1da177e4
LT
4912 /*
4913 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4914 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4915 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4916 */
4917 if (param->sched_priority < 0 ||
95cdf3b7 4918 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4919 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4920 return -EINVAL;
e05606d3 4921 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4922 return -EINVAL;
4923
37e4ab3f
OC
4924 /*
4925 * Allow unprivileged RT tasks to decrease priority:
4926 */
4927 if (!capable(CAP_SYS_NICE)) {
e05606d3 4928 if (rt_policy(policy)) {
8dc3e909 4929 unsigned long rlim_rtprio;
8dc3e909
ON
4930
4931 if (!lock_task_sighand(p, &flags))
4932 return -ESRCH;
4933 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4934 unlock_task_sighand(p, &flags);
4935
4936 /* can't set/change the rt policy */
4937 if (policy != p->policy && !rlim_rtprio)
4938 return -EPERM;
4939
4940 /* can't increase priority */
4941 if (param->sched_priority > p->rt_priority &&
4942 param->sched_priority > rlim_rtprio)
4943 return -EPERM;
4944 }
dd41f596
IM
4945 /*
4946 * Like positive nice levels, dont allow tasks to
4947 * move out of SCHED_IDLE either:
4948 */
4949 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4950 return -EPERM;
5fe1d75f 4951
37e4ab3f
OC
4952 /* can't change other user's priorities */
4953 if ((current->euid != p->euid) &&
4954 (current->euid != p->uid))
4955 return -EPERM;
4956 }
1da177e4 4957
b68aa230
PZ
4958#ifdef CONFIG_RT_GROUP_SCHED
4959 /*
4960 * Do not allow realtime tasks into groups that have no runtime
4961 * assigned.
4962 */
d0b27fa7 4963 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4964 return -EPERM;
4965#endif
4966
1da177e4
LT
4967 retval = security_task_setscheduler(p, policy, param);
4968 if (retval)
4969 return retval;
b29739f9
IM
4970 /*
4971 * make sure no PI-waiters arrive (or leave) while we are
4972 * changing the priority of the task:
4973 */
4974 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4975 /*
4976 * To be able to change p->policy safely, the apropriate
4977 * runqueue lock must be held.
4978 */
b29739f9 4979 rq = __task_rq_lock(p);
1da177e4
LT
4980 /* recheck policy now with rq lock held */
4981 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4982 policy = oldpolicy = -1;
b29739f9
IM
4983 __task_rq_unlock(rq);
4984 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4985 goto recheck;
4986 }
2daa3577 4987 update_rq_clock(rq);
dd41f596 4988 on_rq = p->se.on_rq;
051a1d1a 4989 running = task_current(rq, p);
0e1f3483 4990 if (on_rq)
2e1cb74a 4991 deactivate_task(rq, p, 0);
0e1f3483
HS
4992 if (running)
4993 p->sched_class->put_prev_task(rq, p);
f6b53205 4994
1da177e4 4995 oldprio = p->prio;
dd41f596 4996 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4997
0e1f3483
HS
4998 if (running)
4999 p->sched_class->set_curr_task(rq);
dd41f596
IM
5000 if (on_rq) {
5001 activate_task(rq, p, 0);
cb469845
SR
5002
5003 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5004 }
b29739f9
IM
5005 __task_rq_unlock(rq);
5006 spin_unlock_irqrestore(&p->pi_lock, flags);
5007
95e02ca9
TG
5008 rt_mutex_adjust_pi(p);
5009
1da177e4
LT
5010 return 0;
5011}
5012EXPORT_SYMBOL_GPL(sched_setscheduler);
5013
95cdf3b7
IM
5014static int
5015do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5016{
1da177e4
LT
5017 struct sched_param lparam;
5018 struct task_struct *p;
36c8b586 5019 int retval;
1da177e4
LT
5020
5021 if (!param || pid < 0)
5022 return -EINVAL;
5023 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5024 return -EFAULT;
5fe1d75f
ON
5025
5026 rcu_read_lock();
5027 retval = -ESRCH;
1da177e4 5028 p = find_process_by_pid(pid);
5fe1d75f
ON
5029 if (p != NULL)
5030 retval = sched_setscheduler(p, policy, &lparam);
5031 rcu_read_unlock();
36c8b586 5032
1da177e4
LT
5033 return retval;
5034}
5035
5036/**
5037 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5038 * @pid: the pid in question.
5039 * @policy: new policy.
5040 * @param: structure containing the new RT priority.
5041 */
41a2d6cf
IM
5042asmlinkage long
5043sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5044{
c21761f1
JB
5045 /* negative values for policy are not valid */
5046 if (policy < 0)
5047 return -EINVAL;
5048
1da177e4
LT
5049 return do_sched_setscheduler(pid, policy, param);
5050}
5051
5052/**
5053 * sys_sched_setparam - set/change the RT priority of a thread
5054 * @pid: the pid in question.
5055 * @param: structure containing the new RT priority.
5056 */
5057asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5058{
5059 return do_sched_setscheduler(pid, -1, param);
5060}
5061
5062/**
5063 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5064 * @pid: the pid in question.
5065 */
5066asmlinkage long sys_sched_getscheduler(pid_t pid)
5067{
36c8b586 5068 struct task_struct *p;
3a5c359a 5069 int retval;
1da177e4
LT
5070
5071 if (pid < 0)
3a5c359a 5072 return -EINVAL;
1da177e4
LT
5073
5074 retval = -ESRCH;
5075 read_lock(&tasklist_lock);
5076 p = find_process_by_pid(pid);
5077 if (p) {
5078 retval = security_task_getscheduler(p);
5079 if (!retval)
5080 retval = p->policy;
5081 }
5082 read_unlock(&tasklist_lock);
1da177e4
LT
5083 return retval;
5084}
5085
5086/**
5087 * sys_sched_getscheduler - get the RT priority of a thread
5088 * @pid: the pid in question.
5089 * @param: structure containing the RT priority.
5090 */
5091asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5092{
5093 struct sched_param lp;
36c8b586 5094 struct task_struct *p;
3a5c359a 5095 int retval;
1da177e4
LT
5096
5097 if (!param || pid < 0)
3a5c359a 5098 return -EINVAL;
1da177e4
LT
5099
5100 read_lock(&tasklist_lock);
5101 p = find_process_by_pid(pid);
5102 retval = -ESRCH;
5103 if (!p)
5104 goto out_unlock;
5105
5106 retval = security_task_getscheduler(p);
5107 if (retval)
5108 goto out_unlock;
5109
5110 lp.sched_priority = p->rt_priority;
5111 read_unlock(&tasklist_lock);
5112
5113 /*
5114 * This one might sleep, we cannot do it with a spinlock held ...
5115 */
5116 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5117
1da177e4
LT
5118 return retval;
5119
5120out_unlock:
5121 read_unlock(&tasklist_lock);
5122 return retval;
5123}
5124
b53e921b 5125long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5126{
1da177e4 5127 cpumask_t cpus_allowed;
b53e921b 5128 cpumask_t new_mask = *in_mask;
36c8b586
IM
5129 struct task_struct *p;
5130 int retval;
1da177e4 5131
95402b38 5132 get_online_cpus();
1da177e4
LT
5133 read_lock(&tasklist_lock);
5134
5135 p = find_process_by_pid(pid);
5136 if (!p) {
5137 read_unlock(&tasklist_lock);
95402b38 5138 put_online_cpus();
1da177e4
LT
5139 return -ESRCH;
5140 }
5141
5142 /*
5143 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5144 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5145 * usage count and then drop tasklist_lock.
5146 */
5147 get_task_struct(p);
5148 read_unlock(&tasklist_lock);
5149
5150 retval = -EPERM;
5151 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5152 !capable(CAP_SYS_NICE))
5153 goto out_unlock;
5154
e7834f8f
DQ
5155 retval = security_task_setscheduler(p, 0, NULL);
5156 if (retval)
5157 goto out_unlock;
5158
f9a86fcb 5159 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5160 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5161 again:
7c16ec58 5162 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5163
8707d8b8 5164 if (!retval) {
f9a86fcb 5165 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5166 if (!cpus_subset(new_mask, cpus_allowed)) {
5167 /*
5168 * We must have raced with a concurrent cpuset
5169 * update. Just reset the cpus_allowed to the
5170 * cpuset's cpus_allowed
5171 */
5172 new_mask = cpus_allowed;
5173 goto again;
5174 }
5175 }
1da177e4
LT
5176out_unlock:
5177 put_task_struct(p);
95402b38 5178 put_online_cpus();
1da177e4
LT
5179 return retval;
5180}
5181
5182static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5183 cpumask_t *new_mask)
5184{
5185 if (len < sizeof(cpumask_t)) {
5186 memset(new_mask, 0, sizeof(cpumask_t));
5187 } else if (len > sizeof(cpumask_t)) {
5188 len = sizeof(cpumask_t);
5189 }
5190 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5191}
5192
5193/**
5194 * sys_sched_setaffinity - set the cpu affinity of a process
5195 * @pid: pid of the process
5196 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5197 * @user_mask_ptr: user-space pointer to the new cpu mask
5198 */
5199asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5200 unsigned long __user *user_mask_ptr)
5201{
5202 cpumask_t new_mask;
5203 int retval;
5204
5205 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5206 if (retval)
5207 return retval;
5208
b53e921b 5209 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5210}
5211
1da177e4
LT
5212long sched_getaffinity(pid_t pid, cpumask_t *mask)
5213{
36c8b586 5214 struct task_struct *p;
1da177e4 5215 int retval;
1da177e4 5216
95402b38 5217 get_online_cpus();
1da177e4
LT
5218 read_lock(&tasklist_lock);
5219
5220 retval = -ESRCH;
5221 p = find_process_by_pid(pid);
5222 if (!p)
5223 goto out_unlock;
5224
e7834f8f
DQ
5225 retval = security_task_getscheduler(p);
5226 if (retval)
5227 goto out_unlock;
5228
2f7016d9 5229 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5230
5231out_unlock:
5232 read_unlock(&tasklist_lock);
95402b38 5233 put_online_cpus();
1da177e4 5234
9531b62f 5235 return retval;
1da177e4
LT
5236}
5237
5238/**
5239 * sys_sched_getaffinity - get the cpu affinity of a process
5240 * @pid: pid of the process
5241 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5242 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5243 */
5244asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5245 unsigned long __user *user_mask_ptr)
5246{
5247 int ret;
5248 cpumask_t mask;
5249
5250 if (len < sizeof(cpumask_t))
5251 return -EINVAL;
5252
5253 ret = sched_getaffinity(pid, &mask);
5254 if (ret < 0)
5255 return ret;
5256
5257 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5258 return -EFAULT;
5259
5260 return sizeof(cpumask_t);
5261}
5262
5263/**
5264 * sys_sched_yield - yield the current processor to other threads.
5265 *
dd41f596
IM
5266 * This function yields the current CPU to other tasks. If there are no
5267 * other threads running on this CPU then this function will return.
1da177e4
LT
5268 */
5269asmlinkage long sys_sched_yield(void)
5270{
70b97a7f 5271 struct rq *rq = this_rq_lock();
1da177e4 5272
2d72376b 5273 schedstat_inc(rq, yld_count);
4530d7ab 5274 current->sched_class->yield_task(rq);
1da177e4
LT
5275
5276 /*
5277 * Since we are going to call schedule() anyway, there's
5278 * no need to preempt or enable interrupts:
5279 */
5280 __release(rq->lock);
8a25d5de 5281 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5282 _raw_spin_unlock(&rq->lock);
5283 preempt_enable_no_resched();
5284
5285 schedule();
5286
5287 return 0;
5288}
5289
e7b38404 5290static void __cond_resched(void)
1da177e4 5291{
8e0a43d8
IM
5292#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5293 __might_sleep(__FILE__, __LINE__);
5294#endif
5bbcfd90
IM
5295 /*
5296 * The BKS might be reacquired before we have dropped
5297 * PREEMPT_ACTIVE, which could trigger a second
5298 * cond_resched() call.
5299 */
1da177e4
LT
5300 do {
5301 add_preempt_count(PREEMPT_ACTIVE);
5302 schedule();
5303 sub_preempt_count(PREEMPT_ACTIVE);
5304 } while (need_resched());
5305}
5306
02b67cc3 5307int __sched _cond_resched(void)
1da177e4 5308{
9414232f
IM
5309 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5310 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5311 __cond_resched();
5312 return 1;
5313 }
5314 return 0;
5315}
02b67cc3 5316EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5317
5318/*
5319 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5320 * call schedule, and on return reacquire the lock.
5321 *
41a2d6cf 5322 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5323 * operations here to prevent schedule() from being called twice (once via
5324 * spin_unlock(), once by hand).
5325 */
95cdf3b7 5326int cond_resched_lock(spinlock_t *lock)
1da177e4 5327{
95c354fe 5328 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5329 int ret = 0;
5330
95c354fe 5331 if (spin_needbreak(lock) || resched) {
1da177e4 5332 spin_unlock(lock);
95c354fe
NP
5333 if (resched && need_resched())
5334 __cond_resched();
5335 else
5336 cpu_relax();
6df3cecb 5337 ret = 1;
1da177e4 5338 spin_lock(lock);
1da177e4 5339 }
6df3cecb 5340 return ret;
1da177e4 5341}
1da177e4
LT
5342EXPORT_SYMBOL(cond_resched_lock);
5343
5344int __sched cond_resched_softirq(void)
5345{
5346 BUG_ON(!in_softirq());
5347
9414232f 5348 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5349 local_bh_enable();
1da177e4
LT
5350 __cond_resched();
5351 local_bh_disable();
5352 return 1;
5353 }
5354 return 0;
5355}
1da177e4
LT
5356EXPORT_SYMBOL(cond_resched_softirq);
5357
1da177e4
LT
5358/**
5359 * yield - yield the current processor to other threads.
5360 *
72fd4a35 5361 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5362 * thread runnable and calls sys_sched_yield().
5363 */
5364void __sched yield(void)
5365{
5366 set_current_state(TASK_RUNNING);
5367 sys_sched_yield();
5368}
1da177e4
LT
5369EXPORT_SYMBOL(yield);
5370
5371/*
41a2d6cf 5372 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5373 * that process accounting knows that this is a task in IO wait state.
5374 *
5375 * But don't do that if it is a deliberate, throttling IO wait (this task
5376 * has set its backing_dev_info: the queue against which it should throttle)
5377 */
5378void __sched io_schedule(void)
5379{
70b97a7f 5380 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5381
0ff92245 5382 delayacct_blkio_start();
1da177e4
LT
5383 atomic_inc(&rq->nr_iowait);
5384 schedule();
5385 atomic_dec(&rq->nr_iowait);
0ff92245 5386 delayacct_blkio_end();
1da177e4 5387}
1da177e4
LT
5388EXPORT_SYMBOL(io_schedule);
5389
5390long __sched io_schedule_timeout(long timeout)
5391{
70b97a7f 5392 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5393 long ret;
5394
0ff92245 5395 delayacct_blkio_start();
1da177e4
LT
5396 atomic_inc(&rq->nr_iowait);
5397 ret = schedule_timeout(timeout);
5398 atomic_dec(&rq->nr_iowait);
0ff92245 5399 delayacct_blkio_end();
1da177e4
LT
5400 return ret;
5401}
5402
5403/**
5404 * sys_sched_get_priority_max - return maximum RT priority.
5405 * @policy: scheduling class.
5406 *
5407 * this syscall returns the maximum rt_priority that can be used
5408 * by a given scheduling class.
5409 */
5410asmlinkage long sys_sched_get_priority_max(int policy)
5411{
5412 int ret = -EINVAL;
5413
5414 switch (policy) {
5415 case SCHED_FIFO:
5416 case SCHED_RR:
5417 ret = MAX_USER_RT_PRIO-1;
5418 break;
5419 case SCHED_NORMAL:
b0a9499c 5420 case SCHED_BATCH:
dd41f596 5421 case SCHED_IDLE:
1da177e4
LT
5422 ret = 0;
5423 break;
5424 }
5425 return ret;
5426}
5427
5428/**
5429 * sys_sched_get_priority_min - return minimum RT priority.
5430 * @policy: scheduling class.
5431 *
5432 * this syscall returns the minimum rt_priority that can be used
5433 * by a given scheduling class.
