]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: Assert task state bits at build time
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
663997d4
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
1da177e4
LT
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/nmi.h>
34#include <linux/init.h>
dff06c15 35#include <linux/uaccess.h>
1da177e4
LT
36#include <linux/highmem.h>
37#include <linux/smp_lock.h>
38#include <asm/mmu_context.h>
39#include <linux/interrupt.h>
c59ede7b 40#include <linux/capability.h>
1da177e4
LT
41#include <linux/completion.h>
42#include <linux/kernel_stat.h>
9a11b49a 43#include <linux/debug_locks.h>
cdd6c482 44#include <linux/perf_event.h>
1da177e4
LT
45#include <linux/security.h>
46#include <linux/notifier.h>
47#include <linux/profile.h>
7dfb7103 48#include <linux/freezer.h>
198e2f18 49#include <linux/vmalloc.h>
1da177e4
LT
50#include <linux/blkdev.h>
51#include <linux/delay.h>
b488893a 52#include <linux/pid_namespace.h>
1da177e4
LT
53#include <linux/smp.h>
54#include <linux/threads.h>
55#include <linux/timer.h>
56#include <linux/rcupdate.h>
57#include <linux/cpu.h>
58#include <linux/cpuset.h>
59#include <linux/percpu.h>
60#include <linux/kthread.h>
b5aadf7f 61#include <linux/proc_fs.h>
1da177e4 62#include <linux/seq_file.h>
e692ab53 63#include <linux/sysctl.h>
1da177e4
LT
64#include <linux/syscalls.h>
65#include <linux/times.h>
8f0ab514 66#include <linux/tsacct_kern.h>
c6fd91f0 67#include <linux/kprobes.h>
0ff92245 68#include <linux/delayacct.h>
dff06c15 69#include <linux/unistd.h>
f5ff8422 70#include <linux/pagemap.h>
8f4d37ec 71#include <linux/hrtimer.h>
30914a58 72#include <linux/tick.h>
f00b45c1
PZ
73#include <linux/debugfs.h>
74#include <linux/ctype.h>
6cd8a4bb 75#include <linux/ftrace.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
052f1dc7 238#ifdef CONFIG_GROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
052f1dc7 248#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
249 struct cgroup_subsys_state css;
250#endif
052f1dc7 251
6c415b92
AB
252#ifdef CONFIG_USER_SCHED
253 uid_t uid;
254#endif
255
052f1dc7 256#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
f473aa5e
PZ
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
29f59db3
SV
277};
278
354d60c2 279#ifdef CONFIG_USER_SCHED
eff766a6 280
6c415b92
AB
281/* Helper function to pass uid information to create_sched_user() */
282void set_tg_uid(struct user_struct *user)
283{
284 user->tg->uid = user->uid;
285}
286
eff766a6
PZ
287/*
288 * Root task group.
84e9dabf
AS
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
eff766a6
PZ
291 */
292struct task_group root_task_group;
293
052f1dc7 294#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
295/* Default task group's sched entity on each cpu */
296static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297/* Default task group's cfs_rq on each cpu */
ada3fa15 298static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 299#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
300
301#ifdef CONFIG_RT_GROUP_SCHED
302static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
1871e52c 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
6d6bc0ad 304#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 305#else /* !CONFIG_USER_SCHED */
eff766a6 306#define root_task_group init_task_group
9a7e0b18 307#endif /* CONFIG_USER_SCHED */
6f505b16 308
8ed36996 309/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
310 * a task group's cpu shares.
311 */
8ed36996 312static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 313
e9036b36
CG
314#ifdef CONFIG_FAIR_GROUP_SCHED
315
57310a98
PZ
316#ifdef CONFIG_SMP
317static int root_task_group_empty(void)
318{
319 return list_empty(&root_task_group.children);
320}
321#endif
322
052f1dc7
PZ
323#ifdef CONFIG_USER_SCHED
324# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 325#else /* !CONFIG_USER_SCHED */
052f1dc7 326# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 327#endif /* CONFIG_USER_SCHED */
052f1dc7 328
cb4ad1ff 329/*
2e084786
LJ
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
cb4ad1ff
MX
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
18d95a28 337#define MIN_SHARES 2
2e084786 338#define MAX_SHARES (1UL << 18)
18d95a28 339
052f1dc7
PZ
340static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341#endif
342
29f59db3 343/* Default task group.
3a252015 344 * Every task in system belong to this group at bootup.
29f59db3 345 */
434d53b0 346struct task_group init_task_group;
29f59db3
SV
347
348/* return group to which a task belongs */
4cf86d77 349static inline struct task_group *task_group(struct task_struct *p)
29f59db3 350{
4cf86d77 351 struct task_group *tg;
9b5b7751 352
052f1dc7 353#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
354 rcu_read_lock();
355 tg = __task_cred(p)->user->tg;
356 rcu_read_unlock();
052f1dc7 357#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
358 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
359 struct task_group, css);
24e377a8 360#else
41a2d6cf 361 tg = &init_task_group;
24e377a8 362#endif
9b5b7751 363 return tg;
29f59db3
SV
364}
365
366/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 368{
052f1dc7 369#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
370 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
371 p->se.parent = task_group(p)->se[cpu];
052f1dc7 372#endif
6f505b16 373
052f1dc7 374#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
375 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
376 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 377#endif
29f59db3
SV
378}
379
380#else
381
6f505b16 382static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
383static inline struct task_group *task_group(struct task_struct *p)
384{
385 return NULL;
386}
29f59db3 387
052f1dc7 388#endif /* CONFIG_GROUP_SCHED */
29f59db3 389
6aa645ea
IM
390/* CFS-related fields in a runqueue */
391struct cfs_rq {
392 struct load_weight load;
393 unsigned long nr_running;
394
6aa645ea 395 u64 exec_clock;
e9acbff6 396 u64 min_vruntime;
6aa645ea
IM
397
398 struct rb_root tasks_timeline;
399 struct rb_node *rb_leftmost;
4a55bd5e
PZ
400
401 struct list_head tasks;
402 struct list_head *balance_iterator;
403
404 /*
405 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
406 * It is set to NULL otherwise (i.e when none are currently running).
407 */
4793241b 408 struct sched_entity *curr, *next, *last;
ddc97297 409
5ac5c4d6 410 unsigned int nr_spread_over;
ddc97297 411
62160e3f 412#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
413 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414
41a2d6cf
IM
415 /*
416 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
417 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
418 * (like users, containers etc.)
419 *
420 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
421 * list is used during load balance.
422 */
41a2d6cf
IM
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
425
426#ifdef CONFIG_SMP
c09595f6 427 /*
c8cba857 428 * the part of load.weight contributed by tasks
c09595f6 429 */
c8cba857 430 unsigned long task_weight;
c09595f6 431
c8cba857
PZ
432 /*
433 * h_load = weight * f(tg)
434 *
435 * Where f(tg) is the recursive weight fraction assigned to
436 * this group.
437 */
438 unsigned long h_load;
c09595f6 439
c8cba857
PZ
440 /*
441 * this cpu's part of tg->shares
442 */
443 unsigned long shares;
f1d239f7
PZ
444
445 /*
446 * load.weight at the time we set shares
447 */
448 unsigned long rq_weight;
c09595f6 449#endif
6aa645ea
IM
450#endif
451};
1da177e4 452
6aa645ea
IM
453/* Real-Time classes' related field in a runqueue: */
454struct rt_rq {
455 struct rt_prio_array active;
63489e45 456 unsigned long rt_nr_running;
052f1dc7 457#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
458 struct {
459 int curr; /* highest queued rt task prio */
398a153b 460#ifdef CONFIG_SMP
e864c499 461 int next; /* next highest */
398a153b 462#endif
e864c499 463 } highest_prio;
6f505b16 464#endif
fa85ae24 465#ifdef CONFIG_SMP
73fe6aae 466 unsigned long rt_nr_migratory;
a1ba4d8b 467 unsigned long rt_nr_total;
a22d7fc1 468 int overloaded;
917b627d 469 struct plist_head pushable_tasks;
fa85ae24 470#endif
6f505b16 471 int rt_throttled;
fa85ae24 472 u64 rt_time;
ac086bc2 473 u64 rt_runtime;
ea736ed5 474 /* Nests inside the rq lock: */
0986b11b 475 raw_spinlock_t rt_runtime_lock;
6f505b16 476
052f1dc7 477#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
478 unsigned long rt_nr_boosted;
479
6f505b16
PZ
480 struct rq *rq;
481 struct list_head leaf_rt_rq_list;
482 struct task_group *tg;
483 struct sched_rt_entity *rt_se;
484#endif
6aa645ea
IM
485};
486
57d885fe
GH
487#ifdef CONFIG_SMP
488
489/*
490 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
491 * variables. Each exclusive cpuset essentially defines an island domain by
492 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
493 * exclusive cpuset is created, we also create and attach a new root-domain
494 * object.
495 *
57d885fe
GH
496 */
497struct root_domain {
498 atomic_t refcount;
c6c4927b
RR
499 cpumask_var_t span;
500 cpumask_var_t online;
637f5085 501
0eab9146 502 /*
637f5085
GH
503 * The "RT overload" flag: it gets set if a CPU has more than
504 * one runnable RT task.
505 */
c6c4927b 506 cpumask_var_t rto_mask;
0eab9146 507 atomic_t rto_count;
6e0534f2
GH
508#ifdef CONFIG_SMP
509 struct cpupri cpupri;
510#endif
57d885fe
GH
511};
512
dc938520
GH
513/*
514 * By default the system creates a single root-domain with all cpus as
515 * members (mimicking the global state we have today).
516 */
57d885fe
GH
517static struct root_domain def_root_domain;
518
519#endif
520
1da177e4
LT
521/*
522 * This is the main, per-CPU runqueue data structure.
523 *
524 * Locking rule: those places that want to lock multiple runqueues
525 * (such as the load balancing or the thread migration code), lock
526 * acquire operations must be ordered by ascending &runqueue.
527 */
70b97a7f 528struct rq {
d8016491 529 /* runqueue lock: */
05fa785c 530 raw_spinlock_t lock;
1da177e4
LT
531
532 /*
533 * nr_running and cpu_load should be in the same cacheline because
534 * remote CPUs use both these fields when doing load calculation.
535 */
536 unsigned long nr_running;
6aa645ea
IM
537 #define CPU_LOAD_IDX_MAX 5
538 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
539#ifdef CONFIG_NO_HZ
540 unsigned char in_nohz_recently;
541#endif
d8016491
IM
542 /* capture load from *all* tasks on this cpu: */
543 struct load_weight load;
6aa645ea
IM
544 unsigned long nr_load_updates;
545 u64 nr_switches;
546
547 struct cfs_rq cfs;
6f505b16 548 struct rt_rq rt;
6f505b16 549
6aa645ea 550#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
553#endif
554#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 555 struct list_head leaf_rt_rq_list;
1da177e4 556#endif
1da177e4
LT
557
558 /*
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
563 */
564 unsigned long nr_uninterruptible;
565
36c8b586 566 struct task_struct *curr, *idle;
c9819f45 567 unsigned long next_balance;
1da177e4 568 struct mm_struct *prev_mm;
6aa645ea 569
3e51f33f 570 u64 clock;
6aa645ea 571
1da177e4
LT
572 atomic_t nr_iowait;
573
574#ifdef CONFIG_SMP
0eab9146 575 struct root_domain *rd;
1da177e4
LT
576 struct sched_domain *sd;
577
a0a522ce 578 unsigned char idle_at_tick;
1da177e4 579 /* For active balancing */
3f029d3c 580 int post_schedule;
1da177e4
LT
581 int active_balance;
582 int push_cpu;
d8016491
IM
583 /* cpu of this runqueue: */
584 int cpu;
1f11eb6a 585 int online;
1da177e4 586
a8a51d5e 587 unsigned long avg_load_per_task;
1da177e4 588
36c8b586 589 struct task_struct *migration_thread;
1da177e4 590 struct list_head migration_queue;
e9e9250b
PZ
591
592 u64 rt_avg;
593 u64 age_stamp;
1b9508f6
MG
594 u64 idle_stamp;
595 u64 avg_idle;
1da177e4
LT
596#endif
597
dce48a84
TG
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
601
8f4d37ec 602#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
603#ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606#endif
8f4d37ec
PZ
607 struct hrtimer hrtick_timer;
608#endif
609
1da177e4
LT
610#ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
9c2c4802
KC
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
615
616 /* sys_sched_yield() stats */
480b9434 617 unsigned int yld_count;
1da177e4
LT
618
619 /* schedule() stats */
480b9434
KC
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
1da177e4
LT
623
624 /* try_to_wake_up() stats */
480b9434
KC
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
b8efb561
IM
627
628 /* BKL stats */
480b9434 629 unsigned int bkl_count;
1da177e4
LT
630#endif
631};
632
f34e3b61 633static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 634
7d478721
PZ
635static inline
636void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 637{
7d478721 638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
639}
640
0a2966b4
CL
641static inline int cpu_of(struct rq *rq)
642{
643#ifdef CONFIG_SMP
644 return rq->cpu;
645#else
646 return 0;
647#endif
648}
649
674311d5
NP
650/*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 652 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
48f24c4d
IM
657#define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
659
660#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661#define this_rq() (&__get_cpu_var(runqueues))
662#define task_rq(p) cpu_rq(task_cpu(p))
663#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 664#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 665
aa9c4c0f 666inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
667{
668 rq->clock = sched_clock_cpu(cpu_of(rq));
669}
670
bf5c91ba
IM
671/*
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 */
674#ifdef CONFIG_SCHED_DEBUG
675# define const_debug __read_mostly
676#else
677# define const_debug static const
678#endif
679
017730c1
IM
680/**
681 * runqueue_is_locked
e17b38bf 682 * @cpu: the processor in question.
017730c1
IM
683 *
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
89f19f04 688int runqueue_is_locked(int cpu)
017730c1 689{
05fa785c 690 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
691}
692
bf5c91ba
IM
693/*
694 * Debugging: various feature bits
695 */
f00b45c1
PZ
696
697#define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
bf5c91ba 700enum {
f00b45c1 701#include "sched_features.h"
bf5c91ba
IM
702};
703
f00b45c1
PZ
704#undef SCHED_FEAT
705
706#define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
bf5c91ba 709const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
710#include "sched_features.h"
711 0;
712
713#undef SCHED_FEAT
714
715#ifdef CONFIG_SCHED_DEBUG
716#define SCHED_FEAT(name, enabled) \
717 #name ,
718
983ed7a6 719static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
720#include "sched_features.h"
721 NULL
722};
723
724#undef SCHED_FEAT
725
34f3a814 726static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 727{
f00b45c1
PZ
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 734 }
34f3a814 735 seq_puts(m, "\n");
f00b45c1 736
34f3a814 737 return 0;
f00b45c1
PZ
738}
739
740static ssize_t
741sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743{
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756
c24b7c52 757 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
758 neg = 1;
759 cmp += 3;
760 }
761
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
764
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
42994724 777 *ppos += cnt;
f00b45c1
PZ
778
779 return cnt;
780}
781
34f3a814
LZ
782static int sched_feat_open(struct inode *inode, struct file *filp)
783{
784 return single_open(filp, sched_feat_show, NULL);
785}
786
828c0950 787static const struct file_operations sched_feat_fops = {
34f3a814
LZ
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
f00b45c1
PZ
793};
794
795static __init int sched_init_debug(void)
796{
f00b45c1
PZ
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 807
b82d9fdd
PZ
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
2398f2c6
PZ
814/*
815 * ratelimit for updating the group shares.
55cd5340 816 * default: 0.25ms
2398f2c6 817 */
55cd5340 818unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 819unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 820
ffda12a1
PZ
821/*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826unsigned int sysctl_sched_shares_thresh = 4;
827
e9e9250b
PZ
828/*
829 * period over which we average the RT time consumption, measured
830 * in ms.
831 *
832 * default: 1s
833 */
834const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835
fa85ae24 836/*
9f0c1e56 837 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
838 * default: 1s
839 */
9f0c1e56 840unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 841
6892b75e
IM
842static __read_mostly int scheduler_running;
843
9f0c1e56
PZ
844/*
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
847 */
848int sysctl_sched_rt_runtime = 950000;
fa85ae24 849
d0b27fa7
PZ
850static inline u64 global_rt_period(void)
851{
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853}
854
855static inline u64 global_rt_runtime(void)
856{
e26873bb 857 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
858 return RUNTIME_INF;
859
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861}
fa85ae24 862
1da177e4 863#ifndef prepare_arch_switch
4866cde0
NP
864# define prepare_arch_switch(next) do { } while (0)
865#endif
866#ifndef finish_arch_switch
867# define finish_arch_switch(prev) do { } while (0)
868#endif
869
051a1d1a
DA
870static inline int task_current(struct rq *rq, struct task_struct *p)
871{
872 return rq->curr == p;
873}
874
4866cde0 875#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 876static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 877{
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879}
880
70b97a7f 881static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
882{
883}
884
70b97a7f 885static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 886{
da04c035
IM
887#ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890#endif
8a25d5de
IM
891 /*
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
895 */
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897
05fa785c 898 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
899}
900
901#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 902static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 return p->oncpu;
906#else
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908#endif
909}
910
70b97a7f 911static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
912{
913#ifdef CONFIG_SMP
914 /*
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
918 */
919 next->oncpu = 1;
920#endif
921#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 922 raw_spin_unlock_irq(&rq->lock);
4866cde0 923#else
05fa785c 924 raw_spin_unlock(&rq->lock);
4866cde0
NP
925#endif
926}
927
70b97a7f 928static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
929{
930#ifdef CONFIG_SMP
931 /*
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
935 */
936 smp_wmb();
937 prev->oncpu = 0;
938#endif
939#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
1da177e4 941#endif
4866cde0
NP
942}
943#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 944
b29739f9
IM
945/*
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
948 */
70b97a7f 949static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
950 __acquires(rq->lock)
951{
3a5c359a
AK
952 for (;;) {
953 struct rq *rq = task_rq(p);
05fa785c 954 raw_spin_lock(&rq->lock);
3a5c359a
AK
955 if (likely(rq == task_rq(p)))
956 return rq;
05fa785c 957 raw_spin_unlock(&rq->lock);
b29739f9 958 }
b29739f9
IM
959}
960
1da177e4
LT
961/*
962 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 963 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
964 * explicitly disabling preemption.
965 */
70b97a7f 966static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
967 __acquires(rq->lock)
968{
70b97a7f 969 struct rq *rq;
1da177e4 970
3a5c359a
AK
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
05fa785c 974 raw_spin_lock(&rq->lock);
3a5c359a
AK
975 if (likely(rq == task_rq(p)))
976 return rq;
05fa785c 977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 978 }
1da177e4
LT
979}
980
ad474cac
ON
981void task_rq_unlock_wait(struct task_struct *p)
982{
983 struct rq *rq = task_rq(p);
984
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 986 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
987}
988
a9957449 989static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
990 __releases(rq->lock)
991{
05fa785c 992 raw_spin_unlock(&rq->lock);
b29739f9
IM
993}
994
70b97a7f 995static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
996 __releases(rq->lock)
997{
05fa785c 998 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
999}
1000
1da177e4 1001/*
cc2a73b5 1002 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1003 */
a9957449 1004static struct rq *this_rq_lock(void)
1da177e4
LT
1005 __acquires(rq->lock)
1006{
70b97a7f 1007 struct rq *rq;
1da177e4
LT
1008
1009 local_irq_disable();
1010 rq = this_rq();
05fa785c 1011 raw_spin_lock(&rq->lock);
1da177e4
LT
1012
1013 return rq;
1014}
1015
8f4d37ec
PZ
1016#ifdef CONFIG_SCHED_HRTICK
1017/*
1018 * Use HR-timers to deliver accurate preemption points.
1019 *
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1023 *
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1026 */
8f4d37ec
PZ
1027
1028/*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033static inline int hrtick_enabled(struct rq *rq)
1034{
1035 if (!sched_feat(HRTICK))
1036 return 0;
ba42059f 1037 if (!cpu_active(cpu_of(rq)))
b328ca18 1038 return 0;
8f4d37ec
PZ
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040}
1041
8f4d37ec
PZ
1042static void hrtick_clear(struct rq *rq)
1043{
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1046}
1047
8f4d37ec
PZ
1048/*
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1051 */
1052static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053{
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057
05fa785c 1058 raw_spin_lock(&rq->lock);
3e51f33f 1059 update_rq_clock(rq);
8f4d37ec 1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1061 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1062
1063 return HRTIMER_NORESTART;
1064}
1065
95e904c7 1066#ifdef CONFIG_SMP
31656519
PZ
1067/*
1068 * called from hardirq (IPI) context
1069 */
1070static void __hrtick_start(void *arg)
b328ca18 1071{
31656519 1072 struct rq *rq = arg;
b328ca18 1073
05fa785c 1074 raw_spin_lock(&rq->lock);
31656519
PZ
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
05fa785c 1077 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1078}
1079
31656519
PZ
1080/*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1086{
31656519
PZ
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1089
cc584b21 1090 hrtimer_set_expires(timer, time);
31656519
PZ
1091
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
6e275637 1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1096 rq->hrtick_csd_pending = 1;
1097 }
b328ca18
PZ
1098}
1099
1100static int
1101hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102{
1103 int cpu = (int)(long)hcpu;
1104
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
31656519 1112 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1113 return NOTIFY_OK;
1114 }
1115
1116 return NOTIFY_DONE;
1117}
1118
fa748203 1119static __init void init_hrtick(void)
b328ca18
PZ
1120{
1121 hotcpu_notifier(hotplug_hrtick, 0);
1122}
31656519
PZ
1123#else
1124/*
1125 * Called to set the hrtick timer state.
1126 *
1127 * called with rq->lock held and irqs disabled
1128 */
1129static void hrtick_start(struct rq *rq, u64 delay)
1130{
7f1e2ca9 1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1132 HRTIMER_MODE_REL_PINNED, 0);
31656519 1133}
b328ca18 1134
006c75f1 1135static inline void init_hrtick(void)
8f4d37ec 1136{
8f4d37ec 1137}
31656519 1138#endif /* CONFIG_SMP */
8f4d37ec 1139
31656519 1140static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1141{
31656519
PZ
1142#ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
8f4d37ec 1144
31656519
PZ
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148#endif
8f4d37ec 1149
31656519
PZ
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
8f4d37ec 1152}
006c75f1 1153#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1154static inline void hrtick_clear(struct rq *rq)
1155{
1156}
1157
8f4d37ec
PZ
1158static inline void init_rq_hrtick(struct rq *rq)
1159{
1160}
1161
b328ca18
PZ
1162static inline void init_hrtick(void)
1163{
1164}
006c75f1 1165#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1166
c24d20db
IM
1167/*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174#ifdef CONFIG_SMP
1175
1176#ifndef tsk_is_polling
1177#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178#endif
1179
31656519 1180static void resched_task(struct task_struct *p)
c24d20db
IM
1181{
1182 int cpu;
1183
05fa785c 1184 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1185
5ed0cec0 1186 if (test_tsk_need_resched(p))
c24d20db
IM
1187 return;
1188
5ed0cec0 1189 set_tsk_need_resched(p);
c24d20db
IM
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199}
1200
1201static void resched_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
05fa785c 1206 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1207 return;
1208 resched_task(cpu_curr(cpu));
05fa785c 1209 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1210}
06d8308c
TG
1211
1212#ifdef CONFIG_NO_HZ
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
5ed0cec0 1245 set_tsk_need_resched(rq->idle);
06d8308c
TG
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
6d6bc0ad 1252#endif /* CONFIG_NO_HZ */
06d8308c 1253
e9e9250b
PZ
1254static u64 sched_avg_period(void)
1255{
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257}
1258
1259static void sched_avg_update(struct rq *rq)
1260{
1261 s64 period = sched_avg_period();
1262
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1266 }
1267}
1268
1269static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270{
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1273}
1274
6d6bc0ad 1275#else /* !CONFIG_SMP */
31656519 1276static void resched_task(struct task_struct *p)
c24d20db 1277{
05fa785c 1278 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1279 set_tsk_need_resched(p);
c24d20db 1280}
e9e9250b
PZ
1281
1282static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283{
1284}
6d6bc0ad 1285#endif /* CONFIG_SMP */
c24d20db 1286
45bf76df
IM
1287#if BITS_PER_LONG == 32
1288# define WMULT_CONST (~0UL)
1289#else
1290# define WMULT_CONST (1UL << 32)
1291#endif
1292
1293#define WMULT_SHIFT 32
1294
194081eb
IM
1295/*
1296 * Shift right and round:
1297 */
cf2ab469 1298#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1299
a7be37ac
PZ
1300/*
1301 * delta *= weight / lw
1302 */
cb1c4fc9 1303static unsigned long
45bf76df
IM
1304calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306{
1307 u64 tmp;
1308
7a232e03
LJ
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
45bf76df
IM
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
194081eb 1321 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1323 WMULT_SHIFT/2);
1324 else
cf2ab469 1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1326
ecf691da 1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1328}
1329
1091985b 1330static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1331{
1332 lw->weight += inc;
e89996ae 1333 lw->inv_weight = 0;
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1337{
1338 lw->weight -= dec;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
2dd73a4f
PW
1342/*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
cce7ade8
PZ
1351#define WEIGHT_IDLEPRIO 3
1352#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1353
1354/*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
dd41f596
IM
1365 */
1366static const int prio_to_weight[40] = {
254753dc
IM
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1375};
1376
5714d2de
IM
1377/*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
dd41f596 1384static const u32 prio_to_wmult[40] = {
254753dc
IM
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1393};
2dd73a4f 1394
dd41f596
IM
1395static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397/*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406};
1407
e1d1484f
PW
1408#ifdef CONFIG_SMP
1409static unsigned long
1410balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415static int
1416iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
e1d1484f 1419#endif
dd41f596 1420
ef12fefa
BR
1421/* Time spent by the tasks of the cpu accounting group executing in ... */
1422enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427};
1428
d842de87
SV
1429#ifdef CONFIG_CGROUP_CPUACCT
1430static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1431static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1433#else
1434static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1435static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1437#endif
1438
18d95a28
PZ
1439static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_add(&rq->load, load);
1442}
1443
1444static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445{
1446 update_load_sub(&rq->load, load);
1447}
1448
7940ca36 1449#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1450typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1451
1452/*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
eb755805 1456static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1457{
1458 struct task_group *parent, *child;
eb755805 1459 int ret;
c09595f6
PZ
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463down:
eb755805
PZ
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
c09595f6
PZ
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471up:
1472 continue;
1473 }
eb755805
PZ
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
c09595f6
PZ
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
eb755805 1482out_unlock:
c09595f6 1483 rcu_read_unlock();
eb755805
PZ
1484
1485 return ret;
c09595f6
PZ
1486}
1487
eb755805
PZ
1488static int tg_nop(struct task_group *tg, void *data)
1489{
1490 return 0;
c09595f6 1491}
eb755805
PZ
1492#endif
1493
1494#ifdef CONFIG_SMP
f5f08f39
PZ
1495/* Used instead of source_load when we know the type == 0 */
1496static unsigned long weighted_cpuload(const int cpu)
1497{
1498 return cpu_rq(cpu)->load.weight;
1499}
1500
1501/*
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 *
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1507 */
1508static unsigned long source_load(int cpu, int type)
1509{
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1512
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1515
1516 return min(rq->cpu_load[type-1], total);
1517}
1518
1519/*
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1522 */
1523static unsigned long target_load(int cpu, int type)
1524{
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return max(rq->cpu_load[type-1], total);
1532}
1533
ae154be1
PZ
1534static struct sched_group *group_of(int cpu)
1535{
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537
1538 if (!sd)
1539 return NULL;
1540
1541 return sd->groups;
1542}
1543
1544static unsigned long power_of(int cpu)
1545{
1546 struct sched_group *group = group_of(cpu);
1547
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1550
1551 return group->cpu_power;
1552}
1553
eb755805
PZ
1554static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555
1556static unsigned long cpu_avg_load_per_task(int cpu)
1557{
1558 struct rq *rq = cpu_rq(cpu);
af6d596f 1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1560
4cd42620
SR
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1563 else
1564 rq->avg_load_per_task = 0;
eb755805
PZ
1565
1566 return rq->avg_load_per_task;
1567}
1568
1569#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1570
4a6cc4bd 1571static __read_mostly unsigned long *update_shares_data;
34d76c41 1572
c09595f6
PZ
1573static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575/*
1576 * Calculate and set the cpu's group shares.
1577 */
34d76c41
PZ
1578static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
4a6cc4bd 1581 unsigned long *usd_rq_weight)
18d95a28 1582{
34d76c41 1583 unsigned long shares, rq_weight;
a5004278 1584 int boost = 0;
c09595f6 1585
4a6cc4bd 1586 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
c8cba857 1591
c09595f6 1592 /*
a8af7246
PZ
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
c09595f6 1596 */
ec4e0e2f 1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1599
ffda12a1
PZ
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
c09595f6 1604
05fa785c 1605 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1608 __set_se_shares(tg->se[cpu], shares);
05fa785c 1609 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1610 }
18d95a28 1611}
c09595f6
PZ
1612
1613/*
c8cba857
PZ
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
c09595f6 1617 */
eb755805 1618static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1619{
cd8ad40d 1620 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1621 unsigned long *usd_rq_weight;
eb755805 1622 struct sched_domain *sd = data;
34d76c41 1623 unsigned long flags;
c8cba857 1624 int i;
c09595f6 1625
34d76c41
PZ
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
4a6cc4bd 1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1631
758b2cdc 1632 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1633 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1634 usd_rq_weight[i] = weight;
34d76c41 1635
cd8ad40d 1636 rq_weight += weight;
ec4e0e2f
KC
1637 /*
1638 * If there are currently no tasks on the cpu pretend there
1639 * is one of average load so that when a new task gets to
1640 * run here it will not get delayed by group starvation.
1641 */
ec4e0e2f
KC
1642 if (!weight)
1643 weight = NICE_0_LOAD;
1644
cd8ad40d 1645 sum_weight += weight;
c8cba857 1646 shares += tg->cfs_rq[i]->shares;
c09595f6 1647 }
c09595f6 1648
cd8ad40d
PZ
1649 if (!rq_weight)
1650 rq_weight = sum_weight;
1651
c8cba857
PZ
1652 if ((!shares && rq_weight) || shares > tg->shares)
1653 shares = tg->shares;
1654
1655 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1656 shares = tg->shares;
c09595f6 1657
758b2cdc 1658 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1659 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1660
1661 local_irq_restore(flags);
eb755805
PZ
1662
1663 return 0;
c09595f6
PZ
1664}
1665
1666/*
c8cba857
PZ
1667 * Compute the cpu's hierarchical load factor for each task group.
1668 * This needs to be done in a top-down fashion because the load of a child
1669 * group is a fraction of its parents load.
c09595f6 1670 */
eb755805 1671static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1672{
c8cba857 1673 unsigned long load;
eb755805 1674 long cpu = (long)data;
c09595f6 1675
c8cba857
PZ
1676 if (!tg->parent) {
1677 load = cpu_rq(cpu)->load.weight;
1678 } else {
1679 load = tg->parent->cfs_rq[cpu]->h_load;
1680 load *= tg->cfs_rq[cpu]->shares;
1681 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1682 }
c09595f6 1683
c8cba857 1684 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1685
eb755805 1686 return 0;
c09595f6
PZ
1687}
1688
c8cba857 1689static void update_shares(struct sched_domain *sd)
4d8d595d 1690{
e7097159
PZ
1691 s64 elapsed;
1692 u64 now;
1693
1694 if (root_task_group_empty())
1695 return;
1696
1697 now = cpu_clock(raw_smp_processor_id());
1698 elapsed = now - sd->last_update;
2398f2c6
PZ
1699
1700 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1701 sd->last_update = now;
eb755805 1702 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1703 }
4d8d595d
PZ
1704}
1705
3e5459b4
PZ
1706static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1707{
e7097159
PZ
1708 if (root_task_group_empty())
1709 return;
1710
05fa785c 1711 raw_spin_unlock(&rq->lock);
3e5459b4 1712 update_shares(sd);
05fa785c 1713 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1714}
1715
eb755805 1716static void update_h_load(long cpu)
c09595f6 1717{
e7097159
PZ
1718 if (root_task_group_empty())
1719 return;
1720
eb755805 1721 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1722}
1723
c09595f6
PZ
1724#else
1725
c8cba857 1726static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1727{
1728}
1729
3e5459b4
PZ
1730static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1731{
1732}
1733
18d95a28
PZ
1734#endif
1735
8f45e2b5
GH
1736#ifdef CONFIG_PREEMPT
1737
b78bb868
PZ
1738static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739
70574a99 1740/*
8f45e2b5
GH
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
70574a99 1747 */
8f45e2b5
GH
1748static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1752{
05fa785c 1753 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1754 double_rq_lock(this_rq, busiest);
1755
1756 return 1;
1757}
1758
1759#else
1760/*
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1766 */
1767static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1771{
1772 int ret = 0;
1773
05fa785c 1774 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1775 if (busiest < this_rq) {
05fa785c
TG
1776 raw_spin_unlock(&this_rq->lock);
1777 raw_spin_lock(&busiest->lock);
1778 raw_spin_lock_nested(&this_rq->lock,
1779 SINGLE_DEPTH_NESTING);
70574a99
AD
1780 ret = 1;
1781 } else
05fa785c
TG
1782 raw_spin_lock_nested(&busiest->lock,
1783 SINGLE_DEPTH_NESTING);
70574a99
AD
1784 }
1785 return ret;
1786}
1787
8f45e2b5
GH
1788#endif /* CONFIG_PREEMPT */
1789
1790/*
1791 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1792 */
1793static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1794{
1795 if (unlikely(!irqs_disabled())) {
1796 /* printk() doesn't work good under rq->lock */
05fa785c 1797 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1798 BUG_ON(1);
1799 }
1800
1801 return _double_lock_balance(this_rq, busiest);
1802}
1803
70574a99
AD
1804static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 __releases(busiest->lock)
1806{
05fa785c 1807 raw_spin_unlock(&busiest->lock);
70574a99
AD
1808 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1809}
18d95a28
PZ
1810#endif
1811
30432094 1812#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1813static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1814{
30432094 1815#ifdef CONFIG_SMP
34e83e85
IM
1816 cfs_rq->shares = shares;
1817#endif
1818}
30432094 1819#endif
e7693a36 1820
dce48a84 1821static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1822static void update_sysctl(void);
acb4a848 1823static int get_update_sysctl_factor(void);
dce48a84 1824
cd29fe6f
PZ
1825static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1826{
1827 set_task_rq(p, cpu);
1828#ifdef CONFIG_SMP
1829 /*
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1833 */
1834 smp_wmb();
1835 task_thread_info(p)->cpu = cpu;
1836#endif
1837}
dce48a84 1838
dd41f596 1839#include "sched_stats.h"
dd41f596 1840#include "sched_idletask.c"
5522d5d5
IM
1841#include "sched_fair.c"
1842#include "sched_rt.c"
dd41f596
IM
1843#ifdef CONFIG_SCHED_DEBUG
1844# include "sched_debug.c"
1845#endif
1846
1847#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1848#define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
dd41f596 1850
c09595f6 1851static void inc_nr_running(struct rq *rq)
9c217245
IM
1852{
1853 rq->nr_running++;
9c217245
IM
1854}
1855
c09595f6 1856static void dec_nr_running(struct rq *rq)
9c217245
IM
1857{
1858 rq->nr_running--;
9c217245
IM
1859}
1860
45bf76df
IM
1861static void set_load_weight(struct task_struct *p)
1862{
1863 if (task_has_rt_policy(p)) {
dd41f596
IM
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
45bf76df 1868
dd41f596
IM
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
71f8bd46 1877
dd41f596
IM
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1880}
1881
2087a1ad
GH
1882static void update_avg(u64 *avg, u64 sample)
1883{
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886}
1887
8159f87e 1888static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1889{
831451ac
PZ
1890 if (wakeup)
1891 p->se.start_runtime = p->se.sum_exec_runtime;
1892
dd41f596 1893 sched_info_queued(p);
fd390f6a 1894 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1895 p->se.on_rq = 1;
71f8bd46
IM
1896}
1897
69be72c1 1898static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1899{
831451ac
PZ
1900 if (sleep) {
1901 if (p->se.last_wakeup) {
1902 update_avg(&p->se.avg_overlap,
1903 p->se.sum_exec_runtime - p->se.last_wakeup);
1904 p->se.last_wakeup = 0;
1905 } else {
1906 update_avg(&p->se.avg_wakeup,
1907 sysctl_sched_wakeup_granularity);
1908 }
2087a1ad
GH
1909 }
1910
46ac22ba 1911 sched_info_dequeued(p);
f02231e5 1912 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1913 p->se.on_rq = 0;
71f8bd46
IM
1914}
1915
14531189 1916/*
dd41f596 1917 * __normal_prio - return the priority that is based on the static prio
14531189 1918 */
14531189
IM
1919static inline int __normal_prio(struct task_struct *p)
1920{
dd41f596 1921 return p->static_prio;
14531189
IM
1922}
1923
b29739f9
IM
1924/*
1925 * Calculate the expected normal priority: i.e. priority
1926 * without taking RT-inheritance into account. Might be
1927 * boosted by interactivity modifiers. Changes upon fork,
1928 * setprio syscalls, and whenever the interactivity
1929 * estimator recalculates.
1930 */
36c8b586 1931static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1932{
1933 int prio;
1934
e05606d3 1935 if (task_has_rt_policy(p))
b29739f9
IM
1936 prio = MAX_RT_PRIO-1 - p->rt_priority;
1937 else
1938 prio = __normal_prio(p);
1939 return prio;
1940}
1941
1942/*
1943 * Calculate the current priority, i.e. the priority
1944 * taken into account by the scheduler. This value might
1945 * be boosted by RT tasks, or might be boosted by
1946 * interactivity modifiers. Will be RT if the task got
1947 * RT-boosted. If not then it returns p->normal_prio.
1948 */
36c8b586 1949static int effective_prio(struct task_struct *p)
b29739f9
IM
1950{
1951 p->normal_prio = normal_prio(p);
1952 /*
1953 * If we are RT tasks or we were boosted to RT priority,
1954 * keep the priority unchanged. Otherwise, update priority
1955 * to the normal priority:
1956 */
1957 if (!rt_prio(p->prio))
1958 return p->normal_prio;
1959 return p->prio;
1960}
1961
1da177e4 1962/*
dd41f596 1963 * activate_task - move a task to the runqueue.
1da177e4 1964 */
dd41f596 1965static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1966{
d9514f6c 1967 if (task_contributes_to_load(p))
dd41f596 1968 rq->nr_uninterruptible--;
1da177e4 1969
8159f87e 1970 enqueue_task(rq, p, wakeup);
c09595f6 1971 inc_nr_running(rq);
1da177e4
LT
1972}
1973
1da177e4
LT
1974/*
1975 * deactivate_task - remove a task from the runqueue.
