]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched.c
nohz: Fix get_next_timer_interrupt() vs cpu hotplug
[mirror_ubuntu-jammy-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
052f1dc7
PZ
256#endif
257
258#ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
d0b27fa7 262 struct rt_bandwidth rt_bandwidth;
052f1dc7 263#endif
6b2d7700 264
ae8393e5 265 struct rcu_head rcu;
6f505b16 266 struct list_head list;
f473aa5e
PZ
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
29f59db3
SV
271};
272
eff766a6 273#define root_task_group init_task_group
6f505b16 274
8ed36996 275/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
276 * a task group's cpu shares.
277 */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
57310a98
PZ
282#ifdef CONFIG_SMP
283static int root_task_group_empty(void)
284{
285 return list_empty(&root_task_group.children);
286}
287#endif
288
052f1dc7 289# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 290
cb4ad1ff 291/*
2e084786
LJ
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
cb4ad1ff
MX
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
18d95a28 299#define MIN_SHARES 2
2e084786 300#define MAX_SHARES (1UL << 18)
18d95a28 301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3 309
7c941438 310#endif /* CONFIG_CGROUP_SCHED */
29f59db3 311
6aa645ea
IM
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
6aa645ea 317 u64 exec_clock;
e9acbff6 318 u64 min_vruntime;
6aa645ea
IM
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
4a55bd5e
PZ
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
4793241b 330 struct sched_entity *curr, *next, *last;
ddc97297 331
5ac5c4d6 332 unsigned int nr_spread_over;
ddc97297 333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857
PZ
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
f1d239f7
PZ
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2 429 struct cpupri cpupri;
57d885fe
GH
430};
431
dc938520
GH
432/*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
57d885fe
GH
436static struct root_domain def_root_domain;
437
ed2d372c 438#endif /* CONFIG_SMP */
57d885fe 439
1da177e4
LT
440/*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
70b97a7f 447struct rq {
d8016491 448 /* runqueue lock: */
05fa785c 449 raw_spinlock_t lock;
1da177e4
LT
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
6aa645ea
IM
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 458 unsigned long last_load_update_tick;
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
83cd4fe2 461 unsigned char nohz_balance_kick;
46cb4b7c 462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
34f971f6 489 struct task_struct *curr, *idle, *stop;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
305e6835 494 u64 clock_task;
6aa645ea 495
1da177e4
LT
496 atomic_t nr_iowait;
497
498#ifdef CONFIG_SMP
0eab9146 499 struct root_domain *rd;
1da177e4
LT
500 struct sched_domain *sd;
501
e51fd5e2
PZ
502 unsigned long cpu_power;
503
a0a522ce 504 unsigned char idle_at_tick;
1da177e4 505 /* For active balancing */
3f029d3c 506 int post_schedule;
1da177e4
LT
507 int active_balance;
508 int push_cpu;
969c7921 509 struct cpu_stop_work active_balance_work;
d8016491
IM
510 /* cpu of this runqueue: */
511 int cpu;
1f11eb6a 512 int online;
1da177e4 513
a8a51d5e 514 unsigned long avg_load_per_task;
1da177e4 515
e9e9250b
PZ
516 u64 rt_avg;
517 u64 age_stamp;
1b9508f6
MG
518 u64 idle_stamp;
519 u64 avg_idle;
1da177e4
LT
520#endif
521
aa483808
VP
522#ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524#endif
525
dce48a84
TG
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
8f4d37ec 530#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
531#ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534#endif
8f4d37ec
PZ
535 struct hrtimer hrtick_timer;
536#endif
537
1da177e4
LT
538#ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
9c2c4802
KC
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
543
544 /* sys_sched_yield() stats */
480b9434 545 unsigned int yld_count;
1da177e4
LT
546
547 /* schedule() stats */
480b9434
KC
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
1da177e4
LT
551
552 /* try_to_wake_up() stats */
480b9434
KC
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
b8efb561
IM
555
556 /* BKL stats */
480b9434 557 unsigned int bkl_count;
1da177e4
LT
558#endif
559};
560
f34e3b61 561static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 562
a64692a3 563
1e5a7405 564static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 565
0a2966b4
CL
566static inline int cpu_of(struct rq *rq)
567{
568#ifdef CONFIG_SMP
569 return rq->cpu;
570#else
571 return 0;
572#endif
573}
574
497f0ab3 575#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
579
674311d5
NP
580/*
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 582 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
583 *
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
586 */
48f24c4d 587#define for_each_domain(cpu, __sd) \
497f0ab3 588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
589
590#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591#define this_rq() (&__get_cpu_var(runqueues))
592#define task_rq(p) cpu_rq(task_cpu(p))
593#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 594#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 595
dc61b1d6
PZ
596#ifdef CONFIG_CGROUP_SCHED
597
598/*
599 * Return the group to which this tasks belongs.
600 *
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
605 */
606static inline struct task_group *task_group(struct task_struct *p)
607{
608 struct cgroup_subsys_state *css;
609
610 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
611 lockdep_is_held(&task_rq(p)->lock));
612 return container_of(css, struct task_group, css);
613}
614
615/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617{
618#ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621#endif
622
623#ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626#endif
627}
628
629#else /* CONFIG_CGROUP_SCHED */
630
631static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632static inline struct task_group *task_group(struct task_struct *p)
633{
634 return NULL;
635}
636
637#endif /* CONFIG_CGROUP_SCHED */
638
305e6835 639static u64 irq_time_cpu(int cpu);
aa483808 640static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
305e6835 641
aa9c4c0f 642inline void update_rq_clock(struct rq *rq)
3e51f33f 643{
f26f9aff
MG
644 int cpu = cpu_of(rq);
645 u64 irq_time;
305e6835 646
f26f9aff
MG
647 if (rq->skip_clock_update)
648 return;
aa483808 649
f26f9aff
MG
650 rq->clock = sched_clock_cpu(cpu);
651 irq_time = irq_time_cpu(cpu);
652 if (rq->clock - irq_time > rq->clock_task)
653 rq->clock_task = rq->clock - irq_time;
654
655 sched_irq_time_avg_update(rq, irq_time);
3e51f33f
PZ
656}
657
bf5c91ba
IM
658/*
659 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
660 */
661#ifdef CONFIG_SCHED_DEBUG
662# define const_debug __read_mostly
663#else
664# define const_debug static const
665#endif
666
017730c1
IM
667/**
668 * runqueue_is_locked
e17b38bf 669 * @cpu: the processor in question.
017730c1
IM
670 *
671 * Returns true if the current cpu runqueue is locked.
672 * This interface allows printk to be called with the runqueue lock
673 * held and know whether or not it is OK to wake up the klogd.
674 */
89f19f04 675int runqueue_is_locked(int cpu)
017730c1 676{
05fa785c 677 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
678}
679
bf5c91ba
IM
680/*
681 * Debugging: various feature bits
682 */
f00b45c1
PZ
683
684#define SCHED_FEAT(name, enabled) \
685 __SCHED_FEAT_##name ,
686
bf5c91ba 687enum {
f00b45c1 688#include "sched_features.h"
bf5c91ba
IM
689};
690
f00b45c1
PZ
691#undef SCHED_FEAT
692
693#define SCHED_FEAT(name, enabled) \
694 (1UL << __SCHED_FEAT_##name) * enabled |
695
bf5c91ba 696const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
697#include "sched_features.h"
698 0;
699
700#undef SCHED_FEAT
701
702#ifdef CONFIG_SCHED_DEBUG
703#define SCHED_FEAT(name, enabled) \
704 #name ,
705
983ed7a6 706static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
707#include "sched_features.h"
708 NULL
709};
710
711#undef SCHED_FEAT
712
34f3a814 713static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 714{
f00b45c1
PZ
715 int i;
716
717 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
718 if (!(sysctl_sched_features & (1UL << i)))
719 seq_puts(m, "NO_");
720 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 721 }
34f3a814 722 seq_puts(m, "\n");
f00b45c1 723
34f3a814 724 return 0;
f00b45c1
PZ
725}
726
727static ssize_t
728sched_feat_write(struct file *filp, const char __user *ubuf,
729 size_t cnt, loff_t *ppos)
730{
731 char buf[64];
7740191c 732 char *cmp;
f00b45c1
PZ
733 int neg = 0;
734 int i;
735
736 if (cnt > 63)
737 cnt = 63;
738
739 if (copy_from_user(&buf, ubuf, cnt))
740 return -EFAULT;
741
742 buf[cnt] = 0;
7740191c 743 cmp = strstrip(buf);
f00b45c1 744
c24b7c52 745 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
746 neg = 1;
747 cmp += 3;
748 }
749
750 for (i = 0; sched_feat_names[i]; i++) {
7740191c 751 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
752 if (neg)
753 sysctl_sched_features &= ~(1UL << i);
754 else
755 sysctl_sched_features |= (1UL << i);
756 break;
757 }
758 }
759
760 if (!sched_feat_names[i])
761 return -EINVAL;
762
42994724 763 *ppos += cnt;
f00b45c1
PZ
764
765 return cnt;
766}
767
34f3a814
LZ
768static int sched_feat_open(struct inode *inode, struct file *filp)
769{
770 return single_open(filp, sched_feat_show, NULL);
771}
772
828c0950 773static const struct file_operations sched_feat_fops = {
34f3a814
LZ
774 .open = sched_feat_open,
775 .write = sched_feat_write,
776 .read = seq_read,
777 .llseek = seq_lseek,
778 .release = single_release,
f00b45c1
PZ
779};
780
781static __init int sched_init_debug(void)
782{
f00b45c1
PZ
783 debugfs_create_file("sched_features", 0644, NULL, NULL,
784 &sched_feat_fops);
785
786 return 0;
787}
788late_initcall(sched_init_debug);
789
790#endif
791
792#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 793
b82d9fdd
PZ
794/*
795 * Number of tasks to iterate in a single balance run.
796 * Limited because this is done with IRQs disabled.
797 */
798const_debug unsigned int sysctl_sched_nr_migrate = 32;
799
2398f2c6
PZ
800/*
801 * ratelimit for updating the group shares.
55cd5340 802 * default: 0.25ms
2398f2c6 803 */
55cd5340 804unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 805unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 806
ffda12a1
PZ
807/*
808 * Inject some fuzzyness into changing the per-cpu group shares
809 * this avoids remote rq-locks at the expense of fairness.
810 * default: 4
811 */
812unsigned int sysctl_sched_shares_thresh = 4;
813
e9e9250b
PZ
814/*
815 * period over which we average the RT time consumption, measured
816 * in ms.
817 *
818 * default: 1s
819 */
820const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
821
fa85ae24 822/*
9f0c1e56 823 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
824 * default: 1s
825 */
9f0c1e56 826unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 827
6892b75e
IM
828static __read_mostly int scheduler_running;
829
9f0c1e56
PZ
830/*
831 * part of the period that we allow rt tasks to run in us.
832 * default: 0.95s
833 */
834int sysctl_sched_rt_runtime = 950000;
fa85ae24 835
d0b27fa7
PZ
836static inline u64 global_rt_period(void)
837{
838 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
839}
840
841static inline u64 global_rt_runtime(void)
842{
e26873bb 843 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
844 return RUNTIME_INF;
845
846 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
847}
fa85ae24 848
1da177e4 849#ifndef prepare_arch_switch
4866cde0
NP
850# define prepare_arch_switch(next) do { } while (0)
851#endif
852#ifndef finish_arch_switch
853# define finish_arch_switch(prev) do { } while (0)
854#endif
855
051a1d1a
DA
856static inline int task_current(struct rq *rq, struct task_struct *p)
857{
858 return rq->curr == p;
859}
860
4866cde0 861#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 862static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 863{
051a1d1a 864 return task_current(rq, p);
4866cde0
NP
865}
866
70b97a7f 867static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
868{
869}
870
70b97a7f 871static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 872{
da04c035
IM
873#ifdef CONFIG_DEBUG_SPINLOCK
874 /* this is a valid case when another task releases the spinlock */
875 rq->lock.owner = current;
876#endif
8a25d5de
IM
877 /*
878 * If we are tracking spinlock dependencies then we have to
879 * fix up the runqueue lock - which gets 'carried over' from
880 * prev into current:
881 */
882 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
883
05fa785c 884 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
885}
886
887#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 888static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
889{
890#ifdef CONFIG_SMP
891 return p->oncpu;
892#else
051a1d1a 893 return task_current(rq, p);
4866cde0
NP
894#endif
895}
896
70b97a7f 897static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
898{
899#ifdef CONFIG_SMP
900 /*
901 * We can optimise this out completely for !SMP, because the
902 * SMP rebalancing from interrupt is the only thing that cares
903 * here.
904 */
905 next->oncpu = 1;
906#endif
907#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 908 raw_spin_unlock_irq(&rq->lock);
4866cde0 909#else
05fa785c 910 raw_spin_unlock(&rq->lock);
4866cde0
NP
911#endif
912}
913
70b97a7f 914static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
915{
916#ifdef CONFIG_SMP
917 /*
918 * After ->oncpu is cleared, the task can be moved to a different CPU.
919 * We must ensure this doesn't happen until the switch is completely
920 * finished.
921 */
922 smp_wmb();
923 prev->oncpu = 0;
924#endif
925#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
926 local_irq_enable();
1da177e4 927#endif
4866cde0
NP
928}
929#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 930
0970d299 931/*
65cc8e48
PZ
932 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
933 * against ttwu().
0970d299
PZ
934 */
935static inline int task_is_waking(struct task_struct *p)
936{
0017d735 937 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
938}
939
b29739f9
IM
940/*
941 * __task_rq_lock - lock the runqueue a given task resides on.
942 * Must be called interrupts disabled.
943 */
70b97a7f 944static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
945 __acquires(rq->lock)
946{
0970d299
PZ
947 struct rq *rq;
948
3a5c359a 949 for (;;) {
0970d299 950 rq = task_rq(p);
05fa785c 951 raw_spin_lock(&rq->lock);
65cc8e48 952 if (likely(rq == task_rq(p)))
3a5c359a 953 return rq;
05fa785c 954 raw_spin_unlock(&rq->lock);
b29739f9 955 }
b29739f9
IM
956}
957
1da177e4
LT
958/*
959 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 960 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
961 * explicitly disabling preemption.
962 */
70b97a7f 963static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
964 __acquires(rq->lock)
965{
70b97a7f 966 struct rq *rq;
1da177e4 967
3a5c359a
AK
968 for (;;) {
969 local_irq_save(*flags);
970 rq = task_rq(p);
05fa785c 971 raw_spin_lock(&rq->lock);
65cc8e48 972 if (likely(rq == task_rq(p)))
3a5c359a 973 return rq;
05fa785c 974 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 975 }
1da177e4
LT
976}
977
a9957449 978static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
979 __releases(rq->lock)
980{
05fa785c 981 raw_spin_unlock(&rq->lock);
b29739f9
IM
982}
983
70b97a7f 984static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
985 __releases(rq->lock)
986{
05fa785c 987 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
988}
989
1da177e4 990/*
cc2a73b5 991 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 992 */
a9957449 993static struct rq *this_rq_lock(void)
1da177e4
LT
994 __acquires(rq->lock)
995{
70b97a7f 996 struct rq *rq;
1da177e4
LT
997
998 local_irq_disable();
999 rq = this_rq();
05fa785c 1000 raw_spin_lock(&rq->lock);
1da177e4
LT
1001
1002 return rq;
1003}
1004
8f4d37ec
PZ
1005#ifdef CONFIG_SCHED_HRTICK
1006/*
1007 * Use HR-timers to deliver accurate preemption points.
1008 *
1009 * Its all a bit involved since we cannot program an hrt while holding the
1010 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1011 * reschedule event.
1012 *
1013 * When we get rescheduled we reprogram the hrtick_timer outside of the
1014 * rq->lock.
1015 */
8f4d37ec
PZ
1016
1017/*
1018 * Use hrtick when:
1019 * - enabled by features
1020 * - hrtimer is actually high res
1021 */
1022static inline int hrtick_enabled(struct rq *rq)
1023{
1024 if (!sched_feat(HRTICK))
1025 return 0;
ba42059f 1026 if (!cpu_active(cpu_of(rq)))
b328ca18 1027 return 0;
8f4d37ec
PZ
1028 return hrtimer_is_hres_active(&rq->hrtick_timer);
1029}
1030
8f4d37ec
PZ
1031static void hrtick_clear(struct rq *rq)
1032{
1033 if (hrtimer_active(&rq->hrtick_timer))
1034 hrtimer_cancel(&rq->hrtick_timer);
1035}
1036
8f4d37ec
PZ
1037/*
1038 * High-resolution timer tick.
1039 * Runs from hardirq context with interrupts disabled.
1040 */
1041static enum hrtimer_restart hrtick(struct hrtimer *timer)
1042{
1043 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1044
1045 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1046
05fa785c 1047 raw_spin_lock(&rq->lock);
3e51f33f 1048 update_rq_clock(rq);
8f4d37ec 1049 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1050 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1051
1052 return HRTIMER_NORESTART;
1053}
1054
95e904c7 1055#ifdef CONFIG_SMP
31656519
PZ
1056/*
1057 * called from hardirq (IPI) context
1058 */
1059static void __hrtick_start(void *arg)
b328ca18 1060{
31656519 1061 struct rq *rq = arg;
b328ca18 1062
05fa785c 1063 raw_spin_lock(&rq->lock);
31656519
PZ
1064 hrtimer_restart(&rq->hrtick_timer);
1065 rq->hrtick_csd_pending = 0;
05fa785c 1066 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1067}
1068
31656519
PZ
1069/*
1070 * Called to set the hrtick timer state.
1071 *
1072 * called with rq->lock held and irqs disabled
1073 */
1074static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1075{
31656519
PZ
1076 struct hrtimer *timer = &rq->hrtick_timer;
1077 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1078
cc584b21 1079 hrtimer_set_expires(timer, time);
31656519
PZ
1080
1081 if (rq == this_rq()) {
1082 hrtimer_restart(timer);
1083 } else if (!rq->hrtick_csd_pending) {
6e275637 1084 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1085 rq->hrtick_csd_pending = 1;
1086 }
b328ca18
PZ
1087}
1088
1089static int
1090hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1091{
1092 int cpu = (int)(long)hcpu;
1093
1094 switch (action) {
1095 case CPU_UP_CANCELED:
1096 case CPU_UP_CANCELED_FROZEN:
1097 case CPU_DOWN_PREPARE:
1098 case CPU_DOWN_PREPARE_FROZEN:
1099 case CPU_DEAD:
1100 case CPU_DEAD_FROZEN:
31656519 1101 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1102 return NOTIFY_OK;
1103 }
1104
1105 return NOTIFY_DONE;
1106}
1107
fa748203 1108static __init void init_hrtick(void)
b328ca18
PZ
1109{
1110 hotcpu_notifier(hotplug_hrtick, 0);
1111}
31656519
PZ
1112#else
1113/*
1114 * Called to set the hrtick timer state.
1115 *
1116 * called with rq->lock held and irqs disabled
1117 */
1118static void hrtick_start(struct rq *rq, u64 delay)
1119{
7f1e2ca9 1120 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1121 HRTIMER_MODE_REL_PINNED, 0);
31656519 1122}
b328ca18 1123
006c75f1 1124static inline void init_hrtick(void)
8f4d37ec 1125{
8f4d37ec 1126}
31656519 1127#endif /* CONFIG_SMP */
8f4d37ec 1128
31656519 1129static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1130{
31656519
PZ
1131#ifdef CONFIG_SMP
1132 rq->hrtick_csd_pending = 0;
8f4d37ec 1133
31656519
PZ
1134 rq->hrtick_csd.flags = 0;
1135 rq->hrtick_csd.func = __hrtick_start;
1136 rq->hrtick_csd.info = rq;
1137#endif
8f4d37ec 1138
31656519
PZ
1139 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1140 rq->hrtick_timer.function = hrtick;
8f4d37ec 1141}
006c75f1 1142#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1143static inline void hrtick_clear(struct rq *rq)
1144{
1145}
1146
8f4d37ec
PZ
1147static inline void init_rq_hrtick(struct rq *rq)
1148{
1149}
1150
b328ca18
PZ
1151static inline void init_hrtick(void)
1152{
1153}
006c75f1 1154#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1155
c24d20db
IM
1156/*
1157 * resched_task - mark a task 'to be rescheduled now'.
1158 *
1159 * On UP this means the setting of the need_resched flag, on SMP it
1160 * might also involve a cross-CPU call to trigger the scheduler on
1161 * the target CPU.
1162 */
1163#ifdef CONFIG_SMP
1164
1165#ifndef tsk_is_polling
1166#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1167#endif
1168
31656519 1169static void resched_task(struct task_struct *p)
c24d20db
IM
1170{
1171 int cpu;
1172
05fa785c 1173 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1174
5ed0cec0 1175 if (test_tsk_need_resched(p))
c24d20db
IM
1176 return;
1177
5ed0cec0 1178 set_tsk_need_resched(p);
c24d20db
IM
1179
1180 cpu = task_cpu(p);
1181 if (cpu == smp_processor_id())
1182 return;
1183
1184 /* NEED_RESCHED must be visible before we test polling */
1185 smp_mb();
1186 if (!tsk_is_polling(p))
1187 smp_send_reschedule(cpu);
1188}
1189
1190static void resched_cpu(int cpu)
1191{
1192 struct rq *rq = cpu_rq(cpu);
1193 unsigned long flags;
1194
05fa785c 1195 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1196 return;
1197 resched_task(cpu_curr(cpu));
05fa785c 1198 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1199}
06d8308c
TG
1200
1201#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1202/*
1203 * In the semi idle case, use the nearest busy cpu for migrating timers
1204 * from an idle cpu. This is good for power-savings.
1205 *
1206 * We don't do similar optimization for completely idle system, as
1207 * selecting an idle cpu will add more delays to the timers than intended
1208 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1209 */
1210int get_nohz_timer_target(void)
1211{
1212 int cpu = smp_processor_id();
1213 int i;
1214 struct sched_domain *sd;
1215
1216 for_each_domain(cpu, sd) {
1217 for_each_cpu(i, sched_domain_span(sd))
1218 if (!idle_cpu(i))
1219 return i;
1220 }
1221 return cpu;
1222}
06d8308c
TG
1223/*
1224 * When add_timer_on() enqueues a timer into the timer wheel of an
1225 * idle CPU then this timer might expire before the next timer event
1226 * which is scheduled to wake up that CPU. In case of a completely
1227 * idle system the next event might even be infinite time into the
1228 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1229 * leaves the inner idle loop so the newly added timer is taken into
1230 * account when the CPU goes back to idle and evaluates the timer
1231 * wheel for the next timer event.
1232 */
1233void wake_up_idle_cpu(int cpu)
1234{
1235 struct rq *rq = cpu_rq(cpu);
1236
1237 if (cpu == smp_processor_id())
1238 return;
1239
1240 /*
1241 * This is safe, as this function is called with the timer
1242 * wheel base lock of (cpu) held. When the CPU is on the way
1243 * to idle and has not yet set rq->curr to idle then it will
1244 * be serialized on the timer wheel base lock and take the new
1245 * timer into account automatically.
1246 */
1247 if (rq->curr != rq->idle)
1248 return;
1249
1250 /*
1251 * We can set TIF_RESCHED on the idle task of the other CPU
1252 * lockless. The worst case is that the other CPU runs the
1253 * idle task through an additional NOOP schedule()
1254 */
5ed0cec0 1255 set_tsk_need_resched(rq->idle);
06d8308c
TG
1256
1257 /* NEED_RESCHED must be visible before we test polling */
1258 smp_mb();
1259 if (!tsk_is_polling(rq->idle))
1260 smp_send_reschedule(cpu);
1261}
39c0cbe2 1262
6d6bc0ad 1263#endif /* CONFIG_NO_HZ */
06d8308c 1264
e9e9250b
PZ
1265static u64 sched_avg_period(void)
1266{
1267 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1268}
1269
1270static void sched_avg_update(struct rq *rq)
1271{
1272 s64 period = sched_avg_period();
1273
1274 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1275 /*
1276 * Inline assembly required to prevent the compiler
1277 * optimising this loop into a divmod call.
1278 * See __iter_div_u64_rem() for another example of this.
1279 */
1280 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1281 rq->age_stamp += period;
1282 rq->rt_avg /= 2;
1283 }
1284}
1285
1286static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1287{
1288 rq->rt_avg += rt_delta;
1289 sched_avg_update(rq);
1290}
1291
6d6bc0ad 1292#else /* !CONFIG_SMP */
31656519 1293static void resched_task(struct task_struct *p)
c24d20db 1294{
05fa785c 1295 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1296 set_tsk_need_resched(p);
c24d20db 1297}
e9e9250b
PZ
1298
1299static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1300{
1301}
da2b71ed
SS
1302
1303static void sched_avg_update(struct rq *rq)
1304{
1305}
6d6bc0ad 1306#endif /* CONFIG_SMP */
c24d20db 1307
45bf76df
IM
1308#if BITS_PER_LONG == 32
1309# define WMULT_CONST (~0UL)
1310#else
1311# define WMULT_CONST (1UL << 32)
1312#endif
1313
1314#define WMULT_SHIFT 32
1315
194081eb
IM
1316/*
1317 * Shift right and round:
1318 */
cf2ab469 1319#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1320
a7be37ac
PZ
1321/*
1322 * delta *= weight / lw
1323 */
cb1c4fc9 1324static unsigned long
45bf76df
IM
1325calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1326 struct load_weight *lw)
1327{
1328 u64 tmp;
1329
7a232e03
LJ
1330 if (!lw->inv_weight) {
1331 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1332 lw->inv_weight = 1;
1333 else
1334 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1335 / (lw->weight+1);
1336 }
45bf76df
IM
1337
1338 tmp = (u64)delta_exec * weight;
1339 /*
1340 * Check whether we'd overflow the 64-bit multiplication:
1341 */
194081eb 1342 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1343 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1344 WMULT_SHIFT/2);
1345 else
cf2ab469 1346 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1347
ecf691da 1348 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1349}
1350
1091985b 1351static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1352{
1353 lw->weight += inc;
e89996ae 1354 lw->inv_weight = 0;
45bf76df
IM
1355}
1356
1091985b 1357static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1358{
1359 lw->weight -= dec;
e89996ae 1360 lw->inv_weight = 0;
45bf76df
IM
1361}
1362
2dd73a4f
PW
1363/*
1364 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1365 * of tasks with abnormal "nice" values across CPUs the contribution that
1366 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1367 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1368 * scaled version of the new time slice allocation that they receive on time
1369 * slice expiry etc.
1370 */
1371
cce7ade8
PZ
1372#define WEIGHT_IDLEPRIO 3
1373#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1374
1375/*
1376 * Nice levels are multiplicative, with a gentle 10% change for every
1377 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1378 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1379 * that remained on nice 0.
1380 *
1381 * The "10% effect" is relative and cumulative: from _any_ nice level,
1382 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1383 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1384 * If a task goes up by ~10% and another task goes down by ~10% then
1385 * the relative distance between them is ~25%.)
dd41f596
IM
1386 */
1387static const int prio_to_weight[40] = {
254753dc
IM
1388 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1389 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1390 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1391 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1392 /* 0 */ 1024, 820, 655, 526, 423,
1393 /* 5 */ 335, 272, 215, 172, 137,
1394 /* 10 */ 110, 87, 70, 56, 45,
1395 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1396};
1397
5714d2de
IM
1398/*
1399 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1400 *
1401 * In cases where the weight does not change often, we can use the
1402 * precalculated inverse to speed up arithmetics by turning divisions
1403 * into multiplications:
1404 */
dd41f596 1405static const u32 prio_to_wmult[40] = {
254753dc
IM
1406 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1407 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1408 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1409 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1410 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1411 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1412 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1413 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1414};
2dd73a4f 1415
ef12fefa
BR
1416/* Time spent by the tasks of the cpu accounting group executing in ... */
1417enum cpuacct_stat_index {
1418 CPUACCT_STAT_USER, /* ... user mode */
1419 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1420
1421 CPUACCT_STAT_NSTATS,
1422};
1423
d842de87
SV
1424#ifdef CONFIG_CGROUP_CPUACCT
1425static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1426static void cpuacct_update_stats(struct task_struct *tsk,
1427 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1428#else
1429static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1430static inline void cpuacct_update_stats(struct task_struct *tsk,
1431 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1432#endif
1433
18d95a28
PZ
1434static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1435{
1436 update_load_add(&rq->load, load);
1437}
1438
1439static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_sub(&rq->load, load);
1442}
1443
7940ca36 1444#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1445typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1446
1447/*
1448 * Iterate the full tree, calling @down when first entering a node and @up when
1449 * leaving it for the final time.
1450 */
eb755805 1451static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1452{
1453 struct task_group *parent, *child;
eb755805 1454 int ret;
c09595f6
PZ
1455
1456 rcu_read_lock();
1457 parent = &root_task_group;
1458down:
eb755805
PZ
1459 ret = (*down)(parent, data);
1460 if (ret)
1461 goto out_unlock;
c09595f6
PZ
1462 list_for_each_entry_rcu(child, &parent->children, siblings) {
1463 parent = child;
1464 goto down;
1465
1466up:
1467 continue;
1468 }
eb755805
PZ
1469 ret = (*up)(parent, data);
1470 if (ret)
1471 goto out_unlock;
c09595f6
PZ
1472
1473 child = parent;
1474 parent = parent->parent;
1475 if (parent)
1476 goto up;
eb755805 1477out_unlock:
c09595f6 1478 rcu_read_unlock();
eb755805
PZ
1479
1480 return ret;
c09595f6
PZ
1481}
1482
eb755805
PZ
1483static int tg_nop(struct task_group *tg, void *data)
1484{
1485 return 0;
c09595f6 1486}
eb755805
PZ
1487#endif
1488
1489#ifdef CONFIG_SMP
f5f08f39
PZ
1490/* Used instead of source_load when we know the type == 0 */
1491static unsigned long weighted_cpuload(const int cpu)
1492{
1493 return cpu_rq(cpu)->load.weight;
1494}
1495
1496/*
1497 * Return a low guess at the load of a migration-source cpu weighted
1498 * according to the scheduling class and "nice" value.
1499 *
1500 * We want to under-estimate the load of migration sources, to
1501 * balance conservatively.
1502 */
1503static unsigned long source_load(int cpu, int type)
1504{
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long total = weighted_cpuload(cpu);
1507
1508 if (type == 0 || !sched_feat(LB_BIAS))
1509 return total;
1510
1511 return min(rq->cpu_load[type-1], total);
1512}
1513
1514/*
1515 * Return a high guess at the load of a migration-target cpu weighted
1516 * according to the scheduling class and "nice" value.
1517 */
1518static unsigned long target_load(int cpu, int type)
1519{
1520 struct rq *rq = cpu_rq(cpu);
1521 unsigned long total = weighted_cpuload(cpu);
1522
1523 if (type == 0 || !sched_feat(LB_BIAS))
1524 return total;
1525
1526 return max(rq->cpu_load[type-1], total);
1527}
1528
ae154be1
PZ
1529static unsigned long power_of(int cpu)
1530{
e51fd5e2 1531 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1532}
1533
eb755805
PZ
1534static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1535
1536static unsigned long cpu_avg_load_per_task(int cpu)
1537{
1538 struct rq *rq = cpu_rq(cpu);
af6d596f 1539 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1540
4cd42620
SR
1541 if (nr_running)
1542 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1543 else
1544 rq->avg_load_per_task = 0;
eb755805
PZ
1545
1546 return rq->avg_load_per_task;
1547}
1548
1549#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1550
43cf38eb 1551static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1552
c09595f6
PZ
1553static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1554
1555/*
1556 * Calculate and set the cpu's group shares.
1557 */
34d76c41
PZ
1558static void update_group_shares_cpu(struct task_group *tg, int cpu,
1559 unsigned long sd_shares,
1560 unsigned long sd_rq_weight,
4a6cc4bd 1561 unsigned long *usd_rq_weight)
18d95a28 1562{
34d76c41 1563 unsigned long shares, rq_weight;
a5004278 1564 int boost = 0;
c09595f6 1565
4a6cc4bd 1566 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1567 if (!rq_weight) {
1568 boost = 1;
1569 rq_weight = NICE_0_LOAD;
1570 }
c8cba857 1571
c09595f6 1572 /*
a8af7246
PZ
1573 * \Sum_j shares_j * rq_weight_i
1574 * shares_i = -----------------------------
1575 * \Sum_j rq_weight_j
c09595f6 1576 */
ec4e0e2f 1577 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1578 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1579
ffda12a1
PZ
1580 if (abs(shares - tg->se[cpu]->load.weight) >
1581 sysctl_sched_shares_thresh) {
1582 struct rq *rq = cpu_rq(cpu);
1583 unsigned long flags;
c09595f6 1584
05fa785c 1585 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1586 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1587 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1588 __set_se_shares(tg->se[cpu], shares);
05fa785c 1589 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1590 }
18d95a28 1591}
c09595f6
PZ
1592
1593/*
c8cba857
PZ
1594 * Re-compute the task group their per cpu shares over the given domain.
1595 * This needs to be done in a bottom-up fashion because the rq weight of a
1596 * parent group depends on the shares of its child groups.
c09595f6 1597 */
eb755805 1598static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1599{
cd8ad40d 1600 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1601 unsigned long *usd_rq_weight;
eb755805 1602 struct sched_domain *sd = data;
34d76c41 1603 unsigned long flags;
c8cba857 1604 int i;
c09595f6 1605
34d76c41
PZ
1606 if (!tg->se[0])
1607 return 0;
1608
1609 local_irq_save(flags);
4a6cc4bd 1610 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1611
758b2cdc 1612 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1613 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1614 usd_rq_weight[i] = weight;
34d76c41 1615
cd8ad40d 1616 rq_weight += weight;
ec4e0e2f
KC
1617 /*
1618 * If there are currently no tasks on the cpu pretend there
1619 * is one of average load so that when a new task gets to
1620 * run here it will not get delayed by group starvation.
1621 */
ec4e0e2f
KC
1622 if (!weight)
1623 weight = NICE_0_LOAD;
1624
cd8ad40d 1625 sum_weight += weight;
c8cba857 1626 shares += tg->cfs_rq[i]->shares;
c09595f6 1627 }
c09595f6 1628
cd8ad40d
PZ
1629 if (!rq_weight)
1630 rq_weight = sum_weight;
1631
c8cba857
PZ
1632 if ((!shares && rq_weight) || shares > tg->shares)
1633 shares = tg->shares;
1634
1635 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1636 shares = tg->shares;
c09595f6 1637
758b2cdc 1638 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1639 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1640
1641 local_irq_restore(flags);
eb755805
PZ
1642
1643 return 0;
c09595f6
PZ
1644}
1645
1646/*
c8cba857
PZ
1647 * Compute the cpu's hierarchical load factor for each task group.