5434 */
5435asmlinkage long sys_sched_get_priority_min(int policy)
5436{
5437 int ret = -EINVAL;
5438
5439 switch (policy) {
5440 case SCHED_FIFO:
5441 case SCHED_RR:
5442 ret = 1;
5443 break;
5444 case SCHED_NORMAL:
b0a9499c 5445 case SCHED_BATCH:
dd41f596 5446 case SCHED_IDLE:
1da177e4
LT
5447 ret = 0;
5448 }
5449 return ret;
5450}
5451
5452/**
5453 * sys_sched_rr_get_interval - return the default timeslice of a process.
5454 * @pid: pid of the process.
5455 * @interval: userspace pointer to the timeslice value.
5456 *
5457 * this syscall writes the default timeslice value of a given process
5458 * into the user-space timespec buffer. A value of '0' means infinity.
5459 */
5460asmlinkage
5461long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5462{
36c8b586 5463 struct task_struct *p;
a4ec24b4 5464 unsigned int time_slice;
3a5c359a 5465 int retval;
1da177e4 5466 struct timespec t;
1da177e4
LT
5467
5468 if (pid < 0)
3a5c359a 5469 return -EINVAL;
1da177e4
LT
5470
5471 retval = -ESRCH;
5472 read_lock(&tasklist_lock);
5473 p = find_process_by_pid(pid);
5474 if (!p)
5475 goto out_unlock;
5476
5477 retval = security_task_getscheduler(p);
5478 if (retval)
5479 goto out_unlock;
5480
77034937
IM
5481 /*
5482 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5483 * tasks that are on an otherwise idle runqueue:
5484 */
5485 time_slice = 0;
5486 if (p->policy == SCHED_RR) {
a4ec24b4 5487 time_slice = DEF_TIMESLICE;
1868f958 5488 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5489 struct sched_entity *se = &p->se;
5490 unsigned long flags;
5491 struct rq *rq;
5492
5493 rq = task_rq_lock(p, &flags);
77034937
IM
5494 if (rq->cfs.load.weight)
5495 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5496 task_rq_unlock(rq, &flags);
5497 }
1da177e4 5498 read_unlock(&tasklist_lock);
a4ec24b4 5499 jiffies_to_timespec(time_slice, &t);
1da177e4 5500 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5501 return retval;
3a5c359a 5502
1da177e4
LT
5503out_unlock:
5504 read_unlock(&tasklist_lock);
5505 return retval;
5506}
5507
2ed6e34f 5508static const char stat_nam[] = "RSDTtZX";
36c8b586 5509
82a1fcb9 5510void sched_show_task(struct task_struct *p)
1da177e4 5511{
1da177e4 5512 unsigned long free = 0;
36c8b586 5513 unsigned state;
1da177e4 5514
1da177e4 5515 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5516 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5517 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5518#if BITS_PER_LONG == 32
1da177e4 5519 if (state == TASK_RUNNING)
cc4ea795 5520 printk(KERN_CONT " running ");
1da177e4 5521 else
cc4ea795 5522 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5523#else
5524 if (state == TASK_RUNNING)
cc4ea795 5525 printk(KERN_CONT " running task ");
1da177e4 5526 else
cc4ea795 5527 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5528#endif
5529#ifdef CONFIG_DEBUG_STACK_USAGE
5530 {
10ebffde 5531 unsigned long *n = end_of_stack(p);
1da177e4
LT
5532 while (!*n)
5533 n++;
10ebffde 5534 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5535 }
5536#endif
ba25f9dc 5537 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5538 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5539
5fb5e6de 5540 show_stack(p, NULL);
1da177e4
LT
5541}
5542
e59e2ae2 5543void show_state_filter(unsigned long state_filter)
1da177e4 5544{
36c8b586 5545 struct task_struct *g, *p;
1da177e4 5546
4bd77321
IM
5547#if BITS_PER_LONG == 32
5548 printk(KERN_INFO
5549 " task PC stack pid father\n");
1da177e4 5550#else
4bd77321
IM
5551 printk(KERN_INFO
5552 " task PC stack pid father\n");
1da177e4
LT
5553#endif
5554 read_lock(&tasklist_lock);
5555 do_each_thread(g, p) {
5556 /*
5557 * reset the NMI-timeout, listing all files on a slow
5558 * console might take alot of time:
5559 */
5560 touch_nmi_watchdog();
39bc89fd 5561 if (!state_filter || (p->state & state_filter))
82a1fcb9 5562 sched_show_task(p);
1da177e4
LT
5563 } while_each_thread(g, p);
5564
04c9167f
JF
5565 touch_all_softlockup_watchdogs();
5566
dd41f596
IM
5567#ifdef CONFIG_SCHED_DEBUG
5568 sysrq_sched_debug_show();
5569#endif
1da177e4 5570 read_unlock(&tasklist_lock);
e59e2ae2
IM
5571 /*
5572 * Only show locks if all tasks are dumped:
5573 */
5574 if (state_filter == -1)
5575 debug_show_all_locks();
1da177e4
LT
5576}
5577
1df21055
IM
5578void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5579{
dd41f596 5580 idle->sched_class = &idle_sched_class;
1df21055
IM
5581}
5582
f340c0d1
IM
5583/**
5584 * init_idle - set up an idle thread for a given CPU
5585 * @idle: task in question
5586 * @cpu: cpu the idle task belongs to
5587 *
5588 * NOTE: this function does not set the idle thread's NEED_RESCHED
5589 * flag, to make booting more robust.
5590 */
5c1e1767 5591void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5592{
70b97a7f 5593 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5594 unsigned long flags;
5595
dd41f596
IM
5596 __sched_fork(idle);
5597 idle->se.exec_start = sched_clock();
5598
b29739f9 5599 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5600 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5601 __set_task_cpu(idle, cpu);
1da177e4
LT
5602
5603 spin_lock_irqsave(&rq->lock, flags);
5604 rq->curr = rq->idle = idle;
4866cde0
NP
5605#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5606 idle->oncpu = 1;
5607#endif
1da177e4
LT
5608 spin_unlock_irqrestore(&rq->lock, flags);
5609
5610 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5611#if defined(CONFIG_PREEMPT)
5612 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5613#else
a1261f54 5614 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5615#endif
dd41f596
IM
5616 /*
5617 * The idle tasks have their own, simple scheduling class:
5618 */
5619 idle->sched_class = &idle_sched_class;
1da177e4
LT
5620}
5621
5622/*
5623 * In a system that switches off the HZ timer nohz_cpu_mask
5624 * indicates which cpus entered this state. This is used
5625 * in the rcu update to wait only for active cpus. For system
5626 * which do not switch off the HZ timer nohz_cpu_mask should
5627 * always be CPU_MASK_NONE.
5628 */
5629cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5630
19978ca6
IM
5631/*
5632 * Increase the granularity value when there are more CPUs,
5633 * because with more CPUs the 'effective latency' as visible
5634 * to users decreases. But the relationship is not linear,
5635 * so pick a second-best guess by going with the log2 of the
5636 * number of CPUs.
5637 *
5638 * This idea comes from the SD scheduler of Con Kolivas:
5639 */
5640static inline void sched_init_granularity(void)
5641{
5642 unsigned int factor = 1 + ilog2(num_online_cpus());
5643 const unsigned long limit = 200000000;
5644
5645 sysctl_sched_min_granularity *= factor;
5646 if (sysctl_sched_min_granularity > limit)
5647 sysctl_sched_min_granularity = limit;
5648
5649 sysctl_sched_latency *= factor;
5650 if (sysctl_sched_latency > limit)
5651 sysctl_sched_latency = limit;
5652
5653 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5654}
5655
1da177e4
LT
5656#ifdef CONFIG_SMP
5657/*
5658 * This is how migration works:
5659 *
70b97a7f 5660 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5661 * runqueue and wake up that CPU's migration thread.
5662 * 2) we down() the locked semaphore => thread blocks.
5663 * 3) migration thread wakes up (implicitly it forces the migrated
5664 * thread off the CPU)
5665 * 4) it gets the migration request and checks whether the migrated
5666 * task is still in the wrong runqueue.
5667 * 5) if it's in the wrong runqueue then the migration thread removes
5668 * it and puts it into the right queue.
5669 * 6) migration thread up()s the semaphore.
5670 * 7) we wake up and the migration is done.
5671 */
5672
5673/*
5674 * Change a given task's CPU affinity. Migrate the thread to a
5675 * proper CPU and schedule it away if the CPU it's executing on
5676 * is removed from the allowed bitmask.
5677 *
5678 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5679 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5680 * call is not atomic; no spinlocks may be held.
5681 */
cd8ba7cd 5682int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5683{
70b97a7f 5684 struct migration_req req;
1da177e4 5685 unsigned long flags;
70b97a7f 5686 struct rq *rq;
48f24c4d 5687 int ret = 0;
1da177e4
LT
5688
5689 rq = task_rq_lock(p, &flags);
cd8ba7cd 5690 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5691 ret = -EINVAL;
5692 goto out;
5693 }
5694
9985b0ba
DR
5695 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5696 !cpus_equal(p->cpus_allowed, *new_mask))) {
5697 ret = -EINVAL;
5698 goto out;
5699 }
5700
73fe6aae 5701 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5702 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5703 else {
cd8ba7cd
MT
5704 p->cpus_allowed = *new_mask;
5705 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5706 }
5707
1da177e4 5708 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5709 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5710 goto out;
5711
cd8ba7cd 5712 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5713 /* Need help from migration thread: drop lock and wait. */
5714 task_rq_unlock(rq, &flags);
5715 wake_up_process(rq->migration_thread);
5716 wait_for_completion(&req.done);
5717 tlb_migrate_finish(p->mm);
5718 return 0;
5719 }
5720out:
5721 task_rq_unlock(rq, &flags);
48f24c4d 5722
1da177e4
LT
5723 return ret;
5724}
cd8ba7cd 5725EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5726
5727/*
41a2d6cf 5728 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5729 * this because either it can't run here any more (set_cpus_allowed()
5730 * away from this CPU, or CPU going down), or because we're
5731 * attempting to rebalance this task on exec (sched_exec).
5732 *
5733 * So we race with normal scheduler movements, but that's OK, as long
5734 * as the task is no longer on this CPU.
efc30814
KK
5735 *
5736 * Returns non-zero if task was successfully migrated.
1da177e4 5737 */
efc30814 5738static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5739{
70b97a7f 5740 struct rq *rq_dest, *rq_src;
dd41f596 5741 int ret = 0, on_rq;
1da177e4
LT
5742
5743 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5744 return ret;
1da177e4
LT
5745
5746 rq_src = cpu_rq(src_cpu);
5747 rq_dest = cpu_rq(dest_cpu);
5748
5749 double_rq_lock(rq_src, rq_dest);
5750 /* Already moved. */
5751 if (task_cpu(p) != src_cpu)
5752 goto out;
5753 /* Affinity changed (again). */
5754 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5755 goto out;
5756
dd41f596 5757 on_rq = p->se.on_rq;
6e82a3be 5758 if (on_rq)
2e1cb74a 5759 deactivate_task(rq_src, p, 0);
6e82a3be 5760
1da177e4 5761 set_task_cpu(p, dest_cpu);
dd41f596
IM
5762 if (on_rq) {
5763 activate_task(rq_dest, p, 0);
5764 check_preempt_curr(rq_dest, p);
1da177e4 5765 }
efc30814 5766 ret = 1;
1da177e4
LT
5767out:
5768 double_rq_unlock(rq_src, rq_dest);
efc30814 5769 return ret;
1da177e4
LT
5770}
5771
5772/*
5773 * migration_thread - this is a highprio system thread that performs
5774 * thread migration by bumping thread off CPU then 'pushing' onto
5775 * another runqueue.
5776 */
95cdf3b7 5777static int migration_thread(void *data)
1da177e4 5778{
1da177e4 5779 int cpu = (long)data;
70b97a7f 5780 struct rq *rq;
1da177e4
LT
5781
5782 rq = cpu_rq(cpu);
5783 BUG_ON(rq->migration_thread != current);
5784
5785 set_current_state(TASK_INTERRUPTIBLE);
5786 while (!kthread_should_stop()) {
70b97a7f 5787 struct migration_req *req;
1da177e4 5788 struct list_head *head;
1da177e4 5789
1da177e4
LT
5790 spin_lock_irq(&rq->lock);
5791
5792 if (cpu_is_offline(cpu)) {
5793 spin_unlock_irq(&rq->lock);
5794 goto wait_to_die;
5795 }
5796
5797 if (rq->active_balance) {
5798 active_load_balance(rq, cpu);
5799 rq->active_balance = 0;
5800 }
5801
5802 head = &rq->migration_queue;
5803
5804 if (list_empty(head)) {
5805 spin_unlock_irq(&rq->lock);
5806 schedule();
5807 set_current_state(TASK_INTERRUPTIBLE);
5808 continue;
5809 }
70b97a7f 5810 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5811 list_del_init(head->next);
5812
674311d5
NP
5813 spin_unlock(&rq->lock);
5814 __migrate_task(req->task, cpu, req->dest_cpu);
5815 local_irq_enable();
1da177e4
LT
5816
5817 complete(&req->done);
5818 }
5819 __set_current_state(TASK_RUNNING);
5820 return 0;
5821
5822wait_to_die:
5823 /* Wait for kthread_stop */
5824 set_current_state(TASK_INTERRUPTIBLE);
5825 while (!kthread_should_stop()) {
5826 schedule();
5827 set_current_state(TASK_INTERRUPTIBLE);
5828 }
5829 __set_current_state(TASK_RUNNING);
5830 return 0;
5831}
5832
5833#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5834
5835static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5836{
5837 int ret;
5838
5839 local_irq_disable();
5840 ret = __migrate_task(p, src_cpu, dest_cpu);
5841 local_irq_enable();
5842 return ret;
5843}
5844
054b9108 5845/*
3a4fa0a2 5846 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5847 * NOTE: interrupts should be disabled by the caller
5848 */
48f24c4d 5849static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5850{
efc30814 5851 unsigned long flags;
1da177e4 5852 cpumask_t mask;
70b97a7f
IM
5853 struct rq *rq;
5854 int dest_cpu;
1da177e4 5855
3a5c359a
AK
5856 do {
5857 /* On same node? */
5858 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5859 cpus_and(mask, mask, p->cpus_allowed);
5860 dest_cpu = any_online_cpu(mask);
5861
5862 /* On any allowed CPU? */
434d53b0 5863 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5864 dest_cpu = any_online_cpu(p->cpus_allowed);
5865
5866 /* No more Mr. Nice Guy. */
434d53b0 5867 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5868 cpumask_t cpus_allowed;
5869
5870 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5871 /*
5872 * Try to stay on the same cpuset, where the
5873 * current cpuset may be a subset of all cpus.
5874 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5875 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5876 * called within calls to cpuset_lock/cpuset_unlock.
5877 */
3a5c359a 5878 rq = task_rq_lock(p, &flags);
470fd646 5879 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5880 dest_cpu = any_online_cpu(p->cpus_allowed);
5881 task_rq_unlock(rq, &flags);
1da177e4 5882
3a5c359a
AK
5883 /*
5884 * Don't tell them about moving exiting tasks or
5885 * kernel threads (both mm NULL), since they never
5886 * leave kernel.
5887 */
41a2d6cf 5888 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5889 printk(KERN_INFO "process %d (%s) no "
5890 "longer affine to cpu%d\n",
41a2d6cf
IM
5891 task_pid_nr(p), p->comm, dead_cpu);
5892 }
3a5c359a 5893 }
f7b4cddc 5894 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5895}
5896
5897/*
5898 * While a dead CPU has no uninterruptible tasks queued at this point,
5899 * it might still have a nonzero ->nr_uninterruptible counter, because
5900 * for performance reasons the counter is not stricly tracking tasks to
5901 * their home CPUs. So we just add the counter to another CPU's counter,
5902 * to keep the global sum constant after CPU-down:
5903 */
70b97a7f 5904static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5905{
7c16ec58 5906 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5907 unsigned long flags;
5908
5909 local_irq_save(flags);
5910 double_rq_lock(rq_src, rq_dest);
5911 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5912 rq_src->nr_uninterruptible = 0;
5913 double_rq_unlock(rq_src, rq_dest);
5914 local_irq_restore(flags);
5915}
5916
5917/* Run through task list and migrate tasks from the dead cpu. */
5918static void migrate_live_tasks(int src_cpu)
5919{
48f24c4d 5920 struct task_struct *p, *t;
1da177e4 5921
f7b4cddc 5922 read_lock(&tasklist_lock);
1da177e4 5923
48f24c4d
IM
5924 do_each_thread(t, p) {
5925 if (p == current)
1da177e4
LT
5926 continue;
5927
48f24c4d
IM
5928 if (task_cpu(p) == src_cpu)
5929 move_task_off_dead_cpu(src_cpu, p);
5930 } while_each_thread(t, p);
1da177e4 5931
f7b4cddc 5932 read_unlock(&tasklist_lock);
1da177e4
LT
5933}
5934
dd41f596
IM
5935/*
5936 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5937 * It does so by boosting its priority to highest possible.