1976 */
2e1cb74a 1977static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1978{
d9514f6c 1979 if (task_contributes_to_load(p))
dd41f596
IM
1980 rq->nr_uninterruptible++;
1981
69be72c1 1982 dequeue_task(rq, p, sleep);
c09595f6 1983 dec_nr_running(rq);
1da177e4
LT
1984}
1985
1da177e4
LT
1986/**
1987 * task_curr - is this task currently executing on a CPU?
1988 * @p: the task in question.
1989 */
36c8b586 1990inline int task_curr(const struct task_struct *p)
1da177e4
LT
1991{
1992 return cpu_curr(task_cpu(p)) == p;
1993}
1994
cb469845
SR
1995static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1996 const struct sched_class *prev_class,
1997 int oldprio, int running)
1998{
1999 if (prev_class != p->sched_class) {
2000 if (prev_class->switched_from)
2001 prev_class->switched_from(rq, p, running);
2002 p->sched_class->switched_to(rq, p, running);
2003 } else
2004 p->sched_class->prio_changed(rq, p, oldprio, running);
2005}
2006
1da177e4 2007#ifdef CONFIG_SMP
cc367732
IM
2008/*
2009 * Is this task likely cache-hot:
2010 */
e7693a36 2011static int
cc367732
IM
2012task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2013{
2014 s64 delta;
2015
e6c8fba7
PZ
2016 if (p->sched_class != &fair_sched_class)
2017 return 0;
2018
f540a608
IM
2019 /*
2020 * Buddy candidates are cache hot:
2021 */
f685ceac 2022 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2023 (&p->se == cfs_rq_of(&p->se)->next ||
2024 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2025 return 1;
2026
6bc1665b
IM
2027 if (sysctl_sched_migration_cost == -1)
2028 return 1;
2029 if (sysctl_sched_migration_cost == 0)
2030 return 0;
2031
cc367732
IM
2032 delta = now - p->se.exec_start;
2033
2034 return delta < (s64)sysctl_sched_migration_cost;
2035}
2036
dd41f596 2037void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2038{
e2912009
PZ
2039#ifdef CONFIG_SCHED_DEBUG
2040 /*
2041 * We should never call set_task_cpu() on a blocked task,
2042 * ttwu() will sort out the placement.
2043 */
416eb395 2044 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING);
e2912009
PZ
2045#endif
2046
de1d7286 2047 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2048
738d2be4
PZ
2049 if (task_cpu(p) == new_cpu)
2050 return;
2051
2052 p->se.nr_migrations++;
2053 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
dd41f596
IM
2054
2055 __set_task_cpu(p, new_cpu);
c65cc870
IM
2056}
2057
70b97a7f 2058struct migration_req {
1da177e4 2059 struct list_head list;
1da177e4 2060
36c8b586 2061 struct task_struct *task;
1da177e4
LT
2062 int dest_cpu;
2063
1da177e4 2064 struct completion done;
70b97a7f 2065};
1da177e4
LT
2066
2067/*
2068 * The task's runqueue lock must be held.
2069 * Returns true if you have to wait for migration thread.
2070 */
36c8b586 2071static int
70b97a7f 2072migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2073{
70b97a7f 2074 struct rq *rq = task_rq(p);
1da177e4
LT
2075
2076 /*
2077 * If the task is not on a runqueue (and not running), then
e2912009 2078 * the next wake-up will properly place the task.
1da177e4 2079 */
e2912009 2080 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2081 return 0;
1da177e4
LT
2082
2083 init_completion(&req->done);
1da177e4
LT
2084 req->task = p;
2085 req->dest_cpu = dest_cpu;
2086 list_add(&req->list, &rq->migration_queue);
48f24c4d 2087
1da177e4
LT
2088 return 1;
2089}
2090
a26b89f0
MM
2091/*
2092 * wait_task_context_switch - wait for a thread to complete at least one
2093 * context switch.
2094 *
2095 * @p must not be current.
2096 */
2097void wait_task_context_switch(struct task_struct *p)
2098{
2099 unsigned long nvcsw, nivcsw, flags;
2100 int running;
2101 struct rq *rq;
2102
2103 nvcsw = p->nvcsw;
2104 nivcsw = p->nivcsw;
2105 for (;;) {
2106 /*
2107 * The runqueue is assigned before the actual context
2108 * switch. We need to take the runqueue lock.
2109 *
2110 * We could check initially without the lock but it is
2111 * very likely that we need to take the lock in every
2112 * iteration.
2113 */
2114 rq = task_rq_lock(p, &flags);
2115 running = task_running(rq, p);
2116 task_rq_unlock(rq, &flags);
2117
2118 if (likely(!running))
2119 break;
2120 /*
2121 * The switch count is incremented before the actual
2122 * context switch. We thus wait for two switches to be
2123 * sure at least one completed.
2124 */
2125 if ((p->nvcsw - nvcsw) > 1)
2126 break;
2127 if ((p->nivcsw - nivcsw) > 1)
2128 break;
2129
2130 cpu_relax();
2131 }
2132}
2133
1da177e4
LT
2134/*
2135 * wait_task_inactive - wait for a thread to unschedule.
2136 *
85ba2d86
RM
2137 * If @match_state is nonzero, it's the @p->state value just checked and
2138 * not expected to change. If it changes, i.e. @p might have woken up,
2139 * then return zero. When we succeed in waiting for @p to be off its CPU,
2140 * we return a positive number (its total switch count). If a second call
2141 * a short while later returns the same number, the caller can be sure that
2142 * @p has remained unscheduled the whole time.
2143 *
1da177e4
LT
2144 * The caller must ensure that the task *will* unschedule sometime soon,
2145 * else this function might spin for a *long* time. This function can't
2146 * be called with interrupts off, or it may introduce deadlock with
2147 * smp_call_function() if an IPI is sent by the same process we are
2148 * waiting to become inactive.
2149 */
85ba2d86 2150unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2151{
2152 unsigned long flags;
dd41f596 2153 int running, on_rq;
85ba2d86 2154 unsigned long ncsw;
70b97a7f 2155 struct rq *rq;
1da177e4 2156
3a5c359a
AK
2157 for (;;) {
2158 /*
2159 * We do the initial early heuristics without holding
2160 * any task-queue locks at all. We'll only try to get
2161 * the runqueue lock when things look like they will
2162 * work out!
2163 */
2164 rq = task_rq(p);
fa490cfd 2165
3a5c359a
AK
2166 /*
2167 * If the task is actively running on another CPU
2168 * still, just relax and busy-wait without holding
2169 * any locks.
2170 *
2171 * NOTE! Since we don't hold any locks, it's not
2172 * even sure that "rq" stays as the right runqueue!
2173 * But we don't care, since "task_running()" will
2174 * return false if the runqueue has changed and p
2175 * is actually now running somewhere else!
2176 */
85ba2d86
RM
2177 while (task_running(rq, p)) {
2178 if (match_state && unlikely(p->state != match_state))
2179 return 0;
3a5c359a 2180 cpu_relax();
85ba2d86 2181 }
fa490cfd 2182
3a5c359a
AK
2183 /*
2184 * Ok, time to look more closely! We need the rq
2185 * lock now, to be *sure*. If we're wrong, we'll
2186 * just go back and repeat.
2187 */
2188 rq = task_rq_lock(p, &flags);
0a16b607 2189 trace_sched_wait_task(rq, p);
3a5c359a
AK
2190 running = task_running(rq, p);
2191 on_rq = p->se.on_rq;
85ba2d86 2192 ncsw = 0;
f31e11d8 2193 if (!match_state || p->state == match_state)
93dcf55f 2194 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2195 task_rq_unlock(rq, &flags);
fa490cfd 2196
85ba2d86
RM
2197 /*
2198 * If it changed from the expected state, bail out now.
2199 */
2200 if (unlikely(!ncsw))
2201 break;
2202
3a5c359a
AK
2203 /*
2204 * Was it really running after all now that we
2205 * checked with the proper locks actually held?
2206 *
2207 * Oops. Go back and try again..
2208 */
2209 if (unlikely(running)) {
2210 cpu_relax();
2211 continue;
2212 }
fa490cfd 2213
3a5c359a
AK
2214 /*
2215 * It's not enough that it's not actively running,
2216 * it must be off the runqueue _entirely_, and not
2217 * preempted!
2218 *
80dd99b3 2219 * So if it was still runnable (but just not actively
3a5c359a
AK
2220 * running right now), it's preempted, and we should
2221 * yield - it could be a while.
2222 */
2223 if (unlikely(on_rq)) {
2224 schedule_timeout_uninterruptible(1);
2225 continue;
2226 }
fa490cfd 2227
3a5c359a
AK
2228 /*
2229 * Ahh, all good. It wasn't running, and it wasn't
2230 * runnable, which means that it will never become
2231 * running in the future either. We're all done!
2232 */
2233 break;
2234 }
85ba2d86
RM
2235
2236 return ncsw;
1da177e4
LT
2237}
2238
2239/***
2240 * kick_process - kick a running thread to enter/exit the kernel
2241 * @p: the to-be-kicked thread
2242 *
2243 * Cause a process which is running on another CPU to enter
2244 * kernel-mode, without any delay. (to get signals handled.)
2245 *
2246 * NOTE: this function doesnt have to take the runqueue lock,
2247 * because all it wants to ensure is that the remote task enters
2248 * the kernel. If the IPI races and the task has been migrated
2249 * to another CPU then no harm is done and the purpose has been
2250 * achieved as well.
2251 */
36c8b586 2252void kick_process(struct task_struct *p)
1da177e4
LT
2253{
2254 int cpu;
2255
2256 preempt_disable();
2257 cpu = task_cpu(p);
2258 if ((cpu != smp_processor_id()) && task_curr(p))
2259 smp_send_reschedule(cpu);
2260 preempt_enable();
2261}
b43e3521 2262EXPORT_SYMBOL_GPL(kick_process);
476d139c 2263#endif /* CONFIG_SMP */
1da177e4 2264
0793a61d
TG
2265/**
2266 * task_oncpu_function_call - call a function on the cpu on which a task runs
2267 * @p: the task to evaluate
2268 * @func: the function to be called
2269 * @info: the function call argument
2270 *
2271 * Calls the function @func when the task is currently running. This might
2272 * be on the current CPU, which just calls the function directly
2273 */
2274void task_oncpu_function_call(struct task_struct *p,
2275 void (*func) (void *info), void *info)
2276{
2277 int cpu;
2278
2279 preempt_disable();
2280 cpu = task_cpu(p);
2281 if (task_curr(p))
2282 smp_call_function_single(cpu, func, info, 1);
2283 preempt_enable();
2284}
2285
970b13ba 2286#ifdef CONFIG_SMP
5da9a0fb
PZ
2287static int select_fallback_rq(int cpu, struct task_struct *p)
2288{
2289 int dest_cpu;
2290 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2291
2292 /* Look for allowed, online CPU in same node. */
2293 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2294 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2295 return dest_cpu;
2296
2297 /* Any allowed, online CPU? */
2298 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2299 if (dest_cpu < nr_cpu_ids)
2300 return dest_cpu;
2301
2302 /* No more Mr. Nice Guy. */
2303 if (dest_cpu >= nr_cpu_ids) {
2304 rcu_read_lock();
2305 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2306 rcu_read_unlock();
2307 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2308
2309 /*
2310 * Don't tell them about moving exiting tasks or
2311 * kernel threads (both mm NULL), since they never
2312 * leave kernel.
2313 */
2314 if (p->mm && printk_ratelimit()) {
2315 printk(KERN_INFO "process %d (%s) no "
2316 "longer affine to cpu%d\n",
2317 task_pid_nr(p), p->comm, cpu);
2318 }
2319 }
2320
2321 return dest_cpu;
2322}
2323
e2912009
PZ
2324/*
2325 * Called from:
2326 *
2327 * - fork, @p is stable because it isn't on the tasklist yet
2328 *
38022906 2329 * - exec, @p is unstable, retry loop
e2912009
PZ
2330 *
2331 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2332 * we should be good.
2333 */
970b13ba
PZ
2334static inline
2335int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2336{
e2912009
PZ
2337 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2338
2339 /*
2340 * In order not to call set_task_cpu() on a blocking task we need
2341 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2342 * cpu.
2343 *
2344 * Since this is common to all placement strategies, this lives here.
2345 *
2346 * [ this allows ->select_task() to simply return task_cpu(p) and
2347 * not worry about this generic constraint ]
2348 */
2349 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
5da9a0fb
PZ
2350 !cpu_active(cpu)))
2351 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2352
2353 return cpu;
970b13ba
PZ
2354}
2355#endif
2356
1da177e4
LT
2357/***
2358 * try_to_wake_up - wake up a thread
2359 * @p: the to-be-woken-up thread
2360 * @state: the mask of task states that can be woken
2361 * @sync: do a synchronous wakeup?
2362 *
2363 * Put it on the run-queue if it's not already there. The "current"
2364 * thread is always on the run-queue (except when the actual
2365 * re-schedule is in progress), and as such you're allowed to do
2366 * the simpler "current->state = TASK_RUNNING" to mark yourself
2367 * runnable without the overhead of this.
2368 *
2369 * returns failure only if the task is already active.
2370 */
7d478721
PZ
2371static int try_to_wake_up(struct task_struct *p, unsigned int state,
2372 int wake_flags)
1da177e4 2373{
cc367732 2374 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2375 unsigned long flags;
f5dc3753 2376 struct rq *rq, *orig_rq;
1da177e4 2377
b85d0667 2378 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2379 wake_flags &= ~WF_SYNC;
2398f2c6 2380
e9c84311 2381 this_cpu = get_cpu();
2398f2c6 2382
04e2f174 2383 smp_wmb();
f5dc3753 2384 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2385 update_rq_clock(rq);
e9c84311 2386 if (!(p->state & state))
1da177e4
LT
2387 goto out;
2388
dd41f596 2389 if (p->se.on_rq)
1da177e4
LT
2390 goto out_running;
2391
2392 cpu = task_cpu(p);
cc367732 2393 orig_cpu = cpu;
1da177e4
LT
2394
2395#ifdef CONFIG_SMP
2396 if (unlikely(task_running(rq, p)))
2397 goto out_activate;
2398
e9c84311
PZ
2399 /*
2400 * In order to handle concurrent wakeups and release the rq->lock
2401 * we put the task in TASK_WAKING state.
eb24073b
IM
2402 *
2403 * First fix up the nr_uninterruptible count:
e9c84311 2404 */
eb24073b
IM
2405 if (task_contributes_to_load(p))
2406 rq->nr_uninterruptible--;
e9c84311 2407 p->state = TASK_WAKING;
efbbd05a
PZ
2408
2409 if (p->sched_class->task_waking)
2410 p->sched_class->task_waking(rq, p);
2411
ab19cb23 2412 __task_rq_unlock(rq);
e9c84311 2413
970b13ba 2414 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2415 if (cpu != orig_cpu)
5d2f5a61 2416 set_task_cpu(p, cpu);
ab19cb23
PZ
2417
2418 rq = __task_rq_lock(p);
2419 update_rq_clock(rq);
f5dc3753 2420
e9c84311
PZ
2421 WARN_ON(p->state != TASK_WAKING);
2422 cpu = task_cpu(p);
1da177e4 2423
e7693a36
GH
2424#ifdef CONFIG_SCHEDSTATS
2425 schedstat_inc(rq, ttwu_count);
2426 if (cpu == this_cpu)
2427 schedstat_inc(rq, ttwu_local);
2428 else {
2429 struct sched_domain *sd;
2430 for_each_domain(this_cpu, sd) {
758b2cdc 2431 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2432 schedstat_inc(sd, ttwu_wake_remote);
2433 break;
2434 }
2435 }
2436 }
6d6bc0ad 2437#endif /* CONFIG_SCHEDSTATS */
e7693a36 2438
1da177e4
LT
2439out_activate:
2440#endif /* CONFIG_SMP */
cc367732 2441 schedstat_inc(p, se.nr_wakeups);
7d478721 2442 if (wake_flags & WF_SYNC)
cc367732
IM
2443 schedstat_inc(p, se.nr_wakeups_sync);
2444 if (orig_cpu != cpu)
2445 schedstat_inc(p, se.nr_wakeups_migrate);
2446 if (cpu == this_cpu)
2447 schedstat_inc(p, se.nr_wakeups_local);
2448 else
2449 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2450 activate_task(rq, p, 1);
1da177e4
LT
2451 success = 1;
2452
831451ac
PZ
2453 /*
2454 * Only attribute actual wakeups done by this task.
2455 */
2456 if (!in_interrupt()) {
2457 struct sched_entity *se = &current->se;
2458 u64 sample = se->sum_exec_runtime;
2459
2460 if (se->last_wakeup)
2461 sample -= se->last_wakeup;
2462 else
2463 sample -= se->start_runtime;
2464 update_avg(&se->avg_wakeup, sample);
2465
2466 se->last_wakeup = se->sum_exec_runtime;
2467 }
2468
1da177e4 2469out_running:
468a15bb 2470 trace_sched_wakeup(rq, p, success);
7d478721 2471 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2472
1da177e4 2473 p->state = TASK_RUNNING;
9a897c5a 2474#ifdef CONFIG_SMP
efbbd05a
PZ
2475 if (p->sched_class->task_woken)
2476 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2477
2478 if (unlikely(rq->idle_stamp)) {
2479 u64 delta = rq->clock - rq->idle_stamp;
2480 u64 max = 2*sysctl_sched_migration_cost;
2481
2482 if (delta > max)
2483 rq->avg_idle = max;
2484 else
2485 update_avg(&rq->avg_idle, delta);
2486 rq->idle_stamp = 0;
2487 }
9a897c5a 2488#endif
1da177e4
LT
2489out:
2490 task_rq_unlock(rq, &flags);
e9c84311 2491 put_cpu();
1da177e4
LT
2492
2493 return success;
2494}
2495
50fa610a
DH
2496/**
2497 * wake_up_process - Wake up a specific process
2498 * @p: The process to be woken up.
2499 *
2500 * Attempt to wake up the nominated process and move it to the set of runnable
2501 * processes. Returns 1 if the process was woken up, 0 if it was already
2502 * running.
2503 *
2504 * It may be assumed that this function implies a write memory barrier before
2505 * changing the task state if and only if any tasks are woken up.
2506 */
7ad5b3a5 2507int wake_up_process(struct task_struct *p)
1da177e4 2508{
d9514f6c 2509 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2510}
1da177e4
LT
2511EXPORT_SYMBOL(wake_up_process);
2512
7ad5b3a5 2513int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2514{
2515 return try_to_wake_up(p, state, 0);
2516}
2517
1da177e4
LT
2518/*
2519 * Perform scheduler related setup for a newly forked process p.
2520 * p is forked by current.
dd41f596
IM
2521 *
2522 * __sched_fork() is basic setup used by init_idle() too:
2523 */
2524static void __sched_fork(struct task_struct *p)
2525{
dd41f596
IM
2526 p->se.exec_start = 0;
2527 p->se.sum_exec_runtime = 0;
f6cf891c 2528 p->se.prev_sum_exec_runtime = 0;
6c594c21 2529 p->se.nr_migrations = 0;
4ae7d5ce
IM
2530 p->se.last_wakeup = 0;
2531 p->se.avg_overlap = 0;
831451ac
PZ
2532 p->se.start_runtime = 0;
2533 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2534
2535#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2536 p->se.wait_start = 0;
2537 p->se.wait_max = 0;
2538 p->se.wait_count = 0;
2539 p->se.wait_sum = 0;
2540
2541 p->se.sleep_start = 0;
2542 p->se.sleep_max = 0;
2543 p->se.sum_sleep_runtime = 0;
2544
2545 p->se.block_start = 0;
2546 p->se.block_max = 0;
2547 p->se.exec_max = 0;
2548 p->se.slice_max = 0;
2549
2550 p->se.nr_migrations_cold = 0;
2551 p->se.nr_failed_migrations_affine = 0;
2552 p->se.nr_failed_migrations_running = 0;
2553 p->se.nr_failed_migrations_hot = 0;
2554 p->se.nr_forced_migrations = 0;
7793527b
LDM
2555
2556 p->se.nr_wakeups = 0;
2557 p->se.nr_wakeups_sync = 0;
2558 p->se.nr_wakeups_migrate = 0;
2559 p->se.nr_wakeups_local = 0;
2560 p->se.nr_wakeups_remote = 0;
2561 p->se.nr_wakeups_affine = 0;
2562 p->se.nr_wakeups_affine_attempts = 0;
2563 p->se.nr_wakeups_passive = 0;
2564 p->se.nr_wakeups_idle = 0;
2565
6cfb0d5d 2566#endif
476d139c 2567
fa717060 2568 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2569 p->se.on_rq = 0;
4a55bd5e 2570 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2571
e107be36
AK
2572#ifdef CONFIG_PREEMPT_NOTIFIERS
2573 INIT_HLIST_HEAD(&p->preempt_notifiers);
2574#endif
dd41f596
IM
2575}
2576
2577/*
2578 * fork()/clone()-time setup:
2579 */
2580void sched_fork(struct task_struct *p, int clone_flags)
2581{
2582 int cpu = get_cpu();
2583
2584 __sched_fork(p);
06b83b5f
PZ
2585 /*
2586 * We mark the process as waking here. This guarantees that
2587 * nobody will actually run it, and a signal or other external
2588 * event cannot wake it up and insert it on the runqueue either.
2589 */
2590 p->state = TASK_WAKING;
dd41f596 2591
b9dc29e7
MG
2592 /*
2593 * Revert to default priority/policy on fork if requested.
2594 */
2595 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2596 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2597 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2598 p->normal_prio = p->static_prio;
2599 }
b9dc29e7 2600
6c697bdf
MG
2601 if (PRIO_TO_NICE(p->static_prio) < 0) {
2602 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2603 p->normal_prio = p->static_prio;
6c697bdf
MG
2604 set_load_weight(p);
2605 }
2606
b9dc29e7
MG
2607 /*
2608 * We don't need the reset flag anymore after the fork. It has
2609 * fulfilled its duty:
2610 */
2611 p->sched_reset_on_fork = 0;
2612 }
ca94c442 2613
f83f9ac2
PW
2614 /*
2615 * Make sure we do not leak PI boosting priority to the child.
2616 */
2617 p->prio = current->normal_prio;
2618
2ddbf952
HS
2619 if (!rt_prio(p->prio))
2620 p->sched_class = &fair_sched_class;
b29739f9 2621
cd29fe6f
PZ
2622 if (p->sched_class->task_fork)
2623 p->sched_class->task_fork(p);
2624
5f3edc1b 2625#ifdef CONFIG_SMP
970b13ba 2626 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2627#endif
2628 set_task_cpu(p, cpu);
2629
52f17b6c 2630#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2631 if (likely(sched_info_on()))
52f17b6c 2632 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2633#endif
d6077cb8 2634#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2635 p->oncpu = 0;
2636#endif
1da177e4 2637#ifdef CONFIG_PREEMPT
4866cde0 2638 /* Want to start with kernel preemption disabled. */
a1261f54 2639 task_thread_info(p)->preempt_count = 1;
1da177e4 2640#endif
917b627d
GH
2641 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2642
476d139c 2643 put_cpu();
1da177e4
LT
2644}
2645
2646/*
2647 * wake_up_new_task - wake up a newly created task for the first time.
2648 *
2649 * This function will do some initial scheduler statistics housekeeping
2650 * that must be done for every newly created context, then puts the task
2651 * on the runqueue and wakes it.
2652 */
7ad5b3a5 2653void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2654{
2655 unsigned long flags;
dd41f596 2656 struct rq *rq;
1da177e4
LT
2657
2658 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2659 BUG_ON(p->state != TASK_WAKING);
2660 p->state = TASK_RUNNING;
a8e504d2 2661 update_rq_clock(rq);
cd29fe6f 2662 activate_task(rq, p, 0);
c71dd42d 2663 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2664 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2665#ifdef CONFIG_SMP
efbbd05a
PZ
2666 if (p->sched_class->task_woken)
2667 p->sched_class->task_woken(rq, p);
9a897c5a 2668#endif
dd41f596 2669 task_rq_unlock(rq, &flags);
1da177e4
LT
2670}
2671
e107be36
AK
2672#ifdef CONFIG_PREEMPT_NOTIFIERS
2673
2674/**
80dd99b3 2675 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2676 * @notifier: notifier struct to register
e107be36
AK
2677 */
2678void preempt_notifier_register(struct preempt_notifier *notifier)
2679{
2680 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2681}
2682EXPORT_SYMBOL_GPL(preempt_notifier_register);
2683
2684/**
2685 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2686 * @notifier: notifier struct to unregister
e107be36
AK
2687 *
2688 * This is safe to call from within a preemption notifier.
2689 */
2690void preempt_notifier_unregister(struct preempt_notifier *notifier)
2691{
2692 hlist_del(&notifier->link);
2693}
2694EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2695
2696static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2697{
2698 struct preempt_notifier *notifier;
2699 struct hlist_node *node;
2700
2701 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2702 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2703}
2704
2705static void
2706fire_sched_out_preempt_notifiers(struct task_struct *curr,
2707 struct task_struct *next)
2708{
2709 struct preempt_notifier *notifier;
2710 struct hlist_node *node;
2711
2712 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2713 notifier->ops->sched_out(notifier, next);
2714}
2715
6d6bc0ad 2716#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2717
2718static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2719{
2720}
2721
2722static void
2723fire_sched_out_preempt_notifiers(struct task_struct *curr,
2724 struct task_struct *next)
2725{
2726}
2727
6d6bc0ad 2728#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2729
4866cde0
NP
2730/**
2731 * prepare_task_switch - prepare to switch tasks
2732 * @rq: the runqueue preparing to switch
421cee29 2733 * @prev: the current task that is being switched out
4866cde0
NP
2734 * @next: the task we are going to switch to.
2735 *
2736 * This is called with the rq lock held and interrupts off. It must
2737 * be paired with a subsequent finish_task_switch after the context
2738 * switch.
2739 *
2740 * prepare_task_switch sets up locking and calls architecture specific
2741 * hooks.
2742 */
e107be36
AK
2743static inline void
2744prepare_task_switch(struct rq *rq, struct task_struct *prev,
2745 struct task_struct *next)
4866cde0 2746{
e107be36 2747 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2748 prepare_lock_switch(rq, next);
2749 prepare_arch_switch(next);
2750}
2751
1da177e4
LT
2752/**
2753 * finish_task_switch - clean up after a task-switch
344babaa 2754 * @rq: runqueue associated with task-switch
1da177e4
LT
2755 * @prev: the thread we just switched away from.
2756 *
4866cde0
NP
2757 * finish_task_switch must be called after the context switch, paired
2758 * with a prepare_task_switch call before the context switch.
2759 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2760 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2761 *
2762 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2763 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2764 * with the lock held can cause deadlocks; see schedule() for
2765 * details.)
2766 */
a9957449 2767static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2768 __releases(rq->lock)
2769{
1da177e4 2770 struct mm_struct *mm = rq->prev_mm;
55a101f8 2771 long prev_state;
1da177e4
LT
2772
2773 rq->prev_mm = NULL;
2774
2775 /*
2776 * A task struct has one reference for the use as "current".
c394cc9f 2777 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2778 * schedule one last time. The schedule call will never return, and
2779 * the scheduled task must drop that reference.
c394cc9f 2780 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2781 * still held, otherwise prev could be scheduled on another cpu, die
2782 * there before we look at prev->state, and then the reference would
2783 * be dropped twice.
2784 * Manfred Spraul <manfred@colorfullife.com>
2785 */
55a101f8 2786 prev_state = prev->state;
4866cde0 2787 finish_arch_switch(prev);
cdd6c482 2788 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2789 finish_lock_switch(rq, prev);
e8fa1362 2790
e107be36 2791 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2792 if (mm)
2793 mmdrop(mm);
c394cc9f 2794 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2795 /*
2796 * Remove function-return probe instances associated with this
2797 * task and put them back on the free list.
9761eea8 2798 */
c6fd91f0 2799 kprobe_flush_task(prev);
1da177e4 2800 put_task_struct(prev);
c6fd91f0 2801 }
1da177e4
LT
2802}
2803
3f029d3c
GH
2804#ifdef CONFIG_SMP
2805
2806/* assumes rq->lock is held */
2807static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2808{
2809 if (prev->sched_class->pre_schedule)
2810 prev->sched_class->pre_schedule(rq, prev);
2811}
2812
2813/* rq->lock is NOT held, but preemption is disabled */
2814static inline void post_schedule(struct rq *rq)
2815{
2816 if (rq->post_schedule) {
2817 unsigned long flags;
2818
05fa785c 2819 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2820 if (rq->curr->sched_class->post_schedule)
2821 rq->curr->sched_class->post_schedule(rq);
05fa785c 2822 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2823
2824 rq->post_schedule = 0;
2825 }
2826}
2827
2828#else
da19ab51 2829
3f029d3c
GH
2830static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2831{
2832}
2833
2834static inline void post_schedule(struct rq *rq)
2835{
1da177e4
LT
2836}
2837
3f029d3c
GH
2838#endif
2839
1da177e4
LT
2840/**
2841 * schedule_tail - first thing a freshly forked thread must call.
2842 * @prev: the thread we just switched away from.
2843 */
36c8b586 2844asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2845 __releases(rq->lock)
2846{
70b97a7f
IM
2847 struct rq *rq = this_rq();
2848
4866cde0 2849 finish_task_switch(rq, prev);
da19ab51 2850
3f029d3c
GH
2851 /*
2852 * FIXME: do we need to worry about rq being invalidated by the
2853 * task_switch?
2854 */
2855 post_schedule(rq);
70b97a7f 2856
4866cde0
NP
2857#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2858 /* In this case, finish_task_switch does not reenable preemption */
2859 preempt_enable();
2860#endif
1da177e4 2861 if (current->set_child_tid)
b488893a 2862 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2863}
2864
2865/*
2866 * context_switch - switch to the new MM and the new
2867 * thread's register state.
2868 */
dd41f596 2869static inline void
70b97a7f 2870context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2871 struct task_struct *next)
1da177e4 2872{
dd41f596 2873 struct mm_struct *mm, *oldmm;
1da177e4 2874
e107be36 2875 prepare_task_switch(rq, prev, next);
0a16b607 2876 trace_sched_switch(rq, prev, next);
dd41f596
IM
2877 mm = next->mm;
2878 oldmm = prev->active_mm;
9226d125
ZA
2879 /*
2880 * For paravirt, this is coupled with an exit in switch_to to
2881 * combine the page table reload and the switch backend into
2882 * one hypercall.
2883 */
224101ed 2884 arch_start_context_switch(prev);
9226d125 2885
710390d9 2886 if (likely(!mm)) {
1da177e4
LT
2887 next->active_mm = oldmm;
2888 atomic_inc(&oldmm->mm_count);
2889 enter_lazy_tlb(oldmm, next);
2890 } else
2891 switch_mm(oldmm, mm, next);
2892
710390d9 2893 if (likely(!prev->mm)) {
1da177e4 2894 prev->active_mm = NULL;
1da177e4
LT
2895 rq->prev_mm = oldmm;
2896 }
3a5f5e48
IM
2897 /*
2898 * Since the runqueue lock will be released by the next
2899 * task (which is an invalid locking op but in the case
2900 * of the scheduler it's an obvious special-case), so we
2901 * do an early lockdep release here:
2902 */
2903#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2904 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2905#endif
1da177e4
LT
2906
2907 /* Here we just switch the register state and the stack. */
2908 switch_to(prev, next, prev);
2909
dd41f596
IM
2910 barrier();
2911 /*
2912 * this_rq must be evaluated again because prev may have moved
2913 * CPUs since it called schedule(), thus the 'rq' on its stack
2914 * frame will be invalid.
2915 */
2916 finish_task_switch(this_rq(), prev);
1da177e4
LT
2917}
2918
2919/*
2920 * nr_running, nr_uninterruptible and nr_context_switches:
2921 *
2922 * externally visible scheduler statistics: current number of runnable
2923 * threads, current number of uninterruptible-sleeping threads, total
2924 * number of context switches performed since bootup.
2925 */
2926unsigned long nr_running(void)
2927{
2928 unsigned long i, sum = 0;
2929
2930 for_each_online_cpu(i)
2931 sum += cpu_rq(i)->nr_running;
2932
2933 return sum;
2934}
2935
2936unsigned long nr_uninterruptible(void)
2937{
2938 unsigned long i, sum = 0;
2939
0a945022 2940 for_each_possible_cpu(i)
1da177e4
LT
2941 sum += cpu_rq(i)->nr_uninterruptible;
2942
2943 /*
2944 * Since we read the counters lockless, it might be slightly
2945 * inaccurate. Do not allow it to go below zero though:
2946 */
2947 if (unlikely((long)sum < 0))
2948 sum = 0;
2949
2950 return sum;
2951}
2952
2953unsigned long long nr_context_switches(void)
2954{
cc94abfc
SR
2955 int i;
2956 unsigned long long sum = 0;
1da177e4 2957
0a945022 2958 for_each_possible_cpu(i)
1da177e4
LT
2959 sum += cpu_rq(i)->nr_switches;
2960
2961 return sum;
2962}
2963
2964unsigned long nr_iowait(void)
2965{
2966 unsigned long i, sum = 0;
2967
0a945022 2968 for_each_possible_cpu(i)
1da177e4
LT
2969 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2970
2971 return sum;
2972}
2973
69d25870
AV
2974unsigned long nr_iowait_cpu(void)
2975{
2976 struct rq *this = this_rq();
2977 return atomic_read(&this->nr_iowait);
2978}
2979
2980unsigned long this_cpu_load(void)
2981{
2982 struct rq *this = this_rq();
2983 return this->cpu_load[0];
2984}
2985
2986
dce48a84
TG
2987/* Variables and functions for calc_load */
2988static atomic_long_t calc_load_tasks;
2989static unsigned long calc_load_update;
2990unsigned long avenrun[3];
2991EXPORT_SYMBOL(avenrun);
2992
2d02494f
TG
2993/**
2994 * get_avenrun - get the load average array
2995 * @loads: pointer to dest load array
2996 * @offset: offset to add
2997 * @shift: shift count to shift the result left
2998 *
2999 * These values are estimates at best, so no need for locking.
3000 */
3001void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3002{
3003 loads[0] = (avenrun[0] + offset) << shift;
3004 loads[1] = (avenrun[1] + offset) << shift;
3005 loads[2] = (avenrun[2] + offset) << shift;
3006}
3007
dce48a84
TG
3008static unsigned long
3009calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3010{
dce48a84
TG
3011 load *= exp;
3012 load += active * (FIXED_1 - exp);
3013 return load >> FSHIFT;
3014}
db1b1fef 3015
dce48a84
TG
3016/*
3017 * calc_load - update the avenrun load estimates 10 ticks after the
3018 * CPUs have updated calc_load_tasks.
3019 */
3020void calc_global_load(void)
3021{
3022 unsigned long upd = calc_load_update + 10;
3023 long active;
3024
3025 if (time_before(jiffies, upd))
3026 return;
db1b1fef 3027
dce48a84
TG
3028 active = atomic_long_read(&calc_load_tasks);
3029 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3030
dce48a84
TG
3031 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3032 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3033 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3034
3035 calc_load_update += LOAD_FREQ;
3036}
3037
3038/*
3039 * Either called from update_cpu_load() or from a cpu going idle
3040 */
3041static void calc_load_account_active(struct rq *this_rq)
3042{
3043 long nr_active, delta;
3044
3045 nr_active = this_rq->nr_running;
3046 nr_active += (long) this_rq->nr_uninterruptible;
3047
3048 if (nr_active != this_rq->calc_load_active) {
3049 delta = nr_active - this_rq->calc_load_active;
3050 this_rq->calc_load_active = nr_active;
3051 atomic_long_add(delta, &calc_load_tasks);
3052 }
db1b1fef
JS
3053}
3054
48f24c4d 3055/*
dd41f596
IM
3056 * Update rq->cpu_load[] statistics. This function is usually called every
3057 * scheduler tick (TICK_NSEC).
48f24c4d 3058 */
dd41f596 3059static void update_cpu_load(struct rq *this_rq)
48f24c4d 3060{
495eca49 3061 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3062 int i, scale;
3063
3064 this_rq->nr_load_updates++;
dd41f596
IM
3065
3066 /* Update our load: */
3067 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3068 unsigned long old_load, new_load;
3069
3070 /* scale is effectively 1 << i now, and >> i divides by scale */
3071
3072 old_load = this_rq->cpu_load[i];
3073 new_load = this_load;
a25707f3
IM
3074 /*
3075 * Round up the averaging division if load is increasing. This
3076 * prevents us from getting stuck on 9 if the load is 10, for
3077 * example.
3078 */
3079 if (new_load > old_load)
3080 new_load += scale-1;
dd41f596
IM
3081 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3082 }
dce48a84
TG
3083
3084 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3085 this_rq->calc_load_update += LOAD_FREQ;
3086 calc_load_account_active(this_rq);
3087 }
48f24c4d
IM
3088}
3089
dd41f596
IM
3090#ifdef CONFIG_SMP
3091
1da177e4
LT
3092/*
3093 * double_rq_lock - safely lock two runqueues
3094 *
3095 * Note this does not disable interrupts like task_rq_lock,
3096 * you need to do so manually before calling.
3097 */
70b97a7f 3098static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3099 __acquires(rq1->lock)
3100 __acquires(rq2->lock)
3101{
054b9108 3102 BUG_ON(!irqs_disabled());
1da177e4 3103 if (rq1 == rq2) {
05fa785c 3104 raw_spin_lock(&rq1->lock);
1da177e4
LT
3105 __acquire(rq2->lock); /* Fake it out ;) */
3106 } else {
c96d145e 3107 if (rq1 < rq2) {
05fa785c
TG
3108 raw_spin_lock(&rq1->lock);
3109 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4 3110 } else {
05fa785c
TG
3111 raw_spin_lock(&rq2->lock);
3112 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3113 }
3114 }
6e82a3be
IM
3115 update_rq_clock(rq1);
3116 update_rq_clock(rq2);
1da177e4
LT
3117}
3118
3119/*
3120 * double_rq_unlock - safely unlock two runqueues
3121 *
3122 * Note this does not restore interrupts like task_rq_unlock,
3123 * you need to do so manually after calling.
3124 */
70b97a7f 3125static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3126 __releases(rq1->lock)
3127 __releases(rq2->lock)
3128{
05fa785c 3129 raw_spin_unlock(&rq1->lock);
1da177e4 3130 if (rq1 != rq2)
05fa785c 3131 raw_spin_unlock(&rq2->lock);
1da177e4
LT
3132 else
3133 __release(rq2->lock);
3134}
3135
1da177e4 3136/*
38022906
PZ
3137 * sched_exec - execve() is a valuable balancing opportunity, because at
3138 * this point the task has the smallest effective memory and cache footprint.