1648 * This needs to be done in a top-down fashion because the load of a child
1649 * group is a fraction of its parents load.
c09595f6 1650 */
eb755805 1651static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1652{
c8cba857 1653 unsigned long load;
eb755805 1654 long cpu = (long)data;
c09595f6 1655
c8cba857
PZ
1656 if (!tg->parent) {
1657 load = cpu_rq(cpu)->load.weight;
1658 } else {
1659 load = tg->parent->cfs_rq[cpu]->h_load;
1660 load *= tg->cfs_rq[cpu]->shares;
1661 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1662 }
c09595f6 1663
c8cba857 1664 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1665
eb755805 1666 return 0;
c09595f6
PZ
1667}
1668
c8cba857 1669static void update_shares(struct sched_domain *sd)
4d8d595d 1670{
e7097159
PZ
1671 s64 elapsed;
1672 u64 now;
1673
1674 if (root_task_group_empty())
1675 return;
1676
c676329a 1677 now = local_clock();
e7097159 1678 elapsed = now - sd->last_update;
2398f2c6
PZ
1679
1680 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1681 sd->last_update = now;
eb755805 1682 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1683 }
4d8d595d
PZ
1684}
1685
eb755805 1686static void update_h_load(long cpu)
c09595f6 1687{
eb755805 1688 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1689}
1690
c09595f6
PZ
1691#else
1692
c8cba857 1693static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1694{
1695}
1696
18d95a28
PZ
1697#endif
1698
8f45e2b5
GH
1699#ifdef CONFIG_PREEMPT
1700
b78bb868
PZ
1701static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1702
70574a99 1703/*
8f45e2b5
GH
1704 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1705 * way at the expense of forcing extra atomic operations in all
1706 * invocations. This assures that the double_lock is acquired using the
1707 * same underlying policy as the spinlock_t on this architecture, which
1708 * reduces latency compared to the unfair variant below. However, it
1709 * also adds more overhead and therefore may reduce throughput.
70574a99 1710 */
8f45e2b5
GH
1711static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1712 __releases(this_rq->lock)
1713 __acquires(busiest->lock)
1714 __acquires(this_rq->lock)
1715{
05fa785c 1716 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1717 double_rq_lock(this_rq, busiest);
1718
1719 return 1;
1720}
1721
1722#else
1723/*
1724 * Unfair double_lock_balance: Optimizes throughput at the expense of
1725 * latency by eliminating extra atomic operations when the locks are
1726 * already in proper order on entry. This favors lower cpu-ids and will
1727 * grant the double lock to lower cpus over higher ids under contention,
1728 * regardless of entry order into the function.
1729 */
1730static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1731 __releases(this_rq->lock)
1732 __acquires(busiest->lock)
1733 __acquires(this_rq->lock)
1734{
1735 int ret = 0;
1736
05fa785c 1737 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1738 if (busiest < this_rq) {
05fa785c
TG
1739 raw_spin_unlock(&this_rq->lock);
1740 raw_spin_lock(&busiest->lock);
1741 raw_spin_lock_nested(&this_rq->lock,
1742 SINGLE_DEPTH_NESTING);
70574a99
AD
1743 ret = 1;
1744 } else
05fa785c
TG
1745 raw_spin_lock_nested(&busiest->lock,
1746 SINGLE_DEPTH_NESTING);
70574a99
AD
1747 }
1748 return ret;
1749}
1750
8f45e2b5
GH
1751#endif /* CONFIG_PREEMPT */
1752
1753/*
1754 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1755 */
1756static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1757{
1758 if (unlikely(!irqs_disabled())) {
1759 /* printk() doesn't work good under rq->lock */
05fa785c 1760 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1761 BUG_ON(1);
1762 }
1763
1764 return _double_lock_balance(this_rq, busiest);
1765}
1766
70574a99
AD
1767static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1768 __releases(busiest->lock)
1769{
05fa785c 1770 raw_spin_unlock(&busiest->lock);
70574a99
AD
1771 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1772}
1e3c88bd
PZ
1773
1774/*
1775 * double_rq_lock - safely lock two runqueues
1776 *
1777 * Note this does not disable interrupts like task_rq_lock,
1778 * you need to do so manually before calling.
1779 */
1780static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1781 __acquires(rq1->lock)
1782 __acquires(rq2->lock)
1783{
1784 BUG_ON(!irqs_disabled());
1785 if (rq1 == rq2) {
1786 raw_spin_lock(&rq1->lock);
1787 __acquire(rq2->lock); /* Fake it out ;) */
1788 } else {
1789 if (rq1 < rq2) {
1790 raw_spin_lock(&rq1->lock);
1791 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1792 } else {
1793 raw_spin_lock(&rq2->lock);
1794 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1795 }
1796 }
1e3c88bd
PZ
1797}
1798
1799/*
1800 * double_rq_unlock - safely unlock two runqueues
1801 *
1802 * Note this does not restore interrupts like task_rq_unlock,
1803 * you need to do so manually after calling.
1804 */
1805static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1806 __releases(rq1->lock)
1807 __releases(rq2->lock)
1808{
1809 raw_spin_unlock(&rq1->lock);
1810 if (rq1 != rq2)
1811 raw_spin_unlock(&rq2->lock);
1812 else
1813 __release(rq2->lock);
1814}
1815
18d95a28
PZ
1816#endif
1817
30432094 1818#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1819static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1820{
30432094 1821#ifdef CONFIG_SMP
34e83e85
IM
1822 cfs_rq->shares = shares;
1823#endif
1824}
30432094 1825#endif
e7693a36 1826
74f5187a 1827static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1828static void update_sysctl(void);
acb4a848 1829static int get_update_sysctl_factor(void);
fdf3e95d 1830static void update_cpu_load(struct rq *this_rq);
dce48a84 1831
cd29fe6f
PZ
1832static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1833{
1834 set_task_rq(p, cpu);
1835#ifdef CONFIG_SMP
1836 /*
1837 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1838 * successfuly executed on another CPU. We must ensure that updates of
1839 * per-task data have been completed by this moment.
1840 */
1841 smp_wmb();
1842 task_thread_info(p)->cpu = cpu;
1843#endif
1844}
dce48a84 1845
1e3c88bd 1846static const struct sched_class rt_sched_class;
dd41f596 1847
34f971f6 1848#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1849#define for_each_class(class) \
1850 for (class = sched_class_highest; class; class = class->next)
dd41f596 1851
1e3c88bd
PZ
1852#include "sched_stats.h"
1853
c09595f6 1854static void inc_nr_running(struct rq *rq)
9c217245
IM
1855{
1856 rq->nr_running++;
9c217245
IM
1857}
1858
c09595f6 1859static void dec_nr_running(struct rq *rq)
9c217245
IM
1860{
1861 rq->nr_running--;
9c217245
IM
1862}
1863
45bf76df
IM
1864static void set_load_weight(struct task_struct *p)
1865{
dd41f596
IM
1866 /*
1867 * SCHED_IDLE tasks get minimal weight:
1868 */
1869 if (p->policy == SCHED_IDLE) {
1870 p->se.load.weight = WEIGHT_IDLEPRIO;
1871 p->se.load.inv_weight = WMULT_IDLEPRIO;
1872 return;
1873 }
71f8bd46 1874
dd41f596
IM
1875 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1876 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1877}
1878
371fd7e7 1879static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1880{
a64692a3 1881 update_rq_clock(rq);
dd41f596 1882 sched_info_queued(p);
371fd7e7 1883 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1884 p->se.on_rq = 1;
71f8bd46
IM
1885}
1886
371fd7e7 1887static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1888{
a64692a3 1889 update_rq_clock(rq);
46ac22ba 1890 sched_info_dequeued(p);
371fd7e7 1891 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1892 p->se.on_rq = 0;
71f8bd46
IM
1893}
1894
1e3c88bd
PZ
1895/*
1896 * activate_task - move a task to the runqueue.
1897 */
371fd7e7 1898static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1899{
1900 if (task_contributes_to_load(p))
1901 rq->nr_uninterruptible--;
1902
371fd7e7 1903 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1904 inc_nr_running(rq);
1905}
1906
1907/*
1908 * deactivate_task - remove a task from the runqueue.
1909 */
371fd7e7 1910static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1911{
1912 if (task_contributes_to_load(p))
1913 rq->nr_uninterruptible++;
1914
371fd7e7 1915 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1916 dec_nr_running(rq);
1917}
1918
b52bfee4
VP
1919#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1920
305e6835
VP
1921/*
1922 * There are no locks covering percpu hardirq/softirq time.
1923 * They are only modified in account_system_vtime, on corresponding CPU
1924 * with interrupts disabled. So, writes are safe.
1925 * They are read and saved off onto struct rq in update_rq_clock().
1926 * This may result in other CPU reading this CPU's irq time and can
1927 * race with irq/account_system_vtime on this CPU. We would either get old
1928 * or new value (or semi updated value on 32 bit) with a side effect of
1929 * accounting a slice of irq time to wrong task when irq is in progress
1930 * while we read rq->clock. That is a worthy compromise in place of having
1931 * locks on each irq in account_system_time.
1932 */
b52bfee4
VP
1933static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1934static DEFINE_PER_CPU(u64, cpu_softirq_time);
1935
1936static DEFINE_PER_CPU(u64, irq_start_time);
1937static int sched_clock_irqtime;
1938
1939void enable_sched_clock_irqtime(void)
1940{
1941 sched_clock_irqtime = 1;
1942}
1943
1944void disable_sched_clock_irqtime(void)
1945{
1946 sched_clock_irqtime = 0;
1947}
1948
305e6835
VP
1949static u64 irq_time_cpu(int cpu)
1950{
1951 if (!sched_clock_irqtime)
1952 return 0;
1953
1954 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1955}
1956
b52bfee4
VP
1957void account_system_vtime(struct task_struct *curr)
1958{
1959 unsigned long flags;
1960 int cpu;
1961 u64 now, delta;
1962
1963 if (!sched_clock_irqtime)
1964 return;
1965
1966 local_irq_save(flags);
1967
b52bfee4 1968 cpu = smp_processor_id();
d267f87f 1969 now = sched_clock_cpu(cpu);
b52bfee4
VP
1970 delta = now - per_cpu(irq_start_time, cpu);
1971 per_cpu(irq_start_time, cpu) = now;
1972 /*
1973 * We do not account for softirq time from ksoftirqd here.
1974 * We want to continue accounting softirq time to ksoftirqd thread
1975 * in that case, so as not to confuse scheduler with a special task
1976 * that do not consume any time, but still wants to run.
1977 */
1978 if (hardirq_count())
1979 per_cpu(cpu_hardirq_time, cpu) += delta;
1980 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1981 per_cpu(cpu_softirq_time, cpu) += delta;
1982
1983 local_irq_restore(flags);
1984}
b7dadc38 1985EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1986
aa483808
VP
1987static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
1988{
1989 if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
1990 u64 delta_irq = curr_irq_time - rq->prev_irq_time;
1991 rq->prev_irq_time = curr_irq_time;
1992 sched_rt_avg_update(rq, delta_irq);
1993 }
1994}
1995
305e6835
VP
1996#else
1997
1998static u64 irq_time_cpu(int cpu)
1999{
2000 return 0;
2001}
2002
aa483808
VP
2003static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
2004
b52bfee4
VP
2005#endif
2006
1e3c88bd
PZ
2007#include "sched_idletask.c"
2008#include "sched_fair.c"
2009#include "sched_rt.c"
34f971f6 2010#include "sched_stoptask.c"
1e3c88bd
PZ
2011#ifdef CONFIG_SCHED_DEBUG
2012# include "sched_debug.c"
2013#endif
2014
34f971f6
PZ
2015void sched_set_stop_task(int cpu, struct task_struct *stop)
2016{
2017 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2018 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2019
2020 if (stop) {
2021 /*
2022 * Make it appear like a SCHED_FIFO task, its something
2023 * userspace knows about and won't get confused about.
2024 *
2025 * Also, it will make PI more or less work without too
2026 * much confusion -- but then, stop work should not
2027 * rely on PI working anyway.
2028 */
2029 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2030
2031 stop->sched_class = &stop_sched_class;
2032 }
2033
2034 cpu_rq(cpu)->stop = stop;
2035
2036 if (old_stop) {
2037 /*
2038 * Reset it back to a normal scheduling class so that
2039 * it can die in pieces.
2040 */
2041 old_stop->sched_class = &rt_sched_class;
2042 }
2043}
2044
14531189 2045/*
dd41f596 2046 * __normal_prio - return the priority that is based on the static prio
14531189 2047 */
14531189
IM
2048static inline int __normal_prio(struct task_struct *p)
2049{
dd41f596 2050 return p->static_prio;
14531189
IM
2051}
2052
b29739f9
IM
2053/*
2054 * Calculate the expected normal priority: i.e. priority
2055 * without taking RT-inheritance into account. Might be
2056 * boosted by interactivity modifiers. Changes upon fork,
2057 * setprio syscalls, and whenever the interactivity
2058 * estimator recalculates.
2059 */
36c8b586 2060static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2061{
2062 int prio;
2063
e05606d3 2064 if (task_has_rt_policy(p))
b29739f9
IM
2065 prio = MAX_RT_PRIO-1 - p->rt_priority;
2066 else
2067 prio = __normal_prio(p);
2068 return prio;
2069}
2070
2071/*
2072 * Calculate the current priority, i.e. the priority
2073 * taken into account by the scheduler. This value might
2074 * be boosted by RT tasks, or might be boosted by
2075 * interactivity modifiers. Will be RT if the task got
2076 * RT-boosted. If not then it returns p->normal_prio.
2077 */
36c8b586 2078static int effective_prio(struct task_struct *p)
b29739f9
IM
2079{
2080 p->normal_prio = normal_prio(p);
2081 /*
2082 * If we are RT tasks or we were boosted to RT priority,
2083 * keep the priority unchanged. Otherwise, update priority
2084 * to the normal priority:
2085 */
2086 if (!rt_prio(p->prio))
2087 return p->normal_prio;
2088 return p->prio;
2089}
2090
1da177e4
LT
2091/**
2092 * task_curr - is this task currently executing on a CPU?
2093 * @p: the task in question.
2094 */
36c8b586 2095inline int task_curr(const struct task_struct *p)
1da177e4
LT
2096{
2097 return cpu_curr(task_cpu(p)) == p;
2098}
2099
cb469845
SR
2100static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2101 const struct sched_class *prev_class,
2102 int oldprio, int running)
2103{
2104 if (prev_class != p->sched_class) {
2105 if (prev_class->switched_from)
2106 prev_class->switched_from(rq, p, running);
2107 p->sched_class->switched_to(rq, p, running);
2108 } else
2109 p->sched_class->prio_changed(rq, p, oldprio, running);
2110}
2111
1e5a7405
PZ
2112static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2113{
2114 const struct sched_class *class;
2115
2116 if (p->sched_class == rq->curr->sched_class) {
2117 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2118 } else {
2119 for_each_class(class) {
2120 if (class == rq->curr->sched_class)
2121 break;
2122 if (class == p->sched_class) {
2123 resched_task(rq->curr);
2124 break;
2125 }
2126 }
2127 }
2128
2129 /*
2130 * A queue event has occurred, and we're going to schedule. In
2131 * this case, we can save a useless back to back clock update.
2132 */
f26f9aff 2133 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2134 rq->skip_clock_update = 1;
2135}
2136
1da177e4 2137#ifdef CONFIG_SMP
cc367732
IM
2138/*
2139 * Is this task likely cache-hot:
2140 */
e7693a36 2141static int
cc367732
IM
2142task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2143{
2144 s64 delta;
2145
e6c8fba7
PZ
2146 if (p->sched_class != &fair_sched_class)
2147 return 0;
2148
ef8002f6
NR
2149 if (unlikely(p->policy == SCHED_IDLE))
2150 return 0;
2151
f540a608
IM
2152 /*
2153 * Buddy candidates are cache hot:
2154 */
f685ceac 2155 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2156 (&p->se == cfs_rq_of(&p->se)->next ||
2157 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2158 return 1;
2159
6bc1665b
IM
2160 if (sysctl_sched_migration_cost == -1)
2161 return 1;
2162 if (sysctl_sched_migration_cost == 0)
2163 return 0;
2164
cc367732
IM
2165 delta = now - p->se.exec_start;
2166
2167 return delta < (s64)sysctl_sched_migration_cost;
2168}
2169
dd41f596 2170void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2171{
e2912009
PZ
2172#ifdef CONFIG_SCHED_DEBUG
2173 /*
2174 * We should never call set_task_cpu() on a blocked task,
2175 * ttwu() will sort out the placement.
2176 */
077614ee
PZ
2177 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2178 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2179#endif
2180
de1d7286 2181 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2182
0c69774e
PZ
2183 if (task_cpu(p) != new_cpu) {
2184 p->se.nr_migrations++;
2185 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2186 }
dd41f596
IM
2187
2188 __set_task_cpu(p, new_cpu);
c65cc870
IM
2189}
2190
969c7921 2191struct migration_arg {
36c8b586 2192 struct task_struct *task;
1da177e4 2193 int dest_cpu;
70b97a7f 2194};
1da177e4 2195
969c7921
TH
2196static int migration_cpu_stop(void *data);
2197
1da177e4
LT
2198/*
2199 * The task's runqueue lock must be held.
2200 * Returns true if you have to wait for migration thread.
2201 */
969c7921 2202static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2203{
70b97a7f 2204 struct rq *rq = task_rq(p);
1da177e4
LT
2205
2206 /*
2207 * If the task is not on a runqueue (and not running), then
e2912009 2208 * the next wake-up will properly place the task.
1da177e4 2209 */
969c7921 2210 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2211}
2212
2213/*
2214 * wait_task_inactive - wait for a thread to unschedule.
2215 *
85ba2d86
RM
2216 * If @match_state is nonzero, it's the @p->state value just checked and
2217 * not expected to change. If it changes, i.e. @p might have woken up,
2218 * then return zero. When we succeed in waiting for @p to be off its CPU,
2219 * we return a positive number (its total switch count). If a second call
2220 * a short while later returns the same number, the caller can be sure that
2221 * @p has remained unscheduled the whole time.
2222 *
1da177e4
LT
2223 * The caller must ensure that the task *will* unschedule sometime soon,
2224 * else this function might spin for a *long* time. This function can't
2225 * be called with interrupts off, or it may introduce deadlock with
2226 * smp_call_function() if an IPI is sent by the same process we are
2227 * waiting to become inactive.
2228 */
85ba2d86 2229unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2230{
2231 unsigned long flags;
dd41f596 2232 int running, on_rq;
85ba2d86 2233 unsigned long ncsw;
70b97a7f 2234 struct rq *rq;
1da177e4 2235
3a5c359a
AK
2236 for (;;) {
2237 /*
2238 * We do the initial early heuristics without holding
2239 * any task-queue locks at all. We'll only try to get
2240 * the runqueue lock when things look like they will
2241 * work out!
2242 */
2243 rq = task_rq(p);
fa490cfd 2244
3a5c359a
AK
2245 /*
2246 * If the task is actively running on another CPU
2247 * still, just relax and busy-wait without holding
2248 * any locks.
2249 *
2250 * NOTE! Since we don't hold any locks, it's not
2251 * even sure that "rq" stays as the right runqueue!
2252 * But we don't care, since "task_running()" will
2253 * return false if the runqueue has changed and p
2254 * is actually now running somewhere else!
2255 */
85ba2d86
RM
2256 while (task_running(rq, p)) {
2257 if (match_state && unlikely(p->state != match_state))
2258 return 0;
3a5c359a 2259 cpu_relax();
85ba2d86 2260 }
fa490cfd 2261
3a5c359a
AK
2262 /*
2263 * Ok, time to look more closely! We need the rq
2264 * lock now, to be *sure*. If we're wrong, we'll
2265 * just go back and repeat.
2266 */
2267 rq = task_rq_lock(p, &flags);
27a9da65 2268 trace_sched_wait_task(p);
3a5c359a
AK
2269 running = task_running(rq, p);
2270 on_rq = p->se.on_rq;
85ba2d86 2271 ncsw = 0;
f31e11d8 2272 if (!match_state || p->state == match_state)
93dcf55f 2273 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2274 task_rq_unlock(rq, &flags);
fa490cfd 2275
85ba2d86
RM
2276 /*
2277 * If it changed from the expected state, bail out now.
2278 */
2279 if (unlikely(!ncsw))
2280 break;
2281
3a5c359a
AK
2282 /*
2283 * Was it really running after all now that we
2284 * checked with the proper locks actually held?
2285 *
2286 * Oops. Go back and try again..
2287 */
2288 if (unlikely(running)) {
2289 cpu_relax();
2290 continue;
2291 }
fa490cfd 2292
3a5c359a
AK
2293 /*
2294 * It's not enough that it's not actively running,
2295 * it must be off the runqueue _entirely_, and not
2296 * preempted!
2297 *
80dd99b3 2298 * So if it was still runnable (but just not actively
3a5c359a
AK
2299 * running right now), it's preempted, and we should
2300 * yield - it could be a while.
2301 */
2302 if (unlikely(on_rq)) {
2303 schedule_timeout_uninterruptible(1);
2304 continue;
2305 }
fa490cfd 2306
3a5c359a
AK
2307 /*
2308 * Ahh, all good. It wasn't running, and it wasn't
2309 * runnable, which means that it will never become
2310 * running in the future either. We're all done!
2311 */
2312 break;
2313 }
85ba2d86
RM
2314
2315 return ncsw;
1da177e4
LT
2316}
2317
2318/***
2319 * kick_process - kick a running thread to enter/exit the kernel
2320 * @p: the to-be-kicked thread
2321 *
2322 * Cause a process which is running on another CPU to enter
2323 * kernel-mode, without any delay. (to get signals handled.)
2324 *
2325 * NOTE: this function doesnt have to take the runqueue lock,
2326 * because all it wants to ensure is that the remote task enters
2327 * the kernel. If the IPI races and the task has been migrated
2328 * to another CPU then no harm is done and the purpose has been
2329 * achieved as well.
2330 */
36c8b586 2331void kick_process(struct task_struct *p)
1da177e4
LT
2332{
2333 int cpu;
2334
2335 preempt_disable();
2336 cpu = task_cpu(p);
2337 if ((cpu != smp_processor_id()) && task_curr(p))
2338 smp_send_reschedule(cpu);
2339 preempt_enable();
2340}
b43e3521 2341EXPORT_SYMBOL_GPL(kick_process);
476d139c 2342#endif /* CONFIG_SMP */
1da177e4 2343
0793a61d
TG
2344/**
2345 * task_oncpu_function_call - call a function on the cpu on which a task runs
2346 * @p: the task to evaluate
2347 * @func: the function to be called
2348 * @info: the function call argument
2349 *
2350 * Calls the function @func when the task is currently running. This might
2351 * be on the current CPU, which just calls the function directly
2352 */
2353void task_oncpu_function_call(struct task_struct *p,
2354 void (*func) (void *info), void *info)
2355{
2356 int cpu;
2357
2358 preempt_disable();
2359 cpu = task_cpu(p);
2360 if (task_curr(p))
2361 smp_call_function_single(cpu, func, info, 1);
2362 preempt_enable();
2363}
2364
970b13ba 2365#ifdef CONFIG_SMP
30da688e
ON
2366/*
2367 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2368 */
5da9a0fb
PZ
2369static int select_fallback_rq(int cpu, struct task_struct *p)
2370{
2371 int dest_cpu;
2372 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2373
2374 /* Look for allowed, online CPU in same node. */
2375 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2376 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2377 return dest_cpu;
2378
2379 /* Any allowed, online CPU? */
2380 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2381 if (dest_cpu < nr_cpu_ids)
2382 return dest_cpu;
2383
2384 /* No more Mr. Nice Guy. */
897f0b3c 2385 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2386 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2387 /*
2388 * Don't tell them about moving exiting tasks or
2389 * kernel threads (both mm NULL), since they never
2390 * leave kernel.
2391 */
2392 if (p->mm && printk_ratelimit()) {
2393 printk(KERN_INFO "process %d (%s) no "
2394 "longer affine to cpu%d\n",
2395 task_pid_nr(p), p->comm, cpu);
2396 }
2397 }
2398
2399 return dest_cpu;
2400}
2401
e2912009 2402/*
30da688e 2403 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2404 */
970b13ba 2405static inline
0017d735 2406int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2407{
0017d735 2408 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2409
2410 /*
2411 * In order not to call set_task_cpu() on a blocking task we need
2412 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2413 * cpu.
2414 *
2415 * Since this is common to all placement strategies, this lives here.
2416 *
2417 * [ this allows ->select_task() to simply return task_cpu(p) and
2418 * not worry about this generic constraint ]
2419 */
2420 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2421 !cpu_online(cpu)))
5da9a0fb 2422 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2423
2424 return cpu;
970b13ba 2425}
09a40af5
MG
2426
2427static void update_avg(u64 *avg, u64 sample)
2428{
2429 s64 diff = sample - *avg;
2430 *avg += diff >> 3;
2431}
970b13ba
PZ
2432#endif
2433
9ed3811a
TH
2434static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2435 bool is_sync, bool is_migrate, bool is_local,
2436 unsigned long en_flags)
2437{
2438 schedstat_inc(p, se.statistics.nr_wakeups);
2439 if (is_sync)
2440 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2441 if (is_migrate)
2442 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2443 if (is_local)
2444 schedstat_inc(p, se.statistics.nr_wakeups_local);
2445 else
2446 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2447
2448 activate_task(rq, p, en_flags);
2449}
2450
2451static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2452 int wake_flags, bool success)
2453{
2454 trace_sched_wakeup(p, success);
2455 check_preempt_curr(rq, p, wake_flags);
2456
2457 p->state = TASK_RUNNING;
2458#ifdef CONFIG_SMP
2459 if (p->sched_class->task_woken)
2460 p->sched_class->task_woken(rq, p);
2461
2462 if (unlikely(rq->idle_stamp)) {
2463 u64 delta = rq->clock - rq->idle_stamp;
2464 u64 max = 2*sysctl_sched_migration_cost;
2465
2466 if (delta > max)
2467 rq->avg_idle = max;
2468 else
2469 update_avg(&rq->avg_idle, delta);
2470 rq->idle_stamp = 0;
2471 }
2472#endif
21aa9af0
TH
2473 /* if a worker is waking up, notify workqueue */
2474 if ((p->flags & PF_WQ_WORKER) && success)
2475 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2476}
2477
2478/**
1da177e4 2479 * try_to_wake_up - wake up a thread
9ed3811a 2480 * @p: the thread to be awakened
1da177e4 2481 * @state: the mask of task states that can be woken
9ed3811a 2482 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2483 *
2484 * Put it on the run-queue if it's not already there. The "current"
2485 * thread is always on the run-queue (except when the actual
2486 * re-schedule is in progress), and as such you're allowed to do
2487 * the simpler "current->state = TASK_RUNNING" to mark yourself
2488 * runnable without the overhead of this.
2489 *
9ed3811a
TH
2490 * Returns %true if @p was woken up, %false if it was already running
2491 * or @state didn't match @p's state.
1da177e4 2492 */
7d478721
PZ
2493static int try_to_wake_up(struct task_struct *p, unsigned int state,
2494 int wake_flags)
1da177e4 2495{
cc367732 2496 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2497 unsigned long flags;
371fd7e7 2498 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2499 struct rq *rq;
1da177e4 2500
e9c84311 2501 this_cpu = get_cpu();
2398f2c6 2502
04e2f174 2503 smp_wmb();
ab3b3aa5 2504 rq = task_rq_lock(p, &flags);
e9c84311 2505 if (!(p->state & state))
1da177e4
LT
2506 goto out;
2507
dd41f596 2508 if (p->se.on_rq)
1da177e4
LT
2509 goto out_running;
2510
2511 cpu = task_cpu(p);
cc367732 2512 orig_cpu = cpu;
1da177e4
LT
2513
2514#ifdef CONFIG_SMP
2515 if (unlikely(task_running(rq, p)))
2516 goto out_activate;
2517
e9c84311
PZ
2518 /*
2519 * In order to handle concurrent wakeups and release the rq->lock
2520 * we put the task in TASK_WAKING state.
eb24073b
IM
2521 *
2522 * First fix up the nr_uninterruptible count:
e9c84311 2523 */
cc87f76a
PZ
2524 if (task_contributes_to_load(p)) {
2525 if (likely(cpu_online(orig_cpu)))
2526 rq->nr_uninterruptible--;
2527 else
2528 this_rq()->nr_uninterruptible--;
2529 }
e9c84311 2530 p->state = TASK_WAKING;
efbbd05a 2531
371fd7e7 2532 if (p->sched_class->task_waking) {
efbbd05a 2533 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2534 en_flags |= ENQUEUE_WAKING;
2535 }
efbbd05a 2536
0017d735
PZ
2537 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2538 if (cpu != orig_cpu)
5d2f5a61 2539 set_task_cpu(p, cpu);
0017d735 2540 __task_rq_unlock(rq);
ab19cb23 2541
0970d299
PZ
2542 rq = cpu_rq(cpu);
2543 raw_spin_lock(&rq->lock);
f5dc3753 2544
0970d299
PZ
2545 /*
2546 * We migrated the task without holding either rq->lock, however
2547 * since the task is not on the task list itself, nobody else
2548 * will try and migrate the task, hence the rq should match the
2549 * cpu we just moved it to.
2550 */
2551 WARN_ON(task_cpu(p) != cpu);
e9c84311 2552 WARN_ON(p->state != TASK_WAKING);
1da177e4 2553
e7693a36
GH
2554#ifdef CONFIG_SCHEDSTATS
2555 schedstat_inc(rq, ttwu_count);
2556 if (cpu == this_cpu)
2557 schedstat_inc(rq, ttwu_local);
2558 else {
2559 struct sched_domain *sd;
2560 for_each_domain(this_cpu, sd) {
758b2cdc 2561 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2562 schedstat_inc(sd, ttwu_wake_remote);
2563 break;
2564 }
2565 }
2566 }
6d6bc0ad 2567#endif /* CONFIG_SCHEDSTATS */
e7693a36 2568
1da177e4
LT
2569out_activate:
2570#endif /* CONFIG_SMP */
9ed3811a
TH
2571 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2572 cpu == this_cpu, en_flags);
1da177e4 2573 success = 1;
1da177e4 2574out_running:
9ed3811a 2575 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2576out:
2577 task_rq_unlock(rq, &flags);
e9c84311 2578 put_cpu();
1da177e4
LT
2579
2580 return success;
2581}
2582
21aa9af0
TH
2583/**
2584 * try_to_wake_up_local - try to wake up a local task with rq lock held
2585 * @p: the thread to be awakened
2586 *
2587 * Put @p on the run-queue if it's not alredy there. The caller must
2588 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2589 * the current task. this_rq() stays locked over invocation.
2590 */
2591static void try_to_wake_up_local(struct task_struct *p)
2592{
2593 struct rq *rq = task_rq(p);
2594 bool success = false;
2595
2596 BUG_ON(rq != this_rq());
2597 BUG_ON(p == current);
2598 lockdep_assert_held(&rq->lock);
2599
2600 if (!(p->state & TASK_NORMAL))
2601 return;
2602
2603 if (!p->se.on_rq) {
2604 if (likely(!task_running(rq, p))) {
2605 schedstat_inc(rq, ttwu_count);
2606 schedstat_inc(rq, ttwu_local);
2607 }
2608 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2609 success = true;
2610 }
2611 ttwu_post_activation(p, rq, 0, success);
2612}
2613
50fa610a
DH
2614/**
2615 * wake_up_process - Wake up a specific process
2616 * @p: The process to be woken up.
2617 *
2618 * Attempt to wake up the nominated process and move it to the set of runnable
2619 * processes. Returns 1 if the process was woken up, 0 if it was already
2620 * running.
2621 *
2622 * It may be assumed that this function implies a write memory barrier before
2623 * changing the task state if and only if any tasks are woken up.
2624 */
7ad5b3a5 2625int wake_up_process(struct task_struct *p)
1da177e4 2626{
d9514f6c 2627 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2628}
1da177e4
LT
2629EXPORT_SYMBOL(wake_up_process);
2630
7ad5b3a5 2631int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2632{
2633 return try_to_wake_up(p, state, 0);
2634}
2635
1da177e4
LT
2636/*
2637 * Perform scheduler related setup for a newly forked process p.
2638 * p is forked by current.
dd41f596
IM
2639 *
2640 * __sched_fork() is basic setup used by init_idle() too:
2641 */
2642static void __sched_fork(struct task_struct *p)
2643{
dd41f596
IM
2644 p->se.exec_start = 0;
2645 p->se.sum_exec_runtime = 0;
f6cf891c 2646 p->se.prev_sum_exec_runtime = 0;
6c594c21 2647 p->se.nr_migrations = 0;
6cfb0d5d
IM
2648
2649#ifdef CONFIG_SCHEDSTATS
41acab88 2650 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2651#endif
476d139c 2652
fa717060 2653 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2654 p->se.on_rq = 0;
4a55bd5e 2655 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2656
e107be36
AK
2657#ifdef CONFIG_PREEMPT_NOTIFIERS
2658 INIT_HLIST_HEAD(&p->preempt_notifiers);
2659#endif
dd41f596
IM
2660}
2661
2662/*
2663 * fork()/clone()-time setup:
2664 */
2665void sched_fork(struct task_struct *p, int clone_flags)
2666{
2667 int cpu = get_cpu();
2668
2669 __sched_fork(p);
06b83b5f 2670 /*
0017d735 2671 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2672 * nobody will actually run it, and a signal or other external
2673 * event cannot wake it up and insert it on the runqueue either.
2674 */
0017d735 2675 p->state = TASK_RUNNING;
dd41f596 2676
b9dc29e7
MG
2677 /*
2678 * Revert to default priority/policy on fork if requested.
2679 */
2680 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2681 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2682 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2683 p->normal_prio = p->static_prio;
2684 }
b9dc29e7 2685
6c697bdf
MG
2686 if (PRIO_TO_NICE(p->static_prio) < 0) {
2687 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2688 p->normal_prio = p->static_prio;
6c697bdf
MG
2689 set_load_weight(p);
2690 }
2691
b9dc29e7
MG
2692 /*
2693 * We don't need the reset flag anymore after the fork. It has
2694 * fulfilled its duty:
2695 */
2696 p->sched_reset_on_fork = 0;
2697 }
ca94c442 2698
f83f9ac2
PW
2699 /*
2700 * Make sure we do not leak PI boosting priority to the child.
2701 */
2702 p->prio = current->normal_prio;
2703
2ddbf952
HS
2704 if (!rt_prio(p->prio))
2705 p->sched_class = &fair_sched_class;
b29739f9 2706
cd29fe6f
PZ
2707 if (p->sched_class->task_fork)
2708 p->sched_class->task_fork(p);
2709
86951599
PZ
2710 /*
2711 * The child is not yet in the pid-hash so no cgroup attach races,
2712 * and the cgroup is pinned to this child due to cgroup_fork()
2713 * is ran before sched_fork().
2714 *
2715 * Silence PROVE_RCU.
2716 */
2717 rcu_read_lock();
5f3edc1b 2718 set_task_cpu(p, cpu);
86951599 2719 rcu_read_unlock();
5f3edc1b 2720
52f17b6c 2721#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2722 if (likely(sched_info_on()))
52f17b6c 2723 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2724#endif
d6077cb8 2725#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2726 p->oncpu = 0;
2727#endif
1da177e4 2728#ifdef CONFIG_PREEMPT
4866cde0 2729 /* Want to start with kernel preemption disabled. */
a1261f54 2730 task_thread_info(p)->preempt_count = 1;
1da177e4 2731#endif
917b627d
GH
2732 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2733
476d139c 2734 put_cpu();
1da177e4
LT
2735}
2736
2737/*
2738 * wake_up_new_task - wake up a newly created task for the first time.