5938 * Used by CPU offline code.
1da177e4
LT
5939 */
5940void sched_idle_next(void)
5941{
48f24c4d 5942 int this_cpu = smp_processor_id();
70b97a7f 5943 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5944 struct task_struct *p = rq->idle;
5945 unsigned long flags;
5946
5947 /* cpu has to be offline */
48f24c4d 5948 BUG_ON(cpu_online(this_cpu));
1da177e4 5949
48f24c4d
IM
5950 /*
5951 * Strictly not necessary since rest of the CPUs are stopped by now
5952 * and interrupts disabled on the current cpu.
1da177e4
LT
5953 */
5954 spin_lock_irqsave(&rq->lock, flags);
5955
dd41f596 5956 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5957
94bc9a7b
DA
5958 update_rq_clock(rq);
5959 activate_task(rq, p, 0);
1da177e4
LT
5960
5961 spin_unlock_irqrestore(&rq->lock, flags);
5962}
5963
48f24c4d
IM
5964/*
5965 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5966 * offline.
5967 */
5968void idle_task_exit(void)
5969{
5970 struct mm_struct *mm = current->active_mm;
5971
5972 BUG_ON(cpu_online(smp_processor_id()));
5973
5974 if (mm != &init_mm)
5975 switch_mm(mm, &init_mm, current);
5976 mmdrop(mm);
5977}
5978
054b9108 5979/* called under rq->lock with disabled interrupts */
36c8b586 5980static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5981{
70b97a7f 5982 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5983
5984 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5985 BUG_ON(!p->exit_state);
1da177e4
LT
5986
5987 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5988 BUG_ON(p->state == TASK_DEAD);
1da177e4 5989
48f24c4d 5990 get_task_struct(p);
1da177e4
LT
5991
5992 /*
5993 * Drop lock around migration; if someone else moves it,
41a2d6cf 5994 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5995 * fine.
5996 */
f7b4cddc 5997 spin_unlock_irq(&rq->lock);
48f24c4d 5998 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5999 spin_lock_irq(&rq->lock);
1da177e4 6000
48f24c4d 6001 put_task_struct(p);
1da177e4
LT
6002}
6003
6004/* release_task() removes task from tasklist, so we won't find dead tasks. */
6005static void migrate_dead_tasks(unsigned int dead_cpu)
6006{
70b97a7f 6007 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6008 struct task_struct *next;
48f24c4d 6009
dd41f596
IM
6010 for ( ; ; ) {
6011 if (!rq->nr_running)
6012 break;
a8e504d2 6013 update_rq_clock(rq);
ff95f3df 6014 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6015 if (!next)
6016 break;
6017 migrate_dead(dead_cpu, next);
e692ab53 6018
1da177e4
LT
6019 }
6020}
6021#endif /* CONFIG_HOTPLUG_CPU */
6022
e692ab53
NP
6023#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6024
6025static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6026 {
6027 .procname = "sched_domain",
c57baf1e 6028 .mode = 0555,
e0361851 6029 },
38605cae 6030 {0, },
e692ab53
NP
6031};
6032
6033static struct ctl_table sd_ctl_root[] = {
e0361851 6034 {
c57baf1e 6035 .ctl_name = CTL_KERN,
e0361851 6036 .procname = "kernel",
c57baf1e 6037 .mode = 0555,
e0361851
AD
6038 .child = sd_ctl_dir,
6039 },
38605cae 6040 {0, },
e692ab53
NP
6041};
6042
6043static struct ctl_table *sd_alloc_ctl_entry(int n)
6044{
6045 struct ctl_table *entry =
5cf9f062 6046 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6047
e692ab53
NP
6048 return entry;
6049}
6050
6382bc90
MM
6051static void sd_free_ctl_entry(struct ctl_table **tablep)
6052{
cd790076 6053 struct ctl_table *entry;
6382bc90 6054
cd790076
MM
6055 /*
6056 * In the intermediate directories, both the child directory and
6057 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6058 * will always be set. In the lowest directory the names are
cd790076
MM
6059 * static strings and all have proc handlers.
6060 */
6061 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6062 if (entry->child)
6063 sd_free_ctl_entry(&entry->child);
cd790076
MM
6064 if (entry->proc_handler == NULL)
6065 kfree(entry->procname);
6066 }
6382bc90
MM
6067
6068 kfree(*tablep);
6069 *tablep = NULL;
6070}
6071
e692ab53 6072static void
e0361851 6073set_table_entry(struct ctl_table *entry,
e692ab53
NP
6074 const char *procname, void *data, int maxlen,
6075 mode_t mode, proc_handler *proc_handler)
6076{
e692ab53
NP
6077 entry->procname = procname;
6078 entry->data = data;
6079 entry->maxlen = maxlen;
6080 entry->mode = mode;
6081 entry->proc_handler = proc_handler;
6082}
6083
6084static struct ctl_table *
6085sd_alloc_ctl_domain_table(struct sched_domain *sd)
6086{
ace8b3d6 6087 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6088
ad1cdc1d
MM
6089 if (table == NULL)
6090 return NULL;
6091
e0361851 6092 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6093 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6094 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6095 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6096 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6097 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6098 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6099 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6100 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6101 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6102 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6103 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6104 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6105 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6106 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6107 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6108 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6109 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6110 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6111 &sd->cache_nice_tries,
6112 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6113 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6114 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6115 /* &table[11] is terminator */
e692ab53
NP
6116
6117 return table;
6118}
6119
9a4e7159 6120static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6121{
6122 struct ctl_table *entry, *table;
6123 struct sched_domain *sd;
6124 int domain_num = 0, i;
6125 char buf[32];
6126
6127 for_each_domain(cpu, sd)
6128 domain_num++;
6129 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6130 if (table == NULL)
6131 return NULL;
e692ab53
NP
6132
6133 i = 0;
6134 for_each_domain(cpu, sd) {
6135 snprintf(buf, 32, "domain%d", i);
e692ab53 6136 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6137 entry->mode = 0555;
e692ab53
NP
6138 entry->child = sd_alloc_ctl_domain_table(sd);
6139 entry++;
6140 i++;
6141 }
6142 return table;
6143}
6144
6145static struct ctl_table_header *sd_sysctl_header;
6382bc90 6146static void register_sched_domain_sysctl(void)
e692ab53
NP
6147{
6148 int i, cpu_num = num_online_cpus();
6149 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6150 char buf[32];
6151
7378547f
MM
6152 WARN_ON(sd_ctl_dir[0].child);
6153 sd_ctl_dir[0].child = entry;
6154
ad1cdc1d
MM
6155 if (entry == NULL)
6156 return;
6157
97b6ea7b 6158 for_each_online_cpu(i) {
e692ab53 6159 snprintf(buf, 32, "cpu%d", i);
e692ab53 6160 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6161 entry->mode = 0555;
e692ab53 6162 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6163 entry++;
e692ab53 6164 }
7378547f
MM
6165
6166 WARN_ON(sd_sysctl_header);
e692ab53
NP
6167 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6168}
6382bc90 6169
7378547f 6170/* may be called multiple times per register */
6382bc90
MM
6171static void unregister_sched_domain_sysctl(void)
6172{
7378547f
MM
6173 if (sd_sysctl_header)
6174 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6175 sd_sysctl_header = NULL;
7378547f
MM
6176 if (sd_ctl_dir[0].child)
6177 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6178}
e692ab53 6179#else
6382bc90
MM
6180static void register_sched_domain_sysctl(void)
6181{
6182}
6183static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6184{
6185}
6186#endif
6187
1f11eb6a
GH
6188static void set_rq_online(struct rq *rq)
6189{
6190 if (!rq->online) {
6191 const struct sched_class *class;
6192
6193 cpu_set(rq->cpu, rq->rd->online);
6194 rq->online = 1;
6195
6196 for_each_class(class) {
6197 if (class->rq_online)
6198 class->rq_online(rq);
6199 }
6200 }
6201}
6202
6203static void set_rq_offline(struct rq *rq)
6204{
6205 if (rq->online) {
6206 const struct sched_class *class;
6207
6208 for_each_class(class) {
6209 if (class->rq_offline)
6210 class->rq_offline(rq);
6211 }
6212
6213 cpu_clear(rq->cpu, rq->rd->online);
6214 rq->online = 0;
6215 }
6216}
6217
1da177e4
LT
6218/*
6219 * migration_call - callback that gets triggered when a CPU is added.
6220 * Here we can start up the necessary migration thread for the new CPU.
6221 */
48f24c4d
IM
6222static int __cpuinit
6223migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6224{
1da177e4 6225 struct task_struct *p;
48f24c4d 6226 int cpu = (long)hcpu;
1da177e4 6227 unsigned long flags;
70b97a7f 6228 struct rq *rq;
1da177e4
LT
6229
6230 switch (action) {
5be9361c 6231
1da177e4 6232 case CPU_UP_PREPARE:
8bb78442 6233 case CPU_UP_PREPARE_FROZEN:
dd41f596 6234 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6235 if (IS_ERR(p))
6236 return NOTIFY_BAD;
1da177e4
LT
6237 kthread_bind(p, cpu);
6238 /* Must be high prio: stop_machine expects to yield to it. */
6239 rq = task_rq_lock(p, &flags);
dd41f596 6240 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6241 task_rq_unlock(rq, &flags);
6242 cpu_rq(cpu)->migration_thread = p;
6243 break;
48f24c4d 6244
1da177e4 6245 case CPU_ONLINE:
8bb78442 6246 case CPU_ONLINE_FROZEN:
3a4fa0a2 6247 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6248 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6249
6250 /* Update our root-domain */
6251 rq = cpu_rq(cpu);
6252 spin_lock_irqsave(&rq->lock, flags);
6253 if (rq->rd) {
6254 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6255
6256 set_rq_online(rq);
1f94ef59
GH
6257 }
6258 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6259 break;
48f24c4d 6260
1da177e4
LT
6261#ifdef CONFIG_HOTPLUG_CPU
6262 case CPU_UP_CANCELED:
8bb78442 6263 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6264 if (!cpu_rq(cpu)->migration_thread)
6265 break;
41a2d6cf 6266 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6267 kthread_bind(cpu_rq(cpu)->migration_thread,
6268 any_online_cpu(cpu_online_map));
1da177e4
LT
6269 kthread_stop(cpu_rq(cpu)->migration_thread);
6270 cpu_rq(cpu)->migration_thread = NULL;
6271 break;
48f24c4d 6272
1da177e4 6273 case CPU_DEAD:
8bb78442 6274 case CPU_DEAD_FROZEN:
470fd646 6275 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6276 migrate_live_tasks(cpu);
6277 rq = cpu_rq(cpu);
6278 kthread_stop(rq->migration_thread);
6279 rq->migration_thread = NULL;
6280 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6281 spin_lock_irq(&rq->lock);
a8e504d2 6282 update_rq_clock(rq);
2e1cb74a 6283 deactivate_task(rq, rq->idle, 0);
1da177e4 6284 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6285 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6286 rq->idle->sched_class = &idle_sched_class;
1da177e4 6287 migrate_dead_tasks(cpu);
d2da272a 6288 spin_unlock_irq(&rq->lock);
470fd646 6289 cpuset_unlock();
1da177e4
LT
6290 migrate_nr_uninterruptible(rq);
6291 BUG_ON(rq->nr_running != 0);
6292
41a2d6cf
IM
6293 /*
6294 * No need to migrate the tasks: it was best-effort if
6295 * they didn't take sched_hotcpu_mutex. Just wake up
6296 * the requestors.
6297 */
1da177e4
LT
6298 spin_lock_irq(&rq->lock);
6299 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6300 struct migration_req *req;
6301
1da177e4 6302 req = list_entry(rq->migration_queue.next,
70b97a7f 6303 struct migration_req, list);
1da177e4
LT
6304 list_del_init(&req->list);
6305 complete(&req->done);
6306 }
6307 spin_unlock_irq(&rq->lock);
6308 break;
57d885fe 6309
08f503b0
GH
6310 case CPU_DYING:
6311 case CPU_DYING_FROZEN:
57d885fe
GH
6312 /* Update our root-domain */
6313 rq = cpu_rq(cpu);
6314 spin_lock_irqsave(&rq->lock, flags);
6315 if (rq->rd) {
6316 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6317 set_rq_offline(rq);
57d885fe
GH
6318 }
6319 spin_unlock_irqrestore(&rq->lock, flags);
6320 break;
1da177e4
LT
6321#endif
6322 }
6323 return NOTIFY_OK;
6324}
6325
6326/* Register at highest priority so that task migration (migrate_all_tasks)
6327 * happens before everything else.
