]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched.c
init: move setup of nr_cpu_ids to as early as possible
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
1da177e4 71
5517d86b 72#include <asm/tlb.h>
838225b4 73#include <asm/irq_regs.h>
1da177e4 74
b035b6de
AD
75/*
76 * Scheduler clock - returns current time in nanosec units.
77 * This is default implementation.
78 * Architectures and sub-architectures can override this.
79 */
80unsigned long long __attribute__((weak)) sched_clock(void)
81{
d6322faf 82 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
83}
84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
5517d86b
ED
124#ifdef CONFIG_SMP
125/*
126 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
127 * Since cpu_power is a 'constant', we can use a reciprocal divide.
128 */
129static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
130{
131 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132}
133
134/*
135 * Each time a sched group cpu_power is changed,
136 * we must compute its reciprocal value
137 */
138static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
139{
140 sg->__cpu_power += val;
141 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
142}
143#endif
144
e05606d3
IM
145static inline int rt_policy(int policy)
146{
147 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
148 return 1;
149 return 0;
150}
151
152static inline int task_has_rt_policy(struct task_struct *p)
153{
154 return rt_policy(p->policy);
155}
156
1da177e4 157/*
6aa645ea 158 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 159 */
6aa645ea
IM
160struct rt_prio_array {
161 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
162 struct list_head queue[MAX_RT_PRIO];
163};
164
d0b27fa7
PZ
165struct rt_bandwidth {
166 ktime_t rt_period;
167 u64 rt_runtime;
ac086bc2 168 spinlock_t rt_runtime_lock;
d0b27fa7
PZ
169 struct hrtimer rt_period_timer;
170};
171
172static struct rt_bandwidth def_rt_bandwidth;
173
174static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
175
176static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
177{
178 struct rt_bandwidth *rt_b =
179 container_of(timer, struct rt_bandwidth, rt_period_timer);
180 ktime_t now;
181 int overrun;
182 int idle = 0;
183
184 for (;;) {
185 now = hrtimer_cb_get_time(timer);
186 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
187
188 if (!overrun)
189 break;
190
191 idle = do_sched_rt_period_timer(rt_b, overrun);
192 }
193
194 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
195}
196
197static
198void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
199{
200 rt_b->rt_period = ns_to_ktime(period);
201 rt_b->rt_runtime = runtime;
202
ac086bc2
PZ
203 spin_lock_init(&rt_b->rt_runtime_lock);
204
d0b27fa7
PZ
205 hrtimer_init(&rt_b->rt_period_timer,
206 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
207 rt_b->rt_period_timer.function = sched_rt_period_timer;
208 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
209}
210
211static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
212{
213 ktime_t now;
214
215 if (rt_b->rt_runtime == RUNTIME_INF)
216 return;
217
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 return;
220
221 spin_lock(&rt_b->rt_runtime_lock);
222 for (;;) {
223 if (hrtimer_active(&rt_b->rt_period_timer))
224 break;
225
226 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
227 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
228 hrtimer_start(&rt_b->rt_period_timer,
229 rt_b->rt_period_timer.expires,
230 HRTIMER_MODE_ABS);
231 }
232 spin_unlock(&rt_b->rt_runtime_lock);
233}
234
235#ifdef CONFIG_RT_GROUP_SCHED
236static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
237{
238 hrtimer_cancel(&rt_b->rt_period_timer);
239}
240#endif
241
052f1dc7 242#ifdef CONFIG_GROUP_SCHED
29f59db3 243
68318b8e
SV
244#include <linux/cgroup.h>
245
29f59db3
SV
246struct cfs_rq;
247
6f505b16
PZ
248static LIST_HEAD(task_groups);
249
29f59db3 250/* task group related information */
4cf86d77 251struct task_group {
052f1dc7 252#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
253 struct cgroup_subsys_state css;
254#endif
052f1dc7
PZ
255
256#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
29f59db3
SV
273};
274
052f1dc7 275#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
276/* Default task group's sched entity on each cpu */
277static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
278/* Default task group's cfs_rq on each cpu */
279static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
280#endif
281
282#ifdef CONFIG_RT_GROUP_SCHED
283static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
284static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 285#endif
6f505b16 286
8ed36996 287/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
288 * a task group's cpu shares.
289 */
8ed36996 290static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 291
a1835615
SV
292/* doms_cur_mutex serializes access to doms_cur[] array */
293static DEFINE_MUTEX(doms_cur_mutex);
294
052f1dc7 295#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
296#ifdef CONFIG_USER_SCHED
297# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
298#else
299# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
300#endif
301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3
SV
309
310/* return group to which a task belongs */
4cf86d77 311static inline struct task_group *task_group(struct task_struct *p)
29f59db3 312{
4cf86d77 313 struct task_group *tg;
9b5b7751 314
052f1dc7 315#ifdef CONFIG_USER_SCHED
24e377a8 316 tg = p->user->tg;
052f1dc7 317#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
318 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
319 struct task_group, css);
24e377a8 320#else
41a2d6cf 321 tg = &init_task_group;
24e377a8 322#endif
9b5b7751 323 return tg;
29f59db3
SV
324}
325
326/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 327static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 328{
052f1dc7 329#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
330 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
331 p->se.parent = task_group(p)->se[cpu];
052f1dc7 332#endif
6f505b16 333
052f1dc7 334#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
335 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
336 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 337#endif
29f59db3
SV
338}
339
a1835615
SV
340static inline void lock_doms_cur(void)
341{
342 mutex_lock(&doms_cur_mutex);
343}
344
345static inline void unlock_doms_cur(void)
346{
347 mutex_unlock(&doms_cur_mutex);
348}
349
29f59db3
SV
350#else
351
6f505b16 352static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
a1835615
SV
353static inline void lock_doms_cur(void) { }
354static inline void unlock_doms_cur(void) { }
29f59db3 355
052f1dc7 356#endif /* CONFIG_GROUP_SCHED */
29f59db3 357
6aa645ea
IM
358/* CFS-related fields in a runqueue */
359struct cfs_rq {
360 struct load_weight load;
361 unsigned long nr_running;
362
6aa645ea 363 u64 exec_clock;
e9acbff6 364 u64 min_vruntime;
6aa645ea
IM
365
366 struct rb_root tasks_timeline;
367 struct rb_node *rb_leftmost;
368 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
369 /* 'curr' points to currently running entity on this cfs_rq.
370 * It is set to NULL otherwise (i.e when none are currently running).
371 */
aa2ac252 372 struct sched_entity *curr, *next;
ddc97297
PZ
373
374 unsigned long nr_spread_over;
375
62160e3f 376#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
377 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
378
41a2d6cf
IM
379 /*
380 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
381 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
382 * (like users, containers etc.)
383 *
384 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
385 * list is used during load balance.
386 */
41a2d6cf
IM
387 struct list_head leaf_cfs_rq_list;
388 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
389#endif
390};
1da177e4 391
6aa645ea
IM
392/* Real-Time classes' related field in a runqueue: */
393struct rt_rq {
394 struct rt_prio_array active;
63489e45 395 unsigned long rt_nr_running;
052f1dc7 396#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 int highest_prio; /* highest queued rt task prio */
398#endif
fa85ae24 399#ifdef CONFIG_SMP
73fe6aae 400 unsigned long rt_nr_migratory;
a22d7fc1 401 int overloaded;
fa85ae24 402#endif
6f505b16 403 int rt_throttled;
fa85ae24 404 u64 rt_time;
ac086bc2
PZ
405 u64 rt_runtime;
406 spinlock_t rt_runtime_lock;
6f505b16 407
052f1dc7 408#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
409 unsigned long rt_nr_boosted;
410
6f505b16
PZ
411 struct rq *rq;
412 struct list_head leaf_rt_rq_list;
413 struct task_group *tg;
414 struct sched_rt_entity *rt_se;
415#endif
6aa645ea
IM
416};
417
57d885fe
GH
418#ifdef CONFIG_SMP
419
420/*
421 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
422 * variables. Each exclusive cpuset essentially defines an island domain by
423 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
424 * exclusive cpuset is created, we also create and attach a new root-domain
425 * object.
426 *
57d885fe
GH
427 */
428struct root_domain {
429 atomic_t refcount;
430 cpumask_t span;
431 cpumask_t online;
637f5085 432
0eab9146 433 /*
637f5085
GH
434 * The "RT overload" flag: it gets set if a CPU has more than
435 * one runnable RT task.
436 */
437 cpumask_t rto_mask;
0eab9146 438 atomic_t rto_count;
57d885fe
GH
439};
440
dc938520
GH
441/*
442 * By default the system creates a single root-domain with all cpus as
443 * members (mimicking the global state we have today).
444 */
57d885fe
GH
445static struct root_domain def_root_domain;
446
447#endif
448
1da177e4
LT
449/*
450 * This is the main, per-CPU runqueue data structure.
451 *
452 * Locking rule: those places that want to lock multiple runqueues
453 * (such as the load balancing or the thread migration code), lock
454 * acquire operations must be ordered by ascending &runqueue.
455 */
70b97a7f 456struct rq {
d8016491
IM
457 /* runqueue lock: */
458 spinlock_t lock;
1da177e4
LT
459
460 /*
461 * nr_running and cpu_load should be in the same cacheline because
462 * remote CPUs use both these fields when doing load calculation.
463 */
464 unsigned long nr_running;
6aa645ea
IM
465 #define CPU_LOAD_IDX_MAX 5
466 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 467 unsigned char idle_at_tick;
46cb4b7c 468#ifdef CONFIG_NO_HZ
15934a37 469 unsigned long last_tick_seen;
46cb4b7c
SS
470 unsigned char in_nohz_recently;
471#endif
d8016491
IM
472 /* capture load from *all* tasks on this cpu: */
473 struct load_weight load;
6aa645ea
IM
474 unsigned long nr_load_updates;
475 u64 nr_switches;
476
477 struct cfs_rq cfs;
6f505b16 478 struct rt_rq rt;
6f505b16 479
6aa645ea 480#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
481 /* list of leaf cfs_rq on this cpu: */
482 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
483#endif
484#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 485 struct list_head leaf_rt_rq_list;
1da177e4 486#endif
1da177e4
LT
487
488 /*
489 * This is part of a global counter where only the total sum
490 * over all CPUs matters. A task can increase this counter on
491 * one CPU and if it got migrated afterwards it may decrease
492 * it on another CPU. Always updated under the runqueue lock:
493 */
494 unsigned long nr_uninterruptible;
495
36c8b586 496 struct task_struct *curr, *idle;
c9819f45 497 unsigned long next_balance;
1da177e4 498 struct mm_struct *prev_mm;
6aa645ea 499
6aa645ea
IM
500 u64 clock, prev_clock_raw;
501 s64 clock_max_delta;
502
cc203d24 503 unsigned int clock_warps, clock_overflows, clock_underflows;
2aa44d05
IM
504 u64 idle_clock;
505 unsigned int clock_deep_idle_events;
529c7726 506 u64 tick_timestamp;
6aa645ea 507
1da177e4
LT
508 atomic_t nr_iowait;
509
510#ifdef CONFIG_SMP
0eab9146 511 struct root_domain *rd;
1da177e4
LT
512 struct sched_domain *sd;
513
514 /* For active balancing */
515 int active_balance;
516 int push_cpu;
d8016491
IM
517 /* cpu of this runqueue: */
518 int cpu;
1da177e4 519
36c8b586 520 struct task_struct *migration_thread;
1da177e4
LT
521 struct list_head migration_queue;
522#endif
523
8f4d37ec
PZ
524#ifdef CONFIG_SCHED_HRTICK
525 unsigned long hrtick_flags;
526 ktime_t hrtick_expire;
527 struct hrtimer hrtick_timer;
528#endif
529
1da177e4
LT
530#ifdef CONFIG_SCHEDSTATS
531 /* latency stats */
532 struct sched_info rq_sched_info;
533
534 /* sys_sched_yield() stats */
480b9434
KC
535 unsigned int yld_exp_empty;
536 unsigned int yld_act_empty;
537 unsigned int yld_both_empty;
538 unsigned int yld_count;
1da177e4
LT
539
540 /* schedule() stats */
480b9434
KC
541 unsigned int sched_switch;
542 unsigned int sched_count;
543 unsigned int sched_goidle;
1da177e4
LT
544
545 /* try_to_wake_up() stats */
480b9434
KC
546 unsigned int ttwu_count;
547 unsigned int ttwu_local;
b8efb561
IM
548
549 /* BKL stats */
480b9434 550 unsigned int bkl_count;
1da177e4 551#endif
fcb99371 552 struct lock_class_key rq_lock_key;
1da177e4
LT
553};
554
f34e3b61 555static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 556
dd41f596
IM
557static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
558{
559 rq->curr->sched_class->check_preempt_curr(rq, p);
560}
561
0a2966b4
CL
562static inline int cpu_of(struct rq *rq)
563{
564#ifdef CONFIG_SMP
565 return rq->cpu;
566#else
567 return 0;
568#endif
569}
570
15934a37
GC
571#ifdef CONFIG_NO_HZ
572static inline bool nohz_on(int cpu)
573{
574 return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
575}
576
577static inline u64 max_skipped_ticks(struct rq *rq)
578{
579 return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
580}
581
582static inline void update_last_tick_seen(struct rq *rq)
583{
584 rq->last_tick_seen = jiffies;
585}
586#else
587static inline u64 max_skipped_ticks(struct rq *rq)
588{
589 return 1;
590}
591
592static inline void update_last_tick_seen(struct rq *rq)
593{
594}
595#endif
596
20d315d4 597/*
b04a0f4c
IM
598 * Update the per-runqueue clock, as finegrained as the platform can give
599 * us, but without assuming monotonicity, etc.:
20d315d4 600 */
b04a0f4c 601static void __update_rq_clock(struct rq *rq)
20d315d4
IM
602{
603 u64 prev_raw = rq->prev_clock_raw;
604 u64 now = sched_clock();
605 s64 delta = now - prev_raw;
606 u64 clock = rq->clock;
607
b04a0f4c
IM
608#ifdef CONFIG_SCHED_DEBUG
609 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
610#endif
20d315d4
IM
611 /*
612 * Protect against sched_clock() occasionally going backwards:
613 */
614 if (unlikely(delta < 0)) {
615 clock++;
616 rq->clock_warps++;
617 } else {
618 /*
619 * Catch too large forward jumps too:
620 */
15934a37
GC
621 u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
622 u64 max_time = rq->tick_timestamp + max_jump;
623
624 if (unlikely(clock + delta > max_time)) {
625 if (clock < max_time)
626 clock = max_time;
529c7726
IM
627 else
628 clock++;
20d315d4
IM
629 rq->clock_overflows++;
630 } else {
631 if (unlikely(delta > rq->clock_max_delta))
632 rq->clock_max_delta = delta;
633 clock += delta;
634 }
635 }
636
637 rq->prev_clock_raw = now;
638 rq->clock = clock;
b04a0f4c 639}
20d315d4 640
b04a0f4c
IM
641static void update_rq_clock(struct rq *rq)
642{
643 if (likely(smp_processor_id() == cpu_of(rq)))
644 __update_rq_clock(rq);
20d315d4
IM
645}
646
674311d5
NP
647/*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 649 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
48f24c4d
IM
654#define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
656
657#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658#define this_rq() (&__get_cpu_var(runqueues))
659#define task_rq(p) cpu_rq(task_cpu(p))
660#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661
bf5c91ba
IM
662/*
663 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
664 */
665#ifdef CONFIG_SCHED_DEBUG
666# define const_debug __read_mostly
667#else
668# define const_debug static const
669#endif
670
671/*
672 * Debugging: various feature bits
673 */
674enum {
bbdba7c0 675 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
676 SCHED_FEAT_WAKEUP_PREEMPT = 2,
677 SCHED_FEAT_START_DEBIT = 4,
d25ce4cd
IM
678 SCHED_FEAT_AFFINE_WAKEUPS = 8,
679 SCHED_FEAT_CACHE_HOT_BUDDY = 16,
02e2b83b
IM
680 SCHED_FEAT_SYNC_WAKEUPS = 32,
681 SCHED_FEAT_HRTICK = 64,
682 SCHED_FEAT_DOUBLE_TICK = 128,
bf5c91ba
IM
683};
684
685const_debug unsigned int sysctl_sched_features =
8401f775 686 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 687 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775 688 SCHED_FEAT_START_DEBIT * 1 |
d25ce4cd
IM
689 SCHED_FEAT_AFFINE_WAKEUPS * 1 |
690 SCHED_FEAT_CACHE_HOT_BUDDY * 1 |
02e2b83b 691 SCHED_FEAT_SYNC_WAKEUPS * 1 |
8f4d37ec 692 SCHED_FEAT_HRTICK * 1 |
02e2b83b 693 SCHED_FEAT_DOUBLE_TICK * 0;
bf5c91ba
IM
694
695#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
696
b82d9fdd
PZ
697/*
698 * Number of tasks to iterate in a single balance run.
699 * Limited because this is done with IRQs disabled.
700 */
701const_debug unsigned int sysctl_sched_nr_migrate = 32;
702
fa85ae24 703/*
9f0c1e56 704 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
705 * default: 1s
706 */
9f0c1e56 707unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 708
6892b75e
IM
709static __read_mostly int scheduler_running;
710
9f0c1e56
PZ
711/*
712 * part of the period that we allow rt tasks to run in us.
713 * default: 0.95s
714 */
715int sysctl_sched_rt_runtime = 950000;
fa85ae24 716
d0b27fa7
PZ
717static inline u64 global_rt_period(void)
718{
719 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
720}
721
722static inline u64 global_rt_runtime(void)
723{
724 if (sysctl_sched_rt_period < 0)
725 return RUNTIME_INF;
726
727 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
728}
fa85ae24 729
27ec4407
IM
730static const unsigned long long time_sync_thresh = 100000;
731
732static DEFINE_PER_CPU(unsigned long long, time_offset);
733static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
734
e436d800 735/*
27ec4407
IM
736 * Global lock which we take every now and then to synchronize
737 * the CPUs time. This method is not warp-safe, but it's good
738 * enough to synchronize slowly diverging time sources and thus
739 * it's good enough for tracing:
e436d800 740 */
27ec4407
IM
741static DEFINE_SPINLOCK(time_sync_lock);
742static unsigned long long prev_global_time;
743
744static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
745{
746 unsigned long flags;
747
748 spin_lock_irqsave(&time_sync_lock, flags);
749
750 if (time < prev_global_time) {
751 per_cpu(time_offset, cpu) += prev_global_time - time;
752 time = prev_global_time;
753 } else {
754 prev_global_time = time;
755 }
756
757 spin_unlock_irqrestore(&time_sync_lock, flags);
758
759 return time;
760}
761
762static unsigned long long __cpu_clock(int cpu)
e436d800 763{
e436d800
IM
764 unsigned long long now;
765 unsigned long flags;
b04a0f4c 766 struct rq *rq;
e436d800 767
8ced5f69
IM
768 /*
769 * Only call sched_clock() if the scheduler has already been
770 * initialized (some code might call cpu_clock() very early):
771 */
6892b75e
IM
772 if (unlikely(!scheduler_running))
773 return 0;
774
775 local_irq_save(flags);
776 rq = cpu_rq(cpu);
777 update_rq_clock(rq);
b04a0f4c 778 now = rq->clock;
2cd4d0ea 779 local_irq_restore(flags);
e436d800
IM
780
781 return now;
782}
27ec4407
IM
783
784/*
785 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
786 * clock constructed from sched_clock():
787 */
788unsigned long long cpu_clock(int cpu)
789{
790 unsigned long long prev_cpu_time, time, delta_time;
791
792 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
793 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
794 delta_time = time-prev_cpu_time;
795
796 if (unlikely(delta_time > time_sync_thresh))
797 time = __sync_cpu_clock(time, cpu);
798
799 return time;
800}
a58f6f25 801EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 802
1da177e4 803#ifndef prepare_arch_switch
4866cde0
NP
804# define prepare_arch_switch(next) do { } while (0)
805#endif
806#ifndef finish_arch_switch
807# define finish_arch_switch(prev) do { } while (0)
808#endif
809
051a1d1a
DA
810static inline int task_current(struct rq *rq, struct task_struct *p)
811{
812 return rq->curr == p;
813}
814
4866cde0 815#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 816static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 817{
051a1d1a 818 return task_current(rq, p);
4866cde0
NP
819}
820
70b97a7f 821static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
822{
823}
824
70b97a7f 825static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 826{
da04c035
IM
827#ifdef CONFIG_DEBUG_SPINLOCK
828 /* this is a valid case when another task releases the spinlock */
829 rq->lock.owner = current;
830#endif
8a25d5de
IM
831 /*
832 * If we are tracking spinlock dependencies then we have to
833 * fix up the runqueue lock - which gets 'carried over' from
834 * prev into current:
835 */
836 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
837
4866cde0
NP
838 spin_unlock_irq(&rq->lock);
839}
840
841#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 842static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
843{
844#ifdef CONFIG_SMP
845 return p->oncpu;
846#else
051a1d1a 847 return task_current(rq, p);
4866cde0
NP
848#endif
849}
850
70b97a7f 851static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
852{
853#ifdef CONFIG_SMP
854 /*
855 * We can optimise this out completely for !SMP, because the
856 * SMP rebalancing from interrupt is the only thing that cares
857 * here.
858 */
859 next->oncpu = 1;
860#endif
861#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
862 spin_unlock_irq(&rq->lock);
863#else
864 spin_unlock(&rq->lock);
865#endif
866}
867
70b97a7f 868static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
869{
870#ifdef CONFIG_SMP
871 /*
872 * After ->oncpu is cleared, the task can be moved to a different CPU.
873 * We must ensure this doesn't happen until the switch is completely
874 * finished.
875 */
876 smp_wmb();
877 prev->oncpu = 0;
878#endif
879#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
880 local_irq_enable();
1da177e4 881#endif
4866cde0
NP
882}
883#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 884
b29739f9
IM
885/*
886 * __task_rq_lock - lock the runqueue a given task resides on.
887 * Must be called interrupts disabled.
888 */
70b97a7f 889static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
890 __acquires(rq->lock)
891{
3a5c359a
AK
892 for (;;) {
893 struct rq *rq = task_rq(p);
894 spin_lock(&rq->lock);
895 if (likely(rq == task_rq(p)))
896 return rq;
b29739f9 897 spin_unlock(&rq->lock);
b29739f9 898 }
b29739f9
IM
899}
900
1da177e4
LT
901/*
902 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 903 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
904 * explicitly disabling preemption.
905 */
70b97a7f 906static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
907 __acquires(rq->lock)
908{
70b97a7f 909 struct rq *rq;
1da177e4 910
3a5c359a
AK
911 for (;;) {
912 local_irq_save(*flags);
913 rq = task_rq(p);
914 spin_lock(&rq->lock);
915 if (likely(rq == task_rq(p)))
916 return rq;
1da177e4 917 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 918 }
1da177e4
LT
919}
920
a9957449 921static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
922 __releases(rq->lock)
923{
924 spin_unlock(&rq->lock);
925}
926
70b97a7f 927static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
928 __releases(rq->lock)
929{
930 spin_unlock_irqrestore(&rq->lock, *flags);
931}
932
1da177e4 933/*
cc2a73b5 934 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 935 */
a9957449 936static struct rq *this_rq_lock(void)
1da177e4
LT
937 __acquires(rq->lock)
938{
70b97a7f 939 struct rq *rq;
1da177e4
LT
940
941 local_irq_disable();
942 rq = this_rq();
943 spin_lock(&rq->lock);
944
945 return rq;
946}
947
1b9f19c2 948/*
2aa44d05 949 * We are going deep-idle (irqs are disabled):
1b9f19c2 950 */
2aa44d05 951void sched_clock_idle_sleep_event(void)
1b9f19c2 952{
2aa44d05
IM
953 struct rq *rq = cpu_rq(smp_processor_id());
954
955 spin_lock(&rq->lock);
956 __update_rq_clock(rq);
957 spin_unlock(&rq->lock);
958 rq->clock_deep_idle_events++;
959}
960EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
961
962/*
963 * We just idled delta nanoseconds (called with irqs disabled):
964 */
965void sched_clock_idle_wakeup_event(u64 delta_ns)
966{
967 struct rq *rq = cpu_rq(smp_processor_id());
968 u64 now = sched_clock();
1b9f19c2 969
2aa44d05
IM
970 rq->idle_clock += delta_ns;
971 /*
972 * Override the previous timestamp and ignore all
973 * sched_clock() deltas that occured while we idled,
974 * and use the PM-provided delta_ns to advance the
975 * rq clock:
976 */
977 spin_lock(&rq->lock);
978 rq->prev_clock_raw = now;
979 rq->clock += delta_ns;
980 spin_unlock(&rq->lock);
782daeee 981 touch_softlockup_watchdog();
1b9f19c2 982}
2aa44d05 983EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 984
8f4d37ec
PZ
985static void __resched_task(struct task_struct *p, int tif_bit);
986
987static inline void resched_task(struct task_struct *p)
988{
989 __resched_task(p, TIF_NEED_RESCHED);
990}
991
992#ifdef CONFIG_SCHED_HRTICK
993/*
994 * Use HR-timers to deliver accurate preemption points.
995 *
996 * Its all a bit involved since we cannot program an hrt while holding the
997 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
998 * reschedule event.
999 *
1000 * When we get rescheduled we reprogram the hrtick_timer outside of the
1001 * rq->lock.
1002 */
1003static inline void resched_hrt(struct task_struct *p)
1004{
1005 __resched_task(p, TIF_HRTICK_RESCHED);
1006}
1007
1008static inline void resched_rq(struct rq *rq)
1009{
1010 unsigned long flags;
1011
1012 spin_lock_irqsave(&rq->lock, flags);
1013 resched_task(rq->curr);
1014 spin_unlock_irqrestore(&rq->lock, flags);
1015}
1016
1017enum {
1018 HRTICK_SET, /* re-programm hrtick_timer */
1019 HRTICK_RESET, /* not a new slice */
1020};
1021
1022/*
1023 * Use hrtick when:
1024 * - enabled by features
1025 * - hrtimer is actually high res
1026 */
1027static inline int hrtick_enabled(struct rq *rq)
1028{
1029 if (!sched_feat(HRTICK))
1030 return 0;
1031 return hrtimer_is_hres_active(&rq->hrtick_timer);
1032}
1033
1034/*
1035 * Called to set the hrtick timer state.
1036 *
1037 * called with rq->lock held and irqs disabled
1038 */
1039static void hrtick_start(struct rq *rq, u64 delay, int reset)
1040{
1041 assert_spin_locked(&rq->lock);
1042
1043 /*
1044 * preempt at: now + delay
1045 */
1046 rq->hrtick_expire =
1047 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1048 /*
1049 * indicate we need to program the timer
1050 */
1051 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1052 if (reset)
1053 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1054
1055 /*
1056 * New slices are called from the schedule path and don't need a
1057 * forced reschedule.
1058 */
1059 if (reset)
1060 resched_hrt(rq->curr);
1061}
1062
1063static void hrtick_clear(struct rq *rq)
1064{
1065 if (hrtimer_active(&rq->hrtick_timer))
1066 hrtimer_cancel(&rq->hrtick_timer);
1067}
1068
1069/*
1070 * Update the timer from the possible pending state.
1071 */
1072static void hrtick_set(struct rq *rq)
1073{
1074 ktime_t time;
1075 int set, reset;
1076 unsigned long flags;
1077
1078 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1079
1080 spin_lock_irqsave(&rq->lock, flags);
1081 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1082 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1083 time = rq->hrtick_expire;
1084 clear_thread_flag(TIF_HRTICK_RESCHED);
1085 spin_unlock_irqrestore(&rq->lock, flags);
1086
1087 if (set) {
1088 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1089 if (reset && !hrtimer_active(&rq->hrtick_timer))
1090 resched_rq(rq);
1091 } else
1092 hrtick_clear(rq);
1093}
1094
1095/*
1096 * High-resolution timer tick.
1097 * Runs from hardirq context with interrupts disabled.
1098 */
1099static enum hrtimer_restart hrtick(struct hrtimer *timer)
1100{
1101 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1102
1103 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1104
1105 spin_lock(&rq->lock);
1106 __update_rq_clock(rq);
1107 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1108 spin_unlock(&rq->lock);
1109
1110 return HRTIMER_NORESTART;
1111}
1112
1113static inline void init_rq_hrtick(struct rq *rq)
1114{
1115 rq->hrtick_flags = 0;
1116 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1117 rq->hrtick_timer.function = hrtick;
1118 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1119}
1120
1121void hrtick_resched(void)
1122{
1123 struct rq *rq;
1124 unsigned long flags;
1125
1126 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1127 return;
1128
1129 local_irq_save(flags);
1130 rq = cpu_rq(smp_processor_id());
1131 hrtick_set(rq);
1132 local_irq_restore(flags);
1133}
1134#else
1135static inline void hrtick_clear(struct rq *rq)
1136{
1137}
1138
1139static inline void hrtick_set(struct rq *rq)
1140{
1141}
1142
1143static inline void init_rq_hrtick(struct rq *rq)
1144{
1145}
1146
1147void hrtick_resched(void)
1148{
1149}
1150#endif
1151
c24d20db
IM
1152/*
1153 * resched_task - mark a task 'to be rescheduled now'.
1154 *
1155 * On UP this means the setting of the need_resched flag, on SMP it
1156 * might also involve a cross-CPU call to trigger the scheduler on
1157 * the target CPU.
1158 */
1159#ifdef CONFIG_SMP
1160
1161#ifndef tsk_is_polling
1162#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1163#endif
1164
8f4d37ec 1165static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1166{
1167 int cpu;
1168
1169 assert_spin_locked(&task_rq(p)->lock);
1170
8f4d37ec 1171 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1172 return;
1173
8f4d37ec 1174 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1175
1176 cpu = task_cpu(p);
1177 if (cpu == smp_processor_id())
1178 return;
1179
1180 /* NEED_RESCHED must be visible before we test polling */
1181 smp_mb();
1182 if (!tsk_is_polling(p))
1183 smp_send_reschedule(cpu);
1184}
1185
1186static void resched_cpu(int cpu)
1187{
1188 struct rq *rq = cpu_rq(cpu);
1189 unsigned long flags;
1190
1191 if (!spin_trylock_irqsave(&rq->lock, flags))
1192 return;
1193 resched_task(cpu_curr(cpu));
1194 spin_unlock_irqrestore(&rq->lock, flags);
1195}
06d8308c
TG
1196
1197#ifdef CONFIG_NO_HZ
1198/*
1199 * When add_timer_on() enqueues a timer into the timer wheel of an
1200 * idle CPU then this timer might expire before the next timer event
1201 * which is scheduled to wake up that CPU. In case of a completely
1202 * idle system the next event might even be infinite time into the
1203 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1204 * leaves the inner idle loop so the newly added timer is taken into
1205 * account when the CPU goes back to idle and evaluates the timer
1206 * wheel for the next timer event.
1207 */
1208void wake_up_idle_cpu(int cpu)
1209{
1210 struct rq *rq = cpu_rq(cpu);
1211
1212 if (cpu == smp_processor_id())
1213 return;
1214
1215 /*
1216 * This is safe, as this function is called with the timer
1217 * wheel base lock of (cpu) held. When the CPU is on the way
1218 * to idle and has not yet set rq->curr to idle then it will
1219 * be serialized on the timer wheel base lock and take the new
1220 * timer into account automatically.
1221 */
1222 if (rq->curr != rq->idle)
1223 return;
1224
1225 /*
1226 * We can set TIF_RESCHED on the idle task of the other CPU
1227 * lockless. The worst case is that the other CPU runs the
1228 * idle task through an additional NOOP schedule()
1229 */
1230 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1231
1232 /* NEED_RESCHED must be visible before we test polling */
1233 smp_mb();
1234 if (!tsk_is_polling(rq->idle))
1235 smp_send_reschedule(cpu);
1236}
1237#endif
1238
c24d20db 1239#else
8f4d37ec 1240static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1241{
1242 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1243 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1244}
1245#endif
1246
45bf76df
IM
1247#if BITS_PER_LONG == 32
1248# define WMULT_CONST (~0UL)
1249#else
1250# define WMULT_CONST (1UL << 32)
1251#endif
1252
1253#define WMULT_SHIFT 32
1254
194081eb
IM
1255/*
1256 * Shift right and round:
1257 */
cf2ab469 1258#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1259
cb1c4fc9 1260static unsigned long
45bf76df
IM
1261calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1262 struct load_weight *lw)
1263{
1264 u64 tmp;
1265
1266 if (unlikely(!lw->inv_weight))
27d11726 1267 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
45bf76df
IM
1268
1269 tmp = (u64)delta_exec * weight;
1270 /*
1271 * Check whether we'd overflow the 64-bit multiplication:
1272 */
194081eb 1273 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1274 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1275 WMULT_SHIFT/2);
1276 else
cf2ab469 1277 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1278
ecf691da 1279 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1280}
1281
1282static inline unsigned long
1283calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1284{
1285 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1286}
1287
1091985b 1288static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1289{
1290 lw->weight += inc;
e89996ae 1291 lw->inv_weight = 0;
45bf76df
IM
1292}
1293
1091985b 1294static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1295{
1296 lw->weight -= dec;
e89996ae 1297 lw->inv_weight = 0;
45bf76df
IM
1298}
1299
2dd73a4f
PW
1300/*
1301 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1302 * of tasks with abnormal "nice" values across CPUs the contribution that
1303 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1304 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1305 * scaled version of the new time slice allocation that they receive on time
1306 * slice expiry etc.
