]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched.c
Merge branch 'omap-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind...
[mirror_ubuntu-jammy-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4
LT
76
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
d7876a08 96 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 97 */
d6322faf 98#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 99
6aa645ea
IM
100#define NICE_0_LOAD SCHED_LOAD_SCALE
101#define NICE_0_SHIFT SCHED_LOAD_SHIFT
102
1da177e4
LT
103/*
104 * These are the 'tuning knobs' of the scheduler:
105 *
a4ec24b4 106 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
107 * Timeslices get refilled after they expire.
108 */
1da177e4 109#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 110
d0b27fa7
PZ
111/*
112 * single value that denotes runtime == period, ie unlimited time.
113 */
114#define RUNTIME_INF ((u64)~0ULL)
115
5517d86b
ED
116#ifdef CONFIG_SMP
117/*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122{
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124}
125
126/*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131{
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134}
135#endif
136
e05606d3
IM
137static inline int rt_policy(int policy)
138{
139 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
140 return 1;
141 return 0;
142}
143
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
1da177e4 149/*
6aa645ea 150 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 151 */
6aa645ea
IM
152struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155};
156
d0b27fa7 157struct rt_bandwidth {
ea736ed5
IM
158 /* nests inside the rq lock: */
159 spinlock_t rt_runtime_lock;
160 ktime_t rt_period;
161 u64 rt_runtime;
162 struct hrtimer rt_period_timer;
d0b27fa7
PZ
163};
164
165static struct rt_bandwidth def_rt_bandwidth;
166
167static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
168
169static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
170{
171 struct rt_bandwidth *rt_b =
172 container_of(timer, struct rt_bandwidth, rt_period_timer);
173 ktime_t now;
174 int overrun;
175 int idle = 0;
176
177 for (;;) {
178 now = hrtimer_cb_get_time(timer);
179 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
180
181 if (!overrun)
182 break;
183
184 idle = do_sched_rt_period_timer(rt_b, overrun);
185 }
186
187 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
188}
189
190static
191void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
192{
193 rt_b->rt_period = ns_to_ktime(period);
194 rt_b->rt_runtime = runtime;
195
ac086bc2
PZ
196 spin_lock_init(&rt_b->rt_runtime_lock);
197
d0b27fa7
PZ
198 hrtimer_init(&rt_b->rt_period_timer,
199 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
200 rt_b->rt_period_timer.function = sched_rt_period_timer;
201 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
202}
203
204static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
205{
206 ktime_t now;
207
208 if (rt_b->rt_runtime == RUNTIME_INF)
209 return;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 return;
213
214 spin_lock(&rt_b->rt_runtime_lock);
215 for (;;) {
216 if (hrtimer_active(&rt_b->rt_period_timer))
217 break;
218
219 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
220 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
221 hrtimer_start(&rt_b->rt_period_timer,
222 rt_b->rt_period_timer.expires,
223 HRTIMER_MODE_ABS);
224 }
225 spin_unlock(&rt_b->rt_runtime_lock);
226}
227
228#ifdef CONFIG_RT_GROUP_SCHED
229static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
230{
231 hrtimer_cancel(&rt_b->rt_period_timer);
232}
233#endif
234
712555ee
HC
235/*
236 * sched_domains_mutex serializes calls to arch_init_sched_domains,
237 * detach_destroy_domains and partition_sched_domains.
238 */
239static DEFINE_MUTEX(sched_domains_mutex);
240
052f1dc7 241#ifdef CONFIG_GROUP_SCHED
29f59db3 242
68318b8e
SV
243#include <linux/cgroup.h>
244
29f59db3
SV
245struct cfs_rq;
246
6f505b16
PZ
247static LIST_HEAD(task_groups);
248
29f59db3 249/* task group related information */
4cf86d77 250struct task_group {
052f1dc7 251#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
252 struct cgroup_subsys_state css;
253#endif
052f1dc7
PZ
254
255#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity **se;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq **cfs_rq;
260 unsigned long shares;
052f1dc7
PZ
261#endif
262
263#ifdef CONFIG_RT_GROUP_SCHED
264 struct sched_rt_entity **rt_se;
265 struct rt_rq **rt_rq;
266
d0b27fa7 267 struct rt_bandwidth rt_bandwidth;
052f1dc7 268#endif
6b2d7700 269
ae8393e5 270 struct rcu_head rcu;
6f505b16 271 struct list_head list;
f473aa5e
PZ
272
273 struct task_group *parent;
274 struct list_head siblings;
275 struct list_head children;
29f59db3
SV
276};
277
354d60c2 278#ifdef CONFIG_USER_SCHED
eff766a6
PZ
279
280/*
281 * Root task group.
282 * Every UID task group (including init_task_group aka UID-0) will
283 * be a child to this group.
284 */
285struct task_group root_task_group;
286
052f1dc7 287#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
288/* Default task group's sched entity on each cpu */
289static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
290/* Default task group's cfs_rq on each cpu */
291static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
292#endif
293
294#ifdef CONFIG_RT_GROUP_SCHED
295static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
296static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 297#endif
eff766a6
PZ
298#else
299#define root_task_group init_task_group
354d60c2 300#endif
6f505b16 301
8ed36996 302/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
303 * a task group's cpu shares.
304 */
8ed36996 305static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 306
052f1dc7 307#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
308#ifdef CONFIG_USER_SCHED
309# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
310#else
311# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
312#endif
313
cb4ad1ff
MX
314/*
315 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
316 * (The default weight is 1024 - so there's no practical
317 * limitation from this.)
318 */
18d95a28 319#define MIN_SHARES 2
cb4ad1ff 320#define MAX_SHARES (ULONG_MAX - 1)
18d95a28 321
052f1dc7
PZ
322static int init_task_group_load = INIT_TASK_GROUP_LOAD;
323#endif
324
29f59db3 325/* Default task group.
3a252015 326 * Every task in system belong to this group at bootup.
29f59db3 327 */
434d53b0 328struct task_group init_task_group;
29f59db3
SV
329
330/* return group to which a task belongs */
4cf86d77 331static inline struct task_group *task_group(struct task_struct *p)
29f59db3 332{
4cf86d77 333 struct task_group *tg;
9b5b7751 334
052f1dc7 335#ifdef CONFIG_USER_SCHED
24e377a8 336 tg = p->user->tg;
052f1dc7 337#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
338 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
339 struct task_group, css);
24e377a8 340#else
41a2d6cf 341 tg = &init_task_group;
24e377a8 342#endif
9b5b7751 343 return tg;
29f59db3
SV
344}
345
346/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 347static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 348{
052f1dc7 349#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
350 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
351 p->se.parent = task_group(p)->se[cpu];
052f1dc7 352#endif
6f505b16 353
052f1dc7 354#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
355 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
356 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 357#endif
29f59db3
SV
358}
359
360#else
361
6f505b16 362static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 363
052f1dc7 364#endif /* CONFIG_GROUP_SCHED */
29f59db3 365
6aa645ea
IM
366/* CFS-related fields in a runqueue */
367struct cfs_rq {
368 struct load_weight load;
369 unsigned long nr_running;
370
6aa645ea 371 u64 exec_clock;
e9acbff6 372 u64 min_vruntime;
6aa645ea
IM
373
374 struct rb_root tasks_timeline;
375 struct rb_node *rb_leftmost;
4a55bd5e
PZ
376
377 struct list_head tasks;
378 struct list_head *balance_iterator;
379
380 /*
381 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
382 * It is set to NULL otherwise (i.e when none are currently running).
383 */
aa2ac252 384 struct sched_entity *curr, *next;
ddc97297
PZ
385
386 unsigned long nr_spread_over;
387
62160e3f 388#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
389 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
390
41a2d6cf
IM
391 /*
392 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
393 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
394 * (like users, containers etc.)
395 *
396 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
397 * list is used during load balance.
398 */
41a2d6cf
IM
399 struct list_head leaf_cfs_rq_list;
400 struct task_group *tg; /* group that "owns" this runqueue */
18d95a28
PZ
401
402#ifdef CONFIG_SMP
403 unsigned long task_weight;
404 unsigned long shares;
405 /*
406 * We need space to build a sched_domain wide view of the full task
407 * group tree, in order to avoid depending on dynamic memory allocation
408 * during the load balancing we place this in the per cpu task group
409 * hierarchy. This limits the load balancing to one instance per cpu,
410 * but more should not be needed anyway.
411 */
412 struct aggregate_struct {
413 /*
414 * load = weight(cpus) * f(tg)
415 *
416 * Where f(tg) is the recursive weight fraction assigned to
417 * this group.
418 */
419 unsigned long load;
420
421 /*
422 * part of the group weight distributed to this span.
423 */
424 unsigned long shares;
425
426 /*
427 * The sum of all runqueue weights within this span.
428 */
429 unsigned long rq_weight;
430
431 /*
432 * Weight contributed by tasks; this is the part we can
433 * influence by moving tasks around.
434 */
435 unsigned long task_weight;
436 } aggregate;
437#endif
6aa645ea
IM
438#endif
439};
1da177e4 440
6aa645ea
IM
441/* Real-Time classes' related field in a runqueue: */
442struct rt_rq {
443 struct rt_prio_array active;
63489e45 444 unsigned long rt_nr_running;
052f1dc7 445#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
446 int highest_prio; /* highest queued rt task prio */
447#endif
fa85ae24 448#ifdef CONFIG_SMP
73fe6aae 449 unsigned long rt_nr_migratory;
a22d7fc1 450 int overloaded;
fa85ae24 451#endif
6f505b16 452 int rt_throttled;
fa85ae24 453 u64 rt_time;
ac086bc2 454 u64 rt_runtime;
ea736ed5 455 /* Nests inside the rq lock: */
ac086bc2 456 spinlock_t rt_runtime_lock;
6f505b16 457
052f1dc7 458#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
459 unsigned long rt_nr_boosted;
460
6f505b16
PZ
461 struct rq *rq;
462 struct list_head leaf_rt_rq_list;
463 struct task_group *tg;
464 struct sched_rt_entity *rt_se;
465#endif
6aa645ea
IM
466};
467
57d885fe
GH
468#ifdef CONFIG_SMP
469
470/*
471 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
472 * variables. Each exclusive cpuset essentially defines an island domain by
473 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
474 * exclusive cpuset is created, we also create and attach a new root-domain
475 * object.
476 *
57d885fe
GH
477 */
478struct root_domain {
479 atomic_t refcount;
480 cpumask_t span;
481 cpumask_t online;
637f5085 482
0eab9146 483 /*
637f5085
GH
484 * The "RT overload" flag: it gets set if a CPU has more than
485 * one runnable RT task.
486 */
487 cpumask_t rto_mask;
0eab9146 488 atomic_t rto_count;
57d885fe
GH
489};
490
dc938520
GH
491/*
492 * By default the system creates a single root-domain with all cpus as
493 * members (mimicking the global state we have today).
494 */
57d885fe
GH
495static struct root_domain def_root_domain;
496
497#endif
498
1da177e4
LT
499/*
500 * This is the main, per-CPU runqueue data structure.
501 *
502 * Locking rule: those places that want to lock multiple runqueues
503 * (such as the load balancing or the thread migration code), lock
504 * acquire operations must be ordered by ascending &runqueue.
505 */
70b97a7f 506struct rq {
d8016491
IM
507 /* runqueue lock: */
508 spinlock_t lock;
1da177e4
LT
509
510 /*
511 * nr_running and cpu_load should be in the same cacheline because
512 * remote CPUs use both these fields when doing load calculation.
513 */
514 unsigned long nr_running;
6aa645ea
IM
515 #define CPU_LOAD_IDX_MAX 5
516 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 517 unsigned char idle_at_tick;
46cb4b7c 518#ifdef CONFIG_NO_HZ
15934a37 519 unsigned long last_tick_seen;
46cb4b7c
SS
520 unsigned char in_nohz_recently;
521#endif
d8016491
IM
522 /* capture load from *all* tasks on this cpu: */
523 struct load_weight load;
6aa645ea
IM
524 unsigned long nr_load_updates;
525 u64 nr_switches;
526
527 struct cfs_rq cfs;
6f505b16 528 struct rt_rq rt;
6f505b16 529
6aa645ea 530#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
531 /* list of leaf cfs_rq on this cpu: */
532 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
533#endif
534#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 535 struct list_head leaf_rt_rq_list;
1da177e4 536#endif
1da177e4
LT
537
538 /*
539 * This is part of a global counter where only the total sum
540 * over all CPUs matters. A task can increase this counter on
541 * one CPU and if it got migrated afterwards it may decrease
542 * it on another CPU. Always updated under the runqueue lock:
543 */
544 unsigned long nr_uninterruptible;
545
36c8b586 546 struct task_struct *curr, *idle;
c9819f45 547 unsigned long next_balance;
1da177e4 548 struct mm_struct *prev_mm;
6aa645ea 549
3e51f33f 550 u64 clock;
6aa645ea 551
1da177e4
LT
552 atomic_t nr_iowait;
553
554#ifdef CONFIG_SMP
0eab9146 555 struct root_domain *rd;
1da177e4
LT
556 struct sched_domain *sd;
557
558 /* For active balancing */
559 int active_balance;
560 int push_cpu;
d8016491
IM
561 /* cpu of this runqueue: */
562 int cpu;
1da177e4 563
36c8b586 564 struct task_struct *migration_thread;
1da177e4
LT
565 struct list_head migration_queue;
566#endif
567
8f4d37ec
PZ
568#ifdef CONFIG_SCHED_HRTICK
569 unsigned long hrtick_flags;
570 ktime_t hrtick_expire;
571 struct hrtimer hrtick_timer;
572#endif
573
1da177e4
LT
574#ifdef CONFIG_SCHEDSTATS
575 /* latency stats */
576 struct sched_info rq_sched_info;
577
578 /* sys_sched_yield() stats */
480b9434
KC
579 unsigned int yld_exp_empty;
580 unsigned int yld_act_empty;
581 unsigned int yld_both_empty;
582 unsigned int yld_count;
1da177e4
LT
583
584 /* schedule() stats */
480b9434
KC
585 unsigned int sched_switch;
586 unsigned int sched_count;
587 unsigned int sched_goidle;
1da177e4
LT
588
589 /* try_to_wake_up() stats */
480b9434
KC
590 unsigned int ttwu_count;
591 unsigned int ttwu_local;
b8efb561
IM
592
593 /* BKL stats */
480b9434 594 unsigned int bkl_count;
1da177e4 595#endif
fcb99371 596 struct lock_class_key rq_lock_key;
1da177e4
LT
597};
598
f34e3b61 599static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 600
dd41f596
IM
601static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
602{
603 rq->curr->sched_class->check_preempt_curr(rq, p);
604}
605
0a2966b4
CL
606static inline int cpu_of(struct rq *rq)
607{
608#ifdef CONFIG_SMP
609 return rq->cpu;
610#else
611 return 0;
612#endif
613}
614
674311d5
NP
615/*
616 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 617 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
618 *
619 * The domain tree of any CPU may only be accessed from within
620 * preempt-disabled sections.
621 */
48f24c4d
IM
622#define for_each_domain(cpu, __sd) \
623 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
624
625#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
626#define this_rq() (&__get_cpu_var(runqueues))
627#define task_rq(p) cpu_rq(task_cpu(p))
628#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
629
3e51f33f
PZ
630static inline void update_rq_clock(struct rq *rq)
631{
632 rq->clock = sched_clock_cpu(cpu_of(rq));
633}
634
bf5c91ba
IM
635/*
636 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
637 */
638#ifdef CONFIG_SCHED_DEBUG
639# define const_debug __read_mostly
640#else
641# define const_debug static const
642#endif
643
644/*
645 * Debugging: various feature bits
646 */
f00b45c1
PZ
647
648#define SCHED_FEAT(name, enabled) \
649 __SCHED_FEAT_##name ,
650
bf5c91ba 651enum {
f00b45c1 652#include "sched_features.h"
bf5c91ba
IM
653};
654
f00b45c1
PZ
655#undef SCHED_FEAT
656
657#define SCHED_FEAT(name, enabled) \
658 (1UL << __SCHED_FEAT_##name) * enabled |
659
bf5c91ba 660const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
661#include "sched_features.h"
662 0;
663
664#undef SCHED_FEAT
665
666#ifdef CONFIG_SCHED_DEBUG
667#define SCHED_FEAT(name, enabled) \
668 #name ,
669
983ed7a6 670static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
671#include "sched_features.h"
672 NULL
673};
674
675#undef SCHED_FEAT
676
983ed7a6 677static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
678{
679 filp->private_data = inode->i_private;
680 return 0;
681}
682
683static ssize_t
684sched_feat_read(struct file *filp, char __user *ubuf,
685 size_t cnt, loff_t *ppos)
686{
687 char *buf;
688 int r = 0;
689 int len = 0;
690 int i;
691
692 for (i = 0; sched_feat_names[i]; i++) {
693 len += strlen(sched_feat_names[i]);
694 len += 4;
695 }
696
697 buf = kmalloc(len + 2, GFP_KERNEL);
698 if (!buf)
699 return -ENOMEM;
700
701 for (i = 0; sched_feat_names[i]; i++) {
702 if (sysctl_sched_features & (1UL << i))
703 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
704 else
c24b7c52 705 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
706 }
707
708 r += sprintf(buf + r, "\n");
709 WARN_ON(r >= len + 2);
710
711 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
712
713 kfree(buf);
714
715 return r;
716}
717
718static ssize_t
719sched_feat_write(struct file *filp, const char __user *ubuf,
720 size_t cnt, loff_t *ppos)
721{
722 char buf[64];
723 char *cmp = buf;
724 int neg = 0;
725 int i;
726
727 if (cnt > 63)
728 cnt = 63;
729
730 if (copy_from_user(&buf, ubuf, cnt))
731 return -EFAULT;
732
733 buf[cnt] = 0;
734
c24b7c52 735 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
736 neg = 1;
737 cmp += 3;
738 }
739
740 for (i = 0; sched_feat_names[i]; i++) {
741 int len = strlen(sched_feat_names[i]);
742
743 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
744 if (neg)
745 sysctl_sched_features &= ~(1UL << i);
746 else
747 sysctl_sched_features |= (1UL << i);
748 break;
749 }
750 }
751
752 if (!sched_feat_names[i])
753 return -EINVAL;
754
755 filp->f_pos += cnt;
756
757 return cnt;
758}
759
760static struct file_operations sched_feat_fops = {
761 .open = sched_feat_open,
762 .read = sched_feat_read,
763 .write = sched_feat_write,
764};
765
766static __init int sched_init_debug(void)
767{
f00b45c1
PZ
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
770
771 return 0;
772}
773late_initcall(sched_init_debug);
774
775#endif
776
777#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 778
b82d9fdd
PZ
779/*
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
782 */
783const_debug unsigned int sysctl_sched_nr_migrate = 32;
784
fa85ae24 785/*
9f0c1e56 786 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
787 * default: 1s
788 */
9f0c1e56 789unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 790
6892b75e
IM
791static __read_mostly int scheduler_running;
792
9f0c1e56
PZ
793/*
794 * part of the period that we allow rt tasks to run in us.
795 * default: 0.95s
796 */
797int sysctl_sched_rt_runtime = 950000;
fa85ae24 798
d0b27fa7
PZ
799static inline u64 global_rt_period(void)
800{
801 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
802}
803
804static inline u64 global_rt_runtime(void)
805{
806 if (sysctl_sched_rt_period < 0)
807 return RUNTIME_INF;
808
809 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
810}
fa85ae24 811
690229a0 812unsigned long long time_sync_thresh = 100000;
27ec4407
IM
813
814static DEFINE_PER_CPU(unsigned long long, time_offset);
815static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
816
e436d800 817/*
27ec4407
IM
818 * Global lock which we take every now and then to synchronize
819 * the CPUs time. This method is not warp-safe, but it's good
820 * enough to synchronize slowly diverging time sources and thus
821 * it's good enough for tracing:
e436d800 822 */
27ec4407
IM
823static DEFINE_SPINLOCK(time_sync_lock);
824static unsigned long long prev_global_time;
825
dfbf4a1b 826static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
27ec4407 827{
dfbf4a1b
IM
828 /*
829 * We want this inlined, to not get tracer function calls
830 * in this critical section:
831 */
832 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
833 __raw_spin_lock(&time_sync_lock.raw_lock);
27ec4407
IM
834
835 if (time < prev_global_time) {
836 per_cpu(time_offset, cpu) += prev_global_time - time;
837 time = prev_global_time;
838 } else {
839 prev_global_time = time;
840 }
841
dfbf4a1b
IM
842 __raw_spin_unlock(&time_sync_lock.raw_lock);
843 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
27ec4407
IM
844
845 return time;
846}
847
848static unsigned long long __cpu_clock(int cpu)
e436d800 849{
e436d800 850 unsigned long long now;
e436d800 851
8ced5f69
IM
852 /*
853 * Only call sched_clock() if the scheduler has already been
854 * initialized (some code might call cpu_clock() very early):
855 */
6892b75e
IM
856 if (unlikely(!scheduler_running))
857 return 0;
858
3e51f33f 859 now = sched_clock_cpu(cpu);
e436d800
IM
860
861 return now;
862}
27ec4407
IM
863
864/*
865 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
866 * clock constructed from sched_clock():
867 */
868unsigned long long cpu_clock(int cpu)
869{
870 unsigned long long prev_cpu_time, time, delta_time;
dfbf4a1b 871 unsigned long flags;
27ec4407 872
dfbf4a1b 873 local_irq_save(flags);
27ec4407
IM
874 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
875 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
876 delta_time = time-prev_cpu_time;
877
dfbf4a1b 878 if (unlikely(delta_time > time_sync_thresh)) {
27ec4407 879 time = __sync_cpu_clock(time, cpu);
dfbf4a1b
IM
880 per_cpu(prev_cpu_time, cpu) = time;
881 }
882 local_irq_restore(flags);
27ec4407
IM
883
884 return time;
885}
a58f6f25 886EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 887
1da177e4 888#ifndef prepare_arch_switch
4866cde0
NP
889# define prepare_arch_switch(next) do { } while (0)
890#endif
891#ifndef finish_arch_switch
892# define finish_arch_switch(prev) do { } while (0)
893#endif
894
051a1d1a
DA
895static inline int task_current(struct rq *rq, struct task_struct *p)
896{
897 return rq->curr == p;
898}
899
4866cde0 900#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 901static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 902{
051a1d1a 903 return task_current(rq, p);
4866cde0
NP
904}
905
70b97a7f 906static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
907{
908}
909
70b97a7f 910static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 911{
da04c035
IM
912#ifdef CONFIG_DEBUG_SPINLOCK
913 /* this is a valid case when another task releases the spinlock */
914 rq->lock.owner = current;
915#endif
8a25d5de
IM
916 /*
917 * If we are tracking spinlock dependencies then we have to
918 * fix up the runqueue lock - which gets 'carried over' from
919 * prev into current:
920 */
921 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
922
4866cde0
NP
923 spin_unlock_irq(&rq->lock);
924}
925
926#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 927static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
928{
929#ifdef CONFIG_SMP
930 return p->oncpu;
931#else
051a1d1a 932 return task_current(rq, p);
4866cde0
NP
933#endif
934}
935
70b97a7f 936static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
937{
938#ifdef CONFIG_SMP
939 /*
940 * We can optimise this out completely for !SMP, because the
941 * SMP rebalancing from interrupt is the only thing that cares
942 * here.
943 */
944 next->oncpu = 1;
945#endif
946#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 spin_unlock_irq(&rq->lock);
948#else
949 spin_unlock(&rq->lock);
950#endif
951}
952
70b97a7f 953static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
954{
955#ifdef CONFIG_SMP
956 /*
957 * After ->oncpu is cleared, the task can be moved to a different CPU.
958 * We must ensure this doesn't happen until the switch is completely
959 * finished.
960 */
961 smp_wmb();
962 prev->oncpu = 0;
963#endif
964#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
965 local_irq_enable();
1da177e4 966#endif
4866cde0
NP
967}
968#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 969
b29739f9
IM
970/*
971 * __task_rq_lock - lock the runqueue a given task resides on.
972 * Must be called interrupts disabled.
973 */
70b97a7f 974static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
975 __acquires(rq->lock)
976{
3a5c359a
AK
977 for (;;) {
978 struct rq *rq = task_rq(p);
979 spin_lock(&rq->lock);
980 if (likely(rq == task_rq(p)))
981 return rq;
b29739f9 982 spin_unlock(&rq->lock);
b29739f9 983 }
b29739f9
IM
984}
985
1da177e4
LT
986/*
987 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 988 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
989 * explicitly disabling preemption.
990 */
70b97a7f 991static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
992 __acquires(rq->lock)
993{
70b97a7f 994 struct rq *rq;
1da177e4 995
3a5c359a
AK
996 for (;;) {
997 local_irq_save(*flags);
998 rq = task_rq(p);
999 spin_lock(&rq->lock);
1000 if (likely(rq == task_rq(p)))
1001 return rq;
1da177e4 1002 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1003 }
1da177e4
LT
1004}
1005
a9957449 1006static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1007 __releases(rq->lock)
1008{
1009 spin_unlock(&rq->lock);
1010}
1011
70b97a7f 1012static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1013 __releases(rq->lock)
1014{
1015 spin_unlock_irqrestore(&rq->lock, *flags);
1016}
1017
1da177e4 1018/*
cc2a73b5 1019 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1020 */
a9957449 1021static struct rq *this_rq_lock(void)
1da177e4
LT
1022 __acquires(rq->lock)
1023{
70b97a7f 1024 struct rq *rq;
1da177e4
LT
1025
1026 local_irq_disable();
1027 rq = this_rq();
1028 spin_lock(&rq->lock);
1029
1030 return rq;
1031}
1032
8f4d37ec
PZ
1033static void __resched_task(struct task_struct *p, int tif_bit);
1034
1035static inline void resched_task(struct task_struct *p)
1036{
1037 __resched_task(p, TIF_NEED_RESCHED);
1038}
1039
1040#ifdef CONFIG_SCHED_HRTICK
1041/*
1042 * Use HR-timers to deliver accurate preemption points.
1043 *
1044 * Its all a bit involved since we cannot program an hrt while holding the
1045 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1046 * reschedule event.
1047 *
1048 * When we get rescheduled we reprogram the hrtick_timer outside of the
1049 * rq->lock.
1050 */
1051static inline void resched_hrt(struct task_struct *p)
1052{
1053 __resched_task(p, TIF_HRTICK_RESCHED);
1054}
1055
1056static inline void resched_rq(struct rq *rq)
1057{
1058 unsigned long flags;
1059
1060 spin_lock_irqsave(&rq->lock, flags);
1061 resched_task(rq->curr);
1062 spin_unlock_irqrestore(&rq->lock, flags);
1063}
1064
1065enum {
1066 HRTICK_SET, /* re-programm hrtick_timer */
1067 HRTICK_RESET, /* not a new slice */
b328ca18 1068 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1069};
1070
1071/*
1072 * Use hrtick when:
1073 * - enabled by features
1074 * - hrtimer is actually high res
1075 */
1076static inline int hrtick_enabled(struct rq *rq)
1077{
1078 if (!sched_feat(HRTICK))
1079 return 0;
b328ca18
PZ
1080 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1081 return 0;
8f4d37ec
PZ
1082 return hrtimer_is_hres_active(&rq->hrtick_timer);
1083}
1084
1085/*
1086 * Called to set the hrtick timer state.
1087 *
1088 * called with rq->lock held and irqs disabled
1089 */
1090static void hrtick_start(struct rq *rq, u64 delay, int reset)
1091{
1092 assert_spin_locked(&rq->lock);
1093
1094 /*
1095 * preempt at: now + delay
1096 */
1097 rq->hrtick_expire =
1098 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1099 /*
1100 * indicate we need to program the timer
1101 */
1102 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1103 if (reset)
1104 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1105
1106 /*
1107 * New slices are called from the schedule path and don't need a
1108 * forced reschedule.
1109 */
1110 if (reset)
1111 resched_hrt(rq->curr);
1112}
1113
1114static void hrtick_clear(struct rq *rq)
1115{
1116 if (hrtimer_active(&rq->hrtick_timer))
1117 hrtimer_cancel(&rq->hrtick_timer);
1118}
1119
1120/*
1121 * Update the timer from the possible pending state.
1122 */
1123static void hrtick_set(struct rq *rq)
1124{
1125 ktime_t time;
1126 int set, reset;
1127 unsigned long flags;
1128
1129 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1130
1131 spin_lock_irqsave(&rq->lock, flags);
1132 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1133 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1134 time = rq->hrtick_expire;
1135 clear_thread_flag(TIF_HRTICK_RESCHED);
1136 spin_unlock_irqrestore(&rq->lock, flags);
1137
1138 if (set) {
1139 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1140 if (reset && !hrtimer_active(&rq->hrtick_timer))
1141 resched_rq(rq);
1142 } else
1143 hrtick_clear(rq);
1144}
1145
1146/*
1147 * High-resolution timer tick.
1148 * Runs from hardirq context with interrupts disabled.
1149 */
1150static enum hrtimer_restart hrtick(struct hrtimer *timer)
1151{
1152 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1153
1154 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1155
1156 spin_lock(&rq->lock);
3e51f33f 1157 update_rq_clock(rq);
8f4d37ec
PZ
1158 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1159 spin_unlock(&rq->lock);
1160
1161 return HRTIMER_NORESTART;
1162}
1163
b328ca18
PZ
1164static void hotplug_hrtick_disable(int cpu)
1165{
1166 struct rq *rq = cpu_rq(cpu);
1167 unsigned long flags;
1168
1169 spin_lock_irqsave(&rq->lock, flags);
1170 rq->hrtick_flags = 0;
1171 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1172 spin_unlock_irqrestore(&rq->lock, flags);
1173
1174 hrtick_clear(rq);
1175}
1176
1177static void hotplug_hrtick_enable(int cpu)
1178{
1179 struct rq *rq = cpu_rq(cpu);
1180 unsigned long flags;
1181
1182 spin_lock_irqsave(&rq->lock, flags);
1183 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1184 spin_unlock_irqrestore(&rq->lock, flags);
1185}
1186
1187static int
1188hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1189{
1190 int cpu = (int)(long)hcpu;
1191
1192 switch (action) {
1193 case CPU_UP_CANCELED:
1194 case CPU_UP_CANCELED_FROZEN:
1195 case CPU_DOWN_PREPARE:
1196 case CPU_DOWN_PREPARE_FROZEN:
1197 case CPU_DEAD:
1198 case CPU_DEAD_FROZEN:
1199 hotplug_hrtick_disable(cpu);
1200 return NOTIFY_OK;
1201
1202 case CPU_UP_PREPARE:
1203 case CPU_UP_PREPARE_FROZEN:
1204 case CPU_DOWN_FAILED:
1205 case CPU_DOWN_FAILED_FROZEN:
1206 case CPU_ONLINE:
1207 case CPU_ONLINE_FROZEN:
1208 hotplug_hrtick_enable(cpu);
1209 return NOTIFY_OK;
1210 }
1211
1212 return NOTIFY_DONE;
1213}
1214
1215static void init_hrtick(void)
1216{
1217 hotcpu_notifier(hotplug_hrtick, 0);
1218}
1219
1220static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1221{
1222 rq->hrtick_flags = 0;
1223 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1224 rq->hrtick_timer.function = hrtick;
1225 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1226}
1227
1228void hrtick_resched(void)
1229{
1230 struct rq *rq;
1231 unsigned long flags;
1232
1233 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1234 return;
1235
1236 local_irq_save(flags);
1237 rq = cpu_rq(smp_processor_id());
1238 hrtick_set(rq);
1239 local_irq_restore(flags);
1240}
1241#else
1242static inline void hrtick_clear(struct rq *rq)
1243{
1244}
1245
1246static inline void hrtick_set(struct rq *rq)
1247{
1248}
1249
1250static inline void init_rq_hrtick(struct rq *rq)
1251{
1252}
1253
1254void hrtick_resched(void)
1255{
1256}
b328ca18
PZ
1257
1258static inline void init_hrtick(void)
1259{
1260}
8f4d37ec
PZ
1261#endif
1262
c24d20db
IM
1263/*
1264 * resched_task - mark a task 'to be rescheduled now'.
1265 *
1266 * On UP this means the setting of the need_resched flag, on SMP it
1267 * might also involve a cross-CPU call to trigger the scheduler on
1268 * the target CPU.
1269 */
1270#ifdef CONFIG_SMP
1271
1272#ifndef tsk_is_polling
1273#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1274#endif
1275
8f4d37ec 1276static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1277{
1278 int cpu;
1279
1280 assert_spin_locked(&task_rq(p)->lock);
1281
8f4d37ec 1282 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1283 return;
1284
8f4d37ec 1285 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1286
1287 cpu = task_cpu(p);
1288 if (cpu == smp_processor_id())
1289 return;
1290
1291 /* NEED_RESCHED must be visible before we test polling */
1292 smp_mb();
1293 if (!tsk_is_polling(p))
1294 smp_send_reschedule(cpu);
1295}
1296
1297static void resched_cpu(int cpu)
1298{
1299 struct rq *rq = cpu_rq(cpu);
1300 unsigned long flags;
1301
1302 if (!spin_trylock_irqsave(&rq->lock, flags))
1303 return;
1304 resched_task(cpu_curr(cpu));
1305 spin_unlock_irqrestore(&rq->lock, flags);
1306}
06d8308c
TG
1307
1308#ifdef CONFIG_NO_HZ
1309/*
1310 * When add_timer_on() enqueues a timer into the timer wheel of an
1311 * idle CPU then this timer might expire before the next timer event
1312 * which is scheduled to wake up that CPU. In case of a completely
1313 * idle system the next event might even be infinite time into the
1314 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1315 * leaves the inner idle loop so the newly added timer is taken into
1316 * account when the CPU goes back to idle and evaluates the timer
1317 * wheel for the next timer event.
1318 */
1319void wake_up_idle_cpu(int cpu)
1320{
1321 struct rq *rq = cpu_rq(cpu);
1322
1323 if (cpu == smp_processor_id())
1324 return;
1325
1326 /*
1327 * This is safe, as this function is called with the timer
1328 * wheel base lock of (cpu) held. When the CPU is on the way
1329 * to idle and has not yet set rq->curr to idle then it will
1330 * be serialized on the timer wheel base lock and take the new
1331 * timer into account automatically.
1332 */
1333 if (rq->curr != rq->idle)
1334 return;
1335
1336 /*
1337 * We can set TIF_RESCHED on the idle task of the other CPU
1338 * lockless. The worst case is that the other CPU runs the
1339 * idle task through an additional NOOP schedule()
1340 */
1341 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1342
1343 /* NEED_RESCHED must be visible before we test polling */
1344 smp_mb();
1345 if (!tsk_is_polling(rq->idle))
1346 smp_send_reschedule(cpu);
1347}
1348#endif
1349
c24d20db 1350#else
8f4d37ec 1351static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1352{
1353 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1354 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1355}
1356#endif
1357
45bf76df
IM
1358#if BITS_PER_LONG == 32
1359# define WMULT_CONST (~0UL)
1360#else
1361# define WMULT_CONST (1UL << 32)
1362#endif
1363
1364#define WMULT_SHIFT 32
1365
194081eb
IM
1366/*
1367 * Shift right and round:
1368 */
cf2ab469 1369#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1370
8f1bc385
PZ
1371/*
1372 * delta *= weight / lw
1373 */
cb1c4fc9 1374static unsigned long
45bf76df
IM
1375calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1376 struct load_weight *lw)
1377{
1378 u64 tmp;
1379
e05510d0
PZ
1380 if (!lw->inv_weight)
1381 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
45bf76df
IM
1382
1383 tmp = (u64)delta_exec * weight;
1384 /*
1385 * Check whether we'd overflow the 64-bit multiplication:
1386 */
194081eb 1387 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1388 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1389 WMULT_SHIFT/2);
1390 else
cf2ab469 1391 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1392
ecf691da 1393 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1394}
1395
1091985b 1396static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1397{
1398 lw->weight += inc;
e89996ae 1399 lw->inv_weight = 0;
45bf76df
IM
1400}
1401
1091985b 1402static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1403{
1404 lw->weight -= dec;
e89996ae 1405 lw->inv_weight = 0;
45bf76df
IM
1406}
1407
2dd73a4f
PW
1408/*
1409 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1410 * of tasks with abnormal "nice" values across CPUs the contribution that
1411 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1412 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1413 * scaled version of the new time slice allocation that they receive on time
1414 * slice expiry etc.