1da177e4 3139 */
38022906 3140void sched_exec(void)
1da177e4 3141{
38022906 3142 struct task_struct *p = current;
70b97a7f 3143 struct migration_req req;
38022906 3144 int dest_cpu, this_cpu;
1da177e4 3145 unsigned long flags;
70b97a7f 3146 struct rq *rq;
1da177e4 3147
38022906
PZ
3148again:
3149 this_cpu = get_cpu();
3150 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3151 if (dest_cpu == this_cpu) {
3152 put_cpu();
3153 return;
3154 }
3155
1da177e4 3156 rq = task_rq_lock(p, &flags);
38022906
PZ
3157 put_cpu();
3158
3159 /*
3160 * select_task_rq() can race against ->cpus_allowed
3161 */
96f874e2 3162 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3163 || unlikely(!cpu_active(dest_cpu))) {
3164 task_rq_unlock(rq, &flags);
3165 goto again;
3166 }
1da177e4
LT
3167
3168 /* force the process onto the specified CPU */
3169 if (migrate_task(p, dest_cpu, &req)) {
3170 /* Need to wait for migration thread (might exit: take ref). */
3171 struct task_struct *mt = rq->migration_thread;
36c8b586 3172
1da177e4
LT
3173 get_task_struct(mt);
3174 task_rq_unlock(rq, &flags);
3175 wake_up_process(mt);
3176 put_task_struct(mt);
3177 wait_for_completion(&req.done);
36c8b586 3178
1da177e4
LT
3179 return;
3180 }
1da177e4
LT
3181 task_rq_unlock(rq, &flags);
3182}
3183
1da177e4
LT
3184/*
3185 * pull_task - move a task from a remote runqueue to the local runqueue.
3186 * Both runqueues must be locked.
3187 */
dd41f596
IM
3188static void pull_task(struct rq *src_rq, struct task_struct *p,
3189 struct rq *this_rq, int this_cpu)
1da177e4 3190{
2e1cb74a 3191 deactivate_task(src_rq, p, 0);
1da177e4 3192 set_task_cpu(p, this_cpu);
dd41f596 3193 activate_task(this_rq, p, 0);
15afe09b 3194 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3195}
3196
3197/*
3198 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3199 */
858119e1 3200static
70b97a7f 3201int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3202 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3203 int *all_pinned)
1da177e4 3204{
708dc512 3205 int tsk_cache_hot = 0;
1da177e4
LT
3206 /*
3207 * We do not migrate tasks that are:
3208 * 1) running (obviously), or
3209 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3210 * 3) are cache-hot on their current CPU.
3211 */
96f874e2 3212 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3213 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3214 return 0;
cc367732 3215 }
81026794
NP
3216 *all_pinned = 0;
3217
cc367732
IM
3218 if (task_running(rq, p)) {
3219 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3220 return 0;
cc367732 3221 }
1da177e4 3222
da84d961
IM
3223 /*
3224 * Aggressive migration if:
3225 * 1) task is cache cold, or
3226 * 2) too many balance attempts have failed.
3227 */
3228
708dc512
LH
3229 tsk_cache_hot = task_hot(p, rq->clock, sd);
3230 if (!tsk_cache_hot ||
3231 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3232#ifdef CONFIG_SCHEDSTATS
708dc512 3233 if (tsk_cache_hot) {
da84d961 3234 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3235 schedstat_inc(p, se.nr_forced_migrations);
3236 }
da84d961
IM
3237#endif
3238 return 1;
3239 }
3240
708dc512 3241 if (tsk_cache_hot) {
cc367732 3242 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3243 return 0;
cc367732 3244 }
1da177e4
LT
3245 return 1;
3246}
3247
e1d1484f
PW
3248static unsigned long
3249balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3250 unsigned long max_load_move, struct sched_domain *sd,
3251 enum cpu_idle_type idle, int *all_pinned,
3252 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3253{
051c6764 3254 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3255 struct task_struct *p;
3256 long rem_load_move = max_load_move;
1da177e4 3257
e1d1484f 3258 if (max_load_move == 0)
1da177e4
LT
3259 goto out;
3260
81026794
NP
3261 pinned = 1;
3262
1da177e4 3263 /*
dd41f596 3264 * Start the load-balancing iterator:
1da177e4 3265 */
dd41f596
IM
3266 p = iterator->start(iterator->arg);
3267next:
b82d9fdd 3268 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3269 goto out;
051c6764
PZ
3270
3271 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3272 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3273 p = iterator->next(iterator->arg);
3274 goto next;
1da177e4
LT
3275 }
3276
dd41f596 3277 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3278 pulled++;
dd41f596 3279 rem_load_move -= p->se.load.weight;
1da177e4 3280
7e96fa58
GH
3281#ifdef CONFIG_PREEMPT
3282 /*
3283 * NEWIDLE balancing is a source of latency, so preemptible kernels
3284 * will stop after the first task is pulled to minimize the critical
3285 * section.
3286 */
3287 if (idle == CPU_NEWLY_IDLE)
3288 goto out;
3289#endif
3290
2dd73a4f 3291 /*
b82d9fdd 3292 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3293 */
e1d1484f 3294 if (rem_load_move > 0) {
a4ac01c3
PW
3295 if (p->prio < *this_best_prio)
3296 *this_best_prio = p->prio;
dd41f596
IM
3297 p = iterator->next(iterator->arg);
3298 goto next;
1da177e4
LT
3299 }
3300out:
3301 /*
e1d1484f 3302 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3303 * so we can safely collect pull_task() stats here rather than
3304 * inside pull_task().
3305 */
3306 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3307
3308 if (all_pinned)
3309 *all_pinned = pinned;
e1d1484f
PW
3310
3311 return max_load_move - rem_load_move;
1da177e4
LT
3312}
3313
dd41f596 3314/*
43010659
PW
3315 * move_tasks tries to move up to max_load_move weighted load from busiest to
3316 * this_rq, as part of a balancing operation within domain "sd".
3317 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3318 *
3319 * Called with both runqueues locked.
3320 */
3321static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3322 unsigned long max_load_move,
dd41f596
IM
3323 struct sched_domain *sd, enum cpu_idle_type idle,
3324 int *all_pinned)
3325{
5522d5d5 3326 const struct sched_class *class = sched_class_highest;
43010659 3327 unsigned long total_load_moved = 0;
a4ac01c3 3328 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3329
3330 do {
43010659
PW
3331 total_load_moved +=
3332 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3333 max_load_move - total_load_moved,
a4ac01c3 3334 sd, idle, all_pinned, &this_best_prio);
dd41f596 3335 class = class->next;
c4acb2c0 3336
7e96fa58
GH
3337#ifdef CONFIG_PREEMPT
3338 /*
3339 * NEWIDLE balancing is a source of latency, so preemptible
3340 * kernels will stop after the first task is pulled to minimize
3341 * the critical section.
3342 */
c4acb2c0
GH
3343 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3344 break;
7e96fa58 3345#endif
43010659 3346 } while (class && max_load_move > total_load_moved);
dd41f596 3347
43010659
PW
3348 return total_load_moved > 0;
3349}
3350
e1d1484f
PW
3351static int
3352iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3353 struct sched_domain *sd, enum cpu_idle_type idle,
3354 struct rq_iterator *iterator)
3355{
3356 struct task_struct *p = iterator->start(iterator->arg);
3357 int pinned = 0;
3358
3359 while (p) {
3360 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3361 pull_task(busiest, p, this_rq, this_cpu);
3362 /*
3363 * Right now, this is only the second place pull_task()
3364 * is called, so we can safely collect pull_task()
3365 * stats here rather than inside pull_task().
3366 */
3367 schedstat_inc(sd, lb_gained[idle]);
3368
3369 return 1;
3370 }
3371 p = iterator->next(iterator->arg);
3372 }
3373
3374 return 0;
3375}
3376
43010659
PW
3377/*
3378 * move_one_task tries to move exactly one task from busiest to this_rq, as
3379 * part of active balancing operations within "domain".
3380 * Returns 1 if successful and 0 otherwise.
3381 *
3382 * Called with both runqueues locked.
3383 */
3384static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3385 struct sched_domain *sd, enum cpu_idle_type idle)
3386{
5522d5d5 3387 const struct sched_class *class;
43010659 3388
cde7e5ca 3389 for_each_class(class) {
e1d1484f 3390 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3391 return 1;
cde7e5ca 3392 }
43010659
PW
3393
3394 return 0;
dd41f596 3395}
67bb6c03 3396/********** Helpers for find_busiest_group ************************/
1da177e4 3397/*
222d656d
GS
3398 * sd_lb_stats - Structure to store the statistics of a sched_domain
3399 * during load balancing.
1da177e4 3400 */
222d656d
GS
3401struct sd_lb_stats {
3402 struct sched_group *busiest; /* Busiest group in this sd */
3403 struct sched_group *this; /* Local group in this sd */
3404 unsigned long total_load; /* Total load of all groups in sd */
3405 unsigned long total_pwr; /* Total power of all groups in sd */
3406 unsigned long avg_load; /* Average load across all groups in sd */
3407
3408 /** Statistics of this group */
3409 unsigned long this_load;
3410 unsigned long this_load_per_task;
3411 unsigned long this_nr_running;
3412
3413 /* Statistics of the busiest group */
3414 unsigned long max_load;
3415 unsigned long busiest_load_per_task;
3416 unsigned long busiest_nr_running;
3417
3418 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3419#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3420 int power_savings_balance; /* Is powersave balance needed for this sd */
3421 struct sched_group *group_min; /* Least loaded group in sd */
3422 struct sched_group *group_leader; /* Group which relieves group_min */
3423 unsigned long min_load_per_task; /* load_per_task in group_min */
3424 unsigned long leader_nr_running; /* Nr running of group_leader */
3425 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3426#endif
222d656d 3427};
1da177e4 3428
d5ac537e 3429/*
381be78f
GS
3430 * sg_lb_stats - stats of a sched_group required for load_balancing
3431 */
3432struct sg_lb_stats {
3433 unsigned long avg_load; /*Avg load across the CPUs of the group */
3434 unsigned long group_load; /* Total load over the CPUs of the group */
3435 unsigned long sum_nr_running; /* Nr tasks running in the group */
3436 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3437 unsigned long group_capacity;
3438 int group_imb; /* Is there an imbalance in the group ? */
3439};
408ed066 3440
67bb6c03
GS
3441/**
3442 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3443 * @group: The group whose first cpu is to be returned.
3444 */
3445static inline unsigned int group_first_cpu(struct sched_group *group)
3446{
3447 return cpumask_first(sched_group_cpus(group));
3448}
3449
3450/**
3451 * get_sd_load_idx - Obtain the load index for a given sched domain.
3452 * @sd: The sched_domain whose load_idx is to be obtained.
3453 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3454 */
3455static inline int get_sd_load_idx(struct sched_domain *sd,
3456 enum cpu_idle_type idle)
3457{
3458 int load_idx;
3459
3460 switch (idle) {
3461 case CPU_NOT_IDLE:
7897986b 3462 load_idx = sd->busy_idx;
67bb6c03
GS
3463 break;
3464
3465 case CPU_NEWLY_IDLE:
7897986b 3466 load_idx = sd->newidle_idx;
67bb6c03
GS
3467 break;
3468 default:
7897986b 3469 load_idx = sd->idle_idx;
67bb6c03
GS
3470 break;
3471 }
1da177e4 3472
67bb6c03
GS
3473 return load_idx;
3474}
1da177e4 3475
1da177e4 3476
c071df18
GS
3477#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3478/**
3479 * init_sd_power_savings_stats - Initialize power savings statistics for
3480 * the given sched_domain, during load balancing.
3481 *
3482 * @sd: Sched domain whose power-savings statistics are to be initialized.
3483 * @sds: Variable containing the statistics for sd.
3484 * @idle: Idle status of the CPU at which we're performing load-balancing.
3485 */
3486static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3487 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3488{
3489 /*
3490 * Busy processors will not participate in power savings
3491 * balance.
3492 */
3493 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3494 sds->power_savings_balance = 0;
3495 else {
3496 sds->power_savings_balance = 1;
3497 sds->min_nr_running = ULONG_MAX;
3498 sds->leader_nr_running = 0;
3499 }
3500}
783609c6 3501
c071df18
GS
3502/**
3503 * update_sd_power_savings_stats - Update the power saving stats for a
3504 * sched_domain while performing load balancing.
3505 *
3506 * @group: sched_group belonging to the sched_domain under consideration.
3507 * @sds: Variable containing the statistics of the sched_domain
3508 * @local_group: Does group contain the CPU for which we're performing
3509 * load balancing ?
3510 * @sgs: Variable containing the statistics of the group.
3511 */
3512static inline void update_sd_power_savings_stats(struct sched_group *group,
3513 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3514{
408ed066 3515
c071df18
GS
3516 if (!sds->power_savings_balance)
3517 return;
1da177e4 3518
c071df18
GS
3519 /*
3520 * If the local group is idle or completely loaded
3521 * no need to do power savings balance at this domain
3522 */
3523 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3524 !sds->this_nr_running))
3525 sds->power_savings_balance = 0;
2dd73a4f 3526
c071df18
GS
3527 /*
3528 * If a group is already running at full capacity or idle,
3529 * don't include that group in power savings calculations
3530 */
3531 if (!sds->power_savings_balance ||
3532 sgs->sum_nr_running >= sgs->group_capacity ||
3533 !sgs->sum_nr_running)
3534 return;
5969fe06 3535
c071df18
GS
3536 /*
3537 * Calculate the group which has the least non-idle load.
3538 * This is the group from where we need to pick up the load
3539 * for saving power
3540 */
3541 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3542 (sgs->sum_nr_running == sds->min_nr_running &&
3543 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3544 sds->group_min = group;
3545 sds->min_nr_running = sgs->sum_nr_running;
3546 sds->min_load_per_task = sgs->sum_weighted_load /
3547 sgs->sum_nr_running;
3548 }
783609c6 3549
c071df18
GS
3550 /*
3551 * Calculate the group which is almost near its
3552 * capacity but still has some space to pick up some load
3553 * from other group and save more power
3554 */
d899a789 3555 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3556 return;
1da177e4 3557
c071df18
GS
3558 if (sgs->sum_nr_running > sds->leader_nr_running ||
3559 (sgs->sum_nr_running == sds->leader_nr_running &&
3560 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3561 sds->group_leader = group;
3562 sds->leader_nr_running = sgs->sum_nr_running;
3563 }
3564}
408ed066 3565
c071df18 3566/**
d5ac537e 3567 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3568 * @sds: Variable containing the statistics of the sched_domain
3569 * under consideration.
3570 * @this_cpu: Cpu at which we're currently performing load-balancing.
3571 * @imbalance: Variable to store the imbalance.
3572 *
d5ac537e
RD
3573 * Description:
3574 * Check if we have potential to perform some power-savings balance.
3575 * If yes, set the busiest group to be the least loaded group in the
3576 * sched_domain, so that it's CPUs can be put to idle.
3577 *
c071df18
GS
3578 * Returns 1 if there is potential to perform power-savings balance.
3579 * Else returns 0.
3580 */
3581static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3582 int this_cpu, unsigned long *imbalance)
3583{
3584 if (!sds->power_savings_balance)
3585 return 0;
1da177e4 3586
c071df18
GS
3587 if (sds->this != sds->group_leader ||
3588 sds->group_leader == sds->group_min)
3589 return 0;
783609c6 3590
c071df18
GS
3591 *imbalance = sds->min_load_per_task;
3592 sds->busiest = sds->group_min;
1da177e4 3593
c071df18 3594 return 1;
1da177e4 3595
c071df18
GS
3596}
3597#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3598static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3599 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3600{
3601 return;
3602}
408ed066 3603
c071df18
GS
3604static inline void update_sd_power_savings_stats(struct sched_group *group,
3605 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3606{
3607 return;
3608}
3609
3610static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3611 int this_cpu, unsigned long *imbalance)
3612{
3613 return 0;
3614}
3615#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3616
d6a59aa3
PZ
3617
3618unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3619{
3620 return SCHED_LOAD_SCALE;
3621}
3622
3623unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3624{
3625 return default_scale_freq_power(sd, cpu);
3626}
3627
3628unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3629{
3630 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3631 unsigned long smt_gain = sd->smt_gain;
3632
3633 smt_gain /= weight;
3634
3635 return smt_gain;
3636}
3637
d6a59aa3
PZ
3638unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3639{
3640 return default_scale_smt_power(sd, cpu);
3641}
3642
e9e9250b
PZ
3643unsigned long scale_rt_power(int cpu)
3644{
3645 struct rq *rq = cpu_rq(cpu);
3646 u64 total, available;
3647
3648 sched_avg_update(rq);
3649
3650 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3651 available = total - rq->rt_avg;
3652
3653 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3654 total = SCHED_LOAD_SCALE;
3655
3656 total >>= SCHED_LOAD_SHIFT;
3657
3658 return div_u64(available, total);
3659}
3660
ab29230e
PZ
3661static void update_cpu_power(struct sched_domain *sd, int cpu)
3662{
3663 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3664 unsigned long power = SCHED_LOAD_SCALE;
3665 struct sched_group *sdg = sd->groups;
ab29230e 3666
8e6598af
PZ
3667 if (sched_feat(ARCH_POWER))
3668 power *= arch_scale_freq_power(sd, cpu);
3669 else
3670 power *= default_scale_freq_power(sd, cpu);
3671
d6a59aa3 3672 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3673
3674 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3675 if (sched_feat(ARCH_POWER))
3676 power *= arch_scale_smt_power(sd, cpu);
3677 else
3678 power *= default_scale_smt_power(sd, cpu);
3679
ab29230e
PZ
3680 power >>= SCHED_LOAD_SHIFT;
3681 }
3682
e9e9250b
PZ
3683 power *= scale_rt_power(cpu);
3684 power >>= SCHED_LOAD_SHIFT;
3685
3686 if (!power)
3687 power = 1;
ab29230e 3688
18a3885f 3689 sdg->cpu_power = power;
ab29230e
PZ
3690}
3691
3692static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3693{
3694 struct sched_domain *child = sd->child;
3695 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3696 unsigned long power;
cc9fba7d
PZ
3697
3698 if (!child) {
ab29230e 3699 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3700 return;
3701 }
3702
d7ea17a7 3703 power = 0;
cc9fba7d
PZ
3704
3705 group = child->groups;
3706 do {
d7ea17a7 3707 power += group->cpu_power;
cc9fba7d
PZ
3708 group = group->next;
3709 } while (group != child->groups);
d7ea17a7
IM
3710
3711 sdg->cpu_power = power;
cc9fba7d 3712}
c071df18 3713
1f8c553d
GS
3714/**
3715 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3716 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3717 * @group: sched_group whose statistics are to be updated.
3718 * @this_cpu: Cpu for which load balance is currently performed.
3719 * @idle: Idle status of this_cpu
3720 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3721 * @sd_idle: Idle status of the sched_domain containing group.
3722 * @local_group: Does group contain this_cpu.
3723 * @cpus: Set of cpus considered for load balancing.
3724 * @balance: Should we balance.
3725 * @sgs: variable to hold the statistics for this group.
3726 */
cc9fba7d
PZ
3727static inline void update_sg_lb_stats(struct sched_domain *sd,
3728 struct sched_group *group, int this_cpu,
1f8c553d
GS
3729 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3730 int local_group, const struct cpumask *cpus,
3731 int *balance, struct sg_lb_stats *sgs)
3732{
3733 unsigned long load, max_cpu_load, min_cpu_load;
3734 int i;
3735 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3736 unsigned long sum_avg_load_per_task;
3737 unsigned long avg_load_per_task;
3738
cc9fba7d 3739 if (local_group) {
1f8c553d 3740 balance_cpu = group_first_cpu(group);
cc9fba7d 3741 if (balance_cpu == this_cpu)
ab29230e 3742 update_group_power(sd, this_cpu);
cc9fba7d 3743 }
1f8c553d
GS
3744
3745 /* Tally up the load of all CPUs in the group */
3746 sum_avg_load_per_task = avg_load_per_task = 0;
3747 max_cpu_load = 0;
3748 min_cpu_load = ~0UL;
408ed066 3749
1f8c553d
GS
3750 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3751 struct rq *rq = cpu_rq(i);
908a7c1b 3752
1f8c553d
GS
3753 if (*sd_idle && rq->nr_running)
3754 *sd_idle = 0;
5c45bf27 3755
1f8c553d 3756 /* Bias balancing toward cpus of our domain */
1da177e4 3757 if (local_group) {
1f8c553d
GS
3758 if (idle_cpu(i) && !first_idle_cpu) {
3759 first_idle_cpu = 1;
3760 balance_cpu = i;
3761 }
3762
3763 load = target_load(i, load_idx);
3764 } else {
3765 load = source_load(i, load_idx);
3766 if (load > max_cpu_load)
3767 max_cpu_load = load;
3768 if (min_cpu_load > load)
3769 min_cpu_load = load;
1da177e4 3770 }
5c45bf27 3771
1f8c553d
GS
3772 sgs->group_load += load;
3773 sgs->sum_nr_running += rq->nr_running;
3774 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3775
1f8c553d
GS
3776 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3777 }
5c45bf27 3778
1f8c553d
GS
3779 /*
3780 * First idle cpu or the first cpu(busiest) in this sched group
3781 * is eligible for doing load balancing at this and above
3782 * domains. In the newly idle case, we will allow all the cpu's
3783 * to do the newly idle load balance.
3784 */
3785 if (idle != CPU_NEWLY_IDLE && local_group &&
3786 balance_cpu != this_cpu && balance) {
3787 *balance = 0;
3788 return;
3789 }
5c45bf27 3790
1f8c553d 3791 /* Adjust by relative CPU power of the group */
18a3885f 3792 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3793
1f8c553d
GS
3794
3795 /*
3796 * Consider the group unbalanced when the imbalance is larger
3797 * than the average weight of two tasks.
3798 *
3799 * APZ: with cgroup the avg task weight can vary wildly and
3800 * might not be a suitable number - should we keep a
3801 * normalized nr_running number somewhere that negates
3802 * the hierarchy?
3803 */
18a3885f
PZ
3804 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3805 group->cpu_power;
1f8c553d
GS
3806
3807 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3808 sgs->group_imb = 1;
3809
bdb94aa5 3810 sgs->group_capacity =
18a3885f 3811 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3812}
dd41f596 3813
37abe198
GS
3814/**
3815 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3816 * @sd: sched_domain whose statistics are to be updated.
3817 * @this_cpu: Cpu for which load balance is currently performed.
3818 * @idle: Idle status of this_cpu
3819 * @sd_idle: Idle status of the sched_domain containing group.
3820 * @cpus: Set of cpus considered for load balancing.
3821 * @balance: Should we balance.
3822 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3823 */
37abe198
GS
3824static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3825 enum cpu_idle_type idle, int *sd_idle,
3826 const struct cpumask *cpus, int *balance,
3827 struct sd_lb_stats *sds)
1da177e4 3828{
b5d978e0 3829 struct sched_domain *child = sd->child;
222d656d 3830 struct sched_group *group = sd->groups;
37abe198 3831 struct sg_lb_stats sgs;
b5d978e0
PZ
3832 int load_idx, prefer_sibling = 0;
3833
3834 if (child && child->flags & SD_PREFER_SIBLING)
3835 prefer_sibling = 1;
222d656d 3836
c071df18 3837 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3838 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3839
3840 do {
1da177e4 3841 int local_group;
1da177e4 3842
758b2cdc
RR
3843 local_group = cpumask_test_cpu(this_cpu,
3844 sched_group_cpus(group));
381be78f 3845 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3846 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3847 local_group, cpus, balance, &sgs);
1da177e4 3848
37abe198
GS
3849 if (local_group && balance && !(*balance))
3850 return;
783609c6 3851
37abe198 3852 sds->total_load += sgs.group_load;
18a3885f 3853 sds->total_pwr += group->cpu_power;
1da177e4 3854
b5d978e0
PZ
3855 /*
3856 * In case the child domain prefers tasks go to siblings
3857 * first, lower the group capacity to one so that we'll try
3858 * and move all the excess tasks away.
3859 */
3860 if (prefer_sibling)
bdb94aa5 3861 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3862
1da177e4 3863 if (local_group) {
37abe198
GS
3864 sds->this_load = sgs.avg_load;
3865 sds->this = group;
3866 sds->this_nr_running = sgs.sum_nr_running;
3867 sds->this_load_per_task = sgs.sum_weighted_load;
3868 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3869 (sgs.sum_nr_running > sgs.group_capacity ||
3870 sgs.group_imb)) {
37abe198
GS
3871 sds->max_load = sgs.avg_load;
3872 sds->busiest = group;
3873 sds->busiest_nr_running = sgs.sum_nr_running;
3874 sds->busiest_load_per_task = sgs.sum_weighted_load;
3875 sds->group_imb = sgs.group_imb;
48f24c4d 3876 }
5c45bf27 3877
c071df18 3878 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3879 group = group->next;
3880 } while (group != sd->groups);
37abe198 3881}
1da177e4 3882
2e6f44ae
GS
3883/**
3884 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3885 * amongst the groups of a sched_domain, during
3886 * load balancing.
2e6f44ae
GS
3887 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3888 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3889 * @imbalance: Variable to store the imbalance.
3890 */
3891static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3892 int this_cpu, unsigned long *imbalance)
3893{
3894 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3895 unsigned int imbn = 2;
3896
3897 if (sds->this_nr_running) {
3898 sds->this_load_per_task /= sds->this_nr_running;
3899 if (sds->busiest_load_per_task >
3900 sds->this_load_per_task)
3901 imbn = 1;
3902 } else
3903 sds->this_load_per_task =
3904 cpu_avg_load_per_task(this_cpu);
1da177e4 3905
2e6f44ae
GS
3906 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3907 sds->busiest_load_per_task * imbn) {
3908 *imbalance = sds->busiest_load_per_task;
3909 return;
3910 }
908a7c1b 3911
1da177e4 3912 /*
2e6f44ae
GS
3913 * OK, we don't have enough imbalance to justify moving tasks,
3914 * however we may be able to increase total CPU power used by
3915 * moving them.
1da177e4 3916 */
2dd73a4f 3917
18a3885f 3918 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3919 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3920 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3921 min(sds->this_load_per_task, sds->this_load);
3922 pwr_now /= SCHED_LOAD_SCALE;
3923
3924 /* Amount of load we'd subtract */
18a3885f
PZ
3925 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3926 sds->busiest->cpu_power;
2e6f44ae 3927 if (sds->max_load > tmp)
18a3885f 3928 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3929 min(sds->busiest_load_per_task, sds->max_load - tmp);
3930
3931 /* Amount of load we'd add */
18a3885f 3932 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3933 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3934 tmp = (sds->max_load * sds->busiest->cpu_power) /
3935 sds->this->cpu_power;
2e6f44ae 3936 else
18a3885f
PZ
3937 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3938 sds->this->cpu_power;
3939 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3940 min(sds->this_load_per_task, sds->this_load + tmp);
3941 pwr_move /= SCHED_LOAD_SCALE;
3942
3943 /* Move if we gain throughput */
3944 if (pwr_move > pwr_now)
3945 *imbalance = sds->busiest_load_per_task;
3946}
dbc523a3
GS
3947
3948/**
3949 * calculate_imbalance - Calculate the amount of imbalance present within the
3950 * groups of a given sched_domain during load balance.
3951 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3952 * @this_cpu: Cpu for which currently load balance is being performed.
3953 * @imbalance: The variable to store the imbalance.
3954 */
3955static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3956 unsigned long *imbalance)
3957{
3958 unsigned long max_pull;
2dd73a4f
PW
3959 /*
3960 * In the presence of smp nice balancing, certain scenarios can have
3961 * max load less than avg load(as we skip the groups at or below
3962 * its cpu_power, while calculating max_load..)
3963 */
dbc523a3 3964 if (sds->max_load < sds->avg_load) {
2dd73a4f 3965 *imbalance = 0;
dbc523a3 3966 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3967 }
0c117f1b
SS
3968
3969 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3970 max_pull = min(sds->max_load - sds->avg_load,
3971 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3972
1da177e4 3973 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3974 *imbalance = min(max_pull * sds->busiest->cpu_power,
3975 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3976 / SCHED_LOAD_SCALE;
3977
2dd73a4f
PW
3978 /*
3979 * if *imbalance is less than the average load per runnable task
3980 * there is no gaurantee that any tasks will be moved so we'll have
3981 * a think about bumping its value to force at least one task to be
3982 * moved
3983 */
dbc523a3
GS
3984 if (*imbalance < sds->busiest_load_per_task)
3985 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3986
dbc523a3 3987}
37abe198 3988/******* find_busiest_group() helpers end here *********************/
1da177e4 3989
b7bb4c9b
GS
3990/**
3991 * find_busiest_group - Returns the busiest group within the sched_domain
3992 * if there is an imbalance. If there isn't an imbalance, and
3993 * the user has opted for power-savings, it returns a group whose
3994 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3995 * such a group exists.
3996 *
3997 * Also calculates the amount of weighted load which should be moved
3998 * to restore balance.
3999 *
4000 * @sd: The sched_domain whose busiest group is to be returned.
4001 * @this_cpu: The cpu for which load balancing is currently being performed.
4002 * @imbalance: Variable which stores amount of weighted load which should
4003 * be moved to restore balance/put a group to idle.
4004 * @idle: The idle status of this_cpu.
4005 * @sd_idle: The idleness of sd
4006 * @cpus: The set of CPUs under consideration for load-balancing.
4007 * @balance: Pointer to a variable indicating if this_cpu
4008 * is the appropriate cpu to perform load balancing at this_level.
4009 *
4010 * Returns: - the busiest group if imbalance exists.
4011 * - If no imbalance and user has opted for power-savings balance,
4012 * return the least loaded group whose CPUs can be
4013 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4014 */
4015static struct sched_group *
4016find_busiest_group(struct sched_domain *sd, int this_cpu,
4017 unsigned long *imbalance, enum cpu_idle_type idle,
4018 int *sd_idle, const struct cpumask *cpus, int *balance)
4019{
4020 struct sd_lb_stats sds;
1da177e4 4021
37abe198 4022 memset(&sds, 0, sizeof(sds));
1da177e4 4023
37abe198
GS
4024 /*
4025 * Compute the various statistics relavent for load balancing at
4026 * this level.
4027 */
4028 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4029 balance, &sds);
4030
b7bb4c9b
GS
4031 /* Cases where imbalance does not exist from POV of this_cpu */
4032 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4033 * at this level.
4034 * 2) There is no busy sibling group to pull from.
4035 * 3) This group is the busiest group.
4036 * 4) This group is more busy than the avg busieness at this
4037 * sched_domain.
4038 * 5) The imbalance is within the specified limit.
4039 * 6) Any rebalance would lead to ping-pong
4040 */
37abe198
GS
4041 if (balance && !(*balance))
4042 goto ret;
1da177e4 4043
b7bb4c9b
GS
4044 if (!sds.busiest || sds.busiest_nr_running == 0)
4045 goto out_balanced;
1da177e4 4046
b7bb4c9b 4047 if (sds.this_load >= sds.max_load)
1da177e4 4048 goto out_balanced;
1da177e4 4049
222d656d 4050 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4051
b7bb4c9b
GS
4052 if (sds.this_load >= sds.avg_load)
4053 goto out_balanced;
4054
4055 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4056 goto out_balanced;
4057
222d656d
GS
4058 sds.busiest_load_per_task /= sds.busiest_nr_running;
4059 if (sds.group_imb)
4060 sds.busiest_load_per_task =
4061 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4062
1da177e4
LT
4063 /*
4064 * We're trying to get all the cpus to the average_load, so we don't
4065 * want to push ourselves above the average load, nor do we wish to
4066 * reduce the max loaded cpu below the average load, as either of these
4067 * actions would just result in more rebalancing later, and ping-pong
4068 * tasks around. Thus we look for the minimum possible imbalance.
4069 * Negative imbalances (*we* are more loaded than anyone else) will
4070 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4071 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4072 * appear as very large values with unsigned longs.
4073 */
222d656d 4074 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4075 goto out_balanced;
4076
dbc523a3
GS
4077 /* Looks like there is an imbalance. Compute it */
4078 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4079 return sds.busiest;
1da177e4
LT
4080
4081out_balanced:
c071df18
GS
4082 /*
4083 * There is no obvious imbalance. But check if we can do some balancing
4084 * to save power.
4085 */
4086 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4087 return sds.busiest;
783609c6 4088ret:
1da177e4
LT
4089 *imbalance = 0;
4090 return NULL;
4091}
4092
4093/*
4094 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4095 */
70b97a7f 4096static struct rq *
d15bcfdb 4097find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4098 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4099{
70b97a7f 4100 struct rq *busiest = NULL, *rq;
2dd73a4f 4101 unsigned long max_load = 0;
1da177e4
LT
4102 int i;
4103
758b2cdc 4104 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4105 unsigned long power = power_of(i);
4106 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4107 unsigned long wl;
0a2966b4 4108
96f874e2 4109 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4110 continue;
4111
48f24c4d 4112 rq = cpu_rq(i);
bdb94aa5
PZ
4113 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4114 wl /= power;
2dd73a4f 4115
bdb94aa5 4116 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4117 continue;
1da177e4 4118
dd41f596
IM
4119 if (wl > max_load) {
4120 max_load = wl;
48f24c4d 4121 busiest = rq;
1da177e4
LT
4122 }
4123 }
4124
4125 return busiest;
4126}
4127
77391d71
NP
4128/*
4129 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4130 * so long as it is large enough.
4131 */
4132#define MAX_PINNED_INTERVAL 512
4133
df7c8e84
RR
4134/* Working cpumask for load_balance and load_balance_newidle. */
4135static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4136
1da177e4
LT
4137/*
4138 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4139 * tasks if there is an imbalance.
1da177e4 4140 */
70b97a7f 4141static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4142 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4143 int *balance)
1da177e4 4144{
43010659 4145 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4146 struct sched_group *group;
1da177e4 4147 unsigned long imbalance;
70b97a7f 4148 struct rq *busiest;
fe2eea3f 4149 unsigned long flags;
df7c8e84 4150 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4151
6ad4c188 4152 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4153
89c4710e
SS
4154 /*
4155 * When power savings policy is enabled for the parent domain, idle
4156 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4157 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4158 * portraying it as CPU_NOT_IDLE.
89c4710e 4159 */
d15bcfdb 4160 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4161 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4162 sd_idle = 1;
1da177e4 4163
2d72376b 4164 schedstat_inc(sd, lb_count[idle]);
1da177e4 4165
0a2966b4 4166redo:
c8cba857 4167 update_shares(sd);
0a2966b4 4168 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4169 cpus, balance);
783609c6 4170
06066714 4171 if (*balance == 0)
783609c6 4172 goto out_balanced;
783609c6 4173
1da177e4
LT
4174 if (!group) {
4175 schedstat_inc(sd, lb_nobusyg[idle]);
4176 goto out_balanced;
4177 }
4178
7c16ec58 4179 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4180 if (!busiest) {
4181 schedstat_inc(sd, lb_nobusyq[idle]);
4182 goto out_balanced;
4183 }
4184
db935dbd 4185 BUG_ON(busiest == this_rq);
1da177e4
LT
4186
4187 schedstat_add(sd, lb_imbalance[idle], imbalance);
4188
43010659 4189 ld_moved = 0;
1da177e4
LT
4190 if (busiest->nr_running > 1) {
4191 /*
4192 * Attempt to move tasks. If find_busiest_group has found
4193 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4194 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4195 * correctly treated as an imbalance.
4196 */
fe2eea3f 4197 local_irq_save(flags);
e17224bf 4198 double_rq_lock(this_rq, busiest);
43010659 4199 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4200 imbalance, sd, idle, &all_pinned);
e17224bf 4201 double_rq_unlock(this_rq, busiest);
fe2eea3f 4202 local_irq_restore(flags);
81026794 4203
46cb4b7c
SS
4204 /*
4205 * some other cpu did the load balance for us.
4206 */
43010659 4207 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4208 resched_cpu(this_cpu);
4209
81026794 4210 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4211 if (unlikely(all_pinned)) {
96f874e2
RR
4212 cpumask_clear_cpu(cpu_of(busiest), cpus);
4213 if (!cpumask_empty(cpus))
0a2966b4 4214 goto redo;
81026794 4215 goto out_balanced;
0a2966b4 4216 }
1da177e4 4217 }
81026794 4218
43010659 4219 if (!ld_moved) {
1da177e4
LT
4220 schedstat_inc(sd, lb_failed[idle]);
4221 sd->nr_balance_failed++;
4222
4223 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4224
05fa785c 4225 raw_spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4226
4227 /* don't kick the migration_thread, if the curr
4228 * task on busiest cpu can't be moved to this_cpu
4229 */
96f874e2
RR
4230 if (!cpumask_test_cpu(this_cpu,
4231 &busiest->curr->cpus_allowed)) {
05fa785c
TG
4232 raw_spin_unlock_irqrestore(&busiest->lock,
4233 flags);
fa3b6ddc
SS
4234 all_pinned = 1;
4235 goto out_one_pinned;
4236 }
4237
1da177e4
LT
4238 if (!busiest->active_balance) {
4239 busiest->active_balance = 1;
4240 busiest->push_cpu = this_cpu;
81026794 4241 active_balance = 1;
1da177e4 4242 }
05fa785c 4243 raw_spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4244 if (active_balance)
1da177e4
LT
4245 wake_up_process(busiest->migration_thread);
4246
4247 /*
4248 * We've kicked active balancing, reset the failure
4249 * counter.
4250 */
39507451 4251 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4252 }
81026794 4253 } else
1da177e4
LT
4254 sd->nr_balance_failed = 0;
4255
81026794 4256 if (likely(!active_balance)) {
1da177e4
LT
4257 /* We were unbalanced, so reset the balancing interval */
4258 sd->balance_interval = sd->min_interval;
81026794
NP
4259 } else {
4260 /*
4261 * If we've begun active balancing, start to back off. This
4262 * case may not be covered by the all_pinned logic if there
4263 * is only 1 task on the busy runqueue (because we don't call
4264 * move_tasks).
4265 */
4266 if (sd->balance_interval < sd->max_interval)
4267 sd->balance_interval *= 2;
1da177e4
LT
4268 }
4269
43010659 4270 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4271 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4272 ld_moved = -1;
4273
4274 goto out;
1da177e4
LT
4275
4276out_balanced:
1da177e4
LT
4277 schedstat_inc(sd, lb_balanced[idle]);
4278
16cfb1c0 4279 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4280
4281out_one_pinned:
1da177e4 4282 /* tune up the balancing interval */
77391d71
NP
4283 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4284 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4285 sd->balance_interval *= 2;
4286
48f24c4d 4287 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4288 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4289 ld_moved = -1;
4290 else
4291 ld_moved = 0;
4292out:
c8cba857
PZ
4293 if (ld_moved)
4294 update_shares(sd);
c09595f6 4295 return ld_moved;
1da177e4
LT
4296}
4297
4298/*
4299 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4300 * tasks if there is an imbalance.