2739 *
2740 * This function will do some initial scheduler statistics housekeeping
2741 * that must be done for every newly created context, then puts the task
2742 * on the runqueue and wakes it.
2743 */
7ad5b3a5 2744void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2745{
2746 unsigned long flags;
dd41f596 2747 struct rq *rq;
c890692b 2748 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2749
2750#ifdef CONFIG_SMP
0017d735
PZ
2751 rq = task_rq_lock(p, &flags);
2752 p->state = TASK_WAKING;
2753
fabf318e
PZ
2754 /*
2755 * Fork balancing, do it here and not earlier because:
2756 * - cpus_allowed can change in the fork path
2757 * - any previously selected cpu might disappear through hotplug
2758 *
0017d735
PZ
2759 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2760 * without people poking at ->cpus_allowed.
fabf318e 2761 */
0017d735 2762 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2763 set_task_cpu(p, cpu);
1da177e4 2764
06b83b5f 2765 p->state = TASK_RUNNING;
0017d735
PZ
2766 task_rq_unlock(rq, &flags);
2767#endif
2768
2769 rq = task_rq_lock(p, &flags);
cd29fe6f 2770 activate_task(rq, p, 0);
27a9da65 2771 trace_sched_wakeup_new(p, 1);
a7558e01 2772 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2773#ifdef CONFIG_SMP
efbbd05a
PZ
2774 if (p->sched_class->task_woken)
2775 p->sched_class->task_woken(rq, p);
9a897c5a 2776#endif
dd41f596 2777 task_rq_unlock(rq, &flags);
fabf318e 2778 put_cpu();
1da177e4
LT
2779}
2780
e107be36
AK
2781#ifdef CONFIG_PREEMPT_NOTIFIERS
2782
2783/**
80dd99b3 2784 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2785 * @notifier: notifier struct to register
e107be36
AK
2786 */
2787void preempt_notifier_register(struct preempt_notifier *notifier)
2788{
2789 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2790}
2791EXPORT_SYMBOL_GPL(preempt_notifier_register);
2792
2793/**
2794 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2795 * @notifier: notifier struct to unregister
e107be36
AK
2796 *
2797 * This is safe to call from within a preemption notifier.
2798 */
2799void preempt_notifier_unregister(struct preempt_notifier *notifier)
2800{
2801 hlist_del(&notifier->link);
2802}
2803EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2804
2805static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2806{
2807 struct preempt_notifier *notifier;
2808 struct hlist_node *node;
2809
2810 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2811 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2812}
2813
2814static void
2815fire_sched_out_preempt_notifiers(struct task_struct *curr,
2816 struct task_struct *next)
2817{
2818 struct preempt_notifier *notifier;
2819 struct hlist_node *node;
2820
2821 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2822 notifier->ops->sched_out(notifier, next);
2823}
2824
6d6bc0ad 2825#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2826
2827static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2828{
2829}
2830
2831static void
2832fire_sched_out_preempt_notifiers(struct task_struct *curr,
2833 struct task_struct *next)
2834{
2835}
2836
6d6bc0ad 2837#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2838
4866cde0
NP
2839/**
2840 * prepare_task_switch - prepare to switch tasks
2841 * @rq: the runqueue preparing to switch
421cee29 2842 * @prev: the current task that is being switched out
4866cde0
NP
2843 * @next: the task we are going to switch to.
2844 *
2845 * This is called with the rq lock held and interrupts off. It must
2846 * be paired with a subsequent finish_task_switch after the context
2847 * switch.
2848 *
2849 * prepare_task_switch sets up locking and calls architecture specific
2850 * hooks.
2851 */
e107be36
AK
2852static inline void
2853prepare_task_switch(struct rq *rq, struct task_struct *prev,
2854 struct task_struct *next)
4866cde0 2855{
e107be36 2856 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2857 prepare_lock_switch(rq, next);
2858 prepare_arch_switch(next);
2859}
2860
1da177e4
LT
2861/**
2862 * finish_task_switch - clean up after a task-switch
344babaa 2863 * @rq: runqueue associated with task-switch
1da177e4
LT
2864 * @prev: the thread we just switched away from.
2865 *
4866cde0
NP
2866 * finish_task_switch must be called after the context switch, paired
2867 * with a prepare_task_switch call before the context switch.
2868 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2869 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2870 *
2871 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2872 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2873 * with the lock held can cause deadlocks; see schedule() for
2874 * details.)
2875 */
a9957449 2876static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2877 __releases(rq->lock)
2878{
1da177e4 2879 struct mm_struct *mm = rq->prev_mm;
55a101f8 2880 long prev_state;
1da177e4
LT
2881
2882 rq->prev_mm = NULL;
2883
2884 /*
2885 * A task struct has one reference for the use as "current".
c394cc9f 2886 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2887 * schedule one last time. The schedule call will never return, and
2888 * the scheduled task must drop that reference.
c394cc9f 2889 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2890 * still held, otherwise prev could be scheduled on another cpu, die
2891 * there before we look at prev->state, and then the reference would
2892 * be dropped twice.
2893 * Manfred Spraul <manfred@colorfullife.com>
2894 */
55a101f8 2895 prev_state = prev->state;
4866cde0 2896 finish_arch_switch(prev);
8381f65d
JI
2897#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2898 local_irq_disable();
2899#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2900 perf_event_task_sched_in(current);
8381f65d
JI
2901#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2902 local_irq_enable();
2903#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2904 finish_lock_switch(rq, prev);
e8fa1362 2905
e107be36 2906 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2907 if (mm)
2908 mmdrop(mm);
c394cc9f 2909 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2910 /*
2911 * Remove function-return probe instances associated with this
2912 * task and put them back on the free list.
9761eea8 2913 */
c6fd91f0 2914 kprobe_flush_task(prev);
1da177e4 2915 put_task_struct(prev);
c6fd91f0 2916 }
1da177e4
LT
2917}
2918
3f029d3c
GH
2919#ifdef CONFIG_SMP
2920
2921/* assumes rq->lock is held */
2922static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2923{
2924 if (prev->sched_class->pre_schedule)
2925 prev->sched_class->pre_schedule(rq, prev);
2926}
2927
2928/* rq->lock is NOT held, but preemption is disabled */
2929static inline void post_schedule(struct rq *rq)
2930{
2931 if (rq->post_schedule) {
2932 unsigned long flags;
2933
05fa785c 2934 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2935 if (rq->curr->sched_class->post_schedule)
2936 rq->curr->sched_class->post_schedule(rq);
05fa785c 2937 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2938
2939 rq->post_schedule = 0;
2940 }
2941}
2942
2943#else
da19ab51 2944
3f029d3c
GH
2945static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2946{
2947}
2948
2949static inline void post_schedule(struct rq *rq)
2950{
1da177e4
LT
2951}
2952
3f029d3c
GH
2953#endif
2954
1da177e4
LT
2955/**
2956 * schedule_tail - first thing a freshly forked thread must call.
2957 * @prev: the thread we just switched away from.
2958 */
36c8b586 2959asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2960 __releases(rq->lock)
2961{
70b97a7f
IM
2962 struct rq *rq = this_rq();
2963
4866cde0 2964 finish_task_switch(rq, prev);
da19ab51 2965
3f029d3c
GH
2966 /*
2967 * FIXME: do we need to worry about rq being invalidated by the
2968 * task_switch?
2969 */
2970 post_schedule(rq);
70b97a7f 2971
4866cde0
NP
2972#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2973 /* In this case, finish_task_switch does not reenable preemption */
2974 preempt_enable();
2975#endif
1da177e4 2976 if (current->set_child_tid)
b488893a 2977 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2978}
2979
2980/*
2981 * context_switch - switch to the new MM and the new
2982 * thread's register state.
2983 */
dd41f596 2984static inline void
70b97a7f 2985context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2986 struct task_struct *next)
1da177e4 2987{
dd41f596 2988 struct mm_struct *mm, *oldmm;
1da177e4 2989
e107be36 2990 prepare_task_switch(rq, prev, next);
27a9da65 2991 trace_sched_switch(prev, next);
dd41f596
IM
2992 mm = next->mm;
2993 oldmm = prev->active_mm;
9226d125
ZA
2994 /*
2995 * For paravirt, this is coupled with an exit in switch_to to
2996 * combine the page table reload and the switch backend into
2997 * one hypercall.
2998 */
224101ed 2999 arch_start_context_switch(prev);
9226d125 3000
31915ab4 3001 if (!mm) {
1da177e4
LT
3002 next->active_mm = oldmm;
3003 atomic_inc(&oldmm->mm_count);
3004 enter_lazy_tlb(oldmm, next);
3005 } else
3006 switch_mm(oldmm, mm, next);
3007
31915ab4 3008 if (!prev->mm) {
1da177e4 3009 prev->active_mm = NULL;
1da177e4
LT
3010 rq->prev_mm = oldmm;
3011 }
3a5f5e48
IM
3012 /*
3013 * Since the runqueue lock will be released by the next
3014 * task (which is an invalid locking op but in the case
3015 * of the scheduler it's an obvious special-case), so we
3016 * do an early lockdep release here:
3017 */
3018#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3019 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3020#endif
1da177e4
LT
3021
3022 /* Here we just switch the register state and the stack. */
3023 switch_to(prev, next, prev);
3024
dd41f596
IM
3025 barrier();
3026 /*
3027 * this_rq must be evaluated again because prev may have moved
3028 * CPUs since it called schedule(), thus the 'rq' on its stack
3029 * frame will be invalid.
3030 */
3031 finish_task_switch(this_rq(), prev);
1da177e4
LT
3032}
3033
3034/*
3035 * nr_running, nr_uninterruptible and nr_context_switches:
3036 *
3037 * externally visible scheduler statistics: current number of runnable
3038 * threads, current number of uninterruptible-sleeping threads, total
3039 * number of context switches performed since bootup.
3040 */
3041unsigned long nr_running(void)
3042{
3043 unsigned long i, sum = 0;
3044
3045 for_each_online_cpu(i)
3046 sum += cpu_rq(i)->nr_running;
3047
3048 return sum;
f711f609 3049}
1da177e4
LT
3050
3051unsigned long nr_uninterruptible(void)
f711f609 3052{
1da177e4 3053 unsigned long i, sum = 0;
f711f609 3054
0a945022 3055 for_each_possible_cpu(i)
1da177e4 3056 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3057
3058 /*
1da177e4
LT
3059 * Since we read the counters lockless, it might be slightly
3060 * inaccurate. Do not allow it to go below zero though:
f711f609 3061 */
1da177e4
LT
3062 if (unlikely((long)sum < 0))
3063 sum = 0;
f711f609 3064
1da177e4 3065 return sum;
f711f609 3066}
f711f609 3067
1da177e4 3068unsigned long long nr_context_switches(void)
46cb4b7c 3069{
cc94abfc
SR
3070 int i;
3071 unsigned long long sum = 0;
46cb4b7c 3072
0a945022 3073 for_each_possible_cpu(i)
1da177e4 3074 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3075
1da177e4
LT
3076 return sum;
3077}
483b4ee6 3078
1da177e4
LT
3079unsigned long nr_iowait(void)
3080{
3081 unsigned long i, sum = 0;
483b4ee6 3082
0a945022 3083 for_each_possible_cpu(i)
1da177e4 3084 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3085
1da177e4
LT
3086 return sum;
3087}
483b4ee6 3088
8c215bd3 3089unsigned long nr_iowait_cpu(int cpu)
69d25870 3090{
8c215bd3 3091 struct rq *this = cpu_rq(cpu);
69d25870
AV
3092 return atomic_read(&this->nr_iowait);
3093}
46cb4b7c 3094
69d25870
AV
3095unsigned long this_cpu_load(void)
3096{
3097 struct rq *this = this_rq();
3098 return this->cpu_load[0];
3099}
e790fb0b 3100
46cb4b7c 3101
dce48a84
TG
3102/* Variables and functions for calc_load */
3103static atomic_long_t calc_load_tasks;
3104static unsigned long calc_load_update;
3105unsigned long avenrun[3];
3106EXPORT_SYMBOL(avenrun);
46cb4b7c 3107
74f5187a
PZ
3108static long calc_load_fold_active(struct rq *this_rq)
3109{
3110 long nr_active, delta = 0;
3111
3112 nr_active = this_rq->nr_running;
3113 nr_active += (long) this_rq->nr_uninterruptible;
3114
3115 if (nr_active != this_rq->calc_load_active) {
3116 delta = nr_active - this_rq->calc_load_active;
3117 this_rq->calc_load_active = nr_active;
3118 }
3119
3120 return delta;
3121}
3122
0f004f5a
PZ
3123static unsigned long
3124calc_load(unsigned long load, unsigned long exp, unsigned long active)
3125{
3126 load *= exp;
3127 load += active * (FIXED_1 - exp);
3128 load += 1UL << (FSHIFT - 1);
3129 return load >> FSHIFT;
3130}
3131
74f5187a
PZ
3132#ifdef CONFIG_NO_HZ
3133/*
3134 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3135 *
3136 * When making the ILB scale, we should try to pull this in as well.
3137 */
3138static atomic_long_t calc_load_tasks_idle;
3139
3140static void calc_load_account_idle(struct rq *this_rq)
3141{
3142 long delta;
3143
3144 delta = calc_load_fold_active(this_rq);
3145 if (delta)
3146 atomic_long_add(delta, &calc_load_tasks_idle);
3147}
3148
3149static long calc_load_fold_idle(void)
3150{
3151 long delta = 0;
3152
3153 /*
3154 * Its got a race, we don't care...
3155 */
3156 if (atomic_long_read(&calc_load_tasks_idle))
3157 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3158
3159 return delta;
3160}
0f004f5a
PZ
3161
3162/**
3163 * fixed_power_int - compute: x^n, in O(log n) time
3164 *
3165 * @x: base of the power
3166 * @frac_bits: fractional bits of @x
3167 * @n: power to raise @x to.
3168 *
3169 * By exploiting the relation between the definition of the natural power
3170 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3171 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3172 * (where: n_i \elem {0, 1}, the binary vector representing n),
3173 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3174 * of course trivially computable in O(log_2 n), the length of our binary
3175 * vector.
3176 */
3177static unsigned long
3178fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3179{
3180 unsigned long result = 1UL << frac_bits;
3181
3182 if (n) for (;;) {
3183 if (n & 1) {
3184 result *= x;
3185 result += 1UL << (frac_bits - 1);
3186 result >>= frac_bits;
3187 }
3188 n >>= 1;
3189 if (!n)
3190 break;
3191 x *= x;
3192 x += 1UL << (frac_bits - 1);
3193 x >>= frac_bits;
3194 }
3195
3196 return result;
3197}
3198
3199/*
3200 * a1 = a0 * e + a * (1 - e)
3201 *
3202 * a2 = a1 * e + a * (1 - e)
3203 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3204 * = a0 * e^2 + a * (1 - e) * (1 + e)
3205 *
3206 * a3 = a2 * e + a * (1 - e)
3207 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3208 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3209 *
3210 * ...
3211 *
3212 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3213 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3214 * = a0 * e^n + a * (1 - e^n)
3215 *
3216 * [1] application of the geometric series:
3217 *
3218 * n 1 - x^(n+1)
3219 * S_n := \Sum x^i = -------------
3220 * i=0 1 - x
3221 */
3222static unsigned long
3223calc_load_n(unsigned long load, unsigned long exp,
3224 unsigned long active, unsigned int n)
3225{
3226
3227 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3228}
3229
3230/*
3231 * NO_HZ can leave us missing all per-cpu ticks calling
3232 * calc_load_account_active(), but since an idle CPU folds its delta into
3233 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3234 * in the pending idle delta if our idle period crossed a load cycle boundary.
3235 *
3236 * Once we've updated the global active value, we need to apply the exponential
3237 * weights adjusted to the number of cycles missed.
3238 */
3239static void calc_global_nohz(unsigned long ticks)
3240{
3241 long delta, active, n;
3242
3243 if (time_before(jiffies, calc_load_update))
3244 return;
3245
3246 /*
3247 * If we crossed a calc_load_update boundary, make sure to fold
3248 * any pending idle changes, the respective CPUs might have
3249 * missed the tick driven calc_load_account_active() update
3250 * due to NO_HZ.
3251 */
3252 delta = calc_load_fold_idle();
3253 if (delta)
3254 atomic_long_add(delta, &calc_load_tasks);
3255
3256 /*
3257 * If we were idle for multiple load cycles, apply them.
3258 */
3259 if (ticks >= LOAD_FREQ) {
3260 n = ticks / LOAD_FREQ;
3261
3262 active = atomic_long_read(&calc_load_tasks);
3263 active = active > 0 ? active * FIXED_1 : 0;
3264
3265 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3266 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3267 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3268
3269 calc_load_update += n * LOAD_FREQ;
3270 }
3271
3272 /*
3273 * Its possible the remainder of the above division also crosses
3274 * a LOAD_FREQ period, the regular check in calc_global_load()
3275 * which comes after this will take care of that.
3276 *
3277 * Consider us being 11 ticks before a cycle completion, and us
3278 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3279 * age us 4 cycles, and the test in calc_global_load() will
3280 * pick up the final one.
3281 */
3282}
74f5187a
PZ
3283#else
3284static void calc_load_account_idle(struct rq *this_rq)
3285{
3286}
3287
3288static inline long calc_load_fold_idle(void)
3289{
3290 return 0;
3291}
0f004f5a
PZ
3292
3293static void calc_global_nohz(unsigned long ticks)
3294{
3295}
74f5187a
PZ
3296#endif
3297
2d02494f
TG
3298/**
3299 * get_avenrun - get the load average array
3300 * @loads: pointer to dest load array
3301 * @offset: offset to add
3302 * @shift: shift count to shift the result left
3303 *
3304 * These values are estimates at best, so no need for locking.
3305 */
3306void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3307{
3308 loads[0] = (avenrun[0] + offset) << shift;
3309 loads[1] = (avenrun[1] + offset) << shift;
3310 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3311}
46cb4b7c 3312
46cb4b7c 3313/*
dce48a84
TG
3314 * calc_load - update the avenrun load estimates 10 ticks after the
3315 * CPUs have updated calc_load_tasks.
7835b98b 3316 */
0f004f5a 3317void calc_global_load(unsigned long ticks)
7835b98b 3318{
dce48a84 3319 long active;
1da177e4 3320
0f004f5a
PZ
3321 calc_global_nohz(ticks);
3322
3323 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3324 return;
1da177e4 3325
dce48a84
TG
3326 active = atomic_long_read(&calc_load_tasks);
3327 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3328
dce48a84
TG
3329 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3330 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3331 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3332
dce48a84
TG
3333 calc_load_update += LOAD_FREQ;
3334}
1da177e4 3335
dce48a84 3336/*
74f5187a
PZ
3337 * Called from update_cpu_load() to periodically update this CPU's
3338 * active count.
dce48a84
TG
3339 */
3340static void calc_load_account_active(struct rq *this_rq)
3341{
74f5187a 3342 long delta;
08c183f3 3343
74f5187a
PZ
3344 if (time_before(jiffies, this_rq->calc_load_update))
3345 return;
783609c6 3346
74f5187a
PZ
3347 delta = calc_load_fold_active(this_rq);
3348 delta += calc_load_fold_idle();
3349 if (delta)
dce48a84 3350 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3351
3352 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3353}
3354
fdf3e95d
VP
3355/*
3356 * The exact cpuload at various idx values, calculated at every tick would be
3357 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3358 *
3359 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3360 * on nth tick when cpu may be busy, then we have:
3361 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3362 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3363 *
3364 * decay_load_missed() below does efficient calculation of
3365 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3366 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3367 *
3368 * The calculation is approximated on a 128 point scale.
3369 * degrade_zero_ticks is the number of ticks after which load at any
3370 * particular idx is approximated to be zero.
3371 * degrade_factor is a precomputed table, a row for each load idx.
3372 * Each column corresponds to degradation factor for a power of two ticks,
3373 * based on 128 point scale.
3374 * Example:
3375 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3376 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3377 *
3378 * With this power of 2 load factors, we can degrade the load n times
3379 * by looking at 1 bits in n and doing as many mult/shift instead of
3380 * n mult/shifts needed by the exact degradation.
3381 */
3382#define DEGRADE_SHIFT 7
3383static const unsigned char
3384 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3385static const unsigned char
3386 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3387 {0, 0, 0, 0, 0, 0, 0, 0},
3388 {64, 32, 8, 0, 0, 0, 0, 0},
3389 {96, 72, 40, 12, 1, 0, 0},
3390 {112, 98, 75, 43, 15, 1, 0},
3391 {120, 112, 98, 76, 45, 16, 2} };
3392
3393/*
3394 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3395 * would be when CPU is idle and so we just decay the old load without
3396 * adding any new load.
3397 */
3398static unsigned long
3399decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3400{
3401 int j = 0;
3402
3403 if (!missed_updates)
3404 return load;
3405
3406 if (missed_updates >= degrade_zero_ticks[idx])
3407 return 0;
3408
3409 if (idx == 1)
3410 return load >> missed_updates;
3411
3412 while (missed_updates) {
3413 if (missed_updates % 2)
3414 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3415
3416 missed_updates >>= 1;
3417 j++;
3418 }
3419 return load;
3420}
3421
46cb4b7c 3422/*
dd41f596 3423 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3424 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3425 * every tick. We fix it up based on jiffies.
46cb4b7c 3426 */
dd41f596 3427static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3428{
495eca49 3429 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3430 unsigned long curr_jiffies = jiffies;
3431 unsigned long pending_updates;
dd41f596 3432 int i, scale;
46cb4b7c 3433
dd41f596 3434 this_rq->nr_load_updates++;
46cb4b7c 3435
fdf3e95d
VP
3436 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3437 if (curr_jiffies == this_rq->last_load_update_tick)
3438 return;
3439
3440 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3441 this_rq->last_load_update_tick = curr_jiffies;
3442
dd41f596 3443 /* Update our load: */
fdf3e95d
VP
3444 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3445 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3446 unsigned long old_load, new_load;
7d1e6a9b 3447
dd41f596 3448 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3449
dd41f596 3450 old_load = this_rq->cpu_load[i];
fdf3e95d 3451 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3452 new_load = this_load;
a25707f3
IM
3453 /*
3454 * Round up the averaging division if load is increasing. This
3455 * prevents us from getting stuck on 9 if the load is 10, for
3456 * example.
3457 */
3458 if (new_load > old_load)
fdf3e95d
VP
3459 new_load += scale - 1;
3460
3461 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3462 }
da2b71ed
SS
3463
3464 sched_avg_update(this_rq);
fdf3e95d
VP
3465}
3466
3467static void update_cpu_load_active(struct rq *this_rq)
3468{
3469 update_cpu_load(this_rq);
46cb4b7c 3470
74f5187a 3471 calc_load_account_active(this_rq);
46cb4b7c
SS
3472}
3473
dd41f596 3474#ifdef CONFIG_SMP
8a0be9ef 3475
46cb4b7c 3476/*
38022906
PZ
3477 * sched_exec - execve() is a valuable balancing opportunity, because at
3478 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3479 */
38022906 3480void sched_exec(void)
46cb4b7c 3481{
38022906 3482 struct task_struct *p = current;
1da177e4 3483 unsigned long flags;
70b97a7f 3484 struct rq *rq;
0017d735 3485 int dest_cpu;
46cb4b7c 3486
1da177e4 3487 rq = task_rq_lock(p, &flags);
0017d735
PZ
3488 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3489 if (dest_cpu == smp_processor_id())
3490 goto unlock;
38022906 3491
46cb4b7c 3492 /*
38022906 3493 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3494 */
30da688e 3495 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3496 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3497 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3498
1da177e4 3499 task_rq_unlock(rq, &flags);
969c7921 3500 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3501 return;
3502 }
0017d735 3503unlock:
1da177e4 3504 task_rq_unlock(rq, &flags);
1da177e4 3505}
dd41f596 3506
1da177e4
LT
3507#endif
3508
1da177e4
LT
3509DEFINE_PER_CPU(struct kernel_stat, kstat);
3510
3511EXPORT_PER_CPU_SYMBOL(kstat);
3512
3513/*
c5f8d995 3514 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3515 * @p in case that task is currently running.
c5f8d995
HS
3516 *
3517 * Called with task_rq_lock() held on @rq.
1da177e4 3518 */
c5f8d995
HS
3519static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3520{
3521 u64 ns = 0;
3522
3523 if (task_current(rq, p)) {
3524 update_rq_clock(rq);
305e6835 3525 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3526 if ((s64)ns < 0)
3527 ns = 0;
3528 }
3529
3530 return ns;
3531}
3532
bb34d92f 3533unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3534{
1da177e4 3535 unsigned long flags;
41b86e9c 3536 struct rq *rq;
bb34d92f 3537 u64 ns = 0;
48f24c4d 3538
41b86e9c 3539 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3540 ns = do_task_delta_exec(p, rq);
3541 task_rq_unlock(rq, &flags);
1508487e 3542
c5f8d995
HS
3543 return ns;
3544}
f06febc9 3545
c5f8d995
HS
3546/*
3547 * Return accounted runtime for the task.
3548 * In case the task is currently running, return the runtime plus current's
3549 * pending runtime that have not been accounted yet.
3550 */
3551unsigned long long task_sched_runtime(struct task_struct *p)
3552{
3553 unsigned long flags;
3554 struct rq *rq;
3555 u64 ns = 0;
3556
3557 rq = task_rq_lock(p, &flags);
3558 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3559 task_rq_unlock(rq, &flags);
3560
3561 return ns;
3562}
48f24c4d 3563
c5f8d995
HS
3564/*
3565 * Return sum_exec_runtime for the thread group.
3566 * In case the task is currently running, return the sum plus current's
3567 * pending runtime that have not been accounted yet.
3568 *
3569 * Note that the thread group might have other running tasks as well,
3570 * so the return value not includes other pending runtime that other
3571 * running tasks might have.
3572 */
3573unsigned long long thread_group_sched_runtime(struct task_struct *p)
3574{
3575 struct task_cputime totals;
3576 unsigned long flags;
3577 struct rq *rq;
3578 u64 ns;
3579
3580 rq = task_rq_lock(p, &flags);
3581 thread_group_cputime(p, &totals);
3582 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3583 task_rq_unlock(rq, &flags);
48f24c4d 3584
1da177e4
LT
3585 return ns;
3586}
3587
1da177e4
LT
3588/*
3589 * Account user cpu time to a process.
3590 * @p: the process that the cpu time gets accounted to
1da177e4 3591 * @cputime: the cpu time spent in user space since the last update
457533a7 3592 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3593 */
457533a7
MS
3594void account_user_time(struct task_struct *p, cputime_t cputime,
3595 cputime_t cputime_scaled)
1da177e4
LT
3596{
3597 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3598 cputime64_t tmp;
3599
457533a7 3600 /* Add user time to process. */
1da177e4 3601 p->utime = cputime_add(p->utime, cputime);
457533a7 3602 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3603 account_group_user_time(p, cputime);
1da177e4
LT
3604
3605 /* Add user time to cpustat. */
3606 tmp = cputime_to_cputime64(cputime);
3607 if (TASK_NICE(p) > 0)
3608 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3609 else
3610 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3611
3612 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3613 /* Account for user time used */
3614 acct_update_integrals(p);
1da177e4
LT
3615}
3616
94886b84
LV
3617/*
3618 * Account guest cpu time to a process.
3619 * @p: the process that the cpu time gets accounted to
3620 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3621 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3622 */
457533a7
MS
3623static void account_guest_time(struct task_struct *p, cputime_t cputime,
3624 cputime_t cputime_scaled)
94886b84
LV
3625{
3626 cputime64_t tmp;
3627 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3628
3629 tmp = cputime_to_cputime64(cputime);
3630
457533a7 3631 /* Add guest time to process. */
94886b84 3632 p->utime = cputime_add(p->utime, cputime);
457533a7 3633 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3634 account_group_user_time(p, cputime);
94886b84
LV
3635 p->gtime = cputime_add(p->gtime, cputime);
3636
457533a7 3637 /* Add guest time to cpustat. */
ce0e7b28
RO
3638 if (TASK_NICE(p) > 0) {
3639 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3640 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3641 } else {
3642 cpustat->user = cputime64_add(cpustat->user, tmp);
3643 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3644 }
94886b84
LV
3645}
3646
1da177e4
LT
3647/*
3648 * Account system cpu time to a process.
3649 * @p: the process that the cpu time gets accounted to
3650 * @hardirq_offset: the offset to subtract from hardirq_count()
3651 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3652 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3653 */
3654void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3655 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3656{
3657 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3658 cputime64_t tmp;
3659
983ed7a6 3660 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3661 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3662 return;
3663 }
94886b84 3664
457533a7 3665 /* Add system time to process. */
1da177e4 3666 p->stime = cputime_add(p->stime, cputime);
457533a7 3667 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3668 account_group_system_time(p, cputime);
1da177e4
LT
3669
3670 /* Add system time to cpustat. */
3671 tmp = cputime_to_cputime64(cputime);
3672 if (hardirq_count() - hardirq_offset)
3673 cpustat->irq = cputime64_add(cpustat->irq, tmp);
75e1056f 3674 else if (in_serving_softirq())
1da177e4 3675 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3676 else
79741dd3
MS
3677 cpustat->system = cputime64_add(cpustat->system, tmp);
3678
ef12fefa
BR
3679 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3680
1da177e4
LT
3681 /* Account for system time used */
3682 acct_update_integrals(p);
1da177e4
LT
3683}
3684
c66f08be 3685/*
1da177e4 3686 * Account for involuntary wait time.
1da177e4 3687 * @steal: the cpu time spent in involuntary wait
c66f08be 3688 */
79741dd3 3689void account_steal_time(cputime_t cputime)
c66f08be 3690{
79741dd3
MS
3691 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3692 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3693
3694 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3695}
3696
1da177e4 3697/*
79741dd3
MS
3698 * Account for idle time.
3699 * @cputime: the cpu time spent in idle wait
1da177e4 3700 */
79741dd3 3701void account_idle_time(cputime_t cputime)
1da177e4
LT
3702{
3703 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3704 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3705 struct rq *rq = this_rq();
1da177e4 3706
79741dd3
MS
3707 if (atomic_read(&rq->nr_iowait) > 0)
3708 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3709 else
3710 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3711}
3712
79741dd3
MS
3713#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3714
3715/*
3716 * Account a single tick of cpu time.
3717 * @p: the process that the cpu time gets accounted to
3718 * @user_tick: indicates if the tick is a user or a system tick
3719 */
3720void account_process_tick(struct task_struct *p, int user_tick)
3721{
a42548a1 3722 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3723 struct rq *rq = this_rq();
3724
3725 if (user_tick)
a42548a1 3726 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3727 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3728 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3729 one_jiffy_scaled);
3730 else
a42548a1 3731 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3732}
3733
3734/*
3735 * Account multiple ticks of steal time.
3736 * @p: the process from which the cpu time has been stolen
3737 * @ticks: number of stolen ticks
3738 */
3739void account_steal_ticks(unsigned long ticks)
3740{
3741 account_steal_time(jiffies_to_cputime(ticks));
3742}
3743
3744/*
3745 * Account multiple ticks of idle time.
3746 * @ticks: number of stolen ticks
3747 */
3748void account_idle_ticks(unsigned long ticks)
3749{
3750 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3751}
3752
79741dd3
MS
3753#endif
3754
49048622
BS
3755/*
3756 * Use precise platform statistics if available:
3757 */
3758#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3759void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3760{
d99ca3b9
HS
3761 *ut = p->utime;
3762 *st = p->stime;
49048622
BS
3763}
3764
0cf55e1e 3765void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3766{
0cf55e1e
HS
3767 struct task_cputime cputime;
3768
3769 thread_group_cputime(p, &cputime);
3770
3771 *ut = cputime.utime;
3772 *st = cputime.stime;
49048622
BS
3773}
3774#else
761b1d26
HS
3775
3776#ifndef nsecs_to_cputime
b7b20df9 3777# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3778#endif
3779
d180c5bc 3780void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3781{
d99ca3b9 3782 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3783
3784 /*
3785 * Use CFS's precise accounting:
3786 */
d180c5bc 3787 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3788
3789 if (total) {
e75e863d 3790 u64 temp = rtime;
d180c5bc 3791
e75e863d 3792 temp *= utime;
49048622 3793 do_div(temp, total);
d180c5bc
HS
3794 utime = (cputime_t)temp;
3795 } else
3796 utime = rtime;
49048622 3797
d180c5bc
HS
3798 /*
3799 * Compare with previous values, to keep monotonicity:
3800 */
761b1d26 3801 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3802 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3803
d99ca3b9
HS
3804 *ut = p->prev_utime;
3805 *st = p->prev_stime;
49048622
BS
3806}
3807
0cf55e1e
HS
3808/*
3809 * Must be called with siglock held.
3810 */
3811void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3812{
0cf55e1e
HS
3813 struct signal_struct *sig = p->signal;
3814 struct task_cputime cputime;
3815 cputime_t rtime, utime, total;
49048622 3816
0cf55e1e 3817 thread_group_cputime(p, &cputime);
49048622 3818
0cf55e1e
HS
3819 total = cputime_add(cputime.utime, cputime.stime);
3820 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3821
0cf55e1e 3822 if (total) {
e75e863d 3823 u64 temp = rtime;
49048622 3824
e75e863d 3825 temp *= cputime.utime;
0cf55e1e
HS
3826 do_div(temp, total);
3827 utime = (cputime_t)temp;
3828 } else
3829 utime = rtime;
3830
3831 sig->prev_utime = max(sig->prev_utime, utime);
3832 sig->prev_stime = max(sig->prev_stime,
3833 cputime_sub(rtime, sig->prev_utime));
3834
3835 *ut = sig->prev_utime;
3836 *st = sig->prev_stime;
49048622 3837}
49048622 3838#endif
49048622 3839
7835b98b
CL
3840/*
3841 * This function gets called by the timer code, with HZ frequency.
3842 * We call it with interrupts disabled.
3843 *
3844 * It also gets called by the fork code, when changing the parent's
3845 * timeslices.
3846 */
3847void scheduler_tick(void)
3848{
7835b98b
CL
3849 int cpu = smp_processor_id();
3850 struct rq *rq = cpu_rq(cpu);
dd41f596 3851 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3852
3853 sched_clock_tick();
dd41f596 3854
05fa785c 3855 raw_spin_lock(&rq->lock);
3e51f33f 3856 update_rq_clock(rq);
fdf3e95d 3857 update_cpu_load_active(rq);
fa85ae24 3858 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3859 raw_spin_unlock(&rq->lock);
7835b98b 3860
e9d2b064 3861 perf_event_task_tick();
e220d2dc 3862
e418e1c2 3863#ifdef CONFIG_SMP
dd41f596
IM
3864 rq->idle_at_tick = idle_cpu(cpu);
3865 trigger_load_balance(rq, cpu);
e418e1c2 3866#endif
1da177e4
LT
3867}
3868
132380a0 3869notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3870{
3871 if (in_lock_functions(addr)) {
3872 addr = CALLER_ADDR2;
3873 if (in_lock_functions(addr))
3874 addr = CALLER_ADDR3;
3875 }
3876 return addr;
3877}
1da177e4 3878
7e49fcce
SR
3879#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3880 defined(CONFIG_PREEMPT_TRACER))
3881
43627582 3882void __kprobes add_preempt_count(int val)
1da177e4 3883{
6cd8a4bb 3884#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3885 /*
3886 * Underflow?