1415 */
1416
dd41f596
IM
1417#define WEIGHT_IDLEPRIO 2
1418#define WMULT_IDLEPRIO (1 << 31)
1419
1420/*
1421 * Nice levels are multiplicative, with a gentle 10% change for every
1422 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1423 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1424 * that remained on nice 0.
1425 *
1426 * The "10% effect" is relative and cumulative: from _any_ nice level,
1427 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1428 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1429 * If a task goes up by ~10% and another task goes down by ~10% then
1430 * the relative distance between them is ~25%.)
dd41f596
IM
1431 */
1432static const int prio_to_weight[40] = {
254753dc
IM
1433 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1434 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1435 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1436 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1437 /* 0 */ 1024, 820, 655, 526, 423,
1438 /* 5 */ 335, 272, 215, 172, 137,
1439 /* 10 */ 110, 87, 70, 56, 45,
1440 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1441};
1442
5714d2de
IM
1443/*
1444 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1445 *
1446 * In cases where the weight does not change often, we can use the
1447 * precalculated inverse to speed up arithmetics by turning divisions
1448 * into multiplications:
1449 */
dd41f596 1450static const u32 prio_to_wmult[40] = {
254753dc
IM
1451 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1452 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1453 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1454 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1455 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1456 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1457 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1458 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1459};
2dd73a4f 1460
dd41f596
IM
1461static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1462
1463/*
1464 * runqueue iterator, to support SMP load-balancing between different
1465 * scheduling classes, without having to expose their internal data
1466 * structures to the load-balancing proper:
1467 */
1468struct rq_iterator {
1469 void *arg;
1470 struct task_struct *(*start)(void *);
1471 struct task_struct *(*next)(void *);
1472};
1473
e1d1484f
PW
1474#ifdef CONFIG_SMP
1475static unsigned long
1476balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1477 unsigned long max_load_move, struct sched_domain *sd,
1478 enum cpu_idle_type idle, int *all_pinned,
1479 int *this_best_prio, struct rq_iterator *iterator);
1480
1481static int
1482iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1483 struct sched_domain *sd, enum cpu_idle_type idle,
1484 struct rq_iterator *iterator);
e1d1484f 1485#endif
dd41f596 1486
d842de87
SV
1487#ifdef CONFIG_CGROUP_CPUACCT
1488static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1489#else
1490static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1491#endif
1492
18d95a28
PZ
1493static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1494{
1495 update_load_add(&rq->load, load);
1496}
1497
1498static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1499{
1500 update_load_sub(&rq->load, load);
1501}
1502
e7693a36
GH
1503#ifdef CONFIG_SMP
1504static unsigned long source_load(int cpu, int type);
1505static unsigned long target_load(int cpu, int type);
1506static unsigned long cpu_avg_load_per_task(int cpu);
1507static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1508
1509#ifdef CONFIG_FAIR_GROUP_SCHED
1510
1511/*
1512 * Group load balancing.
1513 *
1514 * We calculate a few balance domain wide aggregate numbers; load and weight.
1515 * Given the pictures below, and assuming each item has equal weight:
1516 *
1517 * root 1 - thread
1518 * / | \ A - group
1519 * A 1 B
1520 * /|\ / \
1521 * C 2 D 3 4
1522 * | |
1523 * 5 6
1524 *
1525 * load:
1526 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1527 * which equals 1/9-th of the total load.
1528 *
1529 * shares:
1530 * The weight of this group on the selected cpus.
1531 *
1532 * rq_weight:
1533 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1534 * B would get 2.
1535 *
1536 * task_weight:
1537 * Part of the rq_weight contributed by tasks; all groups except B would
1538 * get 1, B gets 2.
1539 */
1540
1541static inline struct aggregate_struct *
1542aggregate(struct task_group *tg, struct sched_domain *sd)
1543{
1544 return &tg->cfs_rq[sd->first_cpu]->aggregate;
1545}
1546
1547typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
1548
1549/*
1550 * Iterate the full tree, calling @down when first entering a node and @up when
1551 * leaving it for the final time.
1552 */
1553static
1554void aggregate_walk_tree(aggregate_func down, aggregate_func up,
1555 struct sched_domain *sd)
1556{
1557 struct task_group *parent, *child;
1558
1559 rcu_read_lock();
1560 parent = &root_task_group;
1561down:
1562 (*down)(parent, sd);
1563 list_for_each_entry_rcu(child, &parent->children, siblings) {
1564 parent = child;
1565 goto down;
1566
1567up:
1568 continue;
1569 }
1570 (*up)(parent, sd);
1571
1572 child = parent;
1573 parent = parent->parent;
1574 if (parent)
1575 goto up;
1576 rcu_read_unlock();
1577}
1578
1579/*
1580 * Calculate the aggregate runqueue weight.
1581 */
1582static
1583void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
1584{
1585 unsigned long rq_weight = 0;
1586 unsigned long task_weight = 0;
1587 int i;
1588
1589 for_each_cpu_mask(i, sd->span) {
1590 rq_weight += tg->cfs_rq[i]->load.weight;
1591 task_weight += tg->cfs_rq[i]->task_weight;
1592 }
1593
1594 aggregate(tg, sd)->rq_weight = rq_weight;
1595 aggregate(tg, sd)->task_weight = task_weight;
1596}
1597
18d95a28
PZ
1598/*
1599 * Compute the weight of this group on the given cpus.
1600 */
1601static
1602void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
1603{
1604 unsigned long shares = 0;
1605 int i;
1606
18d95a28
PZ
1607 for_each_cpu_mask(i, sd->span)
1608 shares += tg->cfs_rq[i]->shares;
1609
3f5087a2
PZ
1610 if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
1611 shares = tg->shares;
18d95a28
PZ
1612
1613 aggregate(tg, sd)->shares = shares;
1614}
1615
1616/*
1617 * Compute the load fraction assigned to this group, relies on the aggregate
1618 * weight and this group's parent's load, i.e. top-down.
1619 */
1620static
1621void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
1622{
1623 unsigned long load;
1624
1625 if (!tg->parent) {
1626 int i;
1627
1628 load = 0;
1629 for_each_cpu_mask(i, sd->span)
1630 load += cpu_rq(i)->load.weight;
1631
1632 } else {
1633 load = aggregate(tg->parent, sd)->load;
1634
1635 /*
1636 * shares is our weight in the parent's rq so
1637 * shares/parent->rq_weight gives our fraction of the load
1638 */
1639 load *= aggregate(tg, sd)->shares;
1640 load /= aggregate(tg->parent, sd)->rq_weight + 1;
1641 }
1642
1643 aggregate(tg, sd)->load = load;
1644}
1645
1646static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1647
1648/*
1649 * Calculate and set the cpu's group shares.
1650 */
1651static void
1652__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
1653 int tcpu)
1654{
1655 int boost = 0;
1656 unsigned long shares;
1657 unsigned long rq_weight;
1658
1659 if (!tg->se[tcpu])
1660 return;
1661
1662 rq_weight = tg->cfs_rq[tcpu]->load.weight;
1663
1664 /*
1665 * If there are currently no tasks on the cpu pretend there is one of
1666 * average load so that when a new task gets to run here it will not
1667 * get delayed by group starvation.
1668 */
1669 if (!rq_weight) {
1670 boost = 1;
1671 rq_weight = NICE_0_LOAD;
1672 }
1673
1674 /*
1675 * \Sum shares * rq_weight
1676 * shares = -----------------------
1677 * \Sum rq_weight
1678 *
1679 */
1680 shares = aggregate(tg, sd)->shares * rq_weight;
1681 shares /= aggregate(tg, sd)->rq_weight + 1;
1682
1683 /*
1684 * record the actual number of shares, not the boosted amount.
1685 */
1686 tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
1687
1688 if (shares < MIN_SHARES)
1689 shares = MIN_SHARES;
cb4ad1ff
MX
1690 else if (shares > MAX_SHARES)
1691 shares = MAX_SHARES;
18d95a28
PZ
1692
1693 __set_se_shares(tg->se[tcpu], shares);
1694}
1695
1696/*
1697 * Re-adjust the weights on the cpu the task came from and on the cpu the
1698 * task went to.
1699 */
1700static void
1701__move_group_shares(struct task_group *tg, struct sched_domain *sd,
1702 int scpu, int dcpu)
1703{
1704 unsigned long shares;
1705
1706 shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1707
1708 __update_group_shares_cpu(tg, sd, scpu);
1709 __update_group_shares_cpu(tg, sd, dcpu);
1710
1711 /*
1712 * ensure we never loose shares due to rounding errors in the
1713 * above redistribution.
1714 */
1715 shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1716 if (shares)
1717 tg->cfs_rq[dcpu]->shares += shares;
1718}
1719
1720/*
1721 * Because changing a group's shares changes the weight of the super-group
1722 * we need to walk up the tree and change all shares until we hit the root.
1723 */
1724static void
1725move_group_shares(struct task_group *tg, struct sched_domain *sd,
1726 int scpu, int dcpu)
1727{
1728 while (tg) {
1729 __move_group_shares(tg, sd, scpu, dcpu);
1730 tg = tg->parent;
1731 }
1732}
1733
1734static
1735void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
1736{
1737 unsigned long shares = aggregate(tg, sd)->shares;
1738 int i;
1739
1740 for_each_cpu_mask(i, sd->span) {
1741 struct rq *rq = cpu_rq(i);
1742 unsigned long flags;
1743
1744 spin_lock_irqsave(&rq->lock, flags);
1745 __update_group_shares_cpu(tg, sd, i);
1746 spin_unlock_irqrestore(&rq->lock, flags);
1747 }
1748
1749 aggregate_group_shares(tg, sd);
1750
1751 /*
1752 * ensure we never loose shares due to rounding errors in the
1753 * above redistribution.
1754 */
1755 shares -= aggregate(tg, sd)->shares;
1756 if (shares) {
1757 tg->cfs_rq[sd->first_cpu]->shares += shares;
1758 aggregate(tg, sd)->shares += shares;
1759 }
1760}
1761
1762/*
1763 * Calculate the accumulative weight and recursive load of each task group
1764 * while walking down the tree.
1765 */
1766static
1767void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
1768{
1769 aggregate_group_weight(tg, sd);
1770 aggregate_group_shares(tg, sd);
1771 aggregate_group_load(tg, sd);
1772}
1773
1774/*
1775 * Rebalance the cpu shares while walking back up the tree.
1776 */
1777static
1778void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
1779{
1780 aggregate_group_set_shares(tg, sd);
1781}
1782
1783static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
1784
1785static void __init init_aggregate(void)
1786{
1787 int i;
1788
1789 for_each_possible_cpu(i)
1790 spin_lock_init(&per_cpu(aggregate_lock, i));
1791}
1792
1793static int get_aggregate(struct sched_domain *sd)
1794{
1795 if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
1796 return 0;
1797
1798 aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
1799 return 1;
1800}
1801
1802static void put_aggregate(struct sched_domain *sd)
1803{
1804 spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
1805}
1806
1807static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1808{
1809 cfs_rq->shares = shares;
1810}
1811
1812#else
1813
1814static inline void init_aggregate(void)
1815{
1816}
1817
1818static inline int get_aggregate(struct sched_domain *sd)
1819{
1820 return 0;
1821}
1822
1823static inline void put_aggregate(struct sched_domain *sd)
1824{
1825}
1826#endif
1827
1828#else /* CONFIG_SMP */
1829
1830#ifdef CONFIG_FAIR_GROUP_SCHED
1831static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1832{
1833}
1834#endif
1835
e7693a36
GH
1836#endif /* CONFIG_SMP */
1837
dd41f596 1838#include "sched_stats.h"
dd41f596 1839#include "sched_idletask.c"
5522d5d5
IM
1840#include "sched_fair.c"
1841#include "sched_rt.c"
dd41f596
IM
1842#ifdef CONFIG_SCHED_DEBUG
1843# include "sched_debug.c"
1844#endif
1845
1846#define sched_class_highest (&rt_sched_class)
1847
18d95a28 1848static void inc_nr_running(struct rq *rq)
9c217245
IM
1849{
1850 rq->nr_running++;
9c217245
IM
1851}
1852
18d95a28 1853static void dec_nr_running(struct rq *rq)
9c217245
IM
1854{
1855 rq->nr_running--;
9c217245
IM
1856}
1857
45bf76df
IM
1858static void set_load_weight(struct task_struct *p)
1859{
1860 if (task_has_rt_policy(p)) {
dd41f596
IM
1861 p->se.load.weight = prio_to_weight[0] * 2;
1862 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1863 return;
1864 }
45bf76df 1865
dd41f596
IM
1866 /*
1867 * SCHED_IDLE tasks get minimal weight:
1868 */
1869 if (p->policy == SCHED_IDLE) {
1870 p->se.load.weight = WEIGHT_IDLEPRIO;
1871 p->se.load.inv_weight = WMULT_IDLEPRIO;
1872 return;
1873 }
71f8bd46 1874
dd41f596
IM
1875 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1876 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1877}
1878
8159f87e 1879static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1880{
dd41f596 1881 sched_info_queued(p);
fd390f6a 1882 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1883 p->se.on_rq = 1;
71f8bd46
IM
1884}
1885
69be72c1 1886static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1887{
f02231e5 1888 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1889 p->se.on_rq = 0;
71f8bd46
IM
1890}
1891
14531189 1892/*
dd41f596 1893 * __normal_prio - return the priority that is based on the static prio
14531189 1894 */
14531189
IM
1895static inline int __normal_prio(struct task_struct *p)
1896{
dd41f596 1897 return p->static_prio;
14531189
IM
1898}
1899
b29739f9
IM
1900/*
1901 * Calculate the expected normal priority: i.e. priority
1902 * without taking RT-inheritance into account. Might be
1903 * boosted by interactivity modifiers. Changes upon fork,
1904 * setprio syscalls, and whenever the interactivity
1905 * estimator recalculates.
1906 */
36c8b586 1907static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1908{
1909 int prio;
1910
e05606d3 1911 if (task_has_rt_policy(p))
b29739f9
IM
1912 prio = MAX_RT_PRIO-1 - p->rt_priority;
1913 else
1914 prio = __normal_prio(p);
1915 return prio;
1916}
1917
1918/*
1919 * Calculate the current priority, i.e. the priority
1920 * taken into account by the scheduler. This value might
1921 * be boosted by RT tasks, or might be boosted by
1922 * interactivity modifiers. Will be RT if the task got
1923 * RT-boosted. If not then it returns p->normal_prio.
1924 */
36c8b586 1925static int effective_prio(struct task_struct *p)
b29739f9
IM
1926{
1927 p->normal_prio = normal_prio(p);
1928 /*
1929 * If we are RT tasks or we were boosted to RT priority,
1930 * keep the priority unchanged. Otherwise, update priority
1931 * to the normal priority:
1932 */
1933 if (!rt_prio(p->prio))
1934 return p->normal_prio;
1935 return p->prio;
1936}
1937
1da177e4 1938/*
dd41f596 1939 * activate_task - move a task to the runqueue.
1da177e4 1940 */
dd41f596 1941static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1942{
d9514f6c 1943 if (task_contributes_to_load(p))
dd41f596 1944 rq->nr_uninterruptible--;
1da177e4 1945
8159f87e 1946 enqueue_task(rq, p, wakeup);
18d95a28 1947 inc_nr_running(rq);
1da177e4
LT
1948}
1949
1da177e4
LT
1950/*
1951 * deactivate_task - remove a task from the runqueue.
1952 */
2e1cb74a 1953static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1954{
d9514f6c 1955 if (task_contributes_to_load(p))
dd41f596
IM
1956 rq->nr_uninterruptible++;
1957
69be72c1 1958 dequeue_task(rq, p, sleep);
18d95a28 1959 dec_nr_running(rq);
1da177e4
LT
1960}
1961
1da177e4
LT
1962/**
1963 * task_curr - is this task currently executing on a CPU?
1964 * @p: the task in question.
1965 */
36c8b586 1966inline int task_curr(const struct task_struct *p)
1da177e4
LT
1967{
1968 return cpu_curr(task_cpu(p)) == p;
1969}
1970
2dd73a4f
PW
1971/* Used instead of source_load when we know the type == 0 */
1972unsigned long weighted_cpuload(const int cpu)
1973{
495eca49 1974 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1975}
1976
1977static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1978{
6f505b16 1979 set_task_rq(p, cpu);
dd41f596 1980#ifdef CONFIG_SMP
ce96b5ac
DA
1981 /*
1982 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1983 * successfuly executed on another CPU. We must ensure that updates of
1984 * per-task data have been completed by this moment.
1985 */
1986 smp_wmb();
dd41f596 1987 task_thread_info(p)->cpu = cpu;
dd41f596 1988#endif
2dd73a4f
PW
1989}
1990
cb469845
SR
1991static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1992 const struct sched_class *prev_class,
1993 int oldprio, int running)
1994{
1995 if (prev_class != p->sched_class) {
1996 if (prev_class->switched_from)
1997 prev_class->switched_from(rq, p, running);
1998 p->sched_class->switched_to(rq, p, running);
1999 } else
2000 p->sched_class->prio_changed(rq, p, oldprio, running);
2001}
2002
1da177e4 2003#ifdef CONFIG_SMP
c65cc870 2004
cc367732
IM
2005/*
2006 * Is this task likely cache-hot:
2007 */
e7693a36 2008static int
cc367732
IM
2009task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2010{
2011 s64 delta;
2012
f540a608
IM
2013 /*
2014 * Buddy candidates are cache hot:
2015 */
d25ce4cd 2016 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
2017 return 1;
2018
cc367732
IM
2019 if (p->sched_class != &fair_sched_class)
2020 return 0;
2021
6bc1665b
IM
2022 if (sysctl_sched_migration_cost == -1)
2023 return 1;
2024 if (sysctl_sched_migration_cost == 0)
2025 return 0;
2026
cc367732
IM
2027 delta = now - p->se.exec_start;
2028
2029 return delta < (s64)sysctl_sched_migration_cost;
2030}
2031
2032
dd41f596 2033void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2034{
dd41f596
IM
2035 int old_cpu = task_cpu(p);
2036 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2037 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2038 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2039 u64 clock_offset;
dd41f596
IM
2040
2041 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
2042
2043#ifdef CONFIG_SCHEDSTATS
2044 if (p->se.wait_start)
2045 p->se.wait_start -= clock_offset;
dd41f596
IM
2046 if (p->se.sleep_start)
2047 p->se.sleep_start -= clock_offset;
2048 if (p->se.block_start)
2049 p->se.block_start -= clock_offset;
cc367732
IM
2050 if (old_cpu != new_cpu) {
2051 schedstat_inc(p, se.nr_migrations);
2052 if (task_hot(p, old_rq->clock, NULL))
2053 schedstat_inc(p, se.nr_forced2_migrations);
2054 }
6cfb0d5d 2055#endif
2830cf8c
SV
2056 p->se.vruntime -= old_cfsrq->min_vruntime -
2057 new_cfsrq->min_vruntime;
dd41f596
IM
2058
2059 __set_task_cpu(p, new_cpu);
c65cc870
IM
2060}
2061
70b97a7f 2062struct migration_req {
1da177e4 2063 struct list_head list;
1da177e4 2064
36c8b586 2065 struct task_struct *task;
1da177e4
LT
2066 int dest_cpu;
2067
1da177e4 2068 struct completion done;
70b97a7f 2069};
1da177e4
LT
2070
2071/*
2072 * The task's runqueue lock must be held.
2073 * Returns true if you have to wait for migration thread.
2074 */
36c8b586 2075static int
70b97a7f 2076migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2077{
70b97a7f 2078 struct rq *rq = task_rq(p);
1da177e4
LT
2079
2080 /*
2081 * If the task is not on a runqueue (and not running), then
2082 * it is sufficient to simply update the task's cpu field.
2083 */
dd41f596 2084 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2085 set_task_cpu(p, dest_cpu);
2086 return 0;
2087 }
2088
2089 init_completion(&req->done);
1da177e4
LT
2090 req->task = p;
2091 req->dest_cpu = dest_cpu;
2092 list_add(&req->list, &rq->migration_queue);
48f24c4d 2093
1da177e4
LT
2094 return 1;
2095}
2096
2097/*
2098 * wait_task_inactive - wait for a thread to unschedule.
2099 *
2100 * The caller must ensure that the task *will* unschedule sometime soon,
2101 * else this function might spin for a *long* time. This function can't
2102 * be called with interrupts off, or it may introduce deadlock with
2103 * smp_call_function() if an IPI is sent by the same process we are
2104 * waiting to become inactive.
2105 */
36c8b586 2106void wait_task_inactive(struct task_struct *p)
1da177e4
LT
2107{
2108 unsigned long flags;
dd41f596 2109 int running, on_rq;
70b97a7f 2110 struct rq *rq;
1da177e4 2111
3a5c359a
AK
2112 for (;;) {
2113 /*
2114 * We do the initial early heuristics without holding
2115 * any task-queue locks at all. We'll only try to get
2116 * the runqueue lock when things look like they will
2117 * work out!
2118 */
2119 rq = task_rq(p);
fa490cfd 2120
3a5c359a
AK
2121 /*
2122 * If the task is actively running on another CPU
2123 * still, just relax and busy-wait without holding
2124 * any locks.
2125 *
2126 * NOTE! Since we don't hold any locks, it's not
2127 * even sure that "rq" stays as the right runqueue!
2128 * But we don't care, since "task_running()" will
2129 * return false if the runqueue has changed and p
2130 * is actually now running somewhere else!
2131 */
2132 while (task_running(rq, p))
2133 cpu_relax();
fa490cfd 2134
3a5c359a
AK
2135 /*
2136 * Ok, time to look more closely! We need the rq
2137 * lock now, to be *sure*. If we're wrong, we'll
2138 * just go back and repeat.
2139 */
2140 rq = task_rq_lock(p, &flags);
2141 running = task_running(rq, p);
2142 on_rq = p->se.on_rq;
2143 task_rq_unlock(rq, &flags);
fa490cfd 2144
3a5c359a
AK
2145 /*
2146 * Was it really running after all now that we
2147 * checked with the proper locks actually held?
2148 *
2149 * Oops. Go back and try again..
2150 */
2151 if (unlikely(running)) {
2152 cpu_relax();
2153 continue;
2154 }
fa490cfd 2155
3a5c359a
AK
2156 /*
2157 * It's not enough that it's not actively running,
2158 * it must be off the runqueue _entirely_, and not
2159 * preempted!
2160 *
2161 * So if it wa still runnable (but just not actively
2162 * running right now), it's preempted, and we should
2163 * yield - it could be a while.
2164 */
2165 if (unlikely(on_rq)) {
2166 schedule_timeout_uninterruptible(1);
2167 continue;
2168 }
fa490cfd 2169
3a5c359a
AK
2170 /*
2171 * Ahh, all good. It wasn't running, and it wasn't
2172 * runnable, which means that it will never become
2173 * running in the future either. We're all done!
2174 */
2175 break;
2176 }
1da177e4
LT
2177}
2178
2179/***
2180 * kick_process - kick a running thread to enter/exit the kernel
2181 * @p: the to-be-kicked thread
2182 *
2183 * Cause a process which is running on another CPU to enter
2184 * kernel-mode, without any delay. (to get signals handled.)
2185 *
2186 * NOTE: this function doesnt have to take the runqueue lock,
2187 * because all it wants to ensure is that the remote task enters
2188 * the kernel. If the IPI races and the task has been migrated
2189 * to another CPU then no harm is done and the purpose has been
2190 * achieved as well.
2191 */
36c8b586 2192void kick_process(struct task_struct *p)
1da177e4
LT
2193{
2194 int cpu;
2195
2196 preempt_disable();
2197 cpu = task_cpu(p);
2198 if ((cpu != smp_processor_id()) && task_curr(p))
2199 smp_send_reschedule(cpu);
2200 preempt_enable();
2201}
2202
2203/*
2dd73a4f
PW
2204 * Return a low guess at the load of a migration-source cpu weighted
2205 * according to the scheduling class and "nice" value.
1da177e4
LT
2206 *
2207 * We want to under-estimate the load of migration sources, to
2208 * balance conservatively.
2209 */
a9957449 2210static unsigned long source_load(int cpu, int type)
1da177e4 2211{
70b97a7f 2212 struct rq *rq = cpu_rq(cpu);
dd41f596 2213 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2214
3b0bd9bc 2215 if (type == 0)
dd41f596 2216 return total;
b910472d 2217
dd41f596 2218 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2219}
2220
2221/*
2dd73a4f
PW
2222 * Return a high guess at the load of a migration-target cpu weighted
2223 * according to the scheduling class and "nice" value.
1da177e4 2224 */
a9957449 2225static unsigned long target_load(int cpu, int type)
1da177e4 2226{
70b97a7f 2227 struct rq *rq = cpu_rq(cpu);
dd41f596 2228 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2229
7897986b 2230 if (type == 0)
dd41f596 2231 return total;
3b0bd9bc 2232
dd41f596 2233 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2234}
2235
2236/*
2237 * Return the average load per task on the cpu's run queue
2238 */
e7693a36 2239static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 2240{
70b97a7f 2241 struct rq *rq = cpu_rq(cpu);
dd41f596 2242 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
2243 unsigned long n = rq->nr_running;
2244
dd41f596 2245 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
2246}
2247
147cbb4b
NP
2248/*
2249 * find_idlest_group finds and returns the least busy CPU group within the
2250 * domain.
2251 */
2252static struct sched_group *
2253find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2254{
2255 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2256 unsigned long min_load = ULONG_MAX, this_load = 0;
2257 int load_idx = sd->forkexec_idx;
2258 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2259
2260 do {
2261 unsigned long load, avg_load;
2262 int local_group;
2263 int i;
2264
da5a5522
BD
2265 /* Skip over this group if it has no CPUs allowed */
2266 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2267 continue;
da5a5522 2268
147cbb4b 2269 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2270
2271 /* Tally up the load of all CPUs in the group */
2272 avg_load = 0;
2273
2274 for_each_cpu_mask(i, group->cpumask) {
2275 /* Bias balancing toward cpus of our domain */
2276 if (local_group)
2277 load = source_load(i, load_idx);
2278 else
2279 load = target_load(i, load_idx);
2280
2281 avg_load += load;
2282 }
2283
2284 /* Adjust by relative CPU power of the group */
5517d86b
ED
2285 avg_load = sg_div_cpu_power(group,
2286 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2287
2288 if (local_group) {
2289 this_load = avg_load;
2290 this = group;
2291 } else if (avg_load < min_load) {
2292 min_load = avg_load;
2293 idlest = group;
2294 }
3a5c359a 2295 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2296
2297 if (!idlest || 100*this_load < imbalance*min_load)
2298 return NULL;
2299 return idlest;
2300}
2301
2302/*
0feaece9 2303 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2304 */
95cdf3b7 2305static int
7c16ec58
MT
2306find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2307 cpumask_t *tmp)
147cbb4b
NP
2308{
2309 unsigned long load, min_load = ULONG_MAX;
2310 int idlest = -1;
2311 int i;
2312
da5a5522 2313 /* Traverse only the allowed CPUs */
7c16ec58 2314 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2315
7c16ec58 2316 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2317 load = weighted_cpuload(i);
147cbb4b
NP
2318
2319 if (load < min_load || (load == min_load && i == this_cpu)) {
2320 min_load = load;
2321 idlest = i;
2322 }
2323 }
2324
2325 return idlest;
2326}
2327
476d139c
NP
2328/*
2329 * sched_balance_self: balance the current task (running on cpu) in domains
2330 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2331 * SD_BALANCE_EXEC.
2332 *
2333 * Balance, ie. select the least loaded group.
2334 *
2335 * Returns the target CPU number, or the same CPU if no balancing is needed.
2336 *
2337 * preempt must be disabled.
2338 */
2339static int sched_balance_self(int cpu, int flag)
2340{
2341 struct task_struct *t = current;
2342 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2343
c96d145e 2344 for_each_domain(cpu, tmp) {
9761eea8
IM
2345 /*
2346 * If power savings logic is enabled for a domain, stop there.
2347 */
5c45bf27
SS
2348 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2349 break;
476d139c
NP
2350 if (tmp->flags & flag)
2351 sd = tmp;
c96d145e 2352 }
476d139c
NP
2353
2354 while (sd) {
7c16ec58 2355 cpumask_t span, tmpmask;
476d139c 2356 struct sched_group *group;
1a848870
SS
2357 int new_cpu, weight;
2358
2359 if (!(sd->flags & flag)) {
2360 sd = sd->child;
2361 continue;
2362 }
476d139c
NP
2363
2364 span = sd->span;
2365 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2366 if (!group) {
2367 sd = sd->child;
2368 continue;
2369 }
476d139c 2370
7c16ec58 2371 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2372 if (new_cpu == -1 || new_cpu == cpu) {
2373 /* Now try balancing at a lower domain level of cpu */
2374 sd = sd->child;
2375 continue;
2376 }
476d139c 2377
1a848870 2378 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2379 cpu = new_cpu;
476d139c
NP
2380 sd = NULL;
2381 weight = cpus_weight(span);
2382 for_each_domain(cpu, tmp) {
2383 if (weight <= cpus_weight(tmp->span))
2384 break;
2385 if (tmp->flags & flag)
2386 sd = tmp;
2387 }
2388 /* while loop will break here if sd == NULL */
2389 }
2390
2391 return cpu;
2392}
2393
2394#endif /* CONFIG_SMP */
1da177e4 2395
1da177e4
LT
2396/***
2397 * try_to_wake_up - wake up a thread
2398 * @p: the to-be-woken-up thread
2399 * @state: the mask of task states that can be woken
2400 * @sync: do a synchronous wakeup?
2401 *
2402 * Put it on the run-queue if it's not already there. The "current"
2403 * thread is always on the run-queue (except when the actual
2404 * re-schedule is in progress), and as such you're allowed to do
2405 * the simpler "current->state = TASK_RUNNING" to mark yourself
2406 * runnable without the overhead of this.
2407 *
2408 * returns failure only if the task is already active.
2409 */
36c8b586 2410static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2411{
cc367732 2412 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2413 unsigned long flags;
2414 long old_state;
70b97a7f 2415 struct rq *rq;
1da177e4 2416
b85d0667
IM
2417 if (!sched_feat(SYNC_WAKEUPS))
2418 sync = 0;
2419
04e2f174 2420 smp_wmb();
1da177e4
LT
2421 rq = task_rq_lock(p, &flags);
2422 old_state = p->state;
2423 if (!(old_state & state))
2424 goto out;
2425
dd41f596 2426 if (p->se.on_rq)
1da177e4
LT
2427 goto out_running;
2428
2429 cpu = task_cpu(p);
cc367732 2430 orig_cpu = cpu;
1da177e4
LT
2431 this_cpu = smp_processor_id();
2432
2433#ifdef CONFIG_SMP
2434 if (unlikely(task_running(rq, p)))
2435 goto out_activate;
2436
5d2f5a61
DA
2437 cpu = p->sched_class->select_task_rq(p, sync);
2438 if (cpu != orig_cpu) {
2439 set_task_cpu(p, cpu);
1da177e4
LT
2440 task_rq_unlock(rq, &flags);
2441 /* might preempt at this point */
2442 rq = task_rq_lock(p, &flags);
2443 old_state = p->state;
2444 if (!(old_state & state))
2445 goto out;
dd41f596 2446 if (p->se.on_rq)
1da177e4
LT
2447 goto out_running;
2448
2449 this_cpu = smp_processor_id();
2450 cpu = task_cpu(p);
2451 }
2452
e7693a36
GH
2453#ifdef CONFIG_SCHEDSTATS
2454 schedstat_inc(rq, ttwu_count);
2455 if (cpu == this_cpu)
2456 schedstat_inc(rq, ttwu_local);
2457 else {
2458 struct sched_domain *sd;
2459 for_each_domain(this_cpu, sd) {
2460 if (cpu_isset(cpu, sd->span)) {
2461 schedstat_inc(sd, ttwu_wake_remote);
2462 break;
2463 }
2464 }
2465 }
e7693a36
GH
2466#endif
2467
1da177e4
LT
2468out_activate:
2469#endif /* CONFIG_SMP */
cc367732
IM
2470 schedstat_inc(p, se.nr_wakeups);
2471 if (sync)
2472 schedstat_inc(p, se.nr_wakeups_sync);
2473 if (orig_cpu != cpu)
2474 schedstat_inc(p, se.nr_wakeups_migrate);
2475 if (cpu == this_cpu)
2476 schedstat_inc(p, se.nr_wakeups_local);
2477 else
2478 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2479 update_rq_clock(rq);
dd41f596 2480 activate_task(rq, p, 1);
1da177e4
LT
2481 success = 1;
2482
2483out_running:
4ae7d5ce
IM
2484 check_preempt_curr(rq, p);
2485
1da177e4 2486 p->state = TASK_RUNNING;
9a897c5a
SR
2487#ifdef CONFIG_SMP
2488 if (p->sched_class->task_wake_up)
2489 p->sched_class->task_wake_up(rq, p);
2490#endif
1da177e4
LT
2491out:
2492 task_rq_unlock(rq, &flags);
2493
2494 return success;
2495}
2496
7ad5b3a5 2497int wake_up_process(struct task_struct *p)
1da177e4 2498{
d9514f6c 2499 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2500}
1da177e4
LT
2501EXPORT_SYMBOL(wake_up_process);
2502
7ad5b3a5 2503int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2504{
2505 return try_to_wake_up(p, state, 0);
2506}
2507
1da177e4
LT
2508/*
2509 * Perform scheduler related setup for a newly forked process p.
2510 * p is forked by current.
dd41f596
IM
2511 *
2512 * __sched_fork() is basic setup used by init_idle() too:
2513 */
2514static void __sched_fork(struct task_struct *p)
2515{
dd41f596
IM
2516 p->se.exec_start = 0;
2517 p->se.sum_exec_runtime = 0;
f6cf891c 2518 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2519 p->se.last_wakeup = 0;
2520 p->se.avg_overlap = 0;
6cfb0d5d
IM
2521
2522#ifdef CONFIG_SCHEDSTATS
2523 p->se.wait_start = 0;
dd41f596
IM
2524 p->se.sum_sleep_runtime = 0;
2525 p->se.sleep_start = 0;
dd41f596
IM
2526 p->se.block_start = 0;
2527 p->se.sleep_max = 0;
2528 p->se.block_max = 0;
2529 p->se.exec_max = 0;
eba1ed4b 2530 p->se.slice_max = 0;
dd41f596 2531 p->se.wait_max = 0;
6cfb0d5d 2532#endif
476d139c 2533
fa717060 2534 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2535 p->se.on_rq = 0;
4a55bd5e 2536 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2537
e107be36
AK
2538#ifdef CONFIG_PREEMPT_NOTIFIERS
2539 INIT_HLIST_HEAD(&p->preempt_notifiers);
2540#endif
2541
1da177e4
LT
2542 /*
2543 * We mark the process as running here, but have not actually
2544 * inserted it onto the runqueue yet. This guarantees that
2545 * nobody will actually run it, and a signal or other external
2546 * event cannot wake it up and insert it on the runqueue either.