4301 *
d15bcfdb 4302 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4303 * this_rq is locked.
4304 */
48f24c4d 4305static int
df7c8e84 4306load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4307{
4308 struct sched_group *group;
70b97a7f 4309 struct rq *busiest = NULL;
1da177e4 4310 unsigned long imbalance;
43010659 4311 int ld_moved = 0;
5969fe06 4312 int sd_idle = 0;
969bb4e4 4313 int all_pinned = 0;
df7c8e84 4314 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4315
6ad4c188 4316 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4317
89c4710e
SS
4318 /*
4319 * When power savings policy is enabled for the parent domain, idle
4320 * sibling can pick up load irrespective of busy siblings. In this case,
4321 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4322 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4323 */
4324 if (sd->flags & SD_SHARE_CPUPOWER &&
4325 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4326 sd_idle = 1;
1da177e4 4327
2d72376b 4328 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4329redo:
3e5459b4 4330 update_shares_locked(this_rq, sd);
d15bcfdb 4331 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4332 &sd_idle, cpus, NULL);
1da177e4 4333 if (!group) {
d15bcfdb 4334 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4335 goto out_balanced;
1da177e4
LT
4336 }
4337
7c16ec58 4338 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4339 if (!busiest) {
d15bcfdb 4340 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4341 goto out_balanced;
1da177e4
LT
4342 }
4343
db935dbd
NP
4344 BUG_ON(busiest == this_rq);
4345
d15bcfdb 4346 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4347
43010659 4348 ld_moved = 0;
d6d5cfaf
NP
4349 if (busiest->nr_running > 1) {
4350 /* Attempt to move tasks */
4351 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4352 /* this_rq->clock is already updated */
4353 update_rq_clock(busiest);
43010659 4354 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4355 imbalance, sd, CPU_NEWLY_IDLE,
4356 &all_pinned);
1b12bbc7 4357 double_unlock_balance(this_rq, busiest);
0a2966b4 4358
969bb4e4 4359 if (unlikely(all_pinned)) {
96f874e2
RR
4360 cpumask_clear_cpu(cpu_of(busiest), cpus);
4361 if (!cpumask_empty(cpus))
0a2966b4
CL
4362 goto redo;
4363 }
d6d5cfaf
NP
4364 }
4365
43010659 4366 if (!ld_moved) {
36dffab6 4367 int active_balance = 0;
ad273b32 4368
d15bcfdb 4369 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4370 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4371 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4372 return -1;
ad273b32
VS
4373
4374 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4375 return -1;
4376
4377 if (sd->nr_balance_failed++ < 2)
4378 return -1;
4379
4380 /*
4381 * The only task running in a non-idle cpu can be moved to this
4382 * cpu in an attempt to completely freeup the other CPU
4383 * package. The same method used to move task in load_balance()
4384 * have been extended for load_balance_newidle() to speedup
4385 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4386 *
4387 * The package power saving logic comes from
4388 * find_busiest_group(). If there are no imbalance, then
4389 * f_b_g() will return NULL. However when sched_mc={1,2} then
4390 * f_b_g() will select a group from which a running task may be
4391 * pulled to this cpu in order to make the other package idle.
4392 * If there is no opportunity to make a package idle and if
4393 * there are no imbalance, then f_b_g() will return NULL and no
4394 * action will be taken in load_balance_newidle().
4395 *
4396 * Under normal task pull operation due to imbalance, there
4397 * will be more than one task in the source run queue and
4398 * move_tasks() will succeed. ld_moved will be true and this
4399 * active balance code will not be triggered.
4400 */
4401
4402 /* Lock busiest in correct order while this_rq is held */
4403 double_lock_balance(this_rq, busiest);
4404
4405 /*
4406 * don't kick the migration_thread, if the curr
4407 * task on busiest cpu can't be moved to this_cpu
4408 */
6ca09dfc 4409 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4410 double_unlock_balance(this_rq, busiest);
4411 all_pinned = 1;
4412 return ld_moved;
4413 }
4414
4415 if (!busiest->active_balance) {
4416 busiest->active_balance = 1;
4417 busiest->push_cpu = this_cpu;
4418 active_balance = 1;
4419 }
4420
4421 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4422 /*
4423 * Should not call ttwu while holding a rq->lock
4424 */
05fa785c 4425 raw_spin_unlock(&this_rq->lock);
ad273b32
VS
4426 if (active_balance)
4427 wake_up_process(busiest->migration_thread);
05fa785c 4428 raw_spin_lock(&this_rq->lock);
ad273b32 4429
5969fe06 4430 } else
16cfb1c0 4431 sd->nr_balance_failed = 0;
1da177e4 4432
3e5459b4 4433 update_shares_locked(this_rq, sd);
43010659 4434 return ld_moved;
16cfb1c0
NP
4435
4436out_balanced:
d15bcfdb 4437 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4438 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4439 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4440 return -1;
16cfb1c0 4441 sd->nr_balance_failed = 0;
48f24c4d 4442
16cfb1c0 4443 return 0;
1da177e4
LT
4444}
4445
4446/*
4447 * idle_balance is called by schedule() if this_cpu is about to become
4448 * idle. Attempts to pull tasks from other CPUs.
4449 */
70b97a7f 4450static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4451{
4452 struct sched_domain *sd;
efbe027e 4453 int pulled_task = 0;
dd41f596 4454 unsigned long next_balance = jiffies + HZ;
1da177e4 4455
1b9508f6
MG
4456 this_rq->idle_stamp = this_rq->clock;
4457
4458 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4459 return;
4460
1da177e4 4461 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4462 unsigned long interval;
4463
4464 if (!(sd->flags & SD_LOAD_BALANCE))
4465 continue;
4466
4467 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4468 /* If we've pulled tasks over stop searching: */
7c16ec58 4469 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4470 sd);
92c4ca5c
CL
4471
4472 interval = msecs_to_jiffies(sd->balance_interval);
4473 if (time_after(next_balance, sd->last_balance + interval))
4474 next_balance = sd->last_balance + interval;
1b9508f6
MG
4475 if (pulled_task) {
4476 this_rq->idle_stamp = 0;
92c4ca5c 4477 break;
1b9508f6 4478 }
1da177e4 4479 }
dd41f596 4480 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4481 /*
4482 * We are going idle. next_balance may be set based on
4483 * a busy processor. So reset next_balance.
4484 */
4485 this_rq->next_balance = next_balance;
dd41f596 4486 }
1da177e4
LT
4487}
4488
4489/*
4490 * active_load_balance is run by migration threads. It pushes running tasks
4491 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4492 * running on each physical CPU where possible, and avoids physical /
4493 * logical imbalances.
4494 *
4495 * Called with busiest_rq locked.
4496 */
70b97a7f 4497static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4498{
39507451 4499 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4500 struct sched_domain *sd;
4501 struct rq *target_rq;
39507451 4502
48f24c4d 4503 /* Is there any task to move? */
39507451 4504 if (busiest_rq->nr_running <= 1)
39507451
NP
4505 return;
4506
4507 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4508
4509 /*
39507451 4510 * This condition is "impossible", if it occurs
41a2d6cf 4511 * we need to fix it. Originally reported by
39507451 4512 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4513 */
39507451 4514 BUG_ON(busiest_rq == target_rq);
1da177e4 4515
39507451
NP
4516 /* move a task from busiest_rq to target_rq */
4517 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4518 update_rq_clock(busiest_rq);
4519 update_rq_clock(target_rq);
39507451
NP
4520
4521 /* Search for an sd spanning us and the target CPU. */
c96d145e 4522 for_each_domain(target_cpu, sd) {
39507451 4523 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4524 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4525 break;
c96d145e 4526 }
39507451 4527
48f24c4d 4528 if (likely(sd)) {
2d72376b 4529 schedstat_inc(sd, alb_count);
39507451 4530
43010659
PW
4531 if (move_one_task(target_rq, target_cpu, busiest_rq,
4532 sd, CPU_IDLE))
48f24c4d
IM
4533 schedstat_inc(sd, alb_pushed);
4534 else
4535 schedstat_inc(sd, alb_failed);
4536 }
1b12bbc7 4537 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4538}
4539
46cb4b7c
SS
4540#ifdef CONFIG_NO_HZ
4541static struct {
4542 atomic_t load_balancer;
7d1e6a9b 4543 cpumask_var_t cpu_mask;
f711f609 4544 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4545} nohz ____cacheline_aligned = {
4546 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4547};
4548
eea08f32
AB
4549int get_nohz_load_balancer(void)
4550{
4551 return atomic_read(&nohz.load_balancer);
4552}
4553
f711f609
GS
4554#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4555/**
4556 * lowest_flag_domain - Return lowest sched_domain containing flag.
4557 * @cpu: The cpu whose lowest level of sched domain is to
4558 * be returned.
4559 * @flag: The flag to check for the lowest sched_domain
4560 * for the given cpu.
4561 *
4562 * Returns the lowest sched_domain of a cpu which contains the given flag.
4563 */
4564static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4565{
4566 struct sched_domain *sd;
4567
4568 for_each_domain(cpu, sd)
4569 if (sd && (sd->flags & flag))
4570 break;
4571
4572 return sd;
4573}
4574
4575/**
4576 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4577 * @cpu: The cpu whose domains we're iterating over.
4578 * @sd: variable holding the value of the power_savings_sd
4579 * for cpu.
4580 * @flag: The flag to filter the sched_domains to be iterated.
4581 *
4582 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4583 * set, starting from the lowest sched_domain to the highest.
4584 */
4585#define for_each_flag_domain(cpu, sd, flag) \
4586 for (sd = lowest_flag_domain(cpu, flag); \
4587 (sd && (sd->flags & flag)); sd = sd->parent)
4588
4589/**
4590 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4591 * @ilb_group: group to be checked for semi-idleness
4592 *
4593 * Returns: 1 if the group is semi-idle. 0 otherwise.
4594 *
4595 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4596 * and atleast one non-idle CPU. This helper function checks if the given
4597 * sched_group is semi-idle or not.
4598 */
4599static inline int is_semi_idle_group(struct sched_group *ilb_group)
4600{
4601 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4602 sched_group_cpus(ilb_group));
4603
4604 /*
4605 * A sched_group is semi-idle when it has atleast one busy cpu
4606 * and atleast one idle cpu.
4607 */
4608 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4609 return 0;
4610
4611 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4612 return 0;
4613
4614 return 1;
4615}
4616/**
4617 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4618 * @cpu: The cpu which is nominating a new idle_load_balancer.
4619 *
4620 * Returns: Returns the id of the idle load balancer if it exists,
4621 * Else, returns >= nr_cpu_ids.
4622 *
4623 * This algorithm picks the idle load balancer such that it belongs to a
4624 * semi-idle powersavings sched_domain. The idea is to try and avoid
4625 * completely idle packages/cores just for the purpose of idle load balancing
4626 * when there are other idle cpu's which are better suited for that job.
4627 */
4628static int find_new_ilb(int cpu)
4629{
4630 struct sched_domain *sd;
4631 struct sched_group *ilb_group;
4632
4633 /*
4634 * Have idle load balancer selection from semi-idle packages only
4635 * when power-aware load balancing is enabled
4636 */
4637 if (!(sched_smt_power_savings || sched_mc_power_savings))
4638 goto out_done;
4639
4640 /*
4641 * Optimize for the case when we have no idle CPUs or only one
4642 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4643 */
4644 if (cpumask_weight(nohz.cpu_mask) < 2)
4645 goto out_done;
4646
4647 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4648 ilb_group = sd->groups;
4649
4650 do {
4651 if (is_semi_idle_group(ilb_group))
4652 return cpumask_first(nohz.ilb_grp_nohz_mask);
4653
4654 ilb_group = ilb_group->next;
4655
4656 } while (ilb_group != sd->groups);
4657 }
4658
4659out_done:
4660 return cpumask_first(nohz.cpu_mask);
4661}
4662#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4663static inline int find_new_ilb(int call_cpu)
4664{
6e29ec57 4665 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4666}
4667#endif
4668
7835b98b 4669/*
46cb4b7c
SS
4670 * This routine will try to nominate the ilb (idle load balancing)
4671 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4672 * load balancing on behalf of all those cpus. If all the cpus in the system
4673 * go into this tickless mode, then there will be no ilb owner (as there is
4674 * no need for one) and all the cpus will sleep till the next wakeup event
4675 * arrives...
4676 *
4677 * For the ilb owner, tick is not stopped. And this tick will be used
4678 * for idle load balancing. ilb owner will still be part of
4679 * nohz.cpu_mask..
7835b98b 4680 *
46cb4b7c
SS
4681 * While stopping the tick, this cpu will become the ilb owner if there
4682 * is no other owner. And will be the owner till that cpu becomes busy
4683 * or if all cpus in the system stop their ticks at which point
4684 * there is no need for ilb owner.
4685 *
4686 * When the ilb owner becomes busy, it nominates another owner, during the
4687 * next busy scheduler_tick()
4688 */
4689int select_nohz_load_balancer(int stop_tick)
4690{
4691 int cpu = smp_processor_id();
4692
4693 if (stop_tick) {
46cb4b7c
SS
4694 cpu_rq(cpu)->in_nohz_recently = 1;
4695
483b4ee6
SS
4696 if (!cpu_active(cpu)) {
4697 if (atomic_read(&nohz.load_balancer) != cpu)
4698 return 0;
4699
4700 /*
4701 * If we are going offline and still the leader,
4702 * give up!
4703 */
46cb4b7c
SS
4704 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4705 BUG();
483b4ee6 4706
46cb4b7c
SS
4707 return 0;
4708 }
4709
483b4ee6
SS
4710 cpumask_set_cpu(cpu, nohz.cpu_mask);
4711
46cb4b7c 4712 /* time for ilb owner also to sleep */
6ad4c188 4713 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4714 if (atomic_read(&nohz.load_balancer) == cpu)
4715 atomic_set(&nohz.load_balancer, -1);
4716 return 0;
4717 }
4718
4719 if (atomic_read(&nohz.load_balancer) == -1) {
4720 /* make me the ilb owner */
4721 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4722 return 1;
e790fb0b
GS
4723 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4724 int new_ilb;
4725
4726 if (!(sched_smt_power_savings ||
4727 sched_mc_power_savings))
4728 return 1;
4729 /*
4730 * Check to see if there is a more power-efficient
4731 * ilb.
4732 */
4733 new_ilb = find_new_ilb(cpu);
4734 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4735 atomic_set(&nohz.load_balancer, -1);
4736 resched_cpu(new_ilb);
4737 return 0;
4738 }
46cb4b7c 4739 return 1;
e790fb0b 4740 }
46cb4b7c 4741 } else {
7d1e6a9b 4742 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4743 return 0;
4744
7d1e6a9b 4745 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4746
4747 if (atomic_read(&nohz.load_balancer) == cpu)
4748 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4749 BUG();
4750 }
4751 return 0;
4752}
4753#endif
4754
4755static DEFINE_SPINLOCK(balancing);
4756
4757/*
7835b98b
CL
4758 * It checks each scheduling domain to see if it is due to be balanced,
4759 * and initiates a balancing operation if so.
4760 *
4761 * Balancing parameters are set up in arch_init_sched_domains.
4762 */
a9957449 4763static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4764{
46cb4b7c
SS
4765 int balance = 1;
4766 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4767 unsigned long interval;
4768 struct sched_domain *sd;
46cb4b7c 4769 /* Earliest time when we have to do rebalance again */
c9819f45 4770 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4771 int update_next_balance = 0;
d07355f5 4772 int need_serialize;
1da177e4 4773
46cb4b7c 4774 for_each_domain(cpu, sd) {
1da177e4
LT
4775 if (!(sd->flags & SD_LOAD_BALANCE))
4776 continue;
4777
4778 interval = sd->balance_interval;
d15bcfdb 4779 if (idle != CPU_IDLE)
1da177e4
LT
4780 interval *= sd->busy_factor;
4781
4782 /* scale ms to jiffies */
4783 interval = msecs_to_jiffies(interval);
4784 if (unlikely(!interval))
4785 interval = 1;
dd41f596
IM
4786 if (interval > HZ*NR_CPUS/10)
4787 interval = HZ*NR_CPUS/10;
4788
d07355f5 4789 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4790
d07355f5 4791 if (need_serialize) {
08c183f3
CL
4792 if (!spin_trylock(&balancing))
4793 goto out;
4794 }
4795
c9819f45 4796 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4797 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4798 /*
4799 * We've pulled tasks over so either we're no
5969fe06
NP
4800 * longer idle, or one of our SMT siblings is
4801 * not idle.
4802 */
d15bcfdb 4803 idle = CPU_NOT_IDLE;
1da177e4 4804 }
1bd77f2d 4805 sd->last_balance = jiffies;
1da177e4 4806 }
d07355f5 4807 if (need_serialize)
08c183f3
CL
4808 spin_unlock(&balancing);
4809out:
f549da84 4810 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4811 next_balance = sd->last_balance + interval;
f549da84
SS
4812 update_next_balance = 1;
4813 }
783609c6
SS
4814
4815 /*
4816 * Stop the load balance at this level. There is another
4817 * CPU in our sched group which is doing load balancing more
4818 * actively.
4819 */
4820 if (!balance)
4821 break;
1da177e4 4822 }
f549da84
SS
4823
4824 /*
4825 * next_balance will be updated only when there is a need.
4826 * When the cpu is attached to null domain for ex, it will not be
4827 * updated.
4828 */
4829 if (likely(update_next_balance))
4830 rq->next_balance = next_balance;
46cb4b7c
SS
4831}
4832
4833/*
4834 * run_rebalance_domains is triggered when needed from the scheduler tick.
4835 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4836 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4837 */
4838static void run_rebalance_domains(struct softirq_action *h)
4839{
dd41f596
IM
4840 int this_cpu = smp_processor_id();
4841 struct rq *this_rq = cpu_rq(this_cpu);
4842 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4843 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4844
dd41f596 4845 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4846
4847#ifdef CONFIG_NO_HZ
4848 /*
4849 * If this cpu is the owner for idle load balancing, then do the
4850 * balancing on behalf of the other idle cpus whose ticks are
4851 * stopped.
4852 */
dd41f596
IM
4853 if (this_rq->idle_at_tick &&
4854 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4855 struct rq *rq;
4856 int balance_cpu;
4857
7d1e6a9b
RR
4858 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4859 if (balance_cpu == this_cpu)
4860 continue;
4861
46cb4b7c
SS
4862 /*
4863 * If this cpu gets work to do, stop the load balancing
4864 * work being done for other cpus. Next load
4865 * balancing owner will pick it up.
4866 */
4867 if (need_resched())
4868 break;
4869
de0cf899 4870 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4871
4872 rq = cpu_rq(balance_cpu);
dd41f596
IM
4873 if (time_after(this_rq->next_balance, rq->next_balance))
4874 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4875 }
4876 }
4877#endif
4878}
4879
8a0be9ef
FW
4880static inline int on_null_domain(int cpu)
4881{
4882 return !rcu_dereference(cpu_rq(cpu)->sd);
4883}
4884
46cb4b7c
SS
4885/*
4886 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4887 *
4888 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4889 * idle load balancing owner or decide to stop the periodic load balancing,
4890 * if the whole system is idle.
4891 */
dd41f596 4892static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4893{
46cb4b7c
SS
4894#ifdef CONFIG_NO_HZ
4895 /*
4896 * If we were in the nohz mode recently and busy at the current
4897 * scheduler tick, then check if we need to nominate new idle
4898 * load balancer.
4899 */
4900 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4901 rq->in_nohz_recently = 0;
4902
4903 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4904 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4905 atomic_set(&nohz.load_balancer, -1);
4906 }
4907
4908 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4909 int ilb = find_new_ilb(cpu);
46cb4b7c 4910
434d53b0 4911 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4912 resched_cpu(ilb);
4913 }
4914 }
4915
4916 /*
4917 * If this cpu is idle and doing idle load balancing for all the
4918 * cpus with ticks stopped, is it time for that to stop?
4919 */
4920 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4921 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4922 resched_cpu(cpu);
4923 return;
4924 }
4925
4926 /*
4927 * If this cpu is idle and the idle load balancing is done by
4928 * someone else, then no need raise the SCHED_SOFTIRQ
4929 */
4930 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4931 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4932 return;
4933#endif
8a0be9ef
FW
4934 /* Don't need to rebalance while attached to NULL domain */
4935 if (time_after_eq(jiffies, rq->next_balance) &&
4936 likely(!on_null_domain(cpu)))
46cb4b7c 4937 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4938}
dd41f596
IM
4939
4940#else /* CONFIG_SMP */
4941
1da177e4
LT
4942/*
4943 * on UP we do not need to balance between CPUs:
4944 */
70b97a7f 4945static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4946{
4947}
dd41f596 4948
1da177e4
LT
4949#endif
4950
1da177e4
LT
4951DEFINE_PER_CPU(struct kernel_stat, kstat);
4952
4953EXPORT_PER_CPU_SYMBOL(kstat);
4954
4955/*
c5f8d995 4956 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4957 * @p in case that task is currently running.
c5f8d995
HS
4958 *
4959 * Called with task_rq_lock() held on @rq.
1da177e4 4960 */
c5f8d995
HS
4961static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4962{
4963 u64 ns = 0;
4964
4965 if (task_current(rq, p)) {
4966 update_rq_clock(rq);
4967 ns = rq->clock - p->se.exec_start;
4968 if ((s64)ns < 0)
4969 ns = 0;
4970 }
4971
4972 return ns;
4973}
4974
bb34d92f 4975unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4976{
1da177e4 4977 unsigned long flags;
41b86e9c 4978 struct rq *rq;
bb34d92f 4979 u64 ns = 0;
48f24c4d 4980
41b86e9c 4981 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4982 ns = do_task_delta_exec(p, rq);
4983 task_rq_unlock(rq, &flags);
1508487e 4984
c5f8d995
HS
4985 return ns;
4986}
f06febc9 4987
c5f8d995
HS
4988/*
4989 * Return accounted runtime for the task.
4990 * In case the task is currently running, return the runtime plus current's
4991 * pending runtime that have not been accounted yet.
4992 */
4993unsigned long long task_sched_runtime(struct task_struct *p)
4994{
4995 unsigned long flags;
4996 struct rq *rq;
4997 u64 ns = 0;
4998
4999 rq = task_rq_lock(p, &flags);
5000 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5001 task_rq_unlock(rq, &flags);
5002
5003 return ns;
5004}
48f24c4d 5005
c5f8d995
HS
5006/*
5007 * Return sum_exec_runtime for the thread group.
5008 * In case the task is currently running, return the sum plus current's
5009 * pending runtime that have not been accounted yet.
5010 *
5011 * Note that the thread group might have other running tasks as well,
5012 * so the return value not includes other pending runtime that other
5013 * running tasks might have.
5014 */
5015unsigned long long thread_group_sched_runtime(struct task_struct *p)
5016{
5017 struct task_cputime totals;
5018 unsigned long flags;
5019 struct rq *rq;
5020 u64 ns;
5021
5022 rq = task_rq_lock(p, &flags);
5023 thread_group_cputime(p, &totals);
5024 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5025 task_rq_unlock(rq, &flags);
48f24c4d 5026
1da177e4
LT
5027 return ns;
5028}
5029
1da177e4
LT
5030/*
5031 * Account user cpu time to a process.
5032 * @p: the process that the cpu time gets accounted to
1da177e4 5033 * @cputime: the cpu time spent in user space since the last update
457533a7 5034 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5035 */
457533a7
MS
5036void account_user_time(struct task_struct *p, cputime_t cputime,
5037 cputime_t cputime_scaled)
1da177e4
LT
5038{
5039 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5040 cputime64_t tmp;
5041
457533a7 5042 /* Add user time to process. */
1da177e4 5043 p->utime = cputime_add(p->utime, cputime);
457533a7 5044 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5045 account_group_user_time(p, cputime);
1da177e4
LT
5046
5047 /* Add user time to cpustat. */
5048 tmp = cputime_to_cputime64(cputime);
5049 if (TASK_NICE(p) > 0)
5050 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5051 else
5052 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5053
5054 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5055 /* Account for user time used */
5056 acct_update_integrals(p);
1da177e4
LT
5057}
5058
94886b84
LV
5059/*
5060 * Account guest cpu time to a process.
5061 * @p: the process that the cpu time gets accounted to
5062 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5063 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5064 */
457533a7
MS
5065static void account_guest_time(struct task_struct *p, cputime_t cputime,
5066 cputime_t cputime_scaled)
94886b84
LV
5067{
5068 cputime64_t tmp;
5069 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5070
5071 tmp = cputime_to_cputime64(cputime);
5072
457533a7 5073 /* Add guest time to process. */
94886b84 5074 p->utime = cputime_add(p->utime, cputime);
457533a7 5075 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5076 account_group_user_time(p, cputime);
94886b84
LV
5077 p->gtime = cputime_add(p->gtime, cputime);
5078
457533a7 5079 /* Add guest time to cpustat. */
ce0e7b28
RO
5080 if (TASK_NICE(p) > 0) {
5081 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5082 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5083 } else {
5084 cpustat->user = cputime64_add(cpustat->user, tmp);
5085 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5086 }
94886b84
LV
5087}
5088
1da177e4
LT
5089/*
5090 * Account system cpu time to a process.
5091 * @p: the process that the cpu time gets accounted to
5092 * @hardirq_offset: the offset to subtract from hardirq_count()
5093 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5094 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5095 */
5096void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5097 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5098{
5099 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5100 cputime64_t tmp;
5101
983ed7a6 5102 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5103 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5104 return;
5105 }
94886b84 5106
457533a7 5107 /* Add system time to process. */
1da177e4 5108 p->stime = cputime_add(p->stime, cputime);
457533a7 5109 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5110 account_group_system_time(p, cputime);
1da177e4
LT
5111
5112 /* Add system time to cpustat. */
5113 tmp = cputime_to_cputime64(cputime);
5114 if (hardirq_count() - hardirq_offset)
5115 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5116 else if (softirq_count())
5117 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5118 else
79741dd3
MS
5119 cpustat->system = cputime64_add(cpustat->system, tmp);
5120
ef12fefa
BR
5121 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5122
1da177e4
LT
5123 /* Account for system time used */
5124 acct_update_integrals(p);
1da177e4
LT
5125}
5126
c66f08be 5127/*
1da177e4 5128 * Account for involuntary wait time.
1da177e4 5129 * @steal: the cpu time spent in involuntary wait
c66f08be 5130 */
79741dd3 5131void account_steal_time(cputime_t cputime)
c66f08be 5132{
79741dd3
MS
5133 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5134 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5135
5136 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5137}
5138
1da177e4 5139/*
79741dd3
MS
5140 * Account for idle time.
5141 * @cputime: the cpu time spent in idle wait
1da177e4 5142 */
79741dd3 5143void account_idle_time(cputime_t cputime)
1da177e4
LT
5144{
5145 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5146 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5147 struct rq *rq = this_rq();
1da177e4 5148
79741dd3
MS
5149 if (atomic_read(&rq->nr_iowait) > 0)
5150 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5151 else
5152 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5153}
5154
79741dd3
MS
5155#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5156
5157/*
5158 * Account a single tick of cpu time.
5159 * @p: the process that the cpu time gets accounted to
5160 * @user_tick: indicates if the tick is a user or a system tick
5161 */
5162void account_process_tick(struct task_struct *p, int user_tick)
5163{
a42548a1 5164 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5165 struct rq *rq = this_rq();
5166
5167 if (user_tick)
a42548a1 5168 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5169 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5170 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5171 one_jiffy_scaled);
5172 else
a42548a1 5173 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5174}
5175
5176/*
5177 * Account multiple ticks of steal time.
5178 * @p: the process from which the cpu time has been stolen
5179 * @ticks: number of stolen ticks
5180 */
5181void account_steal_ticks(unsigned long ticks)
5182{
5183 account_steal_time(jiffies_to_cputime(ticks));
5184}
5185
5186/*
5187 * Account multiple ticks of idle time.
5188 * @ticks: number of stolen ticks
5189 */
5190void account_idle_ticks(unsigned long ticks)
5191{
5192 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5193}
5194
79741dd3
MS
5195#endif
5196
49048622
BS
5197/*
5198 * Use precise platform statistics if available:
5199 */
5200#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5201void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5202{
d99ca3b9
HS
5203 *ut = p->utime;
5204 *st = p->stime;
49048622
BS
5205}
5206
0cf55e1e 5207void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5208{
0cf55e1e
HS
5209 struct task_cputime cputime;
5210
5211 thread_group_cputime(p, &cputime);
5212
5213 *ut = cputime.utime;
5214 *st = cputime.stime;
49048622
BS
5215}
5216#else
761b1d26
HS
5217
5218#ifndef nsecs_to_cputime
b7b20df9 5219# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5220#endif
5221
d180c5bc 5222void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5223{
d99ca3b9 5224 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5225
5226 /*
5227 * Use CFS's precise accounting:
5228 */
d180c5bc 5229 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5230
5231 if (total) {
d180c5bc
HS
5232 u64 temp;
5233
5234 temp = (u64)(rtime * utime);
49048622 5235 do_div(temp, total);
d180c5bc
HS
5236 utime = (cputime_t)temp;
5237 } else
5238 utime = rtime;
49048622 5239
d180c5bc
HS
5240 /*
5241 * Compare with previous values, to keep monotonicity:
5242 */
761b1d26 5243 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5244 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5245
d99ca3b9
HS
5246 *ut = p->prev_utime;
5247 *st = p->prev_stime;
49048622
BS
5248}
5249
0cf55e1e
HS
5250/*
5251 * Must be called with siglock held.
5252 */
5253void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5254{
0cf55e1e
HS
5255 struct signal_struct *sig = p->signal;
5256 struct task_cputime cputime;
5257 cputime_t rtime, utime, total;
49048622 5258
0cf55e1e 5259 thread_group_cputime(p, &cputime);
49048622 5260
0cf55e1e
HS
5261 total = cputime_add(cputime.utime, cputime.stime);
5262 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5263
0cf55e1e
HS
5264 if (total) {
5265 u64 temp;
49048622 5266
0cf55e1e
HS
5267 temp = (u64)(rtime * cputime.utime);
5268 do_div(temp, total);
5269 utime = (cputime_t)temp;
5270 } else
5271 utime = rtime;
5272
5273 sig->prev_utime = max(sig->prev_utime, utime);
5274 sig->prev_stime = max(sig->prev_stime,
5275 cputime_sub(rtime, sig->prev_utime));
5276
5277 *ut = sig->prev_utime;
5278 *st = sig->prev_stime;
49048622 5279}
49048622 5280#endif
49048622 5281
7835b98b
CL
5282/*
5283 * This function gets called by the timer code, with HZ frequency.
5284 * We call it with interrupts disabled.
5285 *
5286 * It also gets called by the fork code, when changing the parent's
5287 * timeslices.
5288 */
5289void scheduler_tick(void)
5290{
7835b98b
CL
5291 int cpu = smp_processor_id();
5292 struct rq *rq = cpu_rq(cpu);
dd41f596 5293 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5294
5295 sched_clock_tick();
dd41f596 5296
05fa785c 5297 raw_spin_lock(&rq->lock);
3e51f33f 5298 update_rq_clock(rq);
f1a438d8 5299 update_cpu_load(rq);
fa85ae24 5300 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 5301 raw_spin_unlock(&rq->lock);
7835b98b 5302
cdd6c482 5303 perf_event_task_tick(curr, cpu);
e220d2dc 5304
e418e1c2 5305#ifdef CONFIG_SMP
dd41f596
IM
5306 rq->idle_at_tick = idle_cpu(cpu);
5307 trigger_load_balance(rq, cpu);
e418e1c2 5308#endif
1da177e4
LT
5309}
5310
132380a0 5311notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5312{
5313 if (in_lock_functions(addr)) {
5314 addr = CALLER_ADDR2;
5315 if (in_lock_functions(addr))
5316 addr = CALLER_ADDR3;
5317 }
5318 return addr;
5319}
1da177e4 5320
7e49fcce
SR
5321#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5322 defined(CONFIG_PREEMPT_TRACER))
5323
43627582 5324void __kprobes add_preempt_count(int val)
1da177e4 5325{
6cd8a4bb 5326#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5327 /*
5328 * Underflow?
5329 */
9a11b49a
IM
5330 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5331 return;
6cd8a4bb 5332#endif
1da177e4 5333 preempt_count() += val;
6cd8a4bb 5334#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5335 /*
5336 * Spinlock count overflowing soon?
5337 */
33859f7f
MOS
5338 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5339 PREEMPT_MASK - 10);
6cd8a4bb
SR
5340#endif
5341 if (preempt_count() == val)
5342 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5343}
5344EXPORT_SYMBOL(add_preempt_count);
5345
43627582 5346void __kprobes sub_preempt_count(int val)
1da177e4 5347{
6cd8a4bb 5348#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5349 /*
5350 * Underflow?
5351 */
01e3eb82 5352 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5353 return;
1da177e4
LT
5354 /*
5355 * Is the spinlock portion underflowing?
5356 */
9a11b49a
IM
5357 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5358 !(preempt_count() & PREEMPT_MASK)))
5359 return;
6cd8a4bb 5360#endif
9a11b49a 5361
6cd8a4bb
SR
5362 if (preempt_count() == val)
5363 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5364 preempt_count() -= val;
5365}
5366EXPORT_SYMBOL(sub_preempt_count);
5367
5368#endif
5369
5370/*
dd41f596 5371 * Print scheduling while atomic bug:
1da177e4 5372 */
dd41f596 5373static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5374{
838225b4
SS
5375 struct pt_regs *regs = get_irq_regs();
5376
663997d4
JP
5377 pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
5378 prev->comm, prev->pid, preempt_count());
838225b4 5379
dd41f596 5380 debug_show_held_locks(prev);
e21f5b15 5381 print_modules();
dd41f596
IM
5382 if (irqs_disabled())
5383 print_irqtrace_events(prev);
838225b4
SS
5384
5385 if (regs)
5386 show_regs(regs);
5387 else
5388 dump_stack();
dd41f596 5389}
1da177e4 5390
dd41f596
IM
5391/*
5392 * Various schedule()-time debugging checks and statistics:
5393 */
5394static inline void schedule_debug(struct task_struct *prev)
5395{
1da177e4 5396 /*
41a2d6cf 5397 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5398 * schedule() atomically, we ignore that path for now.
5399 * Otherwise, whine if we are scheduling when we should not be.
5400 */
3f33a7ce 5401 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5402 __schedule_bug(prev);
5403
1da177e4
LT
5404 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5405
2d72376b 5406 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5407#ifdef CONFIG_SCHEDSTATS
5408 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5409 schedstat_inc(this_rq(), bkl_count);
5410 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5411 }
5412#endif
dd41f596
IM
5413}
5414
6cecd084 5415static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5416{
6cecd084
PZ
5417 if (prev->state == TASK_RUNNING) {
5418 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5419
6cecd084
PZ
5420 runtime -= prev->se.prev_sum_exec_runtime;
5421 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5422
5423 /*
5424 * In order to avoid avg_overlap growing stale when we are
5425 * indeed overlapping and hence not getting put to sleep, grow
5426 * the avg_overlap on preemption.
5427 *
5428 * We use the average preemption runtime because that
5429 * correlates to the amount of cache footprint a task can
5430 * build up.
5431 */
6cecd084 5432 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5433 }
6cecd084 5434 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5435}
5436
dd41f596
IM
5437/*
5438 * Pick up the highest-prio task:
5439 */
5440static inline struct task_struct *
b67802ea 5441pick_next_task(struct rq *rq)
dd41f596 5442{
5522d5d5 5443 const struct sched_class *class;
dd41f596 5444 struct task_struct *p;
1da177e4
LT
5445
5446 /*
dd41f596
IM
5447 * Optimization: we know that if all tasks are in
5448 * the fair class we can call that function directly:
1da177e4 5449 */
dd41f596 5450 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5451 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5452 if (likely(p))
5453 return p;
1da177e4
LT
5454 }
5455
dd41f596
IM
5456 class = sched_class_highest;
5457 for ( ; ; ) {
fb8d4724 5458 p = class->pick_next_task(rq);
dd41f596
IM
5459 if (p)
5460 return p;
5461 /*
5462 * Will never be NULL as the idle class always
5463 * returns a non-NULL p:
5464 */
5465 class = class->next;
5466 }
5467}
1da177e4 5468
dd41f596
IM
5469/*
5470 * schedule() is the main scheduler function.
5471 */
ff743345 5472asmlinkage void __sched schedule(void)
dd41f596
IM
5473{
5474 struct task_struct *prev, *next;
67ca7bde 5475 unsigned long *switch_count;
dd41f596 5476 struct rq *rq;
31656519 5477 int cpu;
dd41f596 5478
ff743345
PZ
5479need_resched:
5480 preempt_disable();
dd41f596
IM
5481 cpu = smp_processor_id();
5482 rq = cpu_rq(cpu);
d6714c22 5483 rcu_sched_qs(cpu);
dd41f596
IM
5484 prev = rq->curr;
5485 switch_count = &prev->nivcsw;
5486
5487 release_kernel_lock(prev);
5488need_resched_nonpreemptible:
5489
5490 schedule_debug(prev);
1da177e4 5491
31656519 5492 if (sched_feat(HRTICK))
f333fdc9 5493 hrtick_clear(rq);
8f4d37ec 5494
05fa785c 5495 raw_spin_lock_irq(&rq->lock);
3e51f33f 5496 update_rq_clock(rq);
1e819950 5497 clear_tsk_need_resched(prev);
1da177e4 5498
1da177e4 5499 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5500 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5501 prev->state = TASK_RUNNING;
16882c1e 5502 else
2e1cb74a 5503 deactivate_task(rq, prev, 1);
dd41f596 5504 switch_count = &prev->nvcsw;
1da177e4
LT
5505 }
5506
3f029d3c 5507 pre_schedule(rq, prev);
f65eda4f 5508
dd41f596 5509 if (unlikely(!rq->nr_running))
1da177e4 5510 idle_balance(cpu, rq);
1da177e4 5511
df1c99d4 5512 put_prev_task(rq, prev);
b67802ea 5513 next = pick_next_task(rq);
1da177e4 5514
1da177e4 5515 if (likely(prev != next)) {
673a90a1 5516 sched_info_switch(prev, next);
cdd6c482 5517 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5518
1da177e4
LT
5519 rq->nr_switches++;
5520 rq->curr = next;
5521 ++*switch_count;
5522
dd41f596 5523 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5524 /*
5525 * the context switch might have flipped the stack from under
5526 * us, hence refresh the local variables.