6328 */
26c2143b 6329static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6330 .notifier_call = migration_call,
6331 .priority = 10
6332};
6333
e6fe6649 6334void __init migration_init(void)
1da177e4
LT
6335{
6336 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6337 int err;
48f24c4d
IM
6338
6339 /* Start one for the boot CPU: */
07dccf33
AM
6340 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6341 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6342 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6343 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6344}
6345#endif
6346
6347#ifdef CONFIG_SMP
476f3534 6348
3e9830dc 6349#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6350
099f98c8
GS
6351static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6352{
6353 switch (lvl) {
6354 case SD_LV_NONE:
6355 return "NONE";
6356 case SD_LV_SIBLING:
6357 return "SIBLING";
6358 case SD_LV_MC:
6359 return "MC";
6360 case SD_LV_CPU:
6361 return "CPU";
6362 case SD_LV_NODE:
6363 return "NODE";
6364 case SD_LV_ALLNODES:
6365 return "ALLNODES";
6366 case SD_LV_MAX:
6367 return "MAX";
6368
6369 }
6370 return "MAX";
6371}
6372
7c16ec58
MT
6373static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6374 cpumask_t *groupmask)
1da177e4 6375{
4dcf6aff 6376 struct sched_group *group = sd->groups;
434d53b0 6377 char str[256];
1da177e4 6378
434d53b0 6379 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6380 cpus_clear(*groupmask);
4dcf6aff
IM
6381
6382 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6383
6384 if (!(sd->flags & SD_LOAD_BALANCE)) {
6385 printk("does not load-balance\n");
6386 if (sd->parent)
6387 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6388 " has parent");
6389 return -1;
41c7ce9a
NP
6390 }
6391
099f98c8
GS
6392 printk(KERN_CONT "span %s level %s\n",
6393 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6394
6395 if (!cpu_isset(cpu, sd->span)) {
6396 printk(KERN_ERR "ERROR: domain->span does not contain "
6397 "CPU%d\n", cpu);
6398 }
6399 if (!cpu_isset(cpu, group->cpumask)) {
6400 printk(KERN_ERR "ERROR: domain->groups does not contain"
6401 " CPU%d\n", cpu);
6402 }
1da177e4 6403
4dcf6aff 6404 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6405 do {
4dcf6aff
IM
6406 if (!group) {
6407 printk("\n");
6408 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6409 break;
6410 }
6411
4dcf6aff
IM
6412 if (!group->__cpu_power) {
6413 printk(KERN_CONT "\n");
6414 printk(KERN_ERR "ERROR: domain->cpu_power not "
6415 "set\n");
6416 break;
6417 }
1da177e4 6418
4dcf6aff
IM
6419 if (!cpus_weight(group->cpumask)) {
6420 printk(KERN_CONT "\n");
6421 printk(KERN_ERR "ERROR: empty group\n");
6422 break;
6423 }
1da177e4 6424
7c16ec58 6425 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6426 printk(KERN_CONT "\n");
6427 printk(KERN_ERR "ERROR: repeated CPUs\n");
6428 break;
6429 }
1da177e4 6430
7c16ec58 6431 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6432
434d53b0 6433 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6434 printk(KERN_CONT " %s", str);
1da177e4 6435
4dcf6aff
IM
6436 group = group->next;
6437 } while (group != sd->groups);
6438 printk(KERN_CONT "\n");
1da177e4 6439
7c16ec58 6440 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6441 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6442
7c16ec58 6443 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6444 printk(KERN_ERR "ERROR: parent span is not a superset "
6445 "of domain->span\n");
6446 return 0;
6447}
1da177e4 6448
4dcf6aff
IM
6449static void sched_domain_debug(struct sched_domain *sd, int cpu)
6450{
7c16ec58 6451 cpumask_t *groupmask;
4dcf6aff 6452 int level = 0;
1da177e4 6453
4dcf6aff
IM
6454 if (!sd) {
6455 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6456 return;
6457 }
1da177e4 6458
4dcf6aff
IM
6459 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6460
7c16ec58
MT
6461 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6462 if (!groupmask) {
6463 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6464 return;
6465 }
6466
4dcf6aff 6467 for (;;) {
7c16ec58 6468 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6469 break;
1da177e4
LT
6470 level++;
6471 sd = sd->parent;
33859f7f 6472 if (!sd)
4dcf6aff
IM
6473 break;
6474 }
7c16ec58 6475 kfree(groupmask);
1da177e4 6476}
6d6bc0ad 6477#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6478# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6479#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6480
1a20ff27 6481static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6482{
6483 if (cpus_weight(sd->span) == 1)
6484 return 1;
6485
6486 /* Following flags need at least 2 groups */
6487 if (sd->flags & (SD_LOAD_BALANCE |
6488 SD_BALANCE_NEWIDLE |
6489 SD_BALANCE_FORK |
89c4710e
SS
6490 SD_BALANCE_EXEC |
6491 SD_SHARE_CPUPOWER |
6492 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6493 if (sd->groups != sd->groups->next)
6494 return 0;
6495 }
6496
6497 /* Following flags don't use groups */
6498 if (sd->flags & (SD_WAKE_IDLE |
6499 SD_WAKE_AFFINE |
6500 SD_WAKE_BALANCE))
6501 return 0;
6502
6503 return 1;
6504}
6505
48f24c4d
IM
6506static int
6507sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6508{
6509 unsigned long cflags = sd->flags, pflags = parent->flags;
6510
6511 if (sd_degenerate(parent))
6512 return 1;
6513
6514 if (!cpus_equal(sd->span, parent->span))
6515 return 0;
6516
6517 /* Does parent contain flags not in child? */
6518 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6519 if (cflags & SD_WAKE_AFFINE)
6520 pflags &= ~SD_WAKE_BALANCE;
6521 /* Flags needing groups don't count if only 1 group in parent */
6522 if (parent->groups == parent->groups->next) {
6523 pflags &= ~(SD_LOAD_BALANCE |
6524 SD_BALANCE_NEWIDLE |
6525 SD_BALANCE_FORK |
89c4710e
SS
6526 SD_BALANCE_EXEC |
6527 SD_SHARE_CPUPOWER |
6528 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6529 }
6530 if (~cflags & pflags)
6531 return 0;
6532
6533 return 1;
6534}
6535
57d885fe
GH
6536static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6537{
6538 unsigned long flags;
57d885fe
GH
6539
6540 spin_lock_irqsave(&rq->lock, flags);
6541
6542 if (rq->rd) {
6543 struct root_domain *old_rd = rq->rd;
6544
1f11eb6a
GH
6545 if (cpu_isset(rq->cpu, old_rd->online))
6546 set_rq_offline(rq);
57d885fe 6547
dc938520 6548 cpu_clear(rq->cpu, old_rd->span);
dc938520 6549
57d885fe
GH
6550 if (atomic_dec_and_test(&old_rd->refcount))
6551 kfree(old_rd);
6552 }
6553
6554 atomic_inc(&rd->refcount);
6555 rq->rd = rd;
6556
dc938520 6557 cpu_set(rq->cpu, rd->span);
1f94ef59 6558 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6559 set_rq_online(rq);
57d885fe
GH
6560
6561 spin_unlock_irqrestore(&rq->lock, flags);
6562}
6563
dc938520 6564static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6565{
6566 memset(rd, 0, sizeof(*rd));
6567
dc938520
GH
6568 cpus_clear(rd->span);
6569 cpus_clear(rd->online);
6e0534f2
GH
6570
6571 cpupri_init(&rd->cpupri);
57d885fe
GH
6572}
6573
6574static void init_defrootdomain(void)
6575{
dc938520 6576 init_rootdomain(&def_root_domain);
57d885fe
GH
6577 atomic_set(&def_root_domain.refcount, 1);
6578}
6579
dc938520 6580static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6581{
6582 struct root_domain *rd;
6583
6584 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6585 if (!rd)
6586 return NULL;
6587
dc938520 6588 init_rootdomain(rd);
57d885fe
GH
6589
6590 return rd;
6591}
6592
1da177e4 6593/*
0eab9146 6594 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6595 * hold the hotplug lock.
6596 */
0eab9146
IM
6597static void
6598cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6599{
70b97a7f 6600 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6601 struct sched_domain *tmp;
6602
6603 /* Remove the sched domains which do not contribute to scheduling. */
6604 for (tmp = sd; tmp; tmp = tmp->parent) {
6605 struct sched_domain *parent = tmp->parent;
6606 if (!parent)
6607 break;
1a848870 6608 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6609 tmp->parent = parent->parent;
1a848870
SS
6610 if (parent->parent)
6611 parent->parent->child = tmp;
6612 }
245af2c7
SS
6613 }
6614
1a848870 6615 if (sd && sd_degenerate(sd)) {
245af2c7 6616 sd = sd->parent;
1a848870
SS
6617 if (sd)
6618 sd->child = NULL;
6619 }
1da177e4
LT
6620
6621 sched_domain_debug(sd, cpu);
6622
57d885fe 6623 rq_attach_root(rq, rd);
674311d5 6624 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6625}
6626
6627/* cpus with isolated domains */
67af63a6 6628static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6629
6630/* Setup the mask of cpus configured for isolated domains */
6631static int __init isolated_cpu_setup(char *str)
6632{
6633 int ints[NR_CPUS], i;
6634
6635 str = get_options(str, ARRAY_SIZE(ints), ints);
6636 cpus_clear(cpu_isolated_map);
6637 for (i = 1; i <= ints[0]; i++)
6638 if (ints[i] < NR_CPUS)
6639 cpu_set(ints[i], cpu_isolated_map);
6640 return 1;
6641}
6642
8927f494 6643__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6644
6645/*
6711cab4
SS
6646 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6647 * to a function which identifies what group(along with sched group) a CPU
6648 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6649 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6650 *
6651 * init_sched_build_groups will build a circular linked list of the groups
6652 * covered by the given span, and will set each group's ->cpumask correctly,
6653 * and ->cpu_power to 0.
6654 */
a616058b 6655static void
7c16ec58 6656init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6657 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6658 struct sched_group **sg,
6659 cpumask_t *tmpmask),
6660 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6661{
6662 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6663 int i;
6664
7c16ec58
MT
6665 cpus_clear(*covered);
6666
6667 for_each_cpu_mask(i, *span) {
6711cab4 6668 struct sched_group *sg;
7c16ec58 6669 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6670 int j;
6671
7c16ec58 6672 if (cpu_isset(i, *covered))
1da177e4
LT
6673 continue;
6674
7c16ec58 6675 cpus_clear(sg->cpumask);
5517d86b 6676 sg->__cpu_power = 0;
1da177e4 6677
7c16ec58
MT
6678 for_each_cpu_mask(j, *span) {
6679 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6680 continue;
6681
7c16ec58 6682 cpu_set(j, *covered);
1da177e4
LT
6683 cpu_set(j, sg->cpumask);
6684 }
6685 if (!first)
6686 first = sg;
6687 if (last)
6688 last->next = sg;
6689 last = sg;
6690 }
6691 last->next = first;
6692}
6693
9c1cfda2 6694#define SD_NODES_PER_DOMAIN 16
1da177e4 6695
9c1cfda2 6696#ifdef CONFIG_NUMA
198e2f18 6697
9c1cfda2
JH
6698/**
6699 * find_next_best_node - find the next node to include in a sched_domain
6700 * @node: node whose sched_domain we're building
6701 * @used_nodes: nodes already in the sched_domain
6702 *
41a2d6cf 6703 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6704 * finds the closest node not already in the @used_nodes map.
6705 *
6706 * Should use nodemask_t.
6707 */
c5f59f08 6708static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6709{
6710 int i, n, val, min_val, best_node = 0;
6711
6712 min_val = INT_MAX;
6713
6714 for (i = 0; i < MAX_NUMNODES; i++) {
6715 /* Start at @node */
6716 n = (node + i) % MAX_NUMNODES;
6717
6718 if (!nr_cpus_node(n))
6719 continue;
6720
6721 /* Skip already used nodes */
c5f59f08 6722 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6723 continue;
6724
6725 /* Simple min distance search */
6726 val = node_distance(node, n);
6727
6728 if (val < min_val) {
6729 min_val = val;
6730 best_node = n;
6731 }
6732 }
6733
c5f59f08 6734 node_set(best_node, *used_nodes);
9c1cfda2
JH
6735 return best_node;
6736}
6737
6738/**
6739 * sched_domain_node_span - get a cpumask for a node's sched_domain
6740 * @node: node whose cpumask we're constructing
73486722 6741 * @span: resulting cpumask
9c1cfda2 6742 *
41a2d6cf 6743 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6744 * should be one that prevents unnecessary balancing, but also spreads tasks
6745 * out optimally.
6746 */
4bdbaad3 6747static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6748{
c5f59f08 6749 nodemask_t used_nodes;
c5f59f08 6750 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6751 int i;
9c1cfda2 6752
4bdbaad3 6753 cpus_clear(*span);
c5f59f08 6754 nodes_clear(used_nodes);
9c1cfda2 6755
4bdbaad3 6756 cpus_or(*span, *span, *nodemask);
c5f59f08 6757 node_set(node, used_nodes);
9c1cfda2
JH
6758
6759 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6760 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6761
c5f59f08 6762 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6763 cpus_or(*span, *span, *nodemask);
9c1cfda2 6764 }
9c1cfda2 6765}
6d6bc0ad 6766#endif /* CONFIG_NUMA */
9c1cfda2 6767
5c45bf27 6768int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6769
9c1cfda2 6770/*
48f24c4d 6771 * SMT sched-domains:
9c1cfda2 6772 */
1da177e4
LT
6773#ifdef CONFIG_SCHED_SMT
6774static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6775static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6776
41a2d6cf 6777static int
7c16ec58
MT
6778cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6779 cpumask_t *unused)
1da177e4 6780{
6711cab4
SS
6781 if (sg)
6782 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6783 return cpu;
6784}
6d6bc0ad 6785#endif /* CONFIG_SCHED_SMT */
1da177e4 6786
48f24c4d
IM
6787/*
6788 * multi-core sched-domains:
6789 */
1e9f28fa
SS
6790#ifdef CONFIG_SCHED_MC
6791static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6792static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6793#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6794
6795#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6796static int
7c16ec58
MT
6797cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6798 cpumask_t *mask)
1e9f28fa 6799{
6711cab4 6800 int group;
7c16ec58
MT
6801
6802 *mask = per_cpu(cpu_sibling_map, cpu);
6803 cpus_and(*mask, *mask, *cpu_map);
6804 group = first_cpu(*mask);
6711cab4
SS
6805 if (sg)
6806 *sg = &per_cpu(sched_group_core, group);
6807 return group;
1e9f28fa
SS
6808}
6809#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6810static int
7c16ec58
MT
6811cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6812 cpumask_t *unused)
1e9f28fa 6813{
6711cab4
SS
6814 if (sg)
6815 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6816 return cpu;
6817}
6818#endif
6819
1da177e4 6820static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6821static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6822
41a2d6cf 6823static int
7c16ec58
MT
6824cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6825 cpumask_t *mask)
1da177e4 6826{
6711cab4 6827 int group;
48f24c4d 6828#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6829 *mask = cpu_coregroup_map(cpu);
6830 cpus_and(*mask, *mask, *cpu_map);
6831 group = first_cpu(*mask);
1e9f28fa 6832#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6833 *mask = per_cpu(cpu_sibling_map, cpu);
6834 cpus_and(*mask, *mask, *cpu_map);
6835 group = first_cpu(*mask);
1da177e4 6836#else
6711cab4 6837 group = cpu;
1da177e4 6838#endif
6711cab4
SS
6839 if (sg)
6840 *sg = &per_cpu(sched_group_phys, group);
6841 return group;
1da177e4
LT
6842}
6843
6844#ifdef CONFIG_NUMA
1da177e4 6845/*
9c1cfda2
JH
6846 * The init_sched_build_groups can't handle what we want to do with node
6847 * groups, so roll our own. Now each node has its own list of groups which
6848 * gets dynamically allocated.
1da177e4 6849 */
9c1cfda2 6850static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6851static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6852
9c1cfda2 6853static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6854static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6855
6711cab4 6856static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6857 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6858{
6711cab4
SS
6859 int group;
6860
7c16ec58
MT
6861 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6862 cpus_and(*nodemask, *nodemask, *cpu_map);
6863 group = first_cpu(*nodemask);
6711cab4
SS
6864
6865 if (sg)
6866 *sg = &per_cpu(sched_group_allnodes, group);
6867 return group;
1da177e4 6868}
6711cab4 6869
08069033
SS
6870static void init_numa_sched_groups_power(struct sched_group *group_head)
6871{
6872 struct sched_group *sg = group_head;
6873 int j;
6874
6875 if (!sg)
6876 return;
3a5c359a
AK
6877 do {
6878 for_each_cpu_mask(j, sg->cpumask) {
6879 struct sched_domain *sd;
08069033 6880
3a5c359a
AK
6881 sd = &per_cpu(phys_domains, j);
6882 if (j != first_cpu(sd->groups->cpumask)) {
6883 /*
6884 * Only add "power" once for each
6885 * physical package.
6886 */
6887 continue;
6888 }
08069033 6889
3a5c359a
AK
6890 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6891 }
6892 sg = sg->next;
6893 } while (sg != group_head);
08069033 6894}
6d6bc0ad 6895#endif /* CONFIG_NUMA */
1da177e4 6896
a616058b 6897#ifdef CONFIG_NUMA
51888ca2 6898/* Free memory allocated for various sched_group structures */
7c16ec58 6899static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6900{
a616058b 6901 int cpu, i;
51888ca2
SV
6902
6903 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6904 struct sched_group **sched_group_nodes
6905 = sched_group_nodes_bycpu[cpu];
6906
51888ca2
SV
6907 if (!sched_group_nodes)
6908 continue;
6909
6910 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6911 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6912
7c16ec58
MT
6913 *nodemask = node_to_cpumask(i);
6914 cpus_and(*nodemask, *nodemask, *cpu_map);
6915 if (cpus_empty(*nodemask))
51888ca2
SV
6916 continue;
6917
6918 if (sg == NULL)
6919 continue;
6920 sg = sg->next;
6921next_sg:
6922 oldsg = sg;
6923 sg = sg->next;
6924 kfree(oldsg);
6925 if (oldsg != sched_group_nodes[i])
6926 goto next_sg;
6927 }
6928 kfree(sched_group_nodes);
6929 sched_group_nodes_bycpu[cpu] = NULL;
6930 }
51888ca2 6931}
6d6bc0ad 6932#else /* !CONFIG_NUMA */
7c16ec58 6933static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6934{
6935}
6d6bc0ad 6936#endif /* CONFIG_NUMA */
51888ca2 6937
89c4710e
SS
6938/*
6939 * Initialize sched groups cpu_power.
6940 *
6941 * cpu_power indicates the capacity of sched group, which is used while
6942 * distributing the load between different sched groups in a sched domain.
6943 * Typically cpu_power for all the groups in a sched domain will be same unless
6944 * there are asymmetries in the topology. If there are asymmetries, group
6945 * having more cpu_power will pickup more load compared to the group having
6946 * less cpu_power.
6947 *
6948 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6949 * the maximum number of tasks a group can handle in the presence of other idle
6950 * or lightly loaded groups in the same sched domain.
6951 */
6952static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6953{
6954 struct sched_domain *child;
6955 struct sched_group *group;
6956
6957 WARN_ON(!sd || !sd->groups);
6958
6959 if (cpu != first_cpu(sd->groups->cpumask))
6960 return;
6961
6962 child = sd->child;
6963
5517d86b
ED
6964 sd->groups->__cpu_power = 0;
6965
89c4710e
SS
6966 /*
6967 * For perf policy, if the groups in child domain share resources
6968 * (for example cores sharing some portions of the cache hierarchy
6969 * or SMT), then set this domain groups cpu_power such that each group
6970 * can handle only one task, when there are other idle groups in the
6971 * same sched domain.