3887 */
9a11b49a
IM
3888 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3889 return;
6cd8a4bb 3890#endif
1da177e4 3891 preempt_count() += val;
6cd8a4bb 3892#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3893 /*
3894 * Spinlock count overflowing soon?
3895 */
33859f7f
MOS
3896 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3897 PREEMPT_MASK - 10);
6cd8a4bb
SR
3898#endif
3899 if (preempt_count() == val)
3900 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3901}
3902EXPORT_SYMBOL(add_preempt_count);
3903
43627582 3904void __kprobes sub_preempt_count(int val)
1da177e4 3905{
6cd8a4bb 3906#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3907 /*
3908 * Underflow?
3909 */
01e3eb82 3910 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3911 return;
1da177e4
LT
3912 /*
3913 * Is the spinlock portion underflowing?
3914 */
9a11b49a
IM
3915 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3916 !(preempt_count() & PREEMPT_MASK)))
3917 return;
6cd8a4bb 3918#endif
9a11b49a 3919
6cd8a4bb
SR
3920 if (preempt_count() == val)
3921 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3922 preempt_count() -= val;
3923}
3924EXPORT_SYMBOL(sub_preempt_count);
3925
3926#endif
3927
3928/*
dd41f596 3929 * Print scheduling while atomic bug:
1da177e4 3930 */
dd41f596 3931static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3932{
838225b4
SS
3933 struct pt_regs *regs = get_irq_regs();
3934
3df0fc5b
PZ
3935 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3936 prev->comm, prev->pid, preempt_count());
838225b4 3937
dd41f596 3938 debug_show_held_locks(prev);
e21f5b15 3939 print_modules();
dd41f596
IM
3940 if (irqs_disabled())
3941 print_irqtrace_events(prev);
838225b4
SS
3942
3943 if (regs)
3944 show_regs(regs);
3945 else
3946 dump_stack();
dd41f596 3947}
1da177e4 3948
dd41f596
IM
3949/*
3950 * Various schedule()-time debugging checks and statistics:
3951 */
3952static inline void schedule_debug(struct task_struct *prev)
3953{
1da177e4 3954 /*
41a2d6cf 3955 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3956 * schedule() atomically, we ignore that path for now.
3957 * Otherwise, whine if we are scheduling when we should not be.
3958 */
3f33a7ce 3959 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3960 __schedule_bug(prev);
3961
1da177e4
LT
3962 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3963
2d72376b 3964 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3965#ifdef CONFIG_SCHEDSTATS
3966 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3967 schedstat_inc(this_rq(), bkl_count);
3968 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3969 }
3970#endif
dd41f596
IM
3971}
3972
6cecd084 3973static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3974{
a64692a3
MG
3975 if (prev->se.on_rq)
3976 update_rq_clock(rq);
6cecd084 3977 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3978}
3979
dd41f596
IM
3980/*
3981 * Pick up the highest-prio task:
3982 */
3983static inline struct task_struct *
b67802ea 3984pick_next_task(struct rq *rq)
dd41f596 3985{
5522d5d5 3986 const struct sched_class *class;
dd41f596 3987 struct task_struct *p;
1da177e4
LT
3988
3989 /*
dd41f596
IM
3990 * Optimization: we know that if all tasks are in
3991 * the fair class we can call that function directly:
1da177e4 3992 */
dd41f596 3993 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3994 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3995 if (likely(p))
3996 return p;
1da177e4
LT
3997 }
3998
34f971f6 3999 for_each_class(class) {
fb8d4724 4000 p = class->pick_next_task(rq);
dd41f596
IM
4001 if (p)
4002 return p;
dd41f596 4003 }
34f971f6
PZ
4004
4005 BUG(); /* the idle class will always have a runnable task */
dd41f596 4006}
1da177e4 4007
dd41f596
IM
4008/*
4009 * schedule() is the main scheduler function.
4010 */
ff743345 4011asmlinkage void __sched schedule(void)
dd41f596
IM
4012{
4013 struct task_struct *prev, *next;
67ca7bde 4014 unsigned long *switch_count;
dd41f596 4015 struct rq *rq;
31656519 4016 int cpu;
dd41f596 4017
ff743345
PZ
4018need_resched:
4019 preempt_disable();
dd41f596
IM
4020 cpu = smp_processor_id();
4021 rq = cpu_rq(cpu);
25502a6c 4022 rcu_note_context_switch(cpu);
dd41f596 4023 prev = rq->curr;
dd41f596
IM
4024
4025 release_kernel_lock(prev);
4026need_resched_nonpreemptible:
4027
4028 schedule_debug(prev);
1da177e4 4029
31656519 4030 if (sched_feat(HRTICK))
f333fdc9 4031 hrtick_clear(rq);
8f4d37ec 4032
05fa785c 4033 raw_spin_lock_irq(&rq->lock);
1da177e4 4034
246d86b5 4035 switch_count = &prev->nivcsw;
1da177e4 4036 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4037 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4038 prev->state = TASK_RUNNING;
21aa9af0
TH
4039 } else {
4040 /*
4041 * If a worker is going to sleep, notify and
4042 * ask workqueue whether it wants to wake up a
4043 * task to maintain concurrency. If so, wake
4044 * up the task.
4045 */
4046 if (prev->flags & PF_WQ_WORKER) {
4047 struct task_struct *to_wakeup;
4048
4049 to_wakeup = wq_worker_sleeping(prev, cpu);
4050 if (to_wakeup)
4051 try_to_wake_up_local(to_wakeup);
4052 }
371fd7e7 4053 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 4054 }
dd41f596 4055 switch_count = &prev->nvcsw;
1da177e4
LT
4056 }
4057
3f029d3c 4058 pre_schedule(rq, prev);
f65eda4f 4059
dd41f596 4060 if (unlikely(!rq->nr_running))
1da177e4 4061 idle_balance(cpu, rq);
1da177e4 4062
df1c99d4 4063 put_prev_task(rq, prev);
b67802ea 4064 next = pick_next_task(rq);
f26f9aff
MG
4065 clear_tsk_need_resched(prev);
4066 rq->skip_clock_update = 0;
1da177e4 4067
1da177e4 4068 if (likely(prev != next)) {
673a90a1 4069 sched_info_switch(prev, next);
49f47433 4070 perf_event_task_sched_out(prev, next);
673a90a1 4071
1da177e4
LT
4072 rq->nr_switches++;
4073 rq->curr = next;
4074 ++*switch_count;
f26f9aff 4075 WARN_ON_ONCE(test_tsk_need_resched(next));
1da177e4 4076
dd41f596 4077 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4078 /*
246d86b5
ON
4079 * The context switch have flipped the stack from under us
4080 * and restored the local variables which were saved when
4081 * this task called schedule() in the past. prev == current
4082 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4083 */
4084 cpu = smp_processor_id();
4085 rq = cpu_rq(cpu);
1da177e4 4086 } else
05fa785c 4087 raw_spin_unlock_irq(&rq->lock);
1da177e4 4088
3f029d3c 4089 post_schedule(rq);
1da177e4 4090
246d86b5 4091 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 4092 goto need_resched_nonpreemptible;
8f4d37ec 4093
1da177e4 4094 preempt_enable_no_resched();
ff743345 4095 if (need_resched())
1da177e4
LT
4096 goto need_resched;
4097}
1da177e4
LT
4098EXPORT_SYMBOL(schedule);
4099
c08f7829 4100#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4101/*
4102 * Look out! "owner" is an entirely speculative pointer
4103 * access and not reliable.
4104 */
4105int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4106{
4107 unsigned int cpu;
4108 struct rq *rq;
4109
4110 if (!sched_feat(OWNER_SPIN))
4111 return 0;
4112
4113#ifdef CONFIG_DEBUG_PAGEALLOC
4114 /*
4115 * Need to access the cpu field knowing that
4116 * DEBUG_PAGEALLOC could have unmapped it if
4117 * the mutex owner just released it and exited.
4118 */
4119 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4120 return 0;
0d66bf6d
PZ
4121#else
4122 cpu = owner->cpu;
4123#endif
4124
4125 /*
4126 * Even if the access succeeded (likely case),
4127 * the cpu field may no longer be valid.
4128 */
4129 if (cpu >= nr_cpumask_bits)
4b402210 4130 return 0;
0d66bf6d
PZ
4131
4132 /*
4133 * We need to validate that we can do a
4134 * get_cpu() and that we have the percpu area.
4135 */
4136 if (!cpu_online(cpu))
4b402210 4137 return 0;
0d66bf6d
PZ
4138
4139 rq = cpu_rq(cpu);
4140
4141 for (;;) {
4142 /*
4143 * Owner changed, break to re-assess state.
4144 */
9d0f4dcc
TC
4145 if (lock->owner != owner) {
4146 /*
4147 * If the lock has switched to a different owner,
4148 * we likely have heavy contention. Return 0 to quit
4149 * optimistic spinning and not contend further:
4150 */
4151 if (lock->owner)
4152 return 0;
0d66bf6d 4153 break;
9d0f4dcc 4154 }
0d66bf6d
PZ
4155
4156 /*
4157 * Is that owner really running on that cpu?
4158 */
4159 if (task_thread_info(rq->curr) != owner || need_resched())
4160 return 0;
4161
4162 cpu_relax();
4163 }
4b402210 4164
0d66bf6d
PZ
4165 return 1;
4166}
4167#endif
4168
1da177e4
LT
4169#ifdef CONFIG_PREEMPT
4170/*
2ed6e34f 4171 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4172 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4173 * occur there and call schedule directly.
4174 */
d1f74e20 4175asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4176{
4177 struct thread_info *ti = current_thread_info();
6478d880 4178
1da177e4
LT
4179 /*
4180 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4181 * we do not want to preempt the current task. Just return..
1da177e4 4182 */
beed33a8 4183 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4184 return;
4185
3a5c359a 4186 do {
d1f74e20 4187 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4188 schedule();
d1f74e20 4189 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4190
3a5c359a
AK
4191 /*
4192 * Check again in case we missed a preemption opportunity
4193 * between schedule and now.
4194 */
4195 barrier();
5ed0cec0 4196 } while (need_resched());
1da177e4 4197}
1da177e4
LT
4198EXPORT_SYMBOL(preempt_schedule);
4199
4200/*
2ed6e34f 4201 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4202 * off of irq context.
4203 * Note, that this is called and return with irqs disabled. This will
4204 * protect us against recursive calling from irq.
4205 */
4206asmlinkage void __sched preempt_schedule_irq(void)
4207{
4208 struct thread_info *ti = current_thread_info();
6478d880 4209
2ed6e34f 4210 /* Catch callers which need to be fixed */
1da177e4
LT
4211 BUG_ON(ti->preempt_count || !irqs_disabled());
4212
3a5c359a
AK
4213 do {
4214 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4215 local_irq_enable();
4216 schedule();
4217 local_irq_disable();
3a5c359a 4218 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4219
3a5c359a
AK
4220 /*
4221 * Check again in case we missed a preemption opportunity
4222 * between schedule and now.
4223 */
4224 barrier();
5ed0cec0 4225 } while (need_resched());
1da177e4
LT
4226}
4227
4228#endif /* CONFIG_PREEMPT */
4229
63859d4f 4230int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4231 void *key)
1da177e4 4232{
63859d4f 4233 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4234}
1da177e4
LT
4235EXPORT_SYMBOL(default_wake_function);
4236
4237/*
41a2d6cf
IM
4238 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4239 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4240 * number) then we wake all the non-exclusive tasks and one exclusive task.
4241 *
4242 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4243 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4244 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4245 */
78ddb08f 4246static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4247 int nr_exclusive, int wake_flags, void *key)
1da177e4 4248{
2e45874c 4249 wait_queue_t *curr, *next;
1da177e4 4250
2e45874c 4251 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4252 unsigned flags = curr->flags;
4253
63859d4f 4254 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4255 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4256 break;
4257 }
4258}
4259
4260/**
4261 * __wake_up - wake up threads blocked on a waitqueue.
4262 * @q: the waitqueue
4263 * @mode: which threads
4264 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4265 * @key: is directly passed to the wakeup function
50fa610a
DH
4266 *
4267 * It may be assumed that this function implies a write memory barrier before
4268 * changing the task state if and only if any tasks are woken up.
1da177e4 4269 */
7ad5b3a5 4270void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4271 int nr_exclusive, void *key)
1da177e4
LT
4272{
4273 unsigned long flags;
4274
4275 spin_lock_irqsave(&q->lock, flags);
4276 __wake_up_common(q, mode, nr_exclusive, 0, key);
4277 spin_unlock_irqrestore(&q->lock, flags);
4278}
1da177e4
LT
4279EXPORT_SYMBOL(__wake_up);
4280
4281/*
4282 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4283 */
7ad5b3a5 4284void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4285{
4286 __wake_up_common(q, mode, 1, 0, NULL);
4287}
22c43c81 4288EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4289
4ede816a
DL
4290void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4291{
4292 __wake_up_common(q, mode, 1, 0, key);
4293}
4294
1da177e4 4295/**
4ede816a 4296 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4297 * @q: the waitqueue
4298 * @mode: which threads
4299 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4300 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4301 *
4302 * The sync wakeup differs that the waker knows that it will schedule
4303 * away soon, so while the target thread will be woken up, it will not
4304 * be migrated to another CPU - ie. the two threads are 'synchronized'
4305 * with each other. This can prevent needless bouncing between CPUs.
4306 *
4307 * On UP it can prevent extra preemption.
50fa610a
DH
4308 *
4309 * It may be assumed that this function implies a write memory barrier before
4310 * changing the task state if and only if any tasks are woken up.
1da177e4 4311 */
4ede816a
DL
4312void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4313 int nr_exclusive, void *key)
1da177e4
LT
4314{
4315 unsigned long flags;
7d478721 4316 int wake_flags = WF_SYNC;
1da177e4
LT
4317
4318 if (unlikely(!q))
4319 return;
4320
4321 if (unlikely(!nr_exclusive))
7d478721 4322 wake_flags = 0;
1da177e4
LT
4323
4324 spin_lock_irqsave(&q->lock, flags);
7d478721 4325 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4326 spin_unlock_irqrestore(&q->lock, flags);
4327}
4ede816a
DL
4328EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4329
4330/*
4331 * __wake_up_sync - see __wake_up_sync_key()
4332 */
4333void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4334{
4335 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4336}
1da177e4
LT
4337EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4338
65eb3dc6
KD
4339/**
4340 * complete: - signals a single thread waiting on this completion
4341 * @x: holds the state of this particular completion
4342 *
4343 * This will wake up a single thread waiting on this completion. Threads will be
4344 * awakened in the same order in which they were queued.
4345 *
4346 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4347 *
4348 * It may be assumed that this function implies a write memory barrier before
4349 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4350 */
b15136e9 4351void complete(struct completion *x)
1da177e4
LT
4352{
4353 unsigned long flags;
4354
4355 spin_lock_irqsave(&x->wait.lock, flags);
4356 x->done++;
d9514f6c 4357 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4358 spin_unlock_irqrestore(&x->wait.lock, flags);
4359}
4360EXPORT_SYMBOL(complete);
4361
65eb3dc6
KD
4362/**
4363 * complete_all: - signals all threads waiting on this completion
4364 * @x: holds the state of this particular completion
4365 *
4366 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4367 *
4368 * It may be assumed that this function implies a write memory barrier before
4369 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4370 */
b15136e9 4371void complete_all(struct completion *x)
1da177e4
LT
4372{
4373 unsigned long flags;
4374
4375 spin_lock_irqsave(&x->wait.lock, flags);
4376 x->done += UINT_MAX/2;
d9514f6c 4377 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4378 spin_unlock_irqrestore(&x->wait.lock, flags);
4379}
4380EXPORT_SYMBOL(complete_all);
4381
8cbbe86d
AK
4382static inline long __sched
4383do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4384{
1da177e4
LT
4385 if (!x->done) {
4386 DECLARE_WAITQUEUE(wait, current);
4387
a93d2f17 4388 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4389 do {
94d3d824 4390 if (signal_pending_state(state, current)) {
ea71a546
ON
4391 timeout = -ERESTARTSYS;
4392 break;
8cbbe86d
AK
4393 }
4394 __set_current_state(state);
1da177e4
LT
4395 spin_unlock_irq(&x->wait.lock);
4396 timeout = schedule_timeout(timeout);
4397 spin_lock_irq(&x->wait.lock);
ea71a546 4398 } while (!x->done && timeout);
1da177e4 4399 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4400 if (!x->done)
4401 return timeout;
1da177e4
LT
4402 }
4403 x->done--;
ea71a546 4404 return timeout ?: 1;
1da177e4 4405}
1da177e4 4406
8cbbe86d
AK
4407static long __sched
4408wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4409{
1da177e4
LT
4410 might_sleep();
4411
4412 spin_lock_irq(&x->wait.lock);
8cbbe86d 4413 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4414 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4415 return timeout;
4416}
1da177e4 4417
65eb3dc6
KD
4418/**
4419 * wait_for_completion: - waits for completion of a task
4420 * @x: holds the state of this particular completion
4421 *
4422 * This waits to be signaled for completion of a specific task. It is NOT
4423 * interruptible and there is no timeout.
4424 *
4425 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4426 * and interrupt capability. Also see complete().
4427 */
b15136e9 4428void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4429{
4430 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4431}
8cbbe86d 4432EXPORT_SYMBOL(wait_for_completion);
1da177e4 4433
65eb3dc6
KD
4434/**
4435 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4436 * @x: holds the state of this particular completion
4437 * @timeout: timeout value in jiffies
4438 *
4439 * This waits for either a completion of a specific task to be signaled or for a
4440 * specified timeout to expire. The timeout is in jiffies. It is not
4441 * interruptible.
4442 */
b15136e9 4443unsigned long __sched
8cbbe86d 4444wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4445{
8cbbe86d 4446 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4447}
8cbbe86d 4448EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4449
65eb3dc6
KD
4450/**
4451 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4452 * @x: holds the state of this particular completion
4453 *
4454 * This waits for completion of a specific task to be signaled. It is
4455 * interruptible.
4456 */
8cbbe86d 4457int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4458{
51e97990
AK
4459 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4460 if (t == -ERESTARTSYS)
4461 return t;
4462 return 0;
0fec171c 4463}
8cbbe86d 4464EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4465
65eb3dc6
KD
4466/**
4467 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4468 * @x: holds the state of this particular completion
4469 * @timeout: timeout value in jiffies
4470 *
4471 * This waits for either a completion of a specific task to be signaled or for a
4472 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4473 */
b15136e9 4474unsigned long __sched
8cbbe86d
AK
4475wait_for_completion_interruptible_timeout(struct completion *x,
4476 unsigned long timeout)
0fec171c 4477{
8cbbe86d 4478 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4479}
8cbbe86d 4480EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4481
65eb3dc6
KD
4482/**
4483 * wait_for_completion_killable: - waits for completion of a task (killable)
4484 * @x: holds the state of this particular completion
4485 *
4486 * This waits to be signaled for completion of a specific task. It can be
4487 * interrupted by a kill signal.
4488 */
009e577e
MW
4489int __sched wait_for_completion_killable(struct completion *x)
4490{
4491 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4492 if (t == -ERESTARTSYS)
4493 return t;
4494 return 0;
4495}
4496EXPORT_SYMBOL(wait_for_completion_killable);
4497
0aa12fb4
SW
4498/**
4499 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4500 * @x: holds the state of this particular completion
4501 * @timeout: timeout value in jiffies
4502 *
4503 * This waits for either a completion of a specific task to be
4504 * signaled or for a specified timeout to expire. It can be
4505 * interrupted by a kill signal. The timeout is in jiffies.
4506 */
4507unsigned long __sched
4508wait_for_completion_killable_timeout(struct completion *x,
4509 unsigned long timeout)
4510{
4511 return wait_for_common(x, timeout, TASK_KILLABLE);
4512}
4513EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4514
be4de352
DC
4515/**
4516 * try_wait_for_completion - try to decrement a completion without blocking
4517 * @x: completion structure
4518 *
4519 * Returns: 0 if a decrement cannot be done without blocking
4520 * 1 if a decrement succeeded.
4521 *
4522 * If a completion is being used as a counting completion,
4523 * attempt to decrement the counter without blocking. This
4524 * enables us to avoid waiting if the resource the completion
4525 * is protecting is not available.
4526 */
4527bool try_wait_for_completion(struct completion *x)
4528{
7539a3b3 4529 unsigned long flags;
be4de352
DC
4530 int ret = 1;
4531
7539a3b3 4532 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4533 if (!x->done)
4534 ret = 0;
4535 else
4536 x->done--;
7539a3b3 4537 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4538 return ret;
4539}
4540EXPORT_SYMBOL(try_wait_for_completion);
4541
4542/**
4543 * completion_done - Test to see if a completion has any waiters
4544 * @x: completion structure
4545 *
4546 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4547 * 1 if there are no waiters.
4548 *
4549 */
4550bool completion_done(struct completion *x)
4551{
7539a3b3 4552 unsigned long flags;
be4de352
DC
4553 int ret = 1;
4554
7539a3b3 4555 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4556 if (!x->done)
4557 ret = 0;
7539a3b3 4558 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4559 return ret;
4560}
4561EXPORT_SYMBOL(completion_done);
4562
8cbbe86d
AK
4563static long __sched
4564sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4565{
0fec171c
IM
4566 unsigned long flags;
4567 wait_queue_t wait;
4568
4569 init_waitqueue_entry(&wait, current);
1da177e4 4570
8cbbe86d 4571 __set_current_state(state);
1da177e4 4572
8cbbe86d
AK
4573 spin_lock_irqsave(&q->lock, flags);
4574 __add_wait_queue(q, &wait);
4575 spin_unlock(&q->lock);
4576 timeout = schedule_timeout(timeout);
4577 spin_lock_irq(&q->lock);
4578 __remove_wait_queue(q, &wait);
4579 spin_unlock_irqrestore(&q->lock, flags);
4580
4581 return timeout;
4582}
4583
4584void __sched interruptible_sleep_on(wait_queue_head_t *q)
4585{
4586 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4587}
1da177e4
LT
4588EXPORT_SYMBOL(interruptible_sleep_on);
4589
0fec171c 4590long __sched
95cdf3b7 4591interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4592{
8cbbe86d 4593 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4594}
1da177e4
LT
4595EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4596
0fec171c 4597void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4598{
8cbbe86d 4599 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4600}
1da177e4
LT
4601EXPORT_SYMBOL(sleep_on);
4602
0fec171c 4603long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4604{
8cbbe86d 4605 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4606}
1da177e4
LT
4607EXPORT_SYMBOL(sleep_on_timeout);
4608
b29739f9
IM
4609#ifdef CONFIG_RT_MUTEXES
4610
4611/*
4612 * rt_mutex_setprio - set the current priority of a task
4613 * @p: task
4614 * @prio: prio value (kernel-internal form)
4615 *
4616 * This function changes the 'effective' priority of a task. It does
4617 * not touch ->normal_prio like __setscheduler().
4618 *
4619 * Used by the rt_mutex code to implement priority inheritance logic.
4620 */
36c8b586 4621void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4622{
4623 unsigned long flags;
83b699ed 4624 int oldprio, on_rq, running;
70b97a7f 4625 struct rq *rq;
83ab0aa0 4626 const struct sched_class *prev_class;
b29739f9
IM
4627
4628 BUG_ON(prio < 0 || prio > MAX_PRIO);
4629
4630 rq = task_rq_lock(p, &flags);
4631
a8027073 4632 trace_sched_pi_setprio(p, prio);
d5f9f942 4633 oldprio = p->prio;
83ab0aa0 4634 prev_class = p->sched_class;
dd41f596 4635 on_rq = p->se.on_rq;
051a1d1a 4636 running = task_current(rq, p);
0e1f3483 4637 if (on_rq)
69be72c1 4638 dequeue_task(rq, p, 0);
0e1f3483
HS
4639 if (running)
4640 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4641
4642 if (rt_prio(prio))
4643 p->sched_class = &rt_sched_class;
4644 else
4645 p->sched_class = &fair_sched_class;
4646
b29739f9
IM
4647 p->prio = prio;
4648
0e1f3483
HS
4649 if (running)
4650 p->sched_class->set_curr_task(rq);
dd41f596 4651 if (on_rq) {
371fd7e7 4652 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4653
4654 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4655 }
4656 task_rq_unlock(rq, &flags);
4657}
4658
4659#endif
4660
36c8b586 4661void set_user_nice(struct task_struct *p, long nice)
1da177e4 4662{
dd41f596 4663 int old_prio, delta, on_rq;
1da177e4 4664 unsigned long flags;
70b97a7f 4665 struct rq *rq;
1da177e4
LT
4666
4667 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4668 return;
4669 /*
4670 * We have to be careful, if called from sys_setpriority(),
4671 * the task might be in the middle of scheduling on another CPU.
4672 */
4673 rq = task_rq_lock(p, &flags);
4674 /*
4675 * The RT priorities are set via sched_setscheduler(), but we still
4676 * allow the 'normal' nice value to be set - but as expected
4677 * it wont have any effect on scheduling until the task is
dd41f596 4678 * SCHED_FIFO/SCHED_RR:
1da177e4 4679 */
e05606d3 4680 if (task_has_rt_policy(p)) {
1da177e4
LT
4681 p->static_prio = NICE_TO_PRIO(nice);
4682 goto out_unlock;
4683 }
dd41f596 4684 on_rq = p->se.on_rq;
c09595f6 4685 if (on_rq)
69be72c1 4686 dequeue_task(rq, p, 0);
1da177e4 4687
1da177e4 4688 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4689 set_load_weight(p);
b29739f9
IM
4690 old_prio = p->prio;
4691 p->prio = effective_prio(p);
4692 delta = p->prio - old_prio;
1da177e4 4693
dd41f596 4694 if (on_rq) {
371fd7e7 4695 enqueue_task(rq, p, 0);
1da177e4 4696 /*
d5f9f942
AM
4697 * If the task increased its priority or is running and
4698 * lowered its priority, then reschedule its CPU:
1da177e4 4699 */
d5f9f942 4700 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4701 resched_task(rq->curr);
4702 }
4703out_unlock:
4704 task_rq_unlock(rq, &flags);
4705}
1da177e4
LT
4706EXPORT_SYMBOL(set_user_nice);
4707
e43379f1
MM
4708/*
4709 * can_nice - check if a task can reduce its nice value
4710 * @p: task
4711 * @nice: nice value
4712 */
36c8b586 4713int can_nice(const struct task_struct *p, const int nice)
e43379f1 4714{
024f4747
MM
4715 /* convert nice value [19,-20] to rlimit style value [1,40] */
4716 int nice_rlim = 20 - nice;
48f24c4d 4717
78d7d407 4718 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4719 capable(CAP_SYS_NICE));
4720}
4721
1da177e4
LT
4722#ifdef __ARCH_WANT_SYS_NICE
4723
4724/*
4725 * sys_nice - change the priority of the current process.
4726 * @increment: priority increment
4727 *
4728 * sys_setpriority is a more generic, but much slower function that
4729 * does similar things.
4730 */
5add95d4 4731SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4732{
48f24c4d 4733 long nice, retval;
1da177e4
LT
4734
4735 /*
4736 * Setpriority might change our priority at the same moment.
4737 * We don't have to worry. Conceptually one call occurs first
4738 * and we have a single winner.
4739 */
e43379f1
MM
4740 if (increment < -40)
4741 increment = -40;
1da177e4
LT
4742 if (increment > 40)
4743 increment = 40;
4744
2b8f836f 4745 nice = TASK_NICE(current) + increment;
1da177e4
LT
4746 if (nice < -20)
4747 nice = -20;
4748 if (nice > 19)
4749 nice = 19;
4750
e43379f1
MM
4751 if (increment < 0 && !can_nice(current, nice))
4752 return -EPERM;
4753
1da177e4
LT
4754 retval = security_task_setnice(current, nice);
4755 if (retval)
4756 return retval;
4757
4758 set_user_nice(current, nice);
4759 return 0;
4760}
4761
4762#endif
4763
4764/**
4765 * task_prio - return the priority value of a given task.
4766 * @p: the task in question.
4767 *
4768 * This is the priority value as seen by users in /proc.
4769 * RT tasks are offset by -200. Normal tasks are centered
4770 * around 0, value goes from -16 to +15.
4771 */
36c8b586 4772int task_prio(const struct task_struct *p)
1da177e4
LT
4773{
4774 return p->prio - MAX_RT_PRIO;
4775}
4776
4777/**
4778 * task_nice - return the nice value of a given task.
4779 * @p: the task in question.
4780 */
36c8b586 4781int task_nice(const struct task_struct *p)
1da177e4
LT
4782{
4783 return TASK_NICE(p);
4784}
150d8bed 4785EXPORT_SYMBOL(task_nice);
1da177e4
LT
4786
4787/**
4788 * idle_cpu - is a given cpu idle currently?
4789 * @cpu: the processor in question.
4790 */
4791int idle_cpu(int cpu)
4792{
4793 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4794}
4795
1da177e4
LT
4796/**
4797 * idle_task - return the idle task for a given cpu.
4798 * @cpu: the processor in question.
4799 */
36c8b586 4800struct task_struct *idle_task(int cpu)
1da177e4
LT
4801{
4802 return cpu_rq(cpu)->idle;
4803}
4804
4805/**
4806 * find_process_by_pid - find a process with a matching PID value.
4807 * @pid: the pid in question.
4808 */
a9957449 4809static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4810{
228ebcbe 4811 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4812}
4813
4814/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4815static void
4816__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4817{
dd41f596 4818 BUG_ON(p->se.on_rq);
48f24c4d 4819
1da177e4
LT
4820 p->policy = policy;
4821 p->rt_priority = prio;
b29739f9
IM
4822 p->normal_prio = normal_prio(p);
4823 /* we are holding p->pi_lock already */
4824 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4825 if (rt_prio(p->prio))
4826 p->sched_class = &rt_sched_class;
4827 else
4828 p->sched_class = &fair_sched_class;
2dd73a4f 4829 set_load_weight(p);
1da177e4
LT
4830}
4831
c69e8d9c
DH
4832/*
4833 * check the target process has a UID that matches the current process's
4834 */
4835static bool check_same_owner(struct task_struct *p)
4836{
4837 const struct cred *cred = current_cred(), *pcred;
4838 bool match;
4839
4840 rcu_read_lock();
4841 pcred = __task_cred(p);
4842 match = (cred->euid == pcred->euid ||
4843 cred->euid == pcred->uid);
4844 rcu_read_unlock();
4845 return match;
4846}
4847
961ccddd
RR
4848static int __sched_setscheduler(struct task_struct *p, int policy,
4849 struct sched_param *param, bool user)
1da177e4 4850{
83b699ed 4851 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4852 unsigned long flags;
83ab0aa0 4853 const struct sched_class *prev_class;
70b97a7f 4854 struct rq *rq;
ca94c442 4855 int reset_on_fork;
1da177e4 4856
66e5393a
SR
4857 /* may grab non-irq protected spin_locks */
4858 BUG_ON(in_interrupt());
1da177e4
LT
4859recheck:
4860 /* double check policy once rq lock held */
ca94c442
LP
4861 if (policy < 0) {
4862 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4863 policy = oldpolicy = p->policy;
ca94c442
LP
4864 } else {
4865 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4866 policy &= ~SCHED_RESET_ON_FORK;
4867
4868 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4869 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4870 policy != SCHED_IDLE)
4871 return -EINVAL;
4872 }
4873
1da177e4
LT
4874 /*
4875 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4876 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4877 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4878 */
4879 if (param->sched_priority < 0 ||
95cdf3b7 4880 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4881 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4882 return -EINVAL;
e05606d3 4883 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4884 return -EINVAL;
4885
37e4ab3f
OC
4886 /*
4887 * Allow unprivileged RT tasks to decrease priority:
4888 */
961ccddd 4889 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4890 if (rt_policy(policy)) {
a44702e8
ON
4891 unsigned long rlim_rtprio =
4892 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4893
4894 /* can't set/change the rt policy */
4895 if (policy != p->policy && !rlim_rtprio)
4896 return -EPERM;
4897
4898 /* can't increase priority */
4899 if (param->sched_priority > p->rt_priority &&
4900 param->sched_priority > rlim_rtprio)
4901 return -EPERM;
4902 }
dd41f596
IM
4903 /*
4904 * Like positive nice levels, dont allow tasks to
4905 * move out of SCHED_IDLE either:
4906 */
4907 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4908 return -EPERM;
5fe1d75f 4909
37e4ab3f 4910 /* can't change other user's priorities */
c69e8d9c 4911 if (!check_same_owner(p))
37e4ab3f 4912 return -EPERM;
ca94c442
LP
4913
4914 /* Normal users shall not reset the sched_reset_on_fork flag */
4915 if (p->sched_reset_on_fork && !reset_on_fork)
4916 return -EPERM;
37e4ab3f 4917 }
1da177e4 4918
725aad24 4919 if (user) {
b0ae1981 4920 retval = security_task_setscheduler(p);
725aad24
JF
4921 if (retval)
4922 return retval;
4923 }
4924
b29739f9
IM
4925 /*
4926 * make sure no PI-waiters arrive (or leave) while we are
4927 * changing the priority of the task:
4928 */
1d615482 4929 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4930 /*
4931 * To be able to change p->policy safely, the apropriate
4932 * runqueue lock must be held.
4933 */
b29739f9 4934 rq = __task_rq_lock(p);
dc61b1d6 4935
34f971f6
PZ
4936 /*
4937 * Changing the policy of the stop threads its a very bad idea
4938 */
4939 if (p == rq->stop) {
4940 __task_rq_unlock(rq);
4941 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4942 return -EINVAL;
4943 }
4944
dc61b1d6
PZ
4945#ifdef CONFIG_RT_GROUP_SCHED
4946 if (user) {
4947 /*
4948 * Do not allow realtime tasks into groups that have no runtime
4949 * assigned.
4950 */
4951 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4952 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4953 __task_rq_unlock(rq);
4954 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4955 return -EPERM;
4956 }
4957 }
4958#endif
4959
1da177e4
LT
4960 /* recheck policy now with rq lock held */
4961 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4962 policy = oldpolicy = -1;
b29739f9 4963 __task_rq_unlock(rq);
1d615482 4964 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4965 goto recheck;
4966 }
dd41f596 4967 on_rq = p->se.on_rq;
051a1d1a 4968 running = task_current(rq, p);
0e1f3483 4969 if (on_rq)
2e1cb74a 4970 deactivate_task(rq, p, 0);
0e1f3483
HS
4971 if (running)
4972 p->sched_class->put_prev_task(rq, p);
f6b53205 4973
ca94c442
LP
4974 p->sched_reset_on_fork = reset_on_fork;
4975
1da177e4 4976 oldprio = p->prio;
83ab0aa0 4977 prev_class = p->sched_class;
dd41f596 4978 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4979
0e1f3483
HS
4980 if (running)
4981 p->sched_class->set_curr_task(rq);
dd41f596
IM
4982 if (on_rq) {
4983 activate_task(rq, p, 0);
cb469845
SR
4984
4985 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4986 }
b29739f9 4987 __task_rq_unlock(rq);
1d615482 4988 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4989
95e02ca9
TG
4990 rt_mutex_adjust_pi(p);
4991
1da177e4
LT
4992 return 0;
4993}
961ccddd
RR
4994
4995/**
4996 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4997 * @p: the task in question.