2547 */
2548 p->state = TASK_RUNNING;
dd41f596
IM
2549}
2550
2551/*
2552 * fork()/clone()-time setup:
2553 */
2554void sched_fork(struct task_struct *p, int clone_flags)
2555{
2556 int cpu = get_cpu();
2557
2558 __sched_fork(p);
2559
2560#ifdef CONFIG_SMP
2561 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2562#endif
02e4bac2 2563 set_task_cpu(p, cpu);
b29739f9
IM
2564
2565 /*
2566 * Make sure we do not leak PI boosting priority to the child:
2567 */
2568 p->prio = current->normal_prio;
2ddbf952
HS
2569 if (!rt_prio(p->prio))
2570 p->sched_class = &fair_sched_class;
b29739f9 2571
52f17b6c 2572#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2573 if (likely(sched_info_on()))
52f17b6c 2574 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2575#endif
d6077cb8 2576#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2577 p->oncpu = 0;
2578#endif
1da177e4 2579#ifdef CONFIG_PREEMPT
4866cde0 2580 /* Want to start with kernel preemption disabled. */
a1261f54 2581 task_thread_info(p)->preempt_count = 1;
1da177e4 2582#endif
476d139c 2583 put_cpu();
1da177e4
LT
2584}
2585
2586/*
2587 * wake_up_new_task - wake up a newly created task for the first time.
2588 *
2589 * This function will do some initial scheduler statistics housekeeping
2590 * that must be done for every newly created context, then puts the task
2591 * on the runqueue and wakes it.
2592 */
7ad5b3a5 2593void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2594{
2595 unsigned long flags;
dd41f596 2596 struct rq *rq;
1da177e4
LT
2597
2598 rq = task_rq_lock(p, &flags);
147cbb4b 2599 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2600 update_rq_clock(rq);
1da177e4
LT
2601
2602 p->prio = effective_prio(p);
2603
b9dca1e0 2604 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2605 activate_task(rq, p, 0);
1da177e4 2606 } else {
1da177e4 2607 /*
dd41f596
IM
2608 * Let the scheduling class do new task startup
2609 * management (if any):
1da177e4 2610 */
ee0827d8 2611 p->sched_class->task_new(rq, p);
18d95a28 2612 inc_nr_running(rq);
1da177e4 2613 }
dd41f596 2614 check_preempt_curr(rq, p);
9a897c5a
SR
2615#ifdef CONFIG_SMP
2616 if (p->sched_class->task_wake_up)
2617 p->sched_class->task_wake_up(rq, p);
2618#endif
dd41f596 2619 task_rq_unlock(rq, &flags);
1da177e4
LT
2620}
2621
e107be36
AK
2622#ifdef CONFIG_PREEMPT_NOTIFIERS
2623
2624/**
421cee29
RD
2625 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2626 * @notifier: notifier struct to register
e107be36
AK
2627 */
2628void preempt_notifier_register(struct preempt_notifier *notifier)
2629{
2630 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2631}
2632EXPORT_SYMBOL_GPL(preempt_notifier_register);
2633
2634/**
2635 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2636 * @notifier: notifier struct to unregister
e107be36
AK
2637 *
2638 * This is safe to call from within a preemption notifier.
2639 */
2640void preempt_notifier_unregister(struct preempt_notifier *notifier)
2641{
2642 hlist_del(&notifier->link);
2643}
2644EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2645
2646static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2647{
2648 struct preempt_notifier *notifier;
2649 struct hlist_node *node;
2650
2651 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2652 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2653}
2654
2655static void
2656fire_sched_out_preempt_notifiers(struct task_struct *curr,
2657 struct task_struct *next)
2658{
2659 struct preempt_notifier *notifier;
2660 struct hlist_node *node;
2661
2662 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2663 notifier->ops->sched_out(notifier, next);
2664}
2665
2666#else
2667
2668static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2669{
2670}
2671
2672static void
2673fire_sched_out_preempt_notifiers(struct task_struct *curr,
2674 struct task_struct *next)
2675{
2676}
2677
2678#endif
2679
4866cde0
NP
2680/**
2681 * prepare_task_switch - prepare to switch tasks
2682 * @rq: the runqueue preparing to switch
421cee29 2683 * @prev: the current task that is being switched out
4866cde0
NP
2684 * @next: the task we are going to switch to.
2685 *
2686 * This is called with the rq lock held and interrupts off. It must
2687 * be paired with a subsequent finish_task_switch after the context
2688 * switch.
2689 *
2690 * prepare_task_switch sets up locking and calls architecture specific
2691 * hooks.
2692 */
e107be36
AK
2693static inline void
2694prepare_task_switch(struct rq *rq, struct task_struct *prev,
2695 struct task_struct *next)
4866cde0 2696{
e107be36 2697 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2698 prepare_lock_switch(rq, next);
2699 prepare_arch_switch(next);
2700}
2701
1da177e4
LT
2702/**
2703 * finish_task_switch - clean up after a task-switch
344babaa 2704 * @rq: runqueue associated with task-switch
1da177e4
LT
2705 * @prev: the thread we just switched away from.
2706 *
4866cde0
NP
2707 * finish_task_switch must be called after the context switch, paired
2708 * with a prepare_task_switch call before the context switch.
2709 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2710 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2711 *
2712 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2713 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2714 * with the lock held can cause deadlocks; see schedule() for
2715 * details.)
2716 */
a9957449 2717static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2718 __releases(rq->lock)
2719{
1da177e4 2720 struct mm_struct *mm = rq->prev_mm;
55a101f8 2721 long prev_state;
1da177e4
LT
2722
2723 rq->prev_mm = NULL;
2724
2725 /*
2726 * A task struct has one reference for the use as "current".
c394cc9f 2727 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2728 * schedule one last time. The schedule call will never return, and
2729 * the scheduled task must drop that reference.
c394cc9f 2730 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2731 * still held, otherwise prev could be scheduled on another cpu, die
2732 * there before we look at prev->state, and then the reference would
2733 * be dropped twice.
2734 * Manfred Spraul <manfred@colorfullife.com>
2735 */
55a101f8 2736 prev_state = prev->state;
4866cde0
NP
2737 finish_arch_switch(prev);
2738 finish_lock_switch(rq, prev);
9a897c5a
SR
2739#ifdef CONFIG_SMP
2740 if (current->sched_class->post_schedule)
2741 current->sched_class->post_schedule(rq);
2742#endif
e8fa1362 2743
e107be36 2744 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2745 if (mm)
2746 mmdrop(mm);
c394cc9f 2747 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2748 /*
2749 * Remove function-return probe instances associated with this
2750 * task and put them back on the free list.
9761eea8 2751 */
c6fd91f0 2752 kprobe_flush_task(prev);
1da177e4 2753 put_task_struct(prev);
c6fd91f0 2754 }
1da177e4
LT
2755}
2756
2757/**
2758 * schedule_tail - first thing a freshly forked thread must call.
2759 * @prev: the thread we just switched away from.
2760 */
36c8b586 2761asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2762 __releases(rq->lock)
2763{
70b97a7f
IM
2764 struct rq *rq = this_rq();
2765
4866cde0
NP
2766 finish_task_switch(rq, prev);
2767#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2768 /* In this case, finish_task_switch does not reenable preemption */
2769 preempt_enable();
2770#endif
1da177e4 2771 if (current->set_child_tid)
b488893a 2772 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2773}
2774
2775/*
2776 * context_switch - switch to the new MM and the new
2777 * thread's register state.
2778 */
dd41f596 2779static inline void
70b97a7f 2780context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2781 struct task_struct *next)
1da177e4 2782{
dd41f596 2783 struct mm_struct *mm, *oldmm;
1da177e4 2784
e107be36 2785 prepare_task_switch(rq, prev, next);
dd41f596
IM
2786 mm = next->mm;
2787 oldmm = prev->active_mm;
9226d125
ZA
2788 /*
2789 * For paravirt, this is coupled with an exit in switch_to to
2790 * combine the page table reload and the switch backend into
2791 * one hypercall.
2792 */
2793 arch_enter_lazy_cpu_mode();
2794
dd41f596 2795 if (unlikely(!mm)) {
1da177e4
LT
2796 next->active_mm = oldmm;
2797 atomic_inc(&oldmm->mm_count);
2798 enter_lazy_tlb(oldmm, next);
2799 } else
2800 switch_mm(oldmm, mm, next);
2801
dd41f596 2802 if (unlikely(!prev->mm)) {
1da177e4 2803 prev->active_mm = NULL;
1da177e4
LT
2804 rq->prev_mm = oldmm;
2805 }
3a5f5e48
IM
2806 /*
2807 * Since the runqueue lock will be released by the next
2808 * task (which is an invalid locking op but in the case
2809 * of the scheduler it's an obvious special-case), so we
2810 * do an early lockdep release here:
2811 */
2812#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2813 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2814#endif
1da177e4
LT
2815
2816 /* Here we just switch the register state and the stack. */
2817 switch_to(prev, next, prev);
2818
dd41f596
IM
2819 barrier();
2820 /*
2821 * this_rq must be evaluated again because prev may have moved
2822 * CPUs since it called schedule(), thus the 'rq' on its stack
2823 * frame will be invalid.
2824 */
2825 finish_task_switch(this_rq(), prev);
1da177e4
LT
2826}
2827
2828/*
2829 * nr_running, nr_uninterruptible and nr_context_switches:
2830 *
2831 * externally visible scheduler statistics: current number of runnable
2832 * threads, current number of uninterruptible-sleeping threads, total
2833 * number of context switches performed since bootup.
2834 */
2835unsigned long nr_running(void)
2836{
2837 unsigned long i, sum = 0;
2838
2839 for_each_online_cpu(i)
2840 sum += cpu_rq(i)->nr_running;
2841
2842 return sum;
2843}
2844
2845unsigned long nr_uninterruptible(void)
2846{
2847 unsigned long i, sum = 0;
2848
0a945022 2849 for_each_possible_cpu(i)
1da177e4
LT
2850 sum += cpu_rq(i)->nr_uninterruptible;
2851
2852 /*
2853 * Since we read the counters lockless, it might be slightly
2854 * inaccurate. Do not allow it to go below zero though:
2855 */
2856 if (unlikely((long)sum < 0))
2857 sum = 0;
2858
2859 return sum;
2860}
2861
2862unsigned long long nr_context_switches(void)
2863{
cc94abfc
SR
2864 int i;
2865 unsigned long long sum = 0;
1da177e4 2866
0a945022 2867 for_each_possible_cpu(i)
1da177e4
LT
2868 sum += cpu_rq(i)->nr_switches;
2869
2870 return sum;
2871}
2872
2873unsigned long nr_iowait(void)
2874{
2875 unsigned long i, sum = 0;
2876
0a945022 2877 for_each_possible_cpu(i)
1da177e4
LT
2878 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2879
2880 return sum;
2881}
2882
db1b1fef
JS
2883unsigned long nr_active(void)
2884{
2885 unsigned long i, running = 0, uninterruptible = 0;
2886
2887 for_each_online_cpu(i) {
2888 running += cpu_rq(i)->nr_running;
2889 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2890 }
2891
2892 if (unlikely((long)uninterruptible < 0))
2893 uninterruptible = 0;
2894
2895 return running + uninterruptible;
2896}
2897
48f24c4d 2898/*
dd41f596
IM
2899 * Update rq->cpu_load[] statistics. This function is usually called every
2900 * scheduler tick (TICK_NSEC).
48f24c4d 2901 */
dd41f596 2902static void update_cpu_load(struct rq *this_rq)
48f24c4d 2903{
495eca49 2904 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2905 int i, scale;
2906
2907 this_rq->nr_load_updates++;
dd41f596
IM
2908
2909 /* Update our load: */
2910 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2911 unsigned long old_load, new_load;
2912
2913 /* scale is effectively 1 << i now, and >> i divides by scale */
2914
2915 old_load = this_rq->cpu_load[i];
2916 new_load = this_load;
a25707f3
IM
2917 /*
2918 * Round up the averaging division if load is increasing. This
2919 * prevents us from getting stuck on 9 if the load is 10, for
2920 * example.
2921 */
2922 if (new_load > old_load)
2923 new_load += scale-1;
dd41f596
IM
2924 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2925 }
48f24c4d
IM
2926}
2927
dd41f596
IM
2928#ifdef CONFIG_SMP
2929
1da177e4
LT
2930/*
2931 * double_rq_lock - safely lock two runqueues
2932 *
2933 * Note this does not disable interrupts like task_rq_lock,
2934 * you need to do so manually before calling.
2935 */
70b97a7f 2936static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2937 __acquires(rq1->lock)
2938 __acquires(rq2->lock)
2939{
054b9108 2940 BUG_ON(!irqs_disabled());
1da177e4
LT
2941 if (rq1 == rq2) {
2942 spin_lock(&rq1->lock);
2943 __acquire(rq2->lock); /* Fake it out ;) */
2944 } else {
c96d145e 2945 if (rq1 < rq2) {
1da177e4
LT
2946 spin_lock(&rq1->lock);
2947 spin_lock(&rq2->lock);
2948 } else {
2949 spin_lock(&rq2->lock);
2950 spin_lock(&rq1->lock);
2951 }
2952 }
6e82a3be
IM
2953 update_rq_clock(rq1);
2954 update_rq_clock(rq2);
1da177e4
LT
2955}
2956
2957/*
2958 * double_rq_unlock - safely unlock two runqueues
2959 *
2960 * Note this does not restore interrupts like task_rq_unlock,
2961 * you need to do so manually after calling.
2962 */
70b97a7f 2963static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2964 __releases(rq1->lock)
2965 __releases(rq2->lock)
2966{
2967 spin_unlock(&rq1->lock);
2968 if (rq1 != rq2)
2969 spin_unlock(&rq2->lock);
2970 else
2971 __release(rq2->lock);
2972}
2973
2974/*
2975 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2976 */
e8fa1362 2977static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2978 __releases(this_rq->lock)
2979 __acquires(busiest->lock)
2980 __acquires(this_rq->lock)
2981{
e8fa1362
SR
2982 int ret = 0;
2983
054b9108
KK
2984 if (unlikely(!irqs_disabled())) {
2985 /* printk() doesn't work good under rq->lock */
2986 spin_unlock(&this_rq->lock);
2987 BUG_ON(1);
2988 }
1da177e4 2989 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2990 if (busiest < this_rq) {
1da177e4
LT
2991 spin_unlock(&this_rq->lock);
2992 spin_lock(&busiest->lock);
2993 spin_lock(&this_rq->lock);
e8fa1362 2994 ret = 1;
1da177e4
LT
2995 } else
2996 spin_lock(&busiest->lock);
2997 }
e8fa1362 2998 return ret;
1da177e4
LT
2999}
3000
1da177e4
LT
3001/*
3002 * If dest_cpu is allowed for this process, migrate the task to it.
3003 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3004 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3005 * the cpu_allowed mask is restored.
3006 */
36c8b586 3007static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3008{
70b97a7f 3009 struct migration_req req;
1da177e4 3010 unsigned long flags;
70b97a7f 3011 struct rq *rq;
1da177e4
LT
3012
3013 rq = task_rq_lock(p, &flags);
3014 if (!cpu_isset(dest_cpu, p->cpus_allowed)
3015 || unlikely(cpu_is_offline(dest_cpu)))
3016 goto out;
3017
3018 /* force the process onto the specified CPU */
3019 if (migrate_task(p, dest_cpu, &req)) {
3020 /* Need to wait for migration thread (might exit: take ref). */
3021 struct task_struct *mt = rq->migration_thread;
36c8b586 3022
1da177e4
LT
3023 get_task_struct(mt);
3024 task_rq_unlock(rq, &flags);
3025 wake_up_process(mt);
3026 put_task_struct(mt);
3027 wait_for_completion(&req.done);
36c8b586 3028
1da177e4
LT
3029 return;
3030 }
3031out:
3032 task_rq_unlock(rq, &flags);
3033}
3034
3035/*
476d139c
NP
3036 * sched_exec - execve() is a valuable balancing opportunity, because at
3037 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3038 */
3039void sched_exec(void)
3040{
1da177e4 3041 int new_cpu, this_cpu = get_cpu();
476d139c 3042 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3043 put_cpu();
476d139c
NP
3044 if (new_cpu != this_cpu)
3045 sched_migrate_task(current, new_cpu);
1da177e4
LT
3046}
3047
3048/*
3049 * pull_task - move a task from a remote runqueue to the local runqueue.
3050 * Both runqueues must be locked.
3051 */
dd41f596
IM
3052static void pull_task(struct rq *src_rq, struct task_struct *p,
3053 struct rq *this_rq, int this_cpu)
1da177e4 3054{
2e1cb74a 3055 deactivate_task(src_rq, p, 0);
1da177e4 3056 set_task_cpu(p, this_cpu);
dd41f596 3057 activate_task(this_rq, p, 0);
1da177e4
LT
3058 /*
3059 * Note that idle threads have a prio of MAX_PRIO, for this test
3060 * to be always true for them.
3061 */
dd41f596 3062 check_preempt_curr(this_rq, p);
1da177e4
LT
3063}
3064
3065/*
3066 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3067 */
858119e1 3068static
70b97a7f 3069int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3070 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3071 int *all_pinned)
1da177e4
LT
3072{
3073 /*
3074 * We do not migrate tasks that are:
3075 * 1) running (obviously), or
3076 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3077 * 3) are cache-hot on their current CPU.
3078 */
cc367732
IM
3079 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
3080 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3081 return 0;
cc367732 3082 }
81026794
NP
3083 *all_pinned = 0;
3084
cc367732
IM
3085 if (task_running(rq, p)) {
3086 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3087 return 0;
cc367732 3088 }
1da177e4 3089
da84d961
IM
3090 /*
3091 * Aggressive migration if:
3092 * 1) task is cache cold, or
3093 * 2) too many balance attempts have failed.
3094 */
3095
6bc1665b
IM
3096 if (!task_hot(p, rq->clock, sd) ||
3097 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3098#ifdef CONFIG_SCHEDSTATS
cc367732 3099 if (task_hot(p, rq->clock, sd)) {
da84d961 3100 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3101 schedstat_inc(p, se.nr_forced_migrations);
3102 }
da84d961
IM
3103#endif
3104 return 1;
3105 }
3106
cc367732
IM
3107 if (task_hot(p, rq->clock, sd)) {
3108 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3109 return 0;
cc367732 3110 }
1da177e4
LT
3111 return 1;
3112}
3113
e1d1484f
PW
3114static unsigned long
3115balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3116 unsigned long max_load_move, struct sched_domain *sd,
3117 enum cpu_idle_type idle, int *all_pinned,
3118 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3119{
b82d9fdd 3120 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
3121 struct task_struct *p;
3122 long rem_load_move = max_load_move;
1da177e4 3123
e1d1484f 3124 if (max_load_move == 0)
1da177e4
LT
3125 goto out;
3126
81026794
NP
3127 pinned = 1;
3128
1da177e4 3129 /*
dd41f596 3130 * Start the load-balancing iterator:
1da177e4 3131 */
dd41f596
IM
3132 p = iterator->start(iterator->arg);
3133next:
b82d9fdd 3134 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3135 goto out;
50ddd969 3136 /*
b82d9fdd 3137 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
3138 * skip a task if it will be the highest priority task (i.e. smallest
3139 * prio value) on its new queue regardless of its load weight
3140 */
dd41f596
IM
3141 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
3142 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 3143 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 3144 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3145 p = iterator->next(iterator->arg);
3146 goto next;
1da177e4
LT
3147 }
3148
dd41f596 3149 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3150 pulled++;
dd41f596 3151 rem_load_move -= p->se.load.weight;
1da177e4 3152
2dd73a4f 3153 /*
b82d9fdd 3154 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3155 */
e1d1484f 3156 if (rem_load_move > 0) {
a4ac01c3
PW
3157 if (p->prio < *this_best_prio)
3158 *this_best_prio = p->prio;
dd41f596
IM
3159 p = iterator->next(iterator->arg);
3160 goto next;
1da177e4
LT
3161 }
3162out:
3163 /*
e1d1484f 3164 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3165 * so we can safely collect pull_task() stats here rather than
3166 * inside pull_task().
3167 */
3168 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3169
3170 if (all_pinned)
3171 *all_pinned = pinned;
e1d1484f
PW
3172
3173 return max_load_move - rem_load_move;
1da177e4
LT
3174}
3175
dd41f596 3176/*
43010659
PW
3177 * move_tasks tries to move up to max_load_move weighted load from busiest to
3178 * this_rq, as part of a balancing operation within domain "sd".
3179 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3180 *
3181 * Called with both runqueues locked.
3182 */
3183static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3184 unsigned long max_load_move,
dd41f596
IM
3185 struct sched_domain *sd, enum cpu_idle_type idle,
3186 int *all_pinned)
3187{
5522d5d5 3188 const struct sched_class *class = sched_class_highest;
43010659 3189 unsigned long total_load_moved = 0;
a4ac01c3 3190 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3191
3192 do {
43010659
PW
3193 total_load_moved +=
3194 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3195 max_load_move - total_load_moved,
a4ac01c3 3196 sd, idle, all_pinned, &this_best_prio);
dd41f596 3197 class = class->next;
43010659 3198 } while (class && max_load_move > total_load_moved);
dd41f596 3199
43010659
PW
3200 return total_load_moved > 0;
3201}
3202
e1d1484f
PW
3203static int
3204iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3205 struct sched_domain *sd, enum cpu_idle_type idle,
3206 struct rq_iterator *iterator)
3207{
3208 struct task_struct *p = iterator->start(iterator->arg);
3209 int pinned = 0;
3210
3211 while (p) {
3212 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3213 pull_task(busiest, p, this_rq, this_cpu);
3214 /*
3215 * Right now, this is only the second place pull_task()
3216 * is called, so we can safely collect pull_task()
3217 * stats here rather than inside pull_task().
3218 */
3219 schedstat_inc(sd, lb_gained[idle]);
3220
3221 return 1;
3222 }
3223 p = iterator->next(iterator->arg);
3224 }
3225
3226 return 0;
3227}
3228
43010659
PW
3229/*
3230 * move_one_task tries to move exactly one task from busiest to this_rq, as
3231 * part of active balancing operations within "domain".
3232 * Returns 1 if successful and 0 otherwise.
3233 *
3234 * Called with both runqueues locked.
3235 */
3236static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3237 struct sched_domain *sd, enum cpu_idle_type idle)
3238{
5522d5d5 3239 const struct sched_class *class;
43010659
PW
3240
3241 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3242 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3243 return 1;
3244
3245 return 0;
dd41f596
IM
3246}
3247
1da177e4
LT
3248/*
3249 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3250 * domain. It calculates and returns the amount of weighted load which
3251 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3252 */
3253static struct sched_group *
3254find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3255 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3256 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3257{
3258 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3259 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3260 unsigned long max_pull;
2dd73a4f
PW
3261 unsigned long busiest_load_per_task, busiest_nr_running;
3262 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3263 int load_idx, group_imb = 0;
5c45bf27
SS
3264#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3265 int power_savings_balance = 1;
3266 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3267 unsigned long min_nr_running = ULONG_MAX;
3268 struct sched_group *group_min = NULL, *group_leader = NULL;
3269#endif
1da177e4
LT
3270
3271 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3272 busiest_load_per_task = busiest_nr_running = 0;
3273 this_load_per_task = this_nr_running = 0;
d15bcfdb 3274 if (idle == CPU_NOT_IDLE)
7897986b 3275 load_idx = sd->busy_idx;
d15bcfdb 3276 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3277 load_idx = sd->newidle_idx;
3278 else
3279 load_idx = sd->idle_idx;
1da177e4
LT
3280
3281 do {
908a7c1b 3282 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3283 int local_group;
3284 int i;
908a7c1b 3285 int __group_imb = 0;
783609c6 3286 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3287 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
3288
3289 local_group = cpu_isset(this_cpu, group->cpumask);
3290
783609c6
SS
3291 if (local_group)
3292 balance_cpu = first_cpu(group->cpumask);
3293
1da177e4 3294 /* Tally up the load of all CPUs in the group */
2dd73a4f 3295 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
3296 max_cpu_load = 0;
3297 min_cpu_load = ~0UL;
1da177e4
LT
3298
3299 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3300 struct rq *rq;
3301
3302 if (!cpu_isset(i, *cpus))
3303 continue;
3304
3305 rq = cpu_rq(i);
2dd73a4f 3306
9439aab8 3307 if (*sd_idle && rq->nr_running)
5969fe06
NP
3308 *sd_idle = 0;
3309
1da177e4 3310 /* Bias balancing toward cpus of our domain */
783609c6
SS
3311 if (local_group) {
3312 if (idle_cpu(i) && !first_idle_cpu) {
3313 first_idle_cpu = 1;
3314 balance_cpu = i;
3315 }
3316
a2000572 3317 load = target_load(i, load_idx);
908a7c1b 3318 } else {
a2000572 3319 load = source_load(i, load_idx);
908a7c1b
KC
3320 if (load > max_cpu_load)
3321 max_cpu_load = load;
3322 if (min_cpu_load > load)
3323 min_cpu_load = load;
3324 }
1da177e4
LT
3325
3326 avg_load += load;
2dd73a4f 3327 sum_nr_running += rq->nr_running;
dd41f596 3328 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
3329 }
3330
783609c6
SS
3331 /*
3332 * First idle cpu or the first cpu(busiest) in this sched group
3333 * is eligible for doing load balancing at this and above
9439aab8
SS
3334 * domains. In the newly idle case, we will allow all the cpu's
3335 * to do the newly idle load balance.
783609c6 3336 */
9439aab8
SS
3337 if (idle != CPU_NEWLY_IDLE && local_group &&
3338 balance_cpu != this_cpu && balance) {
783609c6
SS
3339 *balance = 0;
3340 goto ret;
3341 }
3342
1da177e4 3343 total_load += avg_load;
5517d86b 3344 total_pwr += group->__cpu_power;
1da177e4
LT
3345
3346 /* Adjust by relative CPU power of the group */
5517d86b
ED
3347 avg_load = sg_div_cpu_power(group,
3348 avg_load * SCHED_LOAD_SCALE);
1da177e4 3349
908a7c1b
KC
3350 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3351 __group_imb = 1;
3352
5517d86b 3353 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3354
1da177e4
LT
3355 if (local_group) {
3356 this_load = avg_load;
3357 this = group;
2dd73a4f
PW
3358 this_nr_running = sum_nr_running;
3359 this_load_per_task = sum_weighted_load;
3360 } else if (avg_load > max_load &&
908a7c1b 3361 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3362 max_load = avg_load;
3363 busiest = group;
2dd73a4f
PW
3364 busiest_nr_running = sum_nr_running;
3365 busiest_load_per_task = sum_weighted_load;
908a7c1b 3366 group_imb = __group_imb;
1da177e4 3367 }
5c45bf27
SS
3368
3369#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3370 /*
3371 * Busy processors will not participate in power savings
3372 * balance.
3373 */
dd41f596
IM
3374 if (idle == CPU_NOT_IDLE ||
3375 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3376 goto group_next;
5c45bf27
SS
3377
3378 /*
3379 * If the local group is idle or completely loaded
3380 * no need to do power savings balance at this domain
3381 */
3382 if (local_group && (this_nr_running >= group_capacity ||
3383 !this_nr_running))
3384 power_savings_balance = 0;
3385
dd41f596 3386 /*
5c45bf27
SS
3387 * If a group is already running at full capacity or idle,
3388 * don't include that group in power savings calculations
dd41f596
IM
3389 */
3390 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3391 || !sum_nr_running)
dd41f596 3392 goto group_next;
5c45bf27 3393
dd41f596 3394 /*
5c45bf27 3395 * Calculate the group which has the least non-idle load.
dd41f596
IM
3396 * This is the group from where we need to pick up the load
3397 * for saving power
3398 */
3399 if ((sum_nr_running < min_nr_running) ||
3400 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3401 first_cpu(group->cpumask) <
3402 first_cpu(group_min->cpumask))) {
dd41f596
IM
3403 group_min = group;
3404 min_nr_running = sum_nr_running;
5c45bf27
SS
3405 min_load_per_task = sum_weighted_load /
3406 sum_nr_running;
dd41f596 3407 }
5c45bf27 3408
dd41f596 3409 /*
5c45bf27 3410 * Calculate the group which is almost near its
dd41f596
IM
3411 * capacity but still has some space to pick up some load
3412 * from other group and save more power
3413 */
3414 if (sum_nr_running <= group_capacity - 1) {
3415 if (sum_nr_running > leader_nr_running ||
3416 (sum_nr_running == leader_nr_running &&
3417 first_cpu(group->cpumask) >
3418 first_cpu(group_leader->cpumask))) {
3419 group_leader = group;
3420 leader_nr_running = sum_nr_running;
3421 }
48f24c4d 3422 }
5c45bf27
SS
3423group_next:
3424#endif
1da177e4
LT
3425 group = group->next;
3426 } while (group != sd->groups);
3427
2dd73a4f 3428 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3429 goto out_balanced;
3430
3431 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3432
3433 if (this_load >= avg_load ||
3434 100*max_load <= sd->imbalance_pct*this_load)
3435 goto out_balanced;
3436
2dd73a4f 3437 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3438 if (group_imb)
3439 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3440
1da177e4
LT
3441 /*
3442 * We're trying to get all the cpus to the average_load, so we don't
3443 * want to push ourselves above the average load, nor do we wish to
3444 * reduce the max loaded cpu below the average load, as either of these
3445 * actions would just result in more rebalancing later, and ping-pong
3446 * tasks around. Thus we look for the minimum possible imbalance.
3447 * Negative imbalances (*we* are more loaded than anyone else) will
3448 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3449 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3450 * appear as very large values with unsigned longs.
3451 */
2dd73a4f
PW
3452 if (max_load <= busiest_load_per_task)
3453 goto out_balanced;
3454
3455 /*
3456 * In the presence of smp nice balancing, certain scenarios can have
3457 * max load less than avg load(as we skip the groups at or below
3458 * its cpu_power, while calculating max_load..)
3459 */
3460 if (max_load < avg_load) {
3461 *imbalance = 0;
3462 goto small_imbalance;
3463 }
0c117f1b
SS
3464
3465 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3466 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3467
1da177e4 3468 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3469 *imbalance = min(max_pull * busiest->__cpu_power,
3470 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3471 / SCHED_LOAD_SCALE;
3472
2dd73a4f
PW
3473 /*
3474 * if *imbalance is less than the average load per runnable task
3475 * there is no gaurantee that any tasks will be moved so we'll have
3476 * a think about bumping its value to force at least one task to be
3477 * moved
3478 */
7fd0d2dd 3479 if (*imbalance < busiest_load_per_task) {
48f24c4d 3480 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3481 unsigned int imbn;
3482
3483small_imbalance:
3484 pwr_move = pwr_now = 0;
3485 imbn = 2;
3486 if (this_nr_running) {
3487 this_load_per_task /= this_nr_running;
3488 if (busiest_load_per_task > this_load_per_task)
3489 imbn = 1;
3490 } else
3491 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3492
dd41f596
IM
3493 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3494 busiest_load_per_task * imbn) {
2dd73a4f 3495 *imbalance = busiest_load_per_task;
1da177e4
LT
3496 return busiest;
3497 }
3498
3499 /*
3500 * OK, we don't have enough imbalance to justify moving tasks,
3501 * however we may be able to increase total CPU power used by
3502 * moving them.
3503 */
3504
5517d86b
ED
3505 pwr_now += busiest->__cpu_power *
3506 min(busiest_load_per_task, max_load);
3507 pwr_now += this->__cpu_power *
3508 min(this_load_per_task, this_load);
1da177e4
LT
3509 pwr_now /= SCHED_LOAD_SCALE;
3510
3511 /* Amount of load we'd subtract */
5517d86b
ED
3512 tmp = sg_div_cpu_power(busiest,
3513 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3514 if (max_load > tmp)
5517d86b 3515 pwr_move += busiest->__cpu_power *
2dd73a4f 3516 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3517
3518 /* Amount of load we'd add */
5517d86b 3519 if (max_load * busiest->__cpu_power <
33859f7f 3520 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3521 tmp = sg_div_cpu_power(this,
3522 max_load * busiest->__cpu_power);
1da177e4 3523 else
5517d86b
ED
3524 tmp = sg_div_cpu_power(this,
3525 busiest_load_per_task * SCHED_LOAD_SCALE);
3526 pwr_move += this->__cpu_power *
3527 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3528 pwr_move /= SCHED_LOAD_SCALE;
3529
3530 /* Move if we gain throughput */
7fd0d2dd
SS
3531 if (pwr_move > pwr_now)
3532 *imbalance = busiest_load_per_task;
1da177e4
LT
3533 }
3534
1da177e4
LT
3535 return busiest;
3536
3537out_balanced:
5c45bf27 3538#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3539 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3540 goto ret;
1da177e4 3541
5c45bf27
SS
3542 if (this == group_leader && group_leader != group_min) {
3543 *imbalance = min_load_per_task;
3544 return group_min;
3545 }
5c45bf27 3546#endif
783609c6 3547ret:
1da177e4
LT
3548 *imbalance = 0;
3549 return NULL;
3550}
3551
3552/*
3553 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3554 */
70b97a7f 3555static struct rq *
d15bcfdb 3556find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3557 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3558{
70b97a7f 3559 struct rq *busiest = NULL, *rq;
2dd73a4f 3560 unsigned long max_load = 0;
1da177e4
LT
3561 int i;
3562
3563 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3564 unsigned long wl;
0a2966b4
CL
3565
3566 if (!cpu_isset(i, *cpus))
3567 continue;
3568
48f24c4d 3569 rq = cpu_rq(i);
dd41f596 3570 wl = weighted_cpuload(i);
2dd73a4f 3571
dd41f596 3572 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3573 continue;
1da177e4 3574
dd41f596
IM
3575 if (wl > max_load) {
3576 max_load = wl;
48f24c4d 3577 busiest = rq;
1da177e4
LT
3578 }
3579 }
3580
3581 return busiest;
3582}
3583
77391d71
NP
3584/*
3585 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3586 * so long as it is large enough.
3587 */
3588#define MAX_PINNED_INTERVAL 512
3589
1da177e4
LT
3590/*
3591 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3592 * tasks if there is an imbalance.
1da177e4 3593 */
70b97a7f 3594static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3595 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3596 int *balance, cpumask_t *cpus)
1da177e4 3597{
43010659 3598 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3599 struct sched_group *group;
1da177e4 3600 unsigned long imbalance;
70b97a7f 3601 struct rq *busiest;
fe2eea3f 3602 unsigned long flags;
18d95a28 3603 int unlock_aggregate;
5969fe06 3604
7c16ec58
MT
3605 cpus_setall(*cpus);
3606
18d95a28
PZ
3607 unlock_aggregate = get_aggregate(sd);
3608
89c4710e
SS
3609 /*
3610 * When power savings policy is enabled for the parent domain, idle
3611 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3612 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3613 * portraying it as CPU_NOT_IDLE.