6972 */
6973 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6974 (child->flags &
6975 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6976 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6977 return;
6978 }
6979
89c4710e
SS
6980 /*
6981 * add cpu_power of each child group to this groups cpu_power
6982 */
6983 group = child->groups;
6984 do {
5517d86b 6985 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6986 group = group->next;
6987 } while (group != child->groups);
6988}
6989
7c16ec58
MT
6990/*
6991 * Initializers for schedule domains
6992 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6993 */
6994
6995#define SD_INIT(sd, type) sd_init_##type(sd)
6996#define SD_INIT_FUNC(type) \
6997static noinline void sd_init_##type(struct sched_domain *sd) \
6998{ \
6999 memset(sd, 0, sizeof(*sd)); \
7000 *sd = SD_##type##_INIT; \
1d3504fc 7001 sd->level = SD_LV_##type; \
7c16ec58
MT
7002}
7003
7004SD_INIT_FUNC(CPU)
7005#ifdef CONFIG_NUMA
7006 SD_INIT_FUNC(ALLNODES)
7007 SD_INIT_FUNC(NODE)
7008#endif
7009#ifdef CONFIG_SCHED_SMT
7010 SD_INIT_FUNC(SIBLING)
7011#endif
7012#ifdef CONFIG_SCHED_MC
7013 SD_INIT_FUNC(MC)
7014#endif
7015
7016/*
7017 * To minimize stack usage kmalloc room for cpumasks and share the
7018 * space as the usage in build_sched_domains() dictates. Used only
7019 * if the amount of space is significant.
7020 */
7021struct allmasks {
7022 cpumask_t tmpmask; /* make this one first */
7023 union {
7024 cpumask_t nodemask;
7025 cpumask_t this_sibling_map;
7026 cpumask_t this_core_map;
7027 };
7028 cpumask_t send_covered;
7029
7030#ifdef CONFIG_NUMA
7031 cpumask_t domainspan;
7032 cpumask_t covered;
7033 cpumask_t notcovered;
7034#endif
7035};
7036
7037#if NR_CPUS > 128
7038#define SCHED_CPUMASK_ALLOC 1
7039#define SCHED_CPUMASK_FREE(v) kfree(v)
7040#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7041#else
7042#define SCHED_CPUMASK_ALLOC 0
7043#define SCHED_CPUMASK_FREE(v)
7044#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7045#endif
7046
7047#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7048 ((unsigned long)(a) + offsetof(struct allmasks, v))
7049
1d3504fc
HS
7050static int default_relax_domain_level = -1;
7051
7052static int __init setup_relax_domain_level(char *str)
7053{
30e0e178
LZ
7054 unsigned long val;
7055
7056 val = simple_strtoul(str, NULL, 0);
7057 if (val < SD_LV_MAX)
7058 default_relax_domain_level = val;
7059
1d3504fc
HS
7060 return 1;
7061}
7062__setup("relax_domain_level=", setup_relax_domain_level);
7063
7064static void set_domain_attribute(struct sched_domain *sd,
7065 struct sched_domain_attr *attr)
7066{
7067 int request;
7068
7069 if (!attr || attr->relax_domain_level < 0) {
7070 if (default_relax_domain_level < 0)
7071 return;
7072 else
7073 request = default_relax_domain_level;
7074 } else
7075 request = attr->relax_domain_level;
7076 if (request < sd->level) {
7077 /* turn off idle balance on this domain */
7078 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7079 } else {
7080 /* turn on idle balance on this domain */
7081 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7082 }
7083}
7084
1da177e4 7085/*
1a20ff27
DG
7086 * Build sched domains for a given set of cpus and attach the sched domains
7087 * to the individual cpus
1da177e4 7088 */
1d3504fc
HS
7089static int __build_sched_domains(const cpumask_t *cpu_map,
7090 struct sched_domain_attr *attr)
1da177e4
LT
7091{
7092 int i;
57d885fe 7093 struct root_domain *rd;
7c16ec58
MT
7094 SCHED_CPUMASK_DECLARE(allmasks);
7095 cpumask_t *tmpmask;
d1b55138
JH
7096#ifdef CONFIG_NUMA
7097 struct sched_group **sched_group_nodes = NULL;
6711cab4 7098 int sd_allnodes = 0;
d1b55138
JH
7099
7100 /*
7101 * Allocate the per-node list of sched groups
7102 */
5cf9f062 7103 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 7104 GFP_KERNEL);
d1b55138
JH
7105 if (!sched_group_nodes) {
7106 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7107 return -ENOMEM;
d1b55138 7108 }
d1b55138 7109#endif
1da177e4 7110
dc938520 7111 rd = alloc_rootdomain();
57d885fe
GH
7112 if (!rd) {
7113 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7114#ifdef CONFIG_NUMA
7115 kfree(sched_group_nodes);
7116#endif
57d885fe
GH
7117 return -ENOMEM;
7118 }
7119
7c16ec58
MT
7120#if SCHED_CPUMASK_ALLOC
7121 /* get space for all scratch cpumask variables */
7122 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7123 if (!allmasks) {
7124 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7125 kfree(rd);
7126#ifdef CONFIG_NUMA
7127 kfree(sched_group_nodes);
7128#endif
7129 return -ENOMEM;
7130 }
7131#endif
7132 tmpmask = (cpumask_t *)allmasks;
7133
7134
7135#ifdef CONFIG_NUMA
7136 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7137#endif
7138
1da177e4 7139 /*
1a20ff27 7140 * Set up domains for cpus specified by the cpu_map.
1da177e4 7141 */
1a20ff27 7142 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7143 struct sched_domain *sd = NULL, *p;
7c16ec58 7144 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7145
7c16ec58
MT
7146 *nodemask = node_to_cpumask(cpu_to_node(i));
7147 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7148
7149#ifdef CONFIG_NUMA
dd41f596 7150 if (cpus_weight(*cpu_map) >
7c16ec58 7151 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7152 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7153 SD_INIT(sd, ALLNODES);
1d3504fc 7154 set_domain_attribute(sd, attr);
9c1cfda2 7155 sd->span = *cpu_map;
7c16ec58 7156 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7157 p = sd;
6711cab4 7158 sd_allnodes = 1;
9c1cfda2
JH
7159 } else
7160 p = NULL;
7161
1da177e4 7162 sd = &per_cpu(node_domains, i);
7c16ec58 7163 SD_INIT(sd, NODE);
1d3504fc 7164 set_domain_attribute(sd, attr);
4bdbaad3 7165 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7166 sd->parent = p;
1a848870
SS
7167 if (p)
7168 p->child = sd;
9c1cfda2 7169 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7170#endif
7171
7172 p = sd;
7173 sd = &per_cpu(phys_domains, i);
7c16ec58 7174 SD_INIT(sd, CPU);
1d3504fc 7175 set_domain_attribute(sd, attr);
7c16ec58 7176 sd->span = *nodemask;
1da177e4 7177 sd->parent = p;
1a848870
SS
7178 if (p)
7179 p->child = sd;
7c16ec58 7180 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7181
1e9f28fa
SS
7182#ifdef CONFIG_SCHED_MC
7183 p = sd;
7184 sd = &per_cpu(core_domains, i);
7c16ec58 7185 SD_INIT(sd, MC);
1d3504fc 7186 set_domain_attribute(sd, attr);
1e9f28fa
SS
7187 sd->span = cpu_coregroup_map(i);
7188 cpus_and(sd->span, sd->span, *cpu_map);
7189 sd->parent = p;
1a848870 7190 p->child = sd;
7c16ec58 7191 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7192#endif
7193
1da177e4
LT
7194#ifdef CONFIG_SCHED_SMT
7195 p = sd;
7196 sd = &per_cpu(cpu_domains, i);
7c16ec58 7197 SD_INIT(sd, SIBLING);
1d3504fc 7198 set_domain_attribute(sd, attr);
d5a7430d 7199 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7200 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7201 sd->parent = p;
1a848870 7202 p->child = sd;
7c16ec58 7203 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7204#endif
7205 }
7206
7207#ifdef CONFIG_SCHED_SMT
7208 /* Set up CPU (sibling) groups */
9c1cfda2 7209 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7210 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7211 SCHED_CPUMASK_VAR(send_covered, allmasks);
7212
7213 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7214 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7215 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7216 continue;
7217
dd41f596 7218 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7219 &cpu_to_cpu_group,
7220 send_covered, tmpmask);
1da177e4
LT
7221 }
7222#endif
7223
1e9f28fa
SS
7224#ifdef CONFIG_SCHED_MC
7225 /* Set up multi-core groups */
7226 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7227 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7228 SCHED_CPUMASK_VAR(send_covered, allmasks);
7229
7230 *this_core_map = cpu_coregroup_map(i);
7231 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7232 if (i != first_cpu(*this_core_map))
1e9f28fa 7233 continue;
7c16ec58 7234
dd41f596 7235 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7236 &cpu_to_core_group,
7237 send_covered, tmpmask);
1e9f28fa
SS
7238 }
7239#endif
7240
1da177e4
LT
7241 /* Set up physical groups */
7242 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7243 SCHED_CPUMASK_VAR(nodemask, allmasks);
7244 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7245
7c16ec58
MT
7246 *nodemask = node_to_cpumask(i);
7247 cpus_and(*nodemask, *nodemask, *cpu_map);
7248 if (cpus_empty(*nodemask))
1da177e4
LT
7249 continue;
7250
7c16ec58
MT
7251 init_sched_build_groups(nodemask, cpu_map,
7252 &cpu_to_phys_group,
7253 send_covered, tmpmask);
1da177e4
LT
7254 }
7255
7256#ifdef CONFIG_NUMA
7257 /* Set up node groups */
7c16ec58
MT
7258 if (sd_allnodes) {
7259 SCHED_CPUMASK_VAR(send_covered, allmasks);
7260
7261 init_sched_build_groups(cpu_map, cpu_map,
7262 &cpu_to_allnodes_group,
7263 send_covered, tmpmask);
7264 }
9c1cfda2
JH
7265
7266 for (i = 0; i < MAX_NUMNODES; i++) {
7267 /* Set up node groups */
7268 struct sched_group *sg, *prev;
7c16ec58
MT
7269 SCHED_CPUMASK_VAR(nodemask, allmasks);
7270 SCHED_CPUMASK_VAR(domainspan, allmasks);
7271 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7272 int j;
7273
7c16ec58
MT
7274 *nodemask = node_to_cpumask(i);
7275 cpus_clear(*covered);
7276
7277 cpus_and(*nodemask, *nodemask, *cpu_map);
7278 if (cpus_empty(*nodemask)) {
d1b55138 7279 sched_group_nodes[i] = NULL;
9c1cfda2 7280 continue;
d1b55138 7281 }
9c1cfda2 7282
4bdbaad3 7283 sched_domain_node_span(i, domainspan);
7c16ec58 7284 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7285
15f0b676 7286 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7287 if (!sg) {
7288 printk(KERN_WARNING "Can not alloc domain group for "
7289 "node %d\n", i);
7290 goto error;
7291 }
9c1cfda2 7292 sched_group_nodes[i] = sg;
7c16ec58 7293 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7294 struct sched_domain *sd;
9761eea8 7295
9c1cfda2
JH
7296 sd = &per_cpu(node_domains, j);
7297 sd->groups = sg;
9c1cfda2 7298 }
5517d86b 7299 sg->__cpu_power = 0;
7c16ec58 7300 sg->cpumask = *nodemask;
51888ca2 7301 sg->next = sg;
7c16ec58 7302 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7303 prev = sg;
7304
7305 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7306 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7307 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7308 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7309
7c16ec58
MT
7310 cpus_complement(*notcovered, *covered);
7311 cpus_and(*tmpmask, *notcovered, *cpu_map);
7312 cpus_and(*tmpmask, *tmpmask, *domainspan);
7313 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7314 break;
7315
7c16ec58
MT
7316 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7317 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7318 continue;
7319
15f0b676
SV
7320 sg = kmalloc_node(sizeof(struct sched_group),
7321 GFP_KERNEL, i);
9c1cfda2
JH
7322 if (!sg) {
7323 printk(KERN_WARNING
7324 "Can not alloc domain group for node %d\n", j);
51888ca2 7325 goto error;
9c1cfda2 7326 }
5517d86b 7327 sg->__cpu_power = 0;
7c16ec58 7328 sg->cpumask = *tmpmask;
51888ca2 7329 sg->next = prev->next;
7c16ec58 7330 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7331 prev->next = sg;
7332 prev = sg;
7333 }
9c1cfda2 7334 }
1da177e4
LT
7335#endif
7336
7337 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7338#ifdef CONFIG_SCHED_SMT
1a20ff27 7339 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7340 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7341
89c4710e 7342 init_sched_groups_power(i, sd);
5c45bf27 7343 }
1da177e4 7344#endif
1e9f28fa 7345#ifdef CONFIG_SCHED_MC
5c45bf27 7346 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7347 struct sched_domain *sd = &per_cpu(core_domains, i);
7348
89c4710e 7349 init_sched_groups_power(i, sd);
5c45bf27
SS
7350 }
7351#endif
1e9f28fa 7352
5c45bf27 7353 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7354 struct sched_domain *sd = &per_cpu(phys_domains, i);
7355
89c4710e 7356 init_sched_groups_power(i, sd);
1da177e4
LT
7357 }
7358
9c1cfda2 7359#ifdef CONFIG_NUMA
08069033
SS
7360 for (i = 0; i < MAX_NUMNODES; i++)
7361 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7362
6711cab4
SS
7363 if (sd_allnodes) {
7364 struct sched_group *sg;
f712c0c7 7365
7c16ec58
MT
7366 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7367 tmpmask);
f712c0c7
SS
7368 init_numa_sched_groups_power(sg);
7369 }
9c1cfda2
JH
7370#endif
7371
1da177e4 7372 /* Attach the domains */
1a20ff27 7373 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7374 struct sched_domain *sd;
7375#ifdef CONFIG_SCHED_SMT
7376 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7377#elif defined(CONFIG_SCHED_MC)
7378 sd = &per_cpu(core_domains, i);
1da177e4
LT
7379#else
7380 sd = &per_cpu(phys_domains, i);
7381#endif
57d885fe 7382 cpu_attach_domain(sd, rd, i);
1da177e4 7383 }
51888ca2 7384
7c16ec58 7385 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7386 return 0;
7387
a616058b 7388#ifdef CONFIG_NUMA
51888ca2 7389error:
7c16ec58
MT
7390 free_sched_groups(cpu_map, tmpmask);
7391 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7392 return -ENOMEM;
a616058b 7393#endif
1da177e4 7394}
029190c5 7395
1d3504fc
HS
7396static int build_sched_domains(const cpumask_t *cpu_map)
7397{
7398 return __build_sched_domains(cpu_map, NULL);
7399}
7400
029190c5
PJ
7401static cpumask_t *doms_cur; /* current sched domains */
7402static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7403static struct sched_domain_attr *dattr_cur;
7404 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7405
7406/*
7407 * Special case: If a kmalloc of a doms_cur partition (array of
7408 * cpumask_t) fails, then fallback to a single sched domain,
7409 * as determined by the single cpumask_t fallback_doms.
7410 */
7411static cpumask_t fallback_doms;
7412
22e52b07
HC
7413void __attribute__((weak)) arch_update_cpu_topology(void)
7414{
7415}
7416
5c8e1ed1
MK
7417/*
7418 * Free current domain masks.
7419 * Called after all cpus are attached to NULL domain.
7420 */
7421static void free_sched_domains(void)
7422{
7423 ndoms_cur = 0;
7424 if (doms_cur != &fallback_doms)
7425 kfree(doms_cur);
7426 doms_cur = &fallback_doms;
7427}
7428
1a20ff27 7429/*
41a2d6cf 7430 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7431 * For now this just excludes isolated cpus, but could be used to
7432 * exclude other special cases in the future.