5527 */
5528 cpu = smp_processor_id();
5529 rq = cpu_rq(cpu);
1da177e4 5530 } else
05fa785c 5531 raw_spin_unlock_irq(&rq->lock);
1da177e4 5532
3f029d3c 5533 post_schedule(rq);
1da177e4 5534
8f4d37ec 5535 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5536 goto need_resched_nonpreemptible;
8f4d37ec 5537
1da177e4 5538 preempt_enable_no_resched();
ff743345 5539 if (need_resched())
1da177e4
LT
5540 goto need_resched;
5541}
1da177e4
LT
5542EXPORT_SYMBOL(schedule);
5543
c08f7829 5544#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5545/*
5546 * Look out! "owner" is an entirely speculative pointer
5547 * access and not reliable.
5548 */
5549int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5550{
5551 unsigned int cpu;
5552 struct rq *rq;
5553
5554 if (!sched_feat(OWNER_SPIN))
5555 return 0;
5556
5557#ifdef CONFIG_DEBUG_PAGEALLOC
5558 /*
5559 * Need to access the cpu field knowing that
5560 * DEBUG_PAGEALLOC could have unmapped it if
5561 * the mutex owner just released it and exited.
5562 */
5563 if (probe_kernel_address(&owner->cpu, cpu))
5564 goto out;
5565#else
5566 cpu = owner->cpu;
5567#endif
5568
5569 /*
5570 * Even if the access succeeded (likely case),
5571 * the cpu field may no longer be valid.
5572 */
5573 if (cpu >= nr_cpumask_bits)
5574 goto out;
5575
5576 /*
5577 * We need to validate that we can do a
5578 * get_cpu() and that we have the percpu area.
5579 */
5580 if (!cpu_online(cpu))
5581 goto out;
5582
5583 rq = cpu_rq(cpu);
5584
5585 for (;;) {
5586 /*
5587 * Owner changed, break to re-assess state.
5588 */
5589 if (lock->owner != owner)
5590 break;
5591
5592 /*
5593 * Is that owner really running on that cpu?
5594 */
5595 if (task_thread_info(rq->curr) != owner || need_resched())
5596 return 0;
5597
5598 cpu_relax();
5599 }
5600out:
5601 return 1;
5602}
5603#endif
5604
1da177e4
LT
5605#ifdef CONFIG_PREEMPT
5606/*
2ed6e34f 5607 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5608 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5609 * occur there and call schedule directly.
5610 */
5611asmlinkage void __sched preempt_schedule(void)
5612{
5613 struct thread_info *ti = current_thread_info();
6478d880 5614
1da177e4
LT
5615 /*
5616 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5617 * we do not want to preempt the current task. Just return..
1da177e4 5618 */
beed33a8 5619 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5620 return;
5621
3a5c359a
AK
5622 do {
5623 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5624 schedule();
3a5c359a 5625 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5626
3a5c359a
AK
5627 /*
5628 * Check again in case we missed a preemption opportunity
5629 * between schedule and now.
5630 */
5631 barrier();
5ed0cec0 5632 } while (need_resched());
1da177e4 5633}
1da177e4
LT
5634EXPORT_SYMBOL(preempt_schedule);
5635
5636/*
2ed6e34f 5637 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5638 * off of irq context.
5639 * Note, that this is called and return with irqs disabled. This will
5640 * protect us against recursive calling from irq.
5641 */
5642asmlinkage void __sched preempt_schedule_irq(void)
5643{
5644 struct thread_info *ti = current_thread_info();
6478d880 5645
2ed6e34f 5646 /* Catch callers which need to be fixed */
1da177e4
LT
5647 BUG_ON(ti->preempt_count || !irqs_disabled());
5648
3a5c359a
AK
5649 do {
5650 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5651 local_irq_enable();
5652 schedule();
5653 local_irq_disable();
3a5c359a 5654 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5655
3a5c359a
AK
5656 /*
5657 * Check again in case we missed a preemption opportunity
5658 * between schedule and now.
5659 */
5660 barrier();
5ed0cec0 5661 } while (need_resched());
1da177e4
LT
5662}
5663
5664#endif /* CONFIG_PREEMPT */
5665
63859d4f 5666int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5667 void *key)
1da177e4 5668{
63859d4f 5669 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5670}
1da177e4
LT
5671EXPORT_SYMBOL(default_wake_function);
5672
5673/*
41a2d6cf
IM
5674 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5675 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5676 * number) then we wake all the non-exclusive tasks and one exclusive task.
5677 *
5678 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5679 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5680 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5681 */
78ddb08f 5682static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5683 int nr_exclusive, int wake_flags, void *key)
1da177e4 5684{
2e45874c 5685 wait_queue_t *curr, *next;
1da177e4 5686
2e45874c 5687 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5688 unsigned flags = curr->flags;
5689
63859d4f 5690 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5691 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5692 break;
5693 }
5694}
5695
5696/**
5697 * __wake_up - wake up threads blocked on a waitqueue.
5698 * @q: the waitqueue
5699 * @mode: which threads
5700 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5701 * @key: is directly passed to the wakeup function
50fa610a
DH
5702 *
5703 * It may be assumed that this function implies a write memory barrier before
5704 * changing the task state if and only if any tasks are woken up.
1da177e4 5705 */
7ad5b3a5 5706void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5707 int nr_exclusive, void *key)
1da177e4
LT
5708{
5709 unsigned long flags;
5710
5711 spin_lock_irqsave(&q->lock, flags);
5712 __wake_up_common(q, mode, nr_exclusive, 0, key);
5713 spin_unlock_irqrestore(&q->lock, flags);
5714}
1da177e4
LT
5715EXPORT_SYMBOL(__wake_up);
5716
5717/*
5718 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5719 */
7ad5b3a5 5720void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5721{
5722 __wake_up_common(q, mode, 1, 0, NULL);
5723}
5724
4ede816a
DL
5725void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5726{
5727 __wake_up_common(q, mode, 1, 0, key);
5728}
5729
1da177e4 5730/**
4ede816a 5731 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5732 * @q: the waitqueue
5733 * @mode: which threads
5734 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5735 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5736 *
5737 * The sync wakeup differs that the waker knows that it will schedule
5738 * away soon, so while the target thread will be woken up, it will not
5739 * be migrated to another CPU - ie. the two threads are 'synchronized'
5740 * with each other. This can prevent needless bouncing between CPUs.
5741 *
5742 * On UP it can prevent extra preemption.
50fa610a
DH
5743 *
5744 * It may be assumed that this function implies a write memory barrier before
5745 * changing the task state if and only if any tasks are woken up.
1da177e4 5746 */
4ede816a
DL
5747void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5748 int nr_exclusive, void *key)
1da177e4
LT
5749{
5750 unsigned long flags;
7d478721 5751 int wake_flags = WF_SYNC;
1da177e4
LT
5752
5753 if (unlikely(!q))
5754 return;
5755
5756 if (unlikely(!nr_exclusive))
7d478721 5757 wake_flags = 0;
1da177e4
LT
5758
5759 spin_lock_irqsave(&q->lock, flags);
7d478721 5760 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5761 spin_unlock_irqrestore(&q->lock, flags);
5762}
4ede816a
DL
5763EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5764
5765/*
5766 * __wake_up_sync - see __wake_up_sync_key()
5767 */
5768void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5769{
5770 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5771}
1da177e4
LT
5772EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5773
65eb3dc6
KD
5774/**
5775 * complete: - signals a single thread waiting on this completion
5776 * @x: holds the state of this particular completion
5777 *
5778 * This will wake up a single thread waiting on this completion. Threads will be
5779 * awakened in the same order in which they were queued.
5780 *
5781 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5782 *
5783 * It may be assumed that this function implies a write memory barrier before
5784 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5785 */
b15136e9 5786void complete(struct completion *x)
1da177e4
LT
5787{
5788 unsigned long flags;
5789
5790 spin_lock_irqsave(&x->wait.lock, flags);
5791 x->done++;
d9514f6c 5792 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5793 spin_unlock_irqrestore(&x->wait.lock, flags);
5794}
5795EXPORT_SYMBOL(complete);
5796
65eb3dc6
KD
5797/**
5798 * complete_all: - signals all threads waiting on this completion
5799 * @x: holds the state of this particular completion
5800 *
5801 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5802 *
5803 * It may be assumed that this function implies a write memory barrier before
5804 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5805 */
b15136e9 5806void complete_all(struct completion *x)
1da177e4
LT
5807{
5808 unsigned long flags;
5809
5810 spin_lock_irqsave(&x->wait.lock, flags);
5811 x->done += UINT_MAX/2;
d9514f6c 5812 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5813 spin_unlock_irqrestore(&x->wait.lock, flags);
5814}
5815EXPORT_SYMBOL(complete_all);
5816
8cbbe86d
AK
5817static inline long __sched
5818do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5819{
1da177e4
LT
5820 if (!x->done) {
5821 DECLARE_WAITQUEUE(wait, current);
5822
5823 wait.flags |= WQ_FLAG_EXCLUSIVE;
5824 __add_wait_queue_tail(&x->wait, &wait);
5825 do {
94d3d824 5826 if (signal_pending_state(state, current)) {
ea71a546
ON
5827 timeout = -ERESTARTSYS;
5828 break;
8cbbe86d
AK
5829 }
5830 __set_current_state(state);
1da177e4
LT
5831 spin_unlock_irq(&x->wait.lock);
5832 timeout = schedule_timeout(timeout);
5833 spin_lock_irq(&x->wait.lock);
ea71a546 5834 } while (!x->done && timeout);
1da177e4 5835 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5836 if (!x->done)
5837 return timeout;
1da177e4
LT
5838 }
5839 x->done--;
ea71a546 5840 return timeout ?: 1;
1da177e4 5841}
1da177e4 5842
8cbbe86d
AK
5843static long __sched
5844wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5845{
1da177e4
LT
5846 might_sleep();
5847
5848 spin_lock_irq(&x->wait.lock);
8cbbe86d 5849 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5850 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5851 return timeout;
5852}
1da177e4 5853
65eb3dc6
KD
5854/**
5855 * wait_for_completion: - waits for completion of a task
5856 * @x: holds the state of this particular completion
5857 *
5858 * This waits to be signaled for completion of a specific task. It is NOT
5859 * interruptible and there is no timeout.
5860 *
5861 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5862 * and interrupt capability. Also see complete().
5863 */
b15136e9 5864void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5865{
5866 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5867}
8cbbe86d 5868EXPORT_SYMBOL(wait_for_completion);
1da177e4 5869
65eb3dc6
KD
5870/**
5871 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5872 * @x: holds the state of this particular completion
5873 * @timeout: timeout value in jiffies
5874 *
5875 * This waits for either a completion of a specific task to be signaled or for a
5876 * specified timeout to expire. The timeout is in jiffies. It is not
5877 * interruptible.
5878 */
b15136e9 5879unsigned long __sched
8cbbe86d 5880wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5881{
8cbbe86d 5882 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5883}
8cbbe86d 5884EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5885
65eb3dc6
KD
5886/**
5887 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5888 * @x: holds the state of this particular completion
5889 *
5890 * This waits for completion of a specific task to be signaled. It is
5891 * interruptible.
5892 */
8cbbe86d 5893int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5894{
51e97990
AK
5895 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5896 if (t == -ERESTARTSYS)
5897 return t;
5898 return 0;
0fec171c 5899}
8cbbe86d 5900EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5901
65eb3dc6
KD
5902/**
5903 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5904 * @x: holds the state of this particular completion
5905 * @timeout: timeout value in jiffies
5906 *
5907 * This waits for either a completion of a specific task to be signaled or for a
5908 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5909 */
b15136e9 5910unsigned long __sched
8cbbe86d
AK
5911wait_for_completion_interruptible_timeout(struct completion *x,
5912 unsigned long timeout)
0fec171c 5913{
8cbbe86d 5914 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5915}
8cbbe86d 5916EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5917
65eb3dc6
KD
5918/**
5919 * wait_for_completion_killable: - waits for completion of a task (killable)
5920 * @x: holds the state of this particular completion
5921 *
5922 * This waits to be signaled for completion of a specific task. It can be
5923 * interrupted by a kill signal.
5924 */
009e577e
MW
5925int __sched wait_for_completion_killable(struct completion *x)
5926{
5927 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5928 if (t == -ERESTARTSYS)
5929 return t;
5930 return 0;
5931}
5932EXPORT_SYMBOL(wait_for_completion_killable);
5933
be4de352
DC
5934/**
5935 * try_wait_for_completion - try to decrement a completion without blocking
5936 * @x: completion structure
5937 *
5938 * Returns: 0 if a decrement cannot be done without blocking
5939 * 1 if a decrement succeeded.
5940 *
5941 * If a completion is being used as a counting completion,
5942 * attempt to decrement the counter without blocking. This
5943 * enables us to avoid waiting if the resource the completion
5944 * is protecting is not available.
5945 */
5946bool try_wait_for_completion(struct completion *x)
5947{
7539a3b3 5948 unsigned long flags;
be4de352
DC
5949 int ret = 1;
5950
7539a3b3 5951 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5952 if (!x->done)
5953 ret = 0;
5954 else
5955 x->done--;
7539a3b3 5956 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5957 return ret;
5958}
5959EXPORT_SYMBOL(try_wait_for_completion);
5960
5961/**
5962 * completion_done - Test to see if a completion has any waiters
5963 * @x: completion structure
5964 *
5965 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5966 * 1 if there are no waiters.
5967 *
5968 */
5969bool completion_done(struct completion *x)
5970{
7539a3b3 5971 unsigned long flags;
be4de352
DC
5972 int ret = 1;
5973
7539a3b3 5974 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5975 if (!x->done)
5976 ret = 0;
7539a3b3 5977 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5978 return ret;
5979}
5980EXPORT_SYMBOL(completion_done);
5981
8cbbe86d
AK
5982static long __sched
5983sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5984{
0fec171c
IM
5985 unsigned long flags;
5986 wait_queue_t wait;
5987
5988 init_waitqueue_entry(&wait, current);
1da177e4 5989
8cbbe86d 5990 __set_current_state(state);
1da177e4 5991
8cbbe86d
AK
5992 spin_lock_irqsave(&q->lock, flags);
5993 __add_wait_queue(q, &wait);
5994 spin_unlock(&q->lock);
5995 timeout = schedule_timeout(timeout);
5996 spin_lock_irq(&q->lock);
5997 __remove_wait_queue(q, &wait);
5998 spin_unlock_irqrestore(&q->lock, flags);
5999
6000 return timeout;
6001}
6002
6003void __sched interruptible_sleep_on(wait_queue_head_t *q)
6004{
6005 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6006}
1da177e4
LT
6007EXPORT_SYMBOL(interruptible_sleep_on);
6008
0fec171c 6009long __sched
95cdf3b7 6010interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6011{
8cbbe86d 6012 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 6013}
1da177e4
LT
6014EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6015
0fec171c 6016void __sched sleep_on(wait_queue_head_t *q)
1da177e4 6017{
8cbbe86d 6018 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6019}
1da177e4
LT
6020EXPORT_SYMBOL(sleep_on);
6021
0fec171c 6022long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6023{
8cbbe86d 6024 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6025}
1da177e4
LT
6026EXPORT_SYMBOL(sleep_on_timeout);
6027
b29739f9
IM
6028#ifdef CONFIG_RT_MUTEXES
6029
6030/*
6031 * rt_mutex_setprio - set the current priority of a task
6032 * @p: task
6033 * @prio: prio value (kernel-internal form)
6034 *
6035 * This function changes the 'effective' priority of a task. It does
6036 * not touch ->normal_prio like __setscheduler().
6037 *
6038 * Used by the rt_mutex code to implement priority inheritance logic.
6039 */
36c8b586 6040void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6041{
6042 unsigned long flags;
83b699ed 6043 int oldprio, on_rq, running;
70b97a7f 6044 struct rq *rq;
cb469845 6045 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6046
6047 BUG_ON(prio < 0 || prio > MAX_PRIO);
6048
6049 rq = task_rq_lock(p, &flags);
a8e504d2 6050 update_rq_clock(rq);
b29739f9 6051
d5f9f942 6052 oldprio = p->prio;
dd41f596 6053 on_rq = p->se.on_rq;
051a1d1a 6054 running = task_current(rq, p);
0e1f3483 6055 if (on_rq)
69be72c1 6056 dequeue_task(rq, p, 0);
0e1f3483
HS
6057 if (running)
6058 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6059
6060 if (rt_prio(prio))
6061 p->sched_class = &rt_sched_class;
6062 else
6063 p->sched_class = &fair_sched_class;
6064
b29739f9
IM
6065 p->prio = prio;
6066
0e1f3483
HS
6067 if (running)
6068 p->sched_class->set_curr_task(rq);
dd41f596 6069 if (on_rq) {
8159f87e 6070 enqueue_task(rq, p, 0);
cb469845
SR
6071
6072 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6073 }
6074 task_rq_unlock(rq, &flags);
6075}
6076
6077#endif
6078
36c8b586 6079void set_user_nice(struct task_struct *p, long nice)
1da177e4 6080{
dd41f596 6081 int old_prio, delta, on_rq;
1da177e4 6082 unsigned long flags;
70b97a7f 6083 struct rq *rq;
1da177e4
LT
6084
6085 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6086 return;
6087 /*
6088 * We have to be careful, if called from sys_setpriority(),
6089 * the task might be in the middle of scheduling on another CPU.
6090 */
6091 rq = task_rq_lock(p, &flags);
a8e504d2 6092 update_rq_clock(rq);
1da177e4
LT
6093 /*
6094 * The RT priorities are set via sched_setscheduler(), but we still
6095 * allow the 'normal' nice value to be set - but as expected
6096 * it wont have any effect on scheduling until the task is
dd41f596 6097 * SCHED_FIFO/SCHED_RR:
1da177e4 6098 */
e05606d3 6099 if (task_has_rt_policy(p)) {
1da177e4
LT
6100 p->static_prio = NICE_TO_PRIO(nice);
6101 goto out_unlock;
6102 }
dd41f596 6103 on_rq = p->se.on_rq;
c09595f6 6104 if (on_rq)
69be72c1 6105 dequeue_task(rq, p, 0);
1da177e4 6106
1da177e4 6107 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6108 set_load_weight(p);
b29739f9
IM
6109 old_prio = p->prio;
6110 p->prio = effective_prio(p);
6111 delta = p->prio - old_prio;
1da177e4 6112
dd41f596 6113 if (on_rq) {
8159f87e 6114 enqueue_task(rq, p, 0);
1da177e4 6115 /*
d5f9f942
AM
6116 * If the task increased its priority or is running and
6117 * lowered its priority, then reschedule its CPU:
1da177e4 6118 */
d5f9f942 6119 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6120 resched_task(rq->curr);
6121 }
6122out_unlock:
6123 task_rq_unlock(rq, &flags);
6124}
1da177e4
LT
6125EXPORT_SYMBOL(set_user_nice);
6126
e43379f1
MM
6127/*
6128 * can_nice - check if a task can reduce its nice value
6129 * @p: task
6130 * @nice: nice value
6131 */
36c8b586 6132int can_nice(const struct task_struct *p, const int nice)
e43379f1 6133{
024f4747
MM
6134 /* convert nice value [19,-20] to rlimit style value [1,40] */
6135 int nice_rlim = 20 - nice;
48f24c4d 6136
e43379f1
MM
6137 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6138 capable(CAP_SYS_NICE));
6139}
6140
1da177e4
LT
6141#ifdef __ARCH_WANT_SYS_NICE
6142
6143/*
6144 * sys_nice - change the priority of the current process.
6145 * @increment: priority increment
6146 *
6147 * sys_setpriority is a more generic, but much slower function that
6148 * does similar things.
6149 */
5add95d4 6150SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6151{
48f24c4d 6152 long nice, retval;
1da177e4
LT
6153
6154 /*
6155 * Setpriority might change our priority at the same moment.
6156 * We don't have to worry. Conceptually one call occurs first
6157 * and we have a single winner.
6158 */
e43379f1
MM
6159 if (increment < -40)
6160 increment = -40;
1da177e4
LT
6161 if (increment > 40)
6162 increment = 40;
6163
2b8f836f 6164 nice = TASK_NICE(current) + increment;
1da177e4
LT
6165 if (nice < -20)
6166 nice = -20;
6167 if (nice > 19)
6168 nice = 19;
6169
e43379f1
MM
6170 if (increment < 0 && !can_nice(current, nice))
6171 return -EPERM;
6172
1da177e4
LT
6173 retval = security_task_setnice(current, nice);
6174 if (retval)
6175 return retval;
6176
6177 set_user_nice(current, nice);
6178 return 0;
6179}
6180
6181#endif
6182
6183/**
6184 * task_prio - return the priority value of a given task.
6185 * @p: the task in question.
6186 *
6187 * This is the priority value as seen by users in /proc.
6188 * RT tasks are offset by -200. Normal tasks are centered
6189 * around 0, value goes from -16 to +15.
6190 */
36c8b586 6191int task_prio(const struct task_struct *p)
1da177e4
LT
6192{
6193 return p->prio - MAX_RT_PRIO;
6194}
6195
6196/**
6197 * task_nice - return the nice value of a given task.
6198 * @p: the task in question.
6199 */
36c8b586 6200int task_nice(const struct task_struct *p)
1da177e4
LT
6201{
6202 return TASK_NICE(p);
6203}
150d8bed 6204EXPORT_SYMBOL(task_nice);
1da177e4
LT
6205
6206/**
6207 * idle_cpu - is a given cpu idle currently?
6208 * @cpu: the processor in question.
6209 */
6210int idle_cpu(int cpu)
6211{
6212 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6213}
6214
1da177e4
LT
6215/**
6216 * idle_task - return the idle task for a given cpu.
6217 * @cpu: the processor in question.
6218 */
36c8b586 6219struct task_struct *idle_task(int cpu)
1da177e4
LT
6220{
6221 return cpu_rq(cpu)->idle;
6222}
6223
6224/**
6225 * find_process_by_pid - find a process with a matching PID value.
6226 * @pid: the pid in question.
6227 */
a9957449 6228static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6229{
228ebcbe 6230 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6231}
6232
6233/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6234static void
6235__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6236{
dd41f596 6237 BUG_ON(p->se.on_rq);
48f24c4d 6238
1da177e4
LT
6239 p->policy = policy;
6240 p->rt_priority = prio;
b29739f9
IM
6241 p->normal_prio = normal_prio(p);
6242 /* we are holding p->pi_lock already */
6243 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6244 if (rt_prio(p->prio))
6245 p->sched_class = &rt_sched_class;
6246 else
6247 p->sched_class = &fair_sched_class;
2dd73a4f 6248 set_load_weight(p);
1da177e4
LT
6249}
6250
c69e8d9c
DH
6251/*
6252 * check the target process has a UID that matches the current process's
6253 */
6254static bool check_same_owner(struct task_struct *p)
6255{
6256 const struct cred *cred = current_cred(), *pcred;
6257 bool match;
6258
6259 rcu_read_lock();
6260 pcred = __task_cred(p);
6261 match = (cred->euid == pcred->euid ||
6262 cred->euid == pcred->uid);
6263 rcu_read_unlock();
6264 return match;
6265}
6266
961ccddd
RR
6267static int __sched_setscheduler(struct task_struct *p, int policy,
6268 struct sched_param *param, bool user)
1da177e4 6269{
83b699ed 6270 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6271 unsigned long flags;
cb469845 6272 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6273 struct rq *rq;
ca94c442 6274 int reset_on_fork;
1da177e4 6275
66e5393a
SR
6276 /* may grab non-irq protected spin_locks */
6277 BUG_ON(in_interrupt());
1da177e4
LT
6278recheck:
6279 /* double check policy once rq lock held */
ca94c442
LP
6280 if (policy < 0) {
6281 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6282 policy = oldpolicy = p->policy;
ca94c442
LP
6283 } else {
6284 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6285 policy &= ~SCHED_RESET_ON_FORK;
6286
6287 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6288 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6289 policy != SCHED_IDLE)
6290 return -EINVAL;
6291 }
6292
1da177e4
LT
6293 /*
6294 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6295 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6296 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6297 */
6298 if (param->sched_priority < 0 ||
95cdf3b7 6299 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6300 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6301 return -EINVAL;
e05606d3 6302 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6303 return -EINVAL;
6304
37e4ab3f
OC
6305 /*
6306 * Allow unprivileged RT tasks to decrease priority:
6307 */
961ccddd 6308 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6309 if (rt_policy(policy)) {
8dc3e909 6310 unsigned long rlim_rtprio;
8dc3e909
ON
6311
6312 if (!lock_task_sighand(p, &flags))
6313 return -ESRCH;
6314 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6315 unlock_task_sighand(p, &flags);
6316
6317 /* can't set/change the rt policy */
6318 if (policy != p->policy && !rlim_rtprio)
6319 return -EPERM;
6320
6321 /* can't increase priority */
6322 if (param->sched_priority > p->rt_priority &&
6323 param->sched_priority > rlim_rtprio)
6324 return -EPERM;
6325 }
dd41f596
IM
6326 /*
6327 * Like positive nice levels, dont allow tasks to
6328 * move out of SCHED_IDLE either:
6329 */
6330 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6331 return -EPERM;
5fe1d75f 6332
37e4ab3f 6333 /* can't change other user's priorities */
c69e8d9c 6334 if (!check_same_owner(p))
37e4ab3f 6335 return -EPERM;
ca94c442
LP
6336
6337 /* Normal users shall not reset the sched_reset_on_fork flag */
6338 if (p->sched_reset_on_fork && !reset_on_fork)
6339 return -EPERM;
37e4ab3f 6340 }
1da177e4 6341
725aad24 6342 if (user) {
b68aa230 6343#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6344 /*
6345 * Do not allow realtime tasks into groups that have no runtime
6346 * assigned.
6347 */
9a7e0b18
PZ
6348 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6349 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6350 return -EPERM;
b68aa230
PZ
6351#endif
6352
725aad24
JF
6353 retval = security_task_setscheduler(p, policy, param);
6354 if (retval)
6355 return retval;
6356 }
6357
b29739f9
IM
6358 /*
6359 * make sure no PI-waiters arrive (or leave) while we are
6360 * changing the priority of the task:
6361 */
1d615482 6362 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6363 /*
6364 * To be able to change p->policy safely, the apropriate
6365 * runqueue lock must be held.
6366 */
b29739f9 6367 rq = __task_rq_lock(p);
1da177e4
LT
6368 /* recheck policy now with rq lock held */
6369 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6370 policy = oldpolicy = -1;
b29739f9 6371 __task_rq_unlock(rq);
1d615482 6372 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6373 goto recheck;
6374 }
2daa3577 6375 update_rq_clock(rq);
dd41f596 6376 on_rq = p->se.on_rq;
051a1d1a 6377 running = task_current(rq, p);
0e1f3483 6378 if (on_rq)
2e1cb74a 6379 deactivate_task(rq, p, 0);
0e1f3483
HS
6380 if (running)
6381 p->sched_class->put_prev_task(rq, p);
f6b53205 6382
ca94c442
LP
6383 p->sched_reset_on_fork = reset_on_fork;
6384
1da177e4 6385 oldprio = p->prio;
dd41f596 6386 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6387
0e1f3483
HS
6388 if (running)
6389 p->sched_class->set_curr_task(rq);
dd41f596
IM
6390 if (on_rq) {
6391 activate_task(rq, p, 0);
cb469845
SR
6392
6393 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6394 }
b29739f9 6395 __task_rq_unlock(rq);
1d615482 6396 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 6397
95e02ca9
TG
6398 rt_mutex_adjust_pi(p);
6399
1da177e4
LT
6400 return 0;
6401}
961ccddd
RR
6402
6403/**
6404 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6405 * @p: the task in question.
6406 * @policy: new policy.
6407 * @param: structure containing the new RT priority.
6408 *
6409 * NOTE that the task may be already dead.
6410 */
6411int sched_setscheduler(struct task_struct *p, int policy,
6412 struct sched_param *param)
6413{
6414 return __sched_setscheduler(p, policy, param, true);
6415}
1da177e4
LT
6416EXPORT_SYMBOL_GPL(sched_setscheduler);
6417
961ccddd
RR
6418/**
6419 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6420 * @p: the task in question.
6421 * @policy: new policy.
6422 * @param: structure containing the new RT priority.
6423 *
6424 * Just like sched_setscheduler, only don't bother checking if the
6425 * current context has permission. For example, this is needed in
6426 * stop_machine(): we create temporary high priority worker threads,
6427 * but our caller might not have that capability.
6428 */
6429int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6430 struct sched_param *param)
6431{
6432 return __sched_setscheduler(p, policy, param, false);
6433}
6434
95cdf3b7
IM
6435static int
6436do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6437{
1da177e4
LT
6438 struct sched_param lparam;
6439 struct task_struct *p;
36c8b586 6440 int retval;
1da177e4
LT
6441
6442 if (!param || pid < 0)
6443 return -EINVAL;
6444 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6445 return -EFAULT;
5fe1d75f
ON
6446
6447 rcu_read_lock();
6448 retval = -ESRCH;
1da177e4 6449 p = find_process_by_pid(pid);
5fe1d75f
ON
6450 if (p != NULL)
6451 retval = sched_setscheduler(p, policy, &lparam);
6452 rcu_read_unlock();
36c8b586 6453
1da177e4
LT
6454 return retval;
6455}
6456
6457/**
6458 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6459 * @pid: the pid in question.
6460 * @policy: new policy.
6461 * @param: structure containing the new RT priority.
6462 */
5add95d4
HC
6463SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6464 struct sched_param __user *, param)
1da177e4 6465{
c21761f1
JB
6466 /* negative values for policy are not valid */
6467 if (policy < 0)
6468 return -EINVAL;
6469
1da177e4
LT
6470 return do_sched_setscheduler(pid, policy, param);
6471}
6472
6473/**
6474 * sys_sched_setparam - set/change the RT priority of a thread
6475 * @pid: the pid in question.
6476 * @param: structure containing the new RT priority.
6477 */
5add95d4 6478SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6479{
6480 return do_sched_setscheduler(pid, -1, param);
6481}
6482
6483/**
6484 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6485 * @pid: the pid in question.
6486 */
5add95d4 6487SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6488{
36c8b586 6489 struct task_struct *p;
3a5c359a 6490 int retval;
1da177e4
LT
6491
6492 if (pid < 0)
3a5c359a 6493 return -EINVAL;
1da177e4
LT
6494
6495 retval = -ESRCH;
5fe85be0 6496 rcu_read_lock();
1da177e4
LT
6497 p = find_process_by_pid(pid);
6498 if (p) {
6499 retval = security_task_getscheduler(p);
6500 if (!retval)
ca94c442
LP
6501 retval = p->policy
6502 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6503 }
5fe85be0 6504 rcu_read_unlock();
1da177e4
LT
6505 return retval;
6506}
6507
6508/**
ca94c442 6509 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6510 * @pid: the pid in question.
6511 * @param: structure containing the RT priority.
6512 */
5add95d4 6513SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6514{
6515 struct sched_param lp;
36c8b586 6516 struct task_struct *p;
3a5c359a 6517 int retval;
1da177e4
LT
6518
6519 if (!param || pid < 0)
3a5c359a 6520 return -EINVAL;
1da177e4 6521
5fe85be0 6522 rcu_read_lock();
1da177e4
LT
6523 p = find_process_by_pid(pid);
6524 retval = -ESRCH;
6525 if (!p)
6526 goto out_unlock;
6527
6528 retval = security_task_getscheduler(p);
6529 if (retval)
6530 goto out_unlock;
6531
6532 lp.sched_priority = p->rt_priority;
5fe85be0 6533 rcu_read_unlock();
1da177e4
LT
6534
6535 /*
6536 * This one might sleep, we cannot do it with a spinlock held ...
6537 */
6538 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6539
1da177e4
LT
6540 return retval;
6541
6542out_unlock:
5fe85be0 6543 rcu_read_unlock();
1da177e4
LT
6544 return retval;
6545}
6546
96f874e2 6547long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6548{
5a16f3d3 6549 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6550 struct task_struct *p;
6551 int retval;
1da177e4 6552
95402b38 6553 get_online_cpus();
23f5d142 6554 rcu_read_lock();
1da177e4
LT
6555
6556 p = find_process_by_pid(pid);
6557 if (!p) {
23f5d142 6558 rcu_read_unlock();
95402b38 6559 put_online_cpus();
1da177e4
LT
6560 return -ESRCH;
6561 }
6562
23f5d142 6563 /* Prevent p going away */
1da177e4 6564 get_task_struct(p);
23f5d142 6565 rcu_read_unlock();
1da177e4 6566
5a16f3d3
RR
6567 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6568 retval = -ENOMEM;
6569 goto out_put_task;
6570 }
6571 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6572 retval = -ENOMEM;
6573 goto out_free_cpus_allowed;
6574 }
1da177e4 6575 retval = -EPERM;
c69e8d9c 6576 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6577 goto out_unlock;
6578
e7834f8f
DQ
6579 retval = security_task_setscheduler(p, 0, NULL);
6580 if (retval)
6581 goto out_unlock;
6582
5a16f3d3
RR
6583 cpuset_cpus_allowed(p, cpus_allowed);
6584 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6585 again:
5a16f3d3 6586 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6587
8707d8b8 6588 if (!retval) {
5a16f3d3
RR
6589 cpuset_cpus_allowed(p, cpus_allowed);
6590 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6591 /*
6592 * We must have raced with a concurrent cpuset
6593 * update. Just reset the cpus_allowed to the
6594 * cpuset's cpus_allowed
6595 */
5a16f3d3 6596 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6597 goto again;
6598 }
6599 }
1da177e4 6600out_unlock:
5a16f3d3
RR
6601 free_cpumask_var(new_mask);
6602out_free_cpus_allowed:
6603 free_cpumask_var(cpus_allowed);
6604out_put_task:
1da177e4 6605 put_task_struct(p);
95402b38 6606 put_online_cpus();
1da177e4
LT
6607 return retval;
6608}
6609
6610static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6611 struct cpumask *new_mask)
1da177e4 6612{
96f874e2
RR
6613 if (len < cpumask_size())
6614 cpumask_clear(new_mask);
6615 else if (len > cpumask_size())
6616 len = cpumask_size();
6617
1da177e4
LT
6618 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6619}
6620
6621/**
6622 * sys_sched_setaffinity - set the cpu affinity of a process
6623 * @pid: pid of the process
6624 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6625 * @user_mask_ptr: user-space pointer to the new cpu mask
6626 */
5add95d4
HC
6627SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6628 unsigned long __user *, user_mask_ptr)
1da177e4 6629{
5a16f3d3 6630 cpumask_var_t new_mask;
1da177e4
LT
6631 int retval;
6632
5a16f3d3
RR
6633 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6634 return -ENOMEM;
1da177e4 6635
5a16f3d3
RR
6636 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6637 if (retval == 0)
6638 retval = sched_setaffinity(pid, new_mask);
6639 free_cpumask_var(new_mask);
6640 return retval;
1da177e4
LT
6641}
6642
96f874e2 6643long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6644{
36c8b586 6645 struct task_struct *p;
31605683
TG
6646 unsigned long flags;
6647 struct rq *rq;
1da177e4 6648 int retval;
1da177e4 6649
95402b38 6650 get_online_cpus();
23f5d142 6651 rcu_read_lock();
1da177e4
LT
6652
6653 retval = -ESRCH;
6654 p = find_process_by_pid(pid);
6655 if (!p)
6656 goto out_unlock;
6657
e7834f8f
DQ
6658 retval = security_task_getscheduler(p);
6659 if (retval)
6660 goto out_unlock;
6661
31605683 6662 rq = task_rq_lock(p, &flags);
96f874e2 6663 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6664 task_rq_unlock(rq, &flags);
1da177e4
LT
6665
6666out_unlock:
23f5d142 6667 rcu_read_unlock();
95402b38 6668 put_online_cpus();
1da177e4 6669
9531b62f 6670 return retval;
1da177e4
LT
6671}
6672
6673/**
6674 * sys_sched_getaffinity - get the cpu affinity of a process
6675 * @pid: pid of the process
6676 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6677 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6678 */
5add95d4
HC
6679SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6680 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6681{
6682 int ret;
f17c8607 6683 cpumask_var_t mask;
1da177e4 6684
f17c8607 6685 if (len < cpumask_size())
1da177e4
LT
6686 return -EINVAL;
6687
f17c8607
RR
6688 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6689 return -ENOMEM;
1da177e4 6690
f17c8607
RR
6691 ret = sched_getaffinity(pid, mask);
6692 if (ret == 0) {
6693 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6694 ret = -EFAULT;
6695 else
6696 ret = cpumask_size();
6697 }
6698 free_cpumask_var(mask);
1da177e4 6699
f17c8607 6700 return ret;
1da177e4
LT
6701}
6702
6703/**
6704 * sys_sched_yield - yield the current processor to other threads.
6705 *
dd41f596
IM
6706 * This function yields the current CPU to other tasks. If there are no
6707 * other threads running on this CPU then this function will return.
1da177e4 6708 */
5add95d4 6709SYSCALL_DEFINE0(sched_yield)
1da177e4 6710{
70b97a7f 6711 struct rq *rq = this_rq_lock();
1da177e4 6712
2d72376b 6713 schedstat_inc(rq, yld_count);
4530d7ab 6714 current->sched_class->yield_task(rq);
1da177e4
LT
6715
6716 /*
6717 * Since we are going to call schedule() anyway, there's
6718 * no need to preempt or enable interrupts:
6719 */
6720 __release(rq->lock);
8a25d5de 6721 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 6722 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
6723 preempt_enable_no_resched();
6724
6725 schedule();
6726
6727 return 0;
6728}
6729
d86ee480
PZ
6730static inline int should_resched(void)
6731{
6732 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6733}
6734
e7b38404 6735static void __cond_resched(void)
1da177e4 6736{
e7aaaa69
FW
6737 add_preempt_count(PREEMPT_ACTIVE);
6738 schedule();
6739 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6740}
6741
02b67cc3 6742int __sched _cond_resched(void)
1da177e4 6743{
d86ee480 6744 if (should_resched()) {
1da177e4
LT
6745 __cond_resched();
6746 return 1;
6747 }
6748 return 0;
6749}
02b67cc3 6750EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6751
6752/*
613afbf8 6753 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6754 * call schedule, and on return reacquire the lock.
6755 *
41a2d6cf 6756 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6757 * operations here to prevent schedule() from being called twice (once via
6758 * spin_unlock(), once by hand).