1307 */
1308
dd41f596
IM
1309#define WEIGHT_IDLEPRIO 2
1310#define WMULT_IDLEPRIO (1 << 31)
1311
1312/*
1313 * Nice levels are multiplicative, with a gentle 10% change for every
1314 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1315 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1316 * that remained on nice 0.
1317 *
1318 * The "10% effect" is relative and cumulative: from _any_ nice level,
1319 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1320 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1321 * If a task goes up by ~10% and another task goes down by ~10% then
1322 * the relative distance between them is ~25%.)
dd41f596
IM
1323 */
1324static const int prio_to_weight[40] = {
254753dc
IM
1325 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1326 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1327 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1328 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1329 /* 0 */ 1024, 820, 655, 526, 423,
1330 /* 5 */ 335, 272, 215, 172, 137,
1331 /* 10 */ 110, 87, 70, 56, 45,
1332 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1333};
1334
5714d2de
IM
1335/*
1336 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1337 *
1338 * In cases where the weight does not change often, we can use the
1339 * precalculated inverse to speed up arithmetics by turning divisions
1340 * into multiplications:
1341 */
dd41f596 1342static const u32 prio_to_wmult[40] = {
254753dc
IM
1343 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1344 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1345 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1346 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1347 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1348 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1349 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1350 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1351};
2dd73a4f 1352
dd41f596
IM
1353static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1354
1355/*
1356 * runqueue iterator, to support SMP load-balancing between different
1357 * scheduling classes, without having to expose their internal data
1358 * structures to the load-balancing proper:
1359 */
1360struct rq_iterator {
1361 void *arg;
1362 struct task_struct *(*start)(void *);
1363 struct task_struct *(*next)(void *);
1364};
1365
e1d1484f
PW
1366#ifdef CONFIG_SMP
1367static unsigned long
1368balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1369 unsigned long max_load_move, struct sched_domain *sd,
1370 enum cpu_idle_type idle, int *all_pinned,
1371 int *this_best_prio, struct rq_iterator *iterator);
1372
1373static int
1374iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1375 struct sched_domain *sd, enum cpu_idle_type idle,
1376 struct rq_iterator *iterator);
e1d1484f 1377#endif
dd41f596 1378
d842de87
SV
1379#ifdef CONFIG_CGROUP_CPUACCT
1380static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1381#else
1382static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1383#endif
1384
e7693a36
GH
1385#ifdef CONFIG_SMP
1386static unsigned long source_load(int cpu, int type);
1387static unsigned long target_load(int cpu, int type);
1388static unsigned long cpu_avg_load_per_task(int cpu);
1389static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1390#endif /* CONFIG_SMP */
1391
dd41f596 1392#include "sched_stats.h"
dd41f596 1393#include "sched_idletask.c"
5522d5d5
IM
1394#include "sched_fair.c"
1395#include "sched_rt.c"
dd41f596
IM
1396#ifdef CONFIG_SCHED_DEBUG
1397# include "sched_debug.c"
1398#endif
1399
1400#define sched_class_highest (&rt_sched_class)
1401
62fb1851
PZ
1402static inline void inc_load(struct rq *rq, const struct task_struct *p)
1403{
1404 update_load_add(&rq->load, p->se.load.weight);
1405}
1406
1407static inline void dec_load(struct rq *rq, const struct task_struct *p)
1408{
1409 update_load_sub(&rq->load, p->se.load.weight);
1410}
1411
1412static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1413{
1414 rq->nr_running++;
62fb1851 1415 inc_load(rq, p);
9c217245
IM
1416}
1417
62fb1851 1418static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1419{
1420 rq->nr_running--;
62fb1851 1421 dec_load(rq, p);
9c217245
IM
1422}
1423
45bf76df
IM
1424static void set_load_weight(struct task_struct *p)
1425{
1426 if (task_has_rt_policy(p)) {
dd41f596
IM
1427 p->se.load.weight = prio_to_weight[0] * 2;
1428 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1429 return;
1430 }
45bf76df 1431
dd41f596
IM
1432 /*
1433 * SCHED_IDLE tasks get minimal weight:
1434 */
1435 if (p->policy == SCHED_IDLE) {
1436 p->se.load.weight = WEIGHT_IDLEPRIO;
1437 p->se.load.inv_weight = WMULT_IDLEPRIO;
1438 return;
1439 }
71f8bd46 1440
dd41f596
IM
1441 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1442 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1443}
1444
8159f87e 1445static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1446{
dd41f596 1447 sched_info_queued(p);
fd390f6a 1448 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1449 p->se.on_rq = 1;
71f8bd46
IM
1450}
1451
69be72c1 1452static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1453{
f02231e5 1454 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1455 p->se.on_rq = 0;
71f8bd46
IM
1456}
1457
14531189 1458/*
dd41f596 1459 * __normal_prio - return the priority that is based on the static prio
14531189 1460 */
14531189
IM
1461static inline int __normal_prio(struct task_struct *p)
1462{
dd41f596 1463 return p->static_prio;
14531189
IM
1464}
1465
b29739f9
IM
1466/*
1467 * Calculate the expected normal priority: i.e. priority
1468 * without taking RT-inheritance into account. Might be
1469 * boosted by interactivity modifiers. Changes upon fork,
1470 * setprio syscalls, and whenever the interactivity
1471 * estimator recalculates.
1472 */
36c8b586 1473static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1474{
1475 int prio;
1476
e05606d3 1477 if (task_has_rt_policy(p))
b29739f9
IM
1478 prio = MAX_RT_PRIO-1 - p->rt_priority;
1479 else
1480 prio = __normal_prio(p);
1481 return prio;
1482}
1483
1484/*
1485 * Calculate the current priority, i.e. the priority
1486 * taken into account by the scheduler. This value might
1487 * be boosted by RT tasks, or might be boosted by
1488 * interactivity modifiers. Will be RT if the task got
1489 * RT-boosted. If not then it returns p->normal_prio.
1490 */
36c8b586 1491static int effective_prio(struct task_struct *p)
b29739f9
IM
1492{
1493 p->normal_prio = normal_prio(p);
1494 /*
1495 * If we are RT tasks or we were boosted to RT priority,
1496 * keep the priority unchanged. Otherwise, update priority
1497 * to the normal priority:
1498 */
1499 if (!rt_prio(p->prio))
1500 return p->normal_prio;
1501 return p->prio;
1502}
1503
1da177e4 1504/*
dd41f596 1505 * activate_task - move a task to the runqueue.
1da177e4 1506 */
dd41f596 1507static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1508{
d9514f6c 1509 if (task_contributes_to_load(p))
dd41f596 1510 rq->nr_uninterruptible--;
1da177e4 1511
8159f87e 1512 enqueue_task(rq, p, wakeup);
62fb1851 1513 inc_nr_running(p, rq);
1da177e4
LT
1514}
1515
1da177e4
LT
1516/*
1517 * deactivate_task - remove a task from the runqueue.
1518 */
2e1cb74a 1519static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1520{
d9514f6c 1521 if (task_contributes_to_load(p))
dd41f596
IM
1522 rq->nr_uninterruptible++;
1523
69be72c1 1524 dequeue_task(rq, p, sleep);
62fb1851 1525 dec_nr_running(p, rq);
1da177e4
LT
1526}
1527
1da177e4
LT
1528/**
1529 * task_curr - is this task currently executing on a CPU?
1530 * @p: the task in question.
1531 */
36c8b586 1532inline int task_curr(const struct task_struct *p)
1da177e4
LT
1533{
1534 return cpu_curr(task_cpu(p)) == p;
1535}
1536
2dd73a4f
PW
1537/* Used instead of source_load when we know the type == 0 */
1538unsigned long weighted_cpuload(const int cpu)
1539{
495eca49 1540 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1541}
1542
1543static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1544{
6f505b16 1545 set_task_rq(p, cpu);
dd41f596 1546#ifdef CONFIG_SMP
ce96b5ac
DA
1547 /*
1548 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1549 * successfuly executed on another CPU. We must ensure that updates of
1550 * per-task data have been completed by this moment.
1551 */
1552 smp_wmb();
dd41f596 1553 task_thread_info(p)->cpu = cpu;
dd41f596 1554#endif
2dd73a4f
PW
1555}
1556
cb469845
SR
1557static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1558 const struct sched_class *prev_class,
1559 int oldprio, int running)
1560{
1561 if (prev_class != p->sched_class) {
1562 if (prev_class->switched_from)
1563 prev_class->switched_from(rq, p, running);
1564 p->sched_class->switched_to(rq, p, running);
1565 } else
1566 p->sched_class->prio_changed(rq, p, oldprio, running);
1567}
1568
1da177e4 1569#ifdef CONFIG_SMP
c65cc870 1570
cc367732
IM
1571/*
1572 * Is this task likely cache-hot:
1573 */
e7693a36 1574static int
cc367732
IM
1575task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1576{
1577 s64 delta;
1578
f540a608
IM
1579 /*
1580 * Buddy candidates are cache hot:
1581 */
d25ce4cd 1582 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1583 return 1;
1584
cc367732
IM
1585 if (p->sched_class != &fair_sched_class)
1586 return 0;
1587
6bc1665b
IM
1588 if (sysctl_sched_migration_cost == -1)
1589 return 1;
1590 if (sysctl_sched_migration_cost == 0)
1591 return 0;
1592
cc367732
IM
1593 delta = now - p->se.exec_start;
1594
1595 return delta < (s64)sysctl_sched_migration_cost;
1596}
1597
1598
dd41f596 1599void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1600{
dd41f596
IM
1601 int old_cpu = task_cpu(p);
1602 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1603 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1604 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1605 u64 clock_offset;
dd41f596
IM
1606
1607 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1608
1609#ifdef CONFIG_SCHEDSTATS
1610 if (p->se.wait_start)
1611 p->se.wait_start -= clock_offset;
dd41f596
IM
1612 if (p->se.sleep_start)
1613 p->se.sleep_start -= clock_offset;
1614 if (p->se.block_start)
1615 p->se.block_start -= clock_offset;
cc367732
IM
1616 if (old_cpu != new_cpu) {
1617 schedstat_inc(p, se.nr_migrations);
1618 if (task_hot(p, old_rq->clock, NULL))
1619 schedstat_inc(p, se.nr_forced2_migrations);
1620 }
6cfb0d5d 1621#endif
2830cf8c
SV
1622 p->se.vruntime -= old_cfsrq->min_vruntime -
1623 new_cfsrq->min_vruntime;
dd41f596
IM
1624
1625 __set_task_cpu(p, new_cpu);
c65cc870
IM
1626}
1627
70b97a7f 1628struct migration_req {
1da177e4 1629 struct list_head list;
1da177e4 1630
36c8b586 1631 struct task_struct *task;
1da177e4
LT
1632 int dest_cpu;
1633
1da177e4 1634 struct completion done;
70b97a7f 1635};
1da177e4
LT
1636
1637/*
1638 * The task's runqueue lock must be held.
1639 * Returns true if you have to wait for migration thread.
1640 */
36c8b586 1641static int
70b97a7f 1642migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1643{
70b97a7f 1644 struct rq *rq = task_rq(p);
1da177e4
LT
1645
1646 /*
1647 * If the task is not on a runqueue (and not running), then
1648 * it is sufficient to simply update the task's cpu field.
1649 */
dd41f596 1650 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1651 set_task_cpu(p, dest_cpu);
1652 return 0;
1653 }
1654
1655 init_completion(&req->done);
1da177e4
LT
1656 req->task = p;
1657 req->dest_cpu = dest_cpu;
1658 list_add(&req->list, &rq->migration_queue);
48f24c4d 1659
1da177e4
LT
1660 return 1;
1661}
1662
1663/*
1664 * wait_task_inactive - wait for a thread to unschedule.
1665 *
1666 * The caller must ensure that the task *will* unschedule sometime soon,
1667 * else this function might spin for a *long* time. This function can't
1668 * be called with interrupts off, or it may introduce deadlock with
1669 * smp_call_function() if an IPI is sent by the same process we are
1670 * waiting to become inactive.
1671 */
36c8b586 1672void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1673{
1674 unsigned long flags;
dd41f596 1675 int running, on_rq;
70b97a7f 1676 struct rq *rq;
1da177e4 1677
3a5c359a
AK
1678 for (;;) {
1679 /*
1680 * We do the initial early heuristics without holding
1681 * any task-queue locks at all. We'll only try to get
1682 * the runqueue lock when things look like they will
1683 * work out!
1684 */
1685 rq = task_rq(p);
fa490cfd 1686
3a5c359a
AK
1687 /*
1688 * If the task is actively running on another CPU
1689 * still, just relax and busy-wait without holding
1690 * any locks.
1691 *
1692 * NOTE! Since we don't hold any locks, it's not
1693 * even sure that "rq" stays as the right runqueue!
1694 * But we don't care, since "task_running()" will
1695 * return false if the runqueue has changed and p
1696 * is actually now running somewhere else!
1697 */
1698 while (task_running(rq, p))
1699 cpu_relax();
fa490cfd 1700
3a5c359a
AK
1701 /*
1702 * Ok, time to look more closely! We need the rq
1703 * lock now, to be *sure*. If we're wrong, we'll
1704 * just go back and repeat.
1705 */
1706 rq = task_rq_lock(p, &flags);
1707 running = task_running(rq, p);
1708 on_rq = p->se.on_rq;
1709 task_rq_unlock(rq, &flags);
fa490cfd 1710
3a5c359a
AK
1711 /*
1712 * Was it really running after all now that we
1713 * checked with the proper locks actually held?
1714 *
1715 * Oops. Go back and try again..
1716 */
1717 if (unlikely(running)) {
1718 cpu_relax();
1719 continue;
1720 }
fa490cfd 1721
3a5c359a
AK
1722 /*
1723 * It's not enough that it's not actively running,
1724 * it must be off the runqueue _entirely_, and not
1725 * preempted!
1726 *
1727 * So if it wa still runnable (but just not actively
1728 * running right now), it's preempted, and we should
1729 * yield - it could be a while.
1730 */
1731 if (unlikely(on_rq)) {
1732 schedule_timeout_uninterruptible(1);
1733 continue;
1734 }
fa490cfd 1735
3a5c359a
AK
1736 /*
1737 * Ahh, all good. It wasn't running, and it wasn't
1738 * runnable, which means that it will never become
1739 * running in the future either. We're all done!
1740 */
1741 break;
1742 }
1da177e4
LT
1743}
1744
1745/***
1746 * kick_process - kick a running thread to enter/exit the kernel
1747 * @p: the to-be-kicked thread
1748 *
1749 * Cause a process which is running on another CPU to enter
1750 * kernel-mode, without any delay. (to get signals handled.)
1751 *
1752 * NOTE: this function doesnt have to take the runqueue lock,
1753 * because all it wants to ensure is that the remote task enters
1754 * the kernel. If the IPI races and the task has been migrated
1755 * to another CPU then no harm is done and the purpose has been
1756 * achieved as well.
1757 */
36c8b586 1758void kick_process(struct task_struct *p)
1da177e4
LT
1759{
1760 int cpu;
1761
1762 preempt_disable();
1763 cpu = task_cpu(p);
1764 if ((cpu != smp_processor_id()) && task_curr(p))
1765 smp_send_reschedule(cpu);
1766 preempt_enable();
1767}
1768
1769/*
2dd73a4f
PW
1770 * Return a low guess at the load of a migration-source cpu weighted
1771 * according to the scheduling class and "nice" value.
1da177e4
LT
1772 *
1773 * We want to under-estimate the load of migration sources, to
1774 * balance conservatively.
1775 */
a9957449 1776static unsigned long source_load(int cpu, int type)
1da177e4 1777{
70b97a7f 1778 struct rq *rq = cpu_rq(cpu);
dd41f596 1779 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1780
3b0bd9bc 1781 if (type == 0)
dd41f596 1782 return total;
b910472d 1783
dd41f596 1784 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1785}
1786
1787/*
2dd73a4f
PW
1788 * Return a high guess at the load of a migration-target cpu weighted
1789 * according to the scheduling class and "nice" value.
1da177e4 1790 */
a9957449 1791static unsigned long target_load(int cpu, int type)
1da177e4 1792{
70b97a7f 1793 struct rq *rq = cpu_rq(cpu);
dd41f596 1794 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1795
7897986b 1796 if (type == 0)
dd41f596 1797 return total;
3b0bd9bc 1798
dd41f596 1799 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1800}
1801
1802/*
1803 * Return the average load per task on the cpu's run queue
1804 */
e7693a36 1805static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1806{
70b97a7f 1807 struct rq *rq = cpu_rq(cpu);
dd41f596 1808 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1809 unsigned long n = rq->nr_running;
1810
dd41f596 1811 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1812}
1813
147cbb4b
NP
1814/*
1815 * find_idlest_group finds and returns the least busy CPU group within the
1816 * domain.
1817 */
1818static struct sched_group *
1819find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1820{
1821 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1822 unsigned long min_load = ULONG_MAX, this_load = 0;
1823 int load_idx = sd->forkexec_idx;
1824 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1825
1826 do {
1827 unsigned long load, avg_load;
1828 int local_group;
1829 int i;
1830
da5a5522
BD
1831 /* Skip over this group if it has no CPUs allowed */
1832 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1833 continue;
da5a5522 1834
147cbb4b 1835 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1836
1837 /* Tally up the load of all CPUs in the group */
1838 avg_load = 0;
1839
1840 for_each_cpu_mask(i, group->cpumask) {
1841 /* Bias balancing toward cpus of our domain */
1842 if (local_group)
1843 load = source_load(i, load_idx);
1844 else
1845 load = target_load(i, load_idx);
1846
1847 avg_load += load;
1848 }
1849
1850 /* Adjust by relative CPU power of the group */
5517d86b
ED
1851 avg_load = sg_div_cpu_power(group,
1852 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1853
1854 if (local_group) {
1855 this_load = avg_load;
1856 this = group;
1857 } else if (avg_load < min_load) {
1858 min_load = avg_load;
1859 idlest = group;
1860 }
3a5c359a 1861 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1862
1863 if (!idlest || 100*this_load < imbalance*min_load)
1864 return NULL;
1865 return idlest;
1866}
1867
1868/*
0feaece9 1869 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1870 */
95cdf3b7 1871static int
7c16ec58
MT
1872find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1873 cpumask_t *tmp)
147cbb4b
NP
1874{
1875 unsigned long load, min_load = ULONG_MAX;
1876 int idlest = -1;
1877 int i;
1878
da5a5522 1879 /* Traverse only the allowed CPUs */
7c16ec58 1880 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 1881
7c16ec58 1882 for_each_cpu_mask(i, *tmp) {
2dd73a4f 1883 load = weighted_cpuload(i);
147cbb4b
NP
1884
1885 if (load < min_load || (load == min_load && i == this_cpu)) {
1886 min_load = load;
1887 idlest = i;
1888 }
1889 }
1890
1891 return idlest;
1892}
1893
476d139c
NP
1894/*
1895 * sched_balance_self: balance the current task (running on cpu) in domains
1896 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1897 * SD_BALANCE_EXEC.
1898 *
1899 * Balance, ie. select the least loaded group.
1900 *
1901 * Returns the target CPU number, or the same CPU if no balancing is needed.
1902 *
1903 * preempt must be disabled.
1904 */
1905static int sched_balance_self(int cpu, int flag)
1906{
1907 struct task_struct *t = current;
1908 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1909
c96d145e 1910 for_each_domain(cpu, tmp) {
9761eea8
IM
1911 /*
1912 * If power savings logic is enabled for a domain, stop there.
1913 */
5c45bf27
SS
1914 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1915 break;
476d139c
NP
1916 if (tmp->flags & flag)
1917 sd = tmp;
c96d145e 1918 }
476d139c
NP
1919
1920 while (sd) {
7c16ec58 1921 cpumask_t span, tmpmask;
476d139c 1922 struct sched_group *group;
1a848870
SS
1923 int new_cpu, weight;
1924
1925 if (!(sd->flags & flag)) {
1926 sd = sd->child;
1927 continue;
1928 }
476d139c
NP
1929
1930 span = sd->span;
1931 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1932 if (!group) {
1933 sd = sd->child;
1934 continue;
1935 }
476d139c 1936
7c16ec58 1937 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
1938 if (new_cpu == -1 || new_cpu == cpu) {
1939 /* Now try balancing at a lower domain level of cpu */
1940 sd = sd->child;
1941 continue;
1942 }
476d139c 1943
1a848870 1944 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1945 cpu = new_cpu;
476d139c
NP
1946 sd = NULL;
1947 weight = cpus_weight(span);
1948 for_each_domain(cpu, tmp) {
1949 if (weight <= cpus_weight(tmp->span))
1950 break;
1951 if (tmp->flags & flag)
1952 sd = tmp;
1953 }
1954 /* while loop will break here if sd == NULL */
1955 }
1956
1957 return cpu;
1958}
1959
1960#endif /* CONFIG_SMP */
1da177e4 1961
1da177e4
LT
1962/***
1963 * try_to_wake_up - wake up a thread
1964 * @p: the to-be-woken-up thread
1965 * @state: the mask of task states that can be woken
1966 * @sync: do a synchronous wakeup?
1967 *
1968 * Put it on the run-queue if it's not already there. The "current"
1969 * thread is always on the run-queue (except when the actual
1970 * re-schedule is in progress), and as such you're allowed to do
1971 * the simpler "current->state = TASK_RUNNING" to mark yourself
1972 * runnable without the overhead of this.
1973 *
1974 * returns failure only if the task is already active.
1975 */
36c8b586 1976static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1977{
cc367732 1978 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1979 unsigned long flags;
1980 long old_state;
70b97a7f 1981 struct rq *rq;
1da177e4 1982
b85d0667
IM
1983 if (!sched_feat(SYNC_WAKEUPS))
1984 sync = 0;
1985
04e2f174 1986 smp_wmb();
1da177e4
LT
1987 rq = task_rq_lock(p, &flags);
1988 old_state = p->state;
1989 if (!(old_state & state))
1990 goto out;
1991
dd41f596 1992 if (p->se.on_rq)
1da177e4
LT
1993 goto out_running;
1994
1995 cpu = task_cpu(p);
cc367732 1996 orig_cpu = cpu;
1da177e4
LT
1997 this_cpu = smp_processor_id();
1998
1999#ifdef CONFIG_SMP
2000 if (unlikely(task_running(rq, p)))
2001 goto out_activate;
2002
5d2f5a61
DA
2003 cpu = p->sched_class->select_task_rq(p, sync);
2004 if (cpu != orig_cpu) {
2005 set_task_cpu(p, cpu);
1da177e4
LT
2006 task_rq_unlock(rq, &flags);
2007 /* might preempt at this point */
2008 rq = task_rq_lock(p, &flags);
2009 old_state = p->state;
2010 if (!(old_state & state))
2011 goto out;
dd41f596 2012 if (p->se.on_rq)
1da177e4
LT
2013 goto out_running;
2014
2015 this_cpu = smp_processor_id();
2016 cpu = task_cpu(p);
2017 }
2018
e7693a36
GH
2019#ifdef CONFIG_SCHEDSTATS
2020 schedstat_inc(rq, ttwu_count);
2021 if (cpu == this_cpu)
2022 schedstat_inc(rq, ttwu_local);
2023 else {
2024 struct sched_domain *sd;
2025 for_each_domain(this_cpu, sd) {
2026 if (cpu_isset(cpu, sd->span)) {
2027 schedstat_inc(sd, ttwu_wake_remote);
2028 break;
2029 }
2030 }
2031 }
e7693a36
GH
2032#endif
2033
1da177e4
LT
2034out_activate:
2035#endif /* CONFIG_SMP */
cc367732
IM
2036 schedstat_inc(p, se.nr_wakeups);
2037 if (sync)
2038 schedstat_inc(p, se.nr_wakeups_sync);
2039 if (orig_cpu != cpu)
2040 schedstat_inc(p, se.nr_wakeups_migrate);
2041 if (cpu == this_cpu)
2042 schedstat_inc(p, se.nr_wakeups_local);
2043 else
2044 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2045 update_rq_clock(rq);
dd41f596 2046 activate_task(rq, p, 1);
1da177e4
LT
2047 success = 1;
2048
2049out_running:
4ae7d5ce
IM
2050 check_preempt_curr(rq, p);
2051
1da177e4 2052 p->state = TASK_RUNNING;
9a897c5a
SR
2053#ifdef CONFIG_SMP
2054 if (p->sched_class->task_wake_up)
2055 p->sched_class->task_wake_up(rq, p);
2056#endif
1da177e4
LT
2057out:
2058 task_rq_unlock(rq, &flags);
2059
2060 return success;
2061}
2062
7ad5b3a5 2063int wake_up_process(struct task_struct *p)
1da177e4 2064{
d9514f6c 2065 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2066}
1da177e4
LT
2067EXPORT_SYMBOL(wake_up_process);
2068
7ad5b3a5 2069int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2070{
2071 return try_to_wake_up(p, state, 0);
2072}
2073
1da177e4
LT
2074/*
2075 * Perform scheduler related setup for a newly forked process p.
2076 * p is forked by current.
dd41f596
IM
2077 *
2078 * __sched_fork() is basic setup used by init_idle() too:
2079 */
2080static void __sched_fork(struct task_struct *p)
2081{
dd41f596
IM
2082 p->se.exec_start = 0;
2083 p->se.sum_exec_runtime = 0;
f6cf891c 2084 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2085 p->se.last_wakeup = 0;
2086 p->se.avg_overlap = 0;
6cfb0d5d
IM
2087
2088#ifdef CONFIG_SCHEDSTATS
2089 p->se.wait_start = 0;
dd41f596
IM
2090 p->se.sum_sleep_runtime = 0;
2091 p->se.sleep_start = 0;
dd41f596
IM
2092 p->se.block_start = 0;
2093 p->se.sleep_max = 0;
2094 p->se.block_max = 0;
2095 p->se.exec_max = 0;
eba1ed4b 2096 p->se.slice_max = 0;
dd41f596 2097 p->se.wait_max = 0;
6cfb0d5d 2098#endif
476d139c 2099
fa717060 2100 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2101 p->se.on_rq = 0;
476d139c 2102
e107be36
AK
2103#ifdef CONFIG_PREEMPT_NOTIFIERS
2104 INIT_HLIST_HEAD(&p->preempt_notifiers);
2105#endif
2106
1da177e4
LT
2107 /*
2108 * We mark the process as running here, but have not actually
2109 * inserted it onto the runqueue yet. This guarantees that
2110 * nobody will actually run it, and a signal or other external
2111 * event cannot wake it up and insert it on the runqueue either.
2112 */
2113 p->state = TASK_RUNNING;
dd41f596
IM
2114}
2115
2116/*
2117 * fork()/clone()-time setup:
2118 */
2119void sched_fork(struct task_struct *p, int clone_flags)
2120{
2121 int cpu = get_cpu();
2122
2123 __sched_fork(p);
2124
2125#ifdef CONFIG_SMP
2126 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2127#endif
02e4bac2 2128 set_task_cpu(p, cpu);
b29739f9
IM
2129
2130 /*
2131 * Make sure we do not leak PI boosting priority to the child:
2132 */
2133 p->prio = current->normal_prio;
2ddbf952
HS
2134 if (!rt_prio(p->prio))
2135 p->sched_class = &fair_sched_class;
b29739f9 2136
52f17b6c 2137#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2138 if (likely(sched_info_on()))
52f17b6c 2139 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2140#endif
d6077cb8 2141#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2142 p->oncpu = 0;
2143#endif
1da177e4 2144#ifdef CONFIG_PREEMPT
4866cde0 2145 /* Want to start with kernel preemption disabled. */
a1261f54 2146 task_thread_info(p)->preempt_count = 1;
1da177e4 2147#endif
476d139c 2148 put_cpu();
1da177e4
LT
2149}
2150
2151/*
2152 * wake_up_new_task - wake up a newly created task for the first time.
2153 *
2154 * This function will do some initial scheduler statistics housekeeping
2155 * that must be done for every newly created context, then puts the task
2156 * on the runqueue and wakes it.
2157 */
7ad5b3a5 2158void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2159{
2160 unsigned long flags;
dd41f596 2161 struct rq *rq;
1da177e4
LT
2162
2163 rq = task_rq_lock(p, &flags);
147cbb4b 2164 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2165 update_rq_clock(rq);
1da177e4
LT
2166
2167 p->prio = effective_prio(p);
2168
b9dca1e0 2169 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2170 activate_task(rq, p, 0);
1da177e4 2171 } else {
1da177e4 2172 /*
dd41f596
IM
2173 * Let the scheduling class do new task startup
2174 * management (if any):
1da177e4 2175 */
ee0827d8 2176 p->sched_class->task_new(rq, p);
62fb1851 2177 inc_nr_running(p, rq);
1da177e4 2178 }
dd41f596 2179 check_preempt_curr(rq, p);
9a897c5a
SR
2180#ifdef CONFIG_SMP
2181 if (p->sched_class->task_wake_up)
2182 p->sched_class->task_wake_up(rq, p);
2183#endif
dd41f596 2184 task_rq_unlock(rq, &flags);
1da177e4
LT
2185}
2186
e107be36
AK
2187#ifdef CONFIG_PREEMPT_NOTIFIERS
2188
2189/**
421cee29
RD
2190 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2191 * @notifier: notifier struct to register
e107be36
AK
2192 */
2193void preempt_notifier_register(struct preempt_notifier *notifier)
2194{
2195 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2196}
2197EXPORT_SYMBOL_GPL(preempt_notifier_register);
2198
2199/**
2200 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2201 * @notifier: notifier struct to unregister
e107be36
AK
2202 *
2203 * This is safe to call from within a preemption notifier.
2204 */
2205void preempt_notifier_unregister(struct preempt_notifier *notifier)
2206{
2207 hlist_del(&notifier->link);
2208}
2209EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2210
2211static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2212{
2213 struct preempt_notifier *notifier;
2214 struct hlist_node *node;
2215
2216 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2217 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2218}
2219
2220static void
2221fire_sched_out_preempt_notifiers(struct task_struct *curr,
2222 struct task_struct *next)
2223{
2224 struct preempt_notifier *notifier;
2225 struct hlist_node *node;
2226
2227 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2228 notifier->ops->sched_out(notifier, next);
2229}
2230
2231#else
2232
2233static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2234{
2235}
2236
2237static void
2238fire_sched_out_preempt_notifiers(struct task_struct *curr,
2239 struct task_struct *next)
2240{
2241}
2242
2243#endif
2244
4866cde0
NP
2245/**
2246 * prepare_task_switch - prepare to switch tasks
2247 * @rq: the runqueue preparing to switch
421cee29 2248 * @prev: the current task that is being switched out
4866cde0
NP
2249 * @next: the task we are going to switch to.
2250 *
2251 * This is called with the rq lock held and interrupts off. It must
2252 * be paired with a subsequent finish_task_switch after the context
2253 * switch.
2254 *
2255 * prepare_task_switch sets up locking and calls architecture specific
2256 * hooks.
2257 */
e107be36
AK
2258static inline void
2259prepare_task_switch(struct rq *rq, struct task_struct *prev,
2260 struct task_struct *next)
4866cde0 2261{
e107be36 2262 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2263 prepare_lock_switch(rq, next);
2264 prepare_arch_switch(next);
2265}
2266
1da177e4
LT
2267/**
2268 * finish_task_switch - clean up after a task-switch
344babaa 2269 * @rq: runqueue associated with task-switch
1da177e4
LT
2270 * @prev: the thread we just switched away from.
2271 *
4866cde0
NP
2272 * finish_task_switch must be called after the context switch, paired
2273 * with a prepare_task_switch call before the context switch.
2274 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2275 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2276 *
2277 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2278 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2279 * with the lock held can cause deadlocks; see schedule() for
2280 * details.)
2281 */
a9957449 2282static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2283 __releases(rq->lock)
2284{
1da177e4 2285 struct mm_struct *mm = rq->prev_mm;
55a101f8 2286 long prev_state;
1da177e4
LT
2287
2288 rq->prev_mm = NULL;
2289
2290 /*
2291 * A task struct has one reference for the use as "current".
c394cc9f 2292 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2293 * schedule one last time. The schedule call will never return, and
2294 * the scheduled task must drop that reference.
c394cc9f 2295 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2296 * still held, otherwise prev could be scheduled on another cpu, die
2297 * there before we look at prev->state, and then the reference would
2298 * be dropped twice.
2299 * Manfred Spraul <manfred@colorfullife.com>
2300 */
55a101f8 2301 prev_state = prev->state;
4866cde0
NP
2302 finish_arch_switch(prev);
2303 finish_lock_switch(rq, prev);
9a897c5a
SR
2304#ifdef CONFIG_SMP
2305 if (current->sched_class->post_schedule)
2306 current->sched_class->post_schedule(rq);
2307#endif
e8fa1362 2308
e107be36 2309 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2310 if (mm)
2311 mmdrop(mm);
c394cc9f 2312 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2313 /*
2314 * Remove function-return probe instances associated with this
2315 * task and put them back on the free list.
9761eea8 2316 */
c6fd91f0 2317 kprobe_flush_task(prev);
1da177e4 2318 put_task_struct(prev);
c6fd91f0 2319 }
1da177e4
LT
2320}
2321
2322/**
2323 * schedule_tail - first thing a freshly forked thread must call.