1a20ff27 7433 */
51888ca2 7434static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7435{
7378547f
MM
7436 int err;
7437
22e52b07 7438 arch_update_cpu_topology();
029190c5
PJ
7439 ndoms_cur = 1;
7440 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7441 if (!doms_cur)
7442 doms_cur = &fallback_doms;
7443 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7444 dattr_cur = NULL;
7378547f 7445 err = build_sched_domains(doms_cur);
6382bc90 7446 register_sched_domain_sysctl();
7378547f
MM
7447
7448 return err;
1a20ff27
DG
7449}
7450
7c16ec58
MT
7451static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7452 cpumask_t *tmpmask)
1da177e4 7453{
7c16ec58 7454 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7455}
1da177e4 7456
1a20ff27
DG
7457/*
7458 * Detach sched domains from a group of cpus specified in cpu_map
7459 * These cpus will now be attached to the NULL domain
7460 */
858119e1 7461static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7462{
7c16ec58 7463 cpumask_t tmpmask;
1a20ff27
DG
7464 int i;
7465
6382bc90
MM
7466 unregister_sched_domain_sysctl();
7467
1a20ff27 7468 for_each_cpu_mask(i, *cpu_map)
57d885fe 7469 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7470 synchronize_sched();
7c16ec58 7471 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7472}
7473
1d3504fc
HS
7474/* handle null as "default" */
7475static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7476 struct sched_domain_attr *new, int idx_new)
7477{
7478 struct sched_domain_attr tmp;
7479
7480 /* fast path */
7481 if (!new && !cur)
7482 return 1;
7483
7484 tmp = SD_ATTR_INIT;
7485 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7486 new ? (new + idx_new) : &tmp,
7487 sizeof(struct sched_domain_attr));
7488}
7489
029190c5
PJ
7490/*
7491 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7492 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7493 * doms_new[] to the current sched domain partitioning, doms_cur[].
7494 * It destroys each deleted domain and builds each new domain.
7495 *
7496 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7497 * The masks don't intersect (don't overlap.) We should setup one
7498 * sched domain for each mask. CPUs not in any of the cpumasks will
7499 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7500 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7501 * it as it is.
7502 *
41a2d6cf
IM
7503 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7504 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7505 * failed the kmalloc call, then it can pass in doms_new == NULL,
7506 * and partition_sched_domains() will fallback to the single partition
7507 * 'fallback_doms'.
7508 *
7509 * Call with hotplug lock held
7510 */
1d3504fc
HS
7511void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7512 struct sched_domain_attr *dattr_new)
029190c5
PJ
7513{
7514 int i, j;
7515
712555ee 7516 mutex_lock(&sched_domains_mutex);
a1835615 7517
7378547f
MM
7518 /* always unregister in case we don't destroy any domains */
7519 unregister_sched_domain_sysctl();
7520
029190c5
PJ
7521 if (doms_new == NULL) {
7522 ndoms_new = 1;
7523 doms_new = &fallback_doms;
7524 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7525 dattr_new = NULL;
029190c5
PJ
7526 }
7527
7528 /* Destroy deleted domains */
7529 for (i = 0; i < ndoms_cur; i++) {
7530 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7531 if (cpus_equal(doms_cur[i], doms_new[j])
7532 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7533 goto match1;
7534 }
7535 /* no match - a current sched domain not in new doms_new[] */
7536 detach_destroy_domains(doms_cur + i);
7537match1:
7538 ;
7539 }
7540
7541 /* Build new domains */
7542 for (i = 0; i < ndoms_new; i++) {
7543 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7544 if (cpus_equal(doms_new[i], doms_cur[j])
7545 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7546 goto match2;
7547 }
7548 /* no match - add a new doms_new */
1d3504fc
HS
7549 __build_sched_domains(doms_new + i,
7550 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7551match2:
7552 ;
7553 }
7554
7555 /* Remember the new sched domains */
7556 if (doms_cur != &fallback_doms)
7557 kfree(doms_cur);
1d3504fc 7558 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7559 doms_cur = doms_new;
1d3504fc 7560 dattr_cur = dattr_new;
029190c5 7561 ndoms_cur = ndoms_new;
7378547f
MM
7562
7563 register_sched_domain_sysctl();
a1835615 7564
712555ee 7565 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7566}
7567
5c45bf27 7568#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7569int arch_reinit_sched_domains(void)
5c45bf27
SS
7570{
7571 int err;
7572
95402b38 7573 get_online_cpus();
712555ee 7574 mutex_lock(&sched_domains_mutex);
5c45bf27 7575 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7576 free_sched_domains();
5c45bf27 7577 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7578 mutex_unlock(&sched_domains_mutex);
95402b38 7579 put_online_cpus();
5c45bf27
SS
7580
7581 return err;
7582}
7583
7584static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7585{
7586 int ret;
7587
7588 if (buf[0] != '0' && buf[0] != '1')
7589 return -EINVAL;
7590
7591 if (smt)
7592 sched_smt_power_savings = (buf[0] == '1');
7593 else
7594 sched_mc_power_savings = (buf[0] == '1');
7595
7596 ret = arch_reinit_sched_domains();
7597
7598 return ret ? ret : count;
7599}
7600
5c45bf27
SS
7601#ifdef CONFIG_SCHED_MC
7602static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7603{
7604 return sprintf(page, "%u\n", sched_mc_power_savings);
7605}
48f24c4d
IM
7606static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7607 const char *buf, size_t count)
5c45bf27
SS
7608{
7609 return sched_power_savings_store(buf, count, 0);
7610}
6707de00
AB
7611static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7612 sched_mc_power_savings_store);
5c45bf27
SS
7613#endif
7614
7615#ifdef CONFIG_SCHED_SMT
7616static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7617{
7618 return sprintf(page, "%u\n", sched_smt_power_savings);
7619}
48f24c4d
IM
7620static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7621 const char *buf, size_t count)
5c45bf27
SS
7622{
7623 return sched_power_savings_store(buf, count, 1);
7624}
6707de00
AB
7625static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7626 sched_smt_power_savings_store);
7627#endif
7628
7629int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7630{
7631 int err = 0;
7632
7633#ifdef CONFIG_SCHED_SMT
7634 if (smt_capable())
7635 err = sysfs_create_file(&cls->kset.kobj,
7636 &attr_sched_smt_power_savings.attr);
7637#endif
7638#ifdef CONFIG_SCHED_MC
7639 if (!err && mc_capable())
7640 err = sysfs_create_file(&cls->kset.kobj,
7641 &attr_sched_mc_power_savings.attr);
7642#endif
7643 return err;
7644}
6d6bc0ad 7645#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7646
1da177e4 7647/*
41a2d6cf 7648 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7649 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7650 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7651 * which will prevent rebalancing while the sched domains are recalculated.
7652 */
7653static int update_sched_domains(struct notifier_block *nfb,
7654 unsigned long action, void *hcpu)
7655{
7def2be1
PZ
7656 int cpu = (int)(long)hcpu;
7657
1da177e4 7658 switch (action) {
1da177e4 7659 case CPU_DOWN_PREPARE:
8bb78442 7660 case CPU_DOWN_PREPARE_FROZEN:
7def2be1
PZ
7661 disable_runtime(cpu_rq(cpu));
7662 /* fall-through */
7663 case CPU_UP_PREPARE:
7664 case CPU_UP_PREPARE_FROZEN:
1a20ff27 7665 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7666 free_sched_domains();
1da177e4
LT
7667 return NOTIFY_OK;
7668
7def2be1 7669
1da177e4 7670 case CPU_DOWN_FAILED:
8bb78442 7671 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7672 case CPU_ONLINE:
8bb78442 7673 case CPU_ONLINE_FROZEN:
7def2be1
PZ
7674 enable_runtime(cpu_rq(cpu));
7675 /* fall-through */
7676 case CPU_UP_CANCELED:
7677 case CPU_UP_CANCELED_FROZEN:
1da177e4 7678 case CPU_DEAD:
8bb78442 7679 case CPU_DEAD_FROZEN:
1da177e4
LT
7680 /*
7681 * Fall through and re-initialise the domains.
7682 */
7683 break;
7684 default:
7685 return NOTIFY_DONE;
7686 }
7687
5c8e1ed1
MK
7688#ifndef CONFIG_CPUSETS
7689 /*
7690 * Create default domain partitioning if cpusets are disabled.
7691 * Otherwise we let cpusets rebuild the domains based on the
7692 * current setup.
7693 */
7694
1da177e4 7695 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7696 arch_init_sched_domains(&cpu_online_map);
5c8e1ed1 7697#endif
1da177e4
LT
7698
7699 return NOTIFY_OK;
7700}
1da177e4
LT
7701
7702void __init sched_init_smp(void)
7703{
5c1e1767
NP
7704 cpumask_t non_isolated_cpus;
7705
434d53b0
MT
7706#if defined(CONFIG_NUMA)
7707 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7708 GFP_KERNEL);
7709 BUG_ON(sched_group_nodes_bycpu == NULL);
7710#endif
95402b38 7711 get_online_cpus();
712555ee 7712 mutex_lock(&sched_domains_mutex);
1a20ff27 7713 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7714 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7715 if (cpus_empty(non_isolated_cpus))
7716 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7717 mutex_unlock(&sched_domains_mutex);
95402b38 7718 put_online_cpus();
1da177e4
LT
7719 /* XXX: Theoretical race here - CPU may be hotplugged now */
7720 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7721 init_hrtick();
5c1e1767
NP
7722
7723 /* Move init over to a non-isolated CPU */
7c16ec58 7724 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7725 BUG();
19978ca6 7726 sched_init_granularity();
1da177e4
LT
7727}
7728#else
7729void __init sched_init_smp(void)
7730{
19978ca6 7731 sched_init_granularity();
1da177e4
LT
7732}
7733#endif /* CONFIG_SMP */
7734
7735int in_sched_functions(unsigned long addr)
7736{
1da177e4
LT
7737 return in_lock_functions(addr) ||
7738 (addr >= (unsigned long)__sched_text_start
7739 && addr < (unsigned long)__sched_text_end);
7740}
7741
a9957449 7742static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7743{
7744 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7745 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7746#ifdef CONFIG_FAIR_GROUP_SCHED
7747 cfs_rq->rq = rq;
7748#endif
67e9fb2a 7749 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7750}
7751
fa85ae24
PZ
7752static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7753{
7754 struct rt_prio_array *array;
7755 int i;
7756
7757 array = &rt_rq->active;
7758 for (i = 0; i < MAX_RT_PRIO; i++) {
20b6331b 7759 INIT_LIST_HEAD(array->queue + i);
fa85ae24
PZ
7760 __clear_bit(i, array->bitmap);
7761 }
7762 /* delimiter for bitsearch: */
7763 __set_bit(MAX_RT_PRIO, array->bitmap);
7764
052f1dc7 7765#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7766 rt_rq->highest_prio = MAX_RT_PRIO;
7767#endif
fa85ae24
PZ
7768#ifdef CONFIG_SMP
7769 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7770 rt_rq->overloaded = 0;
7771#endif
7772
7773 rt_rq->rt_time = 0;
7774 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7775 rt_rq->rt_runtime = 0;
7776 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7777
052f1dc7 7778#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7779 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7780 rt_rq->rq = rq;
7781#endif
fa85ae24
PZ
7782}
7783
6f505b16 7784#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7785static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7786 struct sched_entity *se, int cpu, int add,
7787 struct sched_entity *parent)
6f505b16 7788{
ec7dc8ac 7789 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7790 tg->cfs_rq[cpu] = cfs_rq;
7791 init_cfs_rq(cfs_rq, rq);
7792 cfs_rq->tg = tg;
7793 if (add)
7794 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7795
7796 tg->se[cpu] = se;
354d60c2
DG
7797 /* se could be NULL for init_task_group */
7798 if (!se)
7799 return;
7800
ec7dc8ac
DG
7801 if (!parent)
7802 se->cfs_rq = &rq->cfs;
7803 else
7804 se->cfs_rq = parent->my_q;
7805
6f505b16
PZ
7806 se->my_q = cfs_rq;
7807 se->load.weight = tg->shares;
e05510d0 7808 se->load.inv_weight = 0;
ec7dc8ac 7809 se->parent = parent;
6f505b16 7810}
052f1dc7 7811#endif
6f505b16 7812
052f1dc7 7813#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7814static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7815 struct sched_rt_entity *rt_se, int cpu, int add,
7816 struct sched_rt_entity *parent)
6f505b16 7817{
ec7dc8ac
DG
7818 struct rq *rq = cpu_rq(cpu);
7819
6f505b16
PZ
7820 tg->rt_rq[cpu] = rt_rq;
7821 init_rt_rq(rt_rq, rq);
7822 rt_rq->tg = tg;
7823 rt_rq->rt_se = rt_se;
ac086bc2 7824 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7825 if (add)
7826 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7827
7828 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7829 if (!rt_se)
7830 return;
7831
ec7dc8ac
DG
7832 if (!parent)
7833 rt_se->rt_rq = &rq->rt;
7834 else
7835 rt_se->rt_rq = parent->my_q;
7836
6f505b16 7837 rt_se->my_q = rt_rq;
ec7dc8ac 7838 rt_se->parent = parent;
6f505b16
PZ
7839 INIT_LIST_HEAD(&rt_se->run_list);
7840}
7841#endif
7842
1da177e4
LT
7843void __init sched_init(void)
7844{
dd41f596 7845 int i, j;
434d53b0
MT
7846 unsigned long alloc_size = 0, ptr;
7847
7848#ifdef CONFIG_FAIR_GROUP_SCHED
7849 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7850#endif
7851#ifdef CONFIG_RT_GROUP_SCHED
7852 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7853#endif
7854#ifdef CONFIG_USER_SCHED
7855 alloc_size *= 2;
434d53b0
MT
7856#endif
7857 /*
7858 * As sched_init() is called before page_alloc is setup,
7859 * we use alloc_bootmem().
7860 */
7861 if (alloc_size) {
5a9d3225 7862 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7863
7864#ifdef CONFIG_FAIR_GROUP_SCHED
7865 init_task_group.se = (struct sched_entity **)ptr;
7866 ptr += nr_cpu_ids * sizeof(void **);
7867
7868 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7869 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7870
7871#ifdef CONFIG_USER_SCHED
7872 root_task_group.se = (struct sched_entity **)ptr;
7873 ptr += nr_cpu_ids * sizeof(void **);
7874
7875 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7876 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7877#endif /* CONFIG_USER_SCHED */
7878#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7879#ifdef CONFIG_RT_GROUP_SCHED
7880 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7881 ptr += nr_cpu_ids * sizeof(void **);
7882
7883 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7884 ptr += nr_cpu_ids * sizeof(void **);
7885
7886#ifdef CONFIG_USER_SCHED
7887 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7888 ptr += nr_cpu_ids * sizeof(void **);
7889
7890 root_task_group.rt_rq = (struct rt_rq **)ptr;
7891 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7892#endif /* CONFIG_USER_SCHED */
7893#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 7894 }
dd41f596 7895
57d885fe
GH
7896#ifdef CONFIG_SMP
7897 init_defrootdomain();
7898#endif
7899
d0b27fa7
PZ
7900 init_rt_bandwidth(&def_rt_bandwidth,
7901 global_rt_period(), global_rt_runtime());
7902
7903#ifdef CONFIG_RT_GROUP_SCHED
7904 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7905 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7906#ifdef CONFIG_USER_SCHED
7907 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7908 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7909#endif /* CONFIG_USER_SCHED */
7910#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7911
052f1dc7 7912#ifdef CONFIG_GROUP_SCHED
6f505b16 7913 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7914 INIT_LIST_HEAD(&init_task_group.children);
7915
7916#ifdef CONFIG_USER_SCHED
7917 INIT_LIST_HEAD(&root_task_group.children);
7918 init_task_group.parent = &root_task_group;
7919 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7920#endif /* CONFIG_USER_SCHED */
7921#endif /* CONFIG_GROUP_SCHED */
6f505b16 7922
0a945022 7923 for_each_possible_cpu(i) {
70b97a7f 7924 struct rq *rq;
1da177e4
LT
7925
7926 rq = cpu_rq(i);
7927 spin_lock_init(&rq->lock);
fcb99371 7928 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7929 rq->nr_running = 0;
dd41f596 7930 init_cfs_rq(&rq->cfs, rq);
6f505b16 7931 init_rt_rq(&rq->rt, rq);
dd41f596 7932#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7933 init_task_group.shares = init_task_group_load;
6f505b16 7934 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7935#ifdef CONFIG_CGROUP_SCHED
7936 /*
7937 * How much cpu bandwidth does init_task_group get?
7938 *
7939 * In case of task-groups formed thr' the cgroup filesystem, it
7940 * gets 100% of the cpu resources in the system. This overall
7941 * system cpu resource is divided among the tasks of
7942 * init_task_group and its child task-groups in a fair manner,
7943 * based on each entity's (task or task-group's) weight
7944 * (se->load.weight).