6759 */
613afbf8 6760int __cond_resched_lock(spinlock_t *lock)
1da177e4 6761{
d86ee480 6762 int resched = should_resched();
6df3cecb
JK
6763 int ret = 0;
6764
f607c668
PZ
6765 lockdep_assert_held(lock);
6766
95c354fe 6767 if (spin_needbreak(lock) || resched) {
1da177e4 6768 spin_unlock(lock);
d86ee480 6769 if (resched)
95c354fe
NP
6770 __cond_resched();
6771 else
6772 cpu_relax();
6df3cecb 6773 ret = 1;
1da177e4 6774 spin_lock(lock);
1da177e4 6775 }
6df3cecb 6776 return ret;
1da177e4 6777}
613afbf8 6778EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6779
613afbf8 6780int __sched __cond_resched_softirq(void)
1da177e4
LT
6781{
6782 BUG_ON(!in_softirq());
6783
d86ee480 6784 if (should_resched()) {
98d82567 6785 local_bh_enable();
1da177e4
LT
6786 __cond_resched();
6787 local_bh_disable();
6788 return 1;
6789 }
6790 return 0;
6791}
613afbf8 6792EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6793
1da177e4
LT
6794/**
6795 * yield - yield the current processor to other threads.
6796 *
72fd4a35 6797 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6798 * thread runnable and calls sys_sched_yield().
6799 */
6800void __sched yield(void)
6801{
6802 set_current_state(TASK_RUNNING);
6803 sys_sched_yield();
6804}
1da177e4
LT
6805EXPORT_SYMBOL(yield);
6806
6807/*
41a2d6cf 6808 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6809 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6810 */
6811void __sched io_schedule(void)
6812{
54d35f29 6813 struct rq *rq = raw_rq();
1da177e4 6814
0ff92245 6815 delayacct_blkio_start();
1da177e4 6816 atomic_inc(&rq->nr_iowait);
8f0dfc34 6817 current->in_iowait = 1;
1da177e4 6818 schedule();
8f0dfc34 6819 current->in_iowait = 0;
1da177e4 6820 atomic_dec(&rq->nr_iowait);
0ff92245 6821 delayacct_blkio_end();
1da177e4 6822}
1da177e4
LT
6823EXPORT_SYMBOL(io_schedule);
6824
6825long __sched io_schedule_timeout(long timeout)
6826{
54d35f29 6827 struct rq *rq = raw_rq();
1da177e4
LT
6828 long ret;
6829
0ff92245 6830 delayacct_blkio_start();
1da177e4 6831 atomic_inc(&rq->nr_iowait);
8f0dfc34 6832 current->in_iowait = 1;
1da177e4 6833 ret = schedule_timeout(timeout);
8f0dfc34 6834 current->in_iowait = 0;
1da177e4 6835 atomic_dec(&rq->nr_iowait);
0ff92245 6836 delayacct_blkio_end();
1da177e4
LT
6837 return ret;
6838}
6839
6840/**
6841 * sys_sched_get_priority_max - return maximum RT priority.
6842 * @policy: scheduling class.
6843 *
6844 * this syscall returns the maximum rt_priority that can be used
6845 * by a given scheduling class.
6846 */
5add95d4 6847SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6848{
6849 int ret = -EINVAL;
6850
6851 switch (policy) {
6852 case SCHED_FIFO:
6853 case SCHED_RR:
6854 ret = MAX_USER_RT_PRIO-1;
6855 break;
6856 case SCHED_NORMAL:
b0a9499c 6857 case SCHED_BATCH:
dd41f596 6858 case SCHED_IDLE:
1da177e4
LT
6859 ret = 0;
6860 break;
6861 }
6862 return ret;
6863}
6864
6865/**
6866 * sys_sched_get_priority_min - return minimum RT priority.
6867 * @policy: scheduling class.
6868 *
6869 * this syscall returns the minimum rt_priority that can be used
6870 * by a given scheduling class.
6871 */
5add95d4 6872SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6873{
6874 int ret = -EINVAL;
6875
6876 switch (policy) {
6877 case SCHED_FIFO:
6878 case SCHED_RR:
6879 ret = 1;
6880 break;
6881 case SCHED_NORMAL:
b0a9499c 6882 case SCHED_BATCH:
dd41f596 6883 case SCHED_IDLE:
1da177e4
LT
6884 ret = 0;
6885 }
6886 return ret;
6887}
6888
6889/**
6890 * sys_sched_rr_get_interval - return the default timeslice of a process.
6891 * @pid: pid of the process.
6892 * @interval: userspace pointer to the timeslice value.
6893 *
6894 * this syscall writes the default timeslice value of a given process
6895 * into the user-space timespec buffer. A value of '0' means infinity.
6896 */
17da2bd9 6897SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6898 struct timespec __user *, interval)
1da177e4 6899{
36c8b586 6900 struct task_struct *p;
a4ec24b4 6901 unsigned int time_slice;
dba091b9
TG
6902 unsigned long flags;
6903 struct rq *rq;
3a5c359a 6904 int retval;
1da177e4 6905 struct timespec t;
1da177e4
LT
6906
6907 if (pid < 0)
3a5c359a 6908 return -EINVAL;
1da177e4
LT
6909
6910 retval = -ESRCH;
1a551ae7 6911 rcu_read_lock();
1da177e4
LT
6912 p = find_process_by_pid(pid);
6913 if (!p)
6914 goto out_unlock;
6915
6916 retval = security_task_getscheduler(p);
6917 if (retval)
6918 goto out_unlock;
6919
dba091b9
TG
6920 rq = task_rq_lock(p, &flags);
6921 time_slice = p->sched_class->get_rr_interval(rq, p);
6922 task_rq_unlock(rq, &flags);
a4ec24b4 6923
1a551ae7 6924 rcu_read_unlock();
a4ec24b4 6925 jiffies_to_timespec(time_slice, &t);
1da177e4 6926 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6927 return retval;
3a5c359a 6928
1da177e4 6929out_unlock:
1a551ae7 6930 rcu_read_unlock();
1da177e4
LT
6931 return retval;
6932}
6933
7c731e0a 6934static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6935
82a1fcb9 6936void sched_show_task(struct task_struct *p)
1da177e4 6937{
1da177e4 6938 unsigned long free = 0;
36c8b586 6939 unsigned state;
1da177e4 6940
1da177e4 6941 state = p->state ? __ffs(p->state) + 1 : 0;
663997d4 6942 pr_info("%-13.13s %c", p->comm,
2ed6e34f 6943 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6944#if BITS_PER_LONG == 32
1da177e4 6945 if (state == TASK_RUNNING)
663997d4 6946 pr_cont(" running ");
1da177e4 6947 else
663997d4 6948 pr_cont(" %08lx ", thread_saved_pc(p));
1da177e4
LT
6949#else
6950 if (state == TASK_RUNNING)
663997d4 6951 pr_cont(" running task ");
1da177e4 6952 else
663997d4 6953 pr_cont(" %016lx ", thread_saved_pc(p));
1da177e4
LT
6954#endif
6955#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6956 free = stack_not_used(p);
1da177e4 6957#endif
663997d4 6958 pr_cont("%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6959 task_pid_nr(p), task_pid_nr(p->real_parent),
6960 (unsigned long)task_thread_info(p)->flags);
1da177e4 6961
5fb5e6de 6962 show_stack(p, NULL);
1da177e4
LT
6963}
6964
e59e2ae2 6965void show_state_filter(unsigned long state_filter)
1da177e4 6966{
36c8b586 6967 struct task_struct *g, *p;
1da177e4 6968
4bd77321 6969#if BITS_PER_LONG == 32
663997d4 6970 pr_info(" task PC stack pid father\n");
1da177e4 6971#else
663997d4 6972 pr_info(" task PC stack pid father\n");
1da177e4
LT
6973#endif
6974 read_lock(&tasklist_lock);
6975 do_each_thread(g, p) {
6976 /*
6977 * reset the NMI-timeout, listing all files on a slow
6978 * console might take alot of time:
6979 */
6980 touch_nmi_watchdog();
39bc89fd 6981 if (!state_filter || (p->state & state_filter))
82a1fcb9 6982 sched_show_task(p);
1da177e4
LT
6983 } while_each_thread(g, p);
6984
04c9167f
JF
6985 touch_all_softlockup_watchdogs();
6986
dd41f596
IM
6987#ifdef CONFIG_SCHED_DEBUG
6988 sysrq_sched_debug_show();
6989#endif
1da177e4 6990 read_unlock(&tasklist_lock);
e59e2ae2
IM
6991 /*
6992 * Only show locks if all tasks are dumped:
6993 */
93335a21 6994 if (!state_filter)
e59e2ae2 6995 debug_show_all_locks();
1da177e4
LT
6996}
6997
1df21055
IM
6998void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6999{
dd41f596 7000 idle->sched_class = &idle_sched_class;
1df21055
IM
7001}
7002
f340c0d1
IM
7003/**
7004 * init_idle - set up an idle thread for a given CPU
7005 * @idle: task in question
7006 * @cpu: cpu the idle task belongs to
7007 *
7008 * NOTE: this function does not set the idle thread's NEED_RESCHED
7009 * flag, to make booting more robust.
7010 */
5c1e1767 7011void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 7012{
70b97a7f 7013 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7014 unsigned long flags;
7015
05fa785c 7016 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 7017
dd41f596 7018 __sched_fork(idle);
06b83b5f 7019 idle->state = TASK_RUNNING;
dd41f596
IM
7020 idle->se.exec_start = sched_clock();
7021
96f874e2 7022 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7023 __set_task_cpu(idle, cpu);
1da177e4 7024
1da177e4 7025 rq->curr = rq->idle = idle;
4866cde0
NP
7026#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7027 idle->oncpu = 1;
7028#endif
05fa785c 7029 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7030
7031 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7032#if defined(CONFIG_PREEMPT)
7033 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7034#else
a1261f54 7035 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7036#endif
dd41f596
IM
7037 /*
7038 * The idle tasks have their own, simple scheduling class:
7039 */
7040 idle->sched_class = &idle_sched_class;
fb52607a 7041 ftrace_graph_init_task(idle);
1da177e4
LT
7042}
7043
7044/*
7045 * In a system that switches off the HZ timer nohz_cpu_mask
7046 * indicates which cpus entered this state. This is used
7047 * in the rcu update to wait only for active cpus. For system
7048 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7049 * always be CPU_BITS_NONE.
1da177e4 7050 */
6a7b3dc3 7051cpumask_var_t nohz_cpu_mask;
1da177e4 7052
19978ca6
IM
7053/*
7054 * Increase the granularity value when there are more CPUs,
7055 * because with more CPUs the 'effective latency' as visible
7056 * to users decreases. But the relationship is not linear,
7057 * so pick a second-best guess by going with the log2 of the
7058 * number of CPUs.
7059 *
7060 * This idea comes from the SD scheduler of Con Kolivas:
7061 */
acb4a848 7062static int get_update_sysctl_factor(void)
19978ca6 7063{
4ca3ef71 7064 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7065 unsigned int factor;
7066
7067 switch (sysctl_sched_tunable_scaling) {
7068 case SCHED_TUNABLESCALING_NONE:
7069 factor = 1;
7070 break;
7071 case SCHED_TUNABLESCALING_LINEAR:
7072 factor = cpus;
7073 break;
7074 case SCHED_TUNABLESCALING_LOG:
7075 default:
7076 factor = 1 + ilog2(cpus);
7077 break;
7078 }
19978ca6 7079
acb4a848
CE
7080 return factor;
7081}
19978ca6 7082
acb4a848
CE
7083static void update_sysctl(void)
7084{
7085 unsigned int factor = get_update_sysctl_factor();
19978ca6 7086
0bcdcf28
CE
7087#define SET_SYSCTL(name) \
7088 (sysctl_##name = (factor) * normalized_sysctl_##name)
7089 SET_SYSCTL(sched_min_granularity);
7090 SET_SYSCTL(sched_latency);
7091 SET_SYSCTL(sched_wakeup_granularity);
7092 SET_SYSCTL(sched_shares_ratelimit);
7093#undef SET_SYSCTL
7094}
55cd5340 7095
0bcdcf28
CE
7096static inline void sched_init_granularity(void)
7097{
7098 update_sysctl();
19978ca6
IM
7099}
7100
1da177e4
LT
7101#ifdef CONFIG_SMP
7102/*
7103 * This is how migration works:
7104 *
70b97a7f 7105 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7106 * runqueue and wake up that CPU's migration thread.
7107 * 2) we down() the locked semaphore => thread blocks.
7108 * 3) migration thread wakes up (implicitly it forces the migrated
7109 * thread off the CPU)
7110 * 4) it gets the migration request and checks whether the migrated
7111 * task is still in the wrong runqueue.
7112 * 5) if it's in the wrong runqueue then the migration thread removes
7113 * it and puts it into the right queue.
7114 * 6) migration thread up()s the semaphore.
7115 * 7) we wake up and the migration is done.
7116 */
7117
7118/*
7119 * Change a given task's CPU affinity. Migrate the thread to a
7120 * proper CPU and schedule it away if the CPU it's executing on
7121 * is removed from the allowed bitmask.
7122 *
7123 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7124 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7125 * call is not atomic; no spinlocks may be held.
7126 */
96f874e2 7127int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7128{
70b97a7f 7129 struct migration_req req;
1da177e4 7130 unsigned long flags;
70b97a7f 7131 struct rq *rq;
48f24c4d 7132 int ret = 0;
1da177e4 7133
e2912009
PZ
7134 /*
7135 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7136 * the ->cpus_allowed mask from under waking tasks, which would be
7137 * possible when we change rq->lock in ttwu(), so synchronize against
7138 * TASK_WAKING to avoid that.
7139 */
7140again:
7141 while (p->state == TASK_WAKING)
7142 cpu_relax();
7143
1da177e4 7144 rq = task_rq_lock(p, &flags);
e2912009
PZ
7145
7146 if (p->state == TASK_WAKING) {
7147 task_rq_unlock(rq, &flags);
7148 goto again;
7149 }
7150
6ad4c188 7151 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7152 ret = -EINVAL;
7153 goto out;
7154 }
7155
9985b0ba 7156 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7157 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7158 ret = -EINVAL;
7159 goto out;
7160 }
7161
73fe6aae 7162 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7163 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7164 else {
96f874e2
RR
7165 cpumask_copy(&p->cpus_allowed, new_mask);
7166 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7167 }
7168
1da177e4 7169 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7170 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7171 goto out;
7172
6ad4c188 7173 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7174 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7175 struct task_struct *mt = rq->migration_thread;
7176
7177 get_task_struct(mt);
1da177e4
LT
7178 task_rq_unlock(rq, &flags);
7179 wake_up_process(rq->migration_thread);
693525e3 7180 put_task_struct(mt);
1da177e4
LT
7181 wait_for_completion(&req.done);
7182 tlb_migrate_finish(p->mm);
7183 return 0;
7184 }
7185out:
7186 task_rq_unlock(rq, &flags);
48f24c4d 7187
1da177e4
LT
7188 return ret;
7189}
cd8ba7cd 7190EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7191
7192/*
41a2d6cf 7193 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7194 * this because either it can't run here any more (set_cpus_allowed()
7195 * away from this CPU, or CPU going down), or because we're
7196 * attempting to rebalance this task on exec (sched_exec).
7197 *
7198 * So we race with normal scheduler movements, but that's OK, as long
7199 * as the task is no longer on this CPU.
efc30814
KK
7200 *
7201 * Returns non-zero if task was successfully migrated.
1da177e4 7202 */
efc30814 7203static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7204{
70b97a7f 7205 struct rq *rq_dest, *rq_src;
e2912009 7206 int ret = 0;
1da177e4 7207
e761b772 7208 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7209 return ret;
1da177e4
LT
7210
7211 rq_src = cpu_rq(src_cpu);
7212 rq_dest = cpu_rq(dest_cpu);
7213
7214 double_rq_lock(rq_src, rq_dest);
7215 /* Already moved. */
7216 if (task_cpu(p) != src_cpu)
b1e38734 7217 goto done;
1da177e4 7218 /* Affinity changed (again). */
96f874e2 7219 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7220 goto fail;
1da177e4 7221
e2912009
PZ
7222 /*
7223 * If we're not on a rq, the next wake-up will ensure we're
7224 * placed properly.
7225 */
7226 if (p->se.on_rq) {
2e1cb74a 7227 deactivate_task(rq_src, p, 0);
e2912009 7228 set_task_cpu(p, dest_cpu);
dd41f596 7229 activate_task(rq_dest, p, 0);
15afe09b 7230 check_preempt_curr(rq_dest, p, 0);
1da177e4 7231 }
b1e38734 7232done:
efc30814 7233 ret = 1;
b1e38734 7234fail:
1da177e4 7235 double_rq_unlock(rq_src, rq_dest);
efc30814 7236 return ret;
1da177e4
LT
7237}
7238
03b042bf
PM
7239#define RCU_MIGRATION_IDLE 0
7240#define RCU_MIGRATION_NEED_QS 1
7241#define RCU_MIGRATION_GOT_QS 2
7242#define RCU_MIGRATION_MUST_SYNC 3
7243
1da177e4
LT
7244/*
7245 * migration_thread - this is a highprio system thread that performs
7246 * thread migration by bumping thread off CPU then 'pushing' onto
7247 * another runqueue.
7248 */
95cdf3b7 7249static int migration_thread(void *data)
1da177e4 7250{
03b042bf 7251 int badcpu;
1da177e4 7252 int cpu = (long)data;
70b97a7f 7253 struct rq *rq;
1da177e4
LT
7254
7255 rq = cpu_rq(cpu);
7256 BUG_ON(rq->migration_thread != current);
7257
7258 set_current_state(TASK_INTERRUPTIBLE);
7259 while (!kthread_should_stop()) {
70b97a7f 7260 struct migration_req *req;
1da177e4 7261 struct list_head *head;
1da177e4 7262
05fa785c 7263 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
7264
7265 if (cpu_is_offline(cpu)) {
05fa785c 7266 raw_spin_unlock_irq(&rq->lock);
371cbb38 7267 break;
1da177e4
LT
7268 }
7269
7270 if (rq->active_balance) {
7271 active_load_balance(rq, cpu);
7272 rq->active_balance = 0;
7273 }
7274
7275 head = &rq->migration_queue;
7276
7277 if (list_empty(head)) {
05fa785c 7278 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
7279 schedule();
7280 set_current_state(TASK_INTERRUPTIBLE);
7281 continue;
7282 }
70b97a7f 7283 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7284 list_del_init(head->next);
7285
03b042bf 7286 if (req->task != NULL) {
05fa785c 7287 raw_spin_unlock(&rq->lock);
03b042bf
PM
7288 __migrate_task(req->task, cpu, req->dest_cpu);
7289 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7290 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 7291 raw_spin_unlock(&rq->lock);
03b042bf
PM
7292 } else {
7293 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 7294 raw_spin_unlock(&rq->lock);
03b042bf
PM
7295 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7296 }
674311d5 7297 local_irq_enable();
1da177e4
LT
7298
7299 complete(&req->done);
7300 }
7301 __set_current_state(TASK_RUNNING);
1da177e4 7302
1da177e4
LT
7303 return 0;
7304}
7305
7306#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7307
7308static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7309{
7310 int ret;
7311
7312 local_irq_disable();
7313 ret = __migrate_task(p, src_cpu, dest_cpu);
7314 local_irq_enable();
7315 return ret;
7316}
7317
054b9108 7318/*
3a4fa0a2 7319 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7320 */
48f24c4d 7321static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7322{
70b97a7f 7323 int dest_cpu;
e76bd8d9
RR
7324
7325again:
5da9a0fb 7326 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 7327
e76bd8d9
RR
7328 /* It can have affinity changed while we were choosing. */
7329 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7330 goto again;
1da177e4
LT
7331}
7332
7333/*
7334 * While a dead CPU has no uninterruptible tasks queued at this point,
7335 * it might still have a nonzero ->nr_uninterruptible counter, because
7336 * for performance reasons the counter is not stricly tracking tasks to
7337 * their home CPUs. So we just add the counter to another CPU's counter,
7338 * to keep the global sum constant after CPU-down:
7339 */
70b97a7f 7340static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7341{
6ad4c188 7342 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7343 unsigned long flags;
7344
7345 local_irq_save(flags);
7346 double_rq_lock(rq_src, rq_dest);
7347 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7348 rq_src->nr_uninterruptible = 0;
7349 double_rq_unlock(rq_src, rq_dest);
7350 local_irq_restore(flags);
7351}
7352
7353/* Run through task list and migrate tasks from the dead cpu. */
7354static void migrate_live_tasks(int src_cpu)
7355{
48f24c4d 7356 struct task_struct *p, *t;
1da177e4 7357
f7b4cddc 7358 read_lock(&tasklist_lock);
1da177e4 7359
48f24c4d
IM
7360 do_each_thread(t, p) {
7361 if (p == current)
1da177e4
LT
7362 continue;
7363
48f24c4d
IM
7364 if (task_cpu(p) == src_cpu)
7365 move_task_off_dead_cpu(src_cpu, p);
7366 } while_each_thread(t, p);
1da177e4 7367
f7b4cddc 7368 read_unlock(&tasklist_lock);
1da177e4
LT
7369}
7370
dd41f596
IM
7371/*
7372 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7373 * It does so by boosting its priority to highest possible.
7374 * Used by CPU offline code.
1da177e4
LT
7375 */
7376void sched_idle_next(void)
7377{
48f24c4d 7378 int this_cpu = smp_processor_id();
70b97a7f 7379 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7380 struct task_struct *p = rq->idle;
7381 unsigned long flags;
7382
7383 /* cpu has to be offline */
48f24c4d 7384 BUG_ON(cpu_online(this_cpu));
1da177e4 7385
48f24c4d
IM
7386 /*
7387 * Strictly not necessary since rest of the CPUs are stopped by now
7388 * and interrupts disabled on the current cpu.
1da177e4 7389 */
05fa785c 7390 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 7391
dd41f596 7392 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7393
94bc9a7b
DA
7394 update_rq_clock(rq);
7395 activate_task(rq, p, 0);
1da177e4 7396
05fa785c 7397 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7398}
7399
48f24c4d
IM
7400/*
7401 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7402 * offline.
7403 */
7404void idle_task_exit(void)
7405{
7406 struct mm_struct *mm = current->active_mm;
7407
7408 BUG_ON(cpu_online(smp_processor_id()));
7409
7410 if (mm != &init_mm)
7411 switch_mm(mm, &init_mm, current);
7412 mmdrop(mm);
7413}
7414
054b9108 7415/* called under rq->lock with disabled interrupts */
36c8b586 7416static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7417{
70b97a7f 7418 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7419
7420 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7421 BUG_ON(!p->exit_state);
1da177e4
LT
7422
7423 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7424 BUG_ON(p->state == TASK_DEAD);
1da177e4 7425
48f24c4d 7426 get_task_struct(p);
1da177e4
LT
7427
7428 /*
7429 * Drop lock around migration; if someone else moves it,
41a2d6cf 7430 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7431 * fine.
7432 */
05fa785c 7433 raw_spin_unlock_irq(&rq->lock);
48f24c4d 7434 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 7435 raw_spin_lock_irq(&rq->lock);
1da177e4 7436
48f24c4d 7437 put_task_struct(p);
1da177e4
LT
7438}
7439
7440/* release_task() removes task from tasklist, so we won't find dead tasks. */
7441static void migrate_dead_tasks(unsigned int dead_cpu)
7442{
70b97a7f 7443 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7444 struct task_struct *next;
48f24c4d 7445
dd41f596
IM
7446 for ( ; ; ) {
7447 if (!rq->nr_running)
7448 break;
a8e504d2 7449 update_rq_clock(rq);
b67802ea 7450 next = pick_next_task(rq);
dd41f596
IM
7451 if (!next)
7452 break;
79c53799 7453 next->sched_class->put_prev_task(rq, next);
dd41f596 7454 migrate_dead(dead_cpu, next);
e692ab53 7455
1da177e4
LT
7456 }
7457}
dce48a84
TG
7458
7459/*
7460 * remove the tasks which were accounted by rq from calc_load_tasks.
7461 */
7462static void calc_global_load_remove(struct rq *rq)
7463{
7464 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7465 rq->calc_load_active = 0;
dce48a84 7466}
1da177e4
LT
7467#endif /* CONFIG_HOTPLUG_CPU */
7468
e692ab53
NP
7469#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7470
7471static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7472 {
7473 .procname = "sched_domain",
c57baf1e 7474 .mode = 0555,
e0361851 7475 },
56992309 7476 {}
e692ab53
NP
7477};
7478
7479static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7480 {
7481 .procname = "kernel",
c57baf1e 7482 .mode = 0555,
e0361851
AD
7483 .child = sd_ctl_dir,
7484 },
56992309 7485 {}
e692ab53
NP
7486};
7487
7488static struct ctl_table *sd_alloc_ctl_entry(int n)
7489{
7490 struct ctl_table *entry =
5cf9f062 7491 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7492
e692ab53
NP
7493 return entry;
7494}
7495
6382bc90
MM
7496static void sd_free_ctl_entry(struct ctl_table **tablep)
7497{
cd790076 7498 struct ctl_table *entry;
6382bc90 7499
cd790076
MM
7500 /*
7501 * In the intermediate directories, both the child directory and
7502 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7503 * will always be set. In the lowest directory the names are
cd790076
MM
7504 * static strings and all have proc handlers.
7505 */
7506 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7507 if (entry->child)
7508 sd_free_ctl_entry(&entry->child);
cd790076
MM
7509 if (entry->proc_handler == NULL)
7510 kfree(entry->procname);
7511 }
6382bc90
MM
7512
7513 kfree(*tablep);
7514 *tablep = NULL;
7515}
7516
e692ab53 7517static void
e0361851 7518set_table_entry(struct ctl_table *entry,
e692ab53
NP
7519 const char *procname, void *data, int maxlen,
7520 mode_t mode, proc_handler *proc_handler)
7521{
e692ab53
NP
7522 entry->procname = procname;
7523 entry->data = data;
7524 entry->maxlen = maxlen;
7525 entry->mode = mode;
7526 entry->proc_handler = proc_handler;
7527}
7528
7529static struct ctl_table *
7530sd_alloc_ctl_domain_table(struct sched_domain *sd)
7531{
a5d8c348 7532 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7533
ad1cdc1d
MM
7534 if (table == NULL)
7535 return NULL;
7536
e0361851 7537 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7538 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7539 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7540 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7541 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7542 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7543 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7544 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7545 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7546 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7547 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7548 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7549 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7550 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7551 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7552 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7553 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7554 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7555 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7556 &sd->cache_nice_tries,
7557 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7558 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7559 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7560 set_table_entry(&table[11], "name", sd->name,
7561 CORENAME_MAX_SIZE, 0444, proc_dostring);
7562 /* &table[12] is terminator */
e692ab53
NP
7563
7564 return table;
7565}
7566
9a4e7159 7567static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7568{
7569 struct ctl_table *entry, *table;
7570 struct sched_domain *sd;
7571 int domain_num = 0, i;
7572 char buf[32];
7573
7574 for_each_domain(cpu, sd)
7575 domain_num++;
7576 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7577 if (table == NULL)
7578 return NULL;
e692ab53
NP
7579
7580 i = 0;
7581 for_each_domain(cpu, sd) {
7582 snprintf(buf, 32, "domain%d", i);
e692ab53 7583 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7584 entry->mode = 0555;
e692ab53
NP
7585 entry->child = sd_alloc_ctl_domain_table(sd);
7586 entry++;
7587 i++;
7588 }
7589 return table;
7590}
7591
7592static struct ctl_table_header *sd_sysctl_header;
6382bc90 7593static void register_sched_domain_sysctl(void)
e692ab53 7594{
6ad4c188 7595 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7596 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7597 char buf[32];
7598
7378547f
MM
7599 WARN_ON(sd_ctl_dir[0].child);
7600 sd_ctl_dir[0].child = entry;
7601
ad1cdc1d
MM
7602 if (entry == NULL)
7603 return;
7604
6ad4c188 7605 for_each_possible_cpu(i) {
e692ab53 7606 snprintf(buf, 32, "cpu%d", i);
e692ab53 7607 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7608 entry->mode = 0555;
e692ab53 7609 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7610 entry++;
e692ab53 7611 }
7378547f
MM
7612
7613 WARN_ON(sd_sysctl_header);
e692ab53
NP
7614 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7615}
6382bc90 7616
7378547f 7617/* may be called multiple times per register */
6382bc90
MM
7618static void unregister_sched_domain_sysctl(void)
7619{
7378547f
MM
7620 if (sd_sysctl_header)
7621 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7622 sd_sysctl_header = NULL;
7378547f
MM
7623 if (sd_ctl_dir[0].child)
7624 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7625}
e692ab53 7626#else
6382bc90
MM
7627static void register_sched_domain_sysctl(void)
7628{
7629}
7630static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7631{
7632}
7633#endif
7634
1f11eb6a
GH
7635static void set_rq_online(struct rq *rq)
7636{
7637 if (!rq->online) {
7638 const struct sched_class *class;
7639
c6c4927b 7640 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7641 rq->online = 1;
7642
7643 for_each_class(class) {
7644 if (class->rq_online)
7645 class->rq_online(rq);
7646 }
7647 }
7648}
7649
7650static void set_rq_offline(struct rq *rq)
7651{
7652 if (rq->online) {
7653 const struct sched_class *class;
7654
7655 for_each_class(class) {
7656 if (class->rq_offline)
7657 class->rq_offline(rq);
7658 }
7659
c6c4927b 7660 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7661 rq->online = 0;
7662 }
7663}
7664
1da177e4
LT
7665/*
7666 * migration_call - callback that gets triggered when a CPU is added.
7667 * Here we can start up the necessary migration thread for the new CPU.
7668 */
48f24c4d
IM
7669static int __cpuinit
7670migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7671{
1da177e4 7672 struct task_struct *p;
48f24c4d 7673 int cpu = (long)hcpu;
1da177e4 7674 unsigned long flags;
70b97a7f 7675 struct rq *rq;
1da177e4
LT
7676
7677 switch (action) {
5be9361c 7678
1da177e4 7679 case CPU_UP_PREPARE:
8bb78442 7680 case CPU_UP_PREPARE_FROZEN:
dd41f596 7681 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7682 if (IS_ERR(p))
7683 return NOTIFY_BAD;
1da177e4
LT
7684 kthread_bind(p, cpu);
7685 /* Must be high prio: stop_machine expects to yield to it. */
7686 rq = task_rq_lock(p, &flags);
dd41f596 7687 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7688 task_rq_unlock(rq, &flags);
371cbb38 7689 get_task_struct(p);
1da177e4 7690 cpu_rq(cpu)->migration_thread = p;
a468d389 7691 rq->calc_load_update = calc_load_update;
1da177e4 7692 break;
48f24c4d 7693
1da177e4 7694 case CPU_ONLINE:
8bb78442 7695 case CPU_ONLINE_FROZEN:
3a4fa0a2 7696 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7697 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7698
7699 /* Update our root-domain */
7700 rq = cpu_rq(cpu);
05fa785c 7701 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 7702 if (rq->rd) {
c6c4927b 7703 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7704
7705 set_rq_online(rq);
1f94ef59 7706 }
05fa785c 7707 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7708 break;
48f24c4d 7709
1da177e4
LT
7710#ifdef CONFIG_HOTPLUG_CPU
7711 case CPU_UP_CANCELED:
8bb78442 7712 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7713 if (!cpu_rq(cpu)->migration_thread)
7714 break;
41a2d6cf 7715 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7716 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7717 cpumask_any(cpu_online_mask));
1da177e4 7718 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7719 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7720 cpu_rq(cpu)->migration_thread = NULL;
7721 break;
48f24c4d 7722
1da177e4 7723 case CPU_DEAD:
8bb78442 7724 case CPU_DEAD_FROZEN:
470fd646 7725 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7726 migrate_live_tasks(cpu);
7727 rq = cpu_rq(cpu);
7728 kthread_stop(rq->migration_thread);
371cbb38 7729 put_task_struct(rq->migration_thread);
1da177e4
LT
7730 rq->migration_thread = NULL;
7731 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 7732 raw_spin_lock_irq(&rq->lock);
a8e504d2 7733 update_rq_clock(rq);
2e1cb74a 7734 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7735 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7736 rq->idle->sched_class = &idle_sched_class;
1da177e4 7737 migrate_dead_tasks(cpu);
05fa785c 7738 raw_spin_unlock_irq(&rq->lock);
470fd646 7739 cpuset_unlock();
1da177e4
LT
7740 migrate_nr_uninterruptible(rq);
7741 BUG_ON(rq->nr_running != 0);
dce48a84 7742 calc_global_load_remove(rq);
41a2d6cf
IM
7743 /*
7744 * No need to migrate the tasks: it was best-effort if
7745 * they didn't take sched_hotcpu_mutex. Just wake up
7746 * the requestors.
7747 */
05fa785c 7748 raw_spin_lock_irq(&rq->lock);
1da177e4 7749 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7750 struct migration_req *req;
7751
1da177e4 7752 req = list_entry(rq->migration_queue.next,
70b97a7f 7753 struct migration_req, list);
1da177e4 7754 list_del_init(&req->list);
05fa785c 7755 raw_spin_unlock_irq(&rq->lock);
1da177e4 7756 complete(&req->done);
05fa785c 7757 raw_spin_lock_irq(&rq->lock);
1da177e4 7758 }
05fa785c 7759 raw_spin_unlock_irq(&rq->lock);
1da177e4 7760 break;
57d885fe 7761
08f503b0
GH
7762 case CPU_DYING:
7763 case CPU_DYING_FROZEN:
57d885fe
GH
7764 /* Update our root-domain */
7765 rq = cpu_rq(cpu);
05fa785c 7766 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 7767 if (rq->rd) {
c6c4927b 7768 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7769 set_rq_offline(rq);
57d885fe 7770 }
05fa785c 7771 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 7772 break;
1da177e4
LT
7773#endif
7774 }
7775 return NOTIFY_OK;
7776}
7777
f38b0820
PM
7778/*
7779 * Register at high priority so that task migration (migrate_all_tasks)
7780 * happens before everything else. This has to be lower priority than
cdd6c482 7781 * the notifier in the perf_event subsystem, though.
1da177e4 7782 */
26c2143b 7783static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7784 .notifier_call = migration_call,
7785 .priority = 10
7786};
7787
7babe8db 7788static int __init migration_init(void)
1da177e4
LT
7789{
7790 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7791 int err;
48f24c4d
IM
7792
7793 /* Start one for the boot CPU: */
07dccf33
AM
7794 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7795 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7796 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7797 register_cpu_notifier(&migration_notifier);
7babe8db 7798
a004cd42 7799 return 0;
1da177e4 7800}
7babe8db 7801early_initcall(migration_init);
1da177e4
LT
7802#endif
7803
7804#ifdef CONFIG_SMP
476f3534 7805
3e9830dc 7806#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7807
f6630114
MT
7808static __read_mostly int sched_domain_debug_enabled;
7809
7810static int __init sched_domain_debug_setup(char *str)
7811{
7812 sched_domain_debug_enabled = 1;
7813
7814 return 0;
7815}
7816early_param("sched_debug", sched_domain_debug_setup);
7817
7c16ec58 7818static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7819 struct cpumask *groupmask)
1da177e4 7820{
4dcf6aff 7821 struct sched_group *group = sd->groups;
434d53b0 7822 char str[256];
1da177e4 7823
968ea6d8 7824 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7825 cpumask_clear(groupmask);
4dcf6aff
IM
7826
7827 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7828
7829 if (!(sd->flags & SD_LOAD_BALANCE)) {
663997d4 7830 pr_cont("does not load-balance\n");
4dcf6aff 7831 if (sd->parent)
663997d4 7832 pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
4dcf6aff 7833 return -1;
41c7ce9a
NP
7834 }
7835
663997d4 7836 pr_cont("span %s level %s\n", str, sd->name);
4dcf6aff 7837
758b2cdc 7838 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
663997d4 7839 pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
4dcf6aff 7840 }
758b2cdc 7841 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
663997d4 7842 pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
4dcf6aff 7843 }
1da177e4 7844
4dcf6aff 7845 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7846 do {
4dcf6aff 7847 if (!group) {
663997d4
JP
7848 pr_cont("\n");
7849 pr_err("ERROR: group is NULL\n");
1da177e4
LT
7850 break;
7851 }
7852
18a3885f 7853 if (!group->cpu_power) {
663997d4
JP
7854 pr_cont("\n");
7855 pr_err("ERROR: domain->cpu_power not set\n");
4dcf6aff
IM
7856 break;
7857 }
1da177e4 7858
758b2cdc 7859 if (!cpumask_weight(sched_group_cpus(group))) {
663997d4
JP
7860 pr_cont("\n");
7861 pr_err("ERROR: empty group\n");
4dcf6aff
IM
7862 break;
7863 }
1da177e4 7864
758b2cdc 7865 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
663997d4
JP
7866 pr_cont("\n");
7867 pr_err("ERROR: repeated CPUs\n");
4dcf6aff
IM
7868 break;
7869 }
1da177e4 7870
758b2cdc 7871 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7872
968ea6d8 7873 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 7874
663997d4 7875 pr_cont(" %s", str);
18a3885f 7876 if (group->cpu_power != SCHED_LOAD_SCALE) {
663997d4 7877 pr_cont(" (cpu_power = %d)", group->cpu_power);
381512cf 7878 }
1da177e4 7879
4dcf6aff
IM
7880 group = group->next;
7881 } while (group != sd->groups);
663997d4 7882 pr_cont("\n");
1da177e4 7883
758b2cdc 7884 if (!cpumask_equal(sched_domain_span(sd), groupmask))
663997d4 7885 pr_err("ERROR: groups don't span domain->span\n");
1da177e4 7886
758b2cdc
RR
7887 if (sd->parent &&
7888 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
663997d4 7889 pr_err("ERROR: parent span is not a superset of domain->span\n");
4dcf6aff
IM
7890 return 0;
7891}
1da177e4 7892
4dcf6aff
IM
7893static void sched_domain_debug(struct sched_domain *sd, int cpu)
7894{
d5dd3db1 7895 cpumask_var_t groupmask;
4dcf6aff 7896 int level = 0;
1da177e4 7897
f6630114
MT
7898 if (!sched_domain_debug_enabled)
7899 return;
7900
4dcf6aff
IM
7901 if (!sd) {
7902 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7903 return;
7904 }
1da177e4 7905
4dcf6aff
IM
7906 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7907
d5dd3db1 7908 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7909 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7910 return;
7911 }
7912
4dcf6aff 7913 for (;;) {
7c16ec58 7914 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7915 break;
1da177e4
LT
7916 level++;
7917 sd = sd->parent;
33859f7f 7918 if (!sd)
4dcf6aff
IM
7919 break;
7920 }
d5dd3db1 7921 free_cpumask_var(groupmask);
1da177e4 7922}
6d6bc0ad 7923#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7924# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7925#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7926
1a20ff27 7927static int sd_degenerate(struct sched_domain *sd)
245af2c7 7928{
758b2cdc 7929 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7930 return 1;
7931
7932 /* Following flags need at least 2 groups */
7933 if (sd->flags & (SD_LOAD_BALANCE |
7934 SD_BALANCE_NEWIDLE |
7935 SD_BALANCE_FORK |
89c4710e
SS
7936 SD_BALANCE_EXEC |
7937 SD_SHARE_CPUPOWER |
7938 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7939 if (sd->groups != sd->groups->next)
7940 return 0;
7941 }
7942
7943 /* Following flags don't use groups */
c88d5910 7944 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7945 return 0;
7946
7947 return 1;
7948}
7949
48f24c4d
IM
7950static int
7951sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7952{
7953 unsigned long cflags = sd->flags, pflags = parent->flags;
7954
7955 if (sd_degenerate(parent))
7956 return 1;
7957
758b2cdc 7958 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7959 return 0;
7960
245af2c7
SS
7961 /* Flags needing groups don't count if only 1 group in parent */
7962 if (parent->groups == parent->groups->next) {
7963 pflags &= ~(SD_LOAD_BALANCE |
7964 SD_BALANCE_NEWIDLE |
7965 SD_BALANCE_FORK |
89c4710e
SS
7966 SD_BALANCE_EXEC |
7967 SD_SHARE_CPUPOWER |
7968 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7969 if (nr_node_ids == 1)
7970 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7971 }
7972 if (~cflags & pflags)
7973 return 0;
7974
7975 return 1;
7976}
7977
c6c4927b
RR
7978static void free_rootdomain(struct root_domain *rd)
7979{
047106ad
PZ
7980 synchronize_sched();
7981
68e74568
RR
7982 cpupri_cleanup(&rd->cpupri);
7983
c6c4927b
RR
7984 free_cpumask_var(rd->rto_mask);
7985 free_cpumask_var(rd->online);
7986 free_cpumask_var(rd->span);
7987 kfree(rd);
7988}
7989
57d885fe
GH
7990static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7991{
a0490fa3 7992 struct root_domain *old_rd = NULL;
57d885fe 7993 unsigned long flags;
57d885fe 7994
05fa785c 7995 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
7996
7997 if (rq->rd) {
a0490fa3 7998 old_rd = rq->rd;
57d885fe 7999
c6c4927b 8000 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 8001 set_rq_offline(rq);
57d885fe 8002
c6c4927b 8003 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 8004
a0490fa3
IM
8005 /*
8006 * If we dont want to free the old_rt yet then
8007 * set old_rd to NULL to skip the freeing later
8008 * in this function:
8009 */
8010 if (!atomic_dec_and_test(&old_rd->refcount))
8011 old_rd = NULL;
57d885fe
GH
8012 }
8013
8014 atomic_inc(&rd->refcount);
8015 rq->rd = rd;
8016
c6c4927b 8017 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8018 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8019 set_rq_online(rq);
57d885fe 8020
05fa785c 8021 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8022
8023 if (old_rd)
8024 free_rootdomain(old_rd);
57d885fe
GH
8025}
8026
fd5e1b5d 8027static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8028{
36b7b6d4
PE
8029 gfp_t gfp = GFP_KERNEL;
8030
57d885fe
GH
8031 memset(rd, 0, sizeof(*rd));
8032
36b7b6d4
PE
8033 if (bootmem)
8034 gfp = GFP_NOWAIT;
c6c4927b 8035
36b7b6d4 8036 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8037 goto out;
36b7b6d4 8038 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8039 goto free_span;
36b7b6d4 8040 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8041 goto free_online;
6e0534f2 8042
0fb53029 8043 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8044 goto free_rto_mask;
c6c4927b 8045 return 0;
6e0534f2 8046
68e74568
RR
8047free_rto_mask:
8048 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8049free_online:
8050 free_cpumask_var(rd->online);
8051free_span:
8052 free_cpumask_var(rd->span);
0c910d28 8053out:
c6c4927b 8054 return -ENOMEM;
57d885fe
GH
8055}
8056
8057static void init_defrootdomain(void)
8058{
c6c4927b
RR
8059 init_rootdomain(&def_root_domain, true);
8060
57d885fe
GH
8061 atomic_set(&def_root_domain.refcount, 1);
8062}
8063
dc938520 8064static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8065{
8066 struct root_domain *rd;
8067
8068 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8069 if (!rd)
8070 return NULL;
8071
c6c4927b
RR
8072 if (init_rootdomain(rd, false) != 0) {
8073 kfree(rd);
8074 return NULL;
8075 }
57d885fe
GH
8076
8077 return rd;
8078}
8079
1da177e4 8080/*
0eab9146 8081 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8082 * hold the hotplug lock.