2324 * @prev: the thread we just switched away from.
2325 */
36c8b586 2326asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2327 __releases(rq->lock)
2328{
70b97a7f
IM
2329 struct rq *rq = this_rq();
2330
4866cde0
NP
2331 finish_task_switch(rq, prev);
2332#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2333 /* In this case, finish_task_switch does not reenable preemption */
2334 preempt_enable();
2335#endif
1da177e4 2336 if (current->set_child_tid)
b488893a 2337 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2338}
2339
2340/*
2341 * context_switch - switch to the new MM and the new
2342 * thread's register state.
2343 */
dd41f596 2344static inline void
70b97a7f 2345context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2346 struct task_struct *next)
1da177e4 2347{
dd41f596 2348 struct mm_struct *mm, *oldmm;
1da177e4 2349
e107be36 2350 prepare_task_switch(rq, prev, next);
dd41f596
IM
2351 mm = next->mm;
2352 oldmm = prev->active_mm;
9226d125
ZA
2353 /*
2354 * For paravirt, this is coupled with an exit in switch_to to
2355 * combine the page table reload and the switch backend into
2356 * one hypercall.
2357 */
2358 arch_enter_lazy_cpu_mode();
2359
dd41f596 2360 if (unlikely(!mm)) {
1da177e4
LT
2361 next->active_mm = oldmm;
2362 atomic_inc(&oldmm->mm_count);
2363 enter_lazy_tlb(oldmm, next);
2364 } else
2365 switch_mm(oldmm, mm, next);
2366
dd41f596 2367 if (unlikely(!prev->mm)) {
1da177e4 2368 prev->active_mm = NULL;
1da177e4
LT
2369 rq->prev_mm = oldmm;
2370 }
3a5f5e48
IM
2371 /*
2372 * Since the runqueue lock will be released by the next
2373 * task (which is an invalid locking op but in the case
2374 * of the scheduler it's an obvious special-case), so we
2375 * do an early lockdep release here:
2376 */
2377#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2378 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2379#endif
1da177e4
LT
2380
2381 /* Here we just switch the register state and the stack. */
2382 switch_to(prev, next, prev);
2383
dd41f596
IM
2384 barrier();
2385 /*
2386 * this_rq must be evaluated again because prev may have moved
2387 * CPUs since it called schedule(), thus the 'rq' on its stack
2388 * frame will be invalid.
2389 */
2390 finish_task_switch(this_rq(), prev);
1da177e4
LT
2391}
2392
2393/*
2394 * nr_running, nr_uninterruptible and nr_context_switches:
2395 *
2396 * externally visible scheduler statistics: current number of runnable
2397 * threads, current number of uninterruptible-sleeping threads, total
2398 * number of context switches performed since bootup.
2399 */
2400unsigned long nr_running(void)
2401{
2402 unsigned long i, sum = 0;
2403
2404 for_each_online_cpu(i)
2405 sum += cpu_rq(i)->nr_running;
2406
2407 return sum;
2408}
2409
2410unsigned long nr_uninterruptible(void)
2411{
2412 unsigned long i, sum = 0;
2413
0a945022 2414 for_each_possible_cpu(i)
1da177e4
LT
2415 sum += cpu_rq(i)->nr_uninterruptible;
2416
2417 /*
2418 * Since we read the counters lockless, it might be slightly
2419 * inaccurate. Do not allow it to go below zero though:
2420 */
2421 if (unlikely((long)sum < 0))
2422 sum = 0;
2423
2424 return sum;
2425}
2426
2427unsigned long long nr_context_switches(void)
2428{
cc94abfc
SR
2429 int i;
2430 unsigned long long sum = 0;
1da177e4 2431
0a945022 2432 for_each_possible_cpu(i)
1da177e4
LT
2433 sum += cpu_rq(i)->nr_switches;
2434
2435 return sum;
2436}
2437
2438unsigned long nr_iowait(void)
2439{
2440 unsigned long i, sum = 0;
2441
0a945022 2442 for_each_possible_cpu(i)
1da177e4
LT
2443 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2444
2445 return sum;
2446}
2447
db1b1fef
JS
2448unsigned long nr_active(void)
2449{
2450 unsigned long i, running = 0, uninterruptible = 0;
2451
2452 for_each_online_cpu(i) {
2453 running += cpu_rq(i)->nr_running;
2454 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2455 }
2456
2457 if (unlikely((long)uninterruptible < 0))
2458 uninterruptible = 0;
2459
2460 return running + uninterruptible;
2461}
2462
48f24c4d 2463/*
dd41f596
IM
2464 * Update rq->cpu_load[] statistics. This function is usually called every
2465 * scheduler tick (TICK_NSEC).
48f24c4d 2466 */
dd41f596 2467static void update_cpu_load(struct rq *this_rq)
48f24c4d 2468{
495eca49 2469 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2470 int i, scale;
2471
2472 this_rq->nr_load_updates++;
dd41f596
IM
2473
2474 /* Update our load: */
2475 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2476 unsigned long old_load, new_load;
2477
2478 /* scale is effectively 1 << i now, and >> i divides by scale */
2479
2480 old_load = this_rq->cpu_load[i];
2481 new_load = this_load;
a25707f3
IM
2482 /*
2483 * Round up the averaging division if load is increasing. This
2484 * prevents us from getting stuck on 9 if the load is 10, for
2485 * example.
2486 */
2487 if (new_load > old_load)
2488 new_load += scale-1;
dd41f596
IM
2489 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2490 }
48f24c4d
IM
2491}
2492
dd41f596
IM
2493#ifdef CONFIG_SMP
2494
1da177e4
LT
2495/*
2496 * double_rq_lock - safely lock two runqueues
2497 *
2498 * Note this does not disable interrupts like task_rq_lock,
2499 * you need to do so manually before calling.
2500 */
70b97a7f 2501static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2502 __acquires(rq1->lock)
2503 __acquires(rq2->lock)
2504{
054b9108 2505 BUG_ON(!irqs_disabled());
1da177e4
LT
2506 if (rq1 == rq2) {
2507 spin_lock(&rq1->lock);
2508 __acquire(rq2->lock); /* Fake it out ;) */
2509 } else {
c96d145e 2510 if (rq1 < rq2) {
1da177e4
LT
2511 spin_lock(&rq1->lock);
2512 spin_lock(&rq2->lock);
2513 } else {
2514 spin_lock(&rq2->lock);
2515 spin_lock(&rq1->lock);
2516 }
2517 }
6e82a3be
IM
2518 update_rq_clock(rq1);
2519 update_rq_clock(rq2);
1da177e4
LT
2520}
2521
2522/*
2523 * double_rq_unlock - safely unlock two runqueues
2524 *
2525 * Note this does not restore interrupts like task_rq_unlock,
2526 * you need to do so manually after calling.
2527 */
70b97a7f 2528static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2529 __releases(rq1->lock)
2530 __releases(rq2->lock)
2531{
2532 spin_unlock(&rq1->lock);
2533 if (rq1 != rq2)
2534 spin_unlock(&rq2->lock);
2535 else
2536 __release(rq2->lock);
2537}
2538
2539/*
2540 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2541 */
e8fa1362 2542static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2543 __releases(this_rq->lock)
2544 __acquires(busiest->lock)
2545 __acquires(this_rq->lock)
2546{
e8fa1362
SR
2547 int ret = 0;
2548
054b9108
KK
2549 if (unlikely(!irqs_disabled())) {
2550 /* printk() doesn't work good under rq->lock */
2551 spin_unlock(&this_rq->lock);
2552 BUG_ON(1);
2553 }
1da177e4 2554 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2555 if (busiest < this_rq) {
1da177e4
LT
2556 spin_unlock(&this_rq->lock);
2557 spin_lock(&busiest->lock);
2558 spin_lock(&this_rq->lock);
e8fa1362 2559 ret = 1;
1da177e4
LT
2560 } else
2561 spin_lock(&busiest->lock);
2562 }
e8fa1362 2563 return ret;
1da177e4
LT
2564}
2565
1da177e4
LT
2566/*
2567 * If dest_cpu is allowed for this process, migrate the task to it.
2568 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2569 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2570 * the cpu_allowed mask is restored.
2571 */
36c8b586 2572static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2573{
70b97a7f 2574 struct migration_req req;
1da177e4 2575 unsigned long flags;
70b97a7f 2576 struct rq *rq;
1da177e4
LT
2577
2578 rq = task_rq_lock(p, &flags);
2579 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2580 || unlikely(cpu_is_offline(dest_cpu)))
2581 goto out;
2582
2583 /* force the process onto the specified CPU */
2584 if (migrate_task(p, dest_cpu, &req)) {
2585 /* Need to wait for migration thread (might exit: take ref). */
2586 struct task_struct *mt = rq->migration_thread;
36c8b586 2587
1da177e4
LT
2588 get_task_struct(mt);
2589 task_rq_unlock(rq, &flags);
2590 wake_up_process(mt);
2591 put_task_struct(mt);
2592 wait_for_completion(&req.done);
36c8b586 2593
1da177e4
LT
2594 return;
2595 }
2596out:
2597 task_rq_unlock(rq, &flags);
2598}
2599
2600/*
476d139c
NP
2601 * sched_exec - execve() is a valuable balancing opportunity, because at
2602 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2603 */
2604void sched_exec(void)
2605{
1da177e4 2606 int new_cpu, this_cpu = get_cpu();
476d139c 2607 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2608 put_cpu();
476d139c
NP
2609 if (new_cpu != this_cpu)
2610 sched_migrate_task(current, new_cpu);
1da177e4
LT
2611}
2612
2613/*
2614 * pull_task - move a task from a remote runqueue to the local runqueue.
2615 * Both runqueues must be locked.
2616 */
dd41f596
IM
2617static void pull_task(struct rq *src_rq, struct task_struct *p,
2618 struct rq *this_rq, int this_cpu)
1da177e4 2619{
2e1cb74a 2620 deactivate_task(src_rq, p, 0);
1da177e4 2621 set_task_cpu(p, this_cpu);
dd41f596 2622 activate_task(this_rq, p, 0);
1da177e4
LT
2623 /*
2624 * Note that idle threads have a prio of MAX_PRIO, for this test
2625 * to be always true for them.
2626 */
dd41f596 2627 check_preempt_curr(this_rq, p);
1da177e4
LT
2628}
2629
2630/*
2631 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2632 */
858119e1 2633static
70b97a7f 2634int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2635 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2636 int *all_pinned)
1da177e4
LT
2637{
2638 /*
2639 * We do not migrate tasks that are:
2640 * 1) running (obviously), or
2641 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2642 * 3) are cache-hot on their current CPU.
2643 */
cc367732
IM
2644 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2645 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2646 return 0;
cc367732 2647 }
81026794
NP
2648 *all_pinned = 0;
2649
cc367732
IM
2650 if (task_running(rq, p)) {
2651 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2652 return 0;
cc367732 2653 }
1da177e4 2654
da84d961
IM
2655 /*
2656 * Aggressive migration if:
2657 * 1) task is cache cold, or
2658 * 2) too many balance attempts have failed.
2659 */
2660
6bc1665b
IM
2661 if (!task_hot(p, rq->clock, sd) ||
2662 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2663#ifdef CONFIG_SCHEDSTATS
cc367732 2664 if (task_hot(p, rq->clock, sd)) {
da84d961 2665 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2666 schedstat_inc(p, se.nr_forced_migrations);
2667 }
da84d961
IM
2668#endif
2669 return 1;
2670 }
2671
cc367732
IM
2672 if (task_hot(p, rq->clock, sd)) {
2673 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2674 return 0;
cc367732 2675 }
1da177e4
LT
2676 return 1;
2677}
2678
e1d1484f
PW
2679static unsigned long
2680balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2681 unsigned long max_load_move, struct sched_domain *sd,
2682 enum cpu_idle_type idle, int *all_pinned,
2683 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2684{
b82d9fdd 2685 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2686 struct task_struct *p;
2687 long rem_load_move = max_load_move;
1da177e4 2688
e1d1484f 2689 if (max_load_move == 0)
1da177e4
LT
2690 goto out;
2691
81026794
NP
2692 pinned = 1;
2693
1da177e4 2694 /*
dd41f596 2695 * Start the load-balancing iterator:
1da177e4 2696 */
dd41f596
IM
2697 p = iterator->start(iterator->arg);
2698next:
b82d9fdd 2699 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2700 goto out;
50ddd969 2701 /*
b82d9fdd 2702 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2703 * skip a task if it will be the highest priority task (i.e. smallest
2704 * prio value) on its new queue regardless of its load weight
2705 */
dd41f596
IM
2706 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2707 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2708 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2709 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2710 p = iterator->next(iterator->arg);
2711 goto next;
1da177e4
LT
2712 }
2713
dd41f596 2714 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2715 pulled++;
dd41f596 2716 rem_load_move -= p->se.load.weight;
1da177e4 2717
2dd73a4f 2718 /*
b82d9fdd 2719 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2720 */
e1d1484f 2721 if (rem_load_move > 0) {
a4ac01c3
PW
2722 if (p->prio < *this_best_prio)
2723 *this_best_prio = p->prio;
dd41f596
IM
2724 p = iterator->next(iterator->arg);
2725 goto next;
1da177e4
LT
2726 }
2727out:
2728 /*
e1d1484f 2729 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2730 * so we can safely collect pull_task() stats here rather than
2731 * inside pull_task().
2732 */
2733 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2734
2735 if (all_pinned)
2736 *all_pinned = pinned;
e1d1484f
PW
2737
2738 return max_load_move - rem_load_move;
1da177e4
LT
2739}
2740
dd41f596 2741/*
43010659
PW
2742 * move_tasks tries to move up to max_load_move weighted load from busiest to
2743 * this_rq, as part of a balancing operation within domain "sd".
2744 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2745 *
2746 * Called with both runqueues locked.
2747 */
2748static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2749 unsigned long max_load_move,
dd41f596
IM
2750 struct sched_domain *sd, enum cpu_idle_type idle,
2751 int *all_pinned)
2752{
5522d5d5 2753 const struct sched_class *class = sched_class_highest;
43010659 2754 unsigned long total_load_moved = 0;
a4ac01c3 2755 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2756
2757 do {
43010659
PW
2758 total_load_moved +=
2759 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2760 max_load_move - total_load_moved,
a4ac01c3 2761 sd, idle, all_pinned, &this_best_prio);
dd41f596 2762 class = class->next;
43010659 2763 } while (class && max_load_move > total_load_moved);
dd41f596 2764
43010659
PW
2765 return total_load_moved > 0;
2766}
2767
e1d1484f
PW
2768static int
2769iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2770 struct sched_domain *sd, enum cpu_idle_type idle,
2771 struct rq_iterator *iterator)
2772{
2773 struct task_struct *p = iterator->start(iterator->arg);
2774 int pinned = 0;
2775
2776 while (p) {
2777 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2778 pull_task(busiest, p, this_rq, this_cpu);
2779 /*
2780 * Right now, this is only the second place pull_task()
2781 * is called, so we can safely collect pull_task()
2782 * stats here rather than inside pull_task().
2783 */
2784 schedstat_inc(sd, lb_gained[idle]);
2785
2786 return 1;
2787 }
2788 p = iterator->next(iterator->arg);
2789 }
2790
2791 return 0;
2792}
2793
43010659
PW
2794/*
2795 * move_one_task tries to move exactly one task from busiest to this_rq, as
2796 * part of active balancing operations within "domain".
2797 * Returns 1 if successful and 0 otherwise.
2798 *
2799 * Called with both runqueues locked.
2800 */
2801static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2802 struct sched_domain *sd, enum cpu_idle_type idle)
2803{
5522d5d5 2804 const struct sched_class *class;
43010659
PW
2805
2806 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2807 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2808 return 1;
2809
2810 return 0;
dd41f596
IM
2811}
2812
1da177e4
LT
2813/*
2814 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2815 * domain. It calculates and returns the amount of weighted load which
2816 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2817 */
2818static struct sched_group *
2819find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 2820 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 2821 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
2822{
2823 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2824 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2825 unsigned long max_pull;
2dd73a4f
PW
2826 unsigned long busiest_load_per_task, busiest_nr_running;
2827 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2828 int load_idx, group_imb = 0;
5c45bf27
SS
2829#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2830 int power_savings_balance = 1;
2831 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2832 unsigned long min_nr_running = ULONG_MAX;
2833 struct sched_group *group_min = NULL, *group_leader = NULL;
2834#endif
1da177e4
LT
2835
2836 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2837 busiest_load_per_task = busiest_nr_running = 0;
2838 this_load_per_task = this_nr_running = 0;
d15bcfdb 2839 if (idle == CPU_NOT_IDLE)
7897986b 2840 load_idx = sd->busy_idx;
d15bcfdb 2841 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2842 load_idx = sd->newidle_idx;
2843 else
2844 load_idx = sd->idle_idx;
1da177e4
LT
2845
2846 do {
908a7c1b 2847 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2848 int local_group;
2849 int i;
908a7c1b 2850 int __group_imb = 0;
783609c6 2851 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2852 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2853
2854 local_group = cpu_isset(this_cpu, group->cpumask);
2855
783609c6
SS
2856 if (local_group)
2857 balance_cpu = first_cpu(group->cpumask);
2858
1da177e4 2859 /* Tally up the load of all CPUs in the group */
2dd73a4f 2860 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2861 max_cpu_load = 0;
2862 min_cpu_load = ~0UL;
1da177e4
LT
2863
2864 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2865 struct rq *rq;
2866
2867 if (!cpu_isset(i, *cpus))
2868 continue;
2869
2870 rq = cpu_rq(i);
2dd73a4f 2871
9439aab8 2872 if (*sd_idle && rq->nr_running)
5969fe06
NP
2873 *sd_idle = 0;
2874
1da177e4 2875 /* Bias balancing toward cpus of our domain */
783609c6
SS
2876 if (local_group) {
2877 if (idle_cpu(i) && !first_idle_cpu) {
2878 first_idle_cpu = 1;
2879 balance_cpu = i;
2880 }
2881
a2000572 2882 load = target_load(i, load_idx);
908a7c1b 2883 } else {
a2000572 2884 load = source_load(i, load_idx);
908a7c1b
KC
2885 if (load > max_cpu_load)
2886 max_cpu_load = load;
2887 if (min_cpu_load > load)
2888 min_cpu_load = load;
2889 }
1da177e4
LT
2890
2891 avg_load += load;
2dd73a4f 2892 sum_nr_running += rq->nr_running;
dd41f596 2893 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2894 }
2895
783609c6
SS
2896 /*
2897 * First idle cpu or the first cpu(busiest) in this sched group
2898 * is eligible for doing load balancing at this and above
9439aab8
SS
2899 * domains. In the newly idle case, we will allow all the cpu's
2900 * to do the newly idle load balance.
783609c6 2901 */
9439aab8
SS
2902 if (idle != CPU_NEWLY_IDLE && local_group &&
2903 balance_cpu != this_cpu && balance) {
783609c6
SS
2904 *balance = 0;
2905 goto ret;
2906 }
2907
1da177e4 2908 total_load += avg_load;
5517d86b 2909 total_pwr += group->__cpu_power;
1da177e4
LT
2910
2911 /* Adjust by relative CPU power of the group */
5517d86b
ED
2912 avg_load = sg_div_cpu_power(group,
2913 avg_load * SCHED_LOAD_SCALE);
1da177e4 2914
908a7c1b
KC
2915 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2916 __group_imb = 1;
2917
5517d86b 2918 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2919
1da177e4
LT
2920 if (local_group) {
2921 this_load = avg_load;
2922 this = group;
2dd73a4f
PW
2923 this_nr_running = sum_nr_running;
2924 this_load_per_task = sum_weighted_load;
2925 } else if (avg_load > max_load &&
908a7c1b 2926 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2927 max_load = avg_load;
2928 busiest = group;
2dd73a4f
PW
2929 busiest_nr_running = sum_nr_running;
2930 busiest_load_per_task = sum_weighted_load;
908a7c1b 2931 group_imb = __group_imb;
1da177e4 2932 }
5c45bf27
SS
2933
2934#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2935 /*
2936 * Busy processors will not participate in power savings
2937 * balance.
2938 */
dd41f596
IM
2939 if (idle == CPU_NOT_IDLE ||
2940 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2941 goto group_next;
5c45bf27
SS
2942
2943 /*
2944 * If the local group is idle or completely loaded
2945 * no need to do power savings balance at this domain
2946 */
2947 if (local_group && (this_nr_running >= group_capacity ||
2948 !this_nr_running))
2949 power_savings_balance = 0;
2950
dd41f596 2951 /*
5c45bf27
SS
2952 * If a group is already running at full capacity or idle,
2953 * don't include that group in power savings calculations
dd41f596
IM
2954 */
2955 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2956 || !sum_nr_running)
dd41f596 2957 goto group_next;
5c45bf27 2958
dd41f596 2959 /*
5c45bf27 2960 * Calculate the group which has the least non-idle load.
dd41f596
IM
2961 * This is the group from where we need to pick up the load
2962 * for saving power
2963 */
2964 if ((sum_nr_running < min_nr_running) ||
2965 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2966 first_cpu(group->cpumask) <
2967 first_cpu(group_min->cpumask))) {
dd41f596
IM
2968 group_min = group;
2969 min_nr_running = sum_nr_running;
5c45bf27
SS
2970 min_load_per_task = sum_weighted_load /
2971 sum_nr_running;
dd41f596 2972 }
5c45bf27 2973
dd41f596 2974 /*
5c45bf27 2975 * Calculate the group which is almost near its
dd41f596
IM
2976 * capacity but still has some space to pick up some load
2977 * from other group and save more power
2978 */
2979 if (sum_nr_running <= group_capacity - 1) {
2980 if (sum_nr_running > leader_nr_running ||
2981 (sum_nr_running == leader_nr_running &&
2982 first_cpu(group->cpumask) >
2983 first_cpu(group_leader->cpumask))) {
2984 group_leader = group;
2985 leader_nr_running = sum_nr_running;
2986 }
48f24c4d 2987 }
5c45bf27
SS
2988group_next:
2989#endif
1da177e4
LT
2990 group = group->next;
2991 } while (group != sd->groups);
2992
2dd73a4f 2993 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2994 goto out_balanced;
2995
2996 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2997
2998 if (this_load >= avg_load ||
2999 100*max_load <= sd->imbalance_pct*this_load)
3000 goto out_balanced;
3001
2dd73a4f 3002 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3003 if (group_imb)
3004 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3005
1da177e4
LT
3006 /*
3007 * We're trying to get all the cpus to the average_load, so we don't
3008 * want to push ourselves above the average load, nor do we wish to
3009 * reduce the max loaded cpu below the average load, as either of these
3010 * actions would just result in more rebalancing later, and ping-pong
3011 * tasks around. Thus we look for the minimum possible imbalance.
3012 * Negative imbalances (*we* are more loaded than anyone else) will
3013 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3014 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3015 * appear as very large values with unsigned longs.
3016 */
2dd73a4f
PW
3017 if (max_load <= busiest_load_per_task)
3018 goto out_balanced;
3019
3020 /*
3021 * In the presence of smp nice balancing, certain scenarios can have
3022 * max load less than avg load(as we skip the groups at or below
3023 * its cpu_power, while calculating max_load..)
3024 */
3025 if (max_load < avg_load) {
3026 *imbalance = 0;
3027 goto small_imbalance;
3028 }
0c117f1b
SS
3029
3030 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3031 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3032
1da177e4 3033 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3034 *imbalance = min(max_pull * busiest->__cpu_power,
3035 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3036 / SCHED_LOAD_SCALE;
3037
2dd73a4f
PW
3038 /*
3039 * if *imbalance is less than the average load per runnable task
3040 * there is no gaurantee that any tasks will be moved so we'll have
3041 * a think about bumping its value to force at least one task to be
3042 * moved
3043 */
7fd0d2dd 3044 if (*imbalance < busiest_load_per_task) {
48f24c4d 3045 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3046 unsigned int imbn;
3047
3048small_imbalance:
3049 pwr_move = pwr_now = 0;
3050 imbn = 2;
3051 if (this_nr_running) {
3052 this_load_per_task /= this_nr_running;
3053 if (busiest_load_per_task > this_load_per_task)
3054 imbn = 1;
3055 } else
3056 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3057
dd41f596
IM
3058 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3059 busiest_load_per_task * imbn) {
2dd73a4f 3060 *imbalance = busiest_load_per_task;
1da177e4
LT
3061 return busiest;
3062 }
3063
3064 /*
3065 * OK, we don't have enough imbalance to justify moving tasks,
3066 * however we may be able to increase total CPU power used by
3067 * moving them.
3068 */
3069
5517d86b
ED
3070 pwr_now += busiest->__cpu_power *
3071 min(busiest_load_per_task, max_load);
3072 pwr_now += this->__cpu_power *
3073 min(this_load_per_task, this_load);
1da177e4
LT
3074 pwr_now /= SCHED_LOAD_SCALE;
3075
3076 /* Amount of load we'd subtract */
5517d86b
ED
3077 tmp = sg_div_cpu_power(busiest,
3078 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3079 if (max_load > tmp)
5517d86b 3080 pwr_move += busiest->__cpu_power *
2dd73a4f 3081 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3082
3083 /* Amount of load we'd add */
5517d86b 3084 if (max_load * busiest->__cpu_power <
33859f7f 3085 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3086 tmp = sg_div_cpu_power(this,
3087 max_load * busiest->__cpu_power);
1da177e4 3088 else
5517d86b
ED
3089 tmp = sg_div_cpu_power(this,
3090 busiest_load_per_task * SCHED_LOAD_SCALE);
3091 pwr_move += this->__cpu_power *
3092 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3093 pwr_move /= SCHED_LOAD_SCALE;
3094
3095 /* Move if we gain throughput */
7fd0d2dd
SS
3096 if (pwr_move > pwr_now)
3097 *imbalance = busiest_load_per_task;
1da177e4
LT
3098 }
3099
1da177e4
LT
3100 return busiest;
3101
3102out_balanced:
5c45bf27 3103#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3104 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3105 goto ret;
1da177e4 3106
5c45bf27
SS
3107 if (this == group_leader && group_leader != group_min) {
3108 *imbalance = min_load_per_task;
3109 return group_min;
3110 }
5c45bf27 3111#endif
783609c6 3112ret:
1da177e4
LT
3113 *imbalance = 0;
3114 return NULL;
3115}
3116
3117/*
3118 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3119 */
70b97a7f 3120static struct rq *
d15bcfdb 3121find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3122 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3123{
70b97a7f 3124 struct rq *busiest = NULL, *rq;
2dd73a4f 3125 unsigned long max_load = 0;
1da177e4
LT
3126 int i;
3127
3128 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3129 unsigned long wl;
0a2966b4
CL
3130
3131 if (!cpu_isset(i, *cpus))
3132 continue;
3133
48f24c4d 3134 rq = cpu_rq(i);
dd41f596 3135 wl = weighted_cpuload(i);
2dd73a4f 3136
dd41f596 3137 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3138 continue;
1da177e4 3139
dd41f596
IM
3140 if (wl > max_load) {
3141 max_load = wl;
48f24c4d 3142 busiest = rq;
1da177e4
LT
3143 }
3144 }
3145
3146 return busiest;
3147}
3148
77391d71
NP
3149/*
3150 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3151 * so long as it is large enough.
3152 */
3153#define MAX_PINNED_INTERVAL 512
3154
1da177e4
LT
3155/*
3156 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3157 * tasks if there is an imbalance.
1da177e4 3158 */
70b97a7f 3159static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3160 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3161 int *balance, cpumask_t *cpus)
1da177e4 3162{
43010659 3163 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3164 struct sched_group *group;
1da177e4 3165 unsigned long imbalance;
70b97a7f 3166 struct rq *busiest;
fe2eea3f 3167 unsigned long flags;
5969fe06 3168
7c16ec58
MT
3169 cpus_setall(*cpus);
3170
89c4710e
SS
3171 /*
3172 * When power savings policy is enabled for the parent domain, idle
3173 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3174 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3175 * portraying it as CPU_NOT_IDLE.
89c4710e 3176 */
d15bcfdb 3177 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3178 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3179 sd_idle = 1;
1da177e4 3180
2d72376b 3181 schedstat_inc(sd, lb_count[idle]);
1da177e4 3182
0a2966b4
CL
3183redo:
3184 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3185 cpus, balance);
783609c6 3186
06066714 3187 if (*balance == 0)
783609c6 3188 goto out_balanced;
783609c6 3189
1da177e4
LT
3190 if (!group) {
3191 schedstat_inc(sd, lb_nobusyg[idle]);
3192 goto out_balanced;
3193 }
3194
7c16ec58 3195 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3196 if (!busiest) {
3197 schedstat_inc(sd, lb_nobusyq[idle]);
3198 goto out_balanced;
3199 }
3200
db935dbd 3201 BUG_ON(busiest == this_rq);
1da177e4
LT
3202
3203 schedstat_add(sd, lb_imbalance[idle], imbalance);
3204
43010659 3205 ld_moved = 0;
1da177e4
LT
3206 if (busiest->nr_running > 1) {
3207 /*
3208 * Attempt to move tasks. If find_busiest_group has found
3209 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3210 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3211 * correctly treated as an imbalance.
3212 */
fe2eea3f 3213 local_irq_save(flags);
e17224bf 3214 double_rq_lock(this_rq, busiest);
43010659 3215 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3216 imbalance, sd, idle, &all_pinned);
e17224bf 3217 double_rq_unlock(this_rq, busiest);
fe2eea3f 3218 local_irq_restore(flags);
81026794 3219
46cb4b7c
SS
3220 /*
3221 * some other cpu did the load balance for us.
3222 */
43010659 3223 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3224 resched_cpu(this_cpu);
3225
81026794 3226 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3227 if (unlikely(all_pinned)) {
7c16ec58
MT
3228 cpu_clear(cpu_of(busiest), *cpus);
3229 if (!cpus_empty(*cpus))
0a2966b4 3230 goto redo;
81026794 3231 goto out_balanced;
0a2966b4 3232 }
1da177e4 3233 }
81026794 3234
43010659 3235 if (!ld_moved) {
1da177e4
LT
3236 schedstat_inc(sd, lb_failed[idle]);
3237 sd->nr_balance_failed++;
3238
3239 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3240
fe2eea3f 3241 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3242
3243 /* don't kick the migration_thread, if the curr
3244 * task on busiest cpu can't be moved to this_cpu
3245 */
3246 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3247 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3248 all_pinned = 1;
3249 goto out_one_pinned;
3250 }
3251
1da177e4
LT
3252 if (!busiest->active_balance) {
3253 busiest->active_balance = 1;
3254 busiest->push_cpu = this_cpu;
81026794 3255 active_balance = 1;
1da177e4 3256 }
fe2eea3f 3257 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3258 if (active_balance)
1da177e4
LT
3259 wake_up_process(busiest->migration_thread);
3260
3261 /*
3262 * We've kicked active balancing, reset the failure
3263 * counter.
3264 */
39507451 3265 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3266 }
81026794 3267 } else
1da177e4
LT
3268 sd->nr_balance_failed = 0;
3269
81026794 3270 if (likely(!active_balance)) {
1da177e4
LT
3271 /* We were unbalanced, so reset the balancing interval */
3272 sd->balance_interval = sd->min_interval;
81026794
NP
3273 } else {
3274 /*
3275 * If we've begun active balancing, start to back off. This
3276 * case may not be covered by the all_pinned logic if there
3277 * is only 1 task on the busy runqueue (because we don't call
3278 * move_tasks).
3279 */
3280 if (sd->balance_interval < sd->max_interval)
3281 sd->balance_interval *= 2;
1da177e4
LT
3282 }
3283
43010659 3284 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3285 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3286 return -1;
43010659 3287 return ld_moved;
1da177e4
LT
3288
3289out_balanced:
1da177e4
LT
3290 schedstat_inc(sd, lb_balanced[idle]);
3291
16cfb1c0 3292 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3293
3294out_one_pinned:
1da177e4 3295 /* tune up the balancing interval */
77391d71
NP
3296 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3297 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3298 sd->balance_interval *= 2;
3299
48f24c4d 3300 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3301 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3302 return -1;
1da177e4
LT
3303 return 0;
3304}
3305
3306/*
3307 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3308 * tasks if there is an imbalance.
3309 *
d15bcfdb 3310 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3311 * this_rq is locked.