89c4710e 3614 */
d15bcfdb 3615 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3616 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3617 sd_idle = 1;
1da177e4 3618
2d72376b 3619 schedstat_inc(sd, lb_count[idle]);
1da177e4 3620
0a2966b4
CL
3621redo:
3622 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3623 cpus, balance);
783609c6 3624
06066714 3625 if (*balance == 0)
783609c6 3626 goto out_balanced;
783609c6 3627
1da177e4
LT
3628 if (!group) {
3629 schedstat_inc(sd, lb_nobusyg[idle]);
3630 goto out_balanced;
3631 }
3632
7c16ec58 3633 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3634 if (!busiest) {
3635 schedstat_inc(sd, lb_nobusyq[idle]);
3636 goto out_balanced;
3637 }
3638
db935dbd 3639 BUG_ON(busiest == this_rq);
1da177e4
LT
3640
3641 schedstat_add(sd, lb_imbalance[idle], imbalance);
3642
43010659 3643 ld_moved = 0;
1da177e4
LT
3644 if (busiest->nr_running > 1) {
3645 /*
3646 * Attempt to move tasks. If find_busiest_group has found
3647 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3648 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3649 * correctly treated as an imbalance.
3650 */
fe2eea3f 3651 local_irq_save(flags);
e17224bf 3652 double_rq_lock(this_rq, busiest);
43010659 3653 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3654 imbalance, sd, idle, &all_pinned);
e17224bf 3655 double_rq_unlock(this_rq, busiest);
fe2eea3f 3656 local_irq_restore(flags);
81026794 3657
46cb4b7c
SS
3658 /*
3659 * some other cpu did the load balance for us.
3660 */
43010659 3661 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3662 resched_cpu(this_cpu);
3663
81026794 3664 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3665 if (unlikely(all_pinned)) {
7c16ec58
MT
3666 cpu_clear(cpu_of(busiest), *cpus);
3667 if (!cpus_empty(*cpus))
0a2966b4 3668 goto redo;
81026794 3669 goto out_balanced;
0a2966b4 3670 }
1da177e4 3671 }
81026794 3672
43010659 3673 if (!ld_moved) {
1da177e4
LT
3674 schedstat_inc(sd, lb_failed[idle]);
3675 sd->nr_balance_failed++;
3676
3677 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3678
fe2eea3f 3679 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3680
3681 /* don't kick the migration_thread, if the curr
3682 * task on busiest cpu can't be moved to this_cpu
3683 */
3684 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3685 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3686 all_pinned = 1;
3687 goto out_one_pinned;
3688 }
3689
1da177e4
LT
3690 if (!busiest->active_balance) {
3691 busiest->active_balance = 1;
3692 busiest->push_cpu = this_cpu;
81026794 3693 active_balance = 1;
1da177e4 3694 }
fe2eea3f 3695 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3696 if (active_balance)
1da177e4
LT
3697 wake_up_process(busiest->migration_thread);
3698
3699 /*
3700 * We've kicked active balancing, reset the failure
3701 * counter.
3702 */
39507451 3703 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3704 }
81026794 3705 } else
1da177e4
LT
3706 sd->nr_balance_failed = 0;
3707
81026794 3708 if (likely(!active_balance)) {
1da177e4
LT
3709 /* We were unbalanced, so reset the balancing interval */
3710 sd->balance_interval = sd->min_interval;
81026794
NP
3711 } else {
3712 /*
3713 * If we've begun active balancing, start to back off. This
3714 * case may not be covered by the all_pinned logic if there
3715 * is only 1 task on the busy runqueue (because we don't call
3716 * move_tasks).
3717 */
3718 if (sd->balance_interval < sd->max_interval)
3719 sd->balance_interval *= 2;
1da177e4
LT
3720 }
3721
43010659 3722 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3723 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
18d95a28
PZ
3724 ld_moved = -1;
3725
3726 goto out;
1da177e4
LT
3727
3728out_balanced:
1da177e4
LT
3729 schedstat_inc(sd, lb_balanced[idle]);
3730
16cfb1c0 3731 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3732
3733out_one_pinned:
1da177e4 3734 /* tune up the balancing interval */
77391d71
NP
3735 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3736 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3737 sd->balance_interval *= 2;
3738
48f24c4d 3739 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3740 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
18d95a28
PZ
3741 ld_moved = -1;
3742 else
3743 ld_moved = 0;
3744out:
3745 if (unlock_aggregate)
3746 put_aggregate(sd);
3747 return ld_moved;
1da177e4
LT
3748}
3749
3750/*
3751 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3752 * tasks if there is an imbalance.
3753 *
d15bcfdb 3754 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3755 * this_rq is locked.
3756 */
48f24c4d 3757static int
7c16ec58
MT
3758load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3759 cpumask_t *cpus)
1da177e4
LT
3760{
3761 struct sched_group *group;
70b97a7f 3762 struct rq *busiest = NULL;
1da177e4 3763 unsigned long imbalance;
43010659 3764 int ld_moved = 0;
5969fe06 3765 int sd_idle = 0;
969bb4e4 3766 int all_pinned = 0;
7c16ec58
MT
3767
3768 cpus_setall(*cpus);
5969fe06 3769
89c4710e
SS
3770 /*
3771 * When power savings policy is enabled for the parent domain, idle
3772 * sibling can pick up load irrespective of busy siblings. In this case,
3773 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3774 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3775 */
3776 if (sd->flags & SD_SHARE_CPUPOWER &&
3777 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3778 sd_idle = 1;
1da177e4 3779
2d72376b 3780 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3781redo:
d15bcfdb 3782 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3783 &sd_idle, cpus, NULL);
1da177e4 3784 if (!group) {
d15bcfdb 3785 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3786 goto out_balanced;
1da177e4
LT
3787 }
3788
7c16ec58 3789 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3790 if (!busiest) {
d15bcfdb 3791 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3792 goto out_balanced;
1da177e4
LT
3793 }
3794
db935dbd
NP
3795 BUG_ON(busiest == this_rq);
3796
d15bcfdb 3797 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3798
43010659 3799 ld_moved = 0;
d6d5cfaf
NP
3800 if (busiest->nr_running > 1) {
3801 /* Attempt to move tasks */
3802 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3803 /* this_rq->clock is already updated */
3804 update_rq_clock(busiest);
43010659 3805 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3806 imbalance, sd, CPU_NEWLY_IDLE,
3807 &all_pinned);
d6d5cfaf 3808 spin_unlock(&busiest->lock);
0a2966b4 3809
969bb4e4 3810 if (unlikely(all_pinned)) {
7c16ec58
MT
3811 cpu_clear(cpu_of(busiest), *cpus);
3812 if (!cpus_empty(*cpus))
0a2966b4
CL
3813 goto redo;
3814 }
d6d5cfaf
NP
3815 }
3816
43010659 3817 if (!ld_moved) {
d15bcfdb 3818 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3819 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3820 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3821 return -1;
3822 } else
16cfb1c0 3823 sd->nr_balance_failed = 0;
1da177e4 3824
43010659 3825 return ld_moved;
16cfb1c0
NP
3826
3827out_balanced:
d15bcfdb 3828 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3829 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3830 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3831 return -1;
16cfb1c0 3832 sd->nr_balance_failed = 0;
48f24c4d 3833
16cfb1c0 3834 return 0;
1da177e4
LT
3835}
3836
3837/*
3838 * idle_balance is called by schedule() if this_cpu is about to become
3839 * idle. Attempts to pull tasks from other CPUs.
3840 */
70b97a7f 3841static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3842{
3843 struct sched_domain *sd;
dd41f596
IM
3844 int pulled_task = -1;
3845 unsigned long next_balance = jiffies + HZ;
7c16ec58 3846 cpumask_t tmpmask;
1da177e4
LT
3847
3848 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3849 unsigned long interval;
3850
3851 if (!(sd->flags & SD_LOAD_BALANCE))
3852 continue;
3853
3854 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3855 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3856 pulled_task = load_balance_newidle(this_cpu, this_rq,
3857 sd, &tmpmask);
92c4ca5c
CL
3858
3859 interval = msecs_to_jiffies(sd->balance_interval);
3860 if (time_after(next_balance, sd->last_balance + interval))
3861 next_balance = sd->last_balance + interval;
3862 if (pulled_task)
3863 break;
1da177e4 3864 }
dd41f596 3865 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3866 /*
3867 * We are going idle. next_balance may be set based on
3868 * a busy processor. So reset next_balance.
3869 */
3870 this_rq->next_balance = next_balance;
dd41f596 3871 }
1da177e4
LT
3872}
3873
3874/*
3875 * active_load_balance is run by migration threads. It pushes running tasks
3876 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3877 * running on each physical CPU where possible, and avoids physical /
3878 * logical imbalances.
3879 *
3880 * Called with busiest_rq locked.
3881 */
70b97a7f 3882static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3883{
39507451 3884 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3885 struct sched_domain *sd;
3886 struct rq *target_rq;
39507451 3887
48f24c4d 3888 /* Is there any task to move? */
39507451 3889 if (busiest_rq->nr_running <= 1)
39507451
NP
3890 return;
3891
3892 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3893
3894 /*
39507451 3895 * This condition is "impossible", if it occurs
41a2d6cf 3896 * we need to fix it. Originally reported by
39507451 3897 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3898 */
39507451 3899 BUG_ON(busiest_rq == target_rq);
1da177e4 3900
39507451
NP
3901 /* move a task from busiest_rq to target_rq */
3902 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3903 update_rq_clock(busiest_rq);
3904 update_rq_clock(target_rq);
39507451
NP
3905
3906 /* Search for an sd spanning us and the target CPU. */
c96d145e 3907 for_each_domain(target_cpu, sd) {
39507451 3908 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3909 cpu_isset(busiest_cpu, sd->span))
39507451 3910 break;
c96d145e 3911 }
39507451 3912
48f24c4d 3913 if (likely(sd)) {
2d72376b 3914 schedstat_inc(sd, alb_count);
39507451 3915
43010659
PW
3916 if (move_one_task(target_rq, target_cpu, busiest_rq,
3917 sd, CPU_IDLE))
48f24c4d
IM
3918 schedstat_inc(sd, alb_pushed);
3919 else
3920 schedstat_inc(sd, alb_failed);
3921 }
39507451 3922 spin_unlock(&target_rq->lock);
1da177e4
LT
3923}
3924
46cb4b7c
SS
3925#ifdef CONFIG_NO_HZ
3926static struct {
3927 atomic_t load_balancer;
41a2d6cf 3928 cpumask_t cpu_mask;
46cb4b7c
SS
3929} nohz ____cacheline_aligned = {
3930 .load_balancer = ATOMIC_INIT(-1),
3931 .cpu_mask = CPU_MASK_NONE,
3932};
3933
7835b98b 3934/*
46cb4b7c
SS
3935 * This routine will try to nominate the ilb (idle load balancing)
3936 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3937 * load balancing on behalf of all those cpus. If all the cpus in the system
3938 * go into this tickless mode, then there will be no ilb owner (as there is
3939 * no need for one) and all the cpus will sleep till the next wakeup event
3940 * arrives...
3941 *
3942 * For the ilb owner, tick is not stopped. And this tick will be used
3943 * for idle load balancing. ilb owner will still be part of
3944 * nohz.cpu_mask..
7835b98b 3945 *
46cb4b7c
SS
3946 * While stopping the tick, this cpu will become the ilb owner if there
3947 * is no other owner. And will be the owner till that cpu becomes busy
3948 * or if all cpus in the system stop their ticks at which point
3949 * there is no need for ilb owner.
3950 *
3951 * When the ilb owner becomes busy, it nominates another owner, during the
3952 * next busy scheduler_tick()
3953 */
3954int select_nohz_load_balancer(int stop_tick)
3955{
3956 int cpu = smp_processor_id();
3957
3958 if (stop_tick) {
3959 cpu_set(cpu, nohz.cpu_mask);
3960 cpu_rq(cpu)->in_nohz_recently = 1;
3961
3962 /*
3963 * If we are going offline and still the leader, give up!
3964 */
3965 if (cpu_is_offline(cpu) &&
3966 atomic_read(&nohz.load_balancer) == cpu) {
3967 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3968 BUG();
3969 return 0;
3970 }
3971
3972 /* time for ilb owner also to sleep */
3973 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3974 if (atomic_read(&nohz.load_balancer) == cpu)
3975 atomic_set(&nohz.load_balancer, -1);
3976 return 0;
3977 }
3978
3979 if (atomic_read(&nohz.load_balancer) == -1) {
3980 /* make me the ilb owner */
3981 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3982 return 1;
3983 } else if (atomic_read(&nohz.load_balancer) == cpu)
3984 return 1;
3985 } else {
3986 if (!cpu_isset(cpu, nohz.cpu_mask))
3987 return 0;
3988
3989 cpu_clear(cpu, nohz.cpu_mask);
3990
3991 if (atomic_read(&nohz.load_balancer) == cpu)
3992 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3993 BUG();
3994 }
3995 return 0;
3996}
3997#endif
3998
3999static DEFINE_SPINLOCK(balancing);
4000
4001/*
7835b98b
CL
4002 * It checks each scheduling domain to see if it is due to be balanced,
4003 * and initiates a balancing operation if so.
4004 *
4005 * Balancing parameters are set up in arch_init_sched_domains.
4006 */
a9957449 4007static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4008{
46cb4b7c
SS
4009 int balance = 1;
4010 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4011 unsigned long interval;
4012 struct sched_domain *sd;
46cb4b7c 4013 /* Earliest time when we have to do rebalance again */
c9819f45 4014 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4015 int update_next_balance = 0;
7c16ec58 4016 cpumask_t tmp;
1da177e4 4017
46cb4b7c 4018 for_each_domain(cpu, sd) {
1da177e4
LT
4019 if (!(sd->flags & SD_LOAD_BALANCE))
4020 continue;
4021
4022 interval = sd->balance_interval;
d15bcfdb 4023 if (idle != CPU_IDLE)
1da177e4
LT
4024 interval *= sd->busy_factor;
4025
4026 /* scale ms to jiffies */
4027 interval = msecs_to_jiffies(interval);
4028 if (unlikely(!interval))
4029 interval = 1;
dd41f596
IM
4030 if (interval > HZ*NR_CPUS/10)
4031 interval = HZ*NR_CPUS/10;
4032
1da177e4 4033
08c183f3
CL
4034 if (sd->flags & SD_SERIALIZE) {
4035 if (!spin_trylock(&balancing))
4036 goto out;
4037 }
4038
c9819f45 4039 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 4040 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
4041 /*
4042 * We've pulled tasks over so either we're no
5969fe06
NP
4043 * longer idle, or one of our SMT siblings is
4044 * not idle.
4045 */
d15bcfdb 4046 idle = CPU_NOT_IDLE;
1da177e4 4047 }
1bd77f2d 4048 sd->last_balance = jiffies;
1da177e4 4049 }
08c183f3
CL
4050 if (sd->flags & SD_SERIALIZE)
4051 spin_unlock(&balancing);
4052out:
f549da84 4053 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4054 next_balance = sd->last_balance + interval;
f549da84
SS
4055 update_next_balance = 1;
4056 }
783609c6
SS
4057
4058 /*
4059 * Stop the load balance at this level. There is another
4060 * CPU in our sched group which is doing load balancing more
4061 * actively.
4062 */
4063 if (!balance)
4064 break;
1da177e4 4065 }
f549da84
SS
4066
4067 /*
4068 * next_balance will be updated only when there is a need.
4069 * When the cpu is attached to null domain for ex, it will not be
4070 * updated.
4071 */
4072 if (likely(update_next_balance))
4073 rq->next_balance = next_balance;
46cb4b7c
SS
4074}
4075
4076/*
4077 * run_rebalance_domains is triggered when needed from the scheduler tick.
4078 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4079 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4080 */
4081static void run_rebalance_domains(struct softirq_action *h)
4082{
dd41f596
IM
4083 int this_cpu = smp_processor_id();
4084 struct rq *this_rq = cpu_rq(this_cpu);
4085 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4086 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4087
dd41f596 4088 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4089
4090#ifdef CONFIG_NO_HZ
4091 /*
4092 * If this cpu is the owner for idle load balancing, then do the
4093 * balancing on behalf of the other idle cpus whose ticks are
4094 * stopped.
4095 */
dd41f596
IM
4096 if (this_rq->idle_at_tick &&
4097 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4098 cpumask_t cpus = nohz.cpu_mask;
4099 struct rq *rq;
4100 int balance_cpu;
4101
dd41f596 4102 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
4103 for_each_cpu_mask(balance_cpu, cpus) {
4104 /*
4105 * If this cpu gets work to do, stop the load balancing
4106 * work being done for other cpus. Next load
4107 * balancing owner will pick it up.
4108 */
4109 if (need_resched())
4110 break;
4111
de0cf899 4112 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4113
4114 rq = cpu_rq(balance_cpu);
dd41f596
IM
4115 if (time_after(this_rq->next_balance, rq->next_balance))
4116 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4117 }
4118 }
4119#endif
4120}
4121
4122/*
4123 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4124 *
4125 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4126 * idle load balancing owner or decide to stop the periodic load balancing,
4127 * if the whole system is idle.
4128 */
dd41f596 4129static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4130{
46cb4b7c
SS
4131#ifdef CONFIG_NO_HZ
4132 /*
4133 * If we were in the nohz mode recently and busy at the current
4134 * scheduler tick, then check if we need to nominate new idle
4135 * load balancer.
4136 */
4137 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4138 rq->in_nohz_recently = 0;
4139
4140 if (atomic_read(&nohz.load_balancer) == cpu) {
4141 cpu_clear(cpu, nohz.cpu_mask);
4142 atomic_set(&nohz.load_balancer, -1);
4143 }
4144
4145 if (atomic_read(&nohz.load_balancer) == -1) {
4146 /*
4147 * simple selection for now: Nominate the
4148 * first cpu in the nohz list to be the next
4149 * ilb owner.
4150 *
4151 * TBD: Traverse the sched domains and nominate
4152 * the nearest cpu in the nohz.cpu_mask.
4153 */
4154 int ilb = first_cpu(nohz.cpu_mask);
4155
434d53b0 4156 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4157 resched_cpu(ilb);
4158 }
4159 }
4160
4161 /*
4162 * If this cpu is idle and doing idle load balancing for all the
4163 * cpus with ticks stopped, is it time for that to stop?
4164 */
4165 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4166 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4167 resched_cpu(cpu);
4168 return;
4169 }
4170
4171 /*
4172 * If this cpu is idle and the idle load balancing is done by
4173 * someone else, then no need raise the SCHED_SOFTIRQ
4174 */
4175 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4176 cpu_isset(cpu, nohz.cpu_mask))
4177 return;
4178#endif
4179 if (time_after_eq(jiffies, rq->next_balance))
4180 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4181}
dd41f596
IM
4182
4183#else /* CONFIG_SMP */
4184
1da177e4
LT
4185/*
4186 * on UP we do not need to balance between CPUs:
4187 */
70b97a7f 4188static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4189{
4190}
dd41f596 4191
1da177e4
LT
4192#endif
4193
1da177e4
LT
4194DEFINE_PER_CPU(struct kernel_stat, kstat);
4195
4196EXPORT_PER_CPU_SYMBOL(kstat);
4197
4198/*
41b86e9c
IM
4199 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4200 * that have not yet been banked in case the task is currently running.
1da177e4 4201 */
41b86e9c 4202unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4203{
1da177e4 4204 unsigned long flags;
41b86e9c
IM
4205 u64 ns, delta_exec;
4206 struct rq *rq;
48f24c4d 4207
41b86e9c
IM
4208 rq = task_rq_lock(p, &flags);
4209 ns = p->se.sum_exec_runtime;
051a1d1a 4210 if (task_current(rq, p)) {
a8e504d2
IM
4211 update_rq_clock(rq);
4212 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4213 if ((s64)delta_exec > 0)
4214 ns += delta_exec;
4215 }
4216 task_rq_unlock(rq, &flags);
48f24c4d 4217
1da177e4
LT
4218 return ns;
4219}
4220
1da177e4
LT
4221/*
4222 * Account user cpu time to a process.
4223 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4224 * @cputime: the cpu time spent in user space since the last update
4225 */
4226void account_user_time(struct task_struct *p, cputime_t cputime)
4227{
4228 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4229 cputime64_t tmp;
4230
4231 p->utime = cputime_add(p->utime, cputime);
4232
4233 /* Add user time to cpustat. */
4234 tmp = cputime_to_cputime64(cputime);
4235 if (TASK_NICE(p) > 0)
4236 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4237 else
4238 cpustat->user = cputime64_add(cpustat->user, tmp);
4239}
4240
94886b84
LV
4241/*
4242 * Account guest cpu time to a process.
4243 * @p: the process that the cpu time gets accounted to
4244 * @cputime: the cpu time spent in virtual machine since the last update
4245 */
f7402e03 4246static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4247{
4248 cputime64_t tmp;
4249 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4250
4251 tmp = cputime_to_cputime64(cputime);
4252
4253 p->utime = cputime_add(p->utime, cputime);
4254 p->gtime = cputime_add(p->gtime, cputime);
4255
4256 cpustat->user = cputime64_add(cpustat->user, tmp);
4257 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4258}
4259
c66f08be
MN
4260/*
4261 * Account scaled user cpu time to a process.
4262 * @p: the process that the cpu time gets accounted to
4263 * @cputime: the cpu time spent in user space since the last update
4264 */
4265void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4266{
4267 p->utimescaled = cputime_add(p->utimescaled, cputime);
4268}
4269
1da177e4
LT
4270/*
4271 * Account system cpu time to a process.
4272 * @p: the process that the cpu time gets accounted to
4273 * @hardirq_offset: the offset to subtract from hardirq_count()
4274 * @cputime: the cpu time spent in kernel space since the last update
4275 */
4276void account_system_time(struct task_struct *p, int hardirq_offset,
4277 cputime_t cputime)
4278{
4279 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4280 struct rq *rq = this_rq();
1da177e4
LT
4281 cputime64_t tmp;
4282
983ed7a6
HH
4283 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4284 account_guest_time(p, cputime);
4285 return;
4286 }
94886b84 4287
1da177e4
LT
4288 p->stime = cputime_add(p->stime, cputime);
4289
4290 /* Add system time to cpustat. */
4291 tmp = cputime_to_cputime64(cputime);
4292 if (hardirq_count() - hardirq_offset)
4293 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4294 else if (softirq_count())
4295 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4296 else if (p != rq->idle)
1da177e4 4297 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4298 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4299 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4300 else
4301 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4302 /* Account for system time used */
4303 acct_update_integrals(p);
1da177e4
LT
4304}
4305
c66f08be
MN
4306/*
4307 * Account scaled system cpu time to a process.
4308 * @p: the process that the cpu time gets accounted to
4309 * @hardirq_offset: the offset to subtract from hardirq_count()
4310 * @cputime: the cpu time spent in kernel space since the last update
4311 */
4312void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4313{
4314 p->stimescaled = cputime_add(p->stimescaled, cputime);
4315}
4316
1da177e4
LT
4317/*
4318 * Account for involuntary wait time.
4319 * @p: the process from which the cpu time has been stolen
4320 * @steal: the cpu time spent in involuntary wait
4321 */
4322void account_steal_time(struct task_struct *p, cputime_t steal)
4323{
4324 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4325 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4326 struct rq *rq = this_rq();
1da177e4
LT
4327
4328 if (p == rq->idle) {
4329 p->stime = cputime_add(p->stime, steal);
4330 if (atomic_read(&rq->nr_iowait) > 0)
4331 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4332 else
4333 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4334 } else
1da177e4
LT
4335 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4336}
4337
7835b98b
CL
4338/*
4339 * This function gets called by the timer code, with HZ frequency.
4340 * We call it with interrupts disabled.
4341 *
4342 * It also gets called by the fork code, when changing the parent's
4343 * timeslices.
4344 */
4345void scheduler_tick(void)
4346{
7835b98b
CL
4347 int cpu = smp_processor_id();
4348 struct rq *rq = cpu_rq(cpu);
dd41f596 4349 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4350
4351 sched_clock_tick();
dd41f596
IM
4352
4353 spin_lock(&rq->lock);
3e51f33f 4354 update_rq_clock(rq);
f1a438d8 4355 update_cpu_load(rq);
fa85ae24 4356 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4357 spin_unlock(&rq->lock);
7835b98b 4358
e418e1c2 4359#ifdef CONFIG_SMP
dd41f596
IM
4360 rq->idle_at_tick = idle_cpu(cpu);
4361 trigger_load_balance(rq, cpu);
e418e1c2 4362#endif
1da177e4
LT
4363}
4364
1da177e4
LT
4365#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4366
43627582 4367void __kprobes add_preempt_count(int val)
1da177e4
LT
4368{
4369 /*
4370 * Underflow?
4371 */
9a11b49a
IM
4372 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4373 return;
1da177e4
LT
4374 preempt_count() += val;
4375 /*
4376 * Spinlock count overflowing soon?
4377 */
33859f7f
MOS
4378 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4379 PREEMPT_MASK - 10);
1da177e4
LT
4380}
4381EXPORT_SYMBOL(add_preempt_count);
4382
43627582 4383void __kprobes sub_preempt_count(int val)
1da177e4
LT
4384{
4385 /*
4386 * Underflow?
4387 */
9a11b49a
IM
4388 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4389 return;
1da177e4
LT
4390 /*
4391 * Is the spinlock portion underflowing?
4392 */
9a11b49a
IM
4393 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4394 !(preempt_count() & PREEMPT_MASK)))
4395 return;
4396
1da177e4
LT
4397 preempt_count() -= val;
4398}
4399EXPORT_SYMBOL(sub_preempt_count);
4400
4401#endif
4402
4403/*
dd41f596 4404 * Print scheduling while atomic bug:
1da177e4 4405 */
dd41f596 4406static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4407{
838225b4
SS
4408 struct pt_regs *regs = get_irq_regs();
4409
4410 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4411 prev->comm, prev->pid, preempt_count());
4412
dd41f596
IM
4413 debug_show_held_locks(prev);
4414 if (irqs_disabled())
4415 print_irqtrace_events(prev);
838225b4
SS
4416
4417 if (regs)
4418 show_regs(regs);
4419 else
4420 dump_stack();
dd41f596 4421}
1da177e4 4422
dd41f596
IM
4423/*
4424 * Various schedule()-time debugging checks and statistics:
4425 */
4426static inline void schedule_debug(struct task_struct *prev)
4427{
1da177e4 4428 /*
41a2d6cf 4429 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4430 * schedule() atomically, we ignore that path for now.
4431 * Otherwise, whine if we are scheduling when we should not be.
4432 */
dd41f596
IM
4433 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
4434 __schedule_bug(prev);
4435
1da177e4
LT
4436 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4437
2d72376b 4438 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4439#ifdef CONFIG_SCHEDSTATS
4440 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4441 schedstat_inc(this_rq(), bkl_count);
4442 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4443 }
4444#endif
dd41f596
IM
4445}
4446
4447/*
4448 * Pick up the highest-prio task:
4449 */
4450static inline struct task_struct *
ff95f3df 4451pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4452{
5522d5d5 4453 const struct sched_class *class;
dd41f596 4454 struct task_struct *p;
1da177e4
LT
4455
4456 /*
dd41f596
IM
4457 * Optimization: we know that if all tasks are in
4458 * the fair class we can call that function directly:
1da177e4 4459 */
dd41f596 4460 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4461 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4462 if (likely(p))
4463 return p;
1da177e4
LT
4464 }
4465
dd41f596
IM
4466 class = sched_class_highest;
4467 for ( ; ; ) {
fb8d4724 4468 p = class->pick_next_task(rq);
dd41f596
IM
4469 if (p)
4470 return p;
4471 /*
4472 * Will never be NULL as the idle class always
4473 * returns a non-NULL p:
4474 */
4475 class = class->next;
4476 }
4477}
1da177e4 4478
dd41f596
IM
4479/*
4480 * schedule() is the main scheduler function.
4481 */
4482asmlinkage void __sched schedule(void)
4483{
4484 struct task_struct *prev, *next;
67ca7bde 4485 unsigned long *switch_count;
dd41f596 4486 struct rq *rq;
dd41f596
IM
4487 int cpu;
4488
4489need_resched:
4490 preempt_disable();
4491 cpu = smp_processor_id();
4492 rq = cpu_rq(cpu);
4493 rcu_qsctr_inc(cpu);
4494 prev = rq->curr;
4495 switch_count = &prev->nivcsw;
4496
4497 release_kernel_lock(prev);
4498need_resched_nonpreemptible:
4499
4500 schedule_debug(prev);
1da177e4 4501
8f4d37ec
PZ
4502 hrtick_clear(rq);
4503
1e819950
IM
4504 /*
4505 * Do the rq-clock update outside the rq lock:
4506 */
4507 local_irq_disable();
3e51f33f 4508 update_rq_clock(rq);
1e819950
IM
4509 spin_lock(&rq->lock);
4510 clear_tsk_need_resched(prev);
1da177e4 4511
1da177e4 4512 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4513 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4514 signal_pending(prev))) {
1da177e4 4515 prev->state = TASK_RUNNING;
dd41f596 4516 } else {
2e1cb74a 4517 deactivate_task(rq, prev, 1);
1da177e4 4518 }
dd41f596 4519 switch_count = &prev->nvcsw;
1da177e4
LT
4520 }
4521
9a897c5a
SR
4522#ifdef CONFIG_SMP
4523 if (prev->sched_class->pre_schedule)
4524 prev->sched_class->pre_schedule(rq, prev);
4525#endif
f65eda4f 4526
dd41f596 4527 if (unlikely(!rq->nr_running))
1da177e4 4528 idle_balance(cpu, rq);
1da177e4 4529
31ee529c 4530 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4531 next = pick_next_task(rq, prev);
1da177e4 4532
1da177e4 4533 if (likely(prev != next)) {
673a90a1
DS
4534 sched_info_switch(prev, next);
4535
1da177e4
LT
4536 rq->nr_switches++;
4537 rq->curr = next;
4538 ++*switch_count;
4539
dd41f596 4540 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4541 /*
4542 * the context switch might have flipped the stack from under
4543 * us, hence refresh the local variables.
4544 */
4545 cpu = smp_processor_id();
4546 rq = cpu_rq(cpu);
1da177e4
LT
4547 } else
4548 spin_unlock_irq(&rq->lock);
4549
8f4d37ec
PZ
4550 hrtick_set(rq);
4551
4552 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4553 goto need_resched_nonpreemptible;
8f4d37ec 4554
1da177e4
LT
4555 preempt_enable_no_resched();
4556 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4557 goto need_resched;
4558}
1da177e4
LT
4559EXPORT_SYMBOL(schedule);
4560
4561#ifdef CONFIG_PREEMPT
4562/*
2ed6e34f 4563 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4564 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4565 * occur there and call schedule directly.
4566 */
4567asmlinkage void __sched preempt_schedule(void)
4568{
4569 struct thread_info *ti = current_thread_info();
6478d880 4570
1da177e4
LT
4571 /*
4572 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4573 * we do not want to preempt the current task. Just return..
1da177e4 4574 */
beed33a8 4575 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4576 return;
4577
3a5c359a
AK
4578 do {
4579 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4580 schedule();
3a5c359a 4581 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4582
3a5c359a
AK
4583 /*
4584 * Check again in case we missed a preemption opportunity
4585 * between schedule and now.
4586 */
4587 barrier();
4588 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4589}
1da177e4
LT
4590EXPORT_SYMBOL(preempt_schedule);
4591
4592/*
2ed6e34f 4593 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4594 * off of irq context.
4595 * Note, that this is called and return with irqs disabled. This will
4596 * protect us against recursive calling from irq.
4597 */
4598asmlinkage void __sched preempt_schedule_irq(void)
4599{
4600 struct thread_info *ti = current_thread_info();
6478d880 4601
2ed6e34f 4602 /* Catch callers which need to be fixed */
1da177e4
LT
4603 BUG_ON(ti->preempt_count || !irqs_disabled());
4604
3a5c359a
AK
4605 do {
4606 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4607 local_irq_enable();
4608 schedule();
4609 local_irq_disable();
3a5c359a 4610 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4611
3a5c359a
AK
4612 /*
4613 * Check again in case we missed a preemption opportunity
4614 * between schedule and now.
4615 */
4616 barrier();
4617 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4618}
4619
4620#endif /* CONFIG_PREEMPT */
4621
95cdf3b7
IM
4622int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4623 void *key)
1da177e4 4624{
48f24c4d 4625 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4626}
1da177e4
LT
4627EXPORT_SYMBOL(default_wake_function);
4628
4629/*
41a2d6cf
IM
4630 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4631 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4632 * number) then we wake all the non-exclusive tasks and one exclusive task.
4633 *
4634 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4635 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4636 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4637 */
4638static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4639 int nr_exclusive, int sync, void *key)
4640{
2e45874c 4641 wait_queue_t *curr, *next;
1da177e4 4642
2e45874c 4643 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4644 unsigned flags = curr->flags;
4645
1da177e4 4646 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4647 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4648 break;
4649 }
4650}
4651
4652/**
4653 * __wake_up - wake up threads blocked on a waitqueue.
4654 * @q: the waitqueue
4655 * @mode: which threads
4656 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4657 * @key: is directly passed to the wakeup function
1da177e4 4658 */
7ad5b3a5 4659void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4660 int nr_exclusive, void *key)
1da177e4
LT
4661{
4662 unsigned long flags;
4663
4664 spin_lock_irqsave(&q->lock, flags);
4665 __wake_up_common(q, mode, nr_exclusive, 0, key);
4666 spin_unlock_irqrestore(&q->lock, flags);
4667}
1da177e4
LT
4668EXPORT_SYMBOL(__wake_up);
4669
4670/*
4671 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4672 */
7ad5b3a5 4673void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4674{
4675 __wake_up_common(q, mode, 1, 0, NULL);
4676}
4677
4678/**
67be2dd1 4679 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4680 * @q: the waitqueue
4681 * @mode: which threads
4682 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4683 *
4684 * The sync wakeup differs that the waker knows that it will schedule
4685 * away soon, so while the target thread will be woken up, it will not
4686 * be migrated to another CPU - ie. the two threads are 'synchronized'
4687 * with each other. This can prevent needless bouncing between CPUs.
4688 *
4689 * On UP it can prevent extra preemption.