8083 */
0eab9146
IM
8084static void
8085cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8086{
70b97a7f 8087 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8088 struct sched_domain *tmp;
8089
8090 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8091 for (tmp = sd; tmp; ) {
245af2c7
SS
8092 struct sched_domain *parent = tmp->parent;
8093 if (!parent)
8094 break;
f29c9b1c 8095
1a848870 8096 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8097 tmp->parent = parent->parent;
1a848870
SS
8098 if (parent->parent)
8099 parent->parent->child = tmp;
f29c9b1c
LZ
8100 } else
8101 tmp = tmp->parent;
245af2c7
SS
8102 }
8103
1a848870 8104 if (sd && sd_degenerate(sd)) {
245af2c7 8105 sd = sd->parent;
1a848870
SS
8106 if (sd)
8107 sd->child = NULL;
8108 }
1da177e4
LT
8109
8110 sched_domain_debug(sd, cpu);
8111
57d885fe 8112 rq_attach_root(rq, rd);
674311d5 8113 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8114}
8115
8116/* cpus with isolated domains */
dcc30a35 8117static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8118
8119/* Setup the mask of cpus configured for isolated domains */
8120static int __init isolated_cpu_setup(char *str)
8121{
bdddd296 8122 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8123 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8124 return 1;
8125}
8126
8927f494 8127__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8128
8129/*
6711cab4
SS
8130 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8131 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8132 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8133 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8134 *
8135 * init_sched_build_groups will build a circular linked list of the groups
8136 * covered by the given span, and will set each group's ->cpumask correctly,
8137 * and ->cpu_power to 0.
8138 */
a616058b 8139static void
96f874e2
RR
8140init_sched_build_groups(const struct cpumask *span,
8141 const struct cpumask *cpu_map,
8142 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8143 struct sched_group **sg,
96f874e2
RR
8144 struct cpumask *tmpmask),
8145 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8146{
8147 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8148 int i;
8149
96f874e2 8150 cpumask_clear(covered);
7c16ec58 8151
abcd083a 8152 for_each_cpu(i, span) {
6711cab4 8153 struct sched_group *sg;
7c16ec58 8154 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8155 int j;
8156
758b2cdc 8157 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8158 continue;
8159
758b2cdc 8160 cpumask_clear(sched_group_cpus(sg));
18a3885f 8161 sg->cpu_power = 0;
1da177e4 8162
abcd083a 8163 for_each_cpu(j, span) {
7c16ec58 8164 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8165 continue;
8166
96f874e2 8167 cpumask_set_cpu(j, covered);
758b2cdc 8168 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8169 }
8170 if (!first)
8171 first = sg;
8172 if (last)
8173 last->next = sg;
8174 last = sg;
8175 }
8176 last->next = first;
8177}
8178
9c1cfda2 8179#define SD_NODES_PER_DOMAIN 16
1da177e4 8180
9c1cfda2 8181#ifdef CONFIG_NUMA
198e2f18 8182
9c1cfda2
JH
8183/**
8184 * find_next_best_node - find the next node to include in a sched_domain
8185 * @node: node whose sched_domain we're building
8186 * @used_nodes: nodes already in the sched_domain
8187 *
41a2d6cf 8188 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8189 * finds the closest node not already in the @used_nodes map.
8190 *
8191 * Should use nodemask_t.
8192 */
c5f59f08 8193static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8194{
8195 int i, n, val, min_val, best_node = 0;
8196
8197 min_val = INT_MAX;
8198
076ac2af 8199 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8200 /* Start at @node */
076ac2af 8201 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8202
8203 if (!nr_cpus_node(n))
8204 continue;
8205
8206 /* Skip already used nodes */
c5f59f08 8207 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8208 continue;
8209
8210 /* Simple min distance search */
8211 val = node_distance(node, n);
8212
8213 if (val < min_val) {
8214 min_val = val;
8215 best_node = n;
8216 }
8217 }
8218
c5f59f08 8219 node_set(best_node, *used_nodes);
9c1cfda2
JH
8220 return best_node;
8221}
8222
8223/**
8224 * sched_domain_node_span - get a cpumask for a node's sched_domain
8225 * @node: node whose cpumask we're constructing
73486722 8226 * @span: resulting cpumask
9c1cfda2 8227 *
41a2d6cf 8228 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8229 * should be one that prevents unnecessary balancing, but also spreads tasks
8230 * out optimally.
8231 */
96f874e2 8232static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8233{
c5f59f08 8234 nodemask_t used_nodes;
48f24c4d 8235 int i;
9c1cfda2 8236
6ca09dfc 8237 cpumask_clear(span);
c5f59f08 8238 nodes_clear(used_nodes);
9c1cfda2 8239
6ca09dfc 8240 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8241 node_set(node, used_nodes);
9c1cfda2
JH
8242
8243 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8244 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8245
6ca09dfc 8246 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8247 }
9c1cfda2 8248}
6d6bc0ad 8249#endif /* CONFIG_NUMA */
9c1cfda2 8250
5c45bf27 8251int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8252
6c99e9ad
RR
8253/*
8254 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8255 *
8256 * ( See the the comments in include/linux/sched.h:struct sched_group
8257 * and struct sched_domain. )
6c99e9ad
RR
8258 */
8259struct static_sched_group {
8260 struct sched_group sg;
8261 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8262};
8263
8264struct static_sched_domain {
8265 struct sched_domain sd;
8266 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8267};
8268
49a02c51
AH
8269struct s_data {
8270#ifdef CONFIG_NUMA
8271 int sd_allnodes;
8272 cpumask_var_t domainspan;
8273 cpumask_var_t covered;
8274 cpumask_var_t notcovered;
8275#endif
8276 cpumask_var_t nodemask;
8277 cpumask_var_t this_sibling_map;
8278 cpumask_var_t this_core_map;
8279 cpumask_var_t send_covered;
8280 cpumask_var_t tmpmask;
8281 struct sched_group **sched_group_nodes;
8282 struct root_domain *rd;
8283};
8284
2109b99e
AH
8285enum s_alloc {
8286 sa_sched_groups = 0,
8287 sa_rootdomain,
8288 sa_tmpmask,
8289 sa_send_covered,
8290 sa_this_core_map,
8291 sa_this_sibling_map,
8292 sa_nodemask,
8293 sa_sched_group_nodes,
8294#ifdef CONFIG_NUMA
8295 sa_notcovered,
8296 sa_covered,
8297 sa_domainspan,
8298#endif
8299 sa_none,
8300};
8301
9c1cfda2 8302/*
48f24c4d 8303 * SMT sched-domains:
9c1cfda2 8304 */
1da177e4 8305#ifdef CONFIG_SCHED_SMT
6c99e9ad 8306static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 8307static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 8308
41a2d6cf 8309static int
96f874e2
RR
8310cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8311 struct sched_group **sg, struct cpumask *unused)
1da177e4 8312{
6711cab4 8313 if (sg)
1871e52c 8314 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
8315 return cpu;
8316}
6d6bc0ad 8317#endif /* CONFIG_SCHED_SMT */
1da177e4 8318
48f24c4d
IM
8319/*
8320 * multi-core sched-domains:
8321 */
1e9f28fa 8322#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8323static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8324static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8325#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8326
8327#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8328static int
96f874e2
RR
8329cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8330 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8331{
6711cab4 8332 int group;
7c16ec58 8333
c69fc56d 8334 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8335 group = cpumask_first(mask);
6711cab4 8336 if (sg)
6c99e9ad 8337 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8338 return group;
1e9f28fa
SS
8339}
8340#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8341static int
96f874e2
RR
8342cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8343 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8344{
6711cab4 8345 if (sg)
6c99e9ad 8346 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8347 return cpu;
8348}
8349#endif
8350
6c99e9ad
RR
8351static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8352static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8353
41a2d6cf 8354static int
96f874e2
RR
8355cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8356 struct sched_group **sg, struct cpumask *mask)
1da177e4 8357{
6711cab4 8358 int group;
48f24c4d 8359#ifdef CONFIG_SCHED_MC
6ca09dfc 8360 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8361 group = cpumask_first(mask);
1e9f28fa 8362#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8363 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8364 group = cpumask_first(mask);
1da177e4 8365#else
6711cab4 8366 group = cpu;
1da177e4 8367#endif
6711cab4 8368 if (sg)
6c99e9ad 8369 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8370 return group;
1da177e4
LT
8371}
8372
8373#ifdef CONFIG_NUMA
1da177e4 8374/*
9c1cfda2
JH
8375 * The init_sched_build_groups can't handle what we want to do with node
8376 * groups, so roll our own. Now each node has its own list of groups which
8377 * gets dynamically allocated.
1da177e4 8378 */
62ea9ceb 8379static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8380static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8381
62ea9ceb 8382static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8383static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8384
96f874e2
RR
8385static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8386 struct sched_group **sg,
8387 struct cpumask *nodemask)
9c1cfda2 8388{
6711cab4
SS
8389 int group;
8390
6ca09dfc 8391 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8392 group = cpumask_first(nodemask);
6711cab4
SS
8393
8394 if (sg)
6c99e9ad 8395 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8396 return group;
1da177e4 8397}
6711cab4 8398
08069033
SS
8399static void init_numa_sched_groups_power(struct sched_group *group_head)
8400{
8401 struct sched_group *sg = group_head;
8402 int j;
8403
8404 if (!sg)
8405 return;
3a5c359a 8406 do {
758b2cdc 8407 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8408 struct sched_domain *sd;
08069033 8409
6c99e9ad 8410 sd = &per_cpu(phys_domains, j).sd;
13318a71 8411 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8412 /*
8413 * Only add "power" once for each
8414 * physical package.
8415 */
8416 continue;
8417 }
08069033 8418
18a3885f 8419 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8420 }
8421 sg = sg->next;
8422 } while (sg != group_head);
08069033 8423}
0601a88d
AH
8424
8425static int build_numa_sched_groups(struct s_data *d,
8426 const struct cpumask *cpu_map, int num)
8427{
8428 struct sched_domain *sd;
8429 struct sched_group *sg, *prev;
8430 int n, j;
8431
8432 cpumask_clear(d->covered);
8433 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8434 if (cpumask_empty(d->nodemask)) {
8435 d->sched_group_nodes[num] = NULL;
8436 goto out;
8437 }
8438
8439 sched_domain_node_span(num, d->domainspan);
8440 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8441
8442 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8443 GFP_KERNEL, num);
8444 if (!sg) {
663997d4 8445 pr_warning("Can not alloc domain group for node %d\n", num);
0601a88d
AH
8446 return -ENOMEM;
8447 }
8448 d->sched_group_nodes[num] = sg;
8449
8450 for_each_cpu(j, d->nodemask) {
8451 sd = &per_cpu(node_domains, j).sd;
8452 sd->groups = sg;
8453 }
8454
18a3885f 8455 sg->cpu_power = 0;
0601a88d
AH
8456 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8457 sg->next = sg;
8458 cpumask_or(d->covered, d->covered, d->nodemask);
8459
8460 prev = sg;
8461 for (j = 0; j < nr_node_ids; j++) {
8462 n = (num + j) % nr_node_ids;
8463 cpumask_complement(d->notcovered, d->covered);
8464 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8465 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8466 if (cpumask_empty(d->tmpmask))
8467 break;
8468 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8469 if (cpumask_empty(d->tmpmask))
8470 continue;
8471 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8472 GFP_KERNEL, num);
8473 if (!sg) {
663997d4
JP
8474 pr_warning("Can not alloc domain group for node %d\n",
8475 j);
0601a88d
AH
8476 return -ENOMEM;
8477 }
18a3885f 8478 sg->cpu_power = 0;
0601a88d
AH
8479 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8480 sg->next = prev->next;
8481 cpumask_or(d->covered, d->covered, d->tmpmask);
8482 prev->next = sg;
8483 prev = sg;
8484 }
8485out:
8486 return 0;
8487}
6d6bc0ad 8488#endif /* CONFIG_NUMA */
1da177e4 8489
a616058b 8490#ifdef CONFIG_NUMA
51888ca2 8491/* Free memory allocated for various sched_group structures */
96f874e2
RR
8492static void free_sched_groups(const struct cpumask *cpu_map,
8493 struct cpumask *nodemask)
51888ca2 8494{
a616058b 8495 int cpu, i;
51888ca2 8496
abcd083a 8497 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8498 struct sched_group **sched_group_nodes
8499 = sched_group_nodes_bycpu[cpu];
8500
51888ca2
SV
8501 if (!sched_group_nodes)
8502 continue;
8503
076ac2af 8504 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8505 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8506
6ca09dfc 8507 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8508 if (cpumask_empty(nodemask))
51888ca2
SV
8509 continue;
8510
8511 if (sg == NULL)
8512 continue;
8513 sg = sg->next;
8514next_sg:
8515 oldsg = sg;
8516 sg = sg->next;
8517 kfree(oldsg);
8518 if (oldsg != sched_group_nodes[i])
8519 goto next_sg;
8520 }
8521 kfree(sched_group_nodes);
8522 sched_group_nodes_bycpu[cpu] = NULL;
8523 }
51888ca2 8524}
6d6bc0ad 8525#else /* !CONFIG_NUMA */
96f874e2
RR
8526static void free_sched_groups(const struct cpumask *cpu_map,
8527 struct cpumask *nodemask)
a616058b
SS
8528{
8529}
6d6bc0ad 8530#endif /* CONFIG_NUMA */
51888ca2 8531
89c4710e
SS
8532/*
8533 * Initialize sched groups cpu_power.
8534 *
8535 * cpu_power indicates the capacity of sched group, which is used while
8536 * distributing the load between different sched groups in a sched domain.
8537 * Typically cpu_power for all the groups in a sched domain will be same unless
8538 * there are asymmetries in the topology. If there are asymmetries, group
8539 * having more cpu_power will pickup more load compared to the group having
8540 * less cpu_power.
89c4710e
SS
8541 */
8542static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8543{
8544 struct sched_domain *child;
8545 struct sched_group *group;
f93e65c1
PZ
8546 long power;
8547 int weight;
89c4710e
SS
8548
8549 WARN_ON(!sd || !sd->groups);
8550
13318a71 8551 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8552 return;
8553
8554 child = sd->child;
8555
18a3885f 8556 sd->groups->cpu_power = 0;
5517d86b 8557
f93e65c1
PZ
8558 if (!child) {
8559 power = SCHED_LOAD_SCALE;
8560 weight = cpumask_weight(sched_domain_span(sd));
8561 /*
8562 * SMT siblings share the power of a single core.
a52bfd73
PZ
8563 * Usually multiple threads get a better yield out of
8564 * that one core than a single thread would have,
8565 * reflect that in sd->smt_gain.
f93e65c1 8566 */
a52bfd73
PZ
8567 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8568 power *= sd->smt_gain;
f93e65c1 8569 power /= weight;
a52bfd73
PZ
8570 power >>= SCHED_LOAD_SHIFT;
8571 }
18a3885f 8572 sd->groups->cpu_power += power;
89c4710e
SS
8573 return;
8574 }
8575
89c4710e 8576 /*
f93e65c1 8577 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8578 */
8579 group = child->groups;
8580 do {
18a3885f 8581 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8582 group = group->next;
8583 } while (group != child->groups);
8584}
8585
7c16ec58
MT
8586/*
8587 * Initializers for schedule domains
8588 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8589 */
8590
a5d8c348
IM
8591#ifdef CONFIG_SCHED_DEBUG
8592# define SD_INIT_NAME(sd, type) sd->name = #type
8593#else
8594# define SD_INIT_NAME(sd, type) do { } while (0)
8595#endif
8596
7c16ec58 8597#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8598
7c16ec58
MT
8599#define SD_INIT_FUNC(type) \
8600static noinline void sd_init_##type(struct sched_domain *sd) \
8601{ \
8602 memset(sd, 0, sizeof(*sd)); \
8603 *sd = SD_##type##_INIT; \
1d3504fc 8604 sd->level = SD_LV_##type; \
a5d8c348 8605 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8606}
8607
8608SD_INIT_FUNC(CPU)
8609#ifdef CONFIG_NUMA
8610 SD_INIT_FUNC(ALLNODES)
8611 SD_INIT_FUNC(NODE)
8612#endif
8613#ifdef CONFIG_SCHED_SMT
8614 SD_INIT_FUNC(SIBLING)
8615#endif
8616#ifdef CONFIG_SCHED_MC
8617 SD_INIT_FUNC(MC)
8618#endif
8619
1d3504fc
HS
8620static int default_relax_domain_level = -1;
8621
8622static int __init setup_relax_domain_level(char *str)
8623{
30e0e178
LZ
8624 unsigned long val;
8625
8626 val = simple_strtoul(str, NULL, 0);
8627 if (val < SD_LV_MAX)
8628 default_relax_domain_level = val;
8629
1d3504fc
HS
8630 return 1;
8631}
8632__setup("relax_domain_level=", setup_relax_domain_level);
8633
8634static void set_domain_attribute(struct sched_domain *sd,
8635 struct sched_domain_attr *attr)
8636{
8637 int request;
8638
8639 if (!attr || attr->relax_domain_level < 0) {
8640 if (default_relax_domain_level < 0)
8641 return;
8642 else
8643 request = default_relax_domain_level;
8644 } else
8645 request = attr->relax_domain_level;
8646 if (request < sd->level) {
8647 /* turn off idle balance on this domain */
c88d5910 8648 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8649 } else {
8650 /* turn on idle balance on this domain */
c88d5910 8651 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8652 }
8653}
8654
2109b99e
AH
8655static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8656 const struct cpumask *cpu_map)
8657{
8658 switch (what) {
8659 case sa_sched_groups:
8660 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8661 d->sched_group_nodes = NULL;
8662 case sa_rootdomain:
8663 free_rootdomain(d->rd); /* fall through */
8664 case sa_tmpmask:
8665 free_cpumask_var(d->tmpmask); /* fall through */
8666 case sa_send_covered:
8667 free_cpumask_var(d->send_covered); /* fall through */
8668 case sa_this_core_map:
8669 free_cpumask_var(d->this_core_map); /* fall through */
8670 case sa_this_sibling_map:
8671 free_cpumask_var(d->this_sibling_map); /* fall through */
8672 case sa_nodemask:
8673 free_cpumask_var(d->nodemask); /* fall through */
8674 case sa_sched_group_nodes:
d1b55138 8675#ifdef CONFIG_NUMA
2109b99e
AH
8676 kfree(d->sched_group_nodes); /* fall through */
8677 case sa_notcovered:
8678 free_cpumask_var(d->notcovered); /* fall through */
8679 case sa_covered:
8680 free_cpumask_var(d->covered); /* fall through */
8681 case sa_domainspan:
8682 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8683#endif
2109b99e
AH
8684 case sa_none:
8685 break;
8686 }
8687}
3404c8d9 8688
2109b99e
AH
8689static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8690 const struct cpumask *cpu_map)
8691{
3404c8d9 8692#ifdef CONFIG_NUMA
2109b99e
AH
8693 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8694 return sa_none;
8695 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8696 return sa_domainspan;
8697 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8698 return sa_covered;
8699 /* Allocate the per-node list of sched groups */
8700 d->sched_group_nodes = kcalloc(nr_node_ids,
8701 sizeof(struct sched_group *), GFP_KERNEL);
8702 if (!d->sched_group_nodes) {
663997d4 8703 pr_warning("Can not alloc sched group node list\n");
2109b99e 8704 return sa_notcovered;
d1b55138 8705 }
2109b99e 8706 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8707#endif
2109b99e
AH
8708 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8709 return sa_sched_group_nodes;
8710 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8711 return sa_nodemask;
8712 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8713 return sa_this_sibling_map;
8714 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8715 return sa_this_core_map;
8716 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8717 return sa_send_covered;
8718 d->rd = alloc_rootdomain();
8719 if (!d->rd) {
663997d4 8720 pr_warning("Cannot alloc root domain\n");
2109b99e 8721 return sa_tmpmask;
57d885fe 8722 }
2109b99e
AH
8723 return sa_rootdomain;
8724}
57d885fe 8725
7f4588f3
AH
8726static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8727 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8728{
8729 struct sched_domain *sd = NULL;
7c16ec58 8730#ifdef CONFIG_NUMA
7f4588f3 8731 struct sched_domain *parent;
1da177e4 8732
7f4588f3
AH
8733 d->sd_allnodes = 0;
8734 if (cpumask_weight(cpu_map) >
8735 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8736 sd = &per_cpu(allnodes_domains, i).sd;
8737 SD_INIT(sd, ALLNODES);
1d3504fc 8738 set_domain_attribute(sd, attr);
7f4588f3
AH
8739 cpumask_copy(sched_domain_span(sd), cpu_map);
8740 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8741 d->sd_allnodes = 1;
8742 }
8743 parent = sd;
8744
8745 sd = &per_cpu(node_domains, i).sd;
8746 SD_INIT(sd, NODE);
8747 set_domain_attribute(sd, attr);
8748 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8749 sd->parent = parent;
8750 if (parent)
8751 parent->child = sd;
8752 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8753#endif
7f4588f3
AH
8754 return sd;
8755}
1da177e4 8756
87cce662
AH
8757static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8758 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8759 struct sched_domain *parent, int i)
8760{
8761 struct sched_domain *sd;
8762 sd = &per_cpu(phys_domains, i).sd;
8763 SD_INIT(sd, CPU);
8764 set_domain_attribute(sd, attr);
8765 cpumask_copy(sched_domain_span(sd), d->nodemask);
8766 sd->parent = parent;
8767 if (parent)
8768 parent->child = sd;
8769 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8770 return sd;
8771}
1da177e4 8772
410c4081
AH
8773static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8774 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8775 struct sched_domain *parent, int i)
8776{
8777 struct sched_domain *sd = parent;
1e9f28fa 8778#ifdef CONFIG_SCHED_MC
410c4081
AH
8779 sd = &per_cpu(core_domains, i).sd;
8780 SD_INIT(sd, MC);
8781 set_domain_attribute(sd, attr);
8782 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8783 sd->parent = parent;
8784 parent->child = sd;
8785 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8786#endif
410c4081
AH
8787 return sd;
8788}
1e9f28fa 8789
d8173535
AH
8790static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8791 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8792 struct sched_domain *parent, int i)
8793{
8794 struct sched_domain *sd = parent;
1da177e4 8795#ifdef CONFIG_SCHED_SMT
d8173535
AH
8796 sd = &per_cpu(cpu_domains, i).sd;
8797 SD_INIT(sd, SIBLING);
8798 set_domain_attribute(sd, attr);
8799 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8800 sd->parent = parent;
8801 parent->child = sd;
8802 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8803#endif
d8173535
AH
8804 return sd;
8805}
1da177e4 8806
0e8e85c9
AH
8807static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8808 const struct cpumask *cpu_map, int cpu)
8809{
8810 switch (l) {
1da177e4 8811#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8812 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8813 cpumask_and(d->this_sibling_map, cpu_map,
8814 topology_thread_cpumask(cpu));
8815 if (cpu == cpumask_first(d->this_sibling_map))
8816 init_sched_build_groups(d->this_sibling_map, cpu_map,
8817 &cpu_to_cpu_group,
8818 d->send_covered, d->tmpmask);
8819 break;
1da177e4 8820#endif
1e9f28fa 8821#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8822 case SD_LV_MC: /* set up multi-core groups */
8823 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8824 if (cpu == cpumask_first(d->this_core_map))
8825 init_sched_build_groups(d->this_core_map, cpu_map,
8826 &cpu_to_core_group,
8827 d->send_covered, d->tmpmask);
8828 break;
1e9f28fa 8829#endif
86548096
AH
8830 case SD_LV_CPU: /* set up physical groups */
8831 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8832 if (!cpumask_empty(d->nodemask))
8833 init_sched_build_groups(d->nodemask, cpu_map,
8834 &cpu_to_phys_group,
8835 d->send_covered, d->tmpmask);
8836 break;
1da177e4 8837#ifdef CONFIG_NUMA
de616e36
AH
8838 case SD_LV_ALLNODES:
8839 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8840 d->send_covered, d->tmpmask);
8841 break;
8842#endif
0e8e85c9
AH
8843 default:
8844 break;
7c16ec58 8845 }
0e8e85c9 8846}
9c1cfda2 8847
2109b99e
AH
8848/*
8849 * Build sched domains for a given set of cpus and attach the sched domains
8850 * to the individual cpus
8851 */
8852static int __build_sched_domains(const struct cpumask *cpu_map,
8853 struct sched_domain_attr *attr)
8854{
8855 enum s_alloc alloc_state = sa_none;
8856 struct s_data d;
294b0c96 8857 struct sched_domain *sd;
2109b99e 8858 int i;
7c16ec58 8859#ifdef CONFIG_NUMA
2109b99e 8860 d.sd_allnodes = 0;
7c16ec58 8861#endif
9c1cfda2 8862
2109b99e
AH
8863 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8864 if (alloc_state != sa_rootdomain)
8865 goto error;
8866 alloc_state = sa_sched_groups;
9c1cfda2 8867
1da177e4 8868 /*
1a20ff27 8869 * Set up domains for cpus specified by the cpu_map.
1da177e4 8870 */
abcd083a 8871 for_each_cpu(i, cpu_map) {
49a02c51
AH
8872 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8873 cpu_map);
9761eea8 8874
7f4588f3 8875 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8876 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8877 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8878 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8879 }
9c1cfda2 8880
abcd083a 8881 for_each_cpu(i, cpu_map) {
0e8e85c9 8882 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8883 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8884 }
9c1cfda2 8885
1da177e4 8886 /* Set up physical groups */
86548096
AH
8887 for (i = 0; i < nr_node_ids; i++)
8888 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8889
1da177e4
LT
8890#ifdef CONFIG_NUMA
8891 /* Set up node groups */
de616e36
AH
8892 if (d.sd_allnodes)
8893 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8894
0601a88d
AH
8895 for (i = 0; i < nr_node_ids; i++)
8896 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8897 goto error;
1da177e4
LT
8898#endif
8899
8900 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8901#ifdef CONFIG_SCHED_SMT
abcd083a 8902 for_each_cpu(i, cpu_map) {
294b0c96 8903 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8904 init_sched_groups_power(i, sd);
5c45bf27 8905 }
1da177e4 8906#endif
1e9f28fa 8907#ifdef CONFIG_SCHED_MC
abcd083a 8908 for_each_cpu(i, cpu_map) {
294b0c96 8909 sd = &per_cpu(core_domains, i).sd;
89c4710e 8910 init_sched_groups_power(i, sd);
5c45bf27
SS
8911 }
8912#endif
1e9f28fa 8913
abcd083a 8914 for_each_cpu(i, cpu_map) {
294b0c96 8915 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8916 init_sched_groups_power(i, sd);
1da177e4
LT
8917 }
8918
9c1cfda2 8919#ifdef CONFIG_NUMA
076ac2af 8920 for (i = 0; i < nr_node_ids; i++)
49a02c51 8921 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8922
49a02c51 8923 if (d.sd_allnodes) {
6711cab4 8924 struct sched_group *sg;
f712c0c7 8925
96f874e2 8926 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8927 d.tmpmask);
f712c0c7
SS
8928 init_numa_sched_groups_power(sg);
8929 }
9c1cfda2
JH
8930#endif
8931
1da177e4 8932 /* Attach the domains */
abcd083a 8933 for_each_cpu(i, cpu_map) {
1da177e4 8934#ifdef CONFIG_SCHED_SMT
6c99e9ad 8935 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8936#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8937 sd = &per_cpu(core_domains, i).sd;
1da177e4 8938#else
6c99e9ad 8939 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8940#endif
49a02c51 8941 cpu_attach_domain(sd, d.rd, i);
1da177e4 8942 }
51888ca2 8943
2109b99e
AH
8944 d.sched_group_nodes = NULL; /* don't free this we still need it */
8945 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8946 return 0;
51888ca2 8947
51888ca2 8948error:
2109b99e
AH
8949 __free_domain_allocs(&d, alloc_state, cpu_map);
8950 return -ENOMEM;
1da177e4 8951}
029190c5 8952
96f874e2 8953static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8954{
8955 return __build_sched_domains(cpu_map, NULL);
8956}
8957
acc3f5d7 8958static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8959static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8960static struct sched_domain_attr *dattr_cur;
8961 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8962
8963/*
8964 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8965 * cpumask) fails, then fallback to a single sched domain,
8966 * as determined by the single cpumask fallback_doms.
029190c5 8967 */
4212823f 8968static cpumask_var_t fallback_doms;
029190c5 8969
ee79d1bd
HC
8970/*
8971 * arch_update_cpu_topology lets virtualized architectures update the
8972 * cpu core maps. It is supposed to return 1 if the topology changed
8973 * or 0 if it stayed the same.
8974 */
8975int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8976{
ee79d1bd 8977 return 0;
22e52b07
HC
8978}
8979
acc3f5d7
RR
8980cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8981{
8982 int i;
8983 cpumask_var_t *doms;
8984
8985 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8986 if (!doms)
8987 return NULL;
8988 for (i = 0; i < ndoms; i++) {
8989 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8990 free_sched_domains(doms, i);
8991 return NULL;
8992 }
8993 }
8994 return doms;
8995}
8996
8997void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8998{
8999 unsigned int i;
9000 for (i = 0; i < ndoms; i++)
9001 free_cpumask_var(doms[i]);
9002 kfree(doms);
9003}
9004
1a20ff27 9005/*
41a2d6cf 9006 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
9007 * For now this just excludes isolated cpus, but could be used to
9008 * exclude other special cases in the future.
1a20ff27 9009 */
96f874e2 9010static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 9011{
7378547f
MM
9012 int err;
9013
22e52b07 9014 arch_update_cpu_topology();
029190c5 9015 ndoms_cur = 1;
acc3f5d7 9016 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9017 if (!doms_cur)
acc3f5d7
RR
9018 doms_cur = &fallback_doms;
9019 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9020 dattr_cur = NULL;
acc3f5d7 9021 err = build_sched_domains(doms_cur[0]);
6382bc90 9022 register_sched_domain_sysctl();
7378547f
MM
9023
9024 return err;
1a20ff27
DG
9025}
9026
96f874e2
RR
9027static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9028 struct cpumask *tmpmask)
1da177e4 9029{
7c16ec58 9030 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9031}
1da177e4 9032
1a20ff27
DG
9033/*
9034 * Detach sched domains from a group of cpus specified in cpu_map
9035 * These cpus will now be attached to the NULL domain
9036 */
96f874e2 9037static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9038{
96f874e2
RR
9039 /* Save because hotplug lock held. */
9040 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9041 int i;
9042
abcd083a 9043 for_each_cpu(i, cpu_map)
57d885fe 9044 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9045 synchronize_sched();
96f874e2 9046 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9047}
9048
1d3504fc
HS
9049/* handle null as "default" */
9050static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9051 struct sched_domain_attr *new, int idx_new)
9052{
9053 struct sched_domain_attr tmp;
9054
9055 /* fast path */
9056 if (!new && !cur)
9057 return 1;
9058
9059 tmp = SD_ATTR_INIT;
9060 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9061 new ? (new + idx_new) : &tmp,
9062 sizeof(struct sched_domain_attr));
9063}
9064
029190c5
PJ
9065/*
9066 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9067 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9068 * doms_new[] to the current sched domain partitioning, doms_cur[].
9069 * It destroys each deleted domain and builds each new domain.
9070 *
acc3f5d7 9071 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9072 * The masks don't intersect (don't overlap.) We should setup one
9073 * sched domain for each mask. CPUs not in any of the cpumasks will
9074 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9075 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9076 * it as it is.
9077 *
acc3f5d7
RR
9078 * The passed in 'doms_new' should be allocated using
9079 * alloc_sched_domains. This routine takes ownership of it and will
9080 * free_sched_domains it when done with it. If the caller failed the
9081 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9082 * and partition_sched_domains() will fallback to the single partition
9083 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9084 *
96f874e2 9085 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9086 * ndoms_new == 0 is a special case for destroying existing domains,
9087 * and it will not create the default domain.
dfb512ec 9088 *
029190c5
PJ
9089 * Call with hotplug lock held
9090 */
acc3f5d7 9091void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9092 struct sched_domain_attr *dattr_new)
029190c5 9093{
dfb512ec 9094 int i, j, n;
d65bd5ec 9095 int new_topology;
029190c5 9096
712555ee 9097 mutex_lock(&sched_domains_mutex);
a1835615 9098
7378547f
MM
9099 /* always unregister in case we don't destroy any domains */
9100 unregister_sched_domain_sysctl();
9101
d65bd5ec
HC
9102 /* Let architecture update cpu core mappings. */
9103 new_topology = arch_update_cpu_topology();
9104
dfb512ec 9105 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9106
9107 /* Destroy deleted domains */
9108 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9109 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9110 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9111 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9112 goto match1;
9113 }
9114 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9115 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9116match1:
9117 ;
9118 }
9119
e761b772
MK
9120 if (doms_new == NULL) {
9121 ndoms_cur = 0;
acc3f5d7 9122 doms_new = &fallback_doms;
6ad4c188 9123 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9124 WARN_ON_ONCE(dattr_new);
e761b772
MK
9125 }
9126
029190c5
PJ
9127 /* Build new domains */
9128 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9129 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9130 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9131 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9132 goto match2;
9133 }
9134 /* no match - add a new doms_new */
acc3f5d7 9135 __build_sched_domains(doms_new[i],
1d3504fc 9136 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9137match2:
9138 ;
9139 }
9140
9141 /* Remember the new sched domains */
acc3f5d7
RR
9142 if (doms_cur != &fallback_doms)
9143 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9144 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9145 doms_cur = doms_new;
1d3504fc 9146 dattr_cur = dattr_new;
029190c5 9147 ndoms_cur = ndoms_new;
7378547f
MM
9148
9149 register_sched_domain_sysctl();
a1835615 9150
712555ee 9151 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9152}
9153
5c45bf27 9154#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9155static void arch_reinit_sched_domains(void)
5c45bf27 9156{
95402b38 9157 get_online_cpus();
dfb512ec
MK
9158
9159 /* Destroy domains first to force the rebuild */
9160 partition_sched_domains(0, NULL, NULL);
9161
e761b772 9162 rebuild_sched_domains();
95402b38 9163 put_online_cpus();
5c45bf27
SS
9164}
9165
9166static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9167{
afb8a9b7 9168 unsigned int level = 0;
5c45bf27 9169
afb8a9b7
GS
9170 if (sscanf(buf, "%u", &level) != 1)
9171 return -EINVAL;
9172
9173 /*
9174 * level is always be positive so don't check for
9175 * level < POWERSAVINGS_BALANCE_NONE which is 0
9176 * What happens on 0 or 1 byte write,
9177 * need to check for count as well?