3312 */
48f24c4d 3313static int
7c16ec58
MT
3314load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3315 cpumask_t *cpus)
1da177e4
LT
3316{
3317 struct sched_group *group;
70b97a7f 3318 struct rq *busiest = NULL;
1da177e4 3319 unsigned long imbalance;
43010659 3320 int ld_moved = 0;
5969fe06 3321 int sd_idle = 0;
969bb4e4 3322 int all_pinned = 0;
7c16ec58
MT
3323
3324 cpus_setall(*cpus);
5969fe06 3325
89c4710e
SS
3326 /*
3327 * When power savings policy is enabled for the parent domain, idle
3328 * sibling can pick up load irrespective of busy siblings. In this case,
3329 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3330 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3331 */
3332 if (sd->flags & SD_SHARE_CPUPOWER &&
3333 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3334 sd_idle = 1;
1da177e4 3335
2d72376b 3336 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3337redo:
d15bcfdb 3338 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3339 &sd_idle, cpus, NULL);
1da177e4 3340 if (!group) {
d15bcfdb 3341 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3342 goto out_balanced;
1da177e4
LT
3343 }
3344
7c16ec58 3345 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3346 if (!busiest) {
d15bcfdb 3347 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3348 goto out_balanced;
1da177e4
LT
3349 }
3350
db935dbd
NP
3351 BUG_ON(busiest == this_rq);
3352
d15bcfdb 3353 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3354
43010659 3355 ld_moved = 0;
d6d5cfaf
NP
3356 if (busiest->nr_running > 1) {
3357 /* Attempt to move tasks */
3358 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3359 /* this_rq->clock is already updated */
3360 update_rq_clock(busiest);
43010659 3361 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3362 imbalance, sd, CPU_NEWLY_IDLE,
3363 &all_pinned);
d6d5cfaf 3364 spin_unlock(&busiest->lock);
0a2966b4 3365
969bb4e4 3366 if (unlikely(all_pinned)) {
7c16ec58
MT
3367 cpu_clear(cpu_of(busiest), *cpus);
3368 if (!cpus_empty(*cpus))
0a2966b4
CL
3369 goto redo;
3370 }
d6d5cfaf
NP
3371 }
3372
43010659 3373 if (!ld_moved) {
d15bcfdb 3374 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3375 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3376 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3377 return -1;
3378 } else
16cfb1c0 3379 sd->nr_balance_failed = 0;
1da177e4 3380
43010659 3381 return ld_moved;
16cfb1c0
NP
3382
3383out_balanced:
d15bcfdb 3384 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3385 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3386 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3387 return -1;
16cfb1c0 3388 sd->nr_balance_failed = 0;
48f24c4d 3389
16cfb1c0 3390 return 0;
1da177e4
LT
3391}
3392
3393/*
3394 * idle_balance is called by schedule() if this_cpu is about to become
3395 * idle. Attempts to pull tasks from other CPUs.
3396 */
70b97a7f 3397static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3398{
3399 struct sched_domain *sd;
dd41f596
IM
3400 int pulled_task = -1;
3401 unsigned long next_balance = jiffies + HZ;
7c16ec58 3402 cpumask_t tmpmask;
1da177e4
LT
3403
3404 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3405 unsigned long interval;
3406
3407 if (!(sd->flags & SD_LOAD_BALANCE))
3408 continue;
3409
3410 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3411 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3412 pulled_task = load_balance_newidle(this_cpu, this_rq,
3413 sd, &tmpmask);
92c4ca5c
CL
3414
3415 interval = msecs_to_jiffies(sd->balance_interval);
3416 if (time_after(next_balance, sd->last_balance + interval))
3417 next_balance = sd->last_balance + interval;
3418 if (pulled_task)
3419 break;
1da177e4 3420 }
dd41f596 3421 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3422 /*
3423 * We are going idle. next_balance may be set based on
3424 * a busy processor. So reset next_balance.
3425 */
3426 this_rq->next_balance = next_balance;
dd41f596 3427 }
1da177e4
LT
3428}
3429
3430/*
3431 * active_load_balance is run by migration threads. It pushes running tasks
3432 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3433 * running on each physical CPU where possible, and avoids physical /
3434 * logical imbalances.
3435 *
3436 * Called with busiest_rq locked.
3437 */
70b97a7f 3438static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3439{
39507451 3440 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3441 struct sched_domain *sd;
3442 struct rq *target_rq;
39507451 3443
48f24c4d 3444 /* Is there any task to move? */
39507451 3445 if (busiest_rq->nr_running <= 1)
39507451
NP
3446 return;
3447
3448 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3449
3450 /*
39507451 3451 * This condition is "impossible", if it occurs
41a2d6cf 3452 * we need to fix it. Originally reported by
39507451 3453 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3454 */
39507451 3455 BUG_ON(busiest_rq == target_rq);
1da177e4 3456
39507451
NP
3457 /* move a task from busiest_rq to target_rq */
3458 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3459 update_rq_clock(busiest_rq);
3460 update_rq_clock(target_rq);
39507451
NP
3461
3462 /* Search for an sd spanning us and the target CPU. */
c96d145e 3463 for_each_domain(target_cpu, sd) {
39507451 3464 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3465 cpu_isset(busiest_cpu, sd->span))
39507451 3466 break;
c96d145e 3467 }
39507451 3468
48f24c4d 3469 if (likely(sd)) {
2d72376b 3470 schedstat_inc(sd, alb_count);
39507451 3471
43010659
PW
3472 if (move_one_task(target_rq, target_cpu, busiest_rq,
3473 sd, CPU_IDLE))
48f24c4d
IM
3474 schedstat_inc(sd, alb_pushed);
3475 else
3476 schedstat_inc(sd, alb_failed);
3477 }
39507451 3478 spin_unlock(&target_rq->lock);
1da177e4
LT
3479}
3480
46cb4b7c
SS
3481#ifdef CONFIG_NO_HZ
3482static struct {
3483 atomic_t load_balancer;
41a2d6cf 3484 cpumask_t cpu_mask;
46cb4b7c
SS
3485} nohz ____cacheline_aligned = {
3486 .load_balancer = ATOMIC_INIT(-1),
3487 .cpu_mask = CPU_MASK_NONE,
3488};
3489
7835b98b 3490/*
46cb4b7c
SS
3491 * This routine will try to nominate the ilb (idle load balancing)
3492 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3493 * load balancing on behalf of all those cpus. If all the cpus in the system
3494 * go into this tickless mode, then there will be no ilb owner (as there is
3495 * no need for one) and all the cpus will sleep till the next wakeup event
3496 * arrives...
3497 *
3498 * For the ilb owner, tick is not stopped. And this tick will be used
3499 * for idle load balancing. ilb owner will still be part of
3500 * nohz.cpu_mask..
7835b98b 3501 *
46cb4b7c
SS
3502 * While stopping the tick, this cpu will become the ilb owner if there
3503 * is no other owner. And will be the owner till that cpu becomes busy
3504 * or if all cpus in the system stop their ticks at which point
3505 * there is no need for ilb owner.
3506 *
3507 * When the ilb owner becomes busy, it nominates another owner, during the
3508 * next busy scheduler_tick()
3509 */
3510int select_nohz_load_balancer(int stop_tick)
3511{
3512 int cpu = smp_processor_id();
3513
3514 if (stop_tick) {
3515 cpu_set(cpu, nohz.cpu_mask);
3516 cpu_rq(cpu)->in_nohz_recently = 1;
3517
3518 /*
3519 * If we are going offline and still the leader, give up!
3520 */
3521 if (cpu_is_offline(cpu) &&
3522 atomic_read(&nohz.load_balancer) == cpu) {
3523 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3524 BUG();
3525 return 0;
3526 }
3527
3528 /* time for ilb owner also to sleep */
3529 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3530 if (atomic_read(&nohz.load_balancer) == cpu)
3531 atomic_set(&nohz.load_balancer, -1);
3532 return 0;
3533 }
3534
3535 if (atomic_read(&nohz.load_balancer) == -1) {
3536 /* make me the ilb owner */
3537 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3538 return 1;
3539 } else if (atomic_read(&nohz.load_balancer) == cpu)
3540 return 1;
3541 } else {
3542 if (!cpu_isset(cpu, nohz.cpu_mask))
3543 return 0;
3544
3545 cpu_clear(cpu, nohz.cpu_mask);
3546
3547 if (atomic_read(&nohz.load_balancer) == cpu)
3548 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3549 BUG();
3550 }
3551 return 0;
3552}
3553#endif
3554
3555static DEFINE_SPINLOCK(balancing);
3556
3557/*
7835b98b
CL
3558 * It checks each scheduling domain to see if it is due to be balanced,
3559 * and initiates a balancing operation if so.
3560 *
3561 * Balancing parameters are set up in arch_init_sched_domains.
3562 */
a9957449 3563static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3564{
46cb4b7c
SS
3565 int balance = 1;
3566 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3567 unsigned long interval;
3568 struct sched_domain *sd;
46cb4b7c 3569 /* Earliest time when we have to do rebalance again */
c9819f45 3570 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3571 int update_next_balance = 0;
7c16ec58 3572 cpumask_t tmp;
1da177e4 3573
46cb4b7c 3574 for_each_domain(cpu, sd) {
1da177e4
LT
3575 if (!(sd->flags & SD_LOAD_BALANCE))
3576 continue;
3577
3578 interval = sd->balance_interval;
d15bcfdb 3579 if (idle != CPU_IDLE)
1da177e4
LT
3580 interval *= sd->busy_factor;
3581
3582 /* scale ms to jiffies */
3583 interval = msecs_to_jiffies(interval);
3584 if (unlikely(!interval))
3585 interval = 1;
dd41f596
IM
3586 if (interval > HZ*NR_CPUS/10)
3587 interval = HZ*NR_CPUS/10;
3588
1da177e4 3589
08c183f3
CL
3590 if (sd->flags & SD_SERIALIZE) {
3591 if (!spin_trylock(&balancing))
3592 goto out;
3593 }
3594
c9819f45 3595 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3596 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3597 /*
3598 * We've pulled tasks over so either we're no
5969fe06
NP
3599 * longer idle, or one of our SMT siblings is
3600 * not idle.
3601 */
d15bcfdb 3602 idle = CPU_NOT_IDLE;
1da177e4 3603 }
1bd77f2d 3604 sd->last_balance = jiffies;
1da177e4 3605 }
08c183f3
CL
3606 if (sd->flags & SD_SERIALIZE)
3607 spin_unlock(&balancing);
3608out:
f549da84 3609 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3610 next_balance = sd->last_balance + interval;
f549da84
SS
3611 update_next_balance = 1;
3612 }
783609c6
SS
3613
3614 /*
3615 * Stop the load balance at this level. There is another
3616 * CPU in our sched group which is doing load balancing more
3617 * actively.
3618 */
3619 if (!balance)
3620 break;
1da177e4 3621 }
f549da84
SS
3622
3623 /*
3624 * next_balance will be updated only when there is a need.
3625 * When the cpu is attached to null domain for ex, it will not be
3626 * updated.
3627 */
3628 if (likely(update_next_balance))
3629 rq->next_balance = next_balance;
46cb4b7c
SS
3630}
3631
3632/*
3633 * run_rebalance_domains is triggered when needed from the scheduler tick.
3634 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3635 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3636 */
3637static void run_rebalance_domains(struct softirq_action *h)
3638{
dd41f596
IM
3639 int this_cpu = smp_processor_id();
3640 struct rq *this_rq = cpu_rq(this_cpu);
3641 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3642 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3643
dd41f596 3644 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3645
3646#ifdef CONFIG_NO_HZ
3647 /*
3648 * If this cpu is the owner for idle load balancing, then do the
3649 * balancing on behalf of the other idle cpus whose ticks are
3650 * stopped.
3651 */
dd41f596
IM
3652 if (this_rq->idle_at_tick &&
3653 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3654 cpumask_t cpus = nohz.cpu_mask;
3655 struct rq *rq;
3656 int balance_cpu;
3657
dd41f596 3658 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3659 for_each_cpu_mask(balance_cpu, cpus) {
3660 /*
3661 * If this cpu gets work to do, stop the load balancing
3662 * work being done for other cpus. Next load
3663 * balancing owner will pick it up.
3664 */
3665 if (need_resched())
3666 break;
3667
de0cf899 3668 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3669
3670 rq = cpu_rq(balance_cpu);
dd41f596
IM
3671 if (time_after(this_rq->next_balance, rq->next_balance))
3672 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3673 }
3674 }
3675#endif
3676}
3677
3678/*
3679 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3680 *
3681 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3682 * idle load balancing owner or decide to stop the periodic load balancing,
3683 * if the whole system is idle.
3684 */
dd41f596 3685static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3686{
46cb4b7c
SS
3687#ifdef CONFIG_NO_HZ
3688 /*
3689 * If we were in the nohz mode recently and busy at the current
3690 * scheduler tick, then check if we need to nominate new idle
3691 * load balancer.
3692 */
3693 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3694 rq->in_nohz_recently = 0;
3695
3696 if (atomic_read(&nohz.load_balancer) == cpu) {
3697 cpu_clear(cpu, nohz.cpu_mask);
3698 atomic_set(&nohz.load_balancer, -1);
3699 }
3700
3701 if (atomic_read(&nohz.load_balancer) == -1) {
3702 /*
3703 * simple selection for now: Nominate the
3704 * first cpu in the nohz list to be the next
3705 * ilb owner.
3706 *
3707 * TBD: Traverse the sched domains and nominate
3708 * the nearest cpu in the nohz.cpu_mask.
3709 */
3710 int ilb = first_cpu(nohz.cpu_mask);
3711
434d53b0 3712 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3713 resched_cpu(ilb);
3714 }
3715 }
3716
3717 /*
3718 * If this cpu is idle and doing idle load balancing for all the
3719 * cpus with ticks stopped, is it time for that to stop?
3720 */
3721 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3722 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3723 resched_cpu(cpu);
3724 return;
3725 }
3726
3727 /*
3728 * If this cpu is idle and the idle load balancing is done by
3729 * someone else, then no need raise the SCHED_SOFTIRQ
3730 */
3731 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3732 cpu_isset(cpu, nohz.cpu_mask))
3733 return;
3734#endif
3735 if (time_after_eq(jiffies, rq->next_balance))
3736 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3737}
dd41f596
IM
3738
3739#else /* CONFIG_SMP */
3740
1da177e4
LT
3741/*
3742 * on UP we do not need to balance between CPUs:
3743 */
70b97a7f 3744static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3745{
3746}
dd41f596 3747
1da177e4
LT
3748#endif
3749
1da177e4
LT
3750DEFINE_PER_CPU(struct kernel_stat, kstat);
3751
3752EXPORT_PER_CPU_SYMBOL(kstat);
3753
3754/*
41b86e9c
IM
3755 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3756 * that have not yet been banked in case the task is currently running.
1da177e4 3757 */
41b86e9c 3758unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3759{
1da177e4 3760 unsigned long flags;
41b86e9c
IM
3761 u64 ns, delta_exec;
3762 struct rq *rq;
48f24c4d 3763
41b86e9c
IM
3764 rq = task_rq_lock(p, &flags);
3765 ns = p->se.sum_exec_runtime;
051a1d1a 3766 if (task_current(rq, p)) {
a8e504d2
IM
3767 update_rq_clock(rq);
3768 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3769 if ((s64)delta_exec > 0)
3770 ns += delta_exec;
3771 }
3772 task_rq_unlock(rq, &flags);
48f24c4d 3773
1da177e4
LT
3774 return ns;
3775}
3776
1da177e4
LT
3777/*
3778 * Account user cpu time to a process.
3779 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3780 * @cputime: the cpu time spent in user space since the last update
3781 */
3782void account_user_time(struct task_struct *p, cputime_t cputime)
3783{
3784 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3785 cputime64_t tmp;
3786
3787 p->utime = cputime_add(p->utime, cputime);
3788
3789 /* Add user time to cpustat. */
3790 tmp = cputime_to_cputime64(cputime);
3791 if (TASK_NICE(p) > 0)
3792 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3793 else
3794 cpustat->user = cputime64_add(cpustat->user, tmp);
3795}
3796
94886b84
LV
3797/*
3798 * Account guest cpu time to a process.
3799 * @p: the process that the cpu time gets accounted to
3800 * @cputime: the cpu time spent in virtual machine since the last update
3801 */
f7402e03 3802static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3803{
3804 cputime64_t tmp;
3805 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3806
3807 tmp = cputime_to_cputime64(cputime);
3808
3809 p->utime = cputime_add(p->utime, cputime);
3810 p->gtime = cputime_add(p->gtime, cputime);
3811
3812 cpustat->user = cputime64_add(cpustat->user, tmp);
3813 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3814}
3815
c66f08be
MN
3816/*
3817 * Account scaled user cpu time to a process.
3818 * @p: the process that the cpu time gets accounted to
3819 * @cputime: the cpu time spent in user space since the last update
3820 */
3821void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3822{
3823 p->utimescaled = cputime_add(p->utimescaled, cputime);
3824}
3825
1da177e4
LT
3826/*
3827 * Account system cpu time to a process.
3828 * @p: the process that the cpu time gets accounted to
3829 * @hardirq_offset: the offset to subtract from hardirq_count()
3830 * @cputime: the cpu time spent in kernel space since the last update
3831 */
3832void account_system_time(struct task_struct *p, int hardirq_offset,
3833 cputime_t cputime)
3834{
3835 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3836 struct rq *rq = this_rq();
1da177e4
LT
3837 cputime64_t tmp;
3838
9778385d
CB
3839 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3840 return account_guest_time(p, cputime);
94886b84 3841
1da177e4
LT
3842 p->stime = cputime_add(p->stime, cputime);
3843
3844 /* Add system time to cpustat. */
3845 tmp = cputime_to_cputime64(cputime);
3846 if (hardirq_count() - hardirq_offset)
3847 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3848 else if (softirq_count())
3849 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3850 else if (p != rq->idle)
1da177e4 3851 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3852 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3853 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3854 else
3855 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3856 /* Account for system time used */
3857 acct_update_integrals(p);
1da177e4
LT
3858}
3859
c66f08be
MN
3860/*
3861 * Account scaled system cpu time to a process.
3862 * @p: the process that the cpu time gets accounted to
3863 * @hardirq_offset: the offset to subtract from hardirq_count()
3864 * @cputime: the cpu time spent in kernel space since the last update
3865 */
3866void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3867{
3868 p->stimescaled = cputime_add(p->stimescaled, cputime);
3869}
3870
1da177e4
LT
3871/*
3872 * Account for involuntary wait time.
3873 * @p: the process from which the cpu time has been stolen
3874 * @steal: the cpu time spent in involuntary wait
3875 */
3876void account_steal_time(struct task_struct *p, cputime_t steal)
3877{
3878 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3879 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3880 struct rq *rq = this_rq();
1da177e4
LT
3881
3882 if (p == rq->idle) {
3883 p->stime = cputime_add(p->stime, steal);
3884 if (atomic_read(&rq->nr_iowait) > 0)
3885 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3886 else
3887 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3888 } else
1da177e4
LT
3889 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3890}
3891
7835b98b
CL
3892/*
3893 * This function gets called by the timer code, with HZ frequency.
3894 * We call it with interrupts disabled.
3895 *
3896 * It also gets called by the fork code, when changing the parent's
3897 * timeslices.
3898 */
3899void scheduler_tick(void)
3900{
7835b98b
CL
3901 int cpu = smp_processor_id();
3902 struct rq *rq = cpu_rq(cpu);
dd41f596 3903 struct task_struct *curr = rq->curr;
529c7726 3904 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3905
3906 spin_lock(&rq->lock);
546fe3c9 3907 __update_rq_clock(rq);
529c7726
IM
3908 /*
3909 * Let rq->clock advance by at least TICK_NSEC:
3910 */
cc203d24 3911 if (unlikely(rq->clock < next_tick)) {
529c7726 3912 rq->clock = next_tick;
cc203d24
GC
3913 rq->clock_underflows++;
3914 }
529c7726 3915 rq->tick_timestamp = rq->clock;
15934a37 3916 update_last_tick_seen(rq);
f1a438d8 3917 update_cpu_load(rq);
fa85ae24 3918 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 3919 spin_unlock(&rq->lock);
7835b98b 3920
e418e1c2 3921#ifdef CONFIG_SMP
dd41f596
IM
3922 rq->idle_at_tick = idle_cpu(cpu);
3923 trigger_load_balance(rq, cpu);
e418e1c2 3924#endif
1da177e4
LT
3925}
3926
1da177e4
LT
3927#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3928
43627582 3929void __kprobes add_preempt_count(int val)
1da177e4
LT
3930{
3931 /*
3932 * Underflow?
3933 */
9a11b49a
IM
3934 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3935 return;
1da177e4
LT
3936 preempt_count() += val;
3937 /*
3938 * Spinlock count overflowing soon?
3939 */
33859f7f
MOS
3940 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3941 PREEMPT_MASK - 10);
1da177e4
LT
3942}
3943EXPORT_SYMBOL(add_preempt_count);
3944
43627582 3945void __kprobes sub_preempt_count(int val)
1da177e4
LT
3946{
3947 /*
3948 * Underflow?
3949 */
9a11b49a
IM
3950 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3951 return;
1da177e4
LT
3952 /*
3953 * Is the spinlock portion underflowing?
3954 */
9a11b49a
IM
3955 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3956 !(preempt_count() & PREEMPT_MASK)))
3957 return;
3958
1da177e4
LT
3959 preempt_count() -= val;
3960}
3961EXPORT_SYMBOL(sub_preempt_count);
3962
3963#endif
3964
3965/*
dd41f596 3966 * Print scheduling while atomic bug:
1da177e4 3967 */
dd41f596 3968static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3969{
838225b4
SS
3970 struct pt_regs *regs = get_irq_regs();
3971
3972 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3973 prev->comm, prev->pid, preempt_count());
3974
dd41f596
IM
3975 debug_show_held_locks(prev);
3976 if (irqs_disabled())
3977 print_irqtrace_events(prev);
838225b4
SS
3978
3979 if (regs)
3980 show_regs(regs);
3981 else
3982 dump_stack();
dd41f596 3983}
1da177e4 3984
dd41f596
IM
3985/*
3986 * Various schedule()-time debugging checks and statistics:
3987 */
3988static inline void schedule_debug(struct task_struct *prev)
3989{
1da177e4 3990 /*
41a2d6cf 3991 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3992 * schedule() atomically, we ignore that path for now.
3993 * Otherwise, whine if we are scheduling when we should not be.
3994 */
dd41f596
IM
3995 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3996 __schedule_bug(prev);
3997
1da177e4
LT
3998 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3999
2d72376b 4000 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4001#ifdef CONFIG_SCHEDSTATS
4002 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4003 schedstat_inc(this_rq(), bkl_count);
4004 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4005 }
4006#endif
dd41f596
IM
4007}
4008
4009/*
4010 * Pick up the highest-prio task:
4011 */
4012static inline struct task_struct *
ff95f3df 4013pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4014{
5522d5d5 4015 const struct sched_class *class;
dd41f596 4016 struct task_struct *p;
1da177e4
LT
4017
4018 /*
dd41f596
IM
4019 * Optimization: we know that if all tasks are in
4020 * the fair class we can call that function directly:
1da177e4 4021 */
dd41f596 4022 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4023 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4024 if (likely(p))
4025 return p;
1da177e4
LT
4026 }
4027
dd41f596
IM
4028 class = sched_class_highest;
4029 for ( ; ; ) {
fb8d4724 4030 p = class->pick_next_task(rq);
dd41f596
IM
4031 if (p)
4032 return p;
4033 /*
4034 * Will never be NULL as the idle class always
4035 * returns a non-NULL p:
4036 */
4037 class = class->next;
4038 }
4039}
1da177e4 4040
dd41f596
IM
4041/*
4042 * schedule() is the main scheduler function.
4043 */
4044asmlinkage void __sched schedule(void)
4045{
4046 struct task_struct *prev, *next;
67ca7bde 4047 unsigned long *switch_count;
dd41f596 4048 struct rq *rq;
dd41f596
IM
4049 int cpu;
4050
4051need_resched:
4052 preempt_disable();
4053 cpu = smp_processor_id();
4054 rq = cpu_rq(cpu);
4055 rcu_qsctr_inc(cpu);
4056 prev = rq->curr;
4057 switch_count = &prev->nivcsw;
4058
4059 release_kernel_lock(prev);
4060need_resched_nonpreemptible:
4061
4062 schedule_debug(prev);
1da177e4 4063
8f4d37ec
PZ
4064 hrtick_clear(rq);
4065
1e819950
IM
4066 /*
4067 * Do the rq-clock update outside the rq lock:
4068 */
4069 local_irq_disable();
c1b3da3e 4070 __update_rq_clock(rq);
1e819950
IM
4071 spin_lock(&rq->lock);
4072 clear_tsk_need_resched(prev);
1da177e4 4073
1da177e4 4074 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4075 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4076 signal_pending(prev))) {
1da177e4 4077 prev->state = TASK_RUNNING;
dd41f596 4078 } else {
2e1cb74a 4079 deactivate_task(rq, prev, 1);
1da177e4 4080 }
dd41f596 4081 switch_count = &prev->nvcsw;
1da177e4
LT
4082 }
4083
9a897c5a
SR
4084#ifdef CONFIG_SMP
4085 if (prev->sched_class->pre_schedule)
4086 prev->sched_class->pre_schedule(rq, prev);
4087#endif
f65eda4f 4088
dd41f596 4089 if (unlikely(!rq->nr_running))
1da177e4 4090 idle_balance(cpu, rq);
1da177e4 4091
31ee529c 4092 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4093 next = pick_next_task(rq, prev);
1da177e4
LT
4094
4095 sched_info_switch(prev, next);
dd41f596 4096
1da177e4 4097 if (likely(prev != next)) {
1da177e4
LT
4098 rq->nr_switches++;
4099 rq->curr = next;
4100 ++*switch_count;
4101
dd41f596 4102 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4103 /*
4104 * the context switch might have flipped the stack from under
4105 * us, hence refresh the local variables.
4106 */
4107 cpu = smp_processor_id();
4108 rq = cpu_rq(cpu);
1da177e4
LT
4109 } else
4110 spin_unlock_irq(&rq->lock);
4111
8f4d37ec
PZ
4112 hrtick_set(rq);
4113
4114 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4115 goto need_resched_nonpreemptible;
8f4d37ec 4116
1da177e4
LT
4117 preempt_enable_no_resched();
4118 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4119 goto need_resched;
4120}
1da177e4
LT
4121EXPORT_SYMBOL(schedule);
4122
4123#ifdef CONFIG_PREEMPT
4124/*
2ed6e34f 4125 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4126 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4127 * occur there and call schedule directly.
4128 */
4129asmlinkage void __sched preempt_schedule(void)
4130{
4131 struct thread_info *ti = current_thread_info();
1da177e4
LT
4132 struct task_struct *task = current;
4133 int saved_lock_depth;
6478d880 4134
1da177e4
LT
4135 /*
4136 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4137 * we do not want to preempt the current task. Just return..
1da177e4 4138 */
beed33a8 4139 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4140 return;
4141
3a5c359a
AK
4142 do {
4143 add_preempt_count(PREEMPT_ACTIVE);
4144
4145 /*
4146 * We keep the big kernel semaphore locked, but we
4147 * clear ->lock_depth so that schedule() doesnt
4148 * auto-release the semaphore:
4149 */
3a5c359a
AK
4150 saved_lock_depth = task->lock_depth;
4151 task->lock_depth = -1;
3a5c359a 4152 schedule();
3a5c359a 4153 task->lock_depth = saved_lock_depth;
3a5c359a 4154 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4155
3a5c359a
AK
4156 /*
4157 * Check again in case we missed a preemption opportunity
4158 * between schedule and now.
4159 */
4160 barrier();
4161 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4162}
1da177e4
LT
4163EXPORT_SYMBOL(preempt_schedule);
4164
4165/*
2ed6e34f 4166 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4167 * off of irq context.
4168 * Note, that this is called and return with irqs disabled. This will
4169 * protect us against recursive calling from irq.
4170 */
4171asmlinkage void __sched preempt_schedule_irq(void)
4172{
4173 struct thread_info *ti = current_thread_info();
1da177e4
LT
4174 struct task_struct *task = current;
4175 int saved_lock_depth;
6478d880 4176
2ed6e34f 4177 /* Catch callers which need to be fixed */
1da177e4
LT
4178 BUG_ON(ti->preempt_count || !irqs_disabled());
4179
3a5c359a
AK
4180 do {
4181 add_preempt_count(PREEMPT_ACTIVE);
4182
4183 /*
4184 * We keep the big kernel semaphore locked, but we
4185 * clear ->lock_depth so that schedule() doesnt
4186 * auto-release the semaphore:
4187 */
3a5c359a
AK
4188 saved_lock_depth = task->lock_depth;
4189 task->lock_depth = -1;
3a5c359a
AK
4190 local_irq_enable();
4191 schedule();
4192 local_irq_disable();
3a5c359a 4193 task->lock_depth = saved_lock_depth;
3a5c359a 4194 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4195
3a5c359a
AK
4196 /*
4197 * Check again in case we missed a preemption opportunity
4198 * between schedule and now.
4199 */
4200 barrier();
4201 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4202}
4203
4204#endif /* CONFIG_PREEMPT */
4205
95cdf3b7
IM
4206int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4207 void *key)
1da177e4 4208{
48f24c4d 4209 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4210}
1da177e4
LT
4211EXPORT_SYMBOL(default_wake_function);
4212
4213/*
41a2d6cf
IM
4214 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4215 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4216 * number) then we wake all the non-exclusive tasks and one exclusive task.
4217 *
4218 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4219 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4220 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4221 */
4222static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4223 int nr_exclusive, int sync, void *key)
4224{
2e45874c 4225 wait_queue_t *curr, *next;
1da177e4 4226
2e45874c 4227 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4228 unsigned flags = curr->flags;
4229
1da177e4 4230 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4231 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4232 break;
4233 }
4234}
4235
4236/**
4237 * __wake_up - wake up threads blocked on a waitqueue.
4238 * @q: the waitqueue
4239 * @mode: which threads
4240 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4241 * @key: is directly passed to the wakeup function
1da177e4 4242 */
7ad5b3a5 4243void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4244 int nr_exclusive, void *key)
1da177e4
LT
4245{
4246 unsigned long flags;
4247
4248 spin_lock_irqsave(&q->lock, flags);
4249 __wake_up_common(q, mode, nr_exclusive, 0, key);
4250 spin_unlock_irqrestore(&q->lock, flags);
4251}
1da177e4
LT
4252EXPORT_SYMBOL(__wake_up);
4253
4254/*
4255 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4256 */
7ad5b3a5 4257void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4258{
4259 __wake_up_common(q, mode, 1, 0, NULL);
4260}
4261
4262/**
67be2dd1 4263 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4264 * @q: the waitqueue
4265 * @mode: which threads
4266 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4267 *
4268 * The sync wakeup differs that the waker knows that it will schedule
4269 * away soon, so while the target thread will be woken up, it will not
4270 * be migrated to another CPU - ie. the two threads are 'synchronized'
4271 * with each other. This can prevent needless bouncing between CPUs.
4272 *
4273 * On UP it can prevent extra preemption.
4274 */
7ad5b3a5 4275void
95cdf3b7 4276__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4277{
4278 unsigned long flags;
4279 int sync = 1;
4280
4281 if (unlikely(!q))
4282 return;
4283
4284 if (unlikely(!nr_exclusive))
4285 sync = 0;
4286
4287 spin_lock_irqsave(&q->lock, flags);
4288 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4289 spin_unlock_irqrestore(&q->lock, flags);
4290}
4291EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4292
b15136e9 4293void complete(struct completion *x)
1da177e4
LT
4294{
4295 unsigned long flags;
4296
4297 spin_lock_irqsave(&x->wait.lock, flags);
4298 x->done++;
d9514f6c 4299 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4300 spin_unlock_irqrestore(&x->wait.lock, flags);
4301}
4302EXPORT_SYMBOL(complete);
4303
b15136e9 4304void complete_all(struct completion *x)
1da177e4
LT
4305{
4306 unsigned long flags;
4307
4308 spin_lock_irqsave(&x->wait.lock, flags);
4309 x->done += UINT_MAX/2;
d9514f6c 4310 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4311 spin_unlock_irqrestore(&x->wait.lock, flags);
4312}
4313EXPORT_SYMBOL(complete_all);
4314
8cbbe86d
AK
4315static inline long __sched
4316do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4317{
1da177e4
LT
4318 if (!x->done) {
4319 DECLARE_WAITQUEUE(wait, current);
4320
4321 wait.flags |= WQ_FLAG_EXCLUSIVE;
4322 __add_wait_queue_tail(&x->wait, &wait);
4323 do {
009e577e
MW
4324 if ((state == TASK_INTERRUPTIBLE &&
4325 signal_pending(current)) ||
4326 (state == TASK_KILLABLE &&
4327 fatal_signal_pending(current))) {
8cbbe86d
AK
4328 __remove_wait_queue(&x->wait, &wait);
4329 return -ERESTARTSYS;
4330 }
4331 __set_current_state(state);
1da177e4
LT
4332 spin_unlock_irq(&x->wait.lock);
4333 timeout = schedule_timeout(timeout);
4334 spin_lock_irq(&x->wait.lock);
4335 if (!timeout) {
4336 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4337 return timeout;
1da177e4
LT
4338 }
4339 } while (!x->done);
4340 __remove_wait_queue(&x->wait, &wait);
4341 }
4342 x->done--;
1da177e4
LT
4343 return timeout;
4344}
1da177e4 4345
8cbbe86d
AK
4346static long __sched
4347wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4348{
1da177e4
LT
4349 might_sleep();
4350
4351 spin_lock_irq(&x->wait.lock);
8cbbe86d 4352 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4353 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4354 return timeout;
4355}
1da177e4 4356
b15136e9 4357void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4358{
4359 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4360}
8cbbe86d 4361EXPORT_SYMBOL(wait_for_completion);
1da177e4 4362
b15136e9 4363unsigned long __sched
8cbbe86d 4364wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4365{
8cbbe86d 4366 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4367}
8cbbe86d 4368EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4369
8cbbe86d 4370int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4371{
51e97990
AK
4372 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4373 if (t == -ERESTARTSYS)
4374 return t;
4375 return 0;
0fec171c 4376}
8cbbe86d 4377EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4378
b15136e9 4379unsigned long __sched
8cbbe86d
AK
4380wait_for_completion_interruptible_timeout(struct completion *x,
4381 unsigned long timeout)
0fec171c 4382{
8cbbe86d 4383 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4384}
8cbbe86d 4385EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4386
009e577e
MW
4387int __sched wait_for_completion_killable(struct completion *x)
4388{
4389 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4390 if (t == -ERESTARTSYS)
4391 return t;
4392 return 0;
4393}
4394EXPORT_SYMBOL(wait_for_completion_killable);
4395
8cbbe86d
AK
4396static long __sched
4397sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4398{
0fec171c
IM
4399 unsigned long flags;
4400 wait_queue_t wait;
4401
4402 init_waitqueue_entry(&wait, current);
1da177e4 4403
8cbbe86d 4404 __set_current_state(state);
1da177e4 4405
8cbbe86d
AK
4406 spin_lock_irqsave(&q->lock, flags);
4407 __add_wait_queue(q, &wait);
4408 spin_unlock(&q->lock);
4409 timeout = schedule_timeout(timeout);
4410 spin_lock_irq(&q->lock);
4411 __remove_wait_queue(q, &wait);
4412 spin_unlock_irqrestore(&q->lock, flags);
4413
4414 return timeout;
4415}
4416
4417void __sched interruptible_sleep_on(wait_queue_head_t *q)
4418{
4419 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4420}
1da177e4
LT
4421EXPORT_SYMBOL(interruptible_sleep_on);
4422
0fec171c 4423long __sched
95cdf3b7 4424interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4425{
8cbbe86d 4426 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4427}
1da177e4
LT
4428EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4429
0fec171c 4430void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4431{
8cbbe86d 4432 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4433}
1da177e4
LT
4434EXPORT_SYMBOL(sleep_on);
4435
0fec171c 4436long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4437{
8cbbe86d 4438 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4439}
1da177e4
LT
4440EXPORT_SYMBOL(sleep_on_timeout);
4441
b29739f9
IM
4442#ifdef CONFIG_RT_MUTEXES
4443
4444/*
4445 * rt_mutex_setprio - set the current priority of a task
4446 * @p: task
4447 * @prio: prio value (kernel-internal form)
4448 *
4449 * This function changes the 'effective' priority of a task. It does
4450 * not touch ->normal_prio like __setscheduler().