4690 */
7ad5b3a5 4691void
95cdf3b7 4692__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4693{
4694 unsigned long flags;
4695 int sync = 1;
4696
4697 if (unlikely(!q))
4698 return;
4699
4700 if (unlikely(!nr_exclusive))
4701 sync = 0;
4702
4703 spin_lock_irqsave(&q->lock, flags);
4704 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4705 spin_unlock_irqrestore(&q->lock, flags);
4706}
4707EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4708
b15136e9 4709void complete(struct completion *x)
1da177e4
LT
4710{
4711 unsigned long flags;
4712
4713 spin_lock_irqsave(&x->wait.lock, flags);
4714 x->done++;
d9514f6c 4715 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4716 spin_unlock_irqrestore(&x->wait.lock, flags);
4717}
4718EXPORT_SYMBOL(complete);
4719
b15136e9 4720void complete_all(struct completion *x)
1da177e4
LT
4721{
4722 unsigned long flags;
4723
4724 spin_lock_irqsave(&x->wait.lock, flags);
4725 x->done += UINT_MAX/2;
d9514f6c 4726 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4727 spin_unlock_irqrestore(&x->wait.lock, flags);
4728}
4729EXPORT_SYMBOL(complete_all);
4730
8cbbe86d
AK
4731static inline long __sched
4732do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4733{
1da177e4
LT
4734 if (!x->done) {
4735 DECLARE_WAITQUEUE(wait, current);
4736
4737 wait.flags |= WQ_FLAG_EXCLUSIVE;
4738 __add_wait_queue_tail(&x->wait, &wait);
4739 do {
009e577e
MW
4740 if ((state == TASK_INTERRUPTIBLE &&
4741 signal_pending(current)) ||
4742 (state == TASK_KILLABLE &&
4743 fatal_signal_pending(current))) {
8cbbe86d
AK
4744 __remove_wait_queue(&x->wait, &wait);
4745 return -ERESTARTSYS;
4746 }
4747 __set_current_state(state);
1da177e4
LT
4748 spin_unlock_irq(&x->wait.lock);
4749 timeout = schedule_timeout(timeout);
4750 spin_lock_irq(&x->wait.lock);
4751 if (!timeout) {
4752 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4753 return timeout;
1da177e4
LT
4754 }
4755 } while (!x->done);
4756 __remove_wait_queue(&x->wait, &wait);
4757 }
4758 x->done--;
1da177e4
LT
4759 return timeout;
4760}
1da177e4 4761
8cbbe86d
AK
4762static long __sched
4763wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4764{
1da177e4
LT
4765 might_sleep();
4766
4767 spin_lock_irq(&x->wait.lock);
8cbbe86d 4768 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4769 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4770 return timeout;
4771}
1da177e4 4772
b15136e9 4773void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4774{
4775 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4776}
8cbbe86d 4777EXPORT_SYMBOL(wait_for_completion);
1da177e4 4778
b15136e9 4779unsigned long __sched
8cbbe86d 4780wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4781{
8cbbe86d 4782 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4783}
8cbbe86d 4784EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4785
8cbbe86d 4786int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4787{
51e97990
AK
4788 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4789 if (t == -ERESTARTSYS)
4790 return t;
4791 return 0;
0fec171c 4792}
8cbbe86d 4793EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4794
b15136e9 4795unsigned long __sched
8cbbe86d
AK
4796wait_for_completion_interruptible_timeout(struct completion *x,
4797 unsigned long timeout)
0fec171c 4798{
8cbbe86d 4799 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4800}
8cbbe86d 4801EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4802
009e577e
MW
4803int __sched wait_for_completion_killable(struct completion *x)
4804{
4805 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4806 if (t == -ERESTARTSYS)
4807 return t;
4808 return 0;
4809}
4810EXPORT_SYMBOL(wait_for_completion_killable);
4811
8cbbe86d
AK
4812static long __sched
4813sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4814{
0fec171c
IM
4815 unsigned long flags;
4816 wait_queue_t wait;
4817
4818 init_waitqueue_entry(&wait, current);
1da177e4 4819
8cbbe86d 4820 __set_current_state(state);
1da177e4 4821
8cbbe86d
AK
4822 spin_lock_irqsave(&q->lock, flags);
4823 __add_wait_queue(q, &wait);
4824 spin_unlock(&q->lock);
4825 timeout = schedule_timeout(timeout);
4826 spin_lock_irq(&q->lock);
4827 __remove_wait_queue(q, &wait);
4828 spin_unlock_irqrestore(&q->lock, flags);
4829
4830 return timeout;
4831}
4832
4833void __sched interruptible_sleep_on(wait_queue_head_t *q)
4834{
4835 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4836}
1da177e4
LT
4837EXPORT_SYMBOL(interruptible_sleep_on);
4838
0fec171c 4839long __sched
95cdf3b7 4840interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4841{
8cbbe86d 4842 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4843}
1da177e4
LT
4844EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4845
0fec171c 4846void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4847{
8cbbe86d 4848 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4849}
1da177e4
LT
4850EXPORT_SYMBOL(sleep_on);
4851
0fec171c 4852long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4853{
8cbbe86d 4854 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4855}
1da177e4
LT
4856EXPORT_SYMBOL(sleep_on_timeout);
4857
b29739f9
IM
4858#ifdef CONFIG_RT_MUTEXES
4859
4860/*
4861 * rt_mutex_setprio - set the current priority of a task
4862 * @p: task
4863 * @prio: prio value (kernel-internal form)
4864 *
4865 * This function changes the 'effective' priority of a task. It does
4866 * not touch ->normal_prio like __setscheduler().
4867 *
4868 * Used by the rt_mutex code to implement priority inheritance logic.
4869 */
36c8b586 4870void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4871{
4872 unsigned long flags;
83b699ed 4873 int oldprio, on_rq, running;
70b97a7f 4874 struct rq *rq;
cb469845 4875 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4876
4877 BUG_ON(prio < 0 || prio > MAX_PRIO);
4878
4879 rq = task_rq_lock(p, &flags);
a8e504d2 4880 update_rq_clock(rq);
b29739f9 4881
d5f9f942 4882 oldprio = p->prio;
dd41f596 4883 on_rq = p->se.on_rq;
051a1d1a 4884 running = task_current(rq, p);
0e1f3483 4885 if (on_rq)
69be72c1 4886 dequeue_task(rq, p, 0);
0e1f3483
HS
4887 if (running)
4888 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4889
4890 if (rt_prio(prio))
4891 p->sched_class = &rt_sched_class;
4892 else
4893 p->sched_class = &fair_sched_class;
4894
b29739f9
IM
4895 p->prio = prio;
4896
0e1f3483
HS
4897 if (running)
4898 p->sched_class->set_curr_task(rq);
dd41f596 4899 if (on_rq) {
8159f87e 4900 enqueue_task(rq, p, 0);
cb469845
SR
4901
4902 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4903 }
4904 task_rq_unlock(rq, &flags);
4905}
4906
4907#endif
4908
36c8b586 4909void set_user_nice(struct task_struct *p, long nice)
1da177e4 4910{
dd41f596 4911 int old_prio, delta, on_rq;
1da177e4 4912 unsigned long flags;
70b97a7f 4913 struct rq *rq;
1da177e4
LT
4914
4915 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4916 return;
4917 /*
4918 * We have to be careful, if called from sys_setpriority(),
4919 * the task might be in the middle of scheduling on another CPU.
4920 */
4921 rq = task_rq_lock(p, &flags);
a8e504d2 4922 update_rq_clock(rq);
1da177e4
LT
4923 /*
4924 * The RT priorities are set via sched_setscheduler(), but we still
4925 * allow the 'normal' nice value to be set - but as expected
4926 * it wont have any effect on scheduling until the task is
dd41f596 4927 * SCHED_FIFO/SCHED_RR:
1da177e4 4928 */
e05606d3 4929 if (task_has_rt_policy(p)) {
1da177e4
LT
4930 p->static_prio = NICE_TO_PRIO(nice);
4931 goto out_unlock;
4932 }
dd41f596 4933 on_rq = p->se.on_rq;
18d95a28 4934 if (on_rq)
69be72c1 4935 dequeue_task(rq, p, 0);
1da177e4 4936
1da177e4 4937 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4938 set_load_weight(p);
b29739f9
IM
4939 old_prio = p->prio;
4940 p->prio = effective_prio(p);
4941 delta = p->prio - old_prio;
1da177e4 4942
dd41f596 4943 if (on_rq) {
8159f87e 4944 enqueue_task(rq, p, 0);
1da177e4 4945 /*
d5f9f942
AM
4946 * If the task increased its priority or is running and
4947 * lowered its priority, then reschedule its CPU:
1da177e4 4948 */
d5f9f942 4949 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4950 resched_task(rq->curr);
4951 }
4952out_unlock:
4953 task_rq_unlock(rq, &flags);
4954}
1da177e4
LT
4955EXPORT_SYMBOL(set_user_nice);
4956
e43379f1
MM
4957/*
4958 * can_nice - check if a task can reduce its nice value
4959 * @p: task
4960 * @nice: nice value
4961 */
36c8b586 4962int can_nice(const struct task_struct *p, const int nice)
e43379f1 4963{
024f4747
MM
4964 /* convert nice value [19,-20] to rlimit style value [1,40] */
4965 int nice_rlim = 20 - nice;
48f24c4d 4966
e43379f1
MM
4967 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4968 capable(CAP_SYS_NICE));
4969}
4970
1da177e4
LT
4971#ifdef __ARCH_WANT_SYS_NICE
4972
4973/*
4974 * sys_nice - change the priority of the current process.
4975 * @increment: priority increment
4976 *
4977 * sys_setpriority is a more generic, but much slower function that
4978 * does similar things.
4979 */
4980asmlinkage long sys_nice(int increment)
4981{
48f24c4d 4982 long nice, retval;
1da177e4
LT
4983
4984 /*
4985 * Setpriority might change our priority at the same moment.
4986 * We don't have to worry. Conceptually one call occurs first
4987 * and we have a single winner.
4988 */
e43379f1
MM
4989 if (increment < -40)
4990 increment = -40;
1da177e4
LT
4991 if (increment > 40)
4992 increment = 40;
4993
4994 nice = PRIO_TO_NICE(current->static_prio) + increment;
4995 if (nice < -20)
4996 nice = -20;
4997 if (nice > 19)
4998 nice = 19;
4999
e43379f1
MM
5000 if (increment < 0 && !can_nice(current, nice))
5001 return -EPERM;
5002
1da177e4
LT
5003 retval = security_task_setnice(current, nice);
5004 if (retval)
5005 return retval;
5006
5007 set_user_nice(current, nice);
5008 return 0;
5009}
5010
5011#endif
5012
5013/**
5014 * task_prio - return the priority value of a given task.
5015 * @p: the task in question.
5016 *
5017 * This is the priority value as seen by users in /proc.
5018 * RT tasks are offset by -200. Normal tasks are centered
5019 * around 0, value goes from -16 to +15.
5020 */
36c8b586 5021int task_prio(const struct task_struct *p)
1da177e4
LT
5022{
5023 return p->prio - MAX_RT_PRIO;
5024}
5025
5026/**
5027 * task_nice - return the nice value of a given task.
5028 * @p: the task in question.
5029 */
36c8b586 5030int task_nice(const struct task_struct *p)
1da177e4
LT
5031{
5032 return TASK_NICE(p);
5033}
150d8bed 5034EXPORT_SYMBOL(task_nice);
1da177e4
LT
5035
5036/**
5037 * idle_cpu - is a given cpu idle currently?
5038 * @cpu: the processor in question.
5039 */
5040int idle_cpu(int cpu)
5041{
5042 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5043}
5044
1da177e4
LT
5045/**
5046 * idle_task - return the idle task for a given cpu.
5047 * @cpu: the processor in question.
5048 */
36c8b586 5049struct task_struct *idle_task(int cpu)
1da177e4
LT
5050{
5051 return cpu_rq(cpu)->idle;
5052}
5053
5054/**
5055 * find_process_by_pid - find a process with a matching PID value.
5056 * @pid: the pid in question.
5057 */
a9957449 5058static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5059{
228ebcbe 5060 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5061}
5062
5063/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5064static void
5065__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5066{
dd41f596 5067 BUG_ON(p->se.on_rq);
48f24c4d 5068
1da177e4 5069 p->policy = policy;
dd41f596
IM
5070 switch (p->policy) {
5071 case SCHED_NORMAL:
5072 case SCHED_BATCH:
5073 case SCHED_IDLE:
5074 p->sched_class = &fair_sched_class;
5075 break;
5076 case SCHED_FIFO:
5077 case SCHED_RR:
5078 p->sched_class = &rt_sched_class;
5079 break;
5080 }
5081
1da177e4 5082 p->rt_priority = prio;
b29739f9
IM
5083 p->normal_prio = normal_prio(p);
5084 /* we are holding p->pi_lock already */
5085 p->prio = rt_mutex_getprio(p);
2dd73a4f 5086 set_load_weight(p);
1da177e4
LT
5087}
5088
5089/**
72fd4a35 5090 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
5091 * @p: the task in question.
5092 * @policy: new policy.
5093 * @param: structure containing the new RT priority.
5fe1d75f 5094 *
72fd4a35 5095 * NOTE that the task may be already dead.
1da177e4 5096 */
95cdf3b7
IM
5097int sched_setscheduler(struct task_struct *p, int policy,
5098 struct sched_param *param)
1da177e4 5099{
83b699ed 5100 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5101 unsigned long flags;
cb469845 5102 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5103 struct rq *rq;
1da177e4 5104
66e5393a
SR
5105 /* may grab non-irq protected spin_locks */
5106 BUG_ON(in_interrupt());
1da177e4
LT
5107recheck:
5108 /* double check policy once rq lock held */
5109 if (policy < 0)
5110 policy = oldpolicy = p->policy;
5111 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5112 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5113 policy != SCHED_IDLE)
b0a9499c 5114 return -EINVAL;
1da177e4
LT
5115 /*
5116 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5117 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5118 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5119 */
5120 if (param->sched_priority < 0 ||
95cdf3b7 5121 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5122 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5123 return -EINVAL;
e05606d3 5124 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5125 return -EINVAL;
5126
37e4ab3f
OC
5127 /*
5128 * Allow unprivileged RT tasks to decrease priority:
5129 */
5130 if (!capable(CAP_SYS_NICE)) {
e05606d3 5131 if (rt_policy(policy)) {
8dc3e909 5132 unsigned long rlim_rtprio;
8dc3e909
ON
5133
5134 if (!lock_task_sighand(p, &flags))
5135 return -ESRCH;
5136 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5137 unlock_task_sighand(p, &flags);
5138
5139 /* can't set/change the rt policy */
5140 if (policy != p->policy && !rlim_rtprio)
5141 return -EPERM;
5142
5143 /* can't increase priority */
5144 if (param->sched_priority > p->rt_priority &&
5145 param->sched_priority > rlim_rtprio)
5146 return -EPERM;
5147 }
dd41f596
IM
5148 /*
5149 * Like positive nice levels, dont allow tasks to
5150 * move out of SCHED_IDLE either:
5151 */
5152 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5153 return -EPERM;
5fe1d75f 5154
37e4ab3f
OC
5155 /* can't change other user's priorities */
5156 if ((current->euid != p->euid) &&
5157 (current->euid != p->uid))
5158 return -EPERM;
5159 }
1da177e4 5160
b68aa230
PZ
5161#ifdef CONFIG_RT_GROUP_SCHED
5162 /*
5163 * Do not allow realtime tasks into groups that have no runtime
5164 * assigned.
5165 */
d0b27fa7 5166 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
5167 return -EPERM;
5168#endif
5169
1da177e4
LT
5170 retval = security_task_setscheduler(p, policy, param);
5171 if (retval)
5172 return retval;
b29739f9
IM
5173 /*
5174 * make sure no PI-waiters arrive (or leave) while we are
5175 * changing the priority of the task:
5176 */
5177 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5178 /*
5179 * To be able to change p->policy safely, the apropriate
5180 * runqueue lock must be held.
5181 */
b29739f9 5182 rq = __task_rq_lock(p);
1da177e4
LT
5183 /* recheck policy now with rq lock held */
5184 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5185 policy = oldpolicy = -1;
b29739f9
IM
5186 __task_rq_unlock(rq);
5187 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5188 goto recheck;
5189 }
2daa3577 5190 update_rq_clock(rq);
dd41f596 5191 on_rq = p->se.on_rq;
051a1d1a 5192 running = task_current(rq, p);
0e1f3483 5193 if (on_rq)
2e1cb74a 5194 deactivate_task(rq, p, 0);
0e1f3483
HS
5195 if (running)
5196 p->sched_class->put_prev_task(rq, p);
f6b53205 5197
1da177e4 5198 oldprio = p->prio;
dd41f596 5199 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5200
0e1f3483
HS
5201 if (running)
5202 p->sched_class->set_curr_task(rq);
dd41f596
IM
5203 if (on_rq) {
5204 activate_task(rq, p, 0);
cb469845
SR
5205
5206 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5207 }
b29739f9
IM
5208 __task_rq_unlock(rq);
5209 spin_unlock_irqrestore(&p->pi_lock, flags);
5210
95e02ca9
TG
5211 rt_mutex_adjust_pi(p);
5212
1da177e4
LT
5213 return 0;
5214}
5215EXPORT_SYMBOL_GPL(sched_setscheduler);
5216
95cdf3b7
IM
5217static int
5218do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5219{
1da177e4
LT
5220 struct sched_param lparam;
5221 struct task_struct *p;
36c8b586 5222 int retval;
1da177e4
LT
5223
5224 if (!param || pid < 0)
5225 return -EINVAL;
5226 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5227 return -EFAULT;
5fe1d75f
ON
5228
5229 rcu_read_lock();
5230 retval = -ESRCH;
1da177e4 5231 p = find_process_by_pid(pid);
5fe1d75f
ON
5232 if (p != NULL)
5233 retval = sched_setscheduler(p, policy, &lparam);
5234 rcu_read_unlock();
36c8b586 5235
1da177e4
LT
5236 return retval;
5237}
5238
5239/**
5240 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5241 * @pid: the pid in question.
5242 * @policy: new policy.
5243 * @param: structure containing the new RT priority.
5244 */
41a2d6cf
IM
5245asmlinkage long
5246sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5247{
c21761f1
JB
5248 /* negative values for policy are not valid */
5249 if (policy < 0)
5250 return -EINVAL;
5251
1da177e4
LT
5252 return do_sched_setscheduler(pid, policy, param);
5253}
5254
5255/**
5256 * sys_sched_setparam - set/change the RT priority of a thread
5257 * @pid: the pid in question.
5258 * @param: structure containing the new RT priority.
5259 */
5260asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5261{
5262 return do_sched_setscheduler(pid, -1, param);
5263}
5264
5265/**
5266 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5267 * @pid: the pid in question.
5268 */
5269asmlinkage long sys_sched_getscheduler(pid_t pid)
5270{
36c8b586 5271 struct task_struct *p;
3a5c359a 5272 int retval;
1da177e4
LT
5273
5274 if (pid < 0)
3a5c359a 5275 return -EINVAL;
1da177e4
LT
5276
5277 retval = -ESRCH;
5278 read_lock(&tasklist_lock);
5279 p = find_process_by_pid(pid);
5280 if (p) {
5281 retval = security_task_getscheduler(p);
5282 if (!retval)
5283 retval = p->policy;
5284 }
5285 read_unlock(&tasklist_lock);
1da177e4
LT
5286 return retval;
5287}
5288
5289/**
5290 * sys_sched_getscheduler - get the RT priority of a thread
5291 * @pid: the pid in question.
5292 * @param: structure containing the RT priority.
5293 */
5294asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5295{
5296 struct sched_param lp;
36c8b586 5297 struct task_struct *p;
3a5c359a 5298 int retval;
1da177e4
LT
5299
5300 if (!param || pid < 0)
3a5c359a 5301 return -EINVAL;
1da177e4
LT
5302
5303 read_lock(&tasklist_lock);
5304 p = find_process_by_pid(pid);
5305 retval = -ESRCH;
5306 if (!p)
5307 goto out_unlock;
5308
5309 retval = security_task_getscheduler(p);
5310 if (retval)
5311 goto out_unlock;
5312
5313 lp.sched_priority = p->rt_priority;
5314 read_unlock(&tasklist_lock);
5315
5316 /*
5317 * This one might sleep, we cannot do it with a spinlock held ...
5318 */
5319 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5320
1da177e4
LT
5321 return retval;
5322
5323out_unlock:
5324 read_unlock(&tasklist_lock);
5325 return retval;
5326}
5327
b53e921b 5328long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5329{
1da177e4 5330 cpumask_t cpus_allowed;
b53e921b 5331 cpumask_t new_mask = *in_mask;
36c8b586
IM
5332 struct task_struct *p;
5333 int retval;
1da177e4 5334
95402b38 5335 get_online_cpus();
1da177e4
LT
5336 read_lock(&tasklist_lock);
5337
5338 p = find_process_by_pid(pid);
5339 if (!p) {
5340 read_unlock(&tasklist_lock);
95402b38 5341 put_online_cpus();
1da177e4
LT
5342 return -ESRCH;
5343 }
5344
5345 /*
5346 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5347 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5348 * usage count and then drop tasklist_lock.
5349 */
5350 get_task_struct(p);
5351 read_unlock(&tasklist_lock);
5352
5353 retval = -EPERM;
5354 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5355 !capable(CAP_SYS_NICE))
5356 goto out_unlock;
5357
e7834f8f
DQ
5358 retval = security_task_setscheduler(p, 0, NULL);
5359 if (retval)
5360 goto out_unlock;
5361
f9a86fcb 5362 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5363 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5364 again:
7c16ec58 5365 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5366
8707d8b8 5367 if (!retval) {
f9a86fcb 5368 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5369 if (!cpus_subset(new_mask, cpus_allowed)) {
5370 /*
5371 * We must have raced with a concurrent cpuset
5372 * update. Just reset the cpus_allowed to the
5373 * cpuset's cpus_allowed
5374 */
5375 new_mask = cpus_allowed;
5376 goto again;
5377 }
5378 }
1da177e4
LT
5379out_unlock:
5380 put_task_struct(p);
95402b38 5381 put_online_cpus();
1da177e4
LT
5382 return retval;
5383}
5384
5385static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5386 cpumask_t *new_mask)
5387{
5388 if (len < sizeof(cpumask_t)) {
5389 memset(new_mask, 0, sizeof(cpumask_t));
5390 } else if (len > sizeof(cpumask_t)) {
5391 len = sizeof(cpumask_t);
5392 }
5393 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5394}
5395
5396/**
5397 * sys_sched_setaffinity - set the cpu affinity of a process
5398 * @pid: pid of the process
5399 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5400 * @user_mask_ptr: user-space pointer to the new cpu mask
5401 */
5402asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5403 unsigned long __user *user_mask_ptr)
5404{
5405 cpumask_t new_mask;
5406 int retval;
5407
5408 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5409 if (retval)
5410 return retval;
5411
b53e921b 5412 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5413}
5414
5415/*
5416 * Represents all cpu's present in the system
5417 * In systems capable of hotplug, this map could dynamically grow
5418 * as new cpu's are detected in the system via any platform specific
5419 * method, such as ACPI for e.g.
5420 */
5421
4cef0c61 5422cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5423EXPORT_SYMBOL(cpu_present_map);
5424
5425#ifndef CONFIG_SMP
4cef0c61 5426cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5427EXPORT_SYMBOL(cpu_online_map);
5428
4cef0c61 5429cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5430EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5431#endif
5432
5433long sched_getaffinity(pid_t pid, cpumask_t *mask)
5434{
36c8b586 5435 struct task_struct *p;
1da177e4 5436 int retval;
1da177e4 5437
95402b38 5438 get_online_cpus();
1da177e4
LT
5439 read_lock(&tasklist_lock);
5440
5441 retval = -ESRCH;
5442 p = find_process_by_pid(pid);
5443 if (!p)
5444 goto out_unlock;
5445
e7834f8f
DQ
5446 retval = security_task_getscheduler(p);
5447 if (retval)
5448 goto out_unlock;
5449
2f7016d9 5450 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5451
5452out_unlock:
5453 read_unlock(&tasklist_lock);
95402b38 5454 put_online_cpus();
1da177e4 5455
9531b62f 5456 return retval;
1da177e4
LT
5457}
5458
5459/**
5460 * sys_sched_getaffinity - get the cpu affinity of a process
5461 * @pid: pid of the process
5462 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5463 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5464 */
5465asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5466 unsigned long __user *user_mask_ptr)
5467{
5468 int ret;
5469 cpumask_t mask;
5470
5471 if (len < sizeof(cpumask_t))
5472 return -EINVAL;
5473
5474 ret = sched_getaffinity(pid, &mask);
5475 if (ret < 0)
5476 return ret;
5477
5478 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5479 return -EFAULT;
5480
5481 return sizeof(cpumask_t);
5482}
5483
5484/**
5485 * sys_sched_yield - yield the current processor to other threads.
5486 *
dd41f596
IM
5487 * This function yields the current CPU to other tasks. If there are no
5488 * other threads running on this CPU then this function will return.
1da177e4
LT
5489 */
5490asmlinkage long sys_sched_yield(void)
5491{
70b97a7f 5492 struct rq *rq = this_rq_lock();
1da177e4 5493
2d72376b 5494 schedstat_inc(rq, yld_count);
4530d7ab 5495 current->sched_class->yield_task(rq);
1da177e4
LT
5496
5497 /*
5498 * Since we are going to call schedule() anyway, there's
5499 * no need to preempt or enable interrupts:
5500 */
5501 __release(rq->lock);
8a25d5de 5502 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5503 _raw_spin_unlock(&rq->lock);
5504 preempt_enable_no_resched();
5505
5506 schedule();
5507
5508 return 0;
5509}
5510
e7b38404 5511static void __cond_resched(void)
1da177e4 5512{
8e0a43d8
IM
5513#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5514 __might_sleep(__FILE__, __LINE__);
5515#endif
5bbcfd90
IM
5516 /*
5517 * The BKS might be reacquired before we have dropped
5518 * PREEMPT_ACTIVE, which could trigger a second
5519 * cond_resched() call.
5520 */
1da177e4
LT
5521 do {
5522 add_preempt_count(PREEMPT_ACTIVE);
5523 schedule();
5524 sub_preempt_count(PREEMPT_ACTIVE);
5525 } while (need_resched());
5526}
5527
02b67cc3
HX
5528#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5529int __sched _cond_resched(void)
1da177e4 5530{
9414232f
IM
5531 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5532 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5533 __cond_resched();
5534 return 1;
5535 }
5536 return 0;
5537}
02b67cc3
HX
5538EXPORT_SYMBOL(_cond_resched);
5539#endif
1da177e4
LT
5540
5541/*
5542 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5543 * call schedule, and on return reacquire the lock.
5544 *
41a2d6cf 5545 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5546 * operations here to prevent schedule() from being called twice (once via
5547 * spin_unlock(), once by hand).
5548 */
95cdf3b7 5549int cond_resched_lock(spinlock_t *lock)
1da177e4 5550{
95c354fe 5551 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5552 int ret = 0;
5553
95c354fe 5554 if (spin_needbreak(lock) || resched) {
1da177e4 5555 spin_unlock(lock);
95c354fe
NP
5556 if (resched && need_resched())
5557 __cond_resched();
5558 else
5559 cpu_relax();
6df3cecb 5560 ret = 1;
1da177e4 5561 spin_lock(lock);
1da177e4 5562 }
6df3cecb 5563 return ret;
1da177e4 5564}
1da177e4
LT
5565EXPORT_SYMBOL(cond_resched_lock);
5566
5567int __sched cond_resched_softirq(void)
5568{
5569 BUG_ON(!in_softirq());
5570
9414232f 5571 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5572 local_bh_enable();
1da177e4
LT
5573 __cond_resched();
5574 local_bh_disable();
5575 return 1;
5576 }
5577 return 0;
5578}
1da177e4
LT
5579EXPORT_SYMBOL(cond_resched_softirq);
5580
1da177e4
LT
5581/**
5582 * yield - yield the current processor to other threads.
5583 *
72fd4a35 5584 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5585 * thread runnable and calls sys_sched_yield().
5586 */
5587void __sched yield(void)
5588{
5589 set_current_state(TASK_RUNNING);
5590 sys_sched_yield();
5591}
1da177e4
LT
5592EXPORT_SYMBOL(yield);
5593
5594/*
41a2d6cf 5595 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5596 * that process accounting knows that this is a task in IO wait state.
5597 *
5598 * But don't do that if it is a deliberate, throttling IO wait (this task
5599 * has set its backing_dev_info: the queue against which it should throttle)
5600 */
5601void __sched io_schedule(void)
5602{
70b97a7f 5603 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5604
0ff92245 5605 delayacct_blkio_start();
1da177e4
LT
5606 atomic_inc(&rq->nr_iowait);
5607 schedule();
5608 atomic_dec(&rq->nr_iowait);
0ff92245 5609 delayacct_blkio_end();
1da177e4 5610}
1da177e4
LT
5611EXPORT_SYMBOL(io_schedule);
5612
5613long __sched io_schedule_timeout(long timeout)
5614{
70b97a7f 5615 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5616 long ret;
5617
0ff92245 5618 delayacct_blkio_start();
1da177e4
LT
5619 atomic_inc(&rq->nr_iowait);
5620 ret = schedule_timeout(timeout);
5621 atomic_dec(&rq->nr_iowait);
0ff92245 5622 delayacct_blkio_end();
1da177e4
LT
5623 return ret;
5624}
5625
5626/**
5627 * sys_sched_get_priority_max - return maximum RT priority.
5628 * @policy: scheduling class.
5629 *
5630 * this syscall returns the maximum rt_priority that can be used
5631 * by a given scheduling class.
5632 */
5633asmlinkage long sys_sched_get_priority_max(int policy)
5634{
5635 int ret = -EINVAL;
5636
5637 switch (policy) {
5638 case SCHED_FIFO:
5639 case SCHED_RR:
5640 ret = MAX_USER_RT_PRIO-1;
5641 break;
5642 case SCHED_NORMAL:
b0a9499c 5643 case SCHED_BATCH:
dd41f596 5644 case SCHED_IDLE:
1da177e4
LT
5645 ret = 0;
5646 break;
5647 }
5648 return ret;
5649}
5650
5651/**
5652 * sys_sched_get_priority_min - return minimum RT priority.
5653 * @policy: scheduling class.
5654 *
5655 * this syscall returns the minimum rt_priority that can be used
5656 * by a given scheduling class.
5657 */
5658asmlinkage long sys_sched_get_priority_min(int policy)
5659{
5660 int ret = -EINVAL;
5661
5662 switch (policy) {
5663 case SCHED_FIFO:
5664 case SCHED_RR:
5665 ret = 1;
5666 break;
5667 case SCHED_NORMAL:
b0a9499c 5668 case SCHED_BATCH:
dd41f596 5669 case SCHED_IDLE:
1da177e4
LT
5670 ret = 0;
5671 }
5672 return ret;
5673}
5674
5675/**
5676 * sys_sched_rr_get_interval - return the default timeslice of a process.
5677 * @pid: pid of the process.
5678 * @interval: userspace pointer to the timeslice value.
5679 *
5680 * this syscall writes the default timeslice value of a given process
5681 * into the user-space timespec buffer. A value of '0' means infinity.
5682 */
5683asmlinkage
5684long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5685{
36c8b586 5686 struct task_struct *p;
a4ec24b4 5687 unsigned int time_slice;
3a5c359a 5688 int retval;
1da177e4 5689 struct timespec t;
1da177e4
LT
5690
5691 if (pid < 0)
3a5c359a 5692 return -EINVAL;
1da177e4
LT
5693
5694 retval = -ESRCH;
5695 read_lock(&tasklist_lock);
5696 p = find_process_by_pid(pid);
5697 if (!p)
5698 goto out_unlock;
5699
5700 retval = security_task_getscheduler(p);
5701 if (retval)
5702 goto out_unlock;
5703
77034937
IM
5704 /*
5705 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5706 * tasks that are on an otherwise idle runqueue:
5707 */
5708 time_slice = 0;
5709 if (p->policy == SCHED_RR) {
a4ec24b4 5710 time_slice = DEF_TIMESLICE;
1868f958 5711 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5712 struct sched_entity *se = &p->se;
5713 unsigned long flags;
5714 struct rq *rq;
5715
5716 rq = task_rq_lock(p, &flags);
77034937
IM
5717 if (rq->cfs.load.weight)
5718 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5719 task_rq_unlock(rq, &flags);
5720 }
1da177e4 5721 read_unlock(&tasklist_lock);
a4ec24b4 5722 jiffies_to_timespec(time_slice, &t);
1da177e4 5723 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5724 return retval;
3a5c359a 5725
1da177e4
LT
5726out_unlock:
5727 read_unlock(&tasklist_lock);
5728 return retval;
5729}
5730
2ed6e34f 5731static const char stat_nam[] = "RSDTtZX";
36c8b586 5732
82a1fcb9 5733void sched_show_task(struct task_struct *p)
1da177e4 5734{
1da177e4 5735 unsigned long free = 0;
36c8b586 5736 unsigned state;
1da177e4 5737
1da177e4 5738 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5739 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5740 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5741#if BITS_PER_LONG == 32
1da177e4 5742 if (state == TASK_RUNNING)
cc4ea795 5743 printk(KERN_CONT " running ");
1da177e4 5744 else
cc4ea795 5745 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5746#else
5747 if (state == TASK_RUNNING)
cc4ea795 5748 printk(KERN_CONT " running task ");
1da177e4 5749 else
cc4ea795 5750 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5751#endif
5752#ifdef CONFIG_DEBUG_STACK_USAGE
5753 {
10ebffde 5754 unsigned long *n = end_of_stack(p);
1da177e4
LT
5755 while (!*n)
5756 n++;
10ebffde 5757 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5758 }
5759#endif
ba25f9dc 5760 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5761 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5762
5fb5e6de 5763 show_stack(p, NULL);
1da177e4
LT
5764}
5765
e59e2ae2 5766void show_state_filter(unsigned long state_filter)
1da177e4 5767{
36c8b586 5768 struct task_struct *g, *p;
1da177e4 5769
4bd77321
IM
5770#if BITS_PER_LONG == 32
5771 printk(KERN_INFO
5772 " task PC stack pid father\n");
1da177e4 5773#else
4bd77321
IM
5774 printk(KERN_INFO
5775 " task PC stack pid father\n");
1da177e4
LT
5776#endif
5777 read_lock(&tasklist_lock);
5778 do_each_thread(g, p) {
5779 /*
5780 * reset the NMI-timeout, listing all files on a slow
5781 * console might take alot of time:
5782 */
5783 touch_nmi_watchdog();
39bc89fd 5784 if (!state_filter || (p->state & state_filter))
82a1fcb9 5785 sched_show_task(p);
1da177e4
LT
5786 } while_each_thread(g, p);
5787
04c9167f
JF
5788 touch_all_softlockup_watchdogs();
5789
dd41f596
IM
5790#ifdef CONFIG_SCHED_DEBUG
5791 sysrq_sched_debug_show();
5792#endif
1da177e4 5793 read_unlock(&tasklist_lock);
e59e2ae2
IM
5794 /*
5795 * Only show locks if all tasks are dumped:
5796 */
5797 if (state_filter == -1)
5798 debug_show_all_locks();
1da177e4
LT
5799}
5800
1df21055
IM
5801void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5802{
dd41f596 5803 idle->sched_class = &idle_sched_class;
1df21055
IM
5804}
5805
f340c0d1
IM
5806/**
5807 * init_idle - set up an idle thread for a given CPU
5808 * @idle: task in question
5809 * @cpu: cpu the idle task belongs to
5810 *
5811 * NOTE: this function does not set the idle thread's NEED_RESCHED
5812 * flag, to make booting more robust.