7945 *
7946 * In other words, if init_task_group has 10 tasks of weight
7947 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7948 * then A0's share of the cpu resource is:
7949 *
7950 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7951 *
7952 * We achieve this by letting init_task_group's tasks sit
7953 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7954 */
ec7dc8ac 7955 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7956#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7957 root_task_group.shares = NICE_0_LOAD;
7958 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7959 /*
7960 * In case of task-groups formed thr' the user id of tasks,
7961 * init_task_group represents tasks belonging to root user.
7962 * Hence it forms a sibling of all subsequent groups formed.
7963 * In this case, init_task_group gets only a fraction of overall
7964 * system cpu resource, based on the weight assigned to root
7965 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7966 * by letting tasks of init_task_group sit in a separate cfs_rq
7967 * (init_cfs_rq) and having one entity represent this group of
7968 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7969 */
ec7dc8ac 7970 init_tg_cfs_entry(&init_task_group,
6f505b16 7971 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7972 &per_cpu(init_sched_entity, i), i, 1,
7973 root_task_group.se[i]);
6f505b16 7974
052f1dc7 7975#endif
354d60c2
DG
7976#endif /* CONFIG_FAIR_GROUP_SCHED */
7977
7978 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7979#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7980 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7981#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7982 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7983#elif defined CONFIG_USER_SCHED
eff766a6 7984 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7985 init_tg_rt_entry(&init_task_group,
6f505b16 7986 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7987 &per_cpu(init_sched_rt_entity, i), i, 1,
7988 root_task_group.rt_se[i]);
354d60c2 7989#endif
dd41f596 7990#endif
1da177e4 7991
dd41f596
IM
7992 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7993 rq->cpu_load[j] = 0;
1da177e4 7994#ifdef CONFIG_SMP
41c7ce9a 7995 rq->sd = NULL;
57d885fe 7996 rq->rd = NULL;
1da177e4 7997 rq->active_balance = 0;
dd41f596 7998 rq->next_balance = jiffies;
1da177e4 7999 rq->push_cpu = 0;
0a2966b4 8000 rq->cpu = i;
1f11eb6a 8001 rq->online = 0;
1da177e4
LT
8002 rq->migration_thread = NULL;
8003 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8004 rq_attach_root(rq, &def_root_domain);
1da177e4 8005#endif
8f4d37ec 8006 init_rq_hrtick(rq);
1da177e4 8007 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8008 }
8009
2dd73a4f 8010 set_load_weight(&init_task);
b50f60ce 8011
e107be36
AK
8012#ifdef CONFIG_PREEMPT_NOTIFIERS
8013 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8014#endif
8015
c9819f45
CL
8016#ifdef CONFIG_SMP
8017 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8018#endif
8019
b50f60ce
HC
8020#ifdef CONFIG_RT_MUTEXES
8021 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8022#endif
8023
1da177e4
LT
8024 /*
8025 * The boot idle thread does lazy MMU switching as well:
8026 */
8027 atomic_inc(&init_mm.mm_count);
8028 enter_lazy_tlb(&init_mm, current);
8029
8030 /*
8031 * Make us the idle thread. Technically, schedule() should not be
8032 * called from this thread, however somewhere below it might be,
8033 * but because we are the idle thread, we just pick up running again
8034 * when this runqueue becomes "idle".
8035 */
8036 init_idle(current, smp_processor_id());
dd41f596
IM
8037 /*
8038 * During early bootup we pretend to be a normal task:
8039 */
8040 current->sched_class = &fair_sched_class;
6892b75e
IM
8041
8042 scheduler_running = 1;
1da177e4
LT
8043}
8044
8045#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8046void __might_sleep(char *file, int line)
8047{
48f24c4d 8048#ifdef in_atomic
1da177e4
LT
8049 static unsigned long prev_jiffy; /* ratelimiting */
8050
8051 if ((in_atomic() || irqs_disabled()) &&
8052 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8053 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8054 return;
8055 prev_jiffy = jiffies;
91368d73 8056 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8057 " context at %s:%d\n", file, line);
8058 printk("in_atomic():%d, irqs_disabled():%d\n",
8059 in_atomic(), irqs_disabled());
a4c410f0 8060 debug_show_held_locks(current);
3117df04
IM
8061 if (irqs_disabled())
8062 print_irqtrace_events(current);
1da177e4
LT
8063 dump_stack();
8064 }
8065#endif
8066}
8067EXPORT_SYMBOL(__might_sleep);
8068#endif
8069
8070#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8071static void normalize_task(struct rq *rq, struct task_struct *p)
8072{
8073 int on_rq;
3e51f33f 8074
3a5e4dc1
AK
8075 update_rq_clock(rq);
8076 on_rq = p->se.on_rq;
8077 if (on_rq)
8078 deactivate_task(rq, p, 0);
8079 __setscheduler(rq, p, SCHED_NORMAL, 0);
8080 if (on_rq) {
8081 activate_task(rq, p, 0);
8082 resched_task(rq->curr);
8083 }
8084}
8085
1da177e4
LT
8086void normalize_rt_tasks(void)
8087{
a0f98a1c 8088 struct task_struct *g, *p;
1da177e4 8089 unsigned long flags;
70b97a7f 8090 struct rq *rq;
1da177e4 8091
4cf5d77a 8092 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8093 do_each_thread(g, p) {
178be793
IM
8094 /*
8095 * Only normalize user tasks:
8096 */
8097 if (!p->mm)
8098 continue;
8099
6cfb0d5d 8100 p->se.exec_start = 0;
6cfb0d5d 8101#ifdef CONFIG_SCHEDSTATS
dd41f596 8102 p->se.wait_start = 0;
dd41f596 8103 p->se.sleep_start = 0;
dd41f596 8104 p->se.block_start = 0;
6cfb0d5d 8105#endif
dd41f596
IM
8106
8107 if (!rt_task(p)) {
8108 /*
8109 * Renice negative nice level userspace
8110 * tasks back to 0:
8111 */
8112 if (TASK_NICE(p) < 0 && p->mm)
8113 set_user_nice(p, 0);
1da177e4 8114 continue;
dd41f596 8115 }
1da177e4 8116
4cf5d77a 8117 spin_lock(&p->pi_lock);
b29739f9 8118 rq = __task_rq_lock(p);
1da177e4 8119
178be793 8120 normalize_task(rq, p);
3a5e4dc1 8121
b29739f9 8122 __task_rq_unlock(rq);
4cf5d77a 8123 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8124 } while_each_thread(g, p);
8125
4cf5d77a 8126 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8127}
8128
8129#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8130
8131#ifdef CONFIG_IA64
8132/*
8133 * These functions are only useful for the IA64 MCA handling.
8134 *
8135 * They can only be called when the whole system has been
8136 * stopped - every CPU needs to be quiescent, and no scheduling
8137 * activity can take place. Using them for anything else would
8138 * be a serious bug, and as a result, they aren't even visible
8139 * under any other configuration.
8140 */
8141
8142/**
8143 * curr_task - return the current task for a given cpu.
8144 * @cpu: the processor in question.
8145 *
8146 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8147 */
36c8b586 8148struct task_struct *curr_task(int cpu)
1df5c10a
LT
8149{
8150 return cpu_curr(cpu);
8151}
8152
8153/**
8154 * set_curr_task - set the current task for a given cpu.
8155 * @cpu: the processor in question.
8156 * @p: the task pointer to set.
8157 *
8158 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8159 * are serviced on a separate stack. It allows the architecture to switch the
8160 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8161 * must be called with all CPU's synchronized, and interrupts disabled, the
8162 * and caller must save the original value of the current task (see
8163 * curr_task() above) and restore that value before reenabling interrupts and
8164 * re-starting the system.
8165 *
8166 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8167 */
36c8b586 8168void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8169{
8170 cpu_curr(cpu) = p;
8171}
8172
8173#endif
29f59db3 8174
bccbe08a
PZ
8175#ifdef CONFIG_FAIR_GROUP_SCHED
8176static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8177{
8178 int i;
8179
8180 for_each_possible_cpu(i) {
8181 if (tg->cfs_rq)
8182 kfree(tg->cfs_rq[i]);
8183 if (tg->se)
8184 kfree(tg->se[i]);
6f505b16
PZ
8185 }
8186
8187 kfree(tg->cfs_rq);
8188 kfree(tg->se);
6f505b16
PZ
8189}
8190
ec7dc8ac
DG
8191static
8192int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8193{
29f59db3 8194 struct cfs_rq *cfs_rq;
ec7dc8ac 8195 struct sched_entity *se, *parent_se;
9b5b7751 8196 struct rq *rq;
29f59db3
SV
8197 int i;
8198
434d53b0 8199 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8200 if (!tg->cfs_rq)
8201 goto err;
434d53b0 8202 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8203 if (!tg->se)
8204 goto err;
052f1dc7
PZ
8205
8206 tg->shares = NICE_0_LOAD;
29f59db3
SV
8207
8208 for_each_possible_cpu(i) {
9b5b7751 8209 rq = cpu_rq(i);
29f59db3 8210
6f505b16
PZ
8211 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8212 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8213 if (!cfs_rq)
8214 goto err;
8215
6f505b16
PZ
8216 se = kmalloc_node(sizeof(struct sched_entity),
8217 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8218 if (!se)
8219 goto err;
8220
ec7dc8ac
DG
8221 parent_se = parent ? parent->se[i] : NULL;
8222 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8223 }
8224
8225 return 1;
8226
8227 err:
8228 return 0;
8229}
8230
8231static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8232{
8233 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8234 &cpu_rq(cpu)->leaf_cfs_rq_list);
8235}
8236
8237static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8238{
8239 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8240}
6d6bc0ad 8241#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8242static inline void free_fair_sched_group(struct task_group *tg)
8243{
8244}
8245
ec7dc8ac
DG
8246static inline
8247int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8248{
8249 return 1;
8250}
8251
8252static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8253{
8254}
8255
8256static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8257{
8258}
6d6bc0ad 8259#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8260
8261#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8262static void free_rt_sched_group(struct task_group *tg)
8263{
8264 int i;
8265
d0b27fa7
PZ
8266 destroy_rt_bandwidth(&tg->rt_bandwidth);
8267
bccbe08a
PZ
8268 for_each_possible_cpu(i) {
8269 if (tg->rt_rq)
8270 kfree(tg->rt_rq[i]);
8271 if (tg->rt_se)
8272 kfree(tg->rt_se[i]);
8273 }
8274
8275 kfree(tg->rt_rq);
8276 kfree(tg->rt_se);
8277}
8278
ec7dc8ac
DG
8279static
8280int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8281{
8282 struct rt_rq *rt_rq;
ec7dc8ac 8283 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8284 struct rq *rq;
8285 int i;
8286
434d53b0 8287 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8288 if (!tg->rt_rq)
8289 goto err;
434d53b0 8290 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8291 if (!tg->rt_se)
8292 goto err;
8293
d0b27fa7
PZ
8294 init_rt_bandwidth(&tg->rt_bandwidth,
8295 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8296
8297 for_each_possible_cpu(i) {
8298 rq = cpu_rq(i);
8299
6f505b16
PZ
8300 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8301 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8302 if (!rt_rq)
8303 goto err;
29f59db3 8304
6f505b16
PZ
8305 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8306 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8307 if (!rt_se)
8308 goto err;
29f59db3 8309
ec7dc8ac
DG
8310 parent_se = parent ? parent->rt_se[i] : NULL;
8311 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8312 }
8313
bccbe08a
PZ
8314 return 1;
8315
8316 err:
8317 return 0;
8318}
8319
8320static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8321{
8322 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8323 &cpu_rq(cpu)->leaf_rt_rq_list);
8324}
8325
8326static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8327{
8328 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8329}
6d6bc0ad 8330#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8331static inline void free_rt_sched_group(struct task_group *tg)
8332{
8333}
8334
ec7dc8ac
DG
8335static inline
8336int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8337{
8338 return 1;
8339}
8340
8341static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8342{
8343}
8344
8345static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8346{
8347}
6d6bc0ad 8348#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8349
d0b27fa7 8350#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8351static void free_sched_group(struct task_group *tg)
8352{
8353 free_fair_sched_group(tg);
8354 free_rt_sched_group(tg);
8355 kfree(tg);
8356}
8357
8358/* allocate runqueue etc for a new task group */
ec7dc8ac 8359struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8360{
8361 struct task_group *tg;
8362 unsigned long flags;
8363 int i;
8364
8365 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8366 if (!tg)
8367 return ERR_PTR(-ENOMEM);
8368
ec7dc8ac 8369 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8370 goto err;
8371
ec7dc8ac 8372 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8373 goto err;
8374
8ed36996 8375 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8376 for_each_possible_cpu(i) {
bccbe08a
PZ
8377 register_fair_sched_group(tg, i);
8378 register_rt_sched_group(tg, i);
9b5b7751 8379 }
6f505b16 8380 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8381
8382 WARN_ON(!parent); /* root should already exist */
8383
8384 tg->parent = parent;
8385 list_add_rcu(&tg->siblings, &parent->children);
8386 INIT_LIST_HEAD(&tg->children);
8ed36996 8387 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8388
9b5b7751 8389 return tg;
29f59db3
SV
8390
8391err:
6f505b16 8392 free_sched_group(tg);
29f59db3
SV
8393 return ERR_PTR(-ENOMEM);
8394}
8395
9b5b7751 8396/* rcu callback to free various structures associated with a task group */
6f505b16 8397static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8398{
29f59db3 8399 /* now it should be safe to free those cfs_rqs */
6f505b16 8400 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8401}
8402
9b5b7751 8403/* Destroy runqueue etc associated with a task group */
4cf86d77 8404void sched_destroy_group(struct task_group *tg)
29f59db3 8405{
8ed36996 8406 unsigned long flags;
9b5b7751 8407 int i;
29f59db3 8408
8ed36996 8409 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8410 for_each_possible_cpu(i) {
bccbe08a
PZ
8411 unregister_fair_sched_group(tg, i);
8412 unregister_rt_sched_group(tg, i);
9b5b7751 8413 }
6f505b16 8414 list_del_rcu(&tg->list);
f473aa5e 8415 list_del_rcu(&tg->siblings);
8ed36996 8416 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8417
9b5b7751 8418 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8419 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8420}
8421
9b5b7751 8422/* change task's runqueue when it moves between groups.
3a252015
IM
8423 * The caller of this function should have put the task in its new group
8424 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8425 * reflect its new group.
9b5b7751
SV
8426 */
8427void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8428{
8429 int on_rq, running;
8430 unsigned long flags;
8431 struct rq *rq;
8432
8433 rq = task_rq_lock(tsk, &flags);
8434
29f59db3
SV
8435 update_rq_clock(rq);
8436
051a1d1a 8437 running = task_current(rq, tsk);
29f59db3
SV
8438 on_rq = tsk->se.on_rq;
8439
0e1f3483 8440 if (on_rq)
29f59db3 8441 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8442 if (unlikely(running))
8443 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8444
6f505b16 8445 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8446
810b3817
PZ
8447#ifdef CONFIG_FAIR_GROUP_SCHED
8448 if (tsk->sched_class->moved_group)
8449 tsk->sched_class->moved_group(tsk);
8450#endif
8451
0e1f3483
HS
8452 if (unlikely(running))
8453 tsk->sched_class->set_curr_task(rq);
8454 if (on_rq)
7074badb 8455 enqueue_task(rq, tsk, 0);
29f59db3 8456
29f59db3
SV
8457 task_rq_unlock(rq, &flags);
8458}
6d6bc0ad 8459#endif /* CONFIG_GROUP_SCHED */
29f59db3 8460
052f1dc7 8461#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8462static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8463{
8464 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8465 int on_rq;
8466
29f59db3 8467 on_rq = se->on_rq;
62fb1851 8468 if (on_rq)
29f59db3
SV
8469 dequeue_entity(cfs_rq, se, 0);
8470
8471 se->load.weight = shares;
e05510d0 8472 se->load.inv_weight = 0;
29f59db3 8473
62fb1851 8474 if (on_rq)
29f59db3 8475 enqueue_entity(cfs_rq, se, 0);
c09595f6 8476}
62fb1851 8477
c09595f6
PZ
8478static void set_se_shares(struct sched_entity *se, unsigned long shares)
8479{
8480 struct cfs_rq *cfs_rq = se->cfs_rq;
8481 struct rq *rq = cfs_rq->rq;
8482 unsigned long flags;
8483
8484 spin_lock_irqsave(&rq->lock, flags);
8485 __set_se_shares(se, shares);
8486 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8487}
8488
8ed36996
PZ
8489static DEFINE_MUTEX(shares_mutex);
8490
4cf86d77 8491int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8492{
8493 int i;
8ed36996 8494 unsigned long flags;
c61935fd 8495
ec7dc8ac
DG
8496 /*
8497 * We can't change the weight of the root cgroup.