4451 *
4452 * Used by the rt_mutex code to implement priority inheritance logic.
4453 */
36c8b586 4454void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4455{
4456 unsigned long flags;
83b699ed 4457 int oldprio, on_rq, running;
70b97a7f 4458 struct rq *rq;
cb469845 4459 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4460
4461 BUG_ON(prio < 0 || prio > MAX_PRIO);
4462
4463 rq = task_rq_lock(p, &flags);
a8e504d2 4464 update_rq_clock(rq);
b29739f9 4465
d5f9f942 4466 oldprio = p->prio;
dd41f596 4467 on_rq = p->se.on_rq;
051a1d1a 4468 running = task_current(rq, p);
0e1f3483 4469 if (on_rq)
69be72c1 4470 dequeue_task(rq, p, 0);
0e1f3483
HS
4471 if (running)
4472 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4473
4474 if (rt_prio(prio))
4475 p->sched_class = &rt_sched_class;
4476 else
4477 p->sched_class = &fair_sched_class;
4478
b29739f9
IM
4479 p->prio = prio;
4480
0e1f3483
HS
4481 if (running)
4482 p->sched_class->set_curr_task(rq);
dd41f596 4483 if (on_rq) {
8159f87e 4484 enqueue_task(rq, p, 0);
cb469845
SR
4485
4486 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4487 }
4488 task_rq_unlock(rq, &flags);
4489}
4490
4491#endif
4492
36c8b586 4493void set_user_nice(struct task_struct *p, long nice)
1da177e4 4494{
dd41f596 4495 int old_prio, delta, on_rq;
1da177e4 4496 unsigned long flags;
70b97a7f 4497 struct rq *rq;
1da177e4
LT
4498
4499 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4500 return;
4501 /*
4502 * We have to be careful, if called from sys_setpriority(),
4503 * the task might be in the middle of scheduling on another CPU.
4504 */
4505 rq = task_rq_lock(p, &flags);
a8e504d2 4506 update_rq_clock(rq);
1da177e4
LT
4507 /*
4508 * The RT priorities are set via sched_setscheduler(), but we still
4509 * allow the 'normal' nice value to be set - but as expected
4510 * it wont have any effect on scheduling until the task is
dd41f596 4511 * SCHED_FIFO/SCHED_RR:
1da177e4 4512 */
e05606d3 4513 if (task_has_rt_policy(p)) {
1da177e4
LT
4514 p->static_prio = NICE_TO_PRIO(nice);
4515 goto out_unlock;
4516 }
dd41f596 4517 on_rq = p->se.on_rq;
62fb1851 4518 if (on_rq) {
69be72c1 4519 dequeue_task(rq, p, 0);
62fb1851
PZ
4520 dec_load(rq, p);
4521 }
1da177e4 4522
1da177e4 4523 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4524 set_load_weight(p);
b29739f9
IM
4525 old_prio = p->prio;
4526 p->prio = effective_prio(p);
4527 delta = p->prio - old_prio;
1da177e4 4528
dd41f596 4529 if (on_rq) {
8159f87e 4530 enqueue_task(rq, p, 0);
62fb1851 4531 inc_load(rq, p);
1da177e4 4532 /*
d5f9f942
AM
4533 * If the task increased its priority or is running and
4534 * lowered its priority, then reschedule its CPU:
1da177e4 4535 */
d5f9f942 4536 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4537 resched_task(rq->curr);
4538 }
4539out_unlock:
4540 task_rq_unlock(rq, &flags);
4541}
1da177e4
LT
4542EXPORT_SYMBOL(set_user_nice);
4543
e43379f1
MM
4544/*
4545 * can_nice - check if a task can reduce its nice value
4546 * @p: task
4547 * @nice: nice value
4548 */
36c8b586 4549int can_nice(const struct task_struct *p, const int nice)
e43379f1 4550{
024f4747
MM
4551 /* convert nice value [19,-20] to rlimit style value [1,40] */
4552 int nice_rlim = 20 - nice;
48f24c4d 4553
e43379f1
MM
4554 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4555 capable(CAP_SYS_NICE));
4556}
4557
1da177e4
LT
4558#ifdef __ARCH_WANT_SYS_NICE
4559
4560/*
4561 * sys_nice - change the priority of the current process.
4562 * @increment: priority increment
4563 *
4564 * sys_setpriority is a more generic, but much slower function that
4565 * does similar things.
4566 */
4567asmlinkage long sys_nice(int increment)
4568{
48f24c4d 4569 long nice, retval;
1da177e4
LT
4570
4571 /*
4572 * Setpriority might change our priority at the same moment.
4573 * We don't have to worry. Conceptually one call occurs first
4574 * and we have a single winner.
4575 */
e43379f1
MM
4576 if (increment < -40)
4577 increment = -40;
1da177e4
LT
4578 if (increment > 40)
4579 increment = 40;
4580
4581 nice = PRIO_TO_NICE(current->static_prio) + increment;
4582 if (nice < -20)
4583 nice = -20;
4584 if (nice > 19)
4585 nice = 19;
4586
e43379f1
MM
4587 if (increment < 0 && !can_nice(current, nice))
4588 return -EPERM;
4589
1da177e4
LT
4590 retval = security_task_setnice(current, nice);
4591 if (retval)
4592 return retval;
4593
4594 set_user_nice(current, nice);
4595 return 0;
4596}
4597
4598#endif
4599
4600/**
4601 * task_prio - return the priority value of a given task.
4602 * @p: the task in question.
4603 *
4604 * This is the priority value as seen by users in /proc.
4605 * RT tasks are offset by -200. Normal tasks are centered
4606 * around 0, value goes from -16 to +15.
4607 */
36c8b586 4608int task_prio(const struct task_struct *p)
1da177e4
LT
4609{
4610 return p->prio - MAX_RT_PRIO;
4611}
4612
4613/**
4614 * task_nice - return the nice value of a given task.
4615 * @p: the task in question.
4616 */
36c8b586 4617int task_nice(const struct task_struct *p)
1da177e4
LT
4618{
4619 return TASK_NICE(p);
4620}
150d8bed 4621EXPORT_SYMBOL(task_nice);
1da177e4
LT
4622
4623/**
4624 * idle_cpu - is a given cpu idle currently?
4625 * @cpu: the processor in question.
4626 */
4627int idle_cpu(int cpu)
4628{
4629 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4630}
4631
1da177e4
LT
4632/**
4633 * idle_task - return the idle task for a given cpu.
4634 * @cpu: the processor in question.
4635 */
36c8b586 4636struct task_struct *idle_task(int cpu)
1da177e4
LT
4637{
4638 return cpu_rq(cpu)->idle;
4639}
4640
4641/**
4642 * find_process_by_pid - find a process with a matching PID value.
4643 * @pid: the pid in question.
4644 */
a9957449 4645static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4646{
228ebcbe 4647 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4648}
4649
4650/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4651static void
4652__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4653{
dd41f596 4654 BUG_ON(p->se.on_rq);
48f24c4d 4655
1da177e4 4656 p->policy = policy;
dd41f596
IM
4657 switch (p->policy) {
4658 case SCHED_NORMAL:
4659 case SCHED_BATCH:
4660 case SCHED_IDLE:
4661 p->sched_class = &fair_sched_class;
4662 break;
4663 case SCHED_FIFO:
4664 case SCHED_RR:
4665 p->sched_class = &rt_sched_class;
4666 break;
4667 }
4668
1da177e4 4669 p->rt_priority = prio;
b29739f9
IM
4670 p->normal_prio = normal_prio(p);
4671 /* we are holding p->pi_lock already */
4672 p->prio = rt_mutex_getprio(p);
2dd73a4f 4673 set_load_weight(p);
1da177e4
LT
4674}
4675
4676/**
72fd4a35 4677 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4678 * @p: the task in question.
4679 * @policy: new policy.
4680 * @param: structure containing the new RT priority.
5fe1d75f 4681 *
72fd4a35 4682 * NOTE that the task may be already dead.
1da177e4 4683 */
95cdf3b7
IM
4684int sched_setscheduler(struct task_struct *p, int policy,
4685 struct sched_param *param)
1da177e4 4686{
83b699ed 4687 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4688 unsigned long flags;
cb469845 4689 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4690 struct rq *rq;
1da177e4 4691
66e5393a
SR
4692 /* may grab non-irq protected spin_locks */
4693 BUG_ON(in_interrupt());
1da177e4
LT
4694recheck:
4695 /* double check policy once rq lock held */
4696 if (policy < 0)
4697 policy = oldpolicy = p->policy;
4698 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4699 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4700 policy != SCHED_IDLE)
b0a9499c 4701 return -EINVAL;
1da177e4
LT
4702 /*
4703 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4704 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4705 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4706 */
4707 if (param->sched_priority < 0 ||
95cdf3b7 4708 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4709 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4710 return -EINVAL;
e05606d3 4711 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4712 return -EINVAL;
4713
37e4ab3f
OC
4714 /*
4715 * Allow unprivileged RT tasks to decrease priority:
4716 */
4717 if (!capable(CAP_SYS_NICE)) {
e05606d3 4718 if (rt_policy(policy)) {
8dc3e909 4719 unsigned long rlim_rtprio;
8dc3e909
ON
4720
4721 if (!lock_task_sighand(p, &flags))
4722 return -ESRCH;
4723 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4724 unlock_task_sighand(p, &flags);
4725
4726 /* can't set/change the rt policy */
4727 if (policy != p->policy && !rlim_rtprio)
4728 return -EPERM;
4729
4730 /* can't increase priority */
4731 if (param->sched_priority > p->rt_priority &&
4732 param->sched_priority > rlim_rtprio)
4733 return -EPERM;
4734 }
dd41f596
IM
4735 /*
4736 * Like positive nice levels, dont allow tasks to
4737 * move out of SCHED_IDLE either:
4738 */
4739 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4740 return -EPERM;
5fe1d75f 4741
37e4ab3f
OC
4742 /* can't change other user's priorities */
4743 if ((current->euid != p->euid) &&
4744 (current->euid != p->uid))
4745 return -EPERM;
4746 }
1da177e4 4747
b68aa230
PZ
4748#ifdef CONFIG_RT_GROUP_SCHED
4749 /*
4750 * Do not allow realtime tasks into groups that have no runtime
4751 * assigned.
4752 */
d0b27fa7 4753 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4754 return -EPERM;
4755#endif
4756
1da177e4
LT
4757 retval = security_task_setscheduler(p, policy, param);
4758 if (retval)
4759 return retval;
b29739f9
IM
4760 /*
4761 * make sure no PI-waiters arrive (or leave) while we are
4762 * changing the priority of the task:
4763 */
4764 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4765 /*
4766 * To be able to change p->policy safely, the apropriate
4767 * runqueue lock must be held.
4768 */
b29739f9 4769 rq = __task_rq_lock(p);
1da177e4
LT
4770 /* recheck policy now with rq lock held */
4771 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4772 policy = oldpolicy = -1;
b29739f9
IM
4773 __task_rq_unlock(rq);
4774 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4775 goto recheck;
4776 }
2daa3577 4777 update_rq_clock(rq);
dd41f596 4778 on_rq = p->se.on_rq;
051a1d1a 4779 running = task_current(rq, p);
0e1f3483 4780 if (on_rq)
2e1cb74a 4781 deactivate_task(rq, p, 0);
0e1f3483
HS
4782 if (running)
4783 p->sched_class->put_prev_task(rq, p);
f6b53205 4784
1da177e4 4785 oldprio = p->prio;
dd41f596 4786 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4787
0e1f3483
HS
4788 if (running)
4789 p->sched_class->set_curr_task(rq);
dd41f596
IM
4790 if (on_rq) {
4791 activate_task(rq, p, 0);
cb469845
SR
4792
4793 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4794 }
b29739f9
IM
4795 __task_rq_unlock(rq);
4796 spin_unlock_irqrestore(&p->pi_lock, flags);
4797
95e02ca9
TG
4798 rt_mutex_adjust_pi(p);
4799
1da177e4
LT
4800 return 0;
4801}
4802EXPORT_SYMBOL_GPL(sched_setscheduler);
4803
95cdf3b7
IM
4804static int
4805do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4806{
1da177e4
LT
4807 struct sched_param lparam;
4808 struct task_struct *p;
36c8b586 4809 int retval;
1da177e4
LT
4810
4811 if (!param || pid < 0)
4812 return -EINVAL;
4813 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4814 return -EFAULT;
5fe1d75f
ON
4815
4816 rcu_read_lock();
4817 retval = -ESRCH;
1da177e4 4818 p = find_process_by_pid(pid);
5fe1d75f
ON
4819 if (p != NULL)
4820 retval = sched_setscheduler(p, policy, &lparam);
4821 rcu_read_unlock();
36c8b586 4822
1da177e4
LT
4823 return retval;
4824}
4825
4826/**
4827 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4828 * @pid: the pid in question.
4829 * @policy: new policy.
4830 * @param: structure containing the new RT priority.
4831 */
41a2d6cf
IM
4832asmlinkage long
4833sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4834{
c21761f1
JB
4835 /* negative values for policy are not valid */
4836 if (policy < 0)
4837 return -EINVAL;
4838
1da177e4
LT
4839 return do_sched_setscheduler(pid, policy, param);
4840}
4841
4842/**
4843 * sys_sched_setparam - set/change the RT priority of a thread
4844 * @pid: the pid in question.
4845 * @param: structure containing the new RT priority.
4846 */
4847asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4848{
4849 return do_sched_setscheduler(pid, -1, param);
4850}
4851
4852/**
4853 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4854 * @pid: the pid in question.
4855 */
4856asmlinkage long sys_sched_getscheduler(pid_t pid)
4857{
36c8b586 4858 struct task_struct *p;
3a5c359a 4859 int retval;
1da177e4
LT
4860
4861 if (pid < 0)
3a5c359a 4862 return -EINVAL;
1da177e4
LT
4863
4864 retval = -ESRCH;
4865 read_lock(&tasklist_lock);
4866 p = find_process_by_pid(pid);
4867 if (p) {
4868 retval = security_task_getscheduler(p);
4869 if (!retval)
4870 retval = p->policy;
4871 }
4872 read_unlock(&tasklist_lock);
1da177e4
LT
4873 return retval;
4874}
4875
4876/**
4877 * sys_sched_getscheduler - get the RT priority of a thread
4878 * @pid: the pid in question.
4879 * @param: structure containing the RT priority.
4880 */
4881asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4882{
4883 struct sched_param lp;
36c8b586 4884 struct task_struct *p;
3a5c359a 4885 int retval;
1da177e4
LT
4886
4887 if (!param || pid < 0)
3a5c359a 4888 return -EINVAL;
1da177e4
LT
4889
4890 read_lock(&tasklist_lock);
4891 p = find_process_by_pid(pid);
4892 retval = -ESRCH;
4893 if (!p)
4894 goto out_unlock;
4895
4896 retval = security_task_getscheduler(p);
4897 if (retval)
4898 goto out_unlock;
4899
4900 lp.sched_priority = p->rt_priority;
4901 read_unlock(&tasklist_lock);
4902
4903 /*
4904 * This one might sleep, we cannot do it with a spinlock held ...
4905 */
4906 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4907
1da177e4
LT
4908 return retval;
4909
4910out_unlock:
4911 read_unlock(&tasklist_lock);
4912 return retval;
4913}
4914
b53e921b 4915long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 4916{
1da177e4 4917 cpumask_t cpus_allowed;
b53e921b 4918 cpumask_t new_mask = *in_mask;
36c8b586
IM
4919 struct task_struct *p;
4920 int retval;
1da177e4 4921
95402b38 4922 get_online_cpus();
1da177e4
LT
4923 read_lock(&tasklist_lock);
4924
4925 p = find_process_by_pid(pid);
4926 if (!p) {
4927 read_unlock(&tasklist_lock);
95402b38 4928 put_online_cpus();
1da177e4
LT
4929 return -ESRCH;
4930 }
4931
4932 /*
4933 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4934 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4935 * usage count and then drop tasklist_lock.
4936 */
4937 get_task_struct(p);
4938 read_unlock(&tasklist_lock);
4939
4940 retval = -EPERM;
4941 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4942 !capable(CAP_SYS_NICE))
4943 goto out_unlock;
4944
e7834f8f
DQ
4945 retval = security_task_setscheduler(p, 0, NULL);
4946 if (retval)
4947 goto out_unlock;
4948
f9a86fcb 4949 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 4950 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4951 again:
7c16ec58 4952 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 4953
8707d8b8 4954 if (!retval) {
f9a86fcb 4955 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
4956 if (!cpus_subset(new_mask, cpus_allowed)) {
4957 /*
4958 * We must have raced with a concurrent cpuset
4959 * update. Just reset the cpus_allowed to the
4960 * cpuset's cpus_allowed
4961 */
4962 new_mask = cpus_allowed;
4963 goto again;
4964 }
4965 }
1da177e4
LT
4966out_unlock:
4967 put_task_struct(p);
95402b38 4968 put_online_cpus();
1da177e4
LT
4969 return retval;
4970}
4971
4972static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4973 cpumask_t *new_mask)
4974{
4975 if (len < sizeof(cpumask_t)) {
4976 memset(new_mask, 0, sizeof(cpumask_t));
4977 } else if (len > sizeof(cpumask_t)) {
4978 len = sizeof(cpumask_t);
4979 }
4980 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4981}
4982
4983/**
4984 * sys_sched_setaffinity - set the cpu affinity of a process
4985 * @pid: pid of the process
4986 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4987 * @user_mask_ptr: user-space pointer to the new cpu mask
4988 */
4989asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4990 unsigned long __user *user_mask_ptr)
4991{
4992 cpumask_t new_mask;
4993 int retval;
4994
4995 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4996 if (retval)
4997 return retval;
4998
b53e921b 4999 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5000}
5001
5002/*
5003 * Represents all cpu's present in the system
5004 * In systems capable of hotplug, this map could dynamically grow
5005 * as new cpu's are detected in the system via any platform specific
5006 * method, such as ACPI for e.g.
5007 */
5008
4cef0c61 5009cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5010EXPORT_SYMBOL(cpu_present_map);
5011
5012#ifndef CONFIG_SMP
4cef0c61 5013cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5014EXPORT_SYMBOL(cpu_online_map);
5015
4cef0c61 5016cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5017EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5018#endif
5019
5020long sched_getaffinity(pid_t pid, cpumask_t *mask)
5021{
36c8b586 5022 struct task_struct *p;
1da177e4 5023 int retval;
1da177e4 5024
95402b38 5025 get_online_cpus();
1da177e4
LT
5026 read_lock(&tasklist_lock);
5027
5028 retval = -ESRCH;
5029 p = find_process_by_pid(pid);
5030 if (!p)
5031 goto out_unlock;
5032
e7834f8f
DQ
5033 retval = security_task_getscheduler(p);
5034 if (retval)
5035 goto out_unlock;
5036
2f7016d9 5037 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5038
5039out_unlock:
5040 read_unlock(&tasklist_lock);
95402b38 5041 put_online_cpus();
1da177e4 5042
9531b62f 5043 return retval;
1da177e4
LT
5044}
5045
5046/**
5047 * sys_sched_getaffinity - get the cpu affinity of a process
5048 * @pid: pid of the process
5049 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5050 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5051 */
5052asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5053 unsigned long __user *user_mask_ptr)
5054{
5055 int ret;
5056 cpumask_t mask;
5057
5058 if (len < sizeof(cpumask_t))
5059 return -EINVAL;
5060
5061 ret = sched_getaffinity(pid, &mask);
5062 if (ret < 0)
5063 return ret;
5064
5065 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5066 return -EFAULT;
5067
5068 return sizeof(cpumask_t);
5069}
5070
5071/**
5072 * sys_sched_yield - yield the current processor to other threads.
5073 *
dd41f596
IM
5074 * This function yields the current CPU to other tasks. If there are no
5075 * other threads running on this CPU then this function will return.
1da177e4
LT
5076 */
5077asmlinkage long sys_sched_yield(void)
5078{
70b97a7f 5079 struct rq *rq = this_rq_lock();
1da177e4 5080
2d72376b 5081 schedstat_inc(rq, yld_count);
4530d7ab 5082 current->sched_class->yield_task(rq);
1da177e4
LT
5083
5084 /*
5085 * Since we are going to call schedule() anyway, there's
5086 * no need to preempt or enable interrupts:
5087 */
5088 __release(rq->lock);
8a25d5de 5089 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5090 _raw_spin_unlock(&rq->lock);
5091 preempt_enable_no_resched();
5092
5093 schedule();
5094
5095 return 0;
5096}
5097
e7b38404 5098static void __cond_resched(void)
1da177e4 5099{
8e0a43d8
IM
5100#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5101 __might_sleep(__FILE__, __LINE__);
5102#endif
5bbcfd90
IM
5103 /*
5104 * The BKS might be reacquired before we have dropped
5105 * PREEMPT_ACTIVE, which could trigger a second
5106 * cond_resched() call.
5107 */
1da177e4
LT
5108 do {
5109 add_preempt_count(PREEMPT_ACTIVE);
5110 schedule();
5111 sub_preempt_count(PREEMPT_ACTIVE);
5112 } while (need_resched());
5113}
5114
02b67cc3
HX
5115#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5116int __sched _cond_resched(void)
1da177e4 5117{
9414232f
IM
5118 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5119 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5120 __cond_resched();
5121 return 1;
5122 }
5123 return 0;
5124}
02b67cc3
HX
5125EXPORT_SYMBOL(_cond_resched);
5126#endif
1da177e4
LT
5127
5128/*
5129 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5130 * call schedule, and on return reacquire the lock.
5131 *
41a2d6cf 5132 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5133 * operations here to prevent schedule() from being called twice (once via
5134 * spin_unlock(), once by hand).
5135 */
95cdf3b7 5136int cond_resched_lock(spinlock_t *lock)
1da177e4 5137{
95c354fe 5138 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5139 int ret = 0;
5140
95c354fe 5141 if (spin_needbreak(lock) || resched) {
1da177e4 5142 spin_unlock(lock);
95c354fe
NP
5143 if (resched && need_resched())
5144 __cond_resched();
5145 else
5146 cpu_relax();
6df3cecb 5147 ret = 1;
1da177e4 5148 spin_lock(lock);
1da177e4 5149 }
6df3cecb 5150 return ret;
1da177e4 5151}
1da177e4
LT
5152EXPORT_SYMBOL(cond_resched_lock);
5153
5154int __sched cond_resched_softirq(void)
5155{
5156 BUG_ON(!in_softirq());
5157
9414232f 5158 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5159 local_bh_enable();
1da177e4
LT
5160 __cond_resched();
5161 local_bh_disable();
5162 return 1;
5163 }
5164 return 0;
5165}
1da177e4
LT
5166EXPORT_SYMBOL(cond_resched_softirq);
5167
1da177e4
LT
5168/**
5169 * yield - yield the current processor to other threads.
5170 *
72fd4a35 5171 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5172 * thread runnable and calls sys_sched_yield().
5173 */
5174void __sched yield(void)
5175{
5176 set_current_state(TASK_RUNNING);
5177 sys_sched_yield();
5178}
1da177e4
LT
5179EXPORT_SYMBOL(yield);
5180
5181/*
41a2d6cf 5182 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5183 * that process accounting knows that this is a task in IO wait state.
5184 *
5185 * But don't do that if it is a deliberate, throttling IO wait (this task
5186 * has set its backing_dev_info: the queue against which it should throttle)
5187 */
5188void __sched io_schedule(void)
5189{
70b97a7f 5190 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5191
0ff92245 5192 delayacct_blkio_start();
1da177e4
LT
5193 atomic_inc(&rq->nr_iowait);
5194 schedule();
5195 atomic_dec(&rq->nr_iowait);
0ff92245 5196 delayacct_blkio_end();
1da177e4 5197}
1da177e4
LT
5198EXPORT_SYMBOL(io_schedule);
5199
5200long __sched io_schedule_timeout(long timeout)
5201{
70b97a7f 5202 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5203 long ret;
5204
0ff92245 5205 delayacct_blkio_start();
1da177e4
LT
5206 atomic_inc(&rq->nr_iowait);
5207 ret = schedule_timeout(timeout);
5208 atomic_dec(&rq->nr_iowait);
0ff92245 5209 delayacct_blkio_end();
1da177e4
LT
5210 return ret;
5211}
5212
5213/**
5214 * sys_sched_get_priority_max - return maximum RT priority.
5215 * @policy: scheduling class.
5216 *
5217 * this syscall returns the maximum rt_priority that can be used
5218 * by a given scheduling class.
5219 */
5220asmlinkage long sys_sched_get_priority_max(int policy)
5221{
5222 int ret = -EINVAL;
5223
5224 switch (policy) {
5225 case SCHED_FIFO:
5226 case SCHED_RR:
5227 ret = MAX_USER_RT_PRIO-1;
5228 break;
5229 case SCHED_NORMAL:
b0a9499c 5230 case SCHED_BATCH:
dd41f596 5231 case SCHED_IDLE:
1da177e4
LT
5232 ret = 0;
5233 break;
5234 }
5235 return ret;
5236}
5237
5238/**
5239 * sys_sched_get_priority_min - return minimum RT priority.
5240 * @policy: scheduling class.
5241 *
5242 * this syscall returns the minimum rt_priority that can be used
5243 * by a given scheduling class.
5244 */
5245asmlinkage long sys_sched_get_priority_min(int policy)
5246{
5247 int ret = -EINVAL;
5248
5249 switch (policy) {
5250 case SCHED_FIFO:
5251 case SCHED_RR:
5252 ret = 1;
5253 break;
5254 case SCHED_NORMAL:
b0a9499c 5255 case SCHED_BATCH:
dd41f596 5256 case SCHED_IDLE:
1da177e4
LT
5257 ret = 0;
5258 }
5259 return ret;
5260}
5261
5262/**
5263 * sys_sched_rr_get_interval - return the default timeslice of a process.
5264 * @pid: pid of the process.
5265 * @interval: userspace pointer to the timeslice value.
5266 *
5267 * this syscall writes the default timeslice value of a given process
5268 * into the user-space timespec buffer. A value of '0' means infinity.
5269 */
5270asmlinkage
5271long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5272{
36c8b586 5273 struct task_struct *p;
a4ec24b4 5274 unsigned int time_slice;
3a5c359a 5275 int retval;
1da177e4 5276 struct timespec t;
1da177e4
LT
5277
5278 if (pid < 0)
3a5c359a 5279 return -EINVAL;
1da177e4
LT
5280
5281 retval = -ESRCH;
5282 read_lock(&tasklist_lock);
5283 p = find_process_by_pid(pid);
5284 if (!p)
5285 goto out_unlock;
5286
5287 retval = security_task_getscheduler(p);
5288 if (retval)
5289 goto out_unlock;
5290
77034937
IM
5291 /*
5292 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5293 * tasks that are on an otherwise idle runqueue:
5294 */
5295 time_slice = 0;
5296 if (p->policy == SCHED_RR) {
a4ec24b4 5297 time_slice = DEF_TIMESLICE;
1868f958 5298 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5299 struct sched_entity *se = &p->se;
5300 unsigned long flags;
5301 struct rq *rq;
5302
5303 rq = task_rq_lock(p, &flags);
77034937
IM
5304 if (rq->cfs.load.weight)
5305 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5306 task_rq_unlock(rq, &flags);
5307 }
1da177e4 5308 read_unlock(&tasklist_lock);
a4ec24b4 5309 jiffies_to_timespec(time_slice, &t);
1da177e4 5310 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5311 return retval;
3a5c359a 5312
1da177e4
LT
5313out_unlock:
5314 read_unlock(&tasklist_lock);
5315 return retval;
5316}
5317
2ed6e34f 5318static const char stat_nam[] = "RSDTtZX";
36c8b586 5319
82a1fcb9 5320void sched_show_task(struct task_struct *p)
1da177e4 5321{
1da177e4 5322 unsigned long free = 0;
36c8b586 5323 unsigned state;
1da177e4 5324
1da177e4 5325 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5326 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5327 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5328#if BITS_PER_LONG == 32
1da177e4 5329 if (state == TASK_RUNNING)
cc4ea795 5330 printk(KERN_CONT " running ");
1da177e4 5331 else
cc4ea795 5332 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5333#else
5334 if (state == TASK_RUNNING)
cc4ea795 5335 printk(KERN_CONT " running task ");
1da177e4 5336 else
cc4ea795 5337 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5338#endif
5339#ifdef CONFIG_DEBUG_STACK_USAGE
5340 {
10ebffde 5341 unsigned long *n = end_of_stack(p);
1da177e4
LT
5342 while (!*n)
5343 n++;
10ebffde 5344 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5345 }
5346#endif
ba25f9dc 5347 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5348 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5349
5fb5e6de 5350 show_stack(p, NULL);
1da177e4
LT
5351}
5352
e59e2ae2 5353void show_state_filter(unsigned long state_filter)
1da177e4 5354{
36c8b586 5355 struct task_struct *g, *p;
1da177e4 5356
4bd77321
IM
5357#if BITS_PER_LONG == 32
5358 printk(KERN_INFO
5359 " task PC stack pid father\n");
1da177e4 5360#else
4bd77321
IM
5361 printk(KERN_INFO
5362 " task PC stack pid father\n");
1da177e4
LT
5363#endif
5364 read_lock(&tasklist_lock);
5365 do_each_thread(g, p) {
5366 /*
5367 * reset the NMI-timeout, listing all files on a slow
5368 * console might take alot of time:
5369 */
5370 touch_nmi_watchdog();
39bc89fd 5371 if (!state_filter || (p->state & state_filter))
82a1fcb9 5372 sched_show_task(p);
1da177e4
LT
5373 } while_each_thread(g, p);
5374
04c9167f
JF
5375 touch_all_softlockup_watchdogs();
5376
dd41f596
IM
5377#ifdef CONFIG_SCHED_DEBUG
5378 sysrq_sched_debug_show();
5379#endif
1da177e4 5380 read_unlock(&tasklist_lock);
e59e2ae2
IM
5381 /*
5382 * Only show locks if all tasks are dumped:
5383 */
5384 if (state_filter == -1)
5385 debug_show_all_locks();
1da177e4
LT
5386}
5387
1df21055
IM
5388void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5389{
dd41f596 5390 idle->sched_class = &idle_sched_class;
1df21055
IM
5391}
5392
f340c0d1
IM
5393/**
5394 * init_idle - set up an idle thread for a given CPU
5395 * @idle: task in question
5396 * @cpu: cpu the idle task belongs to
5397 *
5398 * NOTE: this function does not set the idle thread's NEED_RESCHED
5399 * flag, to make booting more robust.
5400 */
5c1e1767 5401void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5402{
70b97a7f 5403 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5404 unsigned long flags;
5405
dd41f596
IM
5406 __sched_fork(idle);
5407 idle->se.exec_start = sched_clock();
5408
b29739f9 5409 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5410 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5411 __set_task_cpu(idle, cpu);
1da177e4
LT
5412
5413 spin_lock_irqsave(&rq->lock, flags);
5414 rq->curr = rq->idle = idle;
4866cde0
NP
5415#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5416 idle->oncpu = 1;
5417#endif
1da177e4
LT
5418 spin_unlock_irqrestore(&rq->lock, flags);
5419
5420 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5421 task_thread_info(idle)->preempt_count = 0;
6478d880 5422
dd41f596
IM
5423 /*
5424 * The idle tasks have their own, simple scheduling class:
5425 */
5426 idle->sched_class = &idle_sched_class;
1da177e4
LT
5427}
5428
5429/*
5430 * In a system that switches off the HZ timer nohz_cpu_mask
5431 * indicates which cpus entered this state. This is used
5432 * in the rcu update to wait only for active cpus. For system
5433 * which do not switch off the HZ timer nohz_cpu_mask should
5434 * always be CPU_MASK_NONE.