5813 */
5c1e1767 5814void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5815{
70b97a7f 5816 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5817 unsigned long flags;
5818
dd41f596
IM
5819 __sched_fork(idle);
5820 idle->se.exec_start = sched_clock();
5821
b29739f9 5822 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5823 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5824 __set_task_cpu(idle, cpu);
1da177e4
LT
5825
5826 spin_lock_irqsave(&rq->lock, flags);
5827 rq->curr = rq->idle = idle;
4866cde0
NP
5828#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5829 idle->oncpu = 1;
5830#endif
1da177e4
LT
5831 spin_unlock_irqrestore(&rq->lock, flags);
5832
5833 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5834#if defined(CONFIG_PREEMPT)
5835 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5836#else
a1261f54 5837 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5838#endif
dd41f596
IM
5839 /*
5840 * The idle tasks have their own, simple scheduling class:
5841 */
5842 idle->sched_class = &idle_sched_class;
1da177e4
LT
5843}
5844
5845/*
5846 * In a system that switches off the HZ timer nohz_cpu_mask
5847 * indicates which cpus entered this state. This is used
5848 * in the rcu update to wait only for active cpus. For system
5849 * which do not switch off the HZ timer nohz_cpu_mask should
5850 * always be CPU_MASK_NONE.
5851 */
5852cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5853
19978ca6
IM
5854/*
5855 * Increase the granularity value when there are more CPUs,
5856 * because with more CPUs the 'effective latency' as visible
5857 * to users decreases. But the relationship is not linear,
5858 * so pick a second-best guess by going with the log2 of the
5859 * number of CPUs.
5860 *
5861 * This idea comes from the SD scheduler of Con Kolivas:
5862 */
5863static inline void sched_init_granularity(void)
5864{
5865 unsigned int factor = 1 + ilog2(num_online_cpus());
5866 const unsigned long limit = 200000000;
5867
5868 sysctl_sched_min_granularity *= factor;
5869 if (sysctl_sched_min_granularity > limit)
5870 sysctl_sched_min_granularity = limit;
5871
5872 sysctl_sched_latency *= factor;
5873 if (sysctl_sched_latency > limit)
5874 sysctl_sched_latency = limit;
5875
5876 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5877}
5878
1da177e4
LT
5879#ifdef CONFIG_SMP
5880/*
5881 * This is how migration works:
5882 *
70b97a7f 5883 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5884 * runqueue and wake up that CPU's migration thread.
5885 * 2) we down() the locked semaphore => thread blocks.
5886 * 3) migration thread wakes up (implicitly it forces the migrated
5887 * thread off the CPU)
5888 * 4) it gets the migration request and checks whether the migrated
5889 * task is still in the wrong runqueue.
5890 * 5) if it's in the wrong runqueue then the migration thread removes
5891 * it and puts it into the right queue.
5892 * 6) migration thread up()s the semaphore.
5893 * 7) we wake up and the migration is done.
5894 */
5895
5896/*
5897 * Change a given task's CPU affinity. Migrate the thread to a
5898 * proper CPU and schedule it away if the CPU it's executing on
5899 * is removed from the allowed bitmask.
5900 *
5901 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5902 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5903 * call is not atomic; no spinlocks may be held.
5904 */
cd8ba7cd 5905int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5906{
70b97a7f 5907 struct migration_req req;
1da177e4 5908 unsigned long flags;
70b97a7f 5909 struct rq *rq;
48f24c4d 5910 int ret = 0;
1da177e4
LT
5911
5912 rq = task_rq_lock(p, &flags);
cd8ba7cd 5913 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5914 ret = -EINVAL;
5915 goto out;
5916 }
5917
73fe6aae 5918 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5919 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5920 else {
cd8ba7cd
MT
5921 p->cpus_allowed = *new_mask;
5922 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5923 }
5924
1da177e4 5925 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5926 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5927 goto out;
5928
cd8ba7cd 5929 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5930 /* Need help from migration thread: drop lock and wait. */
5931 task_rq_unlock(rq, &flags);
5932 wake_up_process(rq->migration_thread);
5933 wait_for_completion(&req.done);
5934 tlb_migrate_finish(p->mm);
5935 return 0;
5936 }
5937out:
5938 task_rq_unlock(rq, &flags);
48f24c4d 5939
1da177e4
LT
5940 return ret;
5941}
cd8ba7cd 5942EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5943
5944/*
41a2d6cf 5945 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5946 * this because either it can't run here any more (set_cpus_allowed()
5947 * away from this CPU, or CPU going down), or because we're
5948 * attempting to rebalance this task on exec (sched_exec).
5949 *
5950 * So we race with normal scheduler movements, but that's OK, as long
5951 * as the task is no longer on this CPU.
efc30814
KK
5952 *
5953 * Returns non-zero if task was successfully migrated.
1da177e4 5954 */
efc30814 5955static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5956{
70b97a7f 5957 struct rq *rq_dest, *rq_src;
dd41f596 5958 int ret = 0, on_rq;
1da177e4
LT
5959
5960 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5961 return ret;
1da177e4
LT
5962
5963 rq_src = cpu_rq(src_cpu);
5964 rq_dest = cpu_rq(dest_cpu);
5965
5966 double_rq_lock(rq_src, rq_dest);
5967 /* Already moved. */
5968 if (task_cpu(p) != src_cpu)
5969 goto out;
5970 /* Affinity changed (again). */
5971 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5972 goto out;
5973
dd41f596 5974 on_rq = p->se.on_rq;
6e82a3be 5975 if (on_rq)
2e1cb74a 5976 deactivate_task(rq_src, p, 0);
6e82a3be 5977
1da177e4 5978 set_task_cpu(p, dest_cpu);
dd41f596
IM
5979 if (on_rq) {
5980 activate_task(rq_dest, p, 0);
5981 check_preempt_curr(rq_dest, p);
1da177e4 5982 }
efc30814 5983 ret = 1;
1da177e4
LT
5984out:
5985 double_rq_unlock(rq_src, rq_dest);
efc30814 5986 return ret;
1da177e4
LT
5987}
5988
5989/*
5990 * migration_thread - this is a highprio system thread that performs
5991 * thread migration by bumping thread off CPU then 'pushing' onto
5992 * another runqueue.
5993 */
95cdf3b7 5994static int migration_thread(void *data)
1da177e4 5995{
1da177e4 5996 int cpu = (long)data;
70b97a7f 5997 struct rq *rq;
1da177e4
LT
5998
5999 rq = cpu_rq(cpu);
6000 BUG_ON(rq->migration_thread != current);
6001
6002 set_current_state(TASK_INTERRUPTIBLE);
6003 while (!kthread_should_stop()) {
70b97a7f 6004 struct migration_req *req;
1da177e4 6005 struct list_head *head;
1da177e4 6006
1da177e4
LT
6007 spin_lock_irq(&rq->lock);
6008
6009 if (cpu_is_offline(cpu)) {
6010 spin_unlock_irq(&rq->lock);
6011 goto wait_to_die;
6012 }
6013
6014 if (rq->active_balance) {
6015 active_load_balance(rq, cpu);
6016 rq->active_balance = 0;
6017 }
6018
6019 head = &rq->migration_queue;
6020
6021 if (list_empty(head)) {
6022 spin_unlock_irq(&rq->lock);
6023 schedule();
6024 set_current_state(TASK_INTERRUPTIBLE);
6025 continue;
6026 }
70b97a7f 6027 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6028 list_del_init(head->next);
6029
674311d5
NP
6030 spin_unlock(&rq->lock);
6031 __migrate_task(req->task, cpu, req->dest_cpu);
6032 local_irq_enable();
1da177e4
LT
6033
6034 complete(&req->done);
6035 }
6036 __set_current_state(TASK_RUNNING);
6037 return 0;
6038
6039wait_to_die:
6040 /* Wait for kthread_stop */
6041 set_current_state(TASK_INTERRUPTIBLE);
6042 while (!kthread_should_stop()) {
6043 schedule();
6044 set_current_state(TASK_INTERRUPTIBLE);
6045 }
6046 __set_current_state(TASK_RUNNING);
6047 return 0;
6048}
6049
6050#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6051
6052static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6053{
6054 int ret;
6055
6056 local_irq_disable();
6057 ret = __migrate_task(p, src_cpu, dest_cpu);
6058 local_irq_enable();
6059 return ret;
6060}
6061
054b9108 6062/*
3a4fa0a2 6063 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6064 * NOTE: interrupts should be disabled by the caller
6065 */
48f24c4d 6066static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6067{
efc30814 6068 unsigned long flags;
1da177e4 6069 cpumask_t mask;
70b97a7f
IM
6070 struct rq *rq;
6071 int dest_cpu;
1da177e4 6072
3a5c359a
AK
6073 do {
6074 /* On same node? */
6075 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6076 cpus_and(mask, mask, p->cpus_allowed);
6077 dest_cpu = any_online_cpu(mask);
6078
6079 /* On any allowed CPU? */
434d53b0 6080 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6081 dest_cpu = any_online_cpu(p->cpus_allowed);
6082
6083 /* No more Mr. Nice Guy. */
434d53b0 6084 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6085 cpumask_t cpus_allowed;
6086
6087 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6088 /*
6089 * Try to stay on the same cpuset, where the
6090 * current cpuset may be a subset of all cpus.
6091 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6092 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6093 * called within calls to cpuset_lock/cpuset_unlock.
6094 */
3a5c359a 6095 rq = task_rq_lock(p, &flags);
470fd646 6096 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6097 dest_cpu = any_online_cpu(p->cpus_allowed);
6098 task_rq_unlock(rq, &flags);
1da177e4 6099
3a5c359a
AK
6100 /*
6101 * Don't tell them about moving exiting tasks or
6102 * kernel threads (both mm NULL), since they never
6103 * leave kernel.
6104 */
41a2d6cf 6105 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6106 printk(KERN_INFO "process %d (%s) no "
6107 "longer affine to cpu%d\n",
41a2d6cf
IM
6108 task_pid_nr(p), p->comm, dead_cpu);
6109 }
3a5c359a 6110 }
f7b4cddc 6111 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6112}
6113
6114/*
6115 * While a dead CPU has no uninterruptible tasks queued at this point,
6116 * it might still have a nonzero ->nr_uninterruptible counter, because
6117 * for performance reasons the counter is not stricly tracking tasks to
6118 * their home CPUs. So we just add the counter to another CPU's counter,
6119 * to keep the global sum constant after CPU-down:
6120 */
70b97a7f 6121static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6122{
7c16ec58 6123 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6124 unsigned long flags;
6125
6126 local_irq_save(flags);
6127 double_rq_lock(rq_src, rq_dest);
6128 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6129 rq_src->nr_uninterruptible = 0;
6130 double_rq_unlock(rq_src, rq_dest);
6131 local_irq_restore(flags);
6132}
6133
6134/* Run through task list and migrate tasks from the dead cpu. */
6135static void migrate_live_tasks(int src_cpu)
6136{
48f24c4d 6137 struct task_struct *p, *t;
1da177e4 6138
f7b4cddc 6139 read_lock(&tasklist_lock);
1da177e4 6140
48f24c4d
IM
6141 do_each_thread(t, p) {
6142 if (p == current)
1da177e4
LT
6143 continue;
6144
48f24c4d
IM
6145 if (task_cpu(p) == src_cpu)
6146 move_task_off_dead_cpu(src_cpu, p);
6147 } while_each_thread(t, p);
1da177e4 6148
f7b4cddc 6149 read_unlock(&tasklist_lock);
1da177e4
LT
6150}
6151
dd41f596
IM
6152/*
6153 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6154 * It does so by boosting its priority to highest possible.
6155 * Used by CPU offline code.
1da177e4
LT
6156 */
6157void sched_idle_next(void)
6158{
48f24c4d 6159 int this_cpu = smp_processor_id();
70b97a7f 6160 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6161 struct task_struct *p = rq->idle;
6162 unsigned long flags;
6163
6164 /* cpu has to be offline */
48f24c4d 6165 BUG_ON(cpu_online(this_cpu));
1da177e4 6166
48f24c4d
IM
6167 /*
6168 * Strictly not necessary since rest of the CPUs are stopped by now
6169 * and interrupts disabled on the current cpu.
1da177e4
LT
6170 */
6171 spin_lock_irqsave(&rq->lock, flags);
6172
dd41f596 6173 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6174
94bc9a7b
DA
6175 update_rq_clock(rq);
6176 activate_task(rq, p, 0);
1da177e4
LT
6177
6178 spin_unlock_irqrestore(&rq->lock, flags);
6179}
6180
48f24c4d
IM
6181/*
6182 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6183 * offline.
6184 */
6185void idle_task_exit(void)
6186{
6187 struct mm_struct *mm = current->active_mm;
6188
6189 BUG_ON(cpu_online(smp_processor_id()));
6190
6191 if (mm != &init_mm)
6192 switch_mm(mm, &init_mm, current);
6193 mmdrop(mm);
6194}
6195
054b9108 6196/* called under rq->lock with disabled interrupts */
36c8b586 6197static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6198{
70b97a7f 6199 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6200
6201 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6202 BUG_ON(!p->exit_state);
1da177e4
LT
6203
6204 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6205 BUG_ON(p->state == TASK_DEAD);
1da177e4 6206
48f24c4d 6207 get_task_struct(p);
1da177e4
LT
6208
6209 /*
6210 * Drop lock around migration; if someone else moves it,
41a2d6cf 6211 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6212 * fine.
6213 */
f7b4cddc 6214 spin_unlock_irq(&rq->lock);
48f24c4d 6215 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6216 spin_lock_irq(&rq->lock);
1da177e4 6217
48f24c4d 6218 put_task_struct(p);
1da177e4
LT
6219}
6220
6221/* release_task() removes task from tasklist, so we won't find dead tasks. */
6222static void migrate_dead_tasks(unsigned int dead_cpu)
6223{
70b97a7f 6224 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6225 struct task_struct *next;
48f24c4d 6226
dd41f596
IM
6227 for ( ; ; ) {
6228 if (!rq->nr_running)
6229 break;
a8e504d2 6230 update_rq_clock(rq);
ff95f3df 6231 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6232 if (!next)
6233 break;
6234 migrate_dead(dead_cpu, next);
e692ab53 6235
1da177e4
LT
6236 }
6237}
6238#endif /* CONFIG_HOTPLUG_CPU */
6239
e692ab53
NP
6240#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6241
6242static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6243 {
6244 .procname = "sched_domain",
c57baf1e 6245 .mode = 0555,
e0361851 6246 },
38605cae 6247 {0, },
e692ab53
NP
6248};
6249
6250static struct ctl_table sd_ctl_root[] = {
e0361851 6251 {
c57baf1e 6252 .ctl_name = CTL_KERN,
e0361851 6253 .procname = "kernel",
c57baf1e 6254 .mode = 0555,
e0361851
AD
6255 .child = sd_ctl_dir,
6256 },
38605cae 6257 {0, },
e692ab53
NP
6258};
6259
6260static struct ctl_table *sd_alloc_ctl_entry(int n)
6261{
6262 struct ctl_table *entry =
5cf9f062 6263 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6264
e692ab53
NP
6265 return entry;
6266}
6267
6382bc90
MM
6268static void sd_free_ctl_entry(struct ctl_table **tablep)
6269{
cd790076 6270 struct ctl_table *entry;
6382bc90 6271
cd790076
MM
6272 /*
6273 * In the intermediate directories, both the child directory and
6274 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6275 * will always be set. In the lowest directory the names are
cd790076
MM
6276 * static strings and all have proc handlers.
6277 */
6278 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6279 if (entry->child)
6280 sd_free_ctl_entry(&entry->child);
cd790076
MM
6281 if (entry->proc_handler == NULL)
6282 kfree(entry->procname);
6283 }
6382bc90
MM
6284
6285 kfree(*tablep);
6286 *tablep = NULL;
6287}
6288
e692ab53 6289static void
e0361851 6290set_table_entry(struct ctl_table *entry,
e692ab53
NP
6291 const char *procname, void *data, int maxlen,
6292 mode_t mode, proc_handler *proc_handler)
6293{
e692ab53
NP
6294 entry->procname = procname;
6295 entry->data = data;
6296 entry->maxlen = maxlen;
6297 entry->mode = mode;
6298 entry->proc_handler = proc_handler;
6299}
6300
6301static struct ctl_table *
6302sd_alloc_ctl_domain_table(struct sched_domain *sd)
6303{
ace8b3d6 6304 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6305
ad1cdc1d
MM
6306 if (table == NULL)
6307 return NULL;
6308
e0361851 6309 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6310 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6311 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6312 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6313 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6314 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6315 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6316 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6317 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6318 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6319 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6320 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6321 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6322 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6323 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6324 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6325 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6326 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6327 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6328 &sd->cache_nice_tries,
6329 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6330 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6331 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6332 /* &table[11] is terminator */
e692ab53
NP
6333
6334 return table;
6335}
6336
9a4e7159 6337static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6338{
6339 struct ctl_table *entry, *table;
6340 struct sched_domain *sd;
6341 int domain_num = 0, i;
6342 char buf[32];
6343
6344 for_each_domain(cpu, sd)
6345 domain_num++;
6346 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6347 if (table == NULL)
6348 return NULL;
e692ab53
NP
6349
6350 i = 0;
6351 for_each_domain(cpu, sd) {
6352 snprintf(buf, 32, "domain%d", i);
e692ab53 6353 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6354 entry->mode = 0555;
e692ab53
NP
6355 entry->child = sd_alloc_ctl_domain_table(sd);
6356 entry++;
6357 i++;
6358 }
6359 return table;
6360}
6361
6362static struct ctl_table_header *sd_sysctl_header;
6382bc90 6363static void register_sched_domain_sysctl(void)
e692ab53
NP
6364{
6365 int i, cpu_num = num_online_cpus();
6366 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6367 char buf[32];
6368
7378547f
MM
6369 WARN_ON(sd_ctl_dir[0].child);
6370 sd_ctl_dir[0].child = entry;
6371
ad1cdc1d
MM
6372 if (entry == NULL)
6373 return;
6374
97b6ea7b 6375 for_each_online_cpu(i) {
e692ab53 6376 snprintf(buf, 32, "cpu%d", i);
e692ab53 6377 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6378 entry->mode = 0555;
e692ab53 6379 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6380 entry++;
e692ab53 6381 }
7378547f
MM
6382
6383 WARN_ON(sd_sysctl_header);
e692ab53
NP
6384 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6385}
6382bc90 6386
7378547f 6387/* may be called multiple times per register */
6382bc90
MM
6388static void unregister_sched_domain_sysctl(void)
6389{
7378547f
MM
6390 if (sd_sysctl_header)
6391 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6392 sd_sysctl_header = NULL;
7378547f
MM
6393 if (sd_ctl_dir[0].child)
6394 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6395}
e692ab53 6396#else
6382bc90
MM
6397static void register_sched_domain_sysctl(void)
6398{
6399}
6400static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6401{
6402}
6403#endif
6404
1da177e4
LT
6405/*
6406 * migration_call - callback that gets triggered when a CPU is added.
6407 * Here we can start up the necessary migration thread for the new CPU.
6408 */
48f24c4d
IM
6409static int __cpuinit
6410migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6411{
1da177e4 6412 struct task_struct *p;
48f24c4d 6413 int cpu = (long)hcpu;
1da177e4 6414 unsigned long flags;
70b97a7f 6415 struct rq *rq;
1da177e4
LT
6416
6417 switch (action) {
5be9361c 6418
1da177e4 6419 case CPU_UP_PREPARE:
8bb78442 6420 case CPU_UP_PREPARE_FROZEN:
dd41f596 6421 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6422 if (IS_ERR(p))
6423 return NOTIFY_BAD;
1da177e4
LT
6424 kthread_bind(p, cpu);
6425 /* Must be high prio: stop_machine expects to yield to it. */
6426 rq = task_rq_lock(p, &flags);
dd41f596 6427 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6428 task_rq_unlock(rq, &flags);
6429 cpu_rq(cpu)->migration_thread = p;
6430 break;
48f24c4d 6431
1da177e4 6432 case CPU_ONLINE:
8bb78442 6433 case CPU_ONLINE_FROZEN:
3a4fa0a2 6434 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6435 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6436
6437 /* Update our root-domain */
6438 rq = cpu_rq(cpu);
6439 spin_lock_irqsave(&rq->lock, flags);
6440 if (rq->rd) {
6441 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6442 cpu_set(cpu, rq->rd->online);
6443 }
6444 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6445 break;
48f24c4d 6446
1da177e4
LT
6447#ifdef CONFIG_HOTPLUG_CPU
6448 case CPU_UP_CANCELED:
8bb78442 6449 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6450 if (!cpu_rq(cpu)->migration_thread)
6451 break;
41a2d6cf 6452 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6453 kthread_bind(cpu_rq(cpu)->migration_thread,
6454 any_online_cpu(cpu_online_map));
1da177e4
LT
6455 kthread_stop(cpu_rq(cpu)->migration_thread);
6456 cpu_rq(cpu)->migration_thread = NULL;
6457 break;
48f24c4d 6458
1da177e4 6459 case CPU_DEAD:
8bb78442 6460 case CPU_DEAD_FROZEN:
470fd646 6461 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6462 migrate_live_tasks(cpu);
6463 rq = cpu_rq(cpu);
6464 kthread_stop(rq->migration_thread);
6465 rq->migration_thread = NULL;
6466 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6467 spin_lock_irq(&rq->lock);
a8e504d2 6468 update_rq_clock(rq);
2e1cb74a 6469 deactivate_task(rq, rq->idle, 0);
1da177e4 6470 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6471 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6472 rq->idle->sched_class = &idle_sched_class;
1da177e4 6473 migrate_dead_tasks(cpu);
d2da272a 6474 spin_unlock_irq(&rq->lock);
470fd646 6475 cpuset_unlock();
1da177e4
LT
6476 migrate_nr_uninterruptible(rq);
6477 BUG_ON(rq->nr_running != 0);
6478
41a2d6cf
IM
6479 /*
6480 * No need to migrate the tasks: it was best-effort if
6481 * they didn't take sched_hotcpu_mutex. Just wake up
6482 * the requestors.
6483 */
1da177e4
LT
6484 spin_lock_irq(&rq->lock);
6485 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6486 struct migration_req *req;
6487
1da177e4 6488 req = list_entry(rq->migration_queue.next,
70b97a7f 6489 struct migration_req, list);
1da177e4
LT
6490 list_del_init(&req->list);
6491 complete(&req->done);
6492 }
6493 spin_unlock_irq(&rq->lock);
6494 break;
57d885fe 6495
08f503b0
GH
6496 case CPU_DYING:
6497 case CPU_DYING_FROZEN:
57d885fe
GH
6498 /* Update our root-domain */
6499 rq = cpu_rq(cpu);
6500 spin_lock_irqsave(&rq->lock, flags);
6501 if (rq->rd) {
6502 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6503 cpu_clear(cpu, rq->rd->online);
6504 }
6505 spin_unlock_irqrestore(&rq->lock, flags);
6506 break;
1da177e4
LT
6507#endif
6508 }
6509 return NOTIFY_OK;
6510}
6511
6512/* Register at highest priority so that task migration (migrate_all_tasks)
6513 * happens before everything else.
6514 */
26c2143b 6515static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6516 .notifier_call = migration_call,
6517 .priority = 10
6518};
6519
e6fe6649 6520void __init migration_init(void)
1da177e4
LT
6521{
6522 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6523 int err;
48f24c4d
IM
6524
6525 /* Start one for the boot CPU: */
07dccf33
AM
6526 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6527 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6528 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6529 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6530}
6531#endif
6532
6533#ifdef CONFIG_SMP
476f3534 6534
3e9830dc 6535#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6536
7c16ec58
MT
6537static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6538 cpumask_t *groupmask)
1da177e4 6539{
4dcf6aff 6540 struct sched_group *group = sd->groups;
434d53b0 6541 char str[256];
1da177e4 6542
434d53b0 6543 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6544 cpus_clear(*groupmask);
4dcf6aff
IM
6545
6546 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6547
6548 if (!(sd->flags & SD_LOAD_BALANCE)) {
6549 printk("does not load-balance\n");
6550 if (sd->parent)
6551 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6552 " has parent");
6553 return -1;
41c7ce9a
NP
6554 }
6555
4dcf6aff
IM
6556 printk(KERN_CONT "span %s\n", str);
6557
6558 if (!cpu_isset(cpu, sd->span)) {
6559 printk(KERN_ERR "ERROR: domain->span does not contain "
6560 "CPU%d\n", cpu);
6561 }
6562 if (!cpu_isset(cpu, group->cpumask)) {
6563 printk(KERN_ERR "ERROR: domain->groups does not contain"
6564 " CPU%d\n", cpu);
6565 }
1da177e4 6566
4dcf6aff 6567 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6568 do {
4dcf6aff
IM
6569 if (!group) {
6570 printk("\n");
6571 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6572 break;
6573 }
6574
4dcf6aff
IM
6575 if (!group->__cpu_power) {
6576 printk(KERN_CONT "\n");
6577 printk(KERN_ERR "ERROR: domain->cpu_power not "
6578 "set\n");
6579 break;
6580 }
1da177e4 6581
4dcf6aff
IM
6582 if (!cpus_weight(group->cpumask)) {
6583 printk(KERN_CONT "\n");
6584 printk(KERN_ERR "ERROR: empty group\n");
6585 break;
6586 }
1da177e4 6587
7c16ec58 6588 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6589 printk(KERN_CONT "\n");
6590 printk(KERN_ERR "ERROR: repeated CPUs\n");
6591 break;
6592 }
1da177e4 6593
7c16ec58 6594 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6595
434d53b0 6596 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6597 printk(KERN_CONT " %s", str);
1da177e4 6598
4dcf6aff
IM
6599 group = group->next;
6600 } while (group != sd->groups);
6601 printk(KERN_CONT "\n");
1da177e4 6602
7c16ec58 6603 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6604 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6605
7c16ec58 6606 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6607 printk(KERN_ERR "ERROR: parent span is not a superset "
6608 "of domain->span\n");
6609 return 0;
6610}
1da177e4 6611
4dcf6aff
IM
6612static void sched_domain_debug(struct sched_domain *sd, int cpu)
6613{
7c16ec58 6614 cpumask_t *groupmask;
4dcf6aff 6615 int level = 0;
1da177e4 6616
4dcf6aff
IM
6617 if (!sd) {
6618 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6619 return;
6620 }
1da177e4 6621
4dcf6aff
IM
6622 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6623
7c16ec58
MT
6624 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6625 if (!groupmask) {
6626 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6627 return;
6628 }
6629
4dcf6aff 6630 for (;;) {
7c16ec58 6631 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6632 break;
1da177e4
LT
6633 level++;
6634 sd = sd->parent;
33859f7f 6635 if (!sd)
4dcf6aff
IM
6636 break;
6637 }
7c16ec58 6638 kfree(groupmask);
1da177e4
LT
6639}
6640#else
48f24c4d 6641# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6642#endif
6643
1a20ff27 6644static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6645{
6646 if (cpus_weight(sd->span) == 1)
6647 return 1;
6648
6649 /* Following flags need at least 2 groups */
6650 if (sd->flags & (SD_LOAD_BALANCE |
6651 SD_BALANCE_NEWIDLE |
6652 SD_BALANCE_FORK |
89c4710e
SS
6653 SD_BALANCE_EXEC |
6654 SD_SHARE_CPUPOWER |
6655 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6656 if (sd->groups != sd->groups->next)
6657 return 0;
6658 }
6659
6660 /* Following flags don't use groups */
6661 if (sd->flags & (SD_WAKE_IDLE |
6662 SD_WAKE_AFFINE |
6663 SD_WAKE_BALANCE))
6664 return 0;
6665
6666 return 1;
6667}
6668
48f24c4d
IM
6669static int
6670sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6671{
6672 unsigned long cflags = sd->flags, pflags = parent->flags;
6673
6674 if (sd_degenerate(parent))
6675 return 1;
6676
6677 if (!cpus_equal(sd->span, parent->span))
6678 return 0;
6679
6680 /* Does parent contain flags not in child? */
6681 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6682 if (cflags & SD_WAKE_AFFINE)
6683 pflags &= ~SD_WAKE_BALANCE;
6684 /* Flags needing groups don't count if only 1 group in parent */
6685 if (parent->groups == parent->groups->next) {
6686 pflags &= ~(SD_LOAD_BALANCE |
6687 SD_BALANCE_NEWIDLE |
6688 SD_BALANCE_FORK |
89c4710e
SS
6689 SD_BALANCE_EXEC |
6690 SD_SHARE_CPUPOWER |
6691 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6692 }
6693 if (~cflags & pflags)
6694 return 0;
6695
6696 return 1;
6697}
6698
57d885fe
GH
6699static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6700{
6701 unsigned long flags;
6702 const struct sched_class *class;
6703
6704 spin_lock_irqsave(&rq->lock, flags);
6705
6706 if (rq->rd) {
6707 struct root_domain *old_rd = rq->rd;
6708
0eab9146 6709 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6710 if (class->leave_domain)
6711 class->leave_domain(rq);
0eab9146 6712 }
57d885fe 6713
dc938520
GH
6714 cpu_clear(rq->cpu, old_rd->span);
6715 cpu_clear(rq->cpu, old_rd->online);
6716
57d885fe
GH
6717 if (atomic_dec_and_test(&old_rd->refcount))
6718 kfree(old_rd);
6719 }
6720
6721 atomic_inc(&rd->refcount);
6722 rq->rd = rd;
6723
dc938520 6724 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6725 if (cpu_isset(rq->cpu, cpu_online_map))
6726 cpu_set(rq->cpu, rd->online);
dc938520 6727
0eab9146 6728 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6729 if (class->join_domain)
6730 class->join_domain(rq);
0eab9146 6731 }
57d885fe
GH
6732
6733 spin_unlock_irqrestore(&rq->lock, flags);
6734}
6735
dc938520 6736static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6737{
6738 memset(rd, 0, sizeof(*rd));
6739
dc938520
GH
6740 cpus_clear(rd->span);
6741 cpus_clear(rd->online);
57d885fe
GH
6742}
6743
6744static void init_defrootdomain(void)
6745{
dc938520 6746 init_rootdomain(&def_root_domain);
57d885fe
GH
6747 atomic_set(&def_root_domain.refcount, 1);
6748}
6749
dc938520 6750static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6751{
6752 struct root_domain *rd;
6753
6754 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6755 if (!rd)
6756 return NULL;
6757
dc938520 6758 init_rootdomain(rd);
57d885fe
GH
6759
6760 return rd;
6761}
6762
1da177e4 6763/*
0eab9146 6764 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6765 * hold the hotplug lock.
6766 */
0eab9146
IM
6767static void
6768cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6769{
70b97a7f 6770 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6771 struct sched_domain *tmp;
6772
6773 /* Remove the sched domains which do not contribute to scheduling. */
6774 for (tmp = sd; tmp; tmp = tmp->parent) {
6775 struct sched_domain *parent = tmp->parent;
6776 if (!parent)
6777 break;
1a848870 6778 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6779 tmp->parent = parent->parent;
1a848870
SS
6780 if (parent->parent)
6781 parent->parent->child = tmp;
6782 }
245af2c7
SS
6783 }
6784
1a848870 6785 if (sd && sd_degenerate(sd)) {
245af2c7 6786 sd = sd->parent;
1a848870
SS
6787 if (sd)
6788 sd->child = NULL;
6789 }
1da177e4
LT
6790
6791 sched_domain_debug(sd, cpu);
6792
57d885fe 6793 rq_attach_root(rq, rd);
674311d5 6794 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6795}
6796
6797/* cpus with isolated domains */
67af63a6 6798static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6799
6800/* Setup the mask of cpus configured for isolated domains */
6801static int __init isolated_cpu_setup(char *str)
6802{
6803 int ints[NR_CPUS], i;
6804
6805 str = get_options(str, ARRAY_SIZE(ints), ints);
6806 cpus_clear(cpu_isolated_map);
6807 for (i = 1; i <= ints[0]; i++)
6808 if (ints[i] < NR_CPUS)
6809 cpu_set(ints[i], cpu_isolated_map);
6810 return 1;
6811}
6812
8927f494 6813__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6814
6815/*
6711cab4
SS
6816 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6817 * to a function which identifies what group(along with sched group) a CPU
6818 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6819 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6820 *
6821 * init_sched_build_groups will build a circular linked list of the groups
6822 * covered by the given span, and will set each group's ->cpumask correctly,
6823 * and ->cpu_power to 0.
6824 */
a616058b 6825static void
7c16ec58 6826init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6827 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6828 struct sched_group **sg,
6829 cpumask_t *tmpmask),
6830 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6831{
6832 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6833 int i;
6834
7c16ec58
MT
6835 cpus_clear(*covered);
6836
6837 for_each_cpu_mask(i, *span) {
6711cab4 6838 struct sched_group *sg;
7c16ec58 6839 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6840 int j;
6841
7c16ec58 6842 if (cpu_isset(i, *covered))
1da177e4
LT
6843 continue;
6844
7c16ec58 6845 cpus_clear(sg->cpumask);
5517d86b 6846 sg->__cpu_power = 0;
1da177e4 6847
7c16ec58
MT
6848 for_each_cpu_mask(j, *span) {
6849 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6850 continue;
6851
7c16ec58 6852 cpu_set(j, *covered);
1da177e4
LT
6853 cpu_set(j, sg->cpumask);
6854 }
6855 if (!first)
6856 first = sg;
6857 if (last)
6858 last->next = sg;
6859 last = sg;
6860 }
6861 last->next = first;
6862}
6863
9c1cfda2 6864#define SD_NODES_PER_DOMAIN 16
1da177e4 6865
9c1cfda2 6866#ifdef CONFIG_NUMA
198e2f18 6867
9c1cfda2
JH
6868/**
6869 * find_next_best_node - find the next node to include in a sched_domain
6870 * @node: node whose sched_domain we're building
6871 * @used_nodes: nodes already in the sched_domain
6872 *
41a2d6cf 6873 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6874 * finds the closest node not already in the @used_nodes map.
6875 *
6876 * Should use nodemask_t.
6877 */
c5f59f08 6878static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6879{
6880 int i, n, val, min_val, best_node = 0;
6881
6882 min_val = INT_MAX;
6883
6884 for (i = 0; i < MAX_NUMNODES; i++) {
6885 /* Start at @node */
6886 n = (node + i) % MAX_NUMNODES;
6887
6888 if (!nr_cpus_node(n))
6889 continue;
6890
6891 /* Skip already used nodes */
c5f59f08 6892 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6893 continue;
6894
6895 /* Simple min distance search */
6896 val = node_distance(node, n);
6897
6898 if (val < min_val) {
6899 min_val = val;
6900 best_node = n;
6901 }
6902 }
6903
c5f59f08 6904 node_set(best_node, *used_nodes);
9c1cfda2
JH
6905 return best_node;
6906}
6907
6908/**
6909 * sched_domain_node_span - get a cpumask for a node's sched_domain
6910 * @node: node whose cpumask we're constructing
73486722 6911 * @span: resulting cpumask
9c1cfda2 6912 *
41a2d6cf 6913 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6914 * should be one that prevents unnecessary balancing, but also spreads tasks
6915 * out optimally.