4998 * @policy: new policy.
4999 * @param: structure containing the new RT priority.
5000 *
5001 * NOTE that the task may be already dead.
5002 */
5003int sched_setscheduler(struct task_struct *p, int policy,
5004 struct sched_param *param)
5005{
5006 return __sched_setscheduler(p, policy, param, true);
5007}
1da177e4
LT
5008EXPORT_SYMBOL_GPL(sched_setscheduler);
5009
961ccddd
RR
5010/**
5011 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5012 * @p: the task in question.
5013 * @policy: new policy.
5014 * @param: structure containing the new RT priority.
5015 *
5016 * Just like sched_setscheduler, only don't bother checking if the
5017 * current context has permission. For example, this is needed in
5018 * stop_machine(): we create temporary high priority worker threads,
5019 * but our caller might not have that capability.
5020 */
5021int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5022 struct sched_param *param)
5023{
5024 return __sched_setscheduler(p, policy, param, false);
5025}
5026
95cdf3b7
IM
5027static int
5028do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5029{
1da177e4
LT
5030 struct sched_param lparam;
5031 struct task_struct *p;
36c8b586 5032 int retval;
1da177e4
LT
5033
5034 if (!param || pid < 0)
5035 return -EINVAL;
5036 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5037 return -EFAULT;
5fe1d75f
ON
5038
5039 rcu_read_lock();
5040 retval = -ESRCH;
1da177e4 5041 p = find_process_by_pid(pid);
5fe1d75f
ON
5042 if (p != NULL)
5043 retval = sched_setscheduler(p, policy, &lparam);
5044 rcu_read_unlock();
36c8b586 5045
1da177e4
LT
5046 return retval;
5047}
5048
5049/**
5050 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5051 * @pid: the pid in question.
5052 * @policy: new policy.
5053 * @param: structure containing the new RT priority.
5054 */
5add95d4
HC
5055SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5056 struct sched_param __user *, param)
1da177e4 5057{
c21761f1
JB
5058 /* negative values for policy are not valid */
5059 if (policy < 0)
5060 return -EINVAL;
5061
1da177e4
LT
5062 return do_sched_setscheduler(pid, policy, param);
5063}
5064
5065/**
5066 * sys_sched_setparam - set/change the RT priority of a thread
5067 * @pid: the pid in question.
5068 * @param: structure containing the new RT priority.
5069 */
5add95d4 5070SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5071{
5072 return do_sched_setscheduler(pid, -1, param);
5073}
5074
5075/**
5076 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5077 * @pid: the pid in question.
5078 */
5add95d4 5079SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5080{
36c8b586 5081 struct task_struct *p;
3a5c359a 5082 int retval;
1da177e4
LT
5083
5084 if (pid < 0)
3a5c359a 5085 return -EINVAL;
1da177e4
LT
5086
5087 retval = -ESRCH;
5fe85be0 5088 rcu_read_lock();
1da177e4
LT
5089 p = find_process_by_pid(pid);
5090 if (p) {
5091 retval = security_task_getscheduler(p);
5092 if (!retval)
ca94c442
LP
5093 retval = p->policy
5094 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5095 }
5fe85be0 5096 rcu_read_unlock();
1da177e4
LT
5097 return retval;
5098}
5099
5100/**
ca94c442 5101 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5102 * @pid: the pid in question.
5103 * @param: structure containing the RT priority.
5104 */
5add95d4 5105SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5106{
5107 struct sched_param lp;
36c8b586 5108 struct task_struct *p;
3a5c359a 5109 int retval;
1da177e4
LT
5110
5111 if (!param || pid < 0)
3a5c359a 5112 return -EINVAL;
1da177e4 5113
5fe85be0 5114 rcu_read_lock();
1da177e4
LT
5115 p = find_process_by_pid(pid);
5116 retval = -ESRCH;
5117 if (!p)
5118 goto out_unlock;
5119
5120 retval = security_task_getscheduler(p);
5121 if (retval)
5122 goto out_unlock;
5123
5124 lp.sched_priority = p->rt_priority;
5fe85be0 5125 rcu_read_unlock();
1da177e4
LT
5126
5127 /*
5128 * This one might sleep, we cannot do it with a spinlock held ...
5129 */
5130 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5131
1da177e4
LT
5132 return retval;
5133
5134out_unlock:
5fe85be0 5135 rcu_read_unlock();
1da177e4
LT
5136 return retval;
5137}
5138
96f874e2 5139long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5140{
5a16f3d3 5141 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5142 struct task_struct *p;
5143 int retval;
1da177e4 5144
95402b38 5145 get_online_cpus();
23f5d142 5146 rcu_read_lock();
1da177e4
LT
5147
5148 p = find_process_by_pid(pid);
5149 if (!p) {
23f5d142 5150 rcu_read_unlock();
95402b38 5151 put_online_cpus();
1da177e4
LT
5152 return -ESRCH;
5153 }
5154
23f5d142 5155 /* Prevent p going away */
1da177e4 5156 get_task_struct(p);
23f5d142 5157 rcu_read_unlock();
1da177e4 5158
5a16f3d3
RR
5159 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5160 retval = -ENOMEM;
5161 goto out_put_task;
5162 }
5163 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5164 retval = -ENOMEM;
5165 goto out_free_cpus_allowed;
5166 }
1da177e4 5167 retval = -EPERM;
c69e8d9c 5168 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5169 goto out_unlock;
5170
b0ae1981 5171 retval = security_task_setscheduler(p);
e7834f8f
DQ
5172 if (retval)
5173 goto out_unlock;
5174
5a16f3d3
RR
5175 cpuset_cpus_allowed(p, cpus_allowed);
5176 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5177again:
5a16f3d3 5178 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5179
8707d8b8 5180 if (!retval) {
5a16f3d3
RR
5181 cpuset_cpus_allowed(p, cpus_allowed);
5182 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5183 /*
5184 * We must have raced with a concurrent cpuset
5185 * update. Just reset the cpus_allowed to the
5186 * cpuset's cpus_allowed
5187 */
5a16f3d3 5188 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5189 goto again;
5190 }
5191 }
1da177e4 5192out_unlock:
5a16f3d3
RR
5193 free_cpumask_var(new_mask);
5194out_free_cpus_allowed:
5195 free_cpumask_var(cpus_allowed);
5196out_put_task:
1da177e4 5197 put_task_struct(p);
95402b38 5198 put_online_cpus();
1da177e4
LT
5199 return retval;
5200}
5201
5202static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5203 struct cpumask *new_mask)
1da177e4 5204{
96f874e2
RR
5205 if (len < cpumask_size())
5206 cpumask_clear(new_mask);
5207 else if (len > cpumask_size())
5208 len = cpumask_size();
5209
1da177e4
LT
5210 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5211}
5212
5213/**
5214 * sys_sched_setaffinity - set the cpu affinity of a process
5215 * @pid: pid of the process
5216 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5217 * @user_mask_ptr: user-space pointer to the new cpu mask
5218 */
5add95d4
HC
5219SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5220 unsigned long __user *, user_mask_ptr)
1da177e4 5221{
5a16f3d3 5222 cpumask_var_t new_mask;
1da177e4
LT
5223 int retval;
5224
5a16f3d3
RR
5225 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5226 return -ENOMEM;
1da177e4 5227
5a16f3d3
RR
5228 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5229 if (retval == 0)
5230 retval = sched_setaffinity(pid, new_mask);
5231 free_cpumask_var(new_mask);
5232 return retval;
1da177e4
LT
5233}
5234
96f874e2 5235long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5236{
36c8b586 5237 struct task_struct *p;
31605683
TG
5238 unsigned long flags;
5239 struct rq *rq;
1da177e4 5240 int retval;
1da177e4 5241
95402b38 5242 get_online_cpus();
23f5d142 5243 rcu_read_lock();
1da177e4
LT
5244
5245 retval = -ESRCH;
5246 p = find_process_by_pid(pid);
5247 if (!p)
5248 goto out_unlock;
5249
e7834f8f
DQ
5250 retval = security_task_getscheduler(p);
5251 if (retval)
5252 goto out_unlock;
5253
31605683 5254 rq = task_rq_lock(p, &flags);
96f874e2 5255 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5256 task_rq_unlock(rq, &flags);
1da177e4
LT
5257
5258out_unlock:
23f5d142 5259 rcu_read_unlock();
95402b38 5260 put_online_cpus();
1da177e4 5261
9531b62f 5262 return retval;
1da177e4
LT
5263}
5264
5265/**
5266 * sys_sched_getaffinity - get the cpu affinity of a process
5267 * @pid: pid of the process
5268 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5269 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5270 */
5add95d4
HC
5271SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5272 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5273{
5274 int ret;
f17c8607 5275 cpumask_var_t mask;
1da177e4 5276
84fba5ec 5277 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5278 return -EINVAL;
5279 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5280 return -EINVAL;
5281
f17c8607
RR
5282 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5283 return -ENOMEM;
1da177e4 5284
f17c8607
RR
5285 ret = sched_getaffinity(pid, mask);
5286 if (ret == 0) {
8bc037fb 5287 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5288
5289 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5290 ret = -EFAULT;
5291 else
cd3d8031 5292 ret = retlen;
f17c8607
RR
5293 }
5294 free_cpumask_var(mask);
1da177e4 5295
f17c8607 5296 return ret;
1da177e4
LT
5297}
5298
5299/**
5300 * sys_sched_yield - yield the current processor to other threads.
5301 *
dd41f596
IM
5302 * This function yields the current CPU to other tasks. If there are no
5303 * other threads running on this CPU then this function will return.
1da177e4 5304 */
5add95d4 5305SYSCALL_DEFINE0(sched_yield)
1da177e4 5306{
70b97a7f 5307 struct rq *rq = this_rq_lock();
1da177e4 5308
2d72376b 5309 schedstat_inc(rq, yld_count);
4530d7ab 5310 current->sched_class->yield_task(rq);
1da177e4
LT
5311
5312 /*
5313 * Since we are going to call schedule() anyway, there's
5314 * no need to preempt or enable interrupts:
5315 */
5316 __release(rq->lock);
8a25d5de 5317 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5318 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5319 preempt_enable_no_resched();
5320
5321 schedule();
5322
5323 return 0;
5324}
5325
d86ee480
PZ
5326static inline int should_resched(void)
5327{
5328 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5329}
5330
e7b38404 5331static void __cond_resched(void)
1da177e4 5332{
e7aaaa69
FW
5333 add_preempt_count(PREEMPT_ACTIVE);
5334 schedule();
5335 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5336}
5337
02b67cc3 5338int __sched _cond_resched(void)
1da177e4 5339{
d86ee480 5340 if (should_resched()) {
1da177e4
LT
5341 __cond_resched();
5342 return 1;
5343 }
5344 return 0;
5345}
02b67cc3 5346EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5347
5348/*
613afbf8 5349 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5350 * call schedule, and on return reacquire the lock.
5351 *
41a2d6cf 5352 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5353 * operations here to prevent schedule() from being called twice (once via
5354 * spin_unlock(), once by hand).
5355 */
613afbf8 5356int __cond_resched_lock(spinlock_t *lock)
1da177e4 5357{
d86ee480 5358 int resched = should_resched();
6df3cecb
JK
5359 int ret = 0;
5360
f607c668
PZ
5361 lockdep_assert_held(lock);
5362
95c354fe 5363 if (spin_needbreak(lock) || resched) {
1da177e4 5364 spin_unlock(lock);
d86ee480 5365 if (resched)
95c354fe
NP
5366 __cond_resched();
5367 else
5368 cpu_relax();
6df3cecb 5369 ret = 1;
1da177e4 5370 spin_lock(lock);
1da177e4 5371 }
6df3cecb 5372 return ret;
1da177e4 5373}
613afbf8 5374EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5375
613afbf8 5376int __sched __cond_resched_softirq(void)
1da177e4
LT
5377{
5378 BUG_ON(!in_softirq());
5379
d86ee480 5380 if (should_resched()) {
98d82567 5381 local_bh_enable();
1da177e4
LT
5382 __cond_resched();
5383 local_bh_disable();
5384 return 1;
5385 }
5386 return 0;
5387}
613afbf8 5388EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5389
1da177e4
LT
5390/**
5391 * yield - yield the current processor to other threads.
5392 *
72fd4a35 5393 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5394 * thread runnable and calls sys_sched_yield().
5395 */
5396void __sched yield(void)
5397{
5398 set_current_state(TASK_RUNNING);
5399 sys_sched_yield();
5400}
1da177e4
LT
5401EXPORT_SYMBOL(yield);
5402
5403/*
41a2d6cf 5404 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5405 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5406 */
5407void __sched io_schedule(void)
5408{
54d35f29 5409 struct rq *rq = raw_rq();
1da177e4 5410
0ff92245 5411 delayacct_blkio_start();
1da177e4 5412 atomic_inc(&rq->nr_iowait);
8f0dfc34 5413 current->in_iowait = 1;
1da177e4 5414 schedule();
8f0dfc34 5415 current->in_iowait = 0;
1da177e4 5416 atomic_dec(&rq->nr_iowait);
0ff92245 5417 delayacct_blkio_end();
1da177e4 5418}
1da177e4
LT
5419EXPORT_SYMBOL(io_schedule);
5420
5421long __sched io_schedule_timeout(long timeout)
5422{
54d35f29 5423 struct rq *rq = raw_rq();
1da177e4
LT
5424 long ret;
5425
0ff92245 5426 delayacct_blkio_start();
1da177e4 5427 atomic_inc(&rq->nr_iowait);
8f0dfc34 5428 current->in_iowait = 1;
1da177e4 5429 ret = schedule_timeout(timeout);
8f0dfc34 5430 current->in_iowait = 0;
1da177e4 5431 atomic_dec(&rq->nr_iowait);
0ff92245 5432 delayacct_blkio_end();
1da177e4
LT
5433 return ret;
5434}
5435
5436/**
5437 * sys_sched_get_priority_max - return maximum RT priority.
5438 * @policy: scheduling class.
5439 *
5440 * this syscall returns the maximum rt_priority that can be used
5441 * by a given scheduling class.
5442 */
5add95d4 5443SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5444{
5445 int ret = -EINVAL;
5446
5447 switch (policy) {
5448 case SCHED_FIFO:
5449 case SCHED_RR:
5450 ret = MAX_USER_RT_PRIO-1;
5451 break;
5452 case SCHED_NORMAL:
b0a9499c 5453 case SCHED_BATCH:
dd41f596 5454 case SCHED_IDLE:
1da177e4
LT
5455 ret = 0;
5456 break;
5457 }
5458 return ret;
5459}
5460
5461/**
5462 * sys_sched_get_priority_min - return minimum RT priority.
5463 * @policy: scheduling class.
5464 *
5465 * this syscall returns the minimum rt_priority that can be used
5466 * by a given scheduling class.
5467 */
5add95d4 5468SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5469{
5470 int ret = -EINVAL;
5471
5472 switch (policy) {
5473 case SCHED_FIFO:
5474 case SCHED_RR:
5475 ret = 1;
5476 break;
5477 case SCHED_NORMAL:
b0a9499c 5478 case SCHED_BATCH:
dd41f596 5479 case SCHED_IDLE:
1da177e4
LT
5480 ret = 0;
5481 }
5482 return ret;
5483}
5484
5485/**
5486 * sys_sched_rr_get_interval - return the default timeslice of a process.
5487 * @pid: pid of the process.
5488 * @interval: userspace pointer to the timeslice value.
5489 *
5490 * this syscall writes the default timeslice value of a given process
5491 * into the user-space timespec buffer. A value of '0' means infinity.
5492 */
17da2bd9 5493SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5494 struct timespec __user *, interval)
1da177e4 5495{
36c8b586 5496 struct task_struct *p;
a4ec24b4 5497 unsigned int time_slice;
dba091b9
TG
5498 unsigned long flags;
5499 struct rq *rq;
3a5c359a 5500 int retval;
1da177e4 5501 struct timespec t;
1da177e4
LT
5502
5503 if (pid < 0)
3a5c359a 5504 return -EINVAL;
1da177e4
LT
5505
5506 retval = -ESRCH;
1a551ae7 5507 rcu_read_lock();
1da177e4
LT
5508 p = find_process_by_pid(pid);
5509 if (!p)
5510 goto out_unlock;
5511
5512 retval = security_task_getscheduler(p);
5513 if (retval)
5514 goto out_unlock;
5515
dba091b9
TG
5516 rq = task_rq_lock(p, &flags);
5517 time_slice = p->sched_class->get_rr_interval(rq, p);
5518 task_rq_unlock(rq, &flags);
a4ec24b4 5519
1a551ae7 5520 rcu_read_unlock();
a4ec24b4 5521 jiffies_to_timespec(time_slice, &t);
1da177e4 5522 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5523 return retval;
3a5c359a 5524
1da177e4 5525out_unlock:
1a551ae7 5526 rcu_read_unlock();
1da177e4
LT
5527 return retval;
5528}
5529
7c731e0a 5530static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5531
82a1fcb9 5532void sched_show_task(struct task_struct *p)
1da177e4 5533{
1da177e4 5534 unsigned long free = 0;
36c8b586 5535 unsigned state;
1da177e4 5536
1da177e4 5537 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5538 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5539 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5540#if BITS_PER_LONG == 32
1da177e4 5541 if (state == TASK_RUNNING)
3df0fc5b 5542 printk(KERN_CONT " running ");
1da177e4 5543 else
3df0fc5b 5544 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5545#else
5546 if (state == TASK_RUNNING)
3df0fc5b 5547 printk(KERN_CONT " running task ");
1da177e4 5548 else
3df0fc5b 5549 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5550#endif
5551#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5552 free = stack_not_used(p);
1da177e4 5553#endif
3df0fc5b 5554 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5555 task_pid_nr(p), task_pid_nr(p->real_parent),
5556 (unsigned long)task_thread_info(p)->flags);
1da177e4 5557
5fb5e6de 5558 show_stack(p, NULL);
1da177e4
LT
5559}
5560
e59e2ae2 5561void show_state_filter(unsigned long state_filter)
1da177e4 5562{
36c8b586 5563 struct task_struct *g, *p;
1da177e4 5564
4bd77321 5565#if BITS_PER_LONG == 32
3df0fc5b
PZ
5566 printk(KERN_INFO
5567 " task PC stack pid father\n");
1da177e4 5568#else
3df0fc5b
PZ
5569 printk(KERN_INFO
5570 " task PC stack pid father\n");
1da177e4
LT
5571#endif
5572 read_lock(&tasklist_lock);
5573 do_each_thread(g, p) {
5574 /*
5575 * reset the NMI-timeout, listing all files on a slow
5576 * console might take alot of time:
5577 */
5578 touch_nmi_watchdog();
39bc89fd 5579 if (!state_filter || (p->state & state_filter))
82a1fcb9 5580 sched_show_task(p);
1da177e4
LT
5581 } while_each_thread(g, p);
5582
04c9167f
JF
5583 touch_all_softlockup_watchdogs();
5584
dd41f596
IM
5585#ifdef CONFIG_SCHED_DEBUG
5586 sysrq_sched_debug_show();
5587#endif
1da177e4 5588 read_unlock(&tasklist_lock);
e59e2ae2
IM
5589 /*
5590 * Only show locks if all tasks are dumped:
5591 */
93335a21 5592 if (!state_filter)
e59e2ae2 5593 debug_show_all_locks();
1da177e4
LT
5594}
5595
1df21055
IM
5596void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5597{
dd41f596 5598 idle->sched_class = &idle_sched_class;
1df21055
IM
5599}
5600
f340c0d1
IM
5601/**
5602 * init_idle - set up an idle thread for a given CPU
5603 * @idle: task in question
5604 * @cpu: cpu the idle task belongs to
5605 *
5606 * NOTE: this function does not set the idle thread's NEED_RESCHED
5607 * flag, to make booting more robust.
5608 */
5c1e1767 5609void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5610{
70b97a7f 5611 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5612 unsigned long flags;
5613
05fa785c 5614 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5615
dd41f596 5616 __sched_fork(idle);
06b83b5f 5617 idle->state = TASK_RUNNING;
dd41f596
IM
5618 idle->se.exec_start = sched_clock();
5619
96f874e2 5620 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5621 /*
5622 * We're having a chicken and egg problem, even though we are
5623 * holding rq->lock, the cpu isn't yet set to this cpu so the
5624 * lockdep check in task_group() will fail.
5625 *
5626 * Similar case to sched_fork(). / Alternatively we could
5627 * use task_rq_lock() here and obtain the other rq->lock.
5628 *
5629 * Silence PROVE_RCU
5630 */
5631 rcu_read_lock();
dd41f596 5632 __set_task_cpu(idle, cpu);
6506cf6c 5633 rcu_read_unlock();
1da177e4 5634
1da177e4 5635 rq->curr = rq->idle = idle;
4866cde0
NP
5636#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5637 idle->oncpu = 1;
5638#endif
05fa785c 5639 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5640
5641 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5642#if defined(CONFIG_PREEMPT)
5643 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5644#else
a1261f54 5645 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5646#endif
dd41f596
IM
5647 /*
5648 * The idle tasks have their own, simple scheduling class:
5649 */
5650 idle->sched_class = &idle_sched_class;
fb52607a 5651 ftrace_graph_init_task(idle);
1da177e4
LT
5652}
5653
5654/*
5655 * In a system that switches off the HZ timer nohz_cpu_mask
5656 * indicates which cpus entered this state. This is used
5657 * in the rcu update to wait only for active cpus. For system
5658 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5659 * always be CPU_BITS_NONE.
1da177e4 5660 */
6a7b3dc3 5661cpumask_var_t nohz_cpu_mask;
1da177e4 5662
19978ca6
IM
5663/*
5664 * Increase the granularity value when there are more CPUs,
5665 * because with more CPUs the 'effective latency' as visible
5666 * to users decreases. But the relationship is not linear,
5667 * so pick a second-best guess by going with the log2 of the
5668 * number of CPUs.
5669 *
5670 * This idea comes from the SD scheduler of Con Kolivas:
5671 */
acb4a848 5672static int get_update_sysctl_factor(void)
19978ca6 5673{
4ca3ef71 5674 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5675 unsigned int factor;
5676
5677 switch (sysctl_sched_tunable_scaling) {
5678 case SCHED_TUNABLESCALING_NONE:
5679 factor = 1;
5680 break;
5681 case SCHED_TUNABLESCALING_LINEAR:
5682 factor = cpus;
5683 break;
5684 case SCHED_TUNABLESCALING_LOG:
5685 default:
5686 factor = 1 + ilog2(cpus);
5687 break;
5688 }
19978ca6 5689
acb4a848
CE
5690 return factor;
5691}
19978ca6 5692
acb4a848
CE
5693static void update_sysctl(void)
5694{
5695 unsigned int factor = get_update_sysctl_factor();
19978ca6 5696
0bcdcf28
CE
5697#define SET_SYSCTL(name) \
5698 (sysctl_##name = (factor) * normalized_sysctl_##name)
5699 SET_SYSCTL(sched_min_granularity);
5700 SET_SYSCTL(sched_latency);
5701 SET_SYSCTL(sched_wakeup_granularity);
5702 SET_SYSCTL(sched_shares_ratelimit);
5703#undef SET_SYSCTL
5704}
55cd5340 5705
0bcdcf28
CE
5706static inline void sched_init_granularity(void)
5707{
5708 update_sysctl();
19978ca6
IM
5709}
5710
1da177e4
LT
5711#ifdef CONFIG_SMP
5712/*
5713 * This is how migration works:
5714 *
969c7921
TH
5715 * 1) we invoke migration_cpu_stop() on the target CPU using
5716 * stop_one_cpu().
5717 * 2) stopper starts to run (implicitly forcing the migrated thread
5718 * off the CPU)
5719 * 3) it checks whether the migrated task is still in the wrong runqueue.
5720 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5721 * it and puts it into the right queue.
969c7921
TH
5722 * 5) stopper completes and stop_one_cpu() returns and the migration
5723 * is done.
1da177e4
LT
5724 */
5725
5726/*
5727 * Change a given task's CPU affinity. Migrate the thread to a
5728 * proper CPU and schedule it away if the CPU it's executing on
5729 * is removed from the allowed bitmask.
5730 *
5731 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5732 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5733 * call is not atomic; no spinlocks may be held.
5734 */
96f874e2 5735int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5736{
5737 unsigned long flags;
70b97a7f 5738 struct rq *rq;
969c7921 5739 unsigned int dest_cpu;
48f24c4d 5740 int ret = 0;
1da177e4 5741
65cc8e48
PZ
5742 /*
5743 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5744 * drop the rq->lock and still rely on ->cpus_allowed.
5745 */
5746again:
5747 while (task_is_waking(p))
5748 cpu_relax();
1da177e4 5749 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5750 if (task_is_waking(p)) {
5751 task_rq_unlock(rq, &flags);
5752 goto again;
5753 }
e2912009 5754
6ad4c188 5755 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5756 ret = -EINVAL;
5757 goto out;
5758 }
5759
9985b0ba 5760 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5761 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5762 ret = -EINVAL;
5763 goto out;
5764 }
5765
73fe6aae 5766 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5767 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5768 else {
96f874e2
RR
5769 cpumask_copy(&p->cpus_allowed, new_mask);
5770 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5771 }
5772
1da177e4 5773 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5774 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5775 goto out;
5776
969c7921
TH
5777 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5778 if (migrate_task(p, dest_cpu)) {
5779 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5780 /* Need help from migration thread: drop lock and wait. */
5781 task_rq_unlock(rq, &flags);
969c7921 5782 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5783 tlb_migrate_finish(p->mm);
5784 return 0;
5785 }
5786out:
5787 task_rq_unlock(rq, &flags);
48f24c4d 5788
1da177e4
LT
5789 return ret;
5790}
cd8ba7cd 5791EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5792
5793/*
41a2d6cf 5794 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5795 * this because either it can't run here any more (set_cpus_allowed()
5796 * away from this CPU, or CPU going down), or because we're
5797 * attempting to rebalance this task on exec (sched_exec).
5798 *
5799 * So we race with normal scheduler movements, but that's OK, as long
5800 * as the task is no longer on this CPU.
efc30814
KK
5801 *
5802 * Returns non-zero if task was successfully migrated.
1da177e4 5803 */
efc30814 5804static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5805{
70b97a7f 5806 struct rq *rq_dest, *rq_src;
e2912009 5807 int ret = 0;
1da177e4 5808
e761b772 5809 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5810 return ret;
1da177e4
LT
5811
5812 rq_src = cpu_rq(src_cpu);
5813 rq_dest = cpu_rq(dest_cpu);
5814
5815 double_rq_lock(rq_src, rq_dest);
5816 /* Already moved. */
5817 if (task_cpu(p) != src_cpu)
b1e38734 5818 goto done;
1da177e4 5819 /* Affinity changed (again). */
96f874e2 5820 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5821 goto fail;
1da177e4 5822
e2912009
PZ
5823 /*
5824 * If we're not on a rq, the next wake-up will ensure we're
5825 * placed properly.
5826 */
5827 if (p->se.on_rq) {
2e1cb74a 5828 deactivate_task(rq_src, p, 0);
e2912009 5829 set_task_cpu(p, dest_cpu);
dd41f596 5830 activate_task(rq_dest, p, 0);
15afe09b 5831 check_preempt_curr(rq_dest, p, 0);
1da177e4 5832 }
b1e38734 5833done:
efc30814 5834 ret = 1;
b1e38734 5835fail:
1da177e4 5836 double_rq_unlock(rq_src, rq_dest);
efc30814 5837 return ret;
1da177e4
LT
5838}
5839
5840/*
969c7921
TH
5841 * migration_cpu_stop - this will be executed by a highprio stopper thread
5842 * and performs thread migration by bumping thread off CPU then
5843 * 'pushing' onto another runqueue.
1da177e4 5844 */
969c7921 5845static int migration_cpu_stop(void *data)
1da177e4 5846{
969c7921 5847 struct migration_arg *arg = data;
f7b4cddc 5848
969c7921
TH
5849 /*
5850 * The original target cpu might have gone down and we might
5851 * be on another cpu but it doesn't matter.
5852 */
f7b4cddc 5853 local_irq_disable();
969c7921 5854 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5855 local_irq_enable();
1da177e4 5856 return 0;
f7b4cddc
ON
5857}
5858
1da177e4 5859#ifdef CONFIG_HOTPLUG_CPU
054b9108 5860/*
3a4fa0a2 5861 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5862 */
6a1bdc1b 5863void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5864{
1445c08d
ON
5865 struct rq *rq = cpu_rq(dead_cpu);
5866 int needs_cpu, uninitialized_var(dest_cpu);
5867 unsigned long flags;
e76bd8d9 5868
1445c08d 5869 local_irq_save(flags);
e76bd8d9 5870
1445c08d
ON
5871 raw_spin_lock(&rq->lock);
5872 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5873 if (needs_cpu)
5874 dest_cpu = select_fallback_rq(dead_cpu, p);
5875 raw_spin_unlock(&rq->lock);
c1804d54
ON
5876 /*
5877 * It can only fail if we race with set_cpus_allowed(),
5878 * in the racer should migrate the task anyway.
5879 */
1445c08d 5880 if (needs_cpu)
c1804d54 5881 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5882 local_irq_restore(flags);
1da177e4
LT
5883}
5884
5885/*
5886 * While a dead CPU has no uninterruptible tasks queued at this point,
5887 * it might still have a nonzero ->nr_uninterruptible counter, because
5888 * for performance reasons the counter is not stricly tracking tasks to
5889 * their home CPUs. So we just add the counter to another CPU's counter,
5890 * to keep the global sum constant after CPU-down:
5891 */
70b97a7f 5892static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5893{
6ad4c188 5894 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5895 unsigned long flags;
5896
5897 local_irq_save(flags);
5898 double_rq_lock(rq_src, rq_dest);
5899 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5900 rq_src->nr_uninterruptible = 0;
5901 double_rq_unlock(rq_src, rq_dest);
5902 local_irq_restore(flags);
5903}
5904
5905/* Run through task list and migrate tasks from the dead cpu. */
5906static void migrate_live_tasks(int src_cpu)
5907{
48f24c4d 5908 struct task_struct *p, *t;
1da177e4 5909
f7b4cddc 5910 read_lock(&tasklist_lock);
1da177e4 5911
48f24c4d
IM
5912 do_each_thread(t, p) {
5913 if (p == current)
1da177e4
LT
5914 continue;
5915
48f24c4d
IM
5916 if (task_cpu(p) == src_cpu)
5917 move_task_off_dead_cpu(src_cpu, p);
5918 } while_each_thread(t, p);
1da177e4 5919
f7b4cddc 5920 read_unlock(&tasklist_lock);
1da177e4
LT
5921}
5922
dd41f596
IM
5923/*
5924 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5925 * It does so by boosting its priority to highest possible.
5926 * Used by CPU offline code.
1da177e4
LT
5927 */
5928void sched_idle_next(void)
5929{
48f24c4d 5930 int this_cpu = smp_processor_id();
70b97a7f 5931 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5932 struct task_struct *p = rq->idle;
5933 unsigned long flags;
5934
5935 /* cpu has to be offline */
48f24c4d 5936 BUG_ON(cpu_online(this_cpu));
1da177e4 5937
48f24c4d
IM
5938 /*
5939 * Strictly not necessary since rest of the CPUs are stopped by now
5940 * and interrupts disabled on the current cpu.
1da177e4 5941 */
05fa785c 5942 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5943
dd41f596 5944 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5945
94bc9a7b 5946 activate_task(rq, p, 0);
1da177e4 5947
05fa785c 5948 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5949}
5950
48f24c4d
IM
5951/*
5952 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5953 * offline.
5954 */
5955void idle_task_exit(void)
5956{
5957 struct mm_struct *mm = current->active_mm;
5958
5959 BUG_ON(cpu_online(smp_processor_id()));
5960
5961 if (mm != &init_mm)
5962 switch_mm(mm, &init_mm, current);
5963 mmdrop(mm);
5964}
5965
054b9108 5966/* called under rq->lock with disabled interrupts */
36c8b586 5967static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5968{
70b97a7f 5969 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5970
5971 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5972 BUG_ON(!p->exit_state);
1da177e4
LT
5973
5974 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5975 BUG_ON(p->state == TASK_DEAD);
1da177e4 5976
48f24c4d 5977 get_task_struct(p);
1da177e4
LT
5978
5979 /*
5980 * Drop lock around migration; if someone else moves it,
41a2d6cf 5981 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5982 * fine.
5983 */
05fa785c 5984 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5985 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5986 raw_spin_lock_irq(&rq->lock);
1da177e4 5987
48f24c4d 5988 put_task_struct(p);
1da177e4
LT
5989}
5990
5991/* release_task() removes task from tasklist, so we won't find dead tasks. */
5992static void migrate_dead_tasks(unsigned int dead_cpu)
5993{
70b97a7f 5994 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5995 struct task_struct *next;
48f24c4d 5996
dd41f596
IM
5997 for ( ; ; ) {
5998 if (!rq->nr_running)
5999 break;
b67802ea 6000 next = pick_next_task(rq);
dd41f596
IM
6001 if (!next)
6002 break;
79c53799 6003 next->sched_class->put_prev_task(rq, next);
dd41f596 6004 migrate_dead(dead_cpu, next);
e692ab53 6005
1da177e4
LT
6006 }
6007}
dce48a84
TG
6008
6009/*
6010 * remove the tasks which were accounted by rq from calc_load_tasks.
6011 */
6012static void calc_global_load_remove(struct rq *rq)
6013{
6014 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 6015 rq->calc_load_active = 0;
dce48a84 6016}
1da177e4
LT
6017#endif /* CONFIG_HOTPLUG_CPU */
6018
e692ab53
NP
6019#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6020
6021static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6022 {
6023 .procname = "sched_domain",
c57baf1e 6024 .mode = 0555,
e0361851 6025 },
56992309 6026 {}
e692ab53
NP
6027};
6028
6029static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6030 {
6031 .procname = "kernel",
c57baf1e 6032 .mode = 0555,
e0361851
AD
6033 .child = sd_ctl_dir,
6034 },
56992309 6035 {}
e692ab53
NP
6036};
6037
6038static struct ctl_table *sd_alloc_ctl_entry(int n)
6039{
6040 struct ctl_table *entry =
5cf9f062 6041 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6042
e692ab53
NP
6043 return entry;
6044}
6045
6382bc90
MM
6046static void sd_free_ctl_entry(struct ctl_table **tablep)
6047{
cd790076 6048 struct ctl_table *entry;
6382bc90 6049
cd790076
MM
6050 /*
6051 * In the intermediate directories, both the child directory and
6052 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6053 * will always be set. In the lowest directory the names are
cd790076
MM
6054 * static strings and all have proc handlers.