5435 */
5436cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5437
19978ca6
IM
5438/*
5439 * Increase the granularity value when there are more CPUs,
5440 * because with more CPUs the 'effective latency' as visible
5441 * to users decreases. But the relationship is not linear,
5442 * so pick a second-best guess by going with the log2 of the
5443 * number of CPUs.
5444 *
5445 * This idea comes from the SD scheduler of Con Kolivas:
5446 */
5447static inline void sched_init_granularity(void)
5448{
5449 unsigned int factor = 1 + ilog2(num_online_cpus());
5450 const unsigned long limit = 200000000;
5451
5452 sysctl_sched_min_granularity *= factor;
5453 if (sysctl_sched_min_granularity > limit)
5454 sysctl_sched_min_granularity = limit;
5455
5456 sysctl_sched_latency *= factor;
5457 if (sysctl_sched_latency > limit)
5458 sysctl_sched_latency = limit;
5459
5460 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5461}
5462
1da177e4
LT
5463#ifdef CONFIG_SMP
5464/*
5465 * This is how migration works:
5466 *
70b97a7f 5467 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5468 * runqueue and wake up that CPU's migration thread.
5469 * 2) we down() the locked semaphore => thread blocks.
5470 * 3) migration thread wakes up (implicitly it forces the migrated
5471 * thread off the CPU)
5472 * 4) it gets the migration request and checks whether the migrated
5473 * task is still in the wrong runqueue.
5474 * 5) if it's in the wrong runqueue then the migration thread removes
5475 * it and puts it into the right queue.
5476 * 6) migration thread up()s the semaphore.
5477 * 7) we wake up and the migration is done.
5478 */
5479
5480/*
5481 * Change a given task's CPU affinity. Migrate the thread to a
5482 * proper CPU and schedule it away if the CPU it's executing on
5483 * is removed from the allowed bitmask.
5484 *
5485 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5486 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5487 * call is not atomic; no spinlocks may be held.
5488 */
36c8b586 5489int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5490{
70b97a7f 5491 struct migration_req req;
1da177e4 5492 unsigned long flags;
70b97a7f 5493 struct rq *rq;
48f24c4d 5494 int ret = 0;
1da177e4
LT
5495
5496 rq = task_rq_lock(p, &flags);
5497 if (!cpus_intersects(new_mask, cpu_online_map)) {
5498 ret = -EINVAL;
5499 goto out;
5500 }
5501
73fe6aae
GH
5502 if (p->sched_class->set_cpus_allowed)
5503 p->sched_class->set_cpus_allowed(p, &new_mask);
5504 else {
0eab9146 5505 p->cpus_allowed = new_mask;
6f505b16 5506 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
73fe6aae
GH
5507 }
5508
1da177e4
LT
5509 /* Can the task run on the task's current CPU? If so, we're done */
5510 if (cpu_isset(task_cpu(p), new_mask))
5511 goto out;
5512
5513 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5514 /* Need help from migration thread: drop lock and wait. */
5515 task_rq_unlock(rq, &flags);
5516 wake_up_process(rq->migration_thread);
5517 wait_for_completion(&req.done);
5518 tlb_migrate_finish(p->mm);
5519 return 0;
5520 }
5521out:
5522 task_rq_unlock(rq, &flags);
48f24c4d 5523
1da177e4
LT
5524 return ret;
5525}
1da177e4
LT
5526EXPORT_SYMBOL_GPL(set_cpus_allowed);
5527
5528/*
41a2d6cf 5529 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5530 * this because either it can't run here any more (set_cpus_allowed()
5531 * away from this CPU, or CPU going down), or because we're
5532 * attempting to rebalance this task on exec (sched_exec).
5533 *
5534 * So we race with normal scheduler movements, but that's OK, as long
5535 * as the task is no longer on this CPU.
efc30814
KK
5536 *
5537 * Returns non-zero if task was successfully migrated.
1da177e4 5538 */
efc30814 5539static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5540{
70b97a7f 5541 struct rq *rq_dest, *rq_src;
dd41f596 5542 int ret = 0, on_rq;
1da177e4
LT
5543
5544 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5545 return ret;
1da177e4
LT
5546
5547 rq_src = cpu_rq(src_cpu);
5548 rq_dest = cpu_rq(dest_cpu);
5549
5550 double_rq_lock(rq_src, rq_dest);
5551 /* Already moved. */
5552 if (task_cpu(p) != src_cpu)
5553 goto out;
5554 /* Affinity changed (again). */
5555 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5556 goto out;
5557
dd41f596 5558 on_rq = p->se.on_rq;
6e82a3be 5559 if (on_rq)
2e1cb74a 5560 deactivate_task(rq_src, p, 0);
6e82a3be 5561
1da177e4 5562 set_task_cpu(p, dest_cpu);
dd41f596
IM
5563 if (on_rq) {
5564 activate_task(rq_dest, p, 0);
5565 check_preempt_curr(rq_dest, p);
1da177e4 5566 }
efc30814 5567 ret = 1;
1da177e4
LT
5568out:
5569 double_rq_unlock(rq_src, rq_dest);
efc30814 5570 return ret;
1da177e4
LT
5571}
5572
5573/*
5574 * migration_thread - this is a highprio system thread that performs
5575 * thread migration by bumping thread off CPU then 'pushing' onto
5576 * another runqueue.
5577 */
95cdf3b7 5578static int migration_thread(void *data)
1da177e4 5579{
1da177e4 5580 int cpu = (long)data;
70b97a7f 5581 struct rq *rq;
1da177e4
LT
5582
5583 rq = cpu_rq(cpu);
5584 BUG_ON(rq->migration_thread != current);
5585
5586 set_current_state(TASK_INTERRUPTIBLE);
5587 while (!kthread_should_stop()) {
70b97a7f 5588 struct migration_req *req;
1da177e4 5589 struct list_head *head;
1da177e4 5590
1da177e4
LT
5591 spin_lock_irq(&rq->lock);
5592
5593 if (cpu_is_offline(cpu)) {
5594 spin_unlock_irq(&rq->lock);
5595 goto wait_to_die;
5596 }
5597
5598 if (rq->active_balance) {
5599 active_load_balance(rq, cpu);
5600 rq->active_balance = 0;
5601 }
5602
5603 head = &rq->migration_queue;
5604
5605 if (list_empty(head)) {
5606 spin_unlock_irq(&rq->lock);
5607 schedule();
5608 set_current_state(TASK_INTERRUPTIBLE);
5609 continue;
5610 }
70b97a7f 5611 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5612 list_del_init(head->next);
5613
674311d5
NP
5614 spin_unlock(&rq->lock);
5615 __migrate_task(req->task, cpu, req->dest_cpu);
5616 local_irq_enable();
1da177e4
LT
5617
5618 complete(&req->done);
5619 }
5620 __set_current_state(TASK_RUNNING);
5621 return 0;
5622
5623wait_to_die:
5624 /* Wait for kthread_stop */
5625 set_current_state(TASK_INTERRUPTIBLE);
5626 while (!kthread_should_stop()) {
5627 schedule();
5628 set_current_state(TASK_INTERRUPTIBLE);
5629 }
5630 __set_current_state(TASK_RUNNING);
5631 return 0;
5632}
5633
5634#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5635
5636static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5637{
5638 int ret;
5639
5640 local_irq_disable();
5641 ret = __migrate_task(p, src_cpu, dest_cpu);
5642 local_irq_enable();
5643 return ret;
5644}
5645
054b9108 5646/*
3a4fa0a2 5647 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5648 * NOTE: interrupts should be disabled by the caller
5649 */
48f24c4d 5650static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5651{
efc30814 5652 unsigned long flags;
1da177e4 5653 cpumask_t mask;
70b97a7f
IM
5654 struct rq *rq;
5655 int dest_cpu;
1da177e4 5656
3a5c359a
AK
5657 do {
5658 /* On same node? */
5659 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5660 cpus_and(mask, mask, p->cpus_allowed);
5661 dest_cpu = any_online_cpu(mask);
5662
5663 /* On any allowed CPU? */
434d53b0 5664 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5665 dest_cpu = any_online_cpu(p->cpus_allowed);
5666
5667 /* No more Mr. Nice Guy. */
434d53b0 5668 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5669 cpumask_t cpus_allowed;
5670
5671 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5672 /*
5673 * Try to stay on the same cpuset, where the
5674 * current cpuset may be a subset of all cpus.
5675 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5676 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5677 * called within calls to cpuset_lock/cpuset_unlock.
5678 */
3a5c359a 5679 rq = task_rq_lock(p, &flags);
470fd646 5680 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5681 dest_cpu = any_online_cpu(p->cpus_allowed);
5682 task_rq_unlock(rq, &flags);
1da177e4 5683
3a5c359a
AK
5684 /*
5685 * Don't tell them about moving exiting tasks or
5686 * kernel threads (both mm NULL), since they never
5687 * leave kernel.
5688 */
41a2d6cf 5689 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5690 printk(KERN_INFO "process %d (%s) no "
5691 "longer affine to cpu%d\n",
41a2d6cf
IM
5692 task_pid_nr(p), p->comm, dead_cpu);
5693 }
3a5c359a 5694 }
f7b4cddc 5695 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5696}
5697
5698/*
5699 * While a dead CPU has no uninterruptible tasks queued at this point,
5700 * it might still have a nonzero ->nr_uninterruptible counter, because
5701 * for performance reasons the counter is not stricly tracking tasks to
5702 * their home CPUs. So we just add the counter to another CPU's counter,
5703 * to keep the global sum constant after CPU-down:
5704 */
70b97a7f 5705static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5706{
7c16ec58 5707 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5708 unsigned long flags;
5709
5710 local_irq_save(flags);
5711 double_rq_lock(rq_src, rq_dest);
5712 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5713 rq_src->nr_uninterruptible = 0;
5714 double_rq_unlock(rq_src, rq_dest);
5715 local_irq_restore(flags);
5716}
5717
5718/* Run through task list and migrate tasks from the dead cpu. */
5719static void migrate_live_tasks(int src_cpu)
5720{
48f24c4d 5721 struct task_struct *p, *t;
1da177e4 5722
f7b4cddc 5723 read_lock(&tasklist_lock);
1da177e4 5724
48f24c4d
IM
5725 do_each_thread(t, p) {
5726 if (p == current)
1da177e4
LT
5727 continue;
5728
48f24c4d
IM
5729 if (task_cpu(p) == src_cpu)
5730 move_task_off_dead_cpu(src_cpu, p);
5731 } while_each_thread(t, p);
1da177e4 5732
f7b4cddc 5733 read_unlock(&tasklist_lock);
1da177e4
LT
5734}
5735
dd41f596
IM
5736/*
5737 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5738 * It does so by boosting its priority to highest possible.
5739 * Used by CPU offline code.
1da177e4
LT
5740 */
5741void sched_idle_next(void)
5742{
48f24c4d 5743 int this_cpu = smp_processor_id();
70b97a7f 5744 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5745 struct task_struct *p = rq->idle;
5746 unsigned long flags;
5747
5748 /* cpu has to be offline */
48f24c4d 5749 BUG_ON(cpu_online(this_cpu));
1da177e4 5750
48f24c4d
IM
5751 /*
5752 * Strictly not necessary since rest of the CPUs are stopped by now
5753 * and interrupts disabled on the current cpu.
1da177e4
LT
5754 */
5755 spin_lock_irqsave(&rq->lock, flags);
5756
dd41f596 5757 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5758
94bc9a7b
DA
5759 update_rq_clock(rq);
5760 activate_task(rq, p, 0);
1da177e4
LT
5761
5762 spin_unlock_irqrestore(&rq->lock, flags);
5763}
5764
48f24c4d
IM
5765/*
5766 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5767 * offline.
5768 */
5769void idle_task_exit(void)
5770{
5771 struct mm_struct *mm = current->active_mm;
5772
5773 BUG_ON(cpu_online(smp_processor_id()));
5774
5775 if (mm != &init_mm)
5776 switch_mm(mm, &init_mm, current);
5777 mmdrop(mm);
5778}
5779
054b9108 5780/* called under rq->lock with disabled interrupts */
36c8b586 5781static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5782{
70b97a7f 5783 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5784
5785 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5786 BUG_ON(!p->exit_state);
1da177e4
LT
5787
5788 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5789 BUG_ON(p->state == TASK_DEAD);
1da177e4 5790
48f24c4d 5791 get_task_struct(p);
1da177e4
LT
5792
5793 /*
5794 * Drop lock around migration; if someone else moves it,
41a2d6cf 5795 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5796 * fine.
5797 */
f7b4cddc 5798 spin_unlock_irq(&rq->lock);
48f24c4d 5799 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5800 spin_lock_irq(&rq->lock);
1da177e4 5801
48f24c4d 5802 put_task_struct(p);
1da177e4
LT
5803}
5804
5805/* release_task() removes task from tasklist, so we won't find dead tasks. */
5806static void migrate_dead_tasks(unsigned int dead_cpu)
5807{
70b97a7f 5808 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5809 struct task_struct *next;
48f24c4d 5810
dd41f596
IM
5811 for ( ; ; ) {
5812 if (!rq->nr_running)
5813 break;
a8e504d2 5814 update_rq_clock(rq);
ff95f3df 5815 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5816 if (!next)
5817 break;
5818 migrate_dead(dead_cpu, next);
e692ab53 5819
1da177e4
LT
5820 }
5821}
5822#endif /* CONFIG_HOTPLUG_CPU */
5823
e692ab53
NP
5824#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5825
5826static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5827 {
5828 .procname = "sched_domain",
c57baf1e 5829 .mode = 0555,
e0361851 5830 },
38605cae 5831 {0, },
e692ab53
NP
5832};
5833
5834static struct ctl_table sd_ctl_root[] = {
e0361851 5835 {
c57baf1e 5836 .ctl_name = CTL_KERN,
e0361851 5837 .procname = "kernel",
c57baf1e 5838 .mode = 0555,
e0361851
AD
5839 .child = sd_ctl_dir,
5840 },
38605cae 5841 {0, },
e692ab53
NP
5842};
5843
5844static struct ctl_table *sd_alloc_ctl_entry(int n)
5845{
5846 struct ctl_table *entry =
5cf9f062 5847 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5848
e692ab53
NP
5849 return entry;
5850}
5851
6382bc90
MM
5852static void sd_free_ctl_entry(struct ctl_table **tablep)
5853{
cd790076 5854 struct ctl_table *entry;
6382bc90 5855
cd790076
MM
5856 /*
5857 * In the intermediate directories, both the child directory and
5858 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5859 * will always be set. In the lowest directory the names are
cd790076
MM
5860 * static strings and all have proc handlers.
5861 */
5862 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5863 if (entry->child)
5864 sd_free_ctl_entry(&entry->child);
cd790076
MM
5865 if (entry->proc_handler == NULL)
5866 kfree(entry->procname);
5867 }
6382bc90
MM
5868
5869 kfree(*tablep);
5870 *tablep = NULL;
5871}
5872
e692ab53 5873static void
e0361851 5874set_table_entry(struct ctl_table *entry,
e692ab53
NP
5875 const char *procname, void *data, int maxlen,
5876 mode_t mode, proc_handler *proc_handler)
5877{
e692ab53
NP
5878 entry->procname = procname;
5879 entry->data = data;
5880 entry->maxlen = maxlen;
5881 entry->mode = mode;
5882 entry->proc_handler = proc_handler;
5883}
5884
5885static struct ctl_table *
5886sd_alloc_ctl_domain_table(struct sched_domain *sd)
5887{
ace8b3d6 5888 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5889
ad1cdc1d
MM
5890 if (table == NULL)
5891 return NULL;
5892
e0361851 5893 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5894 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5895 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5896 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5897 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5898 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5899 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5900 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5901 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5902 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5903 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5904 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5905 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5906 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5907 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5908 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5909 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5910 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5911 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5912 &sd->cache_nice_tries,
5913 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5914 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5915 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5916 /* &table[11] is terminator */
e692ab53
NP
5917
5918 return table;
5919}
5920
9a4e7159 5921static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5922{
5923 struct ctl_table *entry, *table;
5924 struct sched_domain *sd;
5925 int domain_num = 0, i;
5926 char buf[32];
5927
5928 for_each_domain(cpu, sd)
5929 domain_num++;
5930 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5931 if (table == NULL)
5932 return NULL;
e692ab53
NP
5933
5934 i = 0;
5935 for_each_domain(cpu, sd) {
5936 snprintf(buf, 32, "domain%d", i);
e692ab53 5937 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5938 entry->mode = 0555;
e692ab53
NP
5939 entry->child = sd_alloc_ctl_domain_table(sd);
5940 entry++;
5941 i++;
5942 }
5943 return table;
5944}
5945
5946static struct ctl_table_header *sd_sysctl_header;
6382bc90 5947static void register_sched_domain_sysctl(void)
e692ab53
NP
5948{
5949 int i, cpu_num = num_online_cpus();
5950 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5951 char buf[32];
5952
7378547f
MM
5953 WARN_ON(sd_ctl_dir[0].child);
5954 sd_ctl_dir[0].child = entry;
5955
ad1cdc1d
MM
5956 if (entry == NULL)
5957 return;
5958
97b6ea7b 5959 for_each_online_cpu(i) {
e692ab53 5960 snprintf(buf, 32, "cpu%d", i);
e692ab53 5961 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5962 entry->mode = 0555;
e692ab53 5963 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5964 entry++;
e692ab53 5965 }
7378547f
MM
5966
5967 WARN_ON(sd_sysctl_header);
e692ab53
NP
5968 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5969}
6382bc90 5970
7378547f 5971/* may be called multiple times per register */
6382bc90
MM
5972static void unregister_sched_domain_sysctl(void)
5973{
7378547f
MM
5974 if (sd_sysctl_header)
5975 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5976 sd_sysctl_header = NULL;
7378547f
MM
5977 if (sd_ctl_dir[0].child)
5978 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5979}
e692ab53 5980#else
6382bc90
MM
5981static void register_sched_domain_sysctl(void)
5982{
5983}
5984static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5985{
5986}
5987#endif
5988
1da177e4
LT
5989/*
5990 * migration_call - callback that gets triggered when a CPU is added.
5991 * Here we can start up the necessary migration thread for the new CPU.
5992 */
48f24c4d
IM
5993static int __cpuinit
5994migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5995{
1da177e4 5996 struct task_struct *p;
48f24c4d 5997 int cpu = (long)hcpu;
1da177e4 5998 unsigned long flags;
70b97a7f 5999 struct rq *rq;
1da177e4
LT
6000
6001 switch (action) {
5be9361c 6002
1da177e4 6003 case CPU_UP_PREPARE:
8bb78442 6004 case CPU_UP_PREPARE_FROZEN:
dd41f596 6005 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6006 if (IS_ERR(p))
6007 return NOTIFY_BAD;
1da177e4
LT
6008 kthread_bind(p, cpu);
6009 /* Must be high prio: stop_machine expects to yield to it. */
6010 rq = task_rq_lock(p, &flags);
dd41f596 6011 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6012 task_rq_unlock(rq, &flags);
6013 cpu_rq(cpu)->migration_thread = p;
6014 break;
48f24c4d 6015
1da177e4 6016 case CPU_ONLINE:
8bb78442 6017 case CPU_ONLINE_FROZEN:
3a4fa0a2 6018 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6019 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6020
6021 /* Update our root-domain */
6022 rq = cpu_rq(cpu);
6023 spin_lock_irqsave(&rq->lock, flags);
6024 if (rq->rd) {
6025 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6026 cpu_set(cpu, rq->rd->online);
6027 }
6028 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6029 break;
48f24c4d 6030
1da177e4
LT
6031#ifdef CONFIG_HOTPLUG_CPU
6032 case CPU_UP_CANCELED:
8bb78442 6033 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6034 if (!cpu_rq(cpu)->migration_thread)
6035 break;
41a2d6cf 6036 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6037 kthread_bind(cpu_rq(cpu)->migration_thread,
6038 any_online_cpu(cpu_online_map));
1da177e4
LT
6039 kthread_stop(cpu_rq(cpu)->migration_thread);
6040 cpu_rq(cpu)->migration_thread = NULL;
6041 break;
48f24c4d 6042
1da177e4 6043 case CPU_DEAD:
8bb78442 6044 case CPU_DEAD_FROZEN:
470fd646 6045 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6046 migrate_live_tasks(cpu);
6047 rq = cpu_rq(cpu);
6048 kthread_stop(rq->migration_thread);
6049 rq->migration_thread = NULL;
6050 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6051 spin_lock_irq(&rq->lock);
a8e504d2 6052 update_rq_clock(rq);
2e1cb74a 6053 deactivate_task(rq, rq->idle, 0);
1da177e4 6054 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6055 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6056 rq->idle->sched_class = &idle_sched_class;
1da177e4 6057 migrate_dead_tasks(cpu);
d2da272a 6058 spin_unlock_irq(&rq->lock);
470fd646 6059 cpuset_unlock();
1da177e4
LT
6060 migrate_nr_uninterruptible(rq);
6061 BUG_ON(rq->nr_running != 0);
6062
41a2d6cf
IM
6063 /*
6064 * No need to migrate the tasks: it was best-effort if
6065 * they didn't take sched_hotcpu_mutex. Just wake up
6066 * the requestors.
6067 */
1da177e4
LT
6068 spin_lock_irq(&rq->lock);
6069 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6070 struct migration_req *req;
6071
1da177e4 6072 req = list_entry(rq->migration_queue.next,
70b97a7f 6073 struct migration_req, list);
1da177e4
LT
6074 list_del_init(&req->list);
6075 complete(&req->done);
6076 }
6077 spin_unlock_irq(&rq->lock);
6078 break;
57d885fe 6079
08f503b0
GH
6080 case CPU_DYING:
6081 case CPU_DYING_FROZEN:
57d885fe
GH
6082 /* Update our root-domain */
6083 rq = cpu_rq(cpu);
6084 spin_lock_irqsave(&rq->lock, flags);
6085 if (rq->rd) {
6086 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6087 cpu_clear(cpu, rq->rd->online);
6088 }
6089 spin_unlock_irqrestore(&rq->lock, flags);
6090 break;
1da177e4
LT
6091#endif
6092 }
6093 return NOTIFY_OK;
6094}
6095
6096/* Register at highest priority so that task migration (migrate_all_tasks)
6097 * happens before everything else.
6098 */
26c2143b 6099static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6100 .notifier_call = migration_call,
6101 .priority = 10
6102};
6103
e6fe6649 6104void __init migration_init(void)
1da177e4
LT
6105{
6106 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6107 int err;
48f24c4d
IM
6108
6109 /* Start one for the boot CPU: */
07dccf33
AM
6110 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6111 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6112 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6113 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6114}
6115#endif
6116
6117#ifdef CONFIG_SMP
476f3534 6118
3e9830dc 6119#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6120
7c16ec58
MT
6121static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6122 cpumask_t *groupmask)
1da177e4 6123{
4dcf6aff 6124 struct sched_group *group = sd->groups;
434d53b0 6125 char str[256];
1da177e4 6126
434d53b0 6127 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6128 cpus_clear(*groupmask);
4dcf6aff
IM
6129
6130 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6131
6132 if (!(sd->flags & SD_LOAD_BALANCE)) {
6133 printk("does not load-balance\n");
6134 if (sd->parent)
6135 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6136 " has parent");
6137 return -1;
41c7ce9a
NP
6138 }
6139
4dcf6aff
IM
6140 printk(KERN_CONT "span %s\n", str);
6141
6142 if (!cpu_isset(cpu, sd->span)) {
6143 printk(KERN_ERR "ERROR: domain->span does not contain "
6144 "CPU%d\n", cpu);
6145 }
6146 if (!cpu_isset(cpu, group->cpumask)) {
6147 printk(KERN_ERR "ERROR: domain->groups does not contain"
6148 " CPU%d\n", cpu);
6149 }
1da177e4 6150
4dcf6aff 6151 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6152 do {
4dcf6aff
IM
6153 if (!group) {
6154 printk("\n");
6155 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6156 break;
6157 }
6158
4dcf6aff
IM
6159 if (!group->__cpu_power) {
6160 printk(KERN_CONT "\n");
6161 printk(KERN_ERR "ERROR: domain->cpu_power not "
6162 "set\n");
6163 break;
6164 }
1da177e4 6165
4dcf6aff
IM
6166 if (!cpus_weight(group->cpumask)) {
6167 printk(KERN_CONT "\n");
6168 printk(KERN_ERR "ERROR: empty group\n");
6169 break;
6170 }
1da177e4 6171
7c16ec58 6172 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6173 printk(KERN_CONT "\n");
6174 printk(KERN_ERR "ERROR: repeated CPUs\n");
6175 break;
6176 }
1da177e4 6177
7c16ec58 6178 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6179
434d53b0 6180 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6181 printk(KERN_CONT " %s", str);
1da177e4 6182
4dcf6aff
IM
6183 group = group->next;
6184 } while (group != sd->groups);
6185 printk(KERN_CONT "\n");
1da177e4 6186
7c16ec58 6187 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6188 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6189
7c16ec58 6190 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6191 printk(KERN_ERR "ERROR: parent span is not a superset "
6192 "of domain->span\n");
6193 return 0;
6194}
1da177e4 6195
4dcf6aff
IM
6196static void sched_domain_debug(struct sched_domain *sd, int cpu)
6197{
7c16ec58 6198 cpumask_t *groupmask;
4dcf6aff 6199 int level = 0;
1da177e4 6200
4dcf6aff
IM
6201 if (!sd) {
6202 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6203 return;
6204 }
1da177e4 6205
4dcf6aff
IM
6206 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6207
7c16ec58
MT
6208 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6209 if (!groupmask) {
6210 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6211 return;
6212 }
6213
4dcf6aff 6214 for (;;) {
7c16ec58 6215 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6216 break;
1da177e4
LT
6217 level++;
6218 sd = sd->parent;
33859f7f 6219 if (!sd)
4dcf6aff
IM
6220 break;
6221 }
7c16ec58 6222 kfree(groupmask);
1da177e4
LT
6223}
6224#else
48f24c4d 6225# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6226#endif
6227
1a20ff27 6228static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6229{
6230 if (cpus_weight(sd->span) == 1)
6231 return 1;
6232
6233 /* Following flags need at least 2 groups */
6234 if (sd->flags & (SD_LOAD_BALANCE |
6235 SD_BALANCE_NEWIDLE |
6236 SD_BALANCE_FORK |
89c4710e
SS
6237 SD_BALANCE_EXEC |
6238 SD_SHARE_CPUPOWER |
6239 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6240 if (sd->groups != sd->groups->next)
6241 return 0;
6242 }
6243
6244 /* Following flags don't use groups */
6245 if (sd->flags & (SD_WAKE_IDLE |
6246 SD_WAKE_AFFINE |
6247 SD_WAKE_BALANCE))
6248 return 0;
6249
6250 return 1;
6251}
6252
48f24c4d
IM
6253static int
6254sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6255{
6256 unsigned long cflags = sd->flags, pflags = parent->flags;
6257
6258 if (sd_degenerate(parent))
6259 return 1;
6260
6261 if (!cpus_equal(sd->span, parent->span))
6262 return 0;
6263
6264 /* Does parent contain flags not in child? */
6265 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6266 if (cflags & SD_WAKE_AFFINE)
6267 pflags &= ~SD_WAKE_BALANCE;
6268 /* Flags needing groups don't count if only 1 group in parent */
6269 if (parent->groups == parent->groups->next) {
6270 pflags &= ~(SD_LOAD_BALANCE |
6271 SD_BALANCE_NEWIDLE |
6272 SD_BALANCE_FORK |
89c4710e
SS
6273 SD_BALANCE_EXEC |
6274 SD_SHARE_CPUPOWER |
6275 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6276 }
6277 if (~cflags & pflags)
6278 return 0;
6279
6280 return 1;
6281}
6282
57d885fe
GH
6283static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6284{
6285 unsigned long flags;
6286 const struct sched_class *class;
6287
6288 spin_lock_irqsave(&rq->lock, flags);
6289
6290 if (rq->rd) {
6291 struct root_domain *old_rd = rq->rd;
6292
0eab9146 6293 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6294 if (class->leave_domain)
6295 class->leave_domain(rq);
0eab9146 6296 }
57d885fe 6297
dc938520
GH
6298 cpu_clear(rq->cpu, old_rd->span);
6299 cpu_clear(rq->cpu, old_rd->online);
6300
57d885fe
GH
6301 if (atomic_dec_and_test(&old_rd->refcount))
6302 kfree(old_rd);
6303 }
6304
6305 atomic_inc(&rd->refcount);
6306 rq->rd = rd;
6307
dc938520 6308 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6309 if (cpu_isset(rq->cpu, cpu_online_map))
6310 cpu_set(rq->cpu, rd->online);
dc938520 6311
0eab9146 6312 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6313 if (class->join_domain)
6314 class->join_domain(rq);
0eab9146 6315 }
57d885fe
GH
6316
6317 spin_unlock_irqrestore(&rq->lock, flags);
6318}
6319
dc938520 6320static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6321{
6322 memset(rd, 0, sizeof(*rd));
6323
dc938520
GH
6324 cpus_clear(rd->span);
6325 cpus_clear(rd->online);
57d885fe
GH
6326}
6327
6328static void init_defrootdomain(void)
6329{
dc938520 6330 init_rootdomain(&def_root_domain);
57d885fe
GH
6331 atomic_set(&def_root_domain.refcount, 1);
6332}
6333
dc938520 6334static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6335{
6336 struct root_domain *rd;
6337
6338 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6339 if (!rd)
6340 return NULL;
6341
dc938520 6342 init_rootdomain(rd);
57d885fe
GH
6343
6344 return rd;
6345}
6346
1da177e4 6347/*
0eab9146 6348 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6349 * hold the hotplug lock.
6350 */
0eab9146
IM
6351static void
6352cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6353{
70b97a7f 6354 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6355 struct sched_domain *tmp;
6356
6357 /* Remove the sched domains which do not contribute to scheduling. */
6358 for (tmp = sd; tmp; tmp = tmp->parent) {
6359 struct sched_domain *parent = tmp->parent;
6360 if (!parent)
6361 break;
1a848870 6362 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6363 tmp->parent = parent->parent;
1a848870
SS
6364 if (parent->parent)
6365 parent->parent->child = tmp;
6366 }
245af2c7
SS
6367 }
6368
1a848870 6369 if (sd && sd_degenerate(sd)) {
245af2c7 6370 sd = sd->parent;
1a848870
SS
6371 if (sd)
6372 sd->child = NULL;
6373 }
1da177e4
LT
6374
6375 sched_domain_debug(sd, cpu);
6376
57d885fe 6377 rq_attach_root(rq, rd);
674311d5 6378 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6379}
6380
6381/* cpus with isolated domains */
67af63a6 6382static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6383
6384/* Setup the mask of cpus configured for isolated domains */
6385static int __init isolated_cpu_setup(char *str)
6386{
6387 int ints[NR_CPUS], i;
6388
6389 str = get_options(str, ARRAY_SIZE(ints), ints);
6390 cpus_clear(cpu_isolated_map);
6391 for (i = 1; i <= ints[0]; i++)
6392 if (ints[i] < NR_CPUS)
6393 cpu_set(ints[i], cpu_isolated_map);
6394 return 1;
6395}
6396
8927f494 6397__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6398
6399/*
6711cab4
SS
6400 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6401 * to a function which identifies what group(along with sched group) a CPU
6402 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6403 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6404 *
6405 * init_sched_build_groups will build a circular linked list of the groups
6406 * covered by the given span, and will set each group's ->cpumask correctly,
6407 * and ->cpu_power to 0.
6408 */
a616058b 6409static void
7c16ec58 6410init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6411 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6412 struct sched_group **sg,
6413 cpumask_t *tmpmask),
6414 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6415{
6416 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6417 int i;
6418
7c16ec58
MT
6419 cpus_clear(*covered);
6420
6421 for_each_cpu_mask(i, *span) {
6711cab4 6422 struct sched_group *sg;
7c16ec58 6423 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6424 int j;
6425
7c16ec58 6426 if (cpu_isset(i, *covered))
1da177e4
LT
6427 continue;
6428
7c16ec58 6429 cpus_clear(sg->cpumask);
5517d86b 6430 sg->__cpu_power = 0;
1da177e4 6431
7c16ec58
MT
6432 for_each_cpu_mask(j, *span) {
6433 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6434 continue;
6435
7c16ec58 6436 cpu_set(j, *covered);
1da177e4
LT
6437 cpu_set(j, sg->cpumask);
6438 }
6439 if (!first)
6440 first = sg;
6441 if (last)
6442 last->next = sg;
6443 last = sg;
6444 }
6445 last->next = first;
6446}
6447
9c1cfda2 6448#define SD_NODES_PER_DOMAIN 16
1da177e4 6449
9c1cfda2 6450#ifdef CONFIG_NUMA
198e2f18 6451
9c1cfda2
JH
6452/**
6453 * find_next_best_node - find the next node to include in a sched_domain
6454 * @node: node whose sched_domain we're building
6455 * @used_nodes: nodes already in the sched_domain
6456 *
41a2d6cf 6457 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6458 * finds the closest node not already in the @used_nodes map.