8498 */
8499 if (!tg->se[0])
8500 return -EINVAL;
8501
18d95a28
PZ
8502 if (shares < MIN_SHARES)
8503 shares = MIN_SHARES;
cb4ad1ff
MX
8504 else if (shares > MAX_SHARES)
8505 shares = MAX_SHARES;
62fb1851 8506
8ed36996 8507 mutex_lock(&shares_mutex);
9b5b7751 8508 if (tg->shares == shares)
5cb350ba 8509 goto done;
29f59db3 8510
8ed36996 8511 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8512 for_each_possible_cpu(i)
8513 unregister_fair_sched_group(tg, i);
f473aa5e 8514 list_del_rcu(&tg->siblings);
8ed36996 8515 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8516
8517 /* wait for any ongoing reference to this group to finish */
8518 synchronize_sched();
8519
8520 /*
8521 * Now we are free to modify the group's share on each cpu
8522 * w/o tripping rebalance_share or load_balance_fair.
8523 */
9b5b7751 8524 tg->shares = shares;
c09595f6
PZ
8525 for_each_possible_cpu(i) {
8526 /*
8527 * force a rebalance
8528 */
8529 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8530 set_se_shares(tg->se[i], shares);
c09595f6 8531 }
29f59db3 8532
6b2d7700
SV
8533 /*
8534 * Enable load balance activity on this group, by inserting it back on
8535 * each cpu's rq->leaf_cfs_rq_list.
8536 */
8ed36996 8537 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8538 for_each_possible_cpu(i)
8539 register_fair_sched_group(tg, i);
f473aa5e 8540 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8541 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8542done:
8ed36996 8543 mutex_unlock(&shares_mutex);
9b5b7751 8544 return 0;
29f59db3
SV
8545}
8546
5cb350ba
DG
8547unsigned long sched_group_shares(struct task_group *tg)
8548{
8549 return tg->shares;
8550}
052f1dc7 8551#endif
5cb350ba 8552
052f1dc7 8553#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8554/*
9f0c1e56 8555 * Ensure that the real time constraints are schedulable.
6f505b16 8556 */
9f0c1e56
PZ
8557static DEFINE_MUTEX(rt_constraints_mutex);
8558
8559static unsigned long to_ratio(u64 period, u64 runtime)
8560{
8561 if (runtime == RUNTIME_INF)
8562 return 1ULL << 16;
8563
6f6d6a1a 8564 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8565}
8566
b40b2e8e
PZ
8567#ifdef CONFIG_CGROUP_SCHED
8568static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8569{
10b612f4 8570 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8571 unsigned long total = 0;
8572
8573 if (!parent) {
8574 if (global_rt_period() < period)
8575 return 0;
8576
8577 return to_ratio(period, runtime) <
8578 to_ratio(global_rt_period(), global_rt_runtime());
8579 }
8580
8581 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8582 return 0;
8583
8584 rcu_read_lock();
8585 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8586 if (tgi == tg)
8587 continue;
8588
8589 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8590 tgi->rt_bandwidth.rt_runtime);
8591 }
8592 rcu_read_unlock();
8593
10b612f4 8594 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8595 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8596 parent->rt_bandwidth.rt_runtime);
8597}
8598#elif defined CONFIG_USER_SCHED
9f0c1e56 8599static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8600{
8601 struct task_group *tgi;
8602 unsigned long total = 0;
9f0c1e56 8603 unsigned long global_ratio =
d0b27fa7 8604 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8605
8606 rcu_read_lock();
9f0c1e56
PZ
8607 list_for_each_entry_rcu(tgi, &task_groups, list) {
8608 if (tgi == tg)
8609 continue;
6f505b16 8610
d0b27fa7
PZ
8611 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8612 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8613 }
8614 rcu_read_unlock();
6f505b16 8615
9f0c1e56 8616 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8617}
b40b2e8e 8618#endif
6f505b16 8619
521f1a24
DG
8620/* Must be called with tasklist_lock held */
8621static inline int tg_has_rt_tasks(struct task_group *tg)
8622{
8623 struct task_struct *g, *p;
8624 do_each_thread(g, p) {
8625 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8626 return 1;
8627 } while_each_thread(g, p);
8628 return 0;
8629}
8630
d0b27fa7
PZ
8631static int tg_set_bandwidth(struct task_group *tg,
8632 u64 rt_period, u64 rt_runtime)
6f505b16 8633{
ac086bc2 8634 int i, err = 0;
9f0c1e56 8635
9f0c1e56 8636 mutex_lock(&rt_constraints_mutex);
521f1a24 8637 read_lock(&tasklist_lock);
ac086bc2 8638 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8639 err = -EBUSY;
8640 goto unlock;
8641 }
9f0c1e56
PZ
8642 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8643 err = -EINVAL;
8644 goto unlock;
8645 }
ac086bc2
PZ
8646
8647 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8648 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8649 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8650
8651 for_each_possible_cpu(i) {
8652 struct rt_rq *rt_rq = tg->rt_rq[i];
8653
8654 spin_lock(&rt_rq->rt_runtime_lock);
8655 rt_rq->rt_runtime = rt_runtime;
8656 spin_unlock(&rt_rq->rt_runtime_lock);
8657 }
8658 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8659 unlock:
521f1a24 8660 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8661 mutex_unlock(&rt_constraints_mutex);
8662
8663 return err;
6f505b16
PZ
8664}
8665
d0b27fa7
PZ
8666int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8667{
8668 u64 rt_runtime, rt_period;
8669
8670 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8671 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8672 if (rt_runtime_us < 0)
8673 rt_runtime = RUNTIME_INF;
8674
8675 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8676}
8677
9f0c1e56
PZ
8678long sched_group_rt_runtime(struct task_group *tg)
8679{
8680 u64 rt_runtime_us;
8681
d0b27fa7 8682 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8683 return -1;
8684
d0b27fa7 8685 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8686 do_div(rt_runtime_us, NSEC_PER_USEC);
8687 return rt_runtime_us;
8688}
d0b27fa7
PZ
8689
8690int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8691{
8692 u64 rt_runtime, rt_period;
8693
8694 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8695 rt_runtime = tg->rt_bandwidth.rt_runtime;
8696
8697 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8698}
8699
8700long sched_group_rt_period(struct task_group *tg)
8701{
8702 u64 rt_period_us;
8703
8704 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8705 do_div(rt_period_us, NSEC_PER_USEC);
8706 return rt_period_us;
8707}
8708
8709static int sched_rt_global_constraints(void)
8710{
10b612f4
PZ
8711 struct task_group *tg = &root_task_group;
8712 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8713 int ret = 0;
8714
10b612f4
PZ
8715 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8716 rt_runtime = tg->rt_bandwidth.rt_runtime;
8717
d0b27fa7 8718 mutex_lock(&rt_constraints_mutex);
10b612f4 8719 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8720 ret = -EINVAL;
8721 mutex_unlock(&rt_constraints_mutex);
8722
8723 return ret;
8724}
6d6bc0ad 8725#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8726static int sched_rt_global_constraints(void)
8727{
ac086bc2
PZ
8728 unsigned long flags;
8729 int i;
8730
8731 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8732 for_each_possible_cpu(i) {
8733 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8734
8735 spin_lock(&rt_rq->rt_runtime_lock);
8736 rt_rq->rt_runtime = global_rt_runtime();
8737 spin_unlock(&rt_rq->rt_runtime_lock);
8738 }
8739 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8740
d0b27fa7
PZ
8741 return 0;
8742}
6d6bc0ad 8743#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8744
8745int sched_rt_handler(struct ctl_table *table, int write,
8746 struct file *filp, void __user *buffer, size_t *lenp,
8747 loff_t *ppos)
8748{
8749 int ret;
8750 int old_period, old_runtime;
8751 static DEFINE_MUTEX(mutex);
8752
8753 mutex_lock(&mutex);
8754 old_period = sysctl_sched_rt_period;
8755 old_runtime = sysctl_sched_rt_runtime;
8756
8757 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8758
8759 if (!ret && write) {
8760 ret = sched_rt_global_constraints();
8761 if (ret) {
8762 sysctl_sched_rt_period = old_period;
8763 sysctl_sched_rt_runtime = old_runtime;
8764 } else {
8765 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8766 def_rt_bandwidth.rt_period =
8767 ns_to_ktime(global_rt_period());
8768 }
8769 }
8770 mutex_unlock(&mutex);
8771
8772 return ret;
8773}
68318b8e 8774
052f1dc7 8775#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8776
8777/* return corresponding task_group object of a cgroup */
2b01dfe3 8778static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8779{
2b01dfe3
PM
8780 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8781 struct task_group, css);
68318b8e
SV
8782}
8783
8784static struct cgroup_subsys_state *
2b01dfe3 8785cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8786{
ec7dc8ac 8787 struct task_group *tg, *parent;
68318b8e 8788
2b01dfe3 8789 if (!cgrp->parent) {
68318b8e 8790 /* This is early initialization for the top cgroup */
2b01dfe3 8791 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8792 return &init_task_group.css;
8793 }
8794
ec7dc8ac
DG
8795 parent = cgroup_tg(cgrp->parent);
8796 tg = sched_create_group(parent);
68318b8e
SV
8797 if (IS_ERR(tg))
8798 return ERR_PTR(-ENOMEM);
8799
8800 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8801 tg->css.cgroup = cgrp;
68318b8e
SV
8802
8803 return &tg->css;
8804}
8805
41a2d6cf
IM
8806static void
8807cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8808{
2b01dfe3 8809 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8810
8811 sched_destroy_group(tg);
8812}
8813
41a2d6cf
IM
8814static int
8815cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8816 struct task_struct *tsk)
68318b8e 8817{
b68aa230
PZ
8818#ifdef CONFIG_RT_GROUP_SCHED
8819 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8820 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8821 return -EINVAL;
8822#else
68318b8e
SV
8823 /* We don't support RT-tasks being in separate groups */
8824 if (tsk->sched_class != &fair_sched_class)
8825 return -EINVAL;
b68aa230 8826#endif
68318b8e
SV
8827
8828 return 0;
8829}
8830
8831static void
2b01dfe3 8832cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8833 struct cgroup *old_cont, struct task_struct *tsk)
8834{
8835 sched_move_task(tsk);
8836}
8837
052f1dc7 8838#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8839static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8840 u64 shareval)
68318b8e 8841{
2b01dfe3 8842 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8843}
8844
f4c753b7 8845static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8846{
2b01dfe3 8847 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8848
8849 return (u64) tg->shares;
8850}
6d6bc0ad 8851#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8852
052f1dc7 8853#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8854static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8855 s64 val)
6f505b16 8856{
06ecb27c 8857 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8858}
8859
06ecb27c 8860static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8861{
06ecb27c 8862 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8863}
d0b27fa7
PZ
8864
8865static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8866 u64 rt_period_us)
8867{
8868 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8869}
8870
8871static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8872{
8873 return sched_group_rt_period(cgroup_tg(cgrp));
8874}
6d6bc0ad 8875#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8876
fe5c7cc2 8877static struct cftype cpu_files[] = {
052f1dc7 8878#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8879 {
8880 .name = "shares",
f4c753b7
PM
8881 .read_u64 = cpu_shares_read_u64,
8882 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8883 },
052f1dc7
PZ
8884#endif
8885#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8886 {
9f0c1e56 8887 .name = "rt_runtime_us",
06ecb27c
PM
8888 .read_s64 = cpu_rt_runtime_read,
8889 .write_s64 = cpu_rt_runtime_write,
6f505b16 8890 },
d0b27fa7
PZ
8891 {
8892 .name = "rt_period_us",
f4c753b7
PM
8893 .read_u64 = cpu_rt_period_read_uint,
8894 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8895 },
052f1dc7 8896#endif
68318b8e
SV
8897};
8898
8899static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8900{
fe5c7cc2 8901 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8902}
8903
8904struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8905 .name = "cpu",
8906 .create = cpu_cgroup_create,
8907 .destroy = cpu_cgroup_destroy,
8908 .can_attach = cpu_cgroup_can_attach,
8909 .attach = cpu_cgroup_attach,
8910 .populate = cpu_cgroup_populate,
8911 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8912 .early_init = 1,
8913};
8914
052f1dc7 8915#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8916
8917#ifdef CONFIG_CGROUP_CPUACCT
8918
8919/*
8920 * CPU accounting code for task groups.
8921 *
8922 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8923 * (balbir@in.ibm.com).
8924 */
8925
8926/* track cpu usage of a group of tasks */
8927struct cpuacct {
8928 struct cgroup_subsys_state css;
8929 /* cpuusage holds pointer to a u64-type object on every cpu */
8930 u64 *cpuusage;
8931};
8932
8933struct cgroup_subsys cpuacct_subsys;
8934
8935/* return cpu accounting group corresponding to this container */
32cd756a 8936static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8937{
32cd756a 8938 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8939 struct cpuacct, css);
8940}
8941
8942/* return cpu accounting group to which this task belongs */
8943static inline struct cpuacct *task_ca(struct task_struct *tsk)
8944{
8945 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8946 struct cpuacct, css);
8947}
8948
8949/* create a new cpu accounting group */
8950static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8951 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8952{
8953 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8954
8955 if (!ca)
8956 return ERR_PTR(-ENOMEM);
8957
8958 ca->cpuusage = alloc_percpu(u64);
8959 if (!ca->cpuusage) {
8960 kfree(ca);
8961 return ERR_PTR(-ENOMEM);
8962 }
8963
8964 return &ca->css;
8965}
8966
8967/* destroy an existing cpu accounting group */
41a2d6cf 8968static void
32cd756a 8969cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8970{
32cd756a 8971 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8972
8973 free_percpu(ca->cpuusage);
8974 kfree(ca);
8975}
8976
8977/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8978static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8979{
32cd756a 8980 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8981 u64 totalcpuusage = 0;
8982 int i;
8983
8984 for_each_possible_cpu(i) {
8985 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8986
8987 /*
8988 * Take rq->lock to make 64-bit addition safe on 32-bit
8989 * platforms.
8990 */
8991 spin_lock_irq(&cpu_rq(i)->lock);
8992 totalcpuusage += *cpuusage;
8993 spin_unlock_irq(&cpu_rq(i)->lock);
8994 }
8995
8996 return totalcpuusage;
8997}
8998
0297b803
DG
8999static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9000 u64 reset)
9001{
9002 struct cpuacct *ca = cgroup_ca(cgrp);
9003 int err = 0;
9004 int i;
9005
9006 if (reset) {
9007 err = -EINVAL;
9008 goto out;
9009 }
9010
9011 for_each_possible_cpu(i) {
9012 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9013
9014 spin_lock_irq(&cpu_rq(i)->lock);
9015 *cpuusage = 0;
9016 spin_unlock_irq(&cpu_rq(i)->lock);
9017 }
9018out:
9019 return err;
9020}
9021
d842de87
SV
9022static struct cftype files[] = {
9023 {
9024 .name = "usage",
f4c753b7
PM
9025 .read_u64 = cpuusage_read,
9026 .write_u64 = cpuusage_write,
d842de87
SV
9027 },
9028};
9029
32cd756a 9030static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9031{
32cd756a 9032 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9033}
9034
9035/*
9036 * charge this task's execution time to its accounting group.
9037 *
9038 * called with rq->lock held.
9039 */
9040static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9041{
9042 struct cpuacct *ca;
9043
9044 if (!cpuacct_subsys.active)
9045 return;
9046
9047 ca = task_ca(tsk);
9048 if (ca) {
9049 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9050
9051 *cpuusage += cputime;
9052 }
9053}
9054
9055struct cgroup_subsys cpuacct_subsys = {
9056 .name = "cpuacct",
9057 .create = cpuacct_create,
9058 .destroy = cpuacct_destroy,
9059 .populate = cpuacct_populate,
9060 .subsys_id = cpuacct_subsys_id,
9061};
9062#endif /* CONFIG_CGROUP_CPUACCT */