6055 */
6056 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6057 if (entry->child)
6058 sd_free_ctl_entry(&entry->child);
cd790076
MM
6059 if (entry->proc_handler == NULL)
6060 kfree(entry->procname);
6061 }
6382bc90
MM
6062
6063 kfree(*tablep);
6064 *tablep = NULL;
6065}
6066
e692ab53 6067static void
e0361851 6068set_table_entry(struct ctl_table *entry,
e692ab53
NP
6069 const char *procname, void *data, int maxlen,
6070 mode_t mode, proc_handler *proc_handler)
6071{
e692ab53
NP
6072 entry->procname = procname;
6073 entry->data = data;
6074 entry->maxlen = maxlen;
6075 entry->mode = mode;
6076 entry->proc_handler = proc_handler;
6077}
6078
6079static struct ctl_table *
6080sd_alloc_ctl_domain_table(struct sched_domain *sd)
6081{
a5d8c348 6082 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6083
ad1cdc1d
MM
6084 if (table == NULL)
6085 return NULL;
6086
e0361851 6087 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6088 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6089 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6090 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6091 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6092 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6093 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6094 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6095 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6096 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6097 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6098 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6099 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6100 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6101 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6102 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6103 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6104 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6105 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6106 &sd->cache_nice_tries,
6107 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6108 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6109 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6110 set_table_entry(&table[11], "name", sd->name,
6111 CORENAME_MAX_SIZE, 0444, proc_dostring);
6112 /* &table[12] is terminator */
e692ab53
NP
6113
6114 return table;
6115}
6116
9a4e7159 6117static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6118{
6119 struct ctl_table *entry, *table;
6120 struct sched_domain *sd;
6121 int domain_num = 0, i;
6122 char buf[32];
6123
6124 for_each_domain(cpu, sd)
6125 domain_num++;
6126 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6127 if (table == NULL)
6128 return NULL;
e692ab53
NP
6129
6130 i = 0;
6131 for_each_domain(cpu, sd) {
6132 snprintf(buf, 32, "domain%d", i);
e692ab53 6133 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6134 entry->mode = 0555;
e692ab53
NP
6135 entry->child = sd_alloc_ctl_domain_table(sd);
6136 entry++;
6137 i++;
6138 }
6139 return table;
6140}
6141
6142static struct ctl_table_header *sd_sysctl_header;
6382bc90 6143static void register_sched_domain_sysctl(void)
e692ab53 6144{
6ad4c188 6145 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6146 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6147 char buf[32];
6148
7378547f
MM
6149 WARN_ON(sd_ctl_dir[0].child);
6150 sd_ctl_dir[0].child = entry;
6151
ad1cdc1d
MM
6152 if (entry == NULL)
6153 return;
6154
6ad4c188 6155 for_each_possible_cpu(i) {
e692ab53 6156 snprintf(buf, 32, "cpu%d", i);
e692ab53 6157 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6158 entry->mode = 0555;
e692ab53 6159 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6160 entry++;
e692ab53 6161 }
7378547f
MM
6162
6163 WARN_ON(sd_sysctl_header);
e692ab53
NP
6164 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6165}
6382bc90 6166
7378547f 6167/* may be called multiple times per register */
6382bc90
MM
6168static void unregister_sched_domain_sysctl(void)
6169{
7378547f
MM
6170 if (sd_sysctl_header)
6171 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6172 sd_sysctl_header = NULL;
7378547f
MM
6173 if (sd_ctl_dir[0].child)
6174 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6175}
e692ab53 6176#else
6382bc90
MM
6177static void register_sched_domain_sysctl(void)
6178{
6179}
6180static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6181{
6182}
6183#endif
6184
1f11eb6a
GH
6185static void set_rq_online(struct rq *rq)
6186{
6187 if (!rq->online) {
6188 const struct sched_class *class;
6189
c6c4927b 6190 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6191 rq->online = 1;
6192
6193 for_each_class(class) {
6194 if (class->rq_online)
6195 class->rq_online(rq);
6196 }
6197 }
6198}
6199
6200static void set_rq_offline(struct rq *rq)
6201{
6202 if (rq->online) {
6203 const struct sched_class *class;
6204
6205 for_each_class(class) {
6206 if (class->rq_offline)
6207 class->rq_offline(rq);
6208 }
6209
c6c4927b 6210 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6211 rq->online = 0;
6212 }
6213}
6214
1da177e4
LT
6215/*
6216 * migration_call - callback that gets triggered when a CPU is added.
6217 * Here we can start up the necessary migration thread for the new CPU.
6218 */
48f24c4d
IM
6219static int __cpuinit
6220migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6221{
48f24c4d 6222 int cpu = (long)hcpu;
1da177e4 6223 unsigned long flags;
969c7921 6224 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6225
6226 switch (action) {
5be9361c 6227
1da177e4 6228 case CPU_UP_PREPARE:
8bb78442 6229 case CPU_UP_PREPARE_FROZEN:
a468d389 6230 rq->calc_load_update = calc_load_update;
1da177e4 6231 break;
48f24c4d 6232
1da177e4 6233 case CPU_ONLINE:
8bb78442 6234 case CPU_ONLINE_FROZEN:
1f94ef59 6235 /* Update our root-domain */
05fa785c 6236 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6237 if (rq->rd) {
c6c4927b 6238 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6239
6240 set_rq_online(rq);
1f94ef59 6241 }
05fa785c 6242 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6243 break;
48f24c4d 6244
1da177e4 6245#ifdef CONFIG_HOTPLUG_CPU
1da177e4 6246 case CPU_DEAD:
8bb78442 6247 case CPU_DEAD_FROZEN:
1da177e4 6248 migrate_live_tasks(cpu);
1da177e4 6249 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 6250 raw_spin_lock_irq(&rq->lock);
2e1cb74a 6251 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
6252 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6253 rq->idle->sched_class = &idle_sched_class;
1da177e4 6254 migrate_dead_tasks(cpu);
05fa785c 6255 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
6256 migrate_nr_uninterruptible(rq);
6257 BUG_ON(rq->nr_running != 0);
dce48a84 6258 calc_global_load_remove(rq);
1da177e4 6259 break;
57d885fe 6260
08f503b0
GH
6261 case CPU_DYING:
6262 case CPU_DYING_FROZEN:
57d885fe 6263 /* Update our root-domain */
05fa785c 6264 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6265 if (rq->rd) {
c6c4927b 6266 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6267 set_rq_offline(rq);
57d885fe 6268 }
05fa785c 6269 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 6270 break;
1da177e4
LT
6271#endif
6272 }
6273 return NOTIFY_OK;
6274}
6275
f38b0820
PM
6276/*
6277 * Register at high priority so that task migration (migrate_all_tasks)
6278 * happens before everything else. This has to be lower priority than
cdd6c482 6279 * the notifier in the perf_event subsystem, though.
1da177e4 6280 */
26c2143b 6281static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6282 .notifier_call = migration_call,
50a323b7 6283 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6284};
6285
3a101d05
TH
6286static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6287 unsigned long action, void *hcpu)
6288{
6289 switch (action & ~CPU_TASKS_FROZEN) {
6290 case CPU_ONLINE:
6291 case CPU_DOWN_FAILED:
6292 set_cpu_active((long)hcpu, true);
6293 return NOTIFY_OK;
6294 default:
6295 return NOTIFY_DONE;
6296 }
6297}
6298
6299static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6300 unsigned long action, void *hcpu)
6301{
6302 switch (action & ~CPU_TASKS_FROZEN) {
6303 case CPU_DOWN_PREPARE:
6304 set_cpu_active((long)hcpu, false);
6305 return NOTIFY_OK;
6306 default:
6307 return NOTIFY_DONE;
6308 }
6309}
6310
7babe8db 6311static int __init migration_init(void)
1da177e4
LT
6312{
6313 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6314 int err;
48f24c4d 6315
3a101d05 6316 /* Initialize migration for the boot CPU */
07dccf33
AM
6317 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6318 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6319 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6320 register_cpu_notifier(&migration_notifier);
7babe8db 6321
3a101d05
TH
6322 /* Register cpu active notifiers */
6323 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6324 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6325
a004cd42 6326 return 0;
1da177e4 6327}
7babe8db 6328early_initcall(migration_init);
1da177e4
LT
6329#endif
6330
6331#ifdef CONFIG_SMP
476f3534 6332
3e9830dc 6333#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6334
f6630114
MT
6335static __read_mostly int sched_domain_debug_enabled;
6336
6337static int __init sched_domain_debug_setup(char *str)
6338{
6339 sched_domain_debug_enabled = 1;
6340
6341 return 0;
6342}
6343early_param("sched_debug", sched_domain_debug_setup);
6344
7c16ec58 6345static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6346 struct cpumask *groupmask)
1da177e4 6347{
4dcf6aff 6348 struct sched_group *group = sd->groups;
434d53b0 6349 char str[256];
1da177e4 6350
968ea6d8 6351 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6352 cpumask_clear(groupmask);
4dcf6aff
IM
6353
6354 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6355
6356 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6357 printk("does not load-balance\n");
4dcf6aff 6358 if (sd->parent)
3df0fc5b
PZ
6359 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6360 " has parent");
4dcf6aff 6361 return -1;
41c7ce9a
NP
6362 }
6363
3df0fc5b 6364 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6365
758b2cdc 6366 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6367 printk(KERN_ERR "ERROR: domain->span does not contain "
6368 "CPU%d\n", cpu);
4dcf6aff 6369 }
758b2cdc 6370 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6371 printk(KERN_ERR "ERROR: domain->groups does not contain"
6372 " CPU%d\n", cpu);
4dcf6aff 6373 }
1da177e4 6374
4dcf6aff 6375 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6376 do {
4dcf6aff 6377 if (!group) {
3df0fc5b
PZ
6378 printk("\n");
6379 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6380 break;
6381 }
6382
18a3885f 6383 if (!group->cpu_power) {
3df0fc5b
PZ
6384 printk(KERN_CONT "\n");
6385 printk(KERN_ERR "ERROR: domain->cpu_power not "
6386 "set\n");
4dcf6aff
IM
6387 break;
6388 }
1da177e4 6389
758b2cdc 6390 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6391 printk(KERN_CONT "\n");
6392 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6393 break;
6394 }
1da177e4 6395
758b2cdc 6396 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6397 printk(KERN_CONT "\n");
6398 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6399 break;
6400 }
1da177e4 6401
758b2cdc 6402 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6403
968ea6d8 6404 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6405
3df0fc5b 6406 printk(KERN_CONT " %s", str);
18a3885f 6407 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6408 printk(KERN_CONT " (cpu_power = %d)",
6409 group->cpu_power);
381512cf 6410 }
1da177e4 6411
4dcf6aff
IM
6412 group = group->next;
6413 } while (group != sd->groups);
3df0fc5b 6414 printk(KERN_CONT "\n");
1da177e4 6415
758b2cdc 6416 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6417 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6418
758b2cdc
RR
6419 if (sd->parent &&
6420 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6421 printk(KERN_ERR "ERROR: parent span is not a superset "
6422 "of domain->span\n");
4dcf6aff
IM
6423 return 0;
6424}
1da177e4 6425
4dcf6aff
IM
6426static void sched_domain_debug(struct sched_domain *sd, int cpu)
6427{
d5dd3db1 6428 cpumask_var_t groupmask;
4dcf6aff 6429 int level = 0;
1da177e4 6430
f6630114
MT
6431 if (!sched_domain_debug_enabled)
6432 return;
6433
4dcf6aff
IM
6434 if (!sd) {
6435 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6436 return;
6437 }
1da177e4 6438
4dcf6aff
IM
6439 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6440
d5dd3db1 6441 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6442 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6443 return;
6444 }
6445
4dcf6aff 6446 for (;;) {
7c16ec58 6447 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6448 break;
1da177e4
LT
6449 level++;
6450 sd = sd->parent;
33859f7f 6451 if (!sd)
4dcf6aff
IM
6452 break;
6453 }
d5dd3db1 6454 free_cpumask_var(groupmask);
1da177e4 6455}
6d6bc0ad 6456#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6457# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6458#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6459
1a20ff27 6460static int sd_degenerate(struct sched_domain *sd)
245af2c7 6461{
758b2cdc 6462 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6463 return 1;
6464
6465 /* Following flags need at least 2 groups */
6466 if (sd->flags & (SD_LOAD_BALANCE |
6467 SD_BALANCE_NEWIDLE |
6468 SD_BALANCE_FORK |
89c4710e
SS
6469 SD_BALANCE_EXEC |
6470 SD_SHARE_CPUPOWER |
6471 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6472 if (sd->groups != sd->groups->next)
6473 return 0;
6474 }
6475
6476 /* Following flags don't use groups */
c88d5910 6477 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6478 return 0;
6479
6480 return 1;
6481}
6482
48f24c4d
IM
6483static int
6484sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6485{
6486 unsigned long cflags = sd->flags, pflags = parent->flags;
6487
6488 if (sd_degenerate(parent))
6489 return 1;
6490
758b2cdc 6491 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6492 return 0;
6493
245af2c7
SS
6494 /* Flags needing groups don't count if only 1 group in parent */
6495 if (parent->groups == parent->groups->next) {
6496 pflags &= ~(SD_LOAD_BALANCE |
6497 SD_BALANCE_NEWIDLE |
6498 SD_BALANCE_FORK |
89c4710e
SS
6499 SD_BALANCE_EXEC |
6500 SD_SHARE_CPUPOWER |
6501 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6502 if (nr_node_ids == 1)
6503 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6504 }
6505 if (~cflags & pflags)
6506 return 0;
6507
6508 return 1;
6509}
6510
c6c4927b
RR
6511static void free_rootdomain(struct root_domain *rd)
6512{
047106ad
PZ
6513 synchronize_sched();
6514
68e74568
RR
6515 cpupri_cleanup(&rd->cpupri);
6516
c6c4927b
RR
6517 free_cpumask_var(rd->rto_mask);
6518 free_cpumask_var(rd->online);
6519 free_cpumask_var(rd->span);
6520 kfree(rd);
6521}
6522
57d885fe
GH
6523static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6524{
a0490fa3 6525 struct root_domain *old_rd = NULL;
57d885fe 6526 unsigned long flags;
57d885fe 6527
05fa785c 6528 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6529
6530 if (rq->rd) {
a0490fa3 6531 old_rd = rq->rd;
57d885fe 6532
c6c4927b 6533 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6534 set_rq_offline(rq);
57d885fe 6535
c6c4927b 6536 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6537
a0490fa3
IM
6538 /*
6539 * If we dont want to free the old_rt yet then
6540 * set old_rd to NULL to skip the freeing later
6541 * in this function:
6542 */
6543 if (!atomic_dec_and_test(&old_rd->refcount))
6544 old_rd = NULL;
57d885fe
GH
6545 }
6546
6547 atomic_inc(&rd->refcount);
6548 rq->rd = rd;
6549
c6c4927b 6550 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6551 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6552 set_rq_online(rq);
57d885fe 6553
05fa785c 6554 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6555
6556 if (old_rd)
6557 free_rootdomain(old_rd);
57d885fe
GH
6558}
6559
68c38fc3 6560static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6561{
6562 memset(rd, 0, sizeof(*rd));
6563
68c38fc3 6564 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6565 goto out;
68c38fc3 6566 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6567 goto free_span;
68c38fc3 6568 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6569 goto free_online;
6e0534f2 6570
68c38fc3 6571 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6572 goto free_rto_mask;
c6c4927b 6573 return 0;
6e0534f2 6574
68e74568
RR
6575free_rto_mask:
6576 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6577free_online:
6578 free_cpumask_var(rd->online);
6579free_span:
6580 free_cpumask_var(rd->span);
0c910d28 6581out:
c6c4927b 6582 return -ENOMEM;
57d885fe
GH
6583}
6584
6585static void init_defrootdomain(void)
6586{
68c38fc3 6587 init_rootdomain(&def_root_domain);
c6c4927b 6588
57d885fe
GH
6589 atomic_set(&def_root_domain.refcount, 1);
6590}
6591
dc938520 6592static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6593{
6594 struct root_domain *rd;
6595
6596 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6597 if (!rd)
6598 return NULL;
6599
68c38fc3 6600 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6601 kfree(rd);
6602 return NULL;
6603 }
57d885fe
GH
6604
6605 return rd;
6606}
6607
1da177e4 6608/*
0eab9146 6609 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6610 * hold the hotplug lock.
6611 */
0eab9146
IM
6612static void
6613cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6614{
70b97a7f 6615 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6616 struct sched_domain *tmp;
6617
669c55e9
PZ
6618 for (tmp = sd; tmp; tmp = tmp->parent)
6619 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6620
245af2c7 6621 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6622 for (tmp = sd; tmp; ) {
245af2c7
SS
6623 struct sched_domain *parent = tmp->parent;
6624 if (!parent)
6625 break;
f29c9b1c 6626
1a848870 6627 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6628 tmp->parent = parent->parent;
1a848870
SS
6629 if (parent->parent)
6630 parent->parent->child = tmp;
f29c9b1c
LZ
6631 } else
6632 tmp = tmp->parent;
245af2c7
SS
6633 }
6634
1a848870 6635 if (sd && sd_degenerate(sd)) {
245af2c7 6636 sd = sd->parent;
1a848870
SS
6637 if (sd)
6638 sd->child = NULL;
6639 }
1da177e4
LT
6640
6641 sched_domain_debug(sd, cpu);
6642
57d885fe 6643 rq_attach_root(rq, rd);
674311d5 6644 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6645}
6646
6647/* cpus with isolated domains */
dcc30a35 6648static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6649
6650/* Setup the mask of cpus configured for isolated domains */
6651static int __init isolated_cpu_setup(char *str)
6652{
bdddd296 6653 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6654 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6655 return 1;
6656}
6657
8927f494 6658__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6659
6660/*
6711cab4
SS
6661 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6662 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6663 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6664 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6665 *
6666 * init_sched_build_groups will build a circular linked list of the groups
6667 * covered by the given span, and will set each group's ->cpumask correctly,
6668 * and ->cpu_power to 0.
6669 */
a616058b 6670static void
96f874e2
RR
6671init_sched_build_groups(const struct cpumask *span,
6672 const struct cpumask *cpu_map,
6673 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6674 struct sched_group **sg,
96f874e2
RR
6675 struct cpumask *tmpmask),
6676 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6677{
6678 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6679 int i;
6680
96f874e2 6681 cpumask_clear(covered);
7c16ec58 6682
abcd083a 6683 for_each_cpu(i, span) {
6711cab4 6684 struct sched_group *sg;
7c16ec58 6685 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6686 int j;
6687
758b2cdc 6688 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6689 continue;
6690
758b2cdc 6691 cpumask_clear(sched_group_cpus(sg));
18a3885f 6692 sg->cpu_power = 0;
1da177e4 6693
abcd083a 6694 for_each_cpu(j, span) {
7c16ec58 6695 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6696 continue;
6697
96f874e2 6698 cpumask_set_cpu(j, covered);
758b2cdc 6699 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6700 }
6701 if (!first)
6702 first = sg;
6703 if (last)
6704 last->next = sg;
6705 last = sg;
6706 }
6707 last->next = first;
6708}
6709
9c1cfda2 6710#define SD_NODES_PER_DOMAIN 16
1da177e4 6711
9c1cfda2 6712#ifdef CONFIG_NUMA
198e2f18 6713
9c1cfda2
JH
6714/**
6715 * find_next_best_node - find the next node to include in a sched_domain
6716 * @node: node whose sched_domain we're building
6717 * @used_nodes: nodes already in the sched_domain
6718 *
41a2d6cf 6719 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6720 * finds the closest node not already in the @used_nodes map.
6721 *
6722 * Should use nodemask_t.
6723 */
c5f59f08 6724static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6725{
6726 int i, n, val, min_val, best_node = 0;
6727
6728 min_val = INT_MAX;
6729
076ac2af 6730 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6731 /* Start at @node */
076ac2af 6732 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6733
6734 if (!nr_cpus_node(n))
6735 continue;
6736
6737 /* Skip already used nodes */
c5f59f08 6738 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6739 continue;
6740
6741 /* Simple min distance search */
6742 val = node_distance(node, n);
6743
6744 if (val < min_val) {
6745 min_val = val;
6746 best_node = n;
6747 }
6748 }
6749
c5f59f08 6750 node_set(best_node, *used_nodes);
9c1cfda2
JH
6751 return best_node;
6752}
6753
6754/**
6755 * sched_domain_node_span - get a cpumask for a node's sched_domain
6756 * @node: node whose cpumask we're constructing
73486722 6757 * @span: resulting cpumask
9c1cfda2 6758 *
41a2d6cf 6759 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6760 * should be one that prevents unnecessary balancing, but also spreads tasks
6761 * out optimally.
6762 */
96f874e2 6763static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6764{
c5f59f08 6765 nodemask_t used_nodes;
48f24c4d 6766 int i;
9c1cfda2 6767
6ca09dfc 6768 cpumask_clear(span);
c5f59f08 6769 nodes_clear(used_nodes);
9c1cfda2 6770
6ca09dfc 6771 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6772 node_set(node, used_nodes);
9c1cfda2
JH
6773
6774 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6775 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6776
6ca09dfc 6777 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6778 }
9c1cfda2 6779}
6d6bc0ad 6780#endif /* CONFIG_NUMA */
9c1cfda2 6781
5c45bf27 6782int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6783
6c99e9ad
RR
6784/*
6785 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6786 *
6787 * ( See the the comments in include/linux/sched.h:struct sched_group
6788 * and struct sched_domain. )
6c99e9ad
RR
6789 */
6790struct static_sched_group {
6791 struct sched_group sg;
6792 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6793};
6794
6795struct static_sched_domain {
6796 struct sched_domain sd;
6797 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6798};
6799
49a02c51
AH
6800struct s_data {
6801#ifdef CONFIG_NUMA
6802 int sd_allnodes;
6803 cpumask_var_t domainspan;
6804 cpumask_var_t covered;
6805 cpumask_var_t notcovered;
6806#endif
6807 cpumask_var_t nodemask;
6808 cpumask_var_t this_sibling_map;
6809 cpumask_var_t this_core_map;
01a08546 6810 cpumask_var_t this_book_map;
49a02c51
AH
6811 cpumask_var_t send_covered;
6812 cpumask_var_t tmpmask;
6813 struct sched_group **sched_group_nodes;
6814 struct root_domain *rd;
6815};
6816
2109b99e
AH
6817enum s_alloc {
6818 sa_sched_groups = 0,
6819 sa_rootdomain,
6820 sa_tmpmask,
6821 sa_send_covered,
01a08546 6822 sa_this_book_map,
2109b99e
AH
6823 sa_this_core_map,
6824 sa_this_sibling_map,
6825 sa_nodemask,
6826 sa_sched_group_nodes,
6827#ifdef CONFIG_NUMA
6828 sa_notcovered,
6829 sa_covered,
6830 sa_domainspan,
6831#endif
6832 sa_none,
6833};
6834
9c1cfda2 6835/*
48f24c4d 6836 * SMT sched-domains:
9c1cfda2 6837 */
1da177e4 6838#ifdef CONFIG_SCHED_SMT
6c99e9ad 6839static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6840static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6841
41a2d6cf 6842static int
96f874e2
RR
6843cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6844 struct sched_group **sg, struct cpumask *unused)
1da177e4 6845{
6711cab4 6846 if (sg)
1871e52c 6847 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6848 return cpu;
6849}
6d6bc0ad 6850#endif /* CONFIG_SCHED_SMT */
1da177e4 6851
48f24c4d
IM
6852/*
6853 * multi-core sched-domains:
6854 */
1e9f28fa 6855#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6856static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6857static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6858
41a2d6cf 6859static int
96f874e2
RR
6860cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6861 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6862{
6711cab4 6863 int group;
f269893c 6864#ifdef CONFIG_SCHED_SMT
c69fc56d 6865 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6866 group = cpumask_first(mask);
f269893c
HC
6867#else
6868 group = cpu;
6869#endif
6711cab4 6870 if (sg)
6c99e9ad 6871 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6872 return group;
1e9f28fa 6873}
f269893c 6874#endif /* CONFIG_SCHED_MC */
1e9f28fa 6875
01a08546
HC
6876/*
6877 * book sched-domains:
6878 */
6879#ifdef CONFIG_SCHED_BOOK
6880static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6881static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6882
41a2d6cf 6883static int
01a08546
HC
6884cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6885 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6886{
01a08546
HC
6887 int group = cpu;
6888#ifdef CONFIG_SCHED_MC
6889 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6890 group = cpumask_first(mask);
6891#elif defined(CONFIG_SCHED_SMT)
6892 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6893 group = cpumask_first(mask);
6894#endif
6711cab4 6895 if (sg)
01a08546
HC
6896 *sg = &per_cpu(sched_group_book, group).sg;
6897 return group;
1e9f28fa 6898}
01a08546 6899#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6900
6c99e9ad
RR
6901static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6902static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6903
41a2d6cf 6904static int
96f874e2
RR
6905cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6906 struct sched_group **sg, struct cpumask *mask)
1da177e4 6907{
6711cab4 6908 int group;
01a08546
HC
6909#ifdef CONFIG_SCHED_BOOK
6910 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6911 group = cpumask_first(mask);
6912#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6913 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6914 group = cpumask_first(mask);
1e9f28fa 6915#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6916 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6917 group = cpumask_first(mask);
1da177e4 6918#else
6711cab4 6919 group = cpu;
1da177e4 6920#endif
6711cab4 6921 if (sg)
6c99e9ad 6922 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6923 return group;
1da177e4
LT
6924}
6925
6926#ifdef CONFIG_NUMA
1da177e4 6927/*
9c1cfda2
JH
6928 * The init_sched_build_groups can't handle what we want to do with node
6929 * groups, so roll our own. Now each node has its own list of groups which
6930 * gets dynamically allocated.
1da177e4 6931 */
62ea9ceb 6932static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6933static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6934
62ea9ceb 6935static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6936static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6937
96f874e2
RR
6938static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6939 struct sched_group **sg,
6940 struct cpumask *nodemask)
9c1cfda2 6941{
6711cab4
SS
6942 int group;
6943
6ca09dfc 6944 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6945 group = cpumask_first(nodemask);
6711cab4
SS
6946
6947 if (sg)
6c99e9ad 6948 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6949 return group;
1da177e4 6950}
6711cab4 6951
08069033
SS
6952static void init_numa_sched_groups_power(struct sched_group *group_head)
6953{
6954 struct sched_group *sg = group_head;
6955 int j;
6956
6957 if (!sg)
6958 return;
3a5c359a 6959 do {
758b2cdc 6960 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6961 struct sched_domain *sd;
08069033 6962
6c99e9ad 6963 sd = &per_cpu(phys_domains, j).sd;
13318a71 6964 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6965 /*
6966 * Only add "power" once for each
6967 * physical package.
6968 */
6969 continue;
6970 }
08069033 6971
18a3885f 6972 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6973 }
6974 sg = sg->next;
6975 } while (sg != group_head);
08069033 6976}
0601a88d
AH
6977
6978static int build_numa_sched_groups(struct s_data *d,
6979 const struct cpumask *cpu_map, int num)
6980{
6981 struct sched_domain *sd;
6982 struct sched_group *sg, *prev;
6983 int n, j;
6984
6985 cpumask_clear(d->covered);
6986 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6987 if (cpumask_empty(d->nodemask)) {
6988 d->sched_group_nodes[num] = NULL;
6989 goto out;
6990 }
6991
6992 sched_domain_node_span(num, d->domainspan);
6993 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6994
6995 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6996 GFP_KERNEL, num);
6997 if (!sg) {
3df0fc5b
PZ
6998 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6999 num);
0601a88d
AH
7000 return -ENOMEM;
7001 }
7002 d->sched_group_nodes[num] = sg;
7003
7004 for_each_cpu(j, d->nodemask) {
7005 sd = &per_cpu(node_domains, j).sd;
7006 sd->groups = sg;
7007 }
7008
18a3885f 7009 sg->cpu_power = 0;
0601a88d
AH
7010 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7011 sg->next = sg;
7012 cpumask_or(d->covered, d->covered, d->nodemask);
7013
7014 prev = sg;
7015 for (j = 0; j < nr_node_ids; j++) {
7016 n = (num + j) % nr_node_ids;
7017 cpumask_complement(d->notcovered, d->covered);
7018 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7019 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7020 if (cpumask_empty(d->tmpmask))
7021 break;
7022 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7023 if (cpumask_empty(d->tmpmask))
7024 continue;
7025 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7026 GFP_KERNEL, num);
7027 if (!sg) {
3df0fc5b
PZ
7028 printk(KERN_WARNING
7029 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7030 return -ENOMEM;
7031 }
18a3885f 7032 sg->cpu_power = 0;
0601a88d
AH
7033 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7034 sg->next = prev->next;
7035 cpumask_or(d->covered, d->covered, d->tmpmask);
7036 prev->next = sg;
7037 prev = sg;
7038 }
7039out:
7040 return 0;
7041}
6d6bc0ad 7042#endif /* CONFIG_NUMA */
1da177e4 7043
a616058b 7044#ifdef CONFIG_NUMA
51888ca2 7045/* Free memory allocated for various sched_group structures */
96f874e2
RR
7046static void free_sched_groups(const struct cpumask *cpu_map,
7047 struct cpumask *nodemask)
51888ca2 7048{
a616058b 7049 int cpu, i;
51888ca2 7050
abcd083a 7051 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7052 struct sched_group **sched_group_nodes
7053 = sched_group_nodes_bycpu[cpu];
7054
51888ca2
SV
7055 if (!sched_group_nodes)
7056 continue;
7057
076ac2af 7058 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7059 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7060
6ca09dfc 7061 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7062 if (cpumask_empty(nodemask))
51888ca2
SV
7063 continue;
7064
7065 if (sg == NULL)
7066 continue;
7067 sg = sg->next;
7068next_sg:
7069 oldsg = sg;
7070 sg = sg->next;
7071 kfree(oldsg);
7072 if (oldsg != sched_group_nodes[i])
7073 goto next_sg;
7074 }
7075 kfree(sched_group_nodes);
7076 sched_group_nodes_bycpu[cpu] = NULL;
7077 }
51888ca2 7078}
6d6bc0ad 7079#else /* !CONFIG_NUMA */
96f874e2
RR
7080static void free_sched_groups(const struct cpumask *cpu_map,
7081 struct cpumask *nodemask)
a616058b
SS
7082{
7083}
6d6bc0ad 7084#endif /* CONFIG_NUMA */
51888ca2 7085
89c4710e
SS
7086/*
7087 * Initialize sched groups cpu_power.
7088 *
7089 * cpu_power indicates the capacity of sched group, which is used while
7090 * distributing the load between different sched groups in a sched domain.
7091 * Typically cpu_power for all the groups in a sched domain will be same unless
7092 * there are asymmetries in the topology. If there are asymmetries, group
7093 * having more cpu_power will pickup more load compared to the group having
7094 * less cpu_power.