6459 *
6460 * Should use nodemask_t.
6461 */
c5f59f08 6462static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6463{
6464 int i, n, val, min_val, best_node = 0;
6465
6466 min_val = INT_MAX;
6467
6468 for (i = 0; i < MAX_NUMNODES; i++) {
6469 /* Start at @node */
6470 n = (node + i) % MAX_NUMNODES;
6471
6472 if (!nr_cpus_node(n))
6473 continue;
6474
6475 /* Skip already used nodes */
c5f59f08 6476 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6477 continue;
6478
6479 /* Simple min distance search */
6480 val = node_distance(node, n);
6481
6482 if (val < min_val) {
6483 min_val = val;
6484 best_node = n;
6485 }
6486 }
6487
c5f59f08 6488 node_set(best_node, *used_nodes);
9c1cfda2
JH
6489 return best_node;
6490}
6491
6492/**
6493 * sched_domain_node_span - get a cpumask for a node's sched_domain
6494 * @node: node whose cpumask we're constructing
9c1cfda2 6495 *
41a2d6cf 6496 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6497 * should be one that prevents unnecessary balancing, but also spreads tasks
6498 * out optimally.
6499 */
4bdbaad3 6500static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6501{
c5f59f08 6502 nodemask_t used_nodes;
c5f59f08 6503 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6504 int i;
9c1cfda2 6505
4bdbaad3 6506 cpus_clear(*span);
c5f59f08 6507 nodes_clear(used_nodes);
9c1cfda2 6508
4bdbaad3 6509 cpus_or(*span, *span, *nodemask);
c5f59f08 6510 node_set(node, used_nodes);
9c1cfda2
JH
6511
6512 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6513 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6514
c5f59f08 6515 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6516 cpus_or(*span, *span, *nodemask);
9c1cfda2 6517 }
9c1cfda2
JH
6518}
6519#endif
6520
5c45bf27 6521int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6522
9c1cfda2 6523/*
48f24c4d 6524 * SMT sched-domains:
9c1cfda2 6525 */
1da177e4
LT
6526#ifdef CONFIG_SCHED_SMT
6527static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6528static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6529
41a2d6cf 6530static int
7c16ec58
MT
6531cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6532 cpumask_t *unused)
1da177e4 6533{
6711cab4
SS
6534 if (sg)
6535 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6536 return cpu;
6537}
6538#endif
6539
48f24c4d
IM
6540/*
6541 * multi-core sched-domains:
6542 */
1e9f28fa
SS
6543#ifdef CONFIG_SCHED_MC
6544static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6545static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6546#endif
6547
6548#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6549static int
7c16ec58
MT
6550cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6551 cpumask_t *mask)
1e9f28fa 6552{
6711cab4 6553 int group;
7c16ec58
MT
6554
6555 *mask = per_cpu(cpu_sibling_map, cpu);
6556 cpus_and(*mask, *mask, *cpu_map);
6557 group = first_cpu(*mask);
6711cab4
SS
6558 if (sg)
6559 *sg = &per_cpu(sched_group_core, group);
6560 return group;
1e9f28fa
SS
6561}
6562#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6563static int
7c16ec58
MT
6564cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6565 cpumask_t *unused)
1e9f28fa 6566{
6711cab4
SS
6567 if (sg)
6568 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6569 return cpu;
6570}
6571#endif
6572
1da177e4 6573static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6574static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6575
41a2d6cf 6576static int
7c16ec58
MT
6577cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6578 cpumask_t *mask)
1da177e4 6579{
6711cab4 6580 int group;
48f24c4d 6581#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6582 *mask = cpu_coregroup_map(cpu);
6583 cpus_and(*mask, *mask, *cpu_map);
6584 group = first_cpu(*mask);
1e9f28fa 6585#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6586 *mask = per_cpu(cpu_sibling_map, cpu);
6587 cpus_and(*mask, *mask, *cpu_map);
6588 group = first_cpu(*mask);
1da177e4 6589#else
6711cab4 6590 group = cpu;
1da177e4 6591#endif
6711cab4
SS
6592 if (sg)
6593 *sg = &per_cpu(sched_group_phys, group);
6594 return group;
1da177e4
LT
6595}
6596
6597#ifdef CONFIG_NUMA
1da177e4 6598/*
9c1cfda2
JH
6599 * The init_sched_build_groups can't handle what we want to do with node
6600 * groups, so roll our own. Now each node has its own list of groups which
6601 * gets dynamically allocated.
1da177e4 6602 */
9c1cfda2 6603static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6604static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6605
9c1cfda2 6606static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6607static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6608
6711cab4 6609static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6610 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6611{
6711cab4
SS
6612 int group;
6613
7c16ec58
MT
6614 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6615 cpus_and(*nodemask, *nodemask, *cpu_map);
6616 group = first_cpu(*nodemask);
6711cab4
SS
6617
6618 if (sg)
6619 *sg = &per_cpu(sched_group_allnodes, group);
6620 return group;
1da177e4 6621}
6711cab4 6622
08069033
SS
6623static void init_numa_sched_groups_power(struct sched_group *group_head)
6624{
6625 struct sched_group *sg = group_head;
6626 int j;
6627
6628 if (!sg)
6629 return;
3a5c359a
AK
6630 do {
6631 for_each_cpu_mask(j, sg->cpumask) {
6632 struct sched_domain *sd;
08069033 6633
3a5c359a
AK
6634 sd = &per_cpu(phys_domains, j);
6635 if (j != first_cpu(sd->groups->cpumask)) {
6636 /*
6637 * Only add "power" once for each
6638 * physical package.
6639 */
6640 continue;
6641 }
08069033 6642
3a5c359a
AK
6643 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6644 }
6645 sg = sg->next;
6646 } while (sg != group_head);
08069033 6647}
1da177e4
LT
6648#endif
6649
a616058b 6650#ifdef CONFIG_NUMA
51888ca2 6651/* Free memory allocated for various sched_group structures */
7c16ec58 6652static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6653{
a616058b 6654 int cpu, i;
51888ca2
SV
6655
6656 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6657 struct sched_group **sched_group_nodes
6658 = sched_group_nodes_bycpu[cpu];
6659
51888ca2
SV
6660 if (!sched_group_nodes)
6661 continue;
6662
6663 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6664 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6665
7c16ec58
MT
6666 *nodemask = node_to_cpumask(i);
6667 cpus_and(*nodemask, *nodemask, *cpu_map);
6668 if (cpus_empty(*nodemask))
51888ca2
SV
6669 continue;
6670
6671 if (sg == NULL)
6672 continue;
6673 sg = sg->next;
6674next_sg:
6675 oldsg = sg;
6676 sg = sg->next;
6677 kfree(oldsg);
6678 if (oldsg != sched_group_nodes[i])
6679 goto next_sg;
6680 }
6681 kfree(sched_group_nodes);
6682 sched_group_nodes_bycpu[cpu] = NULL;
6683 }
51888ca2 6684}
a616058b 6685#else
7c16ec58 6686static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6687{
6688}
6689#endif
51888ca2 6690
89c4710e
SS
6691/*
6692 * Initialize sched groups cpu_power.
6693 *
6694 * cpu_power indicates the capacity of sched group, which is used while
6695 * distributing the load between different sched groups in a sched domain.
6696 * Typically cpu_power for all the groups in a sched domain will be same unless
6697 * there are asymmetries in the topology. If there are asymmetries, group
6698 * having more cpu_power will pickup more load compared to the group having
6699 * less cpu_power.
6700 *
6701 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6702 * the maximum number of tasks a group can handle in the presence of other idle
6703 * or lightly loaded groups in the same sched domain.
6704 */
6705static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6706{
6707 struct sched_domain *child;
6708 struct sched_group *group;
6709
6710 WARN_ON(!sd || !sd->groups);
6711
6712 if (cpu != first_cpu(sd->groups->cpumask))
6713 return;
6714
6715 child = sd->child;
6716
5517d86b
ED
6717 sd->groups->__cpu_power = 0;
6718
89c4710e
SS
6719 /*
6720 * For perf policy, if the groups in child domain share resources
6721 * (for example cores sharing some portions of the cache hierarchy
6722 * or SMT), then set this domain groups cpu_power such that each group
6723 * can handle only one task, when there are other idle groups in the
6724 * same sched domain.
6725 */
6726 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6727 (child->flags &
6728 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6729 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6730 return;
6731 }
6732
89c4710e
SS
6733 /*
6734 * add cpu_power of each child group to this groups cpu_power
6735 */
6736 group = child->groups;
6737 do {
5517d86b 6738 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6739 group = group->next;
6740 } while (group != child->groups);
6741}
6742
7c16ec58
MT
6743/*
6744 * Initializers for schedule domains
6745 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6746 */
6747
6748#define SD_INIT(sd, type) sd_init_##type(sd)
6749#define SD_INIT_FUNC(type) \
6750static noinline void sd_init_##type(struct sched_domain *sd) \
6751{ \
6752 memset(sd, 0, sizeof(*sd)); \
6753 *sd = SD_##type##_INIT; \
6754}
6755
6756SD_INIT_FUNC(CPU)
6757#ifdef CONFIG_NUMA
6758 SD_INIT_FUNC(ALLNODES)
6759 SD_INIT_FUNC(NODE)
6760#endif
6761#ifdef CONFIG_SCHED_SMT
6762 SD_INIT_FUNC(SIBLING)
6763#endif
6764#ifdef CONFIG_SCHED_MC
6765 SD_INIT_FUNC(MC)
6766#endif
6767
6768/*
6769 * To minimize stack usage kmalloc room for cpumasks and share the
6770 * space as the usage in build_sched_domains() dictates. Used only
6771 * if the amount of space is significant.
6772 */
6773struct allmasks {
6774 cpumask_t tmpmask; /* make this one first */
6775 union {
6776 cpumask_t nodemask;
6777 cpumask_t this_sibling_map;
6778 cpumask_t this_core_map;
6779 };
6780 cpumask_t send_covered;
6781
6782#ifdef CONFIG_NUMA
6783 cpumask_t domainspan;
6784 cpumask_t covered;
6785 cpumask_t notcovered;
6786#endif
6787};
6788
6789#if NR_CPUS > 128
6790#define SCHED_CPUMASK_ALLOC 1
6791#define SCHED_CPUMASK_FREE(v) kfree(v)
6792#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6793#else
6794#define SCHED_CPUMASK_ALLOC 0
6795#define SCHED_CPUMASK_FREE(v)
6796#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6797#endif
6798
6799#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6800 ((unsigned long)(a) + offsetof(struct allmasks, v))
6801
1da177e4 6802/*
1a20ff27
DG
6803 * Build sched domains for a given set of cpus and attach the sched domains
6804 * to the individual cpus
1da177e4 6805 */
51888ca2 6806static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6807{
6808 int i;
57d885fe 6809 struct root_domain *rd;
7c16ec58
MT
6810 SCHED_CPUMASK_DECLARE(allmasks);
6811 cpumask_t *tmpmask;
d1b55138
JH
6812#ifdef CONFIG_NUMA
6813 struct sched_group **sched_group_nodes = NULL;
6711cab4 6814 int sd_allnodes = 0;
d1b55138
JH
6815
6816 /*
6817 * Allocate the per-node list of sched groups
6818 */
5cf9f062 6819 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6820 GFP_KERNEL);
d1b55138
JH
6821 if (!sched_group_nodes) {
6822 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6823 return -ENOMEM;
d1b55138 6824 }
d1b55138 6825#endif
1da177e4 6826
dc938520 6827 rd = alloc_rootdomain();
57d885fe
GH
6828 if (!rd) {
6829 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
6830#ifdef CONFIG_NUMA
6831 kfree(sched_group_nodes);
6832#endif
57d885fe
GH
6833 return -ENOMEM;
6834 }
6835
7c16ec58
MT
6836#if SCHED_CPUMASK_ALLOC
6837 /* get space for all scratch cpumask variables */
6838 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6839 if (!allmasks) {
6840 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6841 kfree(rd);
6842#ifdef CONFIG_NUMA
6843 kfree(sched_group_nodes);
6844#endif
6845 return -ENOMEM;
6846 }
6847#endif
6848 tmpmask = (cpumask_t *)allmasks;
6849
6850
6851#ifdef CONFIG_NUMA
6852 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6853#endif
6854
1da177e4 6855 /*
1a20ff27 6856 * Set up domains for cpus specified by the cpu_map.
1da177e4 6857 */
1a20ff27 6858 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6859 struct sched_domain *sd = NULL, *p;
7c16ec58 6860 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 6861
7c16ec58
MT
6862 *nodemask = node_to_cpumask(cpu_to_node(i));
6863 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
6864
6865#ifdef CONFIG_NUMA
dd41f596 6866 if (cpus_weight(*cpu_map) >
7c16ec58 6867 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 6868 sd = &per_cpu(allnodes_domains, i);
7c16ec58 6869 SD_INIT(sd, ALLNODES);
9c1cfda2 6870 sd->span = *cpu_map;
7c16ec58 6871 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 6872 p = sd;
6711cab4 6873 sd_allnodes = 1;
9c1cfda2
JH
6874 } else
6875 p = NULL;
6876
1da177e4 6877 sd = &per_cpu(node_domains, i);
7c16ec58 6878 SD_INIT(sd, NODE);
4bdbaad3 6879 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 6880 sd->parent = p;
1a848870
SS
6881 if (p)
6882 p->child = sd;
9c1cfda2 6883 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6884#endif
6885
6886 p = sd;
6887 sd = &per_cpu(phys_domains, i);
7c16ec58
MT
6888 SD_INIT(sd, CPU);
6889 sd->span = *nodemask;
1da177e4 6890 sd->parent = p;
1a848870
SS
6891 if (p)
6892 p->child = sd;
7c16ec58 6893 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 6894
1e9f28fa
SS
6895#ifdef CONFIG_SCHED_MC
6896 p = sd;
6897 sd = &per_cpu(core_domains, i);
7c16ec58 6898 SD_INIT(sd, MC);
1e9f28fa
SS
6899 sd->span = cpu_coregroup_map(i);
6900 cpus_and(sd->span, sd->span, *cpu_map);
6901 sd->parent = p;
1a848870 6902 p->child = sd;
7c16ec58 6903 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
6904#endif
6905
1da177e4
LT
6906#ifdef CONFIG_SCHED_SMT
6907 p = sd;
6908 sd = &per_cpu(cpu_domains, i);
7c16ec58 6909 SD_INIT(sd, SIBLING);
d5a7430d 6910 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6911 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6912 sd->parent = p;
1a848870 6913 p->child = sd;
7c16ec58 6914 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
6915#endif
6916 }
6917
6918#ifdef CONFIG_SCHED_SMT
6919 /* Set up CPU (sibling) groups */
9c1cfda2 6920 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
6921 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
6922 SCHED_CPUMASK_VAR(send_covered, allmasks);
6923
6924 *this_sibling_map = per_cpu(cpu_sibling_map, i);
6925 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
6926 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
6927 continue;
6928
dd41f596 6929 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
6930 &cpu_to_cpu_group,
6931 send_covered, tmpmask);
1da177e4
LT
6932 }
6933#endif
6934
1e9f28fa
SS
6935#ifdef CONFIG_SCHED_MC
6936 /* Set up multi-core groups */
6937 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
6938 SCHED_CPUMASK_VAR(this_core_map, allmasks);
6939 SCHED_CPUMASK_VAR(send_covered, allmasks);
6940
6941 *this_core_map = cpu_coregroup_map(i);
6942 cpus_and(*this_core_map, *this_core_map, *cpu_map);
6943 if (i != first_cpu(*this_core_map))
1e9f28fa 6944 continue;
7c16ec58 6945
dd41f596 6946 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
6947 &cpu_to_core_group,
6948 send_covered, tmpmask);
1e9f28fa
SS
6949 }
6950#endif
6951
1da177e4
LT
6952 /* Set up physical groups */
6953 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
6954 SCHED_CPUMASK_VAR(nodemask, allmasks);
6955 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 6956
7c16ec58
MT
6957 *nodemask = node_to_cpumask(i);
6958 cpus_and(*nodemask, *nodemask, *cpu_map);
6959 if (cpus_empty(*nodemask))
1da177e4
LT
6960 continue;
6961
7c16ec58
MT
6962 init_sched_build_groups(nodemask, cpu_map,
6963 &cpu_to_phys_group,
6964 send_covered, tmpmask);
1da177e4
LT
6965 }
6966
6967#ifdef CONFIG_NUMA
6968 /* Set up node groups */
7c16ec58
MT
6969 if (sd_allnodes) {
6970 SCHED_CPUMASK_VAR(send_covered, allmasks);
6971
6972 init_sched_build_groups(cpu_map, cpu_map,
6973 &cpu_to_allnodes_group,
6974 send_covered, tmpmask);
6975 }
9c1cfda2
JH
6976
6977 for (i = 0; i < MAX_NUMNODES; i++) {
6978 /* Set up node groups */
6979 struct sched_group *sg, *prev;
7c16ec58
MT
6980 SCHED_CPUMASK_VAR(nodemask, allmasks);
6981 SCHED_CPUMASK_VAR(domainspan, allmasks);
6982 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
6983 int j;
6984
7c16ec58
MT
6985 *nodemask = node_to_cpumask(i);
6986 cpus_clear(*covered);
6987
6988 cpus_and(*nodemask, *nodemask, *cpu_map);
6989 if (cpus_empty(*nodemask)) {
d1b55138 6990 sched_group_nodes[i] = NULL;
9c1cfda2 6991 continue;
d1b55138 6992 }
9c1cfda2 6993
4bdbaad3 6994 sched_domain_node_span(i, domainspan);
7c16ec58 6995 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 6996
15f0b676 6997 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6998 if (!sg) {
6999 printk(KERN_WARNING "Can not alloc domain group for "
7000 "node %d\n", i);
7001 goto error;
7002 }
9c1cfda2 7003 sched_group_nodes[i] = sg;
7c16ec58 7004 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7005 struct sched_domain *sd;
9761eea8 7006
9c1cfda2
JH
7007 sd = &per_cpu(node_domains, j);
7008 sd->groups = sg;
9c1cfda2 7009 }
5517d86b 7010 sg->__cpu_power = 0;
7c16ec58 7011 sg->cpumask = *nodemask;
51888ca2 7012 sg->next = sg;
7c16ec58 7013 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7014 prev = sg;
7015
7016 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7017 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7018 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7019 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7020
7c16ec58
MT
7021 cpus_complement(*notcovered, *covered);
7022 cpus_and(*tmpmask, *notcovered, *cpu_map);
7023 cpus_and(*tmpmask, *tmpmask, *domainspan);
7024 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7025 break;
7026
7c16ec58
MT
7027 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7028 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7029 continue;
7030
15f0b676
SV
7031 sg = kmalloc_node(sizeof(struct sched_group),
7032 GFP_KERNEL, i);
9c1cfda2
JH
7033 if (!sg) {
7034 printk(KERN_WARNING
7035 "Can not alloc domain group for node %d\n", j);
51888ca2 7036 goto error;
9c1cfda2 7037 }
5517d86b 7038 sg->__cpu_power = 0;
7c16ec58 7039 sg->cpumask = *tmpmask;
51888ca2 7040 sg->next = prev->next;
7c16ec58 7041 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7042 prev->next = sg;
7043 prev = sg;
7044 }
9c1cfda2 7045 }
1da177e4
LT
7046#endif
7047
7048 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7049#ifdef CONFIG_SCHED_SMT
1a20ff27 7050 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7051 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7052
89c4710e 7053 init_sched_groups_power(i, sd);
5c45bf27 7054 }
1da177e4 7055#endif
1e9f28fa 7056#ifdef CONFIG_SCHED_MC
5c45bf27 7057 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7058 struct sched_domain *sd = &per_cpu(core_domains, i);
7059
89c4710e 7060 init_sched_groups_power(i, sd);
5c45bf27
SS
7061 }
7062#endif
1e9f28fa 7063
5c45bf27 7064 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7065 struct sched_domain *sd = &per_cpu(phys_domains, i);
7066
89c4710e 7067 init_sched_groups_power(i, sd);
1da177e4
LT
7068 }
7069
9c1cfda2 7070#ifdef CONFIG_NUMA
08069033
SS
7071 for (i = 0; i < MAX_NUMNODES; i++)
7072 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7073
6711cab4
SS
7074 if (sd_allnodes) {
7075 struct sched_group *sg;
f712c0c7 7076
7c16ec58
MT
7077 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7078 tmpmask);
f712c0c7
SS
7079 init_numa_sched_groups_power(sg);
7080 }
9c1cfda2
JH
7081#endif
7082
1da177e4 7083 /* Attach the domains */
1a20ff27 7084 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7085 struct sched_domain *sd;
7086#ifdef CONFIG_SCHED_SMT
7087 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7088#elif defined(CONFIG_SCHED_MC)
7089 sd = &per_cpu(core_domains, i);
1da177e4
LT
7090#else
7091 sd = &per_cpu(phys_domains, i);
7092#endif
57d885fe 7093 cpu_attach_domain(sd, rd, i);
1da177e4 7094 }
51888ca2 7095
7c16ec58 7096 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7097 return 0;
7098
a616058b 7099#ifdef CONFIG_NUMA
51888ca2 7100error:
7c16ec58
MT
7101 free_sched_groups(cpu_map, tmpmask);
7102 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7103 return -ENOMEM;
a616058b 7104#endif
1da177e4 7105}
029190c5
PJ
7106
7107static cpumask_t *doms_cur; /* current sched domains */
7108static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7109
7110/*
7111 * Special case: If a kmalloc of a doms_cur partition (array of
7112 * cpumask_t) fails, then fallback to a single sched domain,
7113 * as determined by the single cpumask_t fallback_doms.
7114 */
7115static cpumask_t fallback_doms;
7116
22e52b07
HC
7117void __attribute__((weak)) arch_update_cpu_topology(void)
7118{
7119}
7120
1a20ff27 7121/*
41a2d6cf 7122 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7123 * For now this just excludes isolated cpus, but could be used to
7124 * exclude other special cases in the future.
1a20ff27 7125 */
51888ca2 7126static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7127{
7378547f
MM
7128 int err;
7129
22e52b07 7130 arch_update_cpu_topology();
029190c5
PJ
7131 ndoms_cur = 1;
7132 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7133 if (!doms_cur)
7134 doms_cur = &fallback_doms;
7135 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 7136 err = build_sched_domains(doms_cur);
6382bc90 7137 register_sched_domain_sysctl();
7378547f
MM
7138
7139 return err;
1a20ff27
DG
7140}
7141
7c16ec58
MT
7142static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7143 cpumask_t *tmpmask)
1da177e4 7144{
7c16ec58 7145 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7146}
1da177e4 7147
1a20ff27
DG
7148/*
7149 * Detach sched domains from a group of cpus specified in cpu_map
7150 * These cpus will now be attached to the NULL domain
7151 */
858119e1 7152static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7153{
7c16ec58 7154 cpumask_t tmpmask;
1a20ff27
DG
7155 int i;
7156
6382bc90
MM
7157 unregister_sched_domain_sysctl();
7158
1a20ff27 7159 for_each_cpu_mask(i, *cpu_map)
57d885fe 7160 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7161 synchronize_sched();
7c16ec58 7162 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7163}
7164
029190c5
PJ
7165/*
7166 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7167 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7168 * doms_new[] to the current sched domain partitioning, doms_cur[].
7169 * It destroys each deleted domain and builds each new domain.
7170 *
7171 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7172 * The masks don't intersect (don't overlap.) We should setup one
7173 * sched domain for each mask. CPUs not in any of the cpumasks will
7174 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7175 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7176 * it as it is.
7177 *
41a2d6cf
IM
7178 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7179 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7180 * failed the kmalloc call, then it can pass in doms_new == NULL,
7181 * and partition_sched_domains() will fallback to the single partition
7182 * 'fallback_doms'.
7183 *
7184 * Call with hotplug lock held
7185 */
7186void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
7187{
7188 int i, j;
7189
a1835615
SV
7190 lock_doms_cur();
7191
7378547f
MM
7192 /* always unregister in case we don't destroy any domains */
7193 unregister_sched_domain_sysctl();
7194
029190c5
PJ
7195 if (doms_new == NULL) {
7196 ndoms_new = 1;
7197 doms_new = &fallback_doms;
7198 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7199 }
7200
7201 /* Destroy deleted domains */
7202 for (i = 0; i < ndoms_cur; i++) {
7203 for (j = 0; j < ndoms_new; j++) {
7204 if (cpus_equal(doms_cur[i], doms_new[j]))
7205 goto match1;
7206 }
7207 /* no match - a current sched domain not in new doms_new[] */
7208 detach_destroy_domains(doms_cur + i);
7209match1:
7210 ;
7211 }
7212
7213 /* Build new domains */
7214 for (i = 0; i < ndoms_new; i++) {
7215 for (j = 0; j < ndoms_cur; j++) {
7216 if (cpus_equal(doms_new[i], doms_cur[j]))
7217 goto match2;
7218 }
7219 /* no match - add a new doms_new */
7220 build_sched_domains(doms_new + i);
7221match2:
7222 ;
7223 }
7224
7225 /* Remember the new sched domains */
7226 if (doms_cur != &fallback_doms)
7227 kfree(doms_cur);
7228 doms_cur = doms_new;
7229 ndoms_cur = ndoms_new;
7378547f
MM
7230
7231 register_sched_domain_sysctl();
a1835615
SV
7232
7233 unlock_doms_cur();
029190c5
PJ
7234}
7235
5c45bf27 7236#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7237int arch_reinit_sched_domains(void)
5c45bf27
SS
7238{
7239 int err;
7240
95402b38 7241 get_online_cpus();
5c45bf27
SS
7242 detach_destroy_domains(&cpu_online_map);
7243 err = arch_init_sched_domains(&cpu_online_map);
95402b38 7244 put_online_cpus();
5c45bf27
SS
7245
7246 return err;
7247}
7248
7249static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7250{
7251 int ret;
7252
7253 if (buf[0] != '0' && buf[0] != '1')
7254 return -EINVAL;
7255
7256 if (smt)
7257 sched_smt_power_savings = (buf[0] == '1');
7258 else
7259 sched_mc_power_savings = (buf[0] == '1');
7260
7261 ret = arch_reinit_sched_domains();
7262
7263 return ret ? ret : count;
7264}
7265
5c45bf27
SS
7266#ifdef CONFIG_SCHED_MC
7267static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7268{
7269 return sprintf(page, "%u\n", sched_mc_power_savings);
7270}
48f24c4d
IM
7271static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7272 const char *buf, size_t count)
5c45bf27
SS
7273{
7274 return sched_power_savings_store(buf, count, 0);
7275}
6707de00
AB
7276static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7277 sched_mc_power_savings_store);
5c45bf27
SS
7278#endif
7279
7280#ifdef CONFIG_SCHED_SMT
7281static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7282{
7283 return sprintf(page, "%u\n", sched_smt_power_savings);
7284}
48f24c4d
IM
7285static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7286 const char *buf, size_t count)
5c45bf27
SS
7287{
7288 return sched_power_savings_store(buf, count, 1);
7289}
6707de00
AB
7290static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7291 sched_smt_power_savings_store);
7292#endif
7293
7294int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7295{
7296 int err = 0;
7297
7298#ifdef CONFIG_SCHED_SMT
7299 if (smt_capable())
7300 err = sysfs_create_file(&cls->kset.kobj,
7301 &attr_sched_smt_power_savings.attr);
7302#endif
7303#ifdef CONFIG_SCHED_MC
7304 if (!err && mc_capable())
7305 err = sysfs_create_file(&cls->kset.kobj,
7306 &attr_sched_mc_power_savings.attr);
7307#endif
7308 return err;
7309}
5c45bf27
SS
7310#endif
7311
1da177e4 7312/*
41a2d6cf 7313 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7314 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7315 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7316 * which will prevent rebalancing while the sched domains are recalculated.
7317 */
7318static int update_sched_domains(struct notifier_block *nfb,
7319 unsigned long action, void *hcpu)
7320{
1da177e4
LT
7321 switch (action) {
7322 case CPU_UP_PREPARE:
8bb78442 7323 case CPU_UP_PREPARE_FROZEN:
1da177e4 7324 case CPU_DOWN_PREPARE:
8bb78442 7325 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7326 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7327 return NOTIFY_OK;
7328
7329 case CPU_UP_CANCELED:
8bb78442 7330 case CPU_UP_CANCELED_FROZEN:
1da177e4 7331 case CPU_DOWN_FAILED:
8bb78442 7332 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7333 case CPU_ONLINE:
8bb78442 7334 case CPU_ONLINE_FROZEN:
1da177e4 7335 case CPU_DEAD:
8bb78442 7336 case CPU_DEAD_FROZEN:
1da177e4
LT
7337 /*
7338 * Fall through and re-initialise the domains.
7339 */
7340 break;
7341 default:
7342 return NOTIFY_DONE;
7343 }
7344
7345 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7346 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7347
7348 return NOTIFY_OK;
7349}
1da177e4
LT
7350
7351void __init sched_init_smp(void)
7352{
5c1e1767
NP
7353 cpumask_t non_isolated_cpus;
7354
434d53b0
MT
7355#if defined(CONFIG_NUMA)
7356 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7357 GFP_KERNEL);
7358 BUG_ON(sched_group_nodes_bycpu == NULL);
7359#endif
95402b38 7360 get_online_cpus();
1a20ff27 7361 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7362 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7363 if (cpus_empty(non_isolated_cpus))
7364 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 7365 put_online_cpus();
1da177e4
LT
7366 /* XXX: Theoretical race here - CPU may be hotplugged now */
7367 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
7368
7369 /* Move init over to a non-isolated CPU */
7c16ec58 7370 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7371 BUG();
19978ca6 7372 sched_init_granularity();
1da177e4
LT
7373}
7374#else
7375void __init sched_init_smp(void)
7376{
434d53b0
MT
7377#if defined(CONFIG_NUMA)
7378 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7379 GFP_KERNEL);
7380 BUG_ON(sched_group_nodes_bycpu == NULL);
7381#endif
19978ca6 7382 sched_init_granularity();
1da177e4
LT
7383}
7384#endif /* CONFIG_SMP */
7385
7386int in_sched_functions(unsigned long addr)
7387{
1da177e4
LT
7388 return in_lock_functions(addr) ||
7389 (addr >= (unsigned long)__sched_text_start
7390 && addr < (unsigned long)__sched_text_end);
7391}
7392
a9957449 7393static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7394{
7395 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
7396#ifdef CONFIG_FAIR_GROUP_SCHED
7397 cfs_rq->rq = rq;
7398#endif
67e9fb2a 7399 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7400}
7401
fa85ae24
PZ
7402static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7403{
7404 struct rt_prio_array *array;
7405 int i;
7406
7407 array = &rt_rq->active;
7408 for (i = 0; i < MAX_RT_PRIO; i++) {
7409 INIT_LIST_HEAD(array->queue + i);
7410 __clear_bit(i, array->bitmap);
7411 }
7412 /* delimiter for bitsearch: */
7413 __set_bit(MAX_RT_PRIO, array->bitmap);
7414
052f1dc7 7415#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7416 rt_rq->highest_prio = MAX_RT_PRIO;
7417#endif
fa85ae24
PZ
7418#ifdef CONFIG_SMP
7419 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7420 rt_rq->overloaded = 0;
7421#endif
7422
7423 rt_rq->rt_time = 0;
7424 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7425 rt_rq->rt_runtime = 0;
7426 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7427
052f1dc7 7428#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7429 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7430 rt_rq->rq = rq;
7431#endif
fa85ae24
PZ
7432}
7433
6f505b16
PZ
7434#ifdef CONFIG_FAIR_GROUP_SCHED
7435static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7436 struct cfs_rq *cfs_rq, struct sched_entity *se,
7437 int cpu, int add)
7438{
7439 tg->cfs_rq[cpu] = cfs_rq;
7440 init_cfs_rq(cfs_rq, rq);
7441 cfs_rq->tg = tg;
7442 if (add)
7443 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7444
7445 tg->se[cpu] = se;
7446 se->cfs_rq = &rq->cfs;
7447 se->my_q = cfs_rq;
7448 se->load.weight = tg->shares;
7449 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7450 se->parent = NULL;
7451}
052f1dc7 7452#endif
6f505b16 7453
052f1dc7 7454#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
7455static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7456 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7457 int cpu, int add)
7458{
7459 tg->rt_rq[cpu] = rt_rq;
7460 init_rt_rq(rt_rq, rq);
7461 rt_rq->tg = tg;
7462 rt_rq->rt_se = rt_se;
ac086bc2 7463 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7464 if (add)
7465 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7466
7467 tg->rt_se[cpu] = rt_se;
7468 rt_se->rt_rq = &rq->rt;
7469 rt_se->my_q = rt_rq;
7470 rt_se->parent = NULL;
7471 INIT_LIST_HEAD(&rt_se->run_list);
7472}
7473#endif
7474
1da177e4
LT
7475void __init sched_init(void)
7476{
dd41f596 7477 int i, j;
434d53b0
MT
7478 unsigned long alloc_size = 0, ptr;
7479
7480#ifdef CONFIG_FAIR_GROUP_SCHED
7481 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7482#endif
7483#ifdef CONFIG_RT_GROUP_SCHED
7484 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7485#endif
7486 /*
7487 * As sched_init() is called before page_alloc is setup,
7488 * we use alloc_bootmem().