6916 */
4bdbaad3 6917static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6918{
c5f59f08 6919 nodemask_t used_nodes;
c5f59f08 6920 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6921 int i;
9c1cfda2 6922
4bdbaad3 6923 cpus_clear(*span);
c5f59f08 6924 nodes_clear(used_nodes);
9c1cfda2 6925
4bdbaad3 6926 cpus_or(*span, *span, *nodemask);
c5f59f08 6927 node_set(node, used_nodes);
9c1cfda2
JH
6928
6929 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6930 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6931
c5f59f08 6932 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6933 cpus_or(*span, *span, *nodemask);
9c1cfda2 6934 }
9c1cfda2
JH
6935}
6936#endif
6937
5c45bf27 6938int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6939
9c1cfda2 6940/*
48f24c4d 6941 * SMT sched-domains:
9c1cfda2 6942 */
1da177e4
LT
6943#ifdef CONFIG_SCHED_SMT
6944static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6945static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6946
41a2d6cf 6947static int
7c16ec58
MT
6948cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6949 cpumask_t *unused)
1da177e4 6950{
6711cab4
SS
6951 if (sg)
6952 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6953 return cpu;
6954}
6955#endif
6956
48f24c4d
IM
6957/*
6958 * multi-core sched-domains:
6959 */
1e9f28fa
SS
6960#ifdef CONFIG_SCHED_MC
6961static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6962static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6963#endif
6964
6965#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6966static int
7c16ec58
MT
6967cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6968 cpumask_t *mask)
1e9f28fa 6969{
6711cab4 6970 int group;
7c16ec58
MT
6971
6972 *mask = per_cpu(cpu_sibling_map, cpu);
6973 cpus_and(*mask, *mask, *cpu_map);
6974 group = first_cpu(*mask);
6711cab4
SS
6975 if (sg)
6976 *sg = &per_cpu(sched_group_core, group);
6977 return group;
1e9f28fa
SS
6978}
6979#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6980static int
7c16ec58
MT
6981cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6982 cpumask_t *unused)
1e9f28fa 6983{
6711cab4
SS
6984 if (sg)
6985 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6986 return cpu;
6987}
6988#endif
6989
1da177e4 6990static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6991static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6992
41a2d6cf 6993static int
7c16ec58
MT
6994cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6995 cpumask_t *mask)
1da177e4 6996{
6711cab4 6997 int group;
48f24c4d 6998#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6999 *mask = cpu_coregroup_map(cpu);
7000 cpus_and(*mask, *mask, *cpu_map);
7001 group = first_cpu(*mask);
1e9f28fa 7002#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7003 *mask = per_cpu(cpu_sibling_map, cpu);
7004 cpus_and(*mask, *mask, *cpu_map);
7005 group = first_cpu(*mask);
1da177e4 7006#else
6711cab4 7007 group = cpu;
1da177e4 7008#endif
6711cab4
SS
7009 if (sg)
7010 *sg = &per_cpu(sched_group_phys, group);
7011 return group;
1da177e4
LT
7012}
7013
7014#ifdef CONFIG_NUMA
1da177e4 7015/*
9c1cfda2
JH
7016 * The init_sched_build_groups can't handle what we want to do with node
7017 * groups, so roll our own. Now each node has its own list of groups which
7018 * gets dynamically allocated.
1da177e4 7019 */
9c1cfda2 7020static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7021static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7022
9c1cfda2 7023static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7024static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7025
6711cab4 7026static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7027 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7028{
6711cab4
SS
7029 int group;
7030
7c16ec58
MT
7031 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7032 cpus_and(*nodemask, *nodemask, *cpu_map);
7033 group = first_cpu(*nodemask);
6711cab4
SS
7034
7035 if (sg)
7036 *sg = &per_cpu(sched_group_allnodes, group);
7037 return group;
1da177e4 7038}
6711cab4 7039
08069033
SS
7040static void init_numa_sched_groups_power(struct sched_group *group_head)
7041{
7042 struct sched_group *sg = group_head;
7043 int j;
7044
7045 if (!sg)
7046 return;
3a5c359a
AK
7047 do {
7048 for_each_cpu_mask(j, sg->cpumask) {
7049 struct sched_domain *sd;
08069033 7050
3a5c359a
AK
7051 sd = &per_cpu(phys_domains, j);
7052 if (j != first_cpu(sd->groups->cpumask)) {
7053 /*
7054 * Only add "power" once for each
7055 * physical package.
7056 */
7057 continue;
7058 }
08069033 7059
3a5c359a
AK
7060 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7061 }
7062 sg = sg->next;
7063 } while (sg != group_head);
08069033 7064}
1da177e4
LT
7065#endif
7066
a616058b 7067#ifdef CONFIG_NUMA
51888ca2 7068/* Free memory allocated for various sched_group structures */
7c16ec58 7069static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7070{
a616058b 7071 int cpu, i;
51888ca2
SV
7072
7073 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
7074 struct sched_group **sched_group_nodes
7075 = sched_group_nodes_bycpu[cpu];
7076
51888ca2
SV
7077 if (!sched_group_nodes)
7078 continue;
7079
7080 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
7081 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7082
7c16ec58
MT
7083 *nodemask = node_to_cpumask(i);
7084 cpus_and(*nodemask, *nodemask, *cpu_map);
7085 if (cpus_empty(*nodemask))
51888ca2
SV
7086 continue;
7087
7088 if (sg == NULL)
7089 continue;
7090 sg = sg->next;
7091next_sg:
7092 oldsg = sg;
7093 sg = sg->next;
7094 kfree(oldsg);
7095 if (oldsg != sched_group_nodes[i])
7096 goto next_sg;
7097 }
7098 kfree(sched_group_nodes);
7099 sched_group_nodes_bycpu[cpu] = NULL;
7100 }
51888ca2 7101}
a616058b 7102#else
7c16ec58 7103static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7104{
7105}
7106#endif
51888ca2 7107
89c4710e
SS
7108/*
7109 * Initialize sched groups cpu_power.
7110 *
7111 * cpu_power indicates the capacity of sched group, which is used while
7112 * distributing the load between different sched groups in a sched domain.
7113 * Typically cpu_power for all the groups in a sched domain will be same unless
7114 * there are asymmetries in the topology. If there are asymmetries, group
7115 * having more cpu_power will pickup more load compared to the group having
7116 * less cpu_power.
7117 *
7118 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7119 * the maximum number of tasks a group can handle in the presence of other idle
7120 * or lightly loaded groups in the same sched domain.
7121 */
7122static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7123{
7124 struct sched_domain *child;
7125 struct sched_group *group;
7126
7127 WARN_ON(!sd || !sd->groups);
7128
7129 if (cpu != first_cpu(sd->groups->cpumask))
7130 return;
7131
7132 child = sd->child;
7133
5517d86b
ED
7134 sd->groups->__cpu_power = 0;
7135
89c4710e
SS
7136 /*
7137 * For perf policy, if the groups in child domain share resources
7138 * (for example cores sharing some portions of the cache hierarchy
7139 * or SMT), then set this domain groups cpu_power such that each group
7140 * can handle only one task, when there are other idle groups in the
7141 * same sched domain.
7142 */
7143 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7144 (child->flags &
7145 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7146 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7147 return;
7148 }
7149
89c4710e
SS
7150 /*
7151 * add cpu_power of each child group to this groups cpu_power
7152 */
7153 group = child->groups;
7154 do {
5517d86b 7155 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7156 group = group->next;
7157 } while (group != child->groups);
7158}
7159
7c16ec58
MT
7160/*
7161 * Initializers for schedule domains
7162 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7163 */
7164
7165#define SD_INIT(sd, type) sd_init_##type(sd)
7166#define SD_INIT_FUNC(type) \
7167static noinline void sd_init_##type(struct sched_domain *sd) \
7168{ \
7169 memset(sd, 0, sizeof(*sd)); \
7170 *sd = SD_##type##_INIT; \
1d3504fc 7171 sd->level = SD_LV_##type; \
7c16ec58
MT
7172}
7173
7174SD_INIT_FUNC(CPU)
7175#ifdef CONFIG_NUMA
7176 SD_INIT_FUNC(ALLNODES)
7177 SD_INIT_FUNC(NODE)
7178#endif
7179#ifdef CONFIG_SCHED_SMT
7180 SD_INIT_FUNC(SIBLING)
7181#endif
7182#ifdef CONFIG_SCHED_MC
7183 SD_INIT_FUNC(MC)
7184#endif
7185
7186/*
7187 * To minimize stack usage kmalloc room for cpumasks and share the
7188 * space as the usage in build_sched_domains() dictates. Used only
7189 * if the amount of space is significant.
7190 */
7191struct allmasks {
7192 cpumask_t tmpmask; /* make this one first */
7193 union {
7194 cpumask_t nodemask;
7195 cpumask_t this_sibling_map;
7196 cpumask_t this_core_map;
7197 };
7198 cpumask_t send_covered;
7199
7200#ifdef CONFIG_NUMA
7201 cpumask_t domainspan;
7202 cpumask_t covered;
7203 cpumask_t notcovered;
7204#endif
7205};
7206
7207#if NR_CPUS > 128
7208#define SCHED_CPUMASK_ALLOC 1
7209#define SCHED_CPUMASK_FREE(v) kfree(v)
7210#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7211#else
7212#define SCHED_CPUMASK_ALLOC 0
7213#define SCHED_CPUMASK_FREE(v)
7214#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7215#endif
7216
7217#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7218 ((unsigned long)(a) + offsetof(struct allmasks, v))
7219
1d3504fc
HS
7220static int default_relax_domain_level = -1;
7221
7222static int __init setup_relax_domain_level(char *str)
7223{
7224 default_relax_domain_level = simple_strtoul(str, NULL, 0);
7225 return 1;
7226}
7227__setup("relax_domain_level=", setup_relax_domain_level);
7228
7229static void set_domain_attribute(struct sched_domain *sd,
7230 struct sched_domain_attr *attr)
7231{
7232 int request;
7233
7234 if (!attr || attr->relax_domain_level < 0) {
7235 if (default_relax_domain_level < 0)
7236 return;
7237 else
7238 request = default_relax_domain_level;
7239 } else
7240 request = attr->relax_domain_level;
7241 if (request < sd->level) {
7242 /* turn off idle balance on this domain */
7243 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7244 } else {
7245 /* turn on idle balance on this domain */
7246 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7247 }
7248}
7249
1da177e4 7250/*
1a20ff27
DG
7251 * Build sched domains for a given set of cpus and attach the sched domains
7252 * to the individual cpus
1da177e4 7253 */
1d3504fc
HS
7254static int __build_sched_domains(const cpumask_t *cpu_map,
7255 struct sched_domain_attr *attr)
1da177e4
LT
7256{
7257 int i;
57d885fe 7258 struct root_domain *rd;
7c16ec58
MT
7259 SCHED_CPUMASK_DECLARE(allmasks);
7260 cpumask_t *tmpmask;
d1b55138
JH
7261#ifdef CONFIG_NUMA
7262 struct sched_group **sched_group_nodes = NULL;
6711cab4 7263 int sd_allnodes = 0;
d1b55138
JH
7264
7265 /*
7266 * Allocate the per-node list of sched groups
7267 */
5cf9f062 7268 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 7269 GFP_KERNEL);
d1b55138
JH
7270 if (!sched_group_nodes) {
7271 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7272 return -ENOMEM;
d1b55138 7273 }
d1b55138 7274#endif
1da177e4 7275
dc938520 7276 rd = alloc_rootdomain();
57d885fe
GH
7277 if (!rd) {
7278 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7279#ifdef CONFIG_NUMA
7280 kfree(sched_group_nodes);
7281#endif
57d885fe
GH
7282 return -ENOMEM;
7283 }
7284
7c16ec58
MT
7285#if SCHED_CPUMASK_ALLOC
7286 /* get space for all scratch cpumask variables */
7287 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7288 if (!allmasks) {
7289 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7290 kfree(rd);
7291#ifdef CONFIG_NUMA
7292 kfree(sched_group_nodes);
7293#endif
7294 return -ENOMEM;
7295 }
7296#endif
7297 tmpmask = (cpumask_t *)allmasks;
7298
7299
7300#ifdef CONFIG_NUMA
7301 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7302#endif
7303
1da177e4 7304 /*
1a20ff27 7305 * Set up domains for cpus specified by the cpu_map.
1da177e4 7306 */
1a20ff27 7307 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7308 struct sched_domain *sd = NULL, *p;
7c16ec58 7309 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7310
7c16ec58
MT
7311 *nodemask = node_to_cpumask(cpu_to_node(i));
7312 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7313
7314#ifdef CONFIG_NUMA
dd41f596 7315 if (cpus_weight(*cpu_map) >
7c16ec58 7316 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7317 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7318 SD_INIT(sd, ALLNODES);
1d3504fc 7319 set_domain_attribute(sd, attr);
9c1cfda2 7320 sd->span = *cpu_map;
18d95a28 7321 sd->first_cpu = first_cpu(sd->span);
7c16ec58 7322 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7323 p = sd;
6711cab4 7324 sd_allnodes = 1;
9c1cfda2
JH
7325 } else
7326 p = NULL;
7327
1da177e4 7328 sd = &per_cpu(node_domains, i);
7c16ec58 7329 SD_INIT(sd, NODE);
1d3504fc 7330 set_domain_attribute(sd, attr);
4bdbaad3 7331 sched_domain_node_span(cpu_to_node(i), &sd->span);
18d95a28 7332 sd->first_cpu = first_cpu(sd->span);
9c1cfda2 7333 sd->parent = p;
1a848870
SS
7334 if (p)
7335 p->child = sd;
9c1cfda2 7336 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7337#endif
7338
7339 p = sd;
7340 sd = &per_cpu(phys_domains, i);
7c16ec58 7341 SD_INIT(sd, CPU);
1d3504fc 7342 set_domain_attribute(sd, attr);
7c16ec58 7343 sd->span = *nodemask;
18d95a28 7344 sd->first_cpu = first_cpu(sd->span);
1da177e4 7345 sd->parent = p;
1a848870
SS
7346 if (p)
7347 p->child = sd;
7c16ec58 7348 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7349
1e9f28fa
SS
7350#ifdef CONFIG_SCHED_MC
7351 p = sd;
7352 sd = &per_cpu(core_domains, i);
7c16ec58 7353 SD_INIT(sd, MC);
1d3504fc 7354 set_domain_attribute(sd, attr);
1e9f28fa 7355 sd->span = cpu_coregroup_map(i);
18d95a28 7356 sd->first_cpu = first_cpu(sd->span);
1e9f28fa
SS
7357 cpus_and(sd->span, sd->span, *cpu_map);
7358 sd->parent = p;
1a848870 7359 p->child = sd;
7c16ec58 7360 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7361#endif
7362
1da177e4
LT
7363#ifdef CONFIG_SCHED_SMT
7364 p = sd;
7365 sd = &per_cpu(cpu_domains, i);
7c16ec58 7366 SD_INIT(sd, SIBLING);
1d3504fc 7367 set_domain_attribute(sd, attr);
d5a7430d 7368 sd->span = per_cpu(cpu_sibling_map, i);
18d95a28 7369 sd->first_cpu = first_cpu(sd->span);
1a20ff27 7370 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7371 sd->parent = p;
1a848870 7372 p->child = sd;
7c16ec58 7373 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7374#endif
7375 }
7376
7377#ifdef CONFIG_SCHED_SMT
7378 /* Set up CPU (sibling) groups */
9c1cfda2 7379 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7380 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7381 SCHED_CPUMASK_VAR(send_covered, allmasks);
7382
7383 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7384 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7385 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7386 continue;
7387
dd41f596 7388 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7389 &cpu_to_cpu_group,
7390 send_covered, tmpmask);
1da177e4
LT
7391 }
7392#endif
7393
1e9f28fa
SS
7394#ifdef CONFIG_SCHED_MC
7395 /* Set up multi-core groups */
7396 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7397 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7398 SCHED_CPUMASK_VAR(send_covered, allmasks);
7399
7400 *this_core_map = cpu_coregroup_map(i);
7401 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7402 if (i != first_cpu(*this_core_map))
1e9f28fa 7403 continue;
7c16ec58 7404
dd41f596 7405 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7406 &cpu_to_core_group,
7407 send_covered, tmpmask);
1e9f28fa
SS
7408 }
7409#endif
7410
1da177e4
LT
7411 /* Set up physical groups */
7412 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7413 SCHED_CPUMASK_VAR(nodemask, allmasks);
7414 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7415
7c16ec58
MT
7416 *nodemask = node_to_cpumask(i);
7417 cpus_and(*nodemask, *nodemask, *cpu_map);
7418 if (cpus_empty(*nodemask))
1da177e4
LT
7419 continue;
7420
7c16ec58
MT
7421 init_sched_build_groups(nodemask, cpu_map,
7422 &cpu_to_phys_group,
7423 send_covered, tmpmask);
1da177e4
LT
7424 }
7425
7426#ifdef CONFIG_NUMA
7427 /* Set up node groups */
7c16ec58
MT
7428 if (sd_allnodes) {
7429 SCHED_CPUMASK_VAR(send_covered, allmasks);
7430
7431 init_sched_build_groups(cpu_map, cpu_map,
7432 &cpu_to_allnodes_group,
7433 send_covered, tmpmask);
7434 }
9c1cfda2
JH
7435
7436 for (i = 0; i < MAX_NUMNODES; i++) {
7437 /* Set up node groups */
7438 struct sched_group *sg, *prev;
7c16ec58
MT
7439 SCHED_CPUMASK_VAR(nodemask, allmasks);
7440 SCHED_CPUMASK_VAR(domainspan, allmasks);
7441 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7442 int j;
7443
7c16ec58
MT
7444 *nodemask = node_to_cpumask(i);
7445 cpus_clear(*covered);
7446
7447 cpus_and(*nodemask, *nodemask, *cpu_map);
7448 if (cpus_empty(*nodemask)) {
d1b55138 7449 sched_group_nodes[i] = NULL;
9c1cfda2 7450 continue;
d1b55138 7451 }
9c1cfda2 7452
4bdbaad3 7453 sched_domain_node_span(i, domainspan);
7c16ec58 7454 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7455
15f0b676 7456 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7457 if (!sg) {
7458 printk(KERN_WARNING "Can not alloc domain group for "
7459 "node %d\n", i);
7460 goto error;
7461 }
9c1cfda2 7462 sched_group_nodes[i] = sg;
7c16ec58 7463 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7464 struct sched_domain *sd;
9761eea8 7465
9c1cfda2
JH
7466 sd = &per_cpu(node_domains, j);
7467 sd->groups = sg;
9c1cfda2 7468 }
5517d86b 7469 sg->__cpu_power = 0;
7c16ec58 7470 sg->cpumask = *nodemask;
51888ca2 7471 sg->next = sg;
7c16ec58 7472 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7473 prev = sg;
7474
7475 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7476 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7477 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7478 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7479
7c16ec58
MT
7480 cpus_complement(*notcovered, *covered);
7481 cpus_and(*tmpmask, *notcovered, *cpu_map);
7482 cpus_and(*tmpmask, *tmpmask, *domainspan);
7483 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7484 break;
7485
7c16ec58
MT
7486 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7487 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7488 continue;
7489
15f0b676
SV
7490 sg = kmalloc_node(sizeof(struct sched_group),
7491 GFP_KERNEL, i);
9c1cfda2
JH
7492 if (!sg) {
7493 printk(KERN_WARNING
7494 "Can not alloc domain group for node %d\n", j);
51888ca2 7495 goto error;
9c1cfda2 7496 }
5517d86b 7497 sg->__cpu_power = 0;
7c16ec58 7498 sg->cpumask = *tmpmask;
51888ca2 7499 sg->next = prev->next;
7c16ec58 7500 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7501 prev->next = sg;
7502 prev = sg;
7503 }
9c1cfda2 7504 }
1da177e4
LT
7505#endif
7506
7507 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7508#ifdef CONFIG_SCHED_SMT
1a20ff27 7509 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7510 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7511
89c4710e 7512 init_sched_groups_power(i, sd);
5c45bf27 7513 }
1da177e4 7514#endif
1e9f28fa 7515#ifdef CONFIG_SCHED_MC
5c45bf27 7516 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7517 struct sched_domain *sd = &per_cpu(core_domains, i);
7518
89c4710e 7519 init_sched_groups_power(i, sd);
5c45bf27
SS
7520 }
7521#endif
1e9f28fa 7522
5c45bf27 7523 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7524 struct sched_domain *sd = &per_cpu(phys_domains, i);
7525
89c4710e 7526 init_sched_groups_power(i, sd);
1da177e4
LT
7527 }
7528
9c1cfda2 7529#ifdef CONFIG_NUMA
08069033
SS
7530 for (i = 0; i < MAX_NUMNODES; i++)
7531 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7532
6711cab4
SS
7533 if (sd_allnodes) {
7534 struct sched_group *sg;
f712c0c7 7535
7c16ec58
MT
7536 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7537 tmpmask);
f712c0c7
SS
7538 init_numa_sched_groups_power(sg);
7539 }
9c1cfda2
JH
7540#endif
7541
1da177e4 7542 /* Attach the domains */
1a20ff27 7543 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7544 struct sched_domain *sd;
7545#ifdef CONFIG_SCHED_SMT
7546 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7547#elif defined(CONFIG_SCHED_MC)
7548 sd = &per_cpu(core_domains, i);
1da177e4
LT
7549#else
7550 sd = &per_cpu(phys_domains, i);
7551#endif
57d885fe 7552 cpu_attach_domain(sd, rd, i);
1da177e4 7553 }
51888ca2 7554
7c16ec58 7555 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7556 return 0;
7557
a616058b 7558#ifdef CONFIG_NUMA
51888ca2 7559error:
7c16ec58
MT
7560 free_sched_groups(cpu_map, tmpmask);
7561 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7562 return -ENOMEM;
a616058b 7563#endif
1da177e4 7564}
029190c5 7565
1d3504fc
HS
7566static int build_sched_domains(const cpumask_t *cpu_map)
7567{
7568 return __build_sched_domains(cpu_map, NULL);
7569}
7570
029190c5
PJ
7571static cpumask_t *doms_cur; /* current sched domains */
7572static int ndoms_cur; /* number of sched domains in 'doms_cur' */
1d3504fc
HS
7573static struct sched_domain_attr *dattr_cur; /* attribues of custom domains
7574 in 'doms_cur' */
029190c5
PJ
7575
7576/*
7577 * Special case: If a kmalloc of a doms_cur partition (array of
7578 * cpumask_t) fails, then fallback to a single sched domain,
7579 * as determined by the single cpumask_t fallback_doms.
7580 */
7581static cpumask_t fallback_doms;
7582
22e52b07
HC
7583void __attribute__((weak)) arch_update_cpu_topology(void)
7584{
7585}
7586
1a20ff27 7587/*
41a2d6cf 7588 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7589 * For now this just excludes isolated cpus, but could be used to
7590 * exclude other special cases in the future.
1a20ff27 7591 */
51888ca2 7592static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7593{
7378547f
MM
7594 int err;
7595
22e52b07 7596 arch_update_cpu_topology();
029190c5
PJ
7597 ndoms_cur = 1;
7598 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7599 if (!doms_cur)
7600 doms_cur = &fallback_doms;
7601 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7602 dattr_cur = NULL;
7378547f 7603 err = build_sched_domains(doms_cur);
6382bc90 7604 register_sched_domain_sysctl();
7378547f
MM
7605
7606 return err;
1a20ff27
DG
7607}
7608
7c16ec58
MT
7609static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7610 cpumask_t *tmpmask)
1da177e4 7611{
7c16ec58 7612 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7613}
1da177e4 7614
1a20ff27
DG
7615/*
7616 * Detach sched domains from a group of cpus specified in cpu_map
7617 * These cpus will now be attached to the NULL domain
7618 */
858119e1 7619static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7620{
7c16ec58 7621 cpumask_t tmpmask;
1a20ff27
DG
7622 int i;
7623
6382bc90
MM
7624 unregister_sched_domain_sysctl();
7625
1a20ff27 7626 for_each_cpu_mask(i, *cpu_map)
57d885fe 7627 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7628 synchronize_sched();
7c16ec58 7629 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7630}
7631
1d3504fc
HS
7632/* handle null as "default" */
7633static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7634 struct sched_domain_attr *new, int idx_new)
7635{
7636 struct sched_domain_attr tmp;
7637
7638 /* fast path */
7639 if (!new && !cur)
7640 return 1;
7641
7642 tmp = SD_ATTR_INIT;
7643 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7644 new ? (new + idx_new) : &tmp,
7645 sizeof(struct sched_domain_attr));
7646}
7647
029190c5
PJ
7648/*
7649 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7650 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7651 * doms_new[] to the current sched domain partitioning, doms_cur[].
7652 * It destroys each deleted domain and builds each new domain.
7653 *
7654 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7655 * The masks don't intersect (don't overlap.) We should setup one
7656 * sched domain for each mask. CPUs not in any of the cpumasks will
7657 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7658 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7659 * it as it is.
7660 *
41a2d6cf
IM
7661 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7662 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7663 * failed the kmalloc call, then it can pass in doms_new == NULL,
7664 * and partition_sched_domains() will fallback to the single partition
7665 * 'fallback_doms'.
7666 *
7667 * Call with hotplug lock held
7668 */
1d3504fc
HS
7669void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7670 struct sched_domain_attr *dattr_new)
029190c5
PJ
7671{
7672 int i, j;
7673
712555ee 7674 mutex_lock(&sched_domains_mutex);
a1835615 7675
7378547f
MM
7676 /* always unregister in case we don't destroy any domains */
7677 unregister_sched_domain_sysctl();
7678
029190c5
PJ
7679 if (doms_new == NULL) {
7680 ndoms_new = 1;
7681 doms_new = &fallback_doms;
7682 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7683 dattr_new = NULL;
029190c5
PJ
7684 }
7685
7686 /* Destroy deleted domains */
7687 for (i = 0; i < ndoms_cur; i++) {
7688 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7689 if (cpus_equal(doms_cur[i], doms_new[j])
7690 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7691 goto match1;
7692 }
7693 /* no match - a current sched domain not in new doms_new[] */
7694 detach_destroy_domains(doms_cur + i);
7695match1:
7696 ;
7697 }
7698
7699 /* Build new domains */
7700 for (i = 0; i < ndoms_new; i++) {
7701 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7702 if (cpus_equal(doms_new[i], doms_cur[j])
7703 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7704 goto match2;
7705 }
7706 /* no match - add a new doms_new */
1d3504fc
HS
7707 __build_sched_domains(doms_new + i,
7708 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7709match2:
7710 ;
7711 }
7712
7713 /* Remember the new sched domains */
7714 if (doms_cur != &fallback_doms)
7715 kfree(doms_cur);
1d3504fc 7716 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7717 doms_cur = doms_new;
1d3504fc 7718 dattr_cur = dattr_new;
029190c5 7719 ndoms_cur = ndoms_new;
7378547f
MM
7720
7721 register_sched_domain_sysctl();
a1835615 7722
712555ee 7723 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7724}
7725
5c45bf27 7726#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7727int arch_reinit_sched_domains(void)
5c45bf27
SS
7728{
7729 int err;
7730
95402b38 7731 get_online_cpus();
712555ee 7732 mutex_lock(&sched_domains_mutex);
5c45bf27
SS
7733 detach_destroy_domains(&cpu_online_map);
7734 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7735 mutex_unlock(&sched_domains_mutex);
95402b38 7736 put_online_cpus();
5c45bf27
SS
7737
7738 return err;
7739}
7740
7741static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7742{
7743 int ret;
7744
7745 if (buf[0] != '0' && buf[0] != '1')
7746 return -EINVAL;
7747
7748 if (smt)
7749 sched_smt_power_savings = (buf[0] == '1');
7750 else
7751 sched_mc_power_savings = (buf[0] == '1');
7752
7753 ret = arch_reinit_sched_domains();
7754
7755 return ret ? ret : count;
7756}
7757
5c45bf27
SS
7758#ifdef CONFIG_SCHED_MC
7759static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7760{
7761 return sprintf(page, "%u\n", sched_mc_power_savings);
7762}
48f24c4d
IM
7763static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7764 const char *buf, size_t count)
5c45bf27
SS
7765{
7766 return sched_power_savings_store(buf, count, 0);
7767}
6707de00
AB
7768static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7769 sched_mc_power_savings_store);
5c45bf27
SS
7770#endif
7771
7772#ifdef CONFIG_SCHED_SMT
7773static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7774{
7775 return sprintf(page, "%u\n", sched_smt_power_savings);
7776}
48f24c4d
IM
7777static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7778 const char *buf, size_t count)
5c45bf27
SS
7779{
7780 return sched_power_savings_store(buf, count, 1);
7781}
6707de00
AB
7782static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7783 sched_smt_power_savings_store);
7784#endif
7785
7786int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7787{
7788 int err = 0;
7789
7790#ifdef CONFIG_SCHED_SMT
7791 if (smt_capable())
7792 err = sysfs_create_file(&cls->kset.kobj,
7793 &attr_sched_smt_power_savings.attr);
7794#endif
7795#ifdef CONFIG_SCHED_MC
7796 if (!err && mc_capable())
7797 err = sysfs_create_file(&cls->kset.kobj,
7798 &attr_sched_mc_power_savings.attr);
7799#endif
7800 return err;
7801}
5c45bf27
SS
7802#endif
7803
1da177e4 7804/*
41a2d6cf 7805 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7806 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7807 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7808 * which will prevent rebalancing while the sched domains are recalculated.
7809 */
7810static int update_sched_domains(struct notifier_block *nfb,
7811 unsigned long action, void *hcpu)
7812{
1da177e4
LT
7813 switch (action) {
7814 case CPU_UP_PREPARE:
8bb78442 7815 case CPU_UP_PREPARE_FROZEN:
1da177e4 7816 case CPU_DOWN_PREPARE:
8bb78442 7817 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7818 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7819 return NOTIFY_OK;
7820
7821 case CPU_UP_CANCELED:
8bb78442 7822 case CPU_UP_CANCELED_FROZEN:
1da177e4 7823 case CPU_DOWN_FAILED:
8bb78442 7824 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7825 case CPU_ONLINE:
8bb78442 7826 case CPU_ONLINE_FROZEN:
1da177e4 7827 case CPU_DEAD:
8bb78442 7828 case CPU_DEAD_FROZEN:
1da177e4
LT
7829 /*
7830 * Fall through and re-initialise the domains.
7831 */
7832 break;
7833 default:
7834 return NOTIFY_DONE;
7835 }
7836
7837 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7838 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7839
7840 return NOTIFY_OK;
7841}
1da177e4
LT
7842
7843void __init sched_init_smp(void)
7844{
5c1e1767
NP
7845 cpumask_t non_isolated_cpus;
7846
434d53b0
MT
7847#if defined(CONFIG_NUMA)
7848 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7849 GFP_KERNEL);
7850 BUG_ON(sched_group_nodes_bycpu == NULL);
7851#endif
95402b38 7852 get_online_cpus();
712555ee 7853 mutex_lock(&sched_domains_mutex);
1a20ff27 7854 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7855 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7856 if (cpus_empty(non_isolated_cpus))
7857 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7858 mutex_unlock(&sched_domains_mutex);
95402b38 7859 put_online_cpus();
1da177e4
LT
7860 /* XXX: Theoretical race here - CPU may be hotplugged now */
7861 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7862 init_hrtick();
5c1e1767
NP
7863
7864 /* Move init over to a non-isolated CPU */
7c16ec58 7865 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7866 BUG();
19978ca6 7867 sched_init_granularity();
1da177e4
LT
7868}
7869#else
7870void __init sched_init_smp(void)
7871{
19978ca6 7872 sched_init_granularity();
1da177e4
LT
7873}
7874#endif /* CONFIG_SMP */
7875
7876int in_sched_functions(unsigned long addr)
7877{
1da177e4
LT
7878 return in_lock_functions(addr) ||
7879 (addr >= (unsigned long)__sched_text_start
7880 && addr < (unsigned long)__sched_text_end);
7881}
7882
a9957449 7883static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7884{
7885 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7886 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7887#ifdef CONFIG_FAIR_GROUP_SCHED
7888 cfs_rq->rq = rq;
7889#endif
67e9fb2a 7890 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7891}
7892
fa85ae24
PZ
7893static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7894{
7895 struct rt_prio_array *array;
7896 int i;
7897
7898 array = &rt_rq->active;
7899 for (i = 0; i < MAX_RT_PRIO; i++) {
7900 INIT_LIST_HEAD(array->queue + i);
7901 __clear_bit(i, array->bitmap);
7902 }
7903 /* delimiter for bitsearch: */
7904 __set_bit(MAX_RT_PRIO, array->bitmap);
7905
052f1dc7 7906#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7907 rt_rq->highest_prio = MAX_RT_PRIO;
7908#endif
fa85ae24
PZ
7909#ifdef CONFIG_SMP
7910 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7911 rt_rq->overloaded = 0;
7912#endif
7913
7914 rt_rq->rt_time = 0;
7915 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7916 rt_rq->rt_runtime = 0;
7917 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7918
052f1dc7 7919#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7920 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7921 rt_rq->rq = rq;
7922#endif
fa85ae24
PZ
7923}
7924
6f505b16 7925#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7926static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7927 struct sched_entity *se, int cpu, int add,
7928 struct sched_entity *parent)
6f505b16 7929{
ec7dc8ac 7930 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7931 tg->cfs_rq[cpu] = cfs_rq;
7932 init_cfs_rq(cfs_rq, rq);
7933 cfs_rq->tg = tg;
7934 if (add)
7935 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7936
7937 tg->se[cpu] = se;
354d60c2
DG
7938 /* se could be NULL for init_task_group */
7939 if (!se)
7940 return;
7941
ec7dc8ac
DG
7942 if (!parent)
7943 se->cfs_rq = &rq->cfs;
7944 else
7945 se->cfs_rq = parent->my_q;
7946
6f505b16
PZ
7947 se->my_q = cfs_rq;
7948 se->load.weight = tg->shares;
e05510d0 7949 se->load.inv_weight = 0;
ec7dc8ac 7950 se->parent = parent;
6f505b16 7951}
052f1dc7 7952#endif
6f505b16 7953
052f1dc7 7954#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7955static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7956 struct sched_rt_entity *rt_se, int cpu, int add,
7957 struct sched_rt_entity *parent)
6f505b16 7958{
ec7dc8ac
DG
7959 struct rq *rq = cpu_rq(cpu);
7960
6f505b16
PZ
7961 tg->rt_rq[cpu] = rt_rq;
7962 init_rt_rq(rt_rq, rq);
7963 rt_rq->tg = tg;
7964 rt_rq->rt_se = rt_se;
ac086bc2 7965 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7966 if (add)
7967 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7968
7969 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7970 if (!rt_se)
7971 return;
7972
ec7dc8ac
DG
7973 if (!parent)
7974 rt_se->rt_rq = &rq->rt;
7975 else
7976 rt_se->rt_rq = parent->my_q;
7977
6f505b16
PZ
7978 rt_se->rt_rq = &rq->rt;
7979 rt_se->my_q = rt_rq;
ec7dc8ac 7980 rt_se->parent = parent;
6f505b16
PZ
7981 INIT_LIST_HEAD(&rt_se->run_list);
7982}
7983#endif
7984
1da177e4
LT
7985void __init sched_init(void)
7986{
dd41f596 7987 int i, j;
434d53b0
MT
7988 unsigned long alloc_size = 0, ptr;
7989
7990#ifdef CONFIG_FAIR_GROUP_SCHED
7991 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7992#endif
7993#ifdef CONFIG_RT_GROUP_SCHED
7994 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7995#endif
7996#ifdef CONFIG_USER_SCHED
7997 alloc_size *= 2;
434d53b0
MT
7998#endif
7999 /*
8000 * As sched_init() is called before page_alloc is setup,
8001 * we use alloc_bootmem().