89c4710e
SS
7095 */
7096static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7097{
7098 struct sched_domain *child;
7099 struct sched_group *group;
f93e65c1
PZ
7100 long power;
7101 int weight;
89c4710e
SS
7102
7103 WARN_ON(!sd || !sd->groups);
7104
13318a71 7105 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7106 return;
7107
aae6d3dd
SS
7108 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7109
89c4710e
SS
7110 child = sd->child;
7111
18a3885f 7112 sd->groups->cpu_power = 0;
5517d86b 7113
f93e65c1
PZ
7114 if (!child) {
7115 power = SCHED_LOAD_SCALE;
7116 weight = cpumask_weight(sched_domain_span(sd));
7117 /*
7118 * SMT siblings share the power of a single core.
a52bfd73
PZ
7119 * Usually multiple threads get a better yield out of
7120 * that one core than a single thread would have,
7121 * reflect that in sd->smt_gain.
f93e65c1 7122 */
a52bfd73
PZ
7123 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7124 power *= sd->smt_gain;
f93e65c1 7125 power /= weight;
a52bfd73
PZ
7126 power >>= SCHED_LOAD_SHIFT;
7127 }
18a3885f 7128 sd->groups->cpu_power += power;
89c4710e
SS
7129 return;
7130 }
7131
89c4710e 7132 /*
f93e65c1 7133 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7134 */
7135 group = child->groups;
7136 do {
18a3885f 7137 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7138 group = group->next;
7139 } while (group != child->groups);
7140}
7141
7c16ec58
MT
7142/*
7143 * Initializers for schedule domains
7144 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7145 */
7146
a5d8c348
IM
7147#ifdef CONFIG_SCHED_DEBUG
7148# define SD_INIT_NAME(sd, type) sd->name = #type
7149#else
7150# define SD_INIT_NAME(sd, type) do { } while (0)
7151#endif
7152
7c16ec58 7153#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7154
7c16ec58
MT
7155#define SD_INIT_FUNC(type) \
7156static noinline void sd_init_##type(struct sched_domain *sd) \
7157{ \
7158 memset(sd, 0, sizeof(*sd)); \
7159 *sd = SD_##type##_INIT; \
1d3504fc 7160 sd->level = SD_LV_##type; \
a5d8c348 7161 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7162}
7163
7164SD_INIT_FUNC(CPU)
7165#ifdef CONFIG_NUMA
7166 SD_INIT_FUNC(ALLNODES)
7167 SD_INIT_FUNC(NODE)
7168#endif
7169#ifdef CONFIG_SCHED_SMT
7170 SD_INIT_FUNC(SIBLING)
7171#endif
7172#ifdef CONFIG_SCHED_MC
7173 SD_INIT_FUNC(MC)
7174#endif
01a08546
HC
7175#ifdef CONFIG_SCHED_BOOK
7176 SD_INIT_FUNC(BOOK)
7177#endif
7c16ec58 7178
1d3504fc
HS
7179static int default_relax_domain_level = -1;
7180
7181static int __init setup_relax_domain_level(char *str)
7182{
30e0e178
LZ
7183 unsigned long val;
7184
7185 val = simple_strtoul(str, NULL, 0);
7186 if (val < SD_LV_MAX)
7187 default_relax_domain_level = val;
7188
1d3504fc
HS
7189 return 1;
7190}
7191__setup("relax_domain_level=", setup_relax_domain_level);
7192
7193static void set_domain_attribute(struct sched_domain *sd,
7194 struct sched_domain_attr *attr)
7195{
7196 int request;
7197
7198 if (!attr || attr->relax_domain_level < 0) {
7199 if (default_relax_domain_level < 0)
7200 return;
7201 else
7202 request = default_relax_domain_level;
7203 } else
7204 request = attr->relax_domain_level;
7205 if (request < sd->level) {
7206 /* turn off idle balance on this domain */
c88d5910 7207 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7208 } else {
7209 /* turn on idle balance on this domain */
c88d5910 7210 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7211 }
7212}
7213
2109b99e
AH
7214static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7215 const struct cpumask *cpu_map)
7216{
7217 switch (what) {
7218 case sa_sched_groups:
7219 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7220 d->sched_group_nodes = NULL;
7221 case sa_rootdomain:
7222 free_rootdomain(d->rd); /* fall through */
7223 case sa_tmpmask:
7224 free_cpumask_var(d->tmpmask); /* fall through */
7225 case sa_send_covered:
7226 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7227 case sa_this_book_map:
7228 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7229 case sa_this_core_map:
7230 free_cpumask_var(d->this_core_map); /* fall through */
7231 case sa_this_sibling_map:
7232 free_cpumask_var(d->this_sibling_map); /* fall through */
7233 case sa_nodemask:
7234 free_cpumask_var(d->nodemask); /* fall through */
7235 case sa_sched_group_nodes:
d1b55138 7236#ifdef CONFIG_NUMA
2109b99e
AH
7237 kfree(d->sched_group_nodes); /* fall through */
7238 case sa_notcovered:
7239 free_cpumask_var(d->notcovered); /* fall through */
7240 case sa_covered:
7241 free_cpumask_var(d->covered); /* fall through */
7242 case sa_domainspan:
7243 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7244#endif
2109b99e
AH
7245 case sa_none:
7246 break;
7247 }
7248}
3404c8d9 7249
2109b99e
AH
7250static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7251 const struct cpumask *cpu_map)
7252{
3404c8d9 7253#ifdef CONFIG_NUMA
2109b99e
AH
7254 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7255 return sa_none;
7256 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7257 return sa_domainspan;
7258 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7259 return sa_covered;
7260 /* Allocate the per-node list of sched groups */
7261 d->sched_group_nodes = kcalloc(nr_node_ids,
7262 sizeof(struct sched_group *), GFP_KERNEL);
7263 if (!d->sched_group_nodes) {
3df0fc5b 7264 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7265 return sa_notcovered;
d1b55138 7266 }
2109b99e 7267 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7268#endif
2109b99e
AH
7269 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7270 return sa_sched_group_nodes;
7271 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7272 return sa_nodemask;
7273 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7274 return sa_this_sibling_map;
01a08546 7275 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7276 return sa_this_core_map;
01a08546
HC
7277 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7278 return sa_this_book_map;
2109b99e
AH
7279 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7280 return sa_send_covered;
7281 d->rd = alloc_rootdomain();
7282 if (!d->rd) {
3df0fc5b 7283 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7284 return sa_tmpmask;
57d885fe 7285 }
2109b99e
AH
7286 return sa_rootdomain;
7287}
57d885fe 7288
7f4588f3
AH
7289static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7290 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7291{
7292 struct sched_domain *sd = NULL;
7c16ec58 7293#ifdef CONFIG_NUMA
7f4588f3 7294 struct sched_domain *parent;
1da177e4 7295
7f4588f3
AH
7296 d->sd_allnodes = 0;
7297 if (cpumask_weight(cpu_map) >
7298 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7299 sd = &per_cpu(allnodes_domains, i).sd;
7300 SD_INIT(sd, ALLNODES);
1d3504fc 7301 set_domain_attribute(sd, attr);
7f4588f3
AH
7302 cpumask_copy(sched_domain_span(sd), cpu_map);
7303 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7304 d->sd_allnodes = 1;
7305 }
7306 parent = sd;
7307
7308 sd = &per_cpu(node_domains, i).sd;
7309 SD_INIT(sd, NODE);
7310 set_domain_attribute(sd, attr);
7311 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7312 sd->parent = parent;
7313 if (parent)
7314 parent->child = sd;
7315 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7316#endif
7f4588f3
AH
7317 return sd;
7318}
1da177e4 7319
87cce662
AH
7320static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7321 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7322 struct sched_domain *parent, int i)
7323{
7324 struct sched_domain *sd;
7325 sd = &per_cpu(phys_domains, i).sd;
7326 SD_INIT(sd, CPU);
7327 set_domain_attribute(sd, attr);
7328 cpumask_copy(sched_domain_span(sd), d->nodemask);
7329 sd->parent = parent;
7330 if (parent)
7331 parent->child = sd;
7332 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7333 return sd;
7334}
1da177e4 7335
01a08546
HC
7336static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7337 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7338 struct sched_domain *parent, int i)
7339{
7340 struct sched_domain *sd = parent;
7341#ifdef CONFIG_SCHED_BOOK
7342 sd = &per_cpu(book_domains, i).sd;
7343 SD_INIT(sd, BOOK);
7344 set_domain_attribute(sd, attr);
7345 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7346 sd->parent = parent;
7347 parent->child = sd;
7348 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7349#endif
7350 return sd;
7351}
7352
410c4081
AH
7353static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7354 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7355 struct sched_domain *parent, int i)
7356{
7357 struct sched_domain *sd = parent;
1e9f28fa 7358#ifdef CONFIG_SCHED_MC
410c4081
AH
7359 sd = &per_cpu(core_domains, i).sd;
7360 SD_INIT(sd, MC);
7361 set_domain_attribute(sd, attr);
7362 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7363 sd->parent = parent;
7364 parent->child = sd;
7365 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7366#endif
410c4081
AH
7367 return sd;
7368}
1e9f28fa 7369
d8173535
AH
7370static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7371 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7372 struct sched_domain *parent, int i)
7373{
7374 struct sched_domain *sd = parent;
1da177e4 7375#ifdef CONFIG_SCHED_SMT
d8173535
AH
7376 sd = &per_cpu(cpu_domains, i).sd;
7377 SD_INIT(sd, SIBLING);
7378 set_domain_attribute(sd, attr);
7379 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7380 sd->parent = parent;
7381 parent->child = sd;
7382 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7383#endif
d8173535
AH
7384 return sd;
7385}
1da177e4 7386
0e8e85c9
AH
7387static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7388 const struct cpumask *cpu_map, int cpu)
7389{
7390 switch (l) {
1da177e4 7391#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7392 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7393 cpumask_and(d->this_sibling_map, cpu_map,
7394 topology_thread_cpumask(cpu));
7395 if (cpu == cpumask_first(d->this_sibling_map))
7396 init_sched_build_groups(d->this_sibling_map, cpu_map,
7397 &cpu_to_cpu_group,
7398 d->send_covered, d->tmpmask);
7399 break;
1da177e4 7400#endif
1e9f28fa 7401#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7402 case SD_LV_MC: /* set up multi-core groups */
7403 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7404 if (cpu == cpumask_first(d->this_core_map))
7405 init_sched_build_groups(d->this_core_map, cpu_map,
7406 &cpu_to_core_group,
7407 d->send_covered, d->tmpmask);
7408 break;
01a08546
HC
7409#endif
7410#ifdef CONFIG_SCHED_BOOK
7411 case SD_LV_BOOK: /* set up book groups */
7412 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7413 if (cpu == cpumask_first(d->this_book_map))
7414 init_sched_build_groups(d->this_book_map, cpu_map,
7415 &cpu_to_book_group,
7416 d->send_covered, d->tmpmask);
7417 break;
1e9f28fa 7418#endif
86548096
AH
7419 case SD_LV_CPU: /* set up physical groups */
7420 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7421 if (!cpumask_empty(d->nodemask))
7422 init_sched_build_groups(d->nodemask, cpu_map,
7423 &cpu_to_phys_group,
7424 d->send_covered, d->tmpmask);
7425 break;
1da177e4 7426#ifdef CONFIG_NUMA
de616e36
AH
7427 case SD_LV_ALLNODES:
7428 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7429 d->send_covered, d->tmpmask);
7430 break;
7431#endif
0e8e85c9
AH
7432 default:
7433 break;
7c16ec58 7434 }
0e8e85c9 7435}
9c1cfda2 7436
2109b99e
AH
7437/*
7438 * Build sched domains for a given set of cpus and attach the sched domains
7439 * to the individual cpus
7440 */
7441static int __build_sched_domains(const struct cpumask *cpu_map,
7442 struct sched_domain_attr *attr)
7443{
7444 enum s_alloc alloc_state = sa_none;
7445 struct s_data d;
294b0c96 7446 struct sched_domain *sd;
2109b99e 7447 int i;
7c16ec58 7448#ifdef CONFIG_NUMA
2109b99e 7449 d.sd_allnodes = 0;
7c16ec58 7450#endif
9c1cfda2 7451
2109b99e
AH
7452 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7453 if (alloc_state != sa_rootdomain)
7454 goto error;
7455 alloc_state = sa_sched_groups;
9c1cfda2 7456
1da177e4 7457 /*
1a20ff27 7458 * Set up domains for cpus specified by the cpu_map.
1da177e4 7459 */
abcd083a 7460 for_each_cpu(i, cpu_map) {
49a02c51
AH
7461 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7462 cpu_map);
9761eea8 7463
7f4588f3 7464 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7465 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7466 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7467 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7468 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7469 }
9c1cfda2 7470
abcd083a 7471 for_each_cpu(i, cpu_map) {
0e8e85c9 7472 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7473 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7474 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7475 }
9c1cfda2 7476
1da177e4 7477 /* Set up physical groups */
86548096
AH
7478 for (i = 0; i < nr_node_ids; i++)
7479 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7480
1da177e4
LT
7481#ifdef CONFIG_NUMA
7482 /* Set up node groups */
de616e36
AH
7483 if (d.sd_allnodes)
7484 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7485
0601a88d
AH
7486 for (i = 0; i < nr_node_ids; i++)
7487 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7488 goto error;
1da177e4
LT
7489#endif
7490
7491 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7492#ifdef CONFIG_SCHED_SMT
abcd083a 7493 for_each_cpu(i, cpu_map) {
294b0c96 7494 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7495 init_sched_groups_power(i, sd);
5c45bf27 7496 }
1da177e4 7497#endif
1e9f28fa 7498#ifdef CONFIG_SCHED_MC
abcd083a 7499 for_each_cpu(i, cpu_map) {
294b0c96 7500 sd = &per_cpu(core_domains, i).sd;
89c4710e 7501 init_sched_groups_power(i, sd);
5c45bf27
SS
7502 }
7503#endif
01a08546
HC
7504#ifdef CONFIG_SCHED_BOOK
7505 for_each_cpu(i, cpu_map) {
7506 sd = &per_cpu(book_domains, i).sd;
7507 init_sched_groups_power(i, sd);
7508 }
7509#endif
1e9f28fa 7510
abcd083a 7511 for_each_cpu(i, cpu_map) {
294b0c96 7512 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7513 init_sched_groups_power(i, sd);
1da177e4
LT
7514 }
7515
9c1cfda2 7516#ifdef CONFIG_NUMA
076ac2af 7517 for (i = 0; i < nr_node_ids; i++)
49a02c51 7518 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7519
49a02c51 7520 if (d.sd_allnodes) {
6711cab4 7521 struct sched_group *sg;
f712c0c7 7522
96f874e2 7523 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7524 d.tmpmask);
f712c0c7
SS
7525 init_numa_sched_groups_power(sg);
7526 }
9c1cfda2
JH
7527#endif
7528
1da177e4 7529 /* Attach the domains */
abcd083a 7530 for_each_cpu(i, cpu_map) {
1da177e4 7531#ifdef CONFIG_SCHED_SMT
6c99e9ad 7532 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7533#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7534 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7535#elif defined(CONFIG_SCHED_BOOK)
7536 sd = &per_cpu(book_domains, i).sd;
1da177e4 7537#else
6c99e9ad 7538 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7539#endif
49a02c51 7540 cpu_attach_domain(sd, d.rd, i);
1da177e4 7541 }
51888ca2 7542
2109b99e
AH
7543 d.sched_group_nodes = NULL; /* don't free this we still need it */
7544 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7545 return 0;
51888ca2 7546
51888ca2 7547error:
2109b99e
AH
7548 __free_domain_allocs(&d, alloc_state, cpu_map);
7549 return -ENOMEM;
1da177e4 7550}
029190c5 7551
96f874e2 7552static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7553{
7554 return __build_sched_domains(cpu_map, NULL);
7555}
7556
acc3f5d7 7557static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7558static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7559static struct sched_domain_attr *dattr_cur;
7560 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7561
7562/*
7563 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7564 * cpumask) fails, then fallback to a single sched domain,
7565 * as determined by the single cpumask fallback_doms.
029190c5 7566 */
4212823f 7567static cpumask_var_t fallback_doms;
029190c5 7568
ee79d1bd
HC
7569/*
7570 * arch_update_cpu_topology lets virtualized architectures update the
7571 * cpu core maps. It is supposed to return 1 if the topology changed
7572 * or 0 if it stayed the same.
7573 */
7574int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7575{
ee79d1bd 7576 return 0;
22e52b07
HC
7577}
7578
acc3f5d7
RR
7579cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7580{
7581 int i;
7582 cpumask_var_t *doms;
7583
7584 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7585 if (!doms)
7586 return NULL;
7587 for (i = 0; i < ndoms; i++) {
7588 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7589 free_sched_domains(doms, i);
7590 return NULL;
7591 }
7592 }
7593 return doms;
7594}
7595
7596void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7597{
7598 unsigned int i;
7599 for (i = 0; i < ndoms; i++)
7600 free_cpumask_var(doms[i]);
7601 kfree(doms);
7602}
7603
1a20ff27 7604/*
41a2d6cf 7605 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7606 * For now this just excludes isolated cpus, but could be used to
7607 * exclude other special cases in the future.
1a20ff27 7608 */
96f874e2 7609static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7610{
7378547f
MM
7611 int err;
7612
22e52b07 7613 arch_update_cpu_topology();
029190c5 7614 ndoms_cur = 1;
acc3f5d7 7615 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7616 if (!doms_cur)
acc3f5d7
RR
7617 doms_cur = &fallback_doms;
7618 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7619 dattr_cur = NULL;
acc3f5d7 7620 err = build_sched_domains(doms_cur[0]);
6382bc90 7621 register_sched_domain_sysctl();
7378547f
MM
7622
7623 return err;
1a20ff27
DG
7624}
7625
96f874e2
RR
7626static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7627 struct cpumask *tmpmask)
1da177e4 7628{
7c16ec58 7629 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7630}
1da177e4 7631
1a20ff27
DG
7632/*
7633 * Detach sched domains from a group of cpus specified in cpu_map
7634 * These cpus will now be attached to the NULL domain
7635 */
96f874e2 7636static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7637{
96f874e2
RR
7638 /* Save because hotplug lock held. */
7639 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7640 int i;
7641
abcd083a 7642 for_each_cpu(i, cpu_map)
57d885fe 7643 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7644 synchronize_sched();
96f874e2 7645 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7646}
7647
1d3504fc
HS
7648/* handle null as "default" */
7649static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7650 struct sched_domain_attr *new, int idx_new)
7651{
7652 struct sched_domain_attr tmp;
7653
7654 /* fast path */
7655 if (!new && !cur)
7656 return 1;
7657
7658 tmp = SD_ATTR_INIT;
7659 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7660 new ? (new + idx_new) : &tmp,
7661 sizeof(struct sched_domain_attr));
7662}
7663
029190c5
PJ
7664/*
7665 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7666 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7667 * doms_new[] to the current sched domain partitioning, doms_cur[].
7668 * It destroys each deleted domain and builds each new domain.
7669 *
acc3f5d7 7670 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7671 * The masks don't intersect (don't overlap.) We should setup one
7672 * sched domain for each mask. CPUs not in any of the cpumasks will
7673 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7674 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7675 * it as it is.
7676 *
acc3f5d7
RR
7677 * The passed in 'doms_new' should be allocated using
7678 * alloc_sched_domains. This routine takes ownership of it and will
7679 * free_sched_domains it when done with it. If the caller failed the
7680 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7681 * and partition_sched_domains() will fallback to the single partition
7682 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7683 *
96f874e2 7684 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7685 * ndoms_new == 0 is a special case for destroying existing domains,
7686 * and it will not create the default domain.
dfb512ec 7687 *
029190c5
PJ
7688 * Call with hotplug lock held
7689 */
acc3f5d7 7690void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7691 struct sched_domain_attr *dattr_new)
029190c5 7692{
dfb512ec 7693 int i, j, n;
d65bd5ec 7694 int new_topology;
029190c5 7695
712555ee 7696 mutex_lock(&sched_domains_mutex);
a1835615 7697
7378547f
MM
7698 /* always unregister in case we don't destroy any domains */
7699 unregister_sched_domain_sysctl();
7700
d65bd5ec
HC
7701 /* Let architecture update cpu core mappings. */
7702 new_topology = arch_update_cpu_topology();
7703
dfb512ec 7704 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7705
7706 /* Destroy deleted domains */
7707 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7708 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7709 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7710 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7711 goto match1;
7712 }
7713 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7714 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7715match1:
7716 ;
7717 }
7718
e761b772
MK
7719 if (doms_new == NULL) {
7720 ndoms_cur = 0;
acc3f5d7 7721 doms_new = &fallback_doms;
6ad4c188 7722 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7723 WARN_ON_ONCE(dattr_new);
e761b772
MK
7724 }
7725
029190c5
PJ
7726 /* Build new domains */
7727 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7728 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7729 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7730 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7731 goto match2;
7732 }
7733 /* no match - add a new doms_new */
acc3f5d7 7734 __build_sched_domains(doms_new[i],
1d3504fc 7735 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7736match2:
7737 ;
7738 }
7739
7740 /* Remember the new sched domains */
acc3f5d7
RR
7741 if (doms_cur != &fallback_doms)
7742 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7743 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7744 doms_cur = doms_new;
1d3504fc 7745 dattr_cur = dattr_new;
029190c5 7746 ndoms_cur = ndoms_new;
7378547f
MM
7747
7748 register_sched_domain_sysctl();
a1835615 7749
712555ee 7750 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7751}
7752
5c45bf27 7753#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7754static void arch_reinit_sched_domains(void)
5c45bf27 7755{
95402b38 7756 get_online_cpus();
dfb512ec
MK
7757
7758 /* Destroy domains first to force the rebuild */
7759 partition_sched_domains(0, NULL, NULL);
7760
e761b772 7761 rebuild_sched_domains();
95402b38 7762 put_online_cpus();
5c45bf27
SS
7763}
7764
7765static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7766{
afb8a9b7 7767 unsigned int level = 0;
5c45bf27 7768
afb8a9b7
GS
7769 if (sscanf(buf, "%u", &level) != 1)
7770 return -EINVAL;
7771
7772 /*
7773 * level is always be positive so don't check for
7774 * level < POWERSAVINGS_BALANCE_NONE which is 0
7775 * What happens on 0 or 1 byte write,
7776 * need to check for count as well?
7777 */
7778
7779 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7780 return -EINVAL;
7781
7782 if (smt)
afb8a9b7 7783 sched_smt_power_savings = level;
5c45bf27 7784 else
afb8a9b7 7785 sched_mc_power_savings = level;
5c45bf27 7786
c70f22d2 7787 arch_reinit_sched_domains();
5c45bf27 7788
c70f22d2 7789 return count;
5c45bf27
SS
7790}
7791
5c45bf27 7792#ifdef CONFIG_SCHED_MC
f718cd4a 7793static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7794 struct sysdev_class_attribute *attr,
f718cd4a 7795 char *page)
5c45bf27
SS
7796{
7797 return sprintf(page, "%u\n", sched_mc_power_savings);
7798}
f718cd4a 7799static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7800 struct sysdev_class_attribute *attr,
48f24c4d 7801 const char *buf, size_t count)
5c45bf27
SS
7802{
7803 return sched_power_savings_store(buf, count, 0);
7804}
f718cd4a
AK
7805static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7806 sched_mc_power_savings_show,
7807 sched_mc_power_savings_store);
5c45bf27
SS
7808#endif
7809
7810#ifdef CONFIG_SCHED_SMT
f718cd4a 7811static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7812 struct sysdev_class_attribute *attr,
f718cd4a 7813 char *page)
5c45bf27
SS
7814{
7815 return sprintf(page, "%u\n", sched_smt_power_savings);
7816}
f718cd4a 7817static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7818 struct sysdev_class_attribute *attr,
48f24c4d 7819 const char *buf, size_t count)
5c45bf27
SS
7820{
7821 return sched_power_savings_store(buf, count, 1);
7822}
f718cd4a
AK
7823static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7824 sched_smt_power_savings_show,
6707de00
AB
7825 sched_smt_power_savings_store);
7826#endif
7827
39aac648 7828int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7829{
7830 int err = 0;
7831
7832#ifdef CONFIG_SCHED_SMT
7833 if (smt_capable())
7834 err = sysfs_create_file(&cls->kset.kobj,
7835 &attr_sched_smt_power_savings.attr);
7836#endif
7837#ifdef CONFIG_SCHED_MC
7838 if (!err && mc_capable())
7839 err = sysfs_create_file(&cls->kset.kobj,
7840 &attr_sched_mc_power_savings.attr);
7841#endif
7842 return err;
7843}
6d6bc0ad 7844#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7845
1da177e4 7846/*
3a101d05
TH
7847 * Update cpusets according to cpu_active mask. If cpusets are
7848 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7849 * around partition_sched_domains().
1da177e4 7850 */
0b2e918a
TH
7851static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7852 void *hcpu)
e761b772 7853{
3a101d05 7854 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7855 case CPU_ONLINE:
6ad4c188 7856 case CPU_DOWN_FAILED:
3a101d05 7857 cpuset_update_active_cpus();
e761b772 7858 return NOTIFY_OK;
3a101d05
TH
7859 default:
7860 return NOTIFY_DONE;
7861 }
7862}
e761b772 7863
0b2e918a
TH
7864static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7865 void *hcpu)
3a101d05
TH
7866{
7867 switch (action & ~CPU_TASKS_FROZEN) {
7868 case CPU_DOWN_PREPARE:
7869 cpuset_update_active_cpus();
7870 return NOTIFY_OK;
e761b772
MK
7871 default:
7872 return NOTIFY_DONE;
7873 }
7874}
e761b772
MK
7875
7876static int update_runtime(struct notifier_block *nfb,
7877 unsigned long action, void *hcpu)
1da177e4 7878{
7def2be1
PZ
7879 int cpu = (int)(long)hcpu;
7880
1da177e4 7881 switch (action) {
1da177e4 7882 case CPU_DOWN_PREPARE:
8bb78442 7883 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7884 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7885 return NOTIFY_OK;
7886
1da177e4 7887 case CPU_DOWN_FAILED:
8bb78442 7888 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7889 case CPU_ONLINE:
8bb78442 7890 case CPU_ONLINE_FROZEN:
7def2be1 7891 enable_runtime(cpu_rq(cpu));
e761b772
MK
7892 return NOTIFY_OK;
7893
1da177e4
LT
7894 default:
7895 return NOTIFY_DONE;
7896 }
1da177e4 7897}
1da177e4
LT
7898
7899void __init sched_init_smp(void)
7900{
dcc30a35
RR
7901 cpumask_var_t non_isolated_cpus;
7902
7903 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7904 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7905
434d53b0
MT
7906#if defined(CONFIG_NUMA)
7907 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7908 GFP_KERNEL);
7909 BUG_ON(sched_group_nodes_bycpu == NULL);
7910#endif
95402b38 7911 get_online_cpus();
712555ee 7912 mutex_lock(&sched_domains_mutex);
6ad4c188 7913 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7914 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7915 if (cpumask_empty(non_isolated_cpus))
7916 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7917 mutex_unlock(&sched_domains_mutex);
95402b38 7918 put_online_cpus();
e761b772 7919
3a101d05
TH
7920 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7921 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7922
7923 /* RT runtime code needs to handle some hotplug events */
7924 hotcpu_notifier(update_runtime, 0);
7925
b328ca18 7926 init_hrtick();
5c1e1767
NP
7927
7928 /* Move init over to a non-isolated CPU */
dcc30a35 7929 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7930 BUG();
19978ca6 7931 sched_init_granularity();
dcc30a35 7932 free_cpumask_var(non_isolated_cpus);
4212823f 7933
0e3900e6 7934 init_sched_rt_class();
1da177e4
LT
7935}
7936#else
7937void __init sched_init_smp(void)
7938{
19978ca6 7939 sched_init_granularity();
1da177e4
LT
7940}
7941#endif /* CONFIG_SMP */
7942
cd1bb94b
AB
7943const_debug unsigned int sysctl_timer_migration = 1;
7944
1da177e4
LT
7945int in_sched_functions(unsigned long addr)
7946{
1da177e4
LT
7947 return in_lock_functions(addr) ||
7948 (addr >= (unsigned long)__sched_text_start
7949 && addr < (unsigned long)__sched_text_end);
7950}
7951
a9957449 7952static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7953{
7954 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7955 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7956#ifdef CONFIG_FAIR_GROUP_SCHED
7957 cfs_rq->rq = rq;
7958#endif
67e9fb2a 7959 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7960}
7961
fa85ae24
PZ
7962static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7963{
7964 struct rt_prio_array *array;
7965 int i;
7966
7967 array = &rt_rq->active;
7968 for (i = 0; i < MAX_RT_PRIO; i++) {
7969 INIT_LIST_HEAD(array->queue + i);
7970 __clear_bit(i, array->bitmap);
7971 }
7972 /* delimiter for bitsearch: */
7973 __set_bit(MAX_RT_PRIO, array->bitmap);
7974
052f1dc7 7975#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7976 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7977#ifdef CONFIG_SMP
e864c499 7978 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7979#endif
48d5e258 7980#endif
fa85ae24
PZ
7981#ifdef CONFIG_SMP
7982 rt_rq->rt_nr_migratory = 0;
fa85ae24 7983 rt_rq->overloaded = 0;
05fa785c 7984 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7985#endif
7986
7987 rt_rq->rt_time = 0;
7988 rt_rq->rt_throttled = 0;
ac086bc2 7989 rt_rq->rt_runtime = 0;
0986b11b 7990 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7991
052f1dc7 7992#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7993 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7994 rt_rq->rq = rq;
7995#endif
fa85ae24
PZ
7996}
7997
6f505b16 7998#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7999static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8000 struct sched_entity *se, int cpu, int add,
8001 struct sched_entity *parent)
6f505b16 8002{
ec7dc8ac 8003 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8004 tg->cfs_rq[cpu] = cfs_rq;
8005 init_cfs_rq(cfs_rq, rq);
8006 cfs_rq->tg = tg;
8007 if (add)
8008 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8009
8010 tg->se[cpu] = se;
354d60c2
DG
8011 /* se could be NULL for init_task_group */
8012 if (!se)
8013 return;
8014
ec7dc8ac
DG
8015 if (!parent)
8016 se->cfs_rq = &rq->cfs;
8017 else
8018 se->cfs_rq = parent->my_q;
8019
6f505b16
PZ
8020 se->my_q = cfs_rq;
8021 se->load.weight = tg->shares;
e05510d0 8022 se->load.inv_weight = 0;
ec7dc8ac 8023 se->parent = parent;
6f505b16 8024}
052f1dc7 8025#endif
6f505b16 8026
052f1dc7 8027#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8028static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8029 struct sched_rt_entity *rt_se, int cpu, int add,
8030 struct sched_rt_entity *parent)
6f505b16 8031{
ec7dc8ac
DG
8032 struct rq *rq = cpu_rq(cpu);
8033
6f505b16
PZ
8034 tg->rt_rq[cpu] = rt_rq;
8035 init_rt_rq(rt_rq, rq);
8036 rt_rq->tg = tg;
ac086bc2 8037 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8038 if (add)
8039 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8040
8041 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8042 if (!rt_se)
8043 return;
8044
ec7dc8ac
DG
8045 if (!parent)
8046 rt_se->rt_rq = &rq->rt;
8047 else
8048 rt_se->rt_rq = parent->my_q;
8049
6f505b16 8050 rt_se->my_q = rt_rq;
ec7dc8ac 8051 rt_se->parent = parent;
6f505b16
PZ
8052 INIT_LIST_HEAD(&rt_se->run_list);
8053}
8054#endif
8055
1da177e4
LT
8056void __init sched_init(void)
8057{
dd41f596 8058 int i, j;
434d53b0
MT
8059 unsigned long alloc_size = 0, ptr;
8060
8061#ifdef CONFIG_FAIR_GROUP_SCHED
8062 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8063#endif
8064#ifdef CONFIG_RT_GROUP_SCHED
8065 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8066#endif
df7c8e84 8067#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8068 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8069#endif
434d53b0 8070 if (alloc_size) {
36b7b6d4 8071 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8072
8073#ifdef CONFIG_FAIR_GROUP_SCHED
8074 init_task_group.se = (struct sched_entity **)ptr;
8075 ptr += nr_cpu_ids * sizeof(void **);
8076
8077 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8078 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8079
6d6bc0ad 8080#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8081#ifdef CONFIG_RT_GROUP_SCHED
8082 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8083 ptr += nr_cpu_ids * sizeof(void **);
8084
8085 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8086 ptr += nr_cpu_ids * sizeof(void **);
8087
6d6bc0ad 8088#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8089#ifdef CONFIG_CPUMASK_OFFSTACK
8090 for_each_possible_cpu(i) {
8091 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8092 ptr += cpumask_size();
8093 }
8094#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8095 }
dd41f596 8096
57d885fe
GH
8097#ifdef CONFIG_SMP
8098 init_defrootdomain();
8099#endif
8100
d0b27fa7
PZ
8101 init_rt_bandwidth(&def_rt_bandwidth,
8102 global_rt_period(), global_rt_runtime());
8103
8104#ifdef CONFIG_RT_GROUP_SCHED
8105 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8106 global_rt_period(), global_rt_runtime());
6d6bc0ad 8107#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8108
7c941438 8109#ifdef CONFIG_CGROUP_SCHED
6f505b16 8110 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8111 INIT_LIST_HEAD(&init_task_group.children);
8112
7c941438 8113#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8114
4a6cc4bd
JK
8115#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
8116 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
8117 __alignof__(unsigned long));
8118#endif
0a945022 8119 for_each_possible_cpu(i) {
70b97a7f 8120 struct rq *rq;
1da177e4
LT
8121
8122 rq = cpu_rq(i);
05fa785c 8123 raw_spin_lock_init(&rq->lock);
7897986b 8124 rq->nr_running = 0;
dce48a84
TG
8125 rq->calc_load_active = 0;
8126 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8127 init_cfs_rq(&rq->cfs, rq);
6f505b16 8128 init_rt_rq(&rq->rt, rq);
dd41f596 8129#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8130 init_task_group.shares = init_task_group_load;
6f505b16 8131 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8132#ifdef CONFIG_CGROUP_SCHED
8133 /*
8134 * How much cpu bandwidth does init_task_group get?
8135 *
8136 * In case of task-groups formed thr' the cgroup filesystem, it
8137 * gets 100% of the cpu resources in the system. This overall
8138 * system cpu resource is divided among the tasks of
8139 * init_task_group and its child task-groups in a fair manner,
8140 * based on each entity's (task or task-group's) weight
8141 * (se->load.weight).
8142 *
8143 * In other words, if init_task_group has 10 tasks of weight
8144 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8145 * then A0's share of the cpu resource is:
8146 *
0d905bca 8147 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
8148 *
8149 * We achieve this by letting init_task_group's tasks sit
8150 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8151 */
ec7dc8ac 8152 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 8153#endif
354d60c2
DG
8154#endif /* CONFIG_FAIR_GROUP_SCHED */
8155
8156 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8157#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8158 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8159#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8160 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8161#endif
dd41f596 8162#endif
1da177e4 8163
dd41f596
IM
8164 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8165 rq->cpu_load[j] = 0;
fdf3e95d
VP
8166
8167 rq->last_load_update_tick = jiffies;
8168
1da177e4 8169#ifdef CONFIG_SMP
41c7ce9a 8170 rq->sd = NULL;
57d885fe 8171 rq->rd = NULL;
e51fd5e2 8172 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8173 rq->post_schedule = 0;
1da177e4 8174 rq->active_balance = 0;
dd41f596 8175 rq->next_balance = jiffies;
1da177e4 8176 rq->push_cpu = 0;
0a2966b4 8177 rq->cpu = i;
1f11eb6a 8178 rq->online = 0;
eae0c9df
MG
8179 rq->idle_stamp = 0;
8180 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8181 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8182#ifdef CONFIG_NO_HZ
8183 rq->nohz_balance_kick = 0;
8184 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8185#endif
1da177e4 8186#endif
8f4d37ec 8187 init_rq_hrtick(rq);
1da177e4 8188 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8189 }
8190
2dd73a4f 8191 set_load_weight(&init_task);
b50f60ce 8192
e107be36
AK
8193#ifdef CONFIG_PREEMPT_NOTIFIERS
8194 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8195#endif
8196
c9819f45 8197#ifdef CONFIG_SMP
962cf36c 8198 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8199#endif
8200
b50f60ce 8201#ifdef CONFIG_RT_MUTEXES
1d615482 8202 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8203#endif
8204
1da177e4
LT
8205 /*
8206 * The boot idle thread does lazy MMU switching as well:
8207 */
8208 atomic_inc(&init_mm.mm_count);
8209 enter_lazy_tlb(&init_mm, current);
8210
8211 /*
8212 * Make us the idle thread. Technically, schedule() should not be
8213 * called from this thread, however somewhere below it might be,
8214 * but because we are the idle thread, we just pick up running again
8215 * when this runqueue becomes "idle".
8216 */
8217 init_idle(current, smp_processor_id());
dce48a84
TG
8218
8219 calc_load_update = jiffies + LOAD_FREQ;
8220
dd41f596
IM
8221 /*
8222 * During early bootup we pretend to be a normal task:
8223 */
8224 current->sched_class = &fair_sched_class;
6892b75e 8225
6a7b3dc3 8226 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8227 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8228#ifdef CONFIG_SMP
7d1e6a9b 8229#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8230 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8231 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8232 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8233 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8234 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8235#endif
bdddd296
RR
8236 /* May be allocated at isolcpus cmdline parse time */
8237 if (cpu_isolated_map == NULL)
8238 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8239#endif /* SMP */
6a7b3dc3 8240
cdd6c482 8241 perf_event_init();
0d905bca 8242
6892b75e 8243 scheduler_running = 1;
1da177e4
LT
8244}
8245
8246#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8247static inline int preempt_count_equals(int preempt_offset)
8248{
234da7bc 8249 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8250
8251 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8252}
8253
d894837f 8254void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8255{
48f24c4d 8256#ifdef in_atomic
1da177e4
LT
8257 static unsigned long prev_jiffy; /* ratelimiting */
8258
e4aafea2
FW
8259 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8260 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8261 return;
8262 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8263 return;
8264 prev_jiffy = jiffies;
8265
3df0fc5b
PZ
8266 printk(KERN_ERR
8267 "BUG: sleeping function called from invalid context at %s:%d\n",
8268 file, line);
8269 printk(KERN_ERR
8270 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8271 in_atomic(), irqs_disabled(),
8272 current->pid, current->comm);
aef745fc
IM
8273
8274 debug_show_held_locks(current);
8275 if (irqs_disabled())
8276 print_irqtrace_events(current);
8277 dump_stack();
1da177e4
LT
8278#endif
8279}
8280EXPORT_SYMBOL(__might_sleep);
8281#endif
8282
8283#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8284static void normalize_task(struct rq *rq, struct task_struct *p)
8285{
8286 int on_rq;
3e51f33f 8287
3a5e4dc1
AK
8288 on_rq = p->se.on_rq;
8289 if (on_rq)
8290 deactivate_task(rq, p, 0);
8291 __setscheduler(rq, p, SCHED_NORMAL, 0);
8292 if (on_rq) {
8293 activate_task(rq, p, 0);
8294 resched_task(rq->curr);
8295 }
8296}
8297
1da177e4
LT
8298void normalize_rt_tasks(void)
8299{
a0f98a1c 8300 struct task_struct *g, *p;
1da177e4 8301 unsigned long flags;
70b97a7f 8302 struct rq *rq;
1da177e4 8303
4cf5d77a 8304 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8305 do_each_thread(g, p) {
178be793
IM
8306 /*
8307 * Only normalize user tasks:
8308 */
8309 if (!p->mm)
8310 continue;
8311
6cfb0d5d 8312 p->se.exec_start = 0;
6cfb0d5d 8313#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8314 p->se.statistics.wait_start = 0;
8315 p->se.statistics.sleep_start = 0;
8316 p->se.statistics.block_start = 0;
6cfb0d5d 8317#endif
dd41f596
IM
8318
8319 if (!rt_task(p)) {
8320 /*
8321 * Renice negative nice level userspace
8322 * tasks back to 0:
8323 */
8324 if (TASK_NICE(p) < 0 && p->mm)
8325 set_user_nice(p, 0);
1da177e4 8326 continue;
dd41f596 8327 }
1da177e4 8328
1d615482 8329 raw_spin_lock(&p->pi_lock);
b29739f9 8330 rq = __task_rq_lock(p);
1da177e4 8331
178be793 8332 normalize_task(rq, p);
3a5e4dc1 8333
b29739f9 8334 __task_rq_unlock(rq);
1d615482 8335 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8336 } while_each_thread(g, p);
8337
4cf5d77a 8338 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8339}
8340
8341#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8342
67fc4e0c 8343#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8344/*
67fc4e0c 8345 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8346 *
8347 * They can only be called when the whole system has been
8348 * stopped - every CPU needs to be quiescent, and no scheduling
8349 * activity can take place. Using them for anything else would
8350 * be a serious bug, and as a result, they aren't even visible
8351 * under any other configuration.