7489 */
7490 if (alloc_size) {
7491 ptr = (unsigned long)alloc_bootmem_low(alloc_size);
7492
7493#ifdef CONFIG_FAIR_GROUP_SCHED
7494 init_task_group.se = (struct sched_entity **)ptr;
7495 ptr += nr_cpu_ids * sizeof(void **);
7496
7497 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7498 ptr += nr_cpu_ids * sizeof(void **);
7499#endif
7500#ifdef CONFIG_RT_GROUP_SCHED
7501 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7502 ptr += nr_cpu_ids * sizeof(void **);
7503
7504 init_task_group.rt_rq = (struct rt_rq **)ptr;
7505#endif
7506 }
dd41f596 7507
57d885fe
GH
7508#ifdef CONFIG_SMP
7509 init_defrootdomain();
7510#endif
7511
d0b27fa7
PZ
7512 init_rt_bandwidth(&def_rt_bandwidth,
7513 global_rt_period(), global_rt_runtime());
7514
7515#ifdef CONFIG_RT_GROUP_SCHED
7516 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7517 global_rt_period(), global_rt_runtime());
7518#endif
7519
052f1dc7 7520#ifdef CONFIG_GROUP_SCHED
6f505b16
PZ
7521 list_add(&init_task_group.list, &task_groups);
7522#endif
7523
0a945022 7524 for_each_possible_cpu(i) {
70b97a7f 7525 struct rq *rq;
1da177e4
LT
7526
7527 rq = cpu_rq(i);
7528 spin_lock_init(&rq->lock);
fcb99371 7529 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7530 rq->nr_running = 0;
dd41f596 7531 rq->clock = 1;
15934a37 7532 update_last_tick_seen(rq);
dd41f596 7533 init_cfs_rq(&rq->cfs, rq);
6f505b16 7534 init_rt_rq(&rq->rt, rq);
dd41f596 7535#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7536 init_task_group.shares = init_task_group_load;
6f505b16
PZ
7537 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7538 init_tg_cfs_entry(rq, &init_task_group,
7539 &per_cpu(init_cfs_rq, i),
7540 &per_cpu(init_sched_entity, i), i, 1);
7541
052f1dc7
PZ
7542#endif
7543#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
7544 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7545 init_tg_rt_entry(rq, &init_task_group,
7546 &per_cpu(init_rt_rq, i),
7547 &per_cpu(init_sched_rt_entity, i), i, 1);
ac086bc2
PZ
7548#else
7549 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
dd41f596 7550#endif
1da177e4 7551
dd41f596
IM
7552 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7553 rq->cpu_load[j] = 0;
1da177e4 7554#ifdef CONFIG_SMP
41c7ce9a 7555 rq->sd = NULL;
57d885fe 7556 rq->rd = NULL;
1da177e4 7557 rq->active_balance = 0;
dd41f596 7558 rq->next_balance = jiffies;
1da177e4 7559 rq->push_cpu = 0;
0a2966b4 7560 rq->cpu = i;
1da177e4
LT
7561 rq->migration_thread = NULL;
7562 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7563 rq_attach_root(rq, &def_root_domain);
1da177e4 7564#endif
8f4d37ec 7565 init_rq_hrtick(rq);
1da177e4 7566 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7567 }
7568
2dd73a4f 7569 set_load_weight(&init_task);
b50f60ce 7570
e107be36
AK
7571#ifdef CONFIG_PREEMPT_NOTIFIERS
7572 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7573#endif
7574
c9819f45
CL
7575#ifdef CONFIG_SMP
7576 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7577#endif
7578
b50f60ce
HC
7579#ifdef CONFIG_RT_MUTEXES
7580 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7581#endif
7582
1da177e4
LT
7583 /*
7584 * The boot idle thread does lazy MMU switching as well:
7585 */
7586 atomic_inc(&init_mm.mm_count);
7587 enter_lazy_tlb(&init_mm, current);
7588
7589 /*
7590 * Make us the idle thread. Technically, schedule() should not be
7591 * called from this thread, however somewhere below it might be,
7592 * but because we are the idle thread, we just pick up running again
7593 * when this runqueue becomes "idle".
7594 */
7595 init_idle(current, smp_processor_id());
dd41f596
IM
7596 /*
7597 * During early bootup we pretend to be a normal task:
7598 */
7599 current->sched_class = &fair_sched_class;
6892b75e
IM
7600
7601 scheduler_running = 1;
1da177e4
LT
7602}
7603
7604#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7605void __might_sleep(char *file, int line)
7606{
48f24c4d 7607#ifdef in_atomic
1da177e4
LT
7608 static unsigned long prev_jiffy; /* ratelimiting */
7609
7610 if ((in_atomic() || irqs_disabled()) &&
7611 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7612 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7613 return;
7614 prev_jiffy = jiffies;
91368d73 7615 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7616 " context at %s:%d\n", file, line);
7617 printk("in_atomic():%d, irqs_disabled():%d\n",
7618 in_atomic(), irqs_disabled());
a4c410f0 7619 debug_show_held_locks(current);
3117df04
IM
7620 if (irqs_disabled())
7621 print_irqtrace_events(current);
1da177e4
LT
7622 dump_stack();
7623 }
7624#endif
7625}
7626EXPORT_SYMBOL(__might_sleep);
7627#endif
7628
7629#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7630static void normalize_task(struct rq *rq, struct task_struct *p)
7631{
7632 int on_rq;
7633 update_rq_clock(rq);
7634 on_rq = p->se.on_rq;
7635 if (on_rq)
7636 deactivate_task(rq, p, 0);
7637 __setscheduler(rq, p, SCHED_NORMAL, 0);
7638 if (on_rq) {
7639 activate_task(rq, p, 0);
7640 resched_task(rq->curr);
7641 }
7642}
7643
1da177e4
LT
7644void normalize_rt_tasks(void)
7645{
a0f98a1c 7646 struct task_struct *g, *p;
1da177e4 7647 unsigned long flags;
70b97a7f 7648 struct rq *rq;
1da177e4 7649
4cf5d77a 7650 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7651 do_each_thread(g, p) {
178be793
IM
7652 /*
7653 * Only normalize user tasks:
7654 */
7655 if (!p->mm)
7656 continue;
7657
6cfb0d5d 7658 p->se.exec_start = 0;
6cfb0d5d 7659#ifdef CONFIG_SCHEDSTATS
dd41f596 7660 p->se.wait_start = 0;
dd41f596 7661 p->se.sleep_start = 0;
dd41f596 7662 p->se.block_start = 0;
6cfb0d5d 7663#endif
dd41f596
IM
7664 task_rq(p)->clock = 0;
7665
7666 if (!rt_task(p)) {
7667 /*
7668 * Renice negative nice level userspace
7669 * tasks back to 0:
7670 */
7671 if (TASK_NICE(p) < 0 && p->mm)
7672 set_user_nice(p, 0);
1da177e4 7673 continue;
dd41f596 7674 }
1da177e4 7675
4cf5d77a 7676 spin_lock(&p->pi_lock);
b29739f9 7677 rq = __task_rq_lock(p);
1da177e4 7678
178be793 7679 normalize_task(rq, p);
3a5e4dc1 7680
b29739f9 7681 __task_rq_unlock(rq);
4cf5d77a 7682 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7683 } while_each_thread(g, p);
7684
4cf5d77a 7685 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7686}
7687
7688#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7689
7690#ifdef CONFIG_IA64
7691/*
7692 * These functions are only useful for the IA64 MCA handling.
7693 *
7694 * They can only be called when the whole system has been
7695 * stopped - every CPU needs to be quiescent, and no scheduling
7696 * activity can take place. Using them for anything else would
7697 * be a serious bug, and as a result, they aren't even visible
7698 * under any other configuration.
7699 */
7700
7701/**
7702 * curr_task - return the current task for a given cpu.
7703 * @cpu: the processor in question.
7704 *
7705 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7706 */
36c8b586 7707struct task_struct *curr_task(int cpu)
1df5c10a
LT
7708{
7709 return cpu_curr(cpu);
7710}
7711
7712/**
7713 * set_curr_task - set the current task for a given cpu.
7714 * @cpu: the processor in question.
7715 * @p: the task pointer to set.
7716 *
7717 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7718 * are serviced on a separate stack. It allows the architecture to switch the
7719 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7720 * must be called with all CPU's synchronized, and interrupts disabled, the
7721 * and caller must save the original value of the current task (see
7722 * curr_task() above) and restore that value before reenabling interrupts and
7723 * re-starting the system.
7724 *
7725 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7726 */
36c8b586 7727void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7728{
7729 cpu_curr(cpu) = p;
7730}
7731
7732#endif
29f59db3 7733
bccbe08a
PZ
7734#ifdef CONFIG_FAIR_GROUP_SCHED
7735static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7736{
7737 int i;
7738
7739 for_each_possible_cpu(i) {
7740 if (tg->cfs_rq)
7741 kfree(tg->cfs_rq[i]);
7742 if (tg->se)
7743 kfree(tg->se[i]);
6f505b16
PZ
7744 }
7745
7746 kfree(tg->cfs_rq);
7747 kfree(tg->se);
6f505b16
PZ
7748}
7749
bccbe08a 7750static int alloc_fair_sched_group(struct task_group *tg)
29f59db3 7751{
29f59db3
SV
7752 struct cfs_rq *cfs_rq;
7753 struct sched_entity *se;
9b5b7751 7754 struct rq *rq;
29f59db3
SV
7755 int i;
7756
434d53b0 7757 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7758 if (!tg->cfs_rq)
7759 goto err;
434d53b0 7760 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7761 if (!tg->se)
7762 goto err;
052f1dc7
PZ
7763
7764 tg->shares = NICE_0_LOAD;
29f59db3
SV
7765
7766 for_each_possible_cpu(i) {
9b5b7751 7767 rq = cpu_rq(i);
29f59db3 7768
6f505b16
PZ
7769 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7770 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7771 if (!cfs_rq)
7772 goto err;
7773
6f505b16
PZ
7774 se = kmalloc_node(sizeof(struct sched_entity),
7775 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7776 if (!se)
7777 goto err;
7778
052f1dc7 7779 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
bccbe08a
PZ
7780 }
7781
7782 return 1;
7783
7784 err:
7785 return 0;
7786}
7787
7788static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7789{
7790 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7791 &cpu_rq(cpu)->leaf_cfs_rq_list);
7792}
7793
7794static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7795{
7796 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7797}
7798#else
7799static inline void free_fair_sched_group(struct task_group *tg)
7800{
7801}
7802
7803static inline int alloc_fair_sched_group(struct task_group *tg)
7804{
7805 return 1;
7806}
7807
7808static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7809{
7810}
7811
7812static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7813{
7814}
052f1dc7
PZ
7815#endif
7816
7817#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7818static void free_rt_sched_group(struct task_group *tg)
7819{
7820 int i;
7821
d0b27fa7
PZ
7822 destroy_rt_bandwidth(&tg->rt_bandwidth);
7823
bccbe08a
PZ
7824 for_each_possible_cpu(i) {
7825 if (tg->rt_rq)
7826 kfree(tg->rt_rq[i]);
7827 if (tg->rt_se)
7828 kfree(tg->rt_se[i]);
7829 }
7830
7831 kfree(tg->rt_rq);
7832 kfree(tg->rt_se);
7833}
7834
7835static int alloc_rt_sched_group(struct task_group *tg)
7836{
7837 struct rt_rq *rt_rq;
7838 struct sched_rt_entity *rt_se;
7839 struct rq *rq;
7840 int i;
7841
434d53b0 7842 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7843 if (!tg->rt_rq)
7844 goto err;
434d53b0 7845 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7846 if (!tg->rt_se)
7847 goto err;
7848
d0b27fa7
PZ
7849 init_rt_bandwidth(&tg->rt_bandwidth,
7850 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
7851
7852 for_each_possible_cpu(i) {
7853 rq = cpu_rq(i);
7854
6f505b16
PZ
7855 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7856 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7857 if (!rt_rq)
7858 goto err;
29f59db3 7859
6f505b16
PZ
7860 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7861 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7862 if (!rt_se)
7863 goto err;
29f59db3 7864
6f505b16 7865 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
29f59db3
SV
7866 }
7867
bccbe08a
PZ
7868 return 1;
7869
7870 err:
7871 return 0;
7872}
7873
7874static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7875{
7876 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7877 &cpu_rq(cpu)->leaf_rt_rq_list);
7878}
7879
7880static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7881{
7882 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7883}
7884#else
7885static inline void free_rt_sched_group(struct task_group *tg)
7886{
7887}
7888
7889static inline int alloc_rt_sched_group(struct task_group *tg)
7890{
7891 return 1;
7892}
7893
7894static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7895{
7896}
7897
7898static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7899{
7900}
7901#endif
7902
d0b27fa7 7903#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
7904static void free_sched_group(struct task_group *tg)
7905{
7906 free_fair_sched_group(tg);
7907 free_rt_sched_group(tg);
7908 kfree(tg);
7909}
7910
7911/* allocate runqueue etc for a new task group */
7912struct task_group *sched_create_group(void)
7913{
7914 struct task_group *tg;
7915 unsigned long flags;
7916 int i;
7917
7918 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7919 if (!tg)
7920 return ERR_PTR(-ENOMEM);
7921
7922 if (!alloc_fair_sched_group(tg))
7923 goto err;
7924
7925 if (!alloc_rt_sched_group(tg))
7926 goto err;
7927
8ed36996 7928 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 7929 for_each_possible_cpu(i) {
bccbe08a
PZ
7930 register_fair_sched_group(tg, i);
7931 register_rt_sched_group(tg, i);
9b5b7751 7932 }
6f505b16 7933 list_add_rcu(&tg->list, &task_groups);
8ed36996 7934 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7935
9b5b7751 7936 return tg;
29f59db3
SV
7937
7938err:
6f505b16 7939 free_sched_group(tg);
29f59db3
SV
7940 return ERR_PTR(-ENOMEM);
7941}
7942
9b5b7751 7943/* rcu callback to free various structures associated with a task group */
6f505b16 7944static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7945{
29f59db3 7946 /* now it should be safe to free those cfs_rqs */
6f505b16 7947 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7948}
7949
9b5b7751 7950/* Destroy runqueue etc associated with a task group */
4cf86d77 7951void sched_destroy_group(struct task_group *tg)
29f59db3 7952{
8ed36996 7953 unsigned long flags;
9b5b7751 7954 int i;
29f59db3 7955
8ed36996 7956 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 7957 for_each_possible_cpu(i) {
bccbe08a
PZ
7958 unregister_fair_sched_group(tg, i);
7959 unregister_rt_sched_group(tg, i);
9b5b7751 7960 }
6f505b16 7961 list_del_rcu(&tg->list);
8ed36996 7962 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7963
9b5b7751 7964 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7965 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7966}
7967
9b5b7751 7968/* change task's runqueue when it moves between groups.
3a252015
IM
7969 * The caller of this function should have put the task in its new group
7970 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7971 * reflect its new group.
9b5b7751
SV
7972 */
7973void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7974{
7975 int on_rq, running;
7976 unsigned long flags;
7977 struct rq *rq;
7978
7979 rq = task_rq_lock(tsk, &flags);
7980
29f59db3
SV
7981 update_rq_clock(rq);
7982
051a1d1a 7983 running = task_current(rq, tsk);
29f59db3
SV
7984 on_rq = tsk->se.on_rq;
7985
0e1f3483 7986 if (on_rq)
29f59db3 7987 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7988 if (unlikely(running))
7989 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7990
6f505b16 7991 set_task_rq(tsk, task_cpu(tsk));
29f59db3 7992
810b3817
PZ
7993#ifdef CONFIG_FAIR_GROUP_SCHED
7994 if (tsk->sched_class->moved_group)
7995 tsk->sched_class->moved_group(tsk);
7996#endif
7997
0e1f3483
HS
7998 if (unlikely(running))
7999 tsk->sched_class->set_curr_task(rq);
8000 if (on_rq)
7074badb 8001 enqueue_task(rq, tsk, 0);
29f59db3 8002
29f59db3
SV
8003 task_rq_unlock(rq, &flags);
8004}
d0b27fa7 8005#endif
29f59db3 8006
052f1dc7 8007#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
8008static void set_se_shares(struct sched_entity *se, unsigned long shares)
8009{
8010 struct cfs_rq *cfs_rq = se->cfs_rq;
8011 struct rq *rq = cfs_rq->rq;
8012 int on_rq;
8013
62fb1851 8014 spin_lock_irq(&rq->lock);
29f59db3
SV
8015
8016 on_rq = se->on_rq;
62fb1851 8017 if (on_rq)
29f59db3
SV
8018 dequeue_entity(cfs_rq, se, 0);
8019
8020 se->load.weight = shares;
8021 se->load.inv_weight = div64_64((1ULL<<32), shares);
8022
62fb1851 8023 if (on_rq)
29f59db3 8024 enqueue_entity(cfs_rq, se, 0);
62fb1851
PZ
8025
8026 spin_unlock_irq(&rq->lock);
29f59db3
SV
8027}
8028
8ed36996
PZ
8029static DEFINE_MUTEX(shares_mutex);
8030
4cf86d77 8031int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8032{
8033 int i;
8ed36996 8034 unsigned long flags;
c61935fd 8035
62fb1851
PZ
8036 /*
8037 * A weight of 0 or 1 can cause arithmetics problems.
8038 * (The default weight is 1024 - so there's no practical
8039 * limitation from this.)
8040 */
8041 if (shares < 2)
8042 shares = 2;
8043
8ed36996 8044 mutex_lock(&shares_mutex);
9b5b7751 8045 if (tg->shares == shares)
5cb350ba 8046 goto done;
29f59db3 8047
8ed36996 8048 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8049 for_each_possible_cpu(i)
8050 unregister_fair_sched_group(tg, i);
8ed36996 8051 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8052
8053 /* wait for any ongoing reference to this group to finish */
8054 synchronize_sched();
8055
8056 /*
8057 * Now we are free to modify the group's share on each cpu
8058 * w/o tripping rebalance_share or load_balance_fair.
8059 */
9b5b7751 8060 tg->shares = shares;
62fb1851 8061 for_each_possible_cpu(i)
9b5b7751 8062 set_se_shares(tg->se[i], shares);
29f59db3 8063
6b2d7700
SV
8064 /*
8065 * Enable load balance activity on this group, by inserting it back on
8066 * each cpu's rq->leaf_cfs_rq_list.
8067 */
8ed36996 8068 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8069 for_each_possible_cpu(i)
8070 register_fair_sched_group(tg, i);
8ed36996 8071 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8072done:
8ed36996 8073 mutex_unlock(&shares_mutex);
9b5b7751 8074 return 0;
29f59db3
SV
8075}
8076
5cb350ba
DG
8077unsigned long sched_group_shares(struct task_group *tg)
8078{
8079 return tg->shares;
8080}
052f1dc7 8081#endif
5cb350ba 8082
052f1dc7 8083#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8084/*
9f0c1e56 8085 * Ensure that the real time constraints are schedulable.
6f505b16 8086 */
9f0c1e56
PZ
8087static DEFINE_MUTEX(rt_constraints_mutex);
8088
8089static unsigned long to_ratio(u64 period, u64 runtime)
8090{
8091 if (runtime == RUNTIME_INF)
8092 return 1ULL << 16;
8093
2692a240 8094 return div64_64(runtime << 16, period);
9f0c1e56
PZ
8095}
8096
8097static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8098{
8099 struct task_group *tgi;
8100 unsigned long total = 0;
9f0c1e56 8101 unsigned long global_ratio =
d0b27fa7 8102 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8103
8104 rcu_read_lock();
9f0c1e56
PZ
8105 list_for_each_entry_rcu(tgi, &task_groups, list) {
8106 if (tgi == tg)
8107 continue;
6f505b16 8108
d0b27fa7
PZ
8109 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8110 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8111 }
8112 rcu_read_unlock();
6f505b16 8113
9f0c1e56 8114 return total + to_ratio(period, runtime) < global_ratio;
6f505b16
PZ
8115}
8116
521f1a24
DG
8117/* Must be called with tasklist_lock held */
8118static inline int tg_has_rt_tasks(struct task_group *tg)
8119{
8120 struct task_struct *g, *p;
8121 do_each_thread(g, p) {
8122 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8123 return 1;
8124 } while_each_thread(g, p);
8125 return 0;
8126}
8127
d0b27fa7
PZ
8128static int tg_set_bandwidth(struct task_group *tg,
8129 u64 rt_period, u64 rt_runtime)
6f505b16 8130{
ac086bc2 8131 int i, err = 0;
9f0c1e56 8132
9f0c1e56 8133 mutex_lock(&rt_constraints_mutex);
521f1a24 8134 read_lock(&tasklist_lock);
ac086bc2 8135 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8136 err = -EBUSY;
8137 goto unlock;
8138 }
9f0c1e56
PZ
8139 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8140 err = -EINVAL;
8141 goto unlock;
8142 }
ac086bc2
PZ
8143
8144 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8145 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8146 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8147
8148 for_each_possible_cpu(i) {
8149 struct rt_rq *rt_rq = tg->rt_rq[i];
8150
8151 spin_lock(&rt_rq->rt_runtime_lock);
8152 rt_rq->rt_runtime = rt_runtime;
8153 spin_unlock(&rt_rq->rt_runtime_lock);
8154 }
8155 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8156 unlock:
521f1a24 8157 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8158 mutex_unlock(&rt_constraints_mutex);
8159
8160 return err;
6f505b16
PZ
8161}
8162
d0b27fa7
PZ
8163int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8164{
8165 u64 rt_runtime, rt_period;
8166
8167 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8168 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8169 if (rt_runtime_us < 0)
8170 rt_runtime = RUNTIME_INF;
8171
8172 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8173}
8174
9f0c1e56
PZ
8175long sched_group_rt_runtime(struct task_group *tg)
8176{
8177 u64 rt_runtime_us;
8178
d0b27fa7 8179 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8180 return -1;
8181
d0b27fa7 8182 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8183 do_div(rt_runtime_us, NSEC_PER_USEC);
8184 return rt_runtime_us;
8185}
d0b27fa7
PZ
8186
8187int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8188{
8189 u64 rt_runtime, rt_period;
8190
8191 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8192 rt_runtime = tg->rt_bandwidth.rt_runtime;
8193
8194 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8195}
8196
8197long sched_group_rt_period(struct task_group *tg)
8198{
8199 u64 rt_period_us;
8200
8201 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8202 do_div(rt_period_us, NSEC_PER_USEC);
8203 return rt_period_us;
8204}
8205
8206static int sched_rt_global_constraints(void)
8207{
8208 int ret = 0;
8209
8210 mutex_lock(&rt_constraints_mutex);
8211 if (!__rt_schedulable(NULL, 1, 0))
8212 ret = -EINVAL;
8213 mutex_unlock(&rt_constraints_mutex);
8214
8215 return ret;
8216}
8217#else
8218static int sched_rt_global_constraints(void)
8219{
ac086bc2
PZ
8220 unsigned long flags;
8221 int i;
8222
8223 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8224 for_each_possible_cpu(i) {
8225 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8226
8227 spin_lock(&rt_rq->rt_runtime_lock);
8228 rt_rq->rt_runtime = global_rt_runtime();
8229 spin_unlock(&rt_rq->rt_runtime_lock);
8230 }
8231 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8232
d0b27fa7
PZ
8233 return 0;
8234}
052f1dc7 8235#endif
d0b27fa7
PZ
8236
8237int sched_rt_handler(struct ctl_table *table, int write,
8238 struct file *filp, void __user *buffer, size_t *lenp,
8239 loff_t *ppos)
8240{
8241 int ret;
8242 int old_period, old_runtime;
8243 static DEFINE_MUTEX(mutex);
8244
8245 mutex_lock(&mutex);
8246 old_period = sysctl_sched_rt_period;
8247 old_runtime = sysctl_sched_rt_runtime;
8248
8249 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8250
8251 if (!ret && write) {
8252 ret = sched_rt_global_constraints();
8253 if (ret) {
8254 sysctl_sched_rt_period = old_period;
8255 sysctl_sched_rt_runtime = old_runtime;
8256 } else {
8257 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8258 def_rt_bandwidth.rt_period =
8259 ns_to_ktime(global_rt_period());
8260 }
8261 }
8262 mutex_unlock(&mutex);
8263
8264 return ret;
8265}
68318b8e 8266
052f1dc7 8267#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8268
8269/* return corresponding task_group object of a cgroup */
2b01dfe3 8270static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8271{
2b01dfe3
PM
8272 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8273 struct task_group, css);
68318b8e
SV
8274}
8275
8276static struct cgroup_subsys_state *
2b01dfe3 8277cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
8278{
8279 struct task_group *tg;
8280
2b01dfe3 8281 if (!cgrp->parent) {
68318b8e 8282 /* This is early initialization for the top cgroup */
2b01dfe3 8283 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8284 return &init_task_group.css;
8285 }
8286
8287 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 8288 if (cgrp->parent->parent)
68318b8e
SV
8289 return ERR_PTR(-EINVAL);
8290
8291 tg = sched_create_group();
8292 if (IS_ERR(tg))
8293 return ERR_PTR(-ENOMEM);
8294
8295 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8296 tg->css.cgroup = cgrp;
68318b8e
SV
8297
8298 return &tg->css;
8299}
8300
41a2d6cf
IM
8301static void
8302cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8303{
2b01dfe3 8304 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8305
8306 sched_destroy_group(tg);
8307}
8308
41a2d6cf
IM
8309static int
8310cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8311 struct task_struct *tsk)
68318b8e 8312{
b68aa230
PZ
8313#ifdef CONFIG_RT_GROUP_SCHED
8314 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8315 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8316 return -EINVAL;
8317#else
68318b8e
SV
8318 /* We don't support RT-tasks being in separate groups */
8319 if (tsk->sched_class != &fair_sched_class)
8320 return -EINVAL;
b68aa230 8321#endif
68318b8e
SV
8322
8323 return 0;
8324}
8325
8326static void
2b01dfe3 8327cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8328 struct cgroup *old_cont, struct task_struct *tsk)
8329{
8330 sched_move_task(tsk);
8331}
8332
052f1dc7 8333#ifdef CONFIG_FAIR_GROUP_SCHED
2b01dfe3
PM
8334static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8335 u64 shareval)
68318b8e 8336{
2b01dfe3 8337 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8338}
8339
2b01dfe3 8340static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8341{
2b01dfe3 8342 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8343
8344 return (u64) tg->shares;
8345}
052f1dc7 8346#endif
68318b8e 8347
052f1dc7 8348#ifdef CONFIG_RT_GROUP_SCHED
ac086bc2 8349static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9f0c1e56
PZ
8350 struct file *file,
8351 const char __user *userbuf,
8352 size_t nbytes, loff_t *unused_ppos)
6f505b16 8353{
9f0c1e56
PZ
8354 char buffer[64];
8355 int retval = 0;
8356 s64 val;
8357 char *end;
8358
8359 if (!nbytes)
8360 return -EINVAL;
8361 if (nbytes >= sizeof(buffer))
8362 return -E2BIG;
8363 if (copy_from_user(buffer, userbuf, nbytes))
8364 return -EFAULT;
8365
8366 buffer[nbytes] = 0; /* nul-terminate */
8367
8368 /* strip newline if necessary */
8369 if (nbytes && (buffer[nbytes-1] == '\n'))
8370 buffer[nbytes-1] = 0;
8371 val = simple_strtoll(buffer, &end, 0);
8372 if (*end)
8373 return -EINVAL;
8374
8375 /* Pass to subsystem */
8376 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8377 if (!retval)
8378 retval = nbytes;
8379 return retval;
6f505b16
PZ
8380}
8381
9f0c1e56
PZ
8382static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
8383 struct file *file,
8384 char __user *buf, size_t nbytes,
8385 loff_t *ppos)
6f505b16 8386{
9f0c1e56
PZ
8387 char tmp[64];
8388 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
8389 int len = sprintf(tmp, "%ld\n", val);
6f505b16 8390
9f0c1e56 8391 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
6f505b16 8392}
d0b27fa7
PZ
8393
8394static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8395 u64 rt_period_us)
8396{
8397 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8398}
8399
8400static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8401{
8402 return sched_group_rt_period(cgroup_tg(cgrp));
8403}
052f1dc7 8404#endif
6f505b16 8405
fe5c7cc2 8406static struct cftype cpu_files[] = {
052f1dc7 8407#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8408 {
8409 .name = "shares",
8410 .read_uint = cpu_shares_read_uint,
8411 .write_uint = cpu_shares_write_uint,
8412 },
052f1dc7
PZ
8413#endif
8414#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8415 {
9f0c1e56
PZ
8416 .name = "rt_runtime_us",
8417 .read = cpu_rt_runtime_read,
8418 .write = cpu_rt_runtime_write,
6f505b16 8419 },
d0b27fa7
PZ
8420 {
8421 .name = "rt_period_us",
8422 .read_uint = cpu_rt_period_read_uint,
8423 .write_uint = cpu_rt_period_write_uint,
8424 },
052f1dc7 8425#endif
68318b8e
SV
8426};
8427
8428static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8429{
fe5c7cc2 8430 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8431}
8432
8433struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8434 .name = "cpu",
8435 .create = cpu_cgroup_create,
8436 .destroy = cpu_cgroup_destroy,
8437 .can_attach = cpu_cgroup_can_attach,
8438 .attach = cpu_cgroup_attach,
8439 .populate = cpu_cgroup_populate,
8440 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8441 .early_init = 1,
8442};
8443
052f1dc7 8444#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8445
8446#ifdef CONFIG_CGROUP_CPUACCT
8447
8448/*
8449 * CPU accounting code for task groups.
8450 *
8451 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8452 * (balbir@in.ibm.com).
8453 */
8454
8455/* track cpu usage of a group of tasks */
8456struct cpuacct {
8457 struct cgroup_subsys_state css;
8458 /* cpuusage holds pointer to a u64-type object on every cpu */
8459 u64 *cpuusage;
8460};
8461
8462struct cgroup_subsys cpuacct_subsys;
8463
8464/* return cpu accounting group corresponding to this container */
32cd756a 8465static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8466{
32cd756a 8467 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8468 struct cpuacct, css);
8469}
8470
8471/* return cpu accounting group to which this task belongs */
8472static inline struct cpuacct *task_ca(struct task_struct *tsk)
8473{
8474 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8475 struct cpuacct, css);
8476}
8477
8478/* create a new cpu accounting group */
8479static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8480 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8481{
8482 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8483
8484 if (!ca)
8485 return ERR_PTR(-ENOMEM);
8486
8487 ca->cpuusage = alloc_percpu(u64);
8488 if (!ca->cpuusage) {
8489 kfree(ca);
8490 return ERR_PTR(-ENOMEM);
8491 }
8492
8493 return &ca->css;
8494}
8495
8496/* destroy an existing cpu accounting group */
41a2d6cf 8497static void
32cd756a 8498cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8499{
32cd756a 8500 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8501
8502 free_percpu(ca->cpuusage);
8503 kfree(ca);
8504}
8505
8506/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8507static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8508{
32cd756a 8509 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8510 u64 totalcpuusage = 0;
8511 int i;
8512
8513 for_each_possible_cpu(i) {
8514 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8515
8516 /*
8517 * Take rq->lock to make 64-bit addition safe on 32-bit
8518 * platforms.
8519 */
8520 spin_lock_irq(&cpu_rq(i)->lock);
8521 totalcpuusage += *cpuusage;
8522 spin_unlock_irq(&cpu_rq(i)->lock);
8523 }
8524
8525 return totalcpuusage;
8526}
8527
0297b803
DG
8528static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8529 u64 reset)
8530{
8531 struct cpuacct *ca = cgroup_ca(cgrp);
8532 int err = 0;
8533 int i;
8534
8535 if (reset) {
8536 err = -EINVAL;
8537 goto out;
8538 }
8539
8540 for_each_possible_cpu(i) {
8541 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8542
8543 spin_lock_irq(&cpu_rq(i)->lock);
8544 *cpuusage = 0;
8545 spin_unlock_irq(&cpu_rq(i)->lock);
8546 }
8547out:
8548 return err;
8549}
8550
d842de87
SV
8551static struct cftype files[] = {
8552 {
8553 .name = "usage",
8554 .read_uint = cpuusage_read,
0297b803 8555 .write_uint = cpuusage_write,
d842de87
SV
8556 },
8557};
8558
32cd756a 8559static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8560{
32cd756a 8561 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8562}
8563
8564/*
8565 * charge this task's execution time to its accounting group.
8566 *
8567 * called with rq->lock held.
8568 */
8569static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8570{
8571 struct cpuacct *ca;
8572
8573 if (!cpuacct_subsys.active)
8574 return;
8575
8576 ca = task_ca(tsk);
8577 if (ca) {
8578 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8579
8580 *cpuusage += cputime;
8581 }
8582}
8583
8584struct cgroup_subsys cpuacct_subsys = {
8585 .name = "cpuacct",
8586 .create = cpuacct_create,
8587 .destroy = cpuacct_destroy,
8588 .populate = cpuacct_populate,
8589 .subsys_id = cpuacct_subsys_id,
8590};
8591#endif /* CONFIG_CGROUP_CPUACCT */