8002 */
8003 if (alloc_size) {
5a9d3225 8004 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8005
8006#ifdef CONFIG_FAIR_GROUP_SCHED
8007 init_task_group.se = (struct sched_entity **)ptr;
8008 ptr += nr_cpu_ids * sizeof(void **);
8009
8010 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8011 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8012
8013#ifdef CONFIG_USER_SCHED
8014 root_task_group.se = (struct sched_entity **)ptr;
8015 ptr += nr_cpu_ids * sizeof(void **);
8016
8017 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8018 ptr += nr_cpu_ids * sizeof(void **);
8019#endif
434d53b0
MT
8020#endif
8021#ifdef CONFIG_RT_GROUP_SCHED
8022 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8023 ptr += nr_cpu_ids * sizeof(void **);
8024
8025 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8026 ptr += nr_cpu_ids * sizeof(void **);
8027
8028#ifdef CONFIG_USER_SCHED
8029 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8030 ptr += nr_cpu_ids * sizeof(void **);
8031
8032 root_task_group.rt_rq = (struct rt_rq **)ptr;
8033 ptr += nr_cpu_ids * sizeof(void **);
8034#endif
434d53b0
MT
8035#endif
8036 }
dd41f596 8037
57d885fe 8038#ifdef CONFIG_SMP
18d95a28 8039 init_aggregate();
57d885fe
GH
8040 init_defrootdomain();
8041#endif
8042
d0b27fa7
PZ
8043 init_rt_bandwidth(&def_rt_bandwidth,
8044 global_rt_period(), global_rt_runtime());
8045
8046#ifdef CONFIG_RT_GROUP_SCHED
8047 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8048 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8049#ifdef CONFIG_USER_SCHED
8050 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8051 global_rt_period(), RUNTIME_INF);
8052#endif
d0b27fa7
PZ
8053#endif
8054
052f1dc7 8055#ifdef CONFIG_GROUP_SCHED
6f505b16 8056 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8057 INIT_LIST_HEAD(&init_task_group.children);
8058
8059#ifdef CONFIG_USER_SCHED
8060 INIT_LIST_HEAD(&root_task_group.children);
8061 init_task_group.parent = &root_task_group;
8062 list_add(&init_task_group.siblings, &root_task_group.children);
8063#endif
6f505b16
PZ
8064#endif
8065
0a945022 8066 for_each_possible_cpu(i) {
70b97a7f 8067 struct rq *rq;
1da177e4
LT
8068
8069 rq = cpu_rq(i);
8070 spin_lock_init(&rq->lock);
fcb99371 8071 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 8072 rq->nr_running = 0;
dd41f596 8073 init_cfs_rq(&rq->cfs, rq);
6f505b16 8074 init_rt_rq(&rq->rt, rq);
dd41f596 8075#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8076 init_task_group.shares = init_task_group_load;
6f505b16 8077 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8078#ifdef CONFIG_CGROUP_SCHED
8079 /*
8080 * How much cpu bandwidth does init_task_group get?
8081 *
8082 * In case of task-groups formed thr' the cgroup filesystem, it
8083 * gets 100% of the cpu resources in the system. This overall
8084 * system cpu resource is divided among the tasks of
8085 * init_task_group and its child task-groups in a fair manner,
8086 * based on each entity's (task or task-group's) weight
8087 * (se->load.weight).
8088 *
8089 * In other words, if init_task_group has 10 tasks of weight
8090 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8091 * then A0's share of the cpu resource is:
8092 *
8093 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8094 *
8095 * We achieve this by letting init_task_group's tasks sit
8096 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8097 */
ec7dc8ac 8098 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8099#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8100 root_task_group.shares = NICE_0_LOAD;
8101 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8102 /*
8103 * In case of task-groups formed thr' the user id of tasks,
8104 * init_task_group represents tasks belonging to root user.
8105 * Hence it forms a sibling of all subsequent groups formed.
8106 * In this case, init_task_group gets only a fraction of overall
8107 * system cpu resource, based on the weight assigned to root
8108 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8109 * by letting tasks of init_task_group sit in a separate cfs_rq
8110 * (init_cfs_rq) and having one entity represent this group of
8111 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8112 */
ec7dc8ac 8113 init_tg_cfs_entry(&init_task_group,
6f505b16 8114 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8115 &per_cpu(init_sched_entity, i), i, 1,
8116 root_task_group.se[i]);
6f505b16 8117
052f1dc7 8118#endif
354d60c2
DG
8119#endif /* CONFIG_FAIR_GROUP_SCHED */
8120
8121 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8122#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8123 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8124#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8125 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8126#elif defined CONFIG_USER_SCHED
eff766a6 8127 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8128 init_tg_rt_entry(&init_task_group,
6f505b16 8129 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8130 &per_cpu(init_sched_rt_entity, i), i, 1,
8131 root_task_group.rt_se[i]);
354d60c2 8132#endif
dd41f596 8133#endif
1da177e4 8134
dd41f596
IM
8135 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8136 rq->cpu_load[j] = 0;
1da177e4 8137#ifdef CONFIG_SMP
41c7ce9a 8138 rq->sd = NULL;
57d885fe 8139 rq->rd = NULL;
1da177e4 8140 rq->active_balance = 0;
dd41f596 8141 rq->next_balance = jiffies;
1da177e4 8142 rq->push_cpu = 0;
0a2966b4 8143 rq->cpu = i;
1da177e4
LT
8144 rq->migration_thread = NULL;
8145 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8146 rq_attach_root(rq, &def_root_domain);
1da177e4 8147#endif
8f4d37ec 8148 init_rq_hrtick(rq);
1da177e4 8149 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8150 }
8151
2dd73a4f 8152 set_load_weight(&init_task);
b50f60ce 8153
e107be36
AK
8154#ifdef CONFIG_PREEMPT_NOTIFIERS
8155 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8156#endif
8157
c9819f45
CL
8158#ifdef CONFIG_SMP
8159 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8160#endif
8161
b50f60ce
HC
8162#ifdef CONFIG_RT_MUTEXES
8163 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8164#endif
8165
1da177e4
LT
8166 /*
8167 * The boot idle thread does lazy MMU switching as well:
8168 */
8169 atomic_inc(&init_mm.mm_count);
8170 enter_lazy_tlb(&init_mm, current);
8171
8172 /*
8173 * Make us the idle thread. Technically, schedule() should not be
8174 * called from this thread, however somewhere below it might be,
8175 * but because we are the idle thread, we just pick up running again
8176 * when this runqueue becomes "idle".
8177 */
8178 init_idle(current, smp_processor_id());
dd41f596
IM
8179 /*
8180 * During early bootup we pretend to be a normal task:
8181 */
8182 current->sched_class = &fair_sched_class;
6892b75e
IM
8183
8184 scheduler_running = 1;
1da177e4
LT
8185}
8186
8187#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8188void __might_sleep(char *file, int line)
8189{
48f24c4d 8190#ifdef in_atomic
1da177e4
LT
8191 static unsigned long prev_jiffy; /* ratelimiting */
8192
8193 if ((in_atomic() || irqs_disabled()) &&
8194 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8195 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8196 return;
8197 prev_jiffy = jiffies;
91368d73 8198 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8199 " context at %s:%d\n", file, line);
8200 printk("in_atomic():%d, irqs_disabled():%d\n",
8201 in_atomic(), irqs_disabled());
a4c410f0 8202 debug_show_held_locks(current);
3117df04
IM
8203 if (irqs_disabled())
8204 print_irqtrace_events(current);
1da177e4
LT
8205 dump_stack();
8206 }
8207#endif
8208}
8209EXPORT_SYMBOL(__might_sleep);
8210#endif
8211
8212#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8213static void normalize_task(struct rq *rq, struct task_struct *p)
8214{
8215 int on_rq;
3e51f33f 8216
3a5e4dc1
AK
8217 update_rq_clock(rq);
8218 on_rq = p->se.on_rq;
8219 if (on_rq)
8220 deactivate_task(rq, p, 0);
8221 __setscheduler(rq, p, SCHED_NORMAL, 0);
8222 if (on_rq) {
8223 activate_task(rq, p, 0);
8224 resched_task(rq->curr);
8225 }
8226}
8227
1da177e4
LT
8228void normalize_rt_tasks(void)
8229{
a0f98a1c 8230 struct task_struct *g, *p;
1da177e4 8231 unsigned long flags;
70b97a7f 8232 struct rq *rq;
1da177e4 8233
4cf5d77a 8234 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8235 do_each_thread(g, p) {
178be793
IM
8236 /*
8237 * Only normalize user tasks:
8238 */
8239 if (!p->mm)
8240 continue;
8241
6cfb0d5d 8242 p->se.exec_start = 0;
6cfb0d5d 8243#ifdef CONFIG_SCHEDSTATS
dd41f596 8244 p->se.wait_start = 0;
dd41f596 8245 p->se.sleep_start = 0;
dd41f596 8246 p->se.block_start = 0;
6cfb0d5d 8247#endif
dd41f596
IM
8248
8249 if (!rt_task(p)) {
8250 /*
8251 * Renice negative nice level userspace
8252 * tasks back to 0:
8253 */
8254 if (TASK_NICE(p) < 0 && p->mm)
8255 set_user_nice(p, 0);
1da177e4 8256 continue;
dd41f596 8257 }
1da177e4 8258
4cf5d77a 8259 spin_lock(&p->pi_lock);
b29739f9 8260 rq = __task_rq_lock(p);
1da177e4 8261
178be793 8262 normalize_task(rq, p);
3a5e4dc1 8263
b29739f9 8264 __task_rq_unlock(rq);
4cf5d77a 8265 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8266 } while_each_thread(g, p);
8267
4cf5d77a 8268 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8269}
8270
8271#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8272
8273#ifdef CONFIG_IA64
8274/*
8275 * These functions are only useful for the IA64 MCA handling.
8276 *
8277 * They can only be called when the whole system has been
8278 * stopped - every CPU needs to be quiescent, and no scheduling
8279 * activity can take place. Using them for anything else would
8280 * be a serious bug, and as a result, they aren't even visible
8281 * under any other configuration.
8282 */
8283
8284/**
8285 * curr_task - return the current task for a given cpu.
8286 * @cpu: the processor in question.
8287 *
8288 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8289 */
36c8b586 8290struct task_struct *curr_task(int cpu)
1df5c10a
LT
8291{
8292 return cpu_curr(cpu);
8293}
8294
8295/**
8296 * set_curr_task - set the current task for a given cpu.
8297 * @cpu: the processor in question.
8298 * @p: the task pointer to set.
8299 *
8300 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8301 * are serviced on a separate stack. It allows the architecture to switch the
8302 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8303 * must be called with all CPU's synchronized, and interrupts disabled, the
8304 * and caller must save the original value of the current task (see
8305 * curr_task() above) and restore that value before reenabling interrupts and
8306 * re-starting the system.
8307 *
8308 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8309 */
36c8b586 8310void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8311{
8312 cpu_curr(cpu) = p;
8313}
8314
8315#endif
29f59db3 8316
bccbe08a
PZ
8317#ifdef CONFIG_FAIR_GROUP_SCHED
8318static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8319{
8320 int i;
8321
8322 for_each_possible_cpu(i) {
8323 if (tg->cfs_rq)
8324 kfree(tg->cfs_rq[i]);
8325 if (tg->se)
8326 kfree(tg->se[i]);
6f505b16
PZ
8327 }
8328
8329 kfree(tg->cfs_rq);
8330 kfree(tg->se);
6f505b16
PZ
8331}
8332
ec7dc8ac
DG
8333static
8334int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8335{
29f59db3 8336 struct cfs_rq *cfs_rq;
ec7dc8ac 8337 struct sched_entity *se, *parent_se;
9b5b7751 8338 struct rq *rq;
29f59db3
SV
8339 int i;
8340
434d53b0 8341 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8342 if (!tg->cfs_rq)
8343 goto err;
434d53b0 8344 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8345 if (!tg->se)
8346 goto err;
052f1dc7
PZ
8347
8348 tg->shares = NICE_0_LOAD;
29f59db3
SV
8349
8350 for_each_possible_cpu(i) {
9b5b7751 8351 rq = cpu_rq(i);
29f59db3 8352
6f505b16
PZ
8353 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8354 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8355 if (!cfs_rq)
8356 goto err;
8357
6f505b16
PZ
8358 se = kmalloc_node(sizeof(struct sched_entity),
8359 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8360 if (!se)
8361 goto err;
8362
ec7dc8ac
DG
8363 parent_se = parent ? parent->se[i] : NULL;
8364 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8365 }
8366
8367 return 1;
8368
8369 err:
8370 return 0;
8371}
8372
8373static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8374{
8375 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8376 &cpu_rq(cpu)->leaf_cfs_rq_list);
8377}
8378
8379static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8380{
8381 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8382}
8383#else
8384static inline void free_fair_sched_group(struct task_group *tg)
8385{
8386}
8387
ec7dc8ac
DG
8388static inline
8389int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8390{
8391 return 1;
8392}
8393
8394static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8395{
8396}
8397
8398static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8399{
8400}
052f1dc7
PZ
8401#endif
8402
8403#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8404static void free_rt_sched_group(struct task_group *tg)
8405{
8406 int i;
8407
d0b27fa7
PZ
8408 destroy_rt_bandwidth(&tg->rt_bandwidth);
8409
bccbe08a
PZ
8410 for_each_possible_cpu(i) {
8411 if (tg->rt_rq)
8412 kfree(tg->rt_rq[i]);
8413 if (tg->rt_se)
8414 kfree(tg->rt_se[i]);
8415 }
8416
8417 kfree(tg->rt_rq);
8418 kfree(tg->rt_se);
8419}
8420
ec7dc8ac
DG
8421static
8422int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8423{
8424 struct rt_rq *rt_rq;
ec7dc8ac 8425 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8426 struct rq *rq;
8427 int i;
8428
434d53b0 8429 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8430 if (!tg->rt_rq)
8431 goto err;
434d53b0 8432 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8433 if (!tg->rt_se)
8434 goto err;
8435
d0b27fa7
PZ
8436 init_rt_bandwidth(&tg->rt_bandwidth,
8437 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8438
8439 for_each_possible_cpu(i) {
8440 rq = cpu_rq(i);
8441
6f505b16
PZ
8442 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8443 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8444 if (!rt_rq)
8445 goto err;
29f59db3 8446
6f505b16
PZ
8447 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8448 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8449 if (!rt_se)
8450 goto err;
29f59db3 8451
ec7dc8ac
DG
8452 parent_se = parent ? parent->rt_se[i] : NULL;
8453 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8454 }
8455
bccbe08a
PZ
8456 return 1;
8457
8458 err:
8459 return 0;
8460}
8461
8462static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8463{
8464 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8465 &cpu_rq(cpu)->leaf_rt_rq_list);
8466}
8467
8468static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8469{
8470 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8471}
8472#else
8473static inline void free_rt_sched_group(struct task_group *tg)
8474{
8475}
8476
ec7dc8ac
DG
8477static inline
8478int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8479{
8480 return 1;
8481}
8482
8483static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8484{
8485}
8486
8487static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8488{
8489}
8490#endif
8491
d0b27fa7 8492#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8493static void free_sched_group(struct task_group *tg)
8494{
8495 free_fair_sched_group(tg);
8496 free_rt_sched_group(tg);
8497 kfree(tg);
8498}
8499
8500/* allocate runqueue etc for a new task group */
ec7dc8ac 8501struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8502{
8503 struct task_group *tg;
8504 unsigned long flags;
8505 int i;
8506
8507 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8508 if (!tg)
8509 return ERR_PTR(-ENOMEM);
8510
ec7dc8ac 8511 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8512 goto err;
8513
ec7dc8ac 8514 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8515 goto err;
8516
8ed36996 8517 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8518 for_each_possible_cpu(i) {
bccbe08a
PZ
8519 register_fair_sched_group(tg, i);
8520 register_rt_sched_group(tg, i);
9b5b7751 8521 }
6f505b16 8522 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8523
8524 WARN_ON(!parent); /* root should already exist */
8525
8526 tg->parent = parent;
8527 list_add_rcu(&tg->siblings, &parent->children);
8528 INIT_LIST_HEAD(&tg->children);
8ed36996 8529 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8530
9b5b7751 8531 return tg;
29f59db3
SV
8532
8533err:
6f505b16 8534 free_sched_group(tg);
29f59db3
SV
8535 return ERR_PTR(-ENOMEM);
8536}
8537
9b5b7751 8538/* rcu callback to free various structures associated with a task group */
6f505b16 8539static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8540{
29f59db3 8541 /* now it should be safe to free those cfs_rqs */
6f505b16 8542 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8543}
8544
9b5b7751 8545/* Destroy runqueue etc associated with a task group */
4cf86d77 8546void sched_destroy_group(struct task_group *tg)
29f59db3 8547{
8ed36996 8548 unsigned long flags;
9b5b7751 8549 int i;
29f59db3 8550
8ed36996 8551 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8552 for_each_possible_cpu(i) {
bccbe08a
PZ
8553 unregister_fair_sched_group(tg, i);
8554 unregister_rt_sched_group(tg, i);
9b5b7751 8555 }
6f505b16 8556 list_del_rcu(&tg->list);
f473aa5e 8557 list_del_rcu(&tg->siblings);
8ed36996 8558 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8559
9b5b7751 8560 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8561 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8562}
8563
9b5b7751 8564/* change task's runqueue when it moves between groups.
3a252015
IM
8565 * The caller of this function should have put the task in its new group
8566 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8567 * reflect its new group.
9b5b7751
SV
8568 */
8569void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8570{
8571 int on_rq, running;
8572 unsigned long flags;
8573 struct rq *rq;
8574
8575 rq = task_rq_lock(tsk, &flags);
8576
29f59db3
SV
8577 update_rq_clock(rq);
8578
051a1d1a 8579 running = task_current(rq, tsk);
29f59db3
SV
8580 on_rq = tsk->se.on_rq;
8581
0e1f3483 8582 if (on_rq)
29f59db3 8583 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8584 if (unlikely(running))
8585 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8586
6f505b16 8587 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8588
810b3817
PZ
8589#ifdef CONFIG_FAIR_GROUP_SCHED
8590 if (tsk->sched_class->moved_group)
8591 tsk->sched_class->moved_group(tsk);
8592#endif
8593
0e1f3483
HS
8594 if (unlikely(running))
8595 tsk->sched_class->set_curr_task(rq);
8596 if (on_rq)
7074badb 8597 enqueue_task(rq, tsk, 0);
29f59db3 8598
29f59db3
SV
8599 task_rq_unlock(rq, &flags);
8600}
d0b27fa7 8601#endif
29f59db3 8602
052f1dc7 8603#ifdef CONFIG_FAIR_GROUP_SCHED
18d95a28 8604static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8605{
8606 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8607 int on_rq;
8608
29f59db3 8609 on_rq = se->on_rq;
62fb1851 8610 if (on_rq)
29f59db3
SV
8611 dequeue_entity(cfs_rq, se, 0);
8612
8613 se->load.weight = shares;
e05510d0 8614 se->load.inv_weight = 0;
29f59db3 8615
62fb1851 8616 if (on_rq)
29f59db3 8617 enqueue_entity(cfs_rq, se, 0);
18d95a28 8618}
62fb1851 8619
18d95a28
PZ
8620static void set_se_shares(struct sched_entity *se, unsigned long shares)
8621{
8622 struct cfs_rq *cfs_rq = se->cfs_rq;
8623 struct rq *rq = cfs_rq->rq;
8624 unsigned long flags;
8625
8626 spin_lock_irqsave(&rq->lock, flags);
8627 __set_se_shares(se, shares);
8628 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8629}
8630
8ed36996
PZ
8631static DEFINE_MUTEX(shares_mutex);
8632
4cf86d77 8633int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8634{
8635 int i;
8ed36996 8636 unsigned long flags;
c61935fd 8637
ec7dc8ac
DG
8638 /*
8639 * We can't change the weight of the root cgroup.
8640 */
8641 if (!tg->se[0])
8642 return -EINVAL;
8643
18d95a28
PZ
8644 if (shares < MIN_SHARES)
8645 shares = MIN_SHARES;
cb4ad1ff
MX
8646 else if (shares > MAX_SHARES)
8647 shares = MAX_SHARES;
62fb1851 8648
8ed36996 8649 mutex_lock(&shares_mutex);
9b5b7751 8650 if (tg->shares == shares)
5cb350ba 8651 goto done;
29f59db3 8652
8ed36996 8653 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8654 for_each_possible_cpu(i)
8655 unregister_fair_sched_group(tg, i);
f473aa5e 8656 list_del_rcu(&tg->siblings);
8ed36996 8657 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8658
8659 /* wait for any ongoing reference to this group to finish */
8660 synchronize_sched();
8661
8662 /*
8663 * Now we are free to modify the group's share on each cpu
8664 * w/o tripping rebalance_share or load_balance_fair.
8665 */
9b5b7751 8666 tg->shares = shares;
18d95a28
PZ
8667 for_each_possible_cpu(i) {
8668 /*
8669 * force a rebalance
8670 */
8671 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8672 set_se_shares(tg->se[i], shares);
18d95a28 8673 }
29f59db3 8674
6b2d7700
SV
8675 /*
8676 * Enable load balance activity on this group, by inserting it back on
8677 * each cpu's rq->leaf_cfs_rq_list.
8678 */
8ed36996 8679 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8680 for_each_possible_cpu(i)
8681 register_fair_sched_group(tg, i);
f473aa5e 8682 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8683 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8684done:
8ed36996 8685 mutex_unlock(&shares_mutex);
9b5b7751 8686 return 0;
29f59db3
SV
8687}
8688
5cb350ba
DG
8689unsigned long sched_group_shares(struct task_group *tg)
8690{
8691 return tg->shares;
8692}
052f1dc7 8693#endif
5cb350ba 8694
052f1dc7 8695#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8696/*
9f0c1e56 8697 * Ensure that the real time constraints are schedulable.
6f505b16 8698 */
9f0c1e56
PZ
8699static DEFINE_MUTEX(rt_constraints_mutex);
8700
8701static unsigned long to_ratio(u64 period, u64 runtime)
8702{
8703 if (runtime == RUNTIME_INF)
8704 return 1ULL << 16;
8705
6f6d6a1a 8706 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8707}
8708
b40b2e8e
PZ
8709#ifdef CONFIG_CGROUP_SCHED
8710static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8711{
8712 struct task_group *tgi, *parent = tg->parent;
8713 unsigned long total = 0;
8714
8715 if (!parent) {
8716 if (global_rt_period() < period)
8717 return 0;
8718
8719 return to_ratio(period, runtime) <
8720 to_ratio(global_rt_period(), global_rt_runtime());
8721 }
8722
8723 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8724 return 0;
8725
8726 rcu_read_lock();
8727 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8728 if (tgi == tg)
8729 continue;
8730
8731 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8732 tgi->rt_bandwidth.rt_runtime);
8733 }
8734 rcu_read_unlock();
8735
8736 return total + to_ratio(period, runtime) <
8737 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8738 parent->rt_bandwidth.rt_runtime);
8739}
8740#elif defined CONFIG_USER_SCHED
9f0c1e56 8741static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8742{
8743 struct task_group *tgi;
8744 unsigned long total = 0;
9f0c1e56 8745 unsigned long global_ratio =
d0b27fa7 8746 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8747
8748 rcu_read_lock();
9f0c1e56
PZ
8749 list_for_each_entry_rcu(tgi, &task_groups, list) {
8750 if (tgi == tg)
8751 continue;
6f505b16 8752
d0b27fa7
PZ
8753 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8754 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8755 }
8756 rcu_read_unlock();
6f505b16 8757
9f0c1e56 8758 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8759}
b40b2e8e 8760#endif
6f505b16 8761
521f1a24
DG
8762/* Must be called with tasklist_lock held */
8763static inline int tg_has_rt_tasks(struct task_group *tg)
8764{
8765 struct task_struct *g, *p;
8766 do_each_thread(g, p) {
8767 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8768 return 1;
8769 } while_each_thread(g, p);
8770 return 0;
8771}
8772
d0b27fa7
PZ
8773static int tg_set_bandwidth(struct task_group *tg,
8774 u64 rt_period, u64 rt_runtime)
6f505b16 8775{
ac086bc2 8776 int i, err = 0;
9f0c1e56 8777
9f0c1e56 8778 mutex_lock(&rt_constraints_mutex);
521f1a24 8779 read_lock(&tasklist_lock);
ac086bc2 8780 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8781 err = -EBUSY;
8782 goto unlock;
8783 }
9f0c1e56
PZ
8784 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8785 err = -EINVAL;
8786 goto unlock;
8787 }
ac086bc2
PZ
8788
8789 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8790 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8791 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8792
8793 for_each_possible_cpu(i) {
8794 struct rt_rq *rt_rq = tg->rt_rq[i];
8795
8796 spin_lock(&rt_rq->rt_runtime_lock);
8797 rt_rq->rt_runtime = rt_runtime;
8798 spin_unlock(&rt_rq->rt_runtime_lock);
8799 }
8800 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8801 unlock:
521f1a24 8802 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8803 mutex_unlock(&rt_constraints_mutex);
8804
8805 return err;
6f505b16
PZ
8806}
8807
d0b27fa7
PZ
8808int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8809{
8810 u64 rt_runtime, rt_period;
8811
8812 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8813 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8814 if (rt_runtime_us < 0)
8815 rt_runtime = RUNTIME_INF;
8816
8817 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8818}
8819
9f0c1e56
PZ
8820long sched_group_rt_runtime(struct task_group *tg)
8821{
8822 u64 rt_runtime_us;
8823
d0b27fa7 8824 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8825 return -1;
8826
d0b27fa7 8827 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8828 do_div(rt_runtime_us, NSEC_PER_USEC);
8829 return rt_runtime_us;
8830}
d0b27fa7
PZ
8831
8832int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8833{
8834 u64 rt_runtime, rt_period;
8835
8836 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8837 rt_runtime = tg->rt_bandwidth.rt_runtime;
8838
8839 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8840}
8841
8842long sched_group_rt_period(struct task_group *tg)
8843{
8844 u64 rt_period_us;
8845
8846 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8847 do_div(rt_period_us, NSEC_PER_USEC);
8848 return rt_period_us;
8849}
8850
8851static int sched_rt_global_constraints(void)
8852{
8853 int ret = 0;
8854
8855 mutex_lock(&rt_constraints_mutex);
8856 if (!__rt_schedulable(NULL, 1, 0))
8857 ret = -EINVAL;
8858 mutex_unlock(&rt_constraints_mutex);
8859
8860 return ret;
8861}
8862#else
8863static int sched_rt_global_constraints(void)
8864{
ac086bc2
PZ
8865 unsigned long flags;
8866 int i;
8867
8868 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8869 for_each_possible_cpu(i) {
8870 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8871
8872 spin_lock(&rt_rq->rt_runtime_lock);
8873 rt_rq->rt_runtime = global_rt_runtime();
8874 spin_unlock(&rt_rq->rt_runtime_lock);
8875 }
8876 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8877
d0b27fa7
PZ
8878 return 0;
8879}
052f1dc7 8880#endif
d0b27fa7
PZ
8881
8882int sched_rt_handler(struct ctl_table *table, int write,
8883 struct file *filp, void __user *buffer, size_t *lenp,
8884 loff_t *ppos)
8885{
8886 int ret;
8887 int old_period, old_runtime;
8888 static DEFINE_MUTEX(mutex);
8889
8890 mutex_lock(&mutex);
8891 old_period = sysctl_sched_rt_period;
8892 old_runtime = sysctl_sched_rt_runtime;
8893
8894 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8895
8896 if (!ret && write) {
8897 ret = sched_rt_global_constraints();
8898 if (ret) {
8899 sysctl_sched_rt_period = old_period;
8900 sysctl_sched_rt_runtime = old_runtime;
8901 } else {
8902 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8903 def_rt_bandwidth.rt_period =
8904 ns_to_ktime(global_rt_period());
8905 }
8906 }
8907 mutex_unlock(&mutex);
8908
8909 return ret;
8910}
68318b8e 8911
052f1dc7 8912#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8913
8914/* return corresponding task_group object of a cgroup */
2b01dfe3 8915static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8916{
2b01dfe3
PM
8917 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8918 struct task_group, css);
68318b8e
SV
8919}
8920
8921static struct cgroup_subsys_state *
2b01dfe3 8922cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8923{
ec7dc8ac 8924 struct task_group *tg, *parent;
68318b8e 8925
2b01dfe3 8926 if (!cgrp->parent) {
68318b8e 8927 /* This is early initialization for the top cgroup */
2b01dfe3 8928 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8929 return &init_task_group.css;
8930 }
8931
ec7dc8ac
DG
8932 parent = cgroup_tg(cgrp->parent);
8933 tg = sched_create_group(parent);
68318b8e
SV
8934 if (IS_ERR(tg))
8935 return ERR_PTR(-ENOMEM);
8936
8937 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8938 tg->css.cgroup = cgrp;
68318b8e
SV
8939
8940 return &tg->css;
8941}
8942
41a2d6cf
IM
8943static void
8944cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8945{
2b01dfe3 8946 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8947
8948 sched_destroy_group(tg);
8949}
8950
41a2d6cf
IM
8951static int
8952cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8953 struct task_struct *tsk)
68318b8e 8954{
b68aa230
PZ
8955#ifdef CONFIG_RT_GROUP_SCHED
8956 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8957 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8958 return -EINVAL;
8959#else
68318b8e
SV
8960 /* We don't support RT-tasks being in separate groups */
8961 if (tsk->sched_class != &fair_sched_class)
8962 return -EINVAL;
b68aa230 8963#endif
68318b8e
SV
8964
8965 return 0;
8966}
8967
8968static void
2b01dfe3 8969cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8970 struct cgroup *old_cont, struct task_struct *tsk)
8971{
8972 sched_move_task(tsk);
8973}
8974
052f1dc7 8975#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8976static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8977 u64 shareval)
68318b8e 8978{
2b01dfe3 8979 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8980}
8981
f4c753b7 8982static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8983{
2b01dfe3 8984 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8985
8986 return (u64) tg->shares;
8987}
052f1dc7 8988#endif
68318b8e 8989
052f1dc7 8990#ifdef CONFIG_RT_GROUP_SCHED
ac086bc2 8991static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8992 s64 val)
6f505b16 8993{
06ecb27c 8994 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8995}
8996
06ecb27c 8997static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8998{
06ecb27c 8999 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9000}
d0b27fa7
PZ
9001
9002static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9003 u64 rt_period_us)
9004{
9005 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9006}
9007
9008static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9009{
9010 return sched_group_rt_period(cgroup_tg(cgrp));
9011}
052f1dc7 9012#endif
6f505b16 9013
fe5c7cc2 9014static struct cftype cpu_files[] = {
052f1dc7 9015#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9016 {
9017 .name = "shares",
f4c753b7
PM
9018 .read_u64 = cpu_shares_read_u64,
9019 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9020 },
052f1dc7
PZ
9021#endif
9022#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9023 {
9f0c1e56 9024 .name = "rt_runtime_us",
06ecb27c
PM
9025 .read_s64 = cpu_rt_runtime_read,
9026 .write_s64 = cpu_rt_runtime_write,
6f505b16 9027 },
d0b27fa7
PZ
9028 {
9029 .name = "rt_period_us",
f4c753b7
PM
9030 .read_u64 = cpu_rt_period_read_uint,
9031 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9032 },
052f1dc7 9033#endif
68318b8e
SV
9034};
9035
9036static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9037{
fe5c7cc2 9038 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9039}
9040
9041struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9042 .name = "cpu",
9043 .create = cpu_cgroup_create,
9044 .destroy = cpu_cgroup_destroy,
9045 .can_attach = cpu_cgroup_can_attach,
9046 .attach = cpu_cgroup_attach,
9047 .populate = cpu_cgroup_populate,
9048 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9049 .early_init = 1,
9050};
9051
052f1dc7 9052#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9053
9054#ifdef CONFIG_CGROUP_CPUACCT
9055
9056/*
9057 * CPU accounting code for task groups.
9058 *
9059 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9060 * (balbir@in.ibm.com).
9061 */
9062
9063/* track cpu usage of a group of tasks */
9064struct cpuacct {
9065 struct cgroup_subsys_state css;
9066 /* cpuusage holds pointer to a u64-type object on every cpu */
9067 u64 *cpuusage;
9068};
9069
9070struct cgroup_subsys cpuacct_subsys;
9071
9072/* return cpu accounting group corresponding to this container */
32cd756a 9073static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9074{
32cd756a 9075 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9076 struct cpuacct, css);
9077}
9078
9079/* return cpu accounting group to which this task belongs */
9080static inline struct cpuacct *task_ca(struct task_struct *tsk)
9081{
9082 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9083 struct cpuacct, css);
9084}
9085
9086/* create a new cpu accounting group */
9087static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9088 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9089{
9090 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9091
9092 if (!ca)
9093 return ERR_PTR(-ENOMEM);
9094
9095 ca->cpuusage = alloc_percpu(u64);
9096 if (!ca->cpuusage) {
9097 kfree(ca);
9098 return ERR_PTR(-ENOMEM);
9099 }
9100
9101 return &ca->css;
9102}
9103
9104/* destroy an existing cpu accounting group */
41a2d6cf 9105static void
32cd756a 9106cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9107{
32cd756a 9108 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9109
9110 free_percpu(ca->cpuusage);
9111 kfree(ca);
9112}
9113
9114/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9115static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9116{
32cd756a 9117 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9118 u64 totalcpuusage = 0;
9119 int i;
9120
9121 for_each_possible_cpu(i) {
9122 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9123
9124 /*
9125 * Take rq->lock to make 64-bit addition safe on 32-bit
9126 * platforms.
9127 */
9128 spin_lock_irq(&cpu_rq(i)->lock);
9129 totalcpuusage += *cpuusage;
9130 spin_unlock_irq(&cpu_rq(i)->lock);
9131 }
9132
9133 return totalcpuusage;
9134}
9135
0297b803
DG
9136static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9137 u64 reset)
9138{
9139 struct cpuacct *ca = cgroup_ca(cgrp);
9140 int err = 0;
9141 int i;
9142
9143 if (reset) {
9144 err = -EINVAL;
9145 goto out;
9146 }
9147
9148 for_each_possible_cpu(i) {
9149 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9150
9151 spin_lock_irq(&cpu_rq(i)->lock);
9152 *cpuusage = 0;
9153 spin_unlock_irq(&cpu_rq(i)->lock);
9154 }
9155out:
9156 return err;
9157}
9158
d842de87
SV
9159static struct cftype files[] = {
9160 {
9161 .name = "usage",
f4c753b7
PM
9162 .read_u64 = cpuusage_read,
9163 .write_u64 = cpuusage_write,
d842de87
SV
9164 },
9165};
9166
32cd756a 9167static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9168{
32cd756a 9169 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9170}
9171
9172/*
9173 * charge this task's execution time to its accounting group.
9174 *
9175 * called with rq->lock held.
9176 */
9177static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9178{
9179 struct cpuacct *ca;
9180
9181 if (!cpuacct_subsys.active)
9182 return;
9183
9184 ca = task_ca(tsk);
9185 if (ca) {
9186 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9187
9188 *cpuusage += cputime;
9189 }
9190}
9191
9192struct cgroup_subsys cpuacct_subsys = {
9193 .name = "cpuacct",
9194 .create = cpuacct_create,
9195 .destroy = cpuacct_destroy,
9196 .populate = cpuacct_populate,
9197 .subsys_id = cpuacct_subsys_id,
9198};
9199#endif /* CONFIG_CGROUP_CPUACCT */