8352 */
8353
8354/**
8355 * curr_task - return the current task for a given cpu.
8356 * @cpu: the processor in question.
8357 *
8358 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8359 */
36c8b586 8360struct task_struct *curr_task(int cpu)
1df5c10a
LT
8361{
8362 return cpu_curr(cpu);
8363}
8364
67fc4e0c
JW
8365#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8366
8367#ifdef CONFIG_IA64
1df5c10a
LT
8368/**
8369 * set_curr_task - set the current task for a given cpu.
8370 * @cpu: the processor in question.
8371 * @p: the task pointer to set.
8372 *
8373 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8374 * are serviced on a separate stack. It allows the architecture to switch the
8375 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8376 * must be called with all CPU's synchronized, and interrupts disabled, the
8377 * and caller must save the original value of the current task (see
8378 * curr_task() above) and restore that value before reenabling interrupts and
8379 * re-starting the system.
8380 *
8381 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8382 */
36c8b586 8383void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8384{
8385 cpu_curr(cpu) = p;
8386}
8387
8388#endif
29f59db3 8389
bccbe08a
PZ
8390#ifdef CONFIG_FAIR_GROUP_SCHED
8391static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8392{
8393 int i;
8394
8395 for_each_possible_cpu(i) {
8396 if (tg->cfs_rq)
8397 kfree(tg->cfs_rq[i]);
8398 if (tg->se)
8399 kfree(tg->se[i]);
6f505b16
PZ
8400 }
8401
8402 kfree(tg->cfs_rq);
8403 kfree(tg->se);
6f505b16
PZ
8404}
8405
ec7dc8ac
DG
8406static
8407int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8408{
29f59db3 8409 struct cfs_rq *cfs_rq;
eab17229 8410 struct sched_entity *se;
9b5b7751 8411 struct rq *rq;
29f59db3
SV
8412 int i;
8413
434d53b0 8414 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8415 if (!tg->cfs_rq)
8416 goto err;
434d53b0 8417 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8418 if (!tg->se)
8419 goto err;
052f1dc7
PZ
8420
8421 tg->shares = NICE_0_LOAD;
29f59db3
SV
8422
8423 for_each_possible_cpu(i) {
9b5b7751 8424 rq = cpu_rq(i);
29f59db3 8425
eab17229
LZ
8426 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8427 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8428 if (!cfs_rq)
8429 goto err;
8430
eab17229
LZ
8431 se = kzalloc_node(sizeof(struct sched_entity),
8432 GFP_KERNEL, cpu_to_node(i));
29f59db3 8433 if (!se)
dfc12eb2 8434 goto err_free_rq;
29f59db3 8435
eab17229 8436 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8437 }
8438
8439 return 1;
8440
49246274 8441err_free_rq:
dfc12eb2 8442 kfree(cfs_rq);
49246274 8443err:
bccbe08a
PZ
8444 return 0;
8445}
8446
8447static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8448{
8449 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8450 &cpu_rq(cpu)->leaf_cfs_rq_list);
8451}
8452
8453static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8454{
8455 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8456}
6d6bc0ad 8457#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8458static inline void free_fair_sched_group(struct task_group *tg)
8459{
8460}
8461
ec7dc8ac
DG
8462static inline
8463int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8464{
8465 return 1;
8466}
8467
8468static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8469{
8470}
8471
8472static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8473{
8474}
6d6bc0ad 8475#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8476
8477#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8478static void free_rt_sched_group(struct task_group *tg)
8479{
8480 int i;
8481
d0b27fa7
PZ
8482 destroy_rt_bandwidth(&tg->rt_bandwidth);
8483
bccbe08a
PZ
8484 for_each_possible_cpu(i) {
8485 if (tg->rt_rq)
8486 kfree(tg->rt_rq[i]);
8487 if (tg->rt_se)
8488 kfree(tg->rt_se[i]);
8489 }
8490
8491 kfree(tg->rt_rq);
8492 kfree(tg->rt_se);
8493}
8494
ec7dc8ac
DG
8495static
8496int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8497{
8498 struct rt_rq *rt_rq;
eab17229 8499 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8500 struct rq *rq;
8501 int i;
8502
434d53b0 8503 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8504 if (!tg->rt_rq)
8505 goto err;
434d53b0 8506 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8507 if (!tg->rt_se)
8508 goto err;
8509
d0b27fa7
PZ
8510 init_rt_bandwidth(&tg->rt_bandwidth,
8511 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8512
8513 for_each_possible_cpu(i) {
8514 rq = cpu_rq(i);
8515
eab17229
LZ
8516 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8517 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8518 if (!rt_rq)
8519 goto err;
29f59db3 8520
eab17229
LZ
8521 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8522 GFP_KERNEL, cpu_to_node(i));
6f505b16 8523 if (!rt_se)
dfc12eb2 8524 goto err_free_rq;
29f59db3 8525
eab17229 8526 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8527 }
8528
bccbe08a
PZ
8529 return 1;
8530
49246274 8531err_free_rq:
dfc12eb2 8532 kfree(rt_rq);
49246274 8533err:
bccbe08a
PZ
8534 return 0;
8535}
8536
8537static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8538{
8539 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8540 &cpu_rq(cpu)->leaf_rt_rq_list);
8541}
8542
8543static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8544{
8545 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8546}
6d6bc0ad 8547#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8548static inline void free_rt_sched_group(struct task_group *tg)
8549{
8550}
8551
ec7dc8ac
DG
8552static inline
8553int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8554{
8555 return 1;
8556}
8557
8558static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8559{
8560}
8561
8562static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8563{
8564}
6d6bc0ad 8565#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8566
7c941438 8567#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8568static void free_sched_group(struct task_group *tg)
8569{
8570 free_fair_sched_group(tg);
8571 free_rt_sched_group(tg);
8572 kfree(tg);
8573}
8574
8575/* allocate runqueue etc for a new task group */
ec7dc8ac 8576struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8577{
8578 struct task_group *tg;
8579 unsigned long flags;
8580 int i;
8581
8582 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8583 if (!tg)
8584 return ERR_PTR(-ENOMEM);
8585
ec7dc8ac 8586 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8587 goto err;
8588
ec7dc8ac 8589 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8590 goto err;
8591
8ed36996 8592 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8593 for_each_possible_cpu(i) {
bccbe08a
PZ
8594 register_fair_sched_group(tg, i);
8595 register_rt_sched_group(tg, i);
9b5b7751 8596 }
6f505b16 8597 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8598
8599 WARN_ON(!parent); /* root should already exist */
8600
8601 tg->parent = parent;
f473aa5e 8602 INIT_LIST_HEAD(&tg->children);
09f2724a 8603 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8604 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8605
9b5b7751 8606 return tg;
29f59db3
SV
8607
8608err:
6f505b16 8609 free_sched_group(tg);
29f59db3
SV
8610 return ERR_PTR(-ENOMEM);
8611}
8612
9b5b7751 8613/* rcu callback to free various structures associated with a task group */
6f505b16 8614static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8615{
29f59db3 8616 /* now it should be safe to free those cfs_rqs */
6f505b16 8617 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8618}
8619
9b5b7751 8620/* Destroy runqueue etc associated with a task group */
4cf86d77 8621void sched_destroy_group(struct task_group *tg)
29f59db3 8622{
8ed36996 8623 unsigned long flags;
9b5b7751 8624 int i;
29f59db3 8625
8ed36996 8626 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8627 for_each_possible_cpu(i) {
bccbe08a
PZ
8628 unregister_fair_sched_group(tg, i);
8629 unregister_rt_sched_group(tg, i);
9b5b7751 8630 }
6f505b16 8631 list_del_rcu(&tg->list);
f473aa5e 8632 list_del_rcu(&tg->siblings);
8ed36996 8633 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8634
9b5b7751 8635 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8636 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8637}
8638
9b5b7751 8639/* change task's runqueue when it moves between groups.
3a252015
IM
8640 * The caller of this function should have put the task in its new group
8641 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8642 * reflect its new group.
9b5b7751
SV
8643 */
8644void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8645{
8646 int on_rq, running;
8647 unsigned long flags;
8648 struct rq *rq;
8649
8650 rq = task_rq_lock(tsk, &flags);
8651
051a1d1a 8652 running = task_current(rq, tsk);
29f59db3
SV
8653 on_rq = tsk->se.on_rq;
8654
0e1f3483 8655 if (on_rq)
29f59db3 8656 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8657 if (unlikely(running))
8658 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8659
810b3817 8660#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8661 if (tsk->sched_class->task_move_group)
8662 tsk->sched_class->task_move_group(tsk, on_rq);
8663 else
810b3817 8664#endif
b2b5ce02 8665 set_task_rq(tsk, task_cpu(tsk));
810b3817 8666
0e1f3483
HS
8667 if (unlikely(running))
8668 tsk->sched_class->set_curr_task(rq);
8669 if (on_rq)
371fd7e7 8670 enqueue_task(rq, tsk, 0);
29f59db3 8671
29f59db3
SV
8672 task_rq_unlock(rq, &flags);
8673}
7c941438 8674#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8675
052f1dc7 8676#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8677static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8678{
8679 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8680 int on_rq;
8681
29f59db3 8682 on_rq = se->on_rq;
62fb1851 8683 if (on_rq)
29f59db3
SV
8684 dequeue_entity(cfs_rq, se, 0);
8685
8686 se->load.weight = shares;
e05510d0 8687 se->load.inv_weight = 0;
29f59db3 8688
62fb1851 8689 if (on_rq)
29f59db3 8690 enqueue_entity(cfs_rq, se, 0);
c09595f6 8691}
62fb1851 8692
c09595f6
PZ
8693static void set_se_shares(struct sched_entity *se, unsigned long shares)
8694{
8695 struct cfs_rq *cfs_rq = se->cfs_rq;
8696 struct rq *rq = cfs_rq->rq;
8697 unsigned long flags;
8698
05fa785c 8699 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8700 __set_se_shares(se, shares);
05fa785c 8701 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8702}
8703
8ed36996
PZ
8704static DEFINE_MUTEX(shares_mutex);
8705
4cf86d77 8706int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8707{
8708 int i;
8ed36996 8709 unsigned long flags;
c61935fd 8710
ec7dc8ac
DG
8711 /*
8712 * We can't change the weight of the root cgroup.
8713 */
8714 if (!tg->se[0])
8715 return -EINVAL;
8716
18d95a28
PZ
8717 if (shares < MIN_SHARES)
8718 shares = MIN_SHARES;
cb4ad1ff
MX
8719 else if (shares > MAX_SHARES)
8720 shares = MAX_SHARES;
62fb1851 8721
8ed36996 8722 mutex_lock(&shares_mutex);
9b5b7751 8723 if (tg->shares == shares)
5cb350ba 8724 goto done;
29f59db3 8725
8ed36996 8726 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8727 for_each_possible_cpu(i)
8728 unregister_fair_sched_group(tg, i);
f473aa5e 8729 list_del_rcu(&tg->siblings);
8ed36996 8730 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8731
8732 /* wait for any ongoing reference to this group to finish */
8733 synchronize_sched();
8734
8735 /*
8736 * Now we are free to modify the group's share on each cpu
8737 * w/o tripping rebalance_share or load_balance_fair.
8738 */
9b5b7751 8739 tg->shares = shares;
c09595f6
PZ
8740 for_each_possible_cpu(i) {
8741 /*
8742 * force a rebalance
8743 */
8744 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8745 set_se_shares(tg->se[i], shares);
c09595f6 8746 }
29f59db3 8747
6b2d7700
SV
8748 /*
8749 * Enable load balance activity on this group, by inserting it back on
8750 * each cpu's rq->leaf_cfs_rq_list.
8751 */
8ed36996 8752 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8753 for_each_possible_cpu(i)
8754 register_fair_sched_group(tg, i);
f473aa5e 8755 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8756 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8757done:
8ed36996 8758 mutex_unlock(&shares_mutex);
9b5b7751 8759 return 0;
29f59db3
SV
8760}
8761
5cb350ba
DG
8762unsigned long sched_group_shares(struct task_group *tg)
8763{
8764 return tg->shares;
8765}
052f1dc7 8766#endif
5cb350ba 8767
052f1dc7 8768#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8769/*
9f0c1e56 8770 * Ensure that the real time constraints are schedulable.
6f505b16 8771 */
9f0c1e56
PZ
8772static DEFINE_MUTEX(rt_constraints_mutex);
8773
8774static unsigned long to_ratio(u64 period, u64 runtime)
8775{
8776 if (runtime == RUNTIME_INF)
9a7e0b18 8777 return 1ULL << 20;
9f0c1e56 8778
9a7e0b18 8779 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8780}
8781
9a7e0b18
PZ
8782/* Must be called with tasklist_lock held */
8783static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8784{
9a7e0b18 8785 struct task_struct *g, *p;
b40b2e8e 8786
9a7e0b18
PZ
8787 do_each_thread(g, p) {
8788 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8789 return 1;
8790 } while_each_thread(g, p);
b40b2e8e 8791
9a7e0b18
PZ
8792 return 0;
8793}
b40b2e8e 8794
9a7e0b18
PZ
8795struct rt_schedulable_data {
8796 struct task_group *tg;
8797 u64 rt_period;
8798 u64 rt_runtime;
8799};
b40b2e8e 8800
9a7e0b18
PZ
8801static int tg_schedulable(struct task_group *tg, void *data)
8802{
8803 struct rt_schedulable_data *d = data;
8804 struct task_group *child;
8805 unsigned long total, sum = 0;
8806 u64 period, runtime;
b40b2e8e 8807
9a7e0b18
PZ
8808 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8809 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8810
9a7e0b18
PZ
8811 if (tg == d->tg) {
8812 period = d->rt_period;
8813 runtime = d->rt_runtime;
b40b2e8e 8814 }
b40b2e8e 8815
4653f803
PZ
8816 /*
8817 * Cannot have more runtime than the period.
8818 */
8819 if (runtime > period && runtime != RUNTIME_INF)
8820 return -EINVAL;
6f505b16 8821
4653f803
PZ
8822 /*
8823 * Ensure we don't starve existing RT tasks.
8824 */
9a7e0b18
PZ
8825 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8826 return -EBUSY;
6f505b16 8827
9a7e0b18 8828 total = to_ratio(period, runtime);
6f505b16 8829
4653f803
PZ
8830 /*
8831 * Nobody can have more than the global setting allows.
8832 */
8833 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8834 return -EINVAL;
6f505b16 8835
4653f803
PZ
8836 /*
8837 * The sum of our children's runtime should not exceed our own.
8838 */
9a7e0b18
PZ
8839 list_for_each_entry_rcu(child, &tg->children, siblings) {
8840 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8841 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8842
9a7e0b18
PZ
8843 if (child == d->tg) {
8844 period = d->rt_period;
8845 runtime = d->rt_runtime;
8846 }
6f505b16 8847
9a7e0b18 8848 sum += to_ratio(period, runtime);
9f0c1e56 8849 }
6f505b16 8850
9a7e0b18
PZ
8851 if (sum > total)
8852 return -EINVAL;
8853
8854 return 0;
6f505b16
PZ
8855}
8856
9a7e0b18 8857static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8858{
9a7e0b18
PZ
8859 struct rt_schedulable_data data = {
8860 .tg = tg,
8861 .rt_period = period,
8862 .rt_runtime = runtime,
8863 };
8864
8865 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8866}
8867
d0b27fa7
PZ
8868static int tg_set_bandwidth(struct task_group *tg,
8869 u64 rt_period, u64 rt_runtime)
6f505b16 8870{
ac086bc2 8871 int i, err = 0;
9f0c1e56 8872
9f0c1e56 8873 mutex_lock(&rt_constraints_mutex);
521f1a24 8874 read_lock(&tasklist_lock);
9a7e0b18
PZ
8875 err = __rt_schedulable(tg, rt_period, rt_runtime);
8876 if (err)
9f0c1e56 8877 goto unlock;
ac086bc2 8878
0986b11b 8879 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8880 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8881 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8882
8883 for_each_possible_cpu(i) {
8884 struct rt_rq *rt_rq = tg->rt_rq[i];
8885
0986b11b 8886 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8887 rt_rq->rt_runtime = rt_runtime;
0986b11b 8888 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8889 }
0986b11b 8890 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8891unlock:
521f1a24 8892 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8893 mutex_unlock(&rt_constraints_mutex);
8894
8895 return err;
6f505b16
PZ
8896}
8897
d0b27fa7
PZ
8898int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8899{
8900 u64 rt_runtime, rt_period;
8901
8902 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8903 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8904 if (rt_runtime_us < 0)
8905 rt_runtime = RUNTIME_INF;
8906
8907 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8908}
8909
9f0c1e56
PZ
8910long sched_group_rt_runtime(struct task_group *tg)
8911{
8912 u64 rt_runtime_us;
8913
d0b27fa7 8914 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8915 return -1;
8916
d0b27fa7 8917 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8918 do_div(rt_runtime_us, NSEC_PER_USEC);
8919 return rt_runtime_us;
8920}
d0b27fa7
PZ
8921
8922int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8923{
8924 u64 rt_runtime, rt_period;
8925
8926 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8927 rt_runtime = tg->rt_bandwidth.rt_runtime;
8928
619b0488
R
8929 if (rt_period == 0)
8930 return -EINVAL;
8931
d0b27fa7
PZ
8932 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8933}
8934
8935long sched_group_rt_period(struct task_group *tg)
8936{
8937 u64 rt_period_us;
8938
8939 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8940 do_div(rt_period_us, NSEC_PER_USEC);
8941 return rt_period_us;
8942}
8943
8944static int sched_rt_global_constraints(void)
8945{
4653f803 8946 u64 runtime, period;
d0b27fa7
PZ
8947 int ret = 0;
8948
ec5d4989
HS
8949 if (sysctl_sched_rt_period <= 0)
8950 return -EINVAL;
8951
4653f803
PZ
8952 runtime = global_rt_runtime();
8953 period = global_rt_period();
8954
8955 /*
8956 * Sanity check on the sysctl variables.
8957 */
8958 if (runtime > period && runtime != RUNTIME_INF)
8959 return -EINVAL;
10b612f4 8960
d0b27fa7 8961 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8962 read_lock(&tasklist_lock);
4653f803 8963 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8964 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8965 mutex_unlock(&rt_constraints_mutex);
8966
8967 return ret;
8968}
54e99124
DG
8969
8970int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8971{
8972 /* Don't accept realtime tasks when there is no way for them to run */
8973 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8974 return 0;
8975
8976 return 1;
8977}
8978
6d6bc0ad 8979#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8980static int sched_rt_global_constraints(void)
8981{
ac086bc2
PZ
8982 unsigned long flags;
8983 int i;
8984
ec5d4989
HS
8985 if (sysctl_sched_rt_period <= 0)
8986 return -EINVAL;
8987
60aa605d
PZ
8988 /*
8989 * There's always some RT tasks in the root group
8990 * -- migration, kstopmachine etc..
8991 */
8992 if (sysctl_sched_rt_runtime == 0)
8993 return -EBUSY;
8994
0986b11b 8995 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8996 for_each_possible_cpu(i) {
8997 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8998
0986b11b 8999 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 9000 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 9001 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 9002 }
0986b11b 9003 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 9004
d0b27fa7
PZ
9005 return 0;
9006}
6d6bc0ad 9007#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9008
9009int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 9010 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9011 loff_t *ppos)
9012{
9013 int ret;
9014 int old_period, old_runtime;
9015 static DEFINE_MUTEX(mutex);
9016
9017 mutex_lock(&mutex);
9018 old_period = sysctl_sched_rt_period;
9019 old_runtime = sysctl_sched_rt_runtime;
9020
8d65af78 9021 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9022
9023 if (!ret && write) {
9024 ret = sched_rt_global_constraints();
9025 if (ret) {
9026 sysctl_sched_rt_period = old_period;
9027 sysctl_sched_rt_runtime = old_runtime;
9028 } else {
9029 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9030 def_rt_bandwidth.rt_period =
9031 ns_to_ktime(global_rt_period());
9032 }
9033 }
9034 mutex_unlock(&mutex);
9035
9036 return ret;
9037}
68318b8e 9038
052f1dc7 9039#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9040
9041/* return corresponding task_group object of a cgroup */
2b01dfe3 9042static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9043{
2b01dfe3
PM
9044 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9045 struct task_group, css);
68318b8e
SV
9046}
9047
9048static struct cgroup_subsys_state *
2b01dfe3 9049cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9050{
ec7dc8ac 9051 struct task_group *tg, *parent;
68318b8e 9052
2b01dfe3 9053 if (!cgrp->parent) {
68318b8e 9054 /* This is early initialization for the top cgroup */
68318b8e
SV
9055 return &init_task_group.css;
9056 }
9057
ec7dc8ac
DG
9058 parent = cgroup_tg(cgrp->parent);
9059 tg = sched_create_group(parent);
68318b8e
SV
9060 if (IS_ERR(tg))
9061 return ERR_PTR(-ENOMEM);
9062
68318b8e
SV
9063 return &tg->css;
9064}
9065
41a2d6cf
IM
9066static void
9067cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9068{
2b01dfe3 9069 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9070
9071 sched_destroy_group(tg);
9072}
9073
41a2d6cf 9074static int
be367d09 9075cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9076{
b68aa230 9077#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9078 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9079 return -EINVAL;
9080#else
68318b8e
SV
9081 /* We don't support RT-tasks being in separate groups */
9082 if (tsk->sched_class != &fair_sched_class)
9083 return -EINVAL;
b68aa230 9084#endif
be367d09
BB
9085 return 0;
9086}
68318b8e 9087
be367d09
BB
9088static int
9089cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9090 struct task_struct *tsk, bool threadgroup)
9091{
9092 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9093 if (retval)
9094 return retval;
9095 if (threadgroup) {
9096 struct task_struct *c;
9097 rcu_read_lock();
9098 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9099 retval = cpu_cgroup_can_attach_task(cgrp, c);
9100 if (retval) {
9101 rcu_read_unlock();
9102 return retval;
9103 }
9104 }
9105 rcu_read_unlock();
9106 }
68318b8e
SV
9107 return 0;
9108}
9109
9110static void
2b01dfe3 9111cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9112 struct cgroup *old_cont, struct task_struct *tsk,
9113 bool threadgroup)
68318b8e
SV
9114{
9115 sched_move_task(tsk);
be367d09
BB
9116 if (threadgroup) {
9117 struct task_struct *c;
9118 rcu_read_lock();
9119 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9120 sched_move_task(c);
9121 }
9122 rcu_read_unlock();
9123 }
68318b8e
SV
9124}
9125
052f1dc7 9126#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9127static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9128 u64 shareval)
68318b8e 9129{
2b01dfe3 9130 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9131}
9132
f4c753b7 9133static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9134{
2b01dfe3 9135 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9136
9137 return (u64) tg->shares;
9138}
6d6bc0ad 9139#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9140
052f1dc7 9141#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9142static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9143 s64 val)
6f505b16 9144{
06ecb27c 9145 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9146}
9147
06ecb27c 9148static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9149{
06ecb27c 9150 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9151}
d0b27fa7
PZ
9152
9153static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9154 u64 rt_period_us)
9155{
9156 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9157}
9158
9159static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9160{
9161 return sched_group_rt_period(cgroup_tg(cgrp));
9162}
6d6bc0ad 9163#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9164
fe5c7cc2 9165static struct cftype cpu_files[] = {
052f1dc7 9166#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9167 {
9168 .name = "shares",
f4c753b7
PM
9169 .read_u64 = cpu_shares_read_u64,
9170 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9171 },
052f1dc7
PZ
9172#endif
9173#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9174 {
9f0c1e56 9175 .name = "rt_runtime_us",
06ecb27c
PM
9176 .read_s64 = cpu_rt_runtime_read,
9177 .write_s64 = cpu_rt_runtime_write,
6f505b16 9178 },
d0b27fa7
PZ
9179 {
9180 .name = "rt_period_us",
f4c753b7
PM
9181 .read_u64 = cpu_rt_period_read_uint,
9182 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9183 },
052f1dc7 9184#endif
68318b8e
SV
9185};
9186
9187static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9188{
fe5c7cc2 9189 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9190}
9191
9192struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9193 .name = "cpu",
9194 .create = cpu_cgroup_create,
9195 .destroy = cpu_cgroup_destroy,
9196 .can_attach = cpu_cgroup_can_attach,
9197 .attach = cpu_cgroup_attach,
9198 .populate = cpu_cgroup_populate,
9199 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9200 .early_init = 1,
9201};
9202
052f1dc7 9203#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9204
9205#ifdef CONFIG_CGROUP_CPUACCT
9206
9207/*
9208 * CPU accounting code for task groups.
9209 *
9210 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9211 * (balbir@in.ibm.com).
9212 */
9213
934352f2 9214/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9215struct cpuacct {
9216 struct cgroup_subsys_state css;
9217 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9218 u64 __percpu *cpuusage;
ef12fefa 9219 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9220 struct cpuacct *parent;
d842de87
SV
9221};
9222
9223struct cgroup_subsys cpuacct_subsys;
9224
9225/* return cpu accounting group corresponding to this container */
32cd756a 9226static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9227{
32cd756a 9228 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9229 struct cpuacct, css);
9230}
9231
9232/* return cpu accounting group to which this task belongs */
9233static inline struct cpuacct *task_ca(struct task_struct *tsk)
9234{
9235 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9236 struct cpuacct, css);
9237}
9238
9239/* create a new cpu accounting group */
9240static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9241 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9242{
9243 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9244 int i;
d842de87
SV
9245
9246 if (!ca)
ef12fefa 9247 goto out;
d842de87
SV
9248
9249 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9250 if (!ca->cpuusage)
9251 goto out_free_ca;
9252
9253 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9254 if (percpu_counter_init(&ca->cpustat[i], 0))
9255 goto out_free_counters;
d842de87 9256
934352f2
BR
9257 if (cgrp->parent)
9258 ca->parent = cgroup_ca(cgrp->parent);
9259
d842de87 9260 return &ca->css;
ef12fefa
BR
9261
9262out_free_counters:
9263 while (--i >= 0)
9264 percpu_counter_destroy(&ca->cpustat[i]);
9265 free_percpu(ca->cpuusage);
9266out_free_ca:
9267 kfree(ca);
9268out:
9269 return ERR_PTR(-ENOMEM);
d842de87
SV
9270}
9271
9272/* destroy an existing cpu accounting group */
41a2d6cf 9273static void
32cd756a 9274cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9275{
32cd756a 9276 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9277 int i;
d842de87 9278
ef12fefa
BR
9279 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9280 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9281 free_percpu(ca->cpuusage);
9282 kfree(ca);
9283}
9284
720f5498
KC
9285static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9286{
b36128c8 9287 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9288 u64 data;
9289
9290#ifndef CONFIG_64BIT
9291 /*
9292 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9293 */
05fa785c 9294 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9295 data = *cpuusage;
05fa785c 9296 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9297#else
9298 data = *cpuusage;
9299#endif
9300
9301 return data;
9302}
9303
9304static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9305{
b36128c8 9306 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9307
9308#ifndef CONFIG_64BIT
9309 /*
9310 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9311 */
05fa785c 9312 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9313 *cpuusage = val;
05fa785c 9314 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9315#else
9316 *cpuusage = val;
9317#endif
9318}
9319
d842de87 9320/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9321static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9322{
32cd756a 9323 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9324 u64 totalcpuusage = 0;
9325 int i;
9326
720f5498
KC
9327 for_each_present_cpu(i)
9328 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9329
9330 return totalcpuusage;
9331}
9332
0297b803
DG
9333static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9334 u64 reset)
9335{
9336 struct cpuacct *ca = cgroup_ca(cgrp);
9337 int err = 0;
9338 int i;
9339
9340 if (reset) {
9341 err = -EINVAL;
9342 goto out;
9343 }
9344
720f5498
KC
9345 for_each_present_cpu(i)
9346 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9347
0297b803
DG
9348out:
9349 return err;
9350}
9351
e9515c3c
KC
9352static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9353 struct seq_file *m)
9354{
9355 struct cpuacct *ca = cgroup_ca(cgroup);
9356 u64 percpu;
9357 int i;
9358
9359 for_each_present_cpu(i) {
9360 percpu = cpuacct_cpuusage_read(ca, i);
9361 seq_printf(m, "%llu ", (unsigned long long) percpu);
9362 }
9363 seq_printf(m, "\n");
9364 return 0;
9365}
9366
ef12fefa
BR
9367static const char *cpuacct_stat_desc[] = {
9368 [CPUACCT_STAT_USER] = "user",
9369 [CPUACCT_STAT_SYSTEM] = "system",
9370};
9371
9372static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9373 struct cgroup_map_cb *cb)
9374{
9375 struct cpuacct *ca = cgroup_ca(cgrp);
9376 int i;
9377
9378 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9379 s64 val = percpu_counter_read(&ca->cpustat[i]);
9380 val = cputime64_to_clock_t(val);
9381 cb->fill(cb, cpuacct_stat_desc[i], val);
9382 }
9383 return 0;
9384}
9385
d842de87
SV
9386static struct cftype files[] = {
9387 {
9388 .name = "usage",
f4c753b7
PM
9389 .read_u64 = cpuusage_read,
9390 .write_u64 = cpuusage_write,
d842de87 9391 },
e9515c3c
KC
9392 {
9393 .name = "usage_percpu",
9394 .read_seq_string = cpuacct_percpu_seq_read,
9395 },
ef12fefa
BR
9396 {
9397 .name = "stat",
9398 .read_map = cpuacct_stats_show,
9399 },
d842de87
SV
9400};
9401
32cd756a 9402static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9403{
32cd756a 9404 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9405}
9406
9407/*
9408 * charge this task's execution time to its accounting group.
9409 *
9410 * called with rq->lock held.
9411 */
9412static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9413{
9414 struct cpuacct *ca;
934352f2 9415 int cpu;
d842de87 9416
c40c6f85 9417 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9418 return;
9419
934352f2 9420 cpu = task_cpu(tsk);
a18b83b7
BR
9421
9422 rcu_read_lock();
9423
d842de87 9424 ca = task_ca(tsk);
d842de87 9425
934352f2 9426 for (; ca; ca = ca->parent) {
b36128c8 9427 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9428 *cpuusage += cputime;
9429 }
a18b83b7
BR
9430
9431 rcu_read_unlock();
d842de87
SV
9432}
9433
fa535a77
AB
9434/*
9435 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9436 * in cputime_t units. As a result, cpuacct_update_stats calls
9437 * percpu_counter_add with values large enough to always overflow the
9438 * per cpu batch limit causing bad SMP scalability.
9439 *
9440 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9441 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9442 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9443 */
9444#ifdef CONFIG_SMP
9445#define CPUACCT_BATCH \
9446 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9447#else
9448#define CPUACCT_BATCH 0
9449#endif
9450
ef12fefa
BR
9451/*
9452 * Charge the system/user time to the task's accounting group.
9453 */
9454static void cpuacct_update_stats(struct task_struct *tsk,
9455 enum cpuacct_stat_index idx, cputime_t val)
9456{
9457 struct cpuacct *ca;
fa535a77 9458 int batch = CPUACCT_BATCH;
ef12fefa
BR
9459
9460 if (unlikely(!cpuacct_subsys.active))
9461 return;
9462
9463 rcu_read_lock();
9464 ca = task_ca(tsk);
9465
9466 do {
fa535a77 9467 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9468 ca = ca->parent;
9469 } while (ca);
9470 rcu_read_unlock();
9471}
9472
d842de87
SV
9473struct cgroup_subsys cpuacct_subsys = {
9474 .name = "cpuacct",
9475 .create = cpuacct_create,
9476 .destroy = cpuacct_destroy,
9477 .populate = cpuacct_populate,
9478 .subsys_id = cpuacct_subsys_id,
9479};
9480#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9481
9482#ifndef CONFIG_SMP
9483
03b042bf
PM
9484void synchronize_sched_expedited(void)
9485{
fc390cde 9486 barrier();
03b042bf
PM
9487}
9488EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9489
9490#else /* #ifndef CONFIG_SMP */
9491
cc631fb7 9492static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9493
cc631fb7 9494static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9495{
969c7921
TH
9496 /*
9497 * There must be a full memory barrier on each affected CPU
9498 * between the time that try_stop_cpus() is called and the
9499 * time that it returns.
9500 *
9501 * In the current initial implementation of cpu_stop, the
9502 * above condition is already met when the control reaches
9503 * this point and the following smp_mb() is not strictly
9504 * necessary. Do smp_mb() anyway for documentation and
9505 * robustness against future implementation changes.
9506 */
cc631fb7 9507 smp_mb(); /* See above comment block. */
969c7921 9508 return 0;
03b042bf 9509}
03b042bf
PM
9510
9511/*
9512 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9513 * approach to force grace period to end quickly. This consumes
9514 * significant time on all CPUs, and is thus not recommended for
9515 * any sort of common-case code.
9516 *
9517 * Note that it is illegal to call this function while holding any
9518 * lock that is acquired by a CPU-hotplug notifier. Failing to
9519 * observe this restriction will result in deadlock.
9520 */
9521void synchronize_sched_expedited(void)
9522{
969c7921 9523 int snap, trycount = 0;
03b042bf
PM
9524
9525 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9526 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9527 get_online_cpus();
969c7921
TH
9528 while (try_stop_cpus(cpu_online_mask,
9529 synchronize_sched_expedited_cpu_stop,
94458d5e 9530 NULL) == -EAGAIN) {
03b042bf
PM
9531 put_online_cpus();
9532 if (trycount++ < 10)
9533 udelay(trycount * num_online_cpus());
9534 else {
9535 synchronize_sched();
9536 return;
9537 }
969c7921 9538 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9539 smp_mb(); /* ensure test happens before caller kfree */
9540 return;
9541 }
9542 get_online_cpus();
9543 }
969c7921 9544 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9545 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9546 put_online_cpus();
03b042bf
PM
9547}
9548EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9549
9550#endif /* #else #ifndef CONFIG_SMP */