9178 */
9179
9180 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9181 return -EINVAL;
9182
9183 if (smt)
afb8a9b7 9184 sched_smt_power_savings = level;
5c45bf27 9185 else
afb8a9b7 9186 sched_mc_power_savings = level;
5c45bf27 9187
c70f22d2 9188 arch_reinit_sched_domains();
5c45bf27 9189
c70f22d2 9190 return count;
5c45bf27
SS
9191}
9192
5c45bf27 9193#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9194static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9195 char *page)
5c45bf27
SS
9196{
9197 return sprintf(page, "%u\n", sched_mc_power_savings);
9198}
f718cd4a 9199static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9200 const char *buf, size_t count)
5c45bf27
SS
9201{
9202 return sched_power_savings_store(buf, count, 0);
9203}
f718cd4a
AK
9204static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9205 sched_mc_power_savings_show,
9206 sched_mc_power_savings_store);
5c45bf27
SS
9207#endif
9208
9209#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9210static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9211 char *page)
5c45bf27
SS
9212{
9213 return sprintf(page, "%u\n", sched_smt_power_savings);
9214}
f718cd4a 9215static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9216 const char *buf, size_t count)
5c45bf27
SS
9217{
9218 return sched_power_savings_store(buf, count, 1);
9219}
f718cd4a
AK
9220static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9221 sched_smt_power_savings_show,
6707de00
AB
9222 sched_smt_power_savings_store);
9223#endif
9224
39aac648 9225int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9226{
9227 int err = 0;
9228
9229#ifdef CONFIG_SCHED_SMT
9230 if (smt_capable())
9231 err = sysfs_create_file(&cls->kset.kobj,
9232 &attr_sched_smt_power_savings.attr);
9233#endif
9234#ifdef CONFIG_SCHED_MC
9235 if (!err && mc_capable())
9236 err = sysfs_create_file(&cls->kset.kobj,
9237 &attr_sched_mc_power_savings.attr);
9238#endif
9239 return err;
9240}
6d6bc0ad 9241#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9242
e761b772 9243#ifndef CONFIG_CPUSETS
1da177e4 9244/*
e761b772
MK
9245 * Add online and remove offline CPUs from the scheduler domains.
9246 * When cpusets are enabled they take over this function.
1da177e4
LT
9247 */
9248static int update_sched_domains(struct notifier_block *nfb,
9249 unsigned long action, void *hcpu)
e761b772
MK
9250{
9251 switch (action) {
9252 case CPU_ONLINE:
9253 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9254 case CPU_DOWN_PREPARE:
9255 case CPU_DOWN_PREPARE_FROZEN:
9256 case CPU_DOWN_FAILED:
9257 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9258 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9259 return NOTIFY_OK;
9260
9261 default:
9262 return NOTIFY_DONE;
9263 }
9264}
9265#endif
9266
9267static int update_runtime(struct notifier_block *nfb,
9268 unsigned long action, void *hcpu)
1da177e4 9269{
7def2be1
PZ
9270 int cpu = (int)(long)hcpu;
9271
1da177e4 9272 switch (action) {
1da177e4 9273 case CPU_DOWN_PREPARE:
8bb78442 9274 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9275 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9276 return NOTIFY_OK;
9277
1da177e4 9278 case CPU_DOWN_FAILED:
8bb78442 9279 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9280 case CPU_ONLINE:
8bb78442 9281 case CPU_ONLINE_FROZEN:
7def2be1 9282 enable_runtime(cpu_rq(cpu));
e761b772
MK
9283 return NOTIFY_OK;
9284
1da177e4
LT
9285 default:
9286 return NOTIFY_DONE;
9287 }
1da177e4 9288}
1da177e4
LT
9289
9290void __init sched_init_smp(void)
9291{
dcc30a35
RR
9292 cpumask_var_t non_isolated_cpus;
9293
9294 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9295 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9296
434d53b0
MT
9297#if defined(CONFIG_NUMA)
9298 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9299 GFP_KERNEL);
9300 BUG_ON(sched_group_nodes_bycpu == NULL);
9301#endif
95402b38 9302 get_online_cpus();
712555ee 9303 mutex_lock(&sched_domains_mutex);
6ad4c188 9304 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9305 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9306 if (cpumask_empty(non_isolated_cpus))
9307 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9308 mutex_unlock(&sched_domains_mutex);
95402b38 9309 put_online_cpus();
e761b772
MK
9310
9311#ifndef CONFIG_CPUSETS
1da177e4
LT
9312 /* XXX: Theoretical race here - CPU may be hotplugged now */
9313 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9314#endif
9315
9316 /* RT runtime code needs to handle some hotplug events */
9317 hotcpu_notifier(update_runtime, 0);
9318
b328ca18 9319 init_hrtick();
5c1e1767
NP
9320
9321 /* Move init over to a non-isolated CPU */
dcc30a35 9322 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9323 BUG();
19978ca6 9324 sched_init_granularity();
dcc30a35 9325 free_cpumask_var(non_isolated_cpus);
4212823f 9326
0e3900e6 9327 init_sched_rt_class();
1da177e4
LT
9328}
9329#else
9330void __init sched_init_smp(void)
9331{
19978ca6 9332 sched_init_granularity();
1da177e4
LT
9333}
9334#endif /* CONFIG_SMP */
9335
cd1bb94b
AB
9336const_debug unsigned int sysctl_timer_migration = 1;
9337
1da177e4
LT
9338int in_sched_functions(unsigned long addr)
9339{
1da177e4
LT
9340 return in_lock_functions(addr) ||
9341 (addr >= (unsigned long)__sched_text_start
9342 && addr < (unsigned long)__sched_text_end);
9343}
9344
a9957449 9345static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9346{
9347 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9348 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9349#ifdef CONFIG_FAIR_GROUP_SCHED
9350 cfs_rq->rq = rq;
9351#endif
67e9fb2a 9352 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9353}
9354
fa85ae24
PZ
9355static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9356{
9357 struct rt_prio_array *array;
9358 int i;
9359
9360 array = &rt_rq->active;
9361 for (i = 0; i < MAX_RT_PRIO; i++) {
9362 INIT_LIST_HEAD(array->queue + i);
9363 __clear_bit(i, array->bitmap);
9364 }
9365 /* delimiter for bitsearch: */
9366 __set_bit(MAX_RT_PRIO, array->bitmap);
9367
052f1dc7 9368#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9369 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9370#ifdef CONFIG_SMP
e864c499 9371 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9372#endif
48d5e258 9373#endif
fa85ae24
PZ
9374#ifdef CONFIG_SMP
9375 rt_rq->rt_nr_migratory = 0;
fa85ae24 9376 rt_rq->overloaded = 0;
05fa785c 9377 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9378#endif
9379
9380 rt_rq->rt_time = 0;
9381 rt_rq->rt_throttled = 0;
ac086bc2 9382 rt_rq->rt_runtime = 0;
0986b11b 9383 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9384
052f1dc7 9385#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9386 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9387 rt_rq->rq = rq;
9388#endif
fa85ae24
PZ
9389}
9390
6f505b16 9391#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9392static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9393 struct sched_entity *se, int cpu, int add,
9394 struct sched_entity *parent)
6f505b16 9395{
ec7dc8ac 9396 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9397 tg->cfs_rq[cpu] = cfs_rq;
9398 init_cfs_rq(cfs_rq, rq);
9399 cfs_rq->tg = tg;
9400 if (add)
9401 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9402
9403 tg->se[cpu] = se;
354d60c2
DG
9404 /* se could be NULL for init_task_group */
9405 if (!se)
9406 return;
9407
ec7dc8ac
DG
9408 if (!parent)
9409 se->cfs_rq = &rq->cfs;
9410 else
9411 se->cfs_rq = parent->my_q;
9412
6f505b16
PZ
9413 se->my_q = cfs_rq;
9414 se->load.weight = tg->shares;
e05510d0 9415 se->load.inv_weight = 0;
ec7dc8ac 9416 se->parent = parent;
6f505b16 9417}
052f1dc7 9418#endif
6f505b16 9419
052f1dc7 9420#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9421static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9422 struct sched_rt_entity *rt_se, int cpu, int add,
9423 struct sched_rt_entity *parent)
6f505b16 9424{
ec7dc8ac
DG
9425 struct rq *rq = cpu_rq(cpu);
9426
6f505b16
PZ
9427 tg->rt_rq[cpu] = rt_rq;
9428 init_rt_rq(rt_rq, rq);
9429 rt_rq->tg = tg;
9430 rt_rq->rt_se = rt_se;
ac086bc2 9431 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9432 if (add)
9433 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9434
9435 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9436 if (!rt_se)
9437 return;
9438
ec7dc8ac
DG
9439 if (!parent)
9440 rt_se->rt_rq = &rq->rt;
9441 else
9442 rt_se->rt_rq = parent->my_q;
9443
6f505b16 9444 rt_se->my_q = rt_rq;
ec7dc8ac 9445 rt_se->parent = parent;
6f505b16
PZ
9446 INIT_LIST_HEAD(&rt_se->run_list);
9447}
9448#endif
9449
1da177e4
LT
9450void __init sched_init(void)
9451{
dd41f596 9452 int i, j;
434d53b0
MT
9453 unsigned long alloc_size = 0, ptr;
9454
9455#ifdef CONFIG_FAIR_GROUP_SCHED
9456 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9457#endif
9458#ifdef CONFIG_RT_GROUP_SCHED
9459 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9460#endif
9461#ifdef CONFIG_USER_SCHED
9462 alloc_size *= 2;
df7c8e84
RR
9463#endif
9464#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9465 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9466#endif
434d53b0 9467 if (alloc_size) {
36b7b6d4 9468 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9469
9470#ifdef CONFIG_FAIR_GROUP_SCHED
9471 init_task_group.se = (struct sched_entity **)ptr;
9472 ptr += nr_cpu_ids * sizeof(void **);
9473
9474 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9475 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9476
9477#ifdef CONFIG_USER_SCHED
9478 root_task_group.se = (struct sched_entity **)ptr;
9479 ptr += nr_cpu_ids * sizeof(void **);
9480
9481 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9482 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9483#endif /* CONFIG_USER_SCHED */
9484#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9485#ifdef CONFIG_RT_GROUP_SCHED
9486 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9487 ptr += nr_cpu_ids * sizeof(void **);
9488
9489 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9490 ptr += nr_cpu_ids * sizeof(void **);
9491
9492#ifdef CONFIG_USER_SCHED
9493 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9494 ptr += nr_cpu_ids * sizeof(void **);
9495
9496 root_task_group.rt_rq = (struct rt_rq **)ptr;
9497 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9498#endif /* CONFIG_USER_SCHED */
9499#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9500#ifdef CONFIG_CPUMASK_OFFSTACK
9501 for_each_possible_cpu(i) {
9502 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9503 ptr += cpumask_size();
9504 }
9505#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9506 }
dd41f596 9507
57d885fe
GH
9508#ifdef CONFIG_SMP
9509 init_defrootdomain();
9510#endif
9511
d0b27fa7
PZ
9512 init_rt_bandwidth(&def_rt_bandwidth,
9513 global_rt_period(), global_rt_runtime());
9514
9515#ifdef CONFIG_RT_GROUP_SCHED
9516 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9517 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9518#ifdef CONFIG_USER_SCHED
9519 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9520 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9521#endif /* CONFIG_USER_SCHED */
9522#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9523
052f1dc7 9524#ifdef CONFIG_GROUP_SCHED
6f505b16 9525 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9526 INIT_LIST_HEAD(&init_task_group.children);
9527
9528#ifdef CONFIG_USER_SCHED
9529 INIT_LIST_HEAD(&root_task_group.children);
9530 init_task_group.parent = &root_task_group;
9531 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9532#endif /* CONFIG_USER_SCHED */
9533#endif /* CONFIG_GROUP_SCHED */
6f505b16 9534
4a6cc4bd
JK
9535#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9536 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9537 __alignof__(unsigned long));
9538#endif
0a945022 9539 for_each_possible_cpu(i) {
70b97a7f 9540 struct rq *rq;
1da177e4
LT
9541
9542 rq = cpu_rq(i);
05fa785c 9543 raw_spin_lock_init(&rq->lock);
7897986b 9544 rq->nr_running = 0;
dce48a84
TG
9545 rq->calc_load_active = 0;
9546 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9547 init_cfs_rq(&rq->cfs, rq);
6f505b16 9548 init_rt_rq(&rq->rt, rq);
dd41f596 9549#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9550 init_task_group.shares = init_task_group_load;
6f505b16 9551 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9552#ifdef CONFIG_CGROUP_SCHED
9553 /*
9554 * How much cpu bandwidth does init_task_group get?
9555 *
9556 * In case of task-groups formed thr' the cgroup filesystem, it
9557 * gets 100% of the cpu resources in the system. This overall
9558 * system cpu resource is divided among the tasks of
9559 * init_task_group and its child task-groups in a fair manner,
9560 * based on each entity's (task or task-group's) weight
9561 * (se->load.weight).
9562 *
9563 * In other words, if init_task_group has 10 tasks of weight
9564 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9565 * then A0's share of the cpu resource is:
9566 *
0d905bca 9567 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9568 *
9569 * We achieve this by letting init_task_group's tasks sit
9570 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9571 */
ec7dc8ac 9572 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9573#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9574 root_task_group.shares = NICE_0_LOAD;
9575 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9576 /*
9577 * In case of task-groups formed thr' the user id of tasks,
9578 * init_task_group represents tasks belonging to root user.
9579 * Hence it forms a sibling of all subsequent groups formed.
9580 * In this case, init_task_group gets only a fraction of overall
9581 * system cpu resource, based on the weight assigned to root
9582 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9583 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9584 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9585 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9586 */
ec7dc8ac 9587 init_tg_cfs_entry(&init_task_group,
84e9dabf 9588 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9589 &per_cpu(init_sched_entity, i), i, 1,
9590 root_task_group.se[i]);
6f505b16 9591
052f1dc7 9592#endif
354d60c2
DG
9593#endif /* CONFIG_FAIR_GROUP_SCHED */
9594
9595 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9596#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9597 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9598#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9599 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9600#elif defined CONFIG_USER_SCHED
eff766a6 9601 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9602 init_tg_rt_entry(&init_task_group,
1871e52c 9603 &per_cpu(init_rt_rq_var, i),
eff766a6
PZ
9604 &per_cpu(init_sched_rt_entity, i), i, 1,
9605 root_task_group.rt_se[i]);
354d60c2 9606#endif
dd41f596 9607#endif
1da177e4 9608
dd41f596
IM
9609 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9610 rq->cpu_load[j] = 0;
1da177e4 9611#ifdef CONFIG_SMP
41c7ce9a 9612 rq->sd = NULL;
57d885fe 9613 rq->rd = NULL;
3f029d3c 9614 rq->post_schedule = 0;
1da177e4 9615 rq->active_balance = 0;
dd41f596 9616 rq->next_balance = jiffies;
1da177e4 9617 rq->push_cpu = 0;
0a2966b4 9618 rq->cpu = i;
1f11eb6a 9619 rq->online = 0;
1da177e4 9620 rq->migration_thread = NULL;
eae0c9df
MG
9621 rq->idle_stamp = 0;
9622 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9623 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9624 rq_attach_root(rq, &def_root_domain);
1da177e4 9625#endif
8f4d37ec 9626 init_rq_hrtick(rq);
1da177e4 9627 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9628 }
9629
2dd73a4f 9630 set_load_weight(&init_task);
b50f60ce 9631
e107be36
AK
9632#ifdef CONFIG_PREEMPT_NOTIFIERS
9633 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9634#endif
9635
c9819f45 9636#ifdef CONFIG_SMP
962cf36c 9637 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9638#endif
9639
b50f60ce 9640#ifdef CONFIG_RT_MUTEXES
1d615482 9641 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
9642#endif
9643
1da177e4
LT
9644 /*
9645 * The boot idle thread does lazy MMU switching as well:
9646 */
9647 atomic_inc(&init_mm.mm_count);
9648 enter_lazy_tlb(&init_mm, current);
9649
9650 /*
9651 * Make us the idle thread. Technically, schedule() should not be
9652 * called from this thread, however somewhere below it might be,
9653 * but because we are the idle thread, we just pick up running again
9654 * when this runqueue becomes "idle".
9655 */
9656 init_idle(current, smp_processor_id());
dce48a84
TG
9657
9658 calc_load_update = jiffies + LOAD_FREQ;
9659
dd41f596
IM
9660 /*
9661 * During early bootup we pretend to be a normal task:
9662 */
9663 current->sched_class = &fair_sched_class;
6892b75e 9664
6a7b3dc3 9665 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9666 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9667#ifdef CONFIG_SMP
7d1e6a9b 9668#ifdef CONFIG_NO_HZ
49557e62 9669 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9670 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9671#endif
bdddd296
RR
9672 /* May be allocated at isolcpus cmdline parse time */
9673 if (cpu_isolated_map == NULL)
9674 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9675#endif /* SMP */
6a7b3dc3 9676
cdd6c482 9677 perf_event_init();
0d905bca 9678
6892b75e 9679 scheduler_running = 1;
1da177e4
LT
9680}
9681
9682#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9683static inline int preempt_count_equals(int preempt_offset)
9684{
234da7bc 9685 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
9686
9687 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9688}
9689
9690void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9691{
48f24c4d 9692#ifdef in_atomic
1da177e4
LT
9693 static unsigned long prev_jiffy; /* ratelimiting */
9694
e4aafea2
FW
9695 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9696 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9697 return;
9698 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9699 return;
9700 prev_jiffy = jiffies;
9701
663997d4
JP
9702 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9703 file, line);
9704 pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9705 in_atomic(), irqs_disabled(),
9706 current->pid, current->comm);
aef745fc
IM
9707
9708 debug_show_held_locks(current);
9709 if (irqs_disabled())
9710 print_irqtrace_events(current);
9711 dump_stack();
1da177e4
LT
9712#endif
9713}
9714EXPORT_SYMBOL(__might_sleep);
9715#endif
9716
9717#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9718static void normalize_task(struct rq *rq, struct task_struct *p)
9719{
9720 int on_rq;
3e51f33f 9721
3a5e4dc1
AK
9722 update_rq_clock(rq);
9723 on_rq = p->se.on_rq;
9724 if (on_rq)
9725 deactivate_task(rq, p, 0);
9726 __setscheduler(rq, p, SCHED_NORMAL, 0);
9727 if (on_rq) {
9728 activate_task(rq, p, 0);
9729 resched_task(rq->curr);
9730 }
9731}
9732
1da177e4
LT
9733void normalize_rt_tasks(void)
9734{
a0f98a1c 9735 struct task_struct *g, *p;
1da177e4 9736 unsigned long flags;
70b97a7f 9737 struct rq *rq;
1da177e4 9738
4cf5d77a 9739 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9740 do_each_thread(g, p) {
178be793
IM
9741 /*
9742 * Only normalize user tasks:
9743 */
9744 if (!p->mm)
9745 continue;
9746
6cfb0d5d 9747 p->se.exec_start = 0;
6cfb0d5d 9748#ifdef CONFIG_SCHEDSTATS
dd41f596 9749 p->se.wait_start = 0;
dd41f596 9750 p->se.sleep_start = 0;
dd41f596 9751 p->se.block_start = 0;
6cfb0d5d 9752#endif
dd41f596
IM
9753
9754 if (!rt_task(p)) {
9755 /*
9756 * Renice negative nice level userspace
9757 * tasks back to 0:
9758 */
9759 if (TASK_NICE(p) < 0 && p->mm)
9760 set_user_nice(p, 0);
1da177e4 9761 continue;
dd41f596 9762 }
1da177e4 9763
1d615482 9764 raw_spin_lock(&p->pi_lock);
b29739f9 9765 rq = __task_rq_lock(p);
1da177e4 9766
178be793 9767 normalize_task(rq, p);
3a5e4dc1 9768
b29739f9 9769 __task_rq_unlock(rq);
1d615482 9770 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
9771 } while_each_thread(g, p);
9772
4cf5d77a 9773 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9774}
9775
9776#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9777
9778#ifdef CONFIG_IA64
9779/*
9780 * These functions are only useful for the IA64 MCA handling.
9781 *
9782 * They can only be called when the whole system has been
9783 * stopped - every CPU needs to be quiescent, and no scheduling
9784 * activity can take place. Using them for anything else would
9785 * be a serious bug, and as a result, they aren't even visible
9786 * under any other configuration.
9787 */
9788
9789/**
9790 * curr_task - return the current task for a given cpu.
9791 * @cpu: the processor in question.
9792 *
9793 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9794 */
36c8b586 9795struct task_struct *curr_task(int cpu)
1df5c10a
LT
9796{
9797 return cpu_curr(cpu);
9798}
9799
9800/**
9801 * set_curr_task - set the current task for a given cpu.
9802 * @cpu: the processor in question.
9803 * @p: the task pointer to set.
9804 *
9805 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9806 * are serviced on a separate stack. It allows the architecture to switch the
9807 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9808 * must be called with all CPU's synchronized, and interrupts disabled, the
9809 * and caller must save the original value of the current task (see
9810 * curr_task() above) and restore that value before reenabling interrupts and
9811 * re-starting the system.
9812 *
9813 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9814 */
36c8b586 9815void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9816{
9817 cpu_curr(cpu) = p;
9818}
9819
9820#endif
29f59db3 9821
bccbe08a
PZ
9822#ifdef CONFIG_FAIR_GROUP_SCHED
9823static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9824{
9825 int i;
9826
9827 for_each_possible_cpu(i) {
9828 if (tg->cfs_rq)
9829 kfree(tg->cfs_rq[i]);
9830 if (tg->se)
9831 kfree(tg->se[i]);
6f505b16
PZ
9832 }
9833
9834 kfree(tg->cfs_rq);
9835 kfree(tg->se);
6f505b16
PZ
9836}
9837
ec7dc8ac
DG
9838static
9839int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9840{
29f59db3 9841 struct cfs_rq *cfs_rq;
eab17229 9842 struct sched_entity *se;
9b5b7751 9843 struct rq *rq;
29f59db3
SV
9844 int i;
9845
434d53b0 9846 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9847 if (!tg->cfs_rq)
9848 goto err;
434d53b0 9849 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9850 if (!tg->se)
9851 goto err;
052f1dc7
PZ
9852
9853 tg->shares = NICE_0_LOAD;
29f59db3
SV
9854
9855 for_each_possible_cpu(i) {
9b5b7751 9856 rq = cpu_rq(i);
29f59db3 9857
eab17229
LZ
9858 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9859 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9860 if (!cfs_rq)
9861 goto err;
9862
eab17229
LZ
9863 se = kzalloc_node(sizeof(struct sched_entity),
9864 GFP_KERNEL, cpu_to_node(i));
29f59db3 9865 if (!se)
dfc12eb2 9866 goto err_free_rq;
29f59db3 9867
eab17229 9868 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9869 }
9870
9871 return 1;
9872
dfc12eb2
PC
9873 err_free_rq:
9874 kfree(cfs_rq);
bccbe08a
PZ
9875 err:
9876 return 0;
9877}
9878
9879static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9880{
9881 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9882 &cpu_rq(cpu)->leaf_cfs_rq_list);
9883}
9884
9885static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9886{
9887 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9888}
6d6bc0ad 9889#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9890static inline void free_fair_sched_group(struct task_group *tg)
9891{
9892}
9893
ec7dc8ac
DG
9894static inline
9895int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9896{
9897 return 1;
9898}
9899
9900static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9901{
9902}
9903
9904static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9905{
9906}
6d6bc0ad 9907#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9908
9909#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9910static void free_rt_sched_group(struct task_group *tg)
9911{
9912 int i;
9913
d0b27fa7
PZ
9914 destroy_rt_bandwidth(&tg->rt_bandwidth);
9915
bccbe08a
PZ
9916 for_each_possible_cpu(i) {
9917 if (tg->rt_rq)
9918 kfree(tg->rt_rq[i]);
9919 if (tg->rt_se)
9920 kfree(tg->rt_se[i]);
9921 }
9922
9923 kfree(tg->rt_rq);
9924 kfree(tg->rt_se);
9925}
9926
ec7dc8ac
DG
9927static
9928int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9929{
9930 struct rt_rq *rt_rq;
eab17229 9931 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9932 struct rq *rq;
9933 int i;
9934
434d53b0 9935 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9936 if (!tg->rt_rq)
9937 goto err;
434d53b0 9938 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9939 if (!tg->rt_se)
9940 goto err;
9941
d0b27fa7
PZ
9942 init_rt_bandwidth(&tg->rt_bandwidth,
9943 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9944
9945 for_each_possible_cpu(i) {
9946 rq = cpu_rq(i);
9947
eab17229
LZ
9948 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9949 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9950 if (!rt_rq)
9951 goto err;
29f59db3 9952
eab17229
LZ
9953 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9954 GFP_KERNEL, cpu_to_node(i));
6f505b16 9955 if (!rt_se)
dfc12eb2 9956 goto err_free_rq;
29f59db3 9957
eab17229 9958 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9959 }
9960
bccbe08a
PZ
9961 return 1;
9962
dfc12eb2
PC
9963 err_free_rq:
9964 kfree(rt_rq);
bccbe08a
PZ
9965 err:
9966 return 0;
9967}
9968
9969static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9970{
9971 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9972 &cpu_rq(cpu)->leaf_rt_rq_list);
9973}
9974
9975static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9976{
9977 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9978}
6d6bc0ad 9979#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9980static inline void free_rt_sched_group(struct task_group *tg)
9981{
9982}
9983
ec7dc8ac
DG
9984static inline
9985int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9986{
9987 return 1;
9988}
9989
9990static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9991{
9992}
9993
9994static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9995{
9996}
6d6bc0ad 9997#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9998
d0b27fa7 9999#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
10000static void free_sched_group(struct task_group *tg)
10001{
10002 free_fair_sched_group(tg);
10003 free_rt_sched_group(tg);
10004 kfree(tg);
10005}
10006
10007/* allocate runqueue etc for a new task group */
ec7dc8ac 10008struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10009{
10010 struct task_group *tg;
10011 unsigned long flags;
10012 int i;
10013
10014 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10015 if (!tg)
10016 return ERR_PTR(-ENOMEM);
10017
ec7dc8ac 10018 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10019 goto err;
10020
ec7dc8ac 10021 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10022 goto err;
10023
8ed36996 10024 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10025 for_each_possible_cpu(i) {
bccbe08a
PZ
10026 register_fair_sched_group(tg, i);
10027 register_rt_sched_group(tg, i);
9b5b7751 10028 }
6f505b16 10029 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10030
10031 WARN_ON(!parent); /* root should already exist */
10032
10033 tg->parent = parent;
f473aa5e 10034 INIT_LIST_HEAD(&tg->children);
09f2724a 10035 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10036 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10037
9b5b7751 10038 return tg;
29f59db3
SV
10039
10040err:
6f505b16 10041 free_sched_group(tg);
29f59db3
SV
10042 return ERR_PTR(-ENOMEM);
10043}
10044
9b5b7751 10045/* rcu callback to free various structures associated with a task group */
6f505b16 10046static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10047{
29f59db3 10048 /* now it should be safe to free those cfs_rqs */
6f505b16 10049 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10050}
10051
9b5b7751 10052/* Destroy runqueue etc associated with a task group */
4cf86d77 10053void sched_destroy_group(struct task_group *tg)
29f59db3 10054{
8ed36996 10055 unsigned long flags;
9b5b7751 10056 int i;
29f59db3 10057
8ed36996 10058 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10059 for_each_possible_cpu(i) {
bccbe08a
PZ
10060 unregister_fair_sched_group(tg, i);
10061 unregister_rt_sched_group(tg, i);
9b5b7751 10062 }
6f505b16 10063 list_del_rcu(&tg->list);
f473aa5e 10064 list_del_rcu(&tg->siblings);
8ed36996 10065 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10066
9b5b7751 10067 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10068 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10069}
10070
9b5b7751 10071/* change task's runqueue when it moves between groups.
3a252015
IM
10072 * The caller of this function should have put the task in its new group
10073 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10074 * reflect its new group.
9b5b7751
SV
10075 */
10076void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10077{
10078 int on_rq, running;
10079 unsigned long flags;
10080 struct rq *rq;
10081
10082 rq = task_rq_lock(tsk, &flags);
10083
29f59db3
SV
10084 update_rq_clock(rq);
10085
051a1d1a 10086 running = task_current(rq, tsk);
29f59db3
SV
10087 on_rq = tsk->se.on_rq;
10088
0e1f3483 10089 if (on_rq)
29f59db3 10090 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10091 if (unlikely(running))
10092 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10093
6f505b16 10094 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10095
810b3817
PZ
10096#ifdef CONFIG_FAIR_GROUP_SCHED
10097 if (tsk->sched_class->moved_group)
88ec22d3 10098 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
10099#endif
10100
0e1f3483
HS
10101 if (unlikely(running))
10102 tsk->sched_class->set_curr_task(rq);
10103 if (on_rq)
7074badb 10104 enqueue_task(rq, tsk, 0);
29f59db3 10105
29f59db3
SV
10106 task_rq_unlock(rq, &flags);
10107}
6d6bc0ad 10108#endif /* CONFIG_GROUP_SCHED */
29f59db3 10109
052f1dc7 10110#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10111static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10112{
10113 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10114 int on_rq;
10115
29f59db3 10116 on_rq = se->on_rq;
62fb1851 10117 if (on_rq)
29f59db3
SV
10118 dequeue_entity(cfs_rq, se, 0);
10119
10120 se->load.weight = shares;
e05510d0 10121 se->load.inv_weight = 0;
29f59db3 10122
62fb1851 10123 if (on_rq)
29f59db3 10124 enqueue_entity(cfs_rq, se, 0);
c09595f6 10125}
62fb1851 10126
c09595f6
PZ
10127static void set_se_shares(struct sched_entity *se, unsigned long shares)
10128{
10129 struct cfs_rq *cfs_rq = se->cfs_rq;
10130 struct rq *rq = cfs_rq->rq;
10131 unsigned long flags;
10132
05fa785c 10133 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 10134 __set_se_shares(se, shares);
05fa785c 10135 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10136}
10137
8ed36996
PZ
10138static DEFINE_MUTEX(shares_mutex);
10139
4cf86d77 10140int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10141{
10142 int i;
8ed36996 10143 unsigned long flags;
c61935fd 10144
ec7dc8ac
DG
10145 /*
10146 * We can't change the weight of the root cgroup.
10147 */
10148 if (!tg->se[0])
10149 return -EINVAL;
10150
18d95a28
PZ
10151 if (shares < MIN_SHARES)
10152 shares = MIN_SHARES;
cb4ad1ff
MX
10153 else if (shares > MAX_SHARES)
10154 shares = MAX_SHARES;
62fb1851 10155
8ed36996 10156 mutex_lock(&shares_mutex);
9b5b7751 10157 if (tg->shares == shares)
5cb350ba 10158 goto done;
29f59db3 10159
8ed36996 10160 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10161 for_each_possible_cpu(i)
10162 unregister_fair_sched_group(tg, i);
f473aa5e 10163 list_del_rcu(&tg->siblings);
8ed36996 10164 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10165
10166 /* wait for any ongoing reference to this group to finish */
10167 synchronize_sched();
10168
10169 /*
10170 * Now we are free to modify the group's share on each cpu
10171 * w/o tripping rebalance_share or load_balance_fair.
10172 */
9b5b7751 10173 tg->shares = shares;
c09595f6
PZ
10174 for_each_possible_cpu(i) {
10175 /*
10176 * force a rebalance
10177 */
10178 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10179 set_se_shares(tg->se[i], shares);
c09595f6 10180 }
29f59db3 10181
6b2d7700
SV
10182 /*
10183 * Enable load balance activity on this group, by inserting it back on
10184 * each cpu's rq->leaf_cfs_rq_list.
10185 */
8ed36996 10186 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10187 for_each_possible_cpu(i)
10188 register_fair_sched_group(tg, i);
f473aa5e 10189 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10190 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10191done:
8ed36996 10192 mutex_unlock(&shares_mutex);
9b5b7751 10193 return 0;
29f59db3
SV
10194}
10195
5cb350ba
DG
10196unsigned long sched_group_shares(struct task_group *tg)
10197{
10198 return tg->shares;
10199}
052f1dc7 10200#endif
5cb350ba 10201
052f1dc7 10202#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10203/*
9f0c1e56 10204 * Ensure that the real time constraints are schedulable.
6f505b16 10205 */
9f0c1e56
PZ
10206static DEFINE_MUTEX(rt_constraints_mutex);
10207
10208static unsigned long to_ratio(u64 period, u64 runtime)
10209{
10210 if (runtime == RUNTIME_INF)
9a7e0b18 10211 return 1ULL << 20;
9f0c1e56 10212
9a7e0b18 10213 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10214}
10215
9a7e0b18
PZ
10216/* Must be called with tasklist_lock held */
10217static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10218{
9a7e0b18 10219 struct task_struct *g, *p;
b40b2e8e 10220
9a7e0b18
PZ
10221 do_each_thread(g, p) {
10222 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10223 return 1;
10224 } while_each_thread(g, p);
b40b2e8e 10225
9a7e0b18
PZ
10226 return 0;
10227}
b40b2e8e 10228
9a7e0b18
PZ
10229struct rt_schedulable_data {
10230 struct task_group *tg;
10231 u64 rt_period;
10232 u64 rt_runtime;
10233};
b40b2e8e 10234
9a7e0b18
PZ
10235static int tg_schedulable(struct task_group *tg, void *data)
10236{
10237 struct rt_schedulable_data *d = data;
10238 struct task_group *child;
10239 unsigned long total, sum = 0;
10240 u64 period, runtime;
b40b2e8e 10241
9a7e0b18
PZ
10242 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10243 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10244
9a7e0b18
PZ
10245 if (tg == d->tg) {
10246 period = d->rt_period;
10247 runtime = d->rt_runtime;
b40b2e8e 10248 }
b40b2e8e 10249
98a4826b
PZ
10250#ifdef CONFIG_USER_SCHED
10251 if (tg == &root_task_group) {
10252 period = global_rt_period();
10253 runtime = global_rt_runtime();
10254 }
10255#endif
10256
4653f803
PZ
10257 /*
10258 * Cannot have more runtime than the period.
10259 */
10260 if (runtime > period && runtime != RUNTIME_INF)
10261 return -EINVAL;
6f505b16 10262
4653f803
PZ
10263 /*
10264 * Ensure we don't starve existing RT tasks.
10265 */
9a7e0b18
PZ
10266 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10267 return -EBUSY;
6f505b16 10268
9a7e0b18 10269 total = to_ratio(period, runtime);
6f505b16 10270
4653f803
PZ
10271 /*
10272 * Nobody can have more than the global setting allows.
10273 */
10274 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10275 return -EINVAL;
6f505b16 10276
4653f803
PZ
10277 /*
10278 * The sum of our children's runtime should not exceed our own.
10279 */
9a7e0b18
PZ
10280 list_for_each_entry_rcu(child, &tg->children, siblings) {
10281 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10282 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10283
9a7e0b18
PZ
10284 if (child == d->tg) {
10285 period = d->rt_period;
10286 runtime = d->rt_runtime;
10287 }
6f505b16 10288
9a7e0b18 10289 sum += to_ratio(period, runtime);
9f0c1e56 10290 }
6f505b16 10291
9a7e0b18
PZ
10292 if (sum > total)
10293 return -EINVAL;
10294
10295 return 0;
6f505b16
PZ
10296}
10297
9a7e0b18 10298static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10299{
9a7e0b18
PZ
10300 struct rt_schedulable_data data = {
10301 .tg = tg,
10302 .rt_period = period,
10303 .rt_runtime = runtime,
10304 };
10305
10306 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10307}
10308
d0b27fa7
PZ
10309static int tg_set_bandwidth(struct task_group *tg,
10310 u64 rt_period, u64 rt_runtime)
6f505b16 10311{
ac086bc2 10312 int i, err = 0;
9f0c1e56 10313
9f0c1e56 10314 mutex_lock(&rt_constraints_mutex);
521f1a24 10315 read_lock(&tasklist_lock);
9a7e0b18
PZ
10316 err = __rt_schedulable(tg, rt_period, rt_runtime);
10317 if (err)
9f0c1e56 10318 goto unlock;
ac086bc2 10319
0986b11b 10320 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10321 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10322 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10323
10324 for_each_possible_cpu(i) {
10325 struct rt_rq *rt_rq = tg->rt_rq[i];
10326
0986b11b 10327 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10328 rt_rq->rt_runtime = rt_runtime;
0986b11b 10329 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10330 }
0986b11b 10331 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10332 unlock:
521f1a24 10333 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10334 mutex_unlock(&rt_constraints_mutex);
10335
10336 return err;
6f505b16
PZ
10337}
10338
d0b27fa7
PZ
10339int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10340{
10341 u64 rt_runtime, rt_period;
10342
10343 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10344 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10345 if (rt_runtime_us < 0)
10346 rt_runtime = RUNTIME_INF;
10347
10348 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10349}
10350
9f0c1e56
PZ
10351long sched_group_rt_runtime(struct task_group *tg)
10352{
10353 u64 rt_runtime_us;
10354
d0b27fa7 10355 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10356 return -1;
10357
d0b27fa7 10358 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10359 do_div(rt_runtime_us, NSEC_PER_USEC);
10360 return rt_runtime_us;
10361}
d0b27fa7
PZ
10362
10363int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10364{
10365 u64 rt_runtime, rt_period;
10366
10367 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10368 rt_runtime = tg->rt_bandwidth.rt_runtime;
10369
619b0488
R
10370 if (rt_period == 0)
10371 return -EINVAL;
10372
d0b27fa7
PZ
10373 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10374}
10375
10376long sched_group_rt_period(struct task_group *tg)
10377{
10378 u64 rt_period_us;
10379
10380 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10381 do_div(rt_period_us, NSEC_PER_USEC);
10382 return rt_period_us;
10383}
10384
10385static int sched_rt_global_constraints(void)
10386{
4653f803 10387 u64 runtime, period;
d0b27fa7
PZ
10388 int ret = 0;
10389
ec5d4989
HS
10390 if (sysctl_sched_rt_period <= 0)
10391 return -EINVAL;
10392
4653f803
PZ
10393 runtime = global_rt_runtime();
10394 period = global_rt_period();
10395
10396 /*
10397 * Sanity check on the sysctl variables.
10398 */
10399 if (runtime > period && runtime != RUNTIME_INF)
10400 return -EINVAL;
10b612f4 10401
d0b27fa7 10402 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10403 read_lock(&tasklist_lock);
4653f803 10404 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10405 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10406 mutex_unlock(&rt_constraints_mutex);
10407
10408 return ret;
10409}
54e99124
DG
10410
10411int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10412{
10413 /* Don't accept realtime tasks when there is no way for them to run */
10414 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10415 return 0;
10416
10417 return 1;
10418}
10419
6d6bc0ad 10420#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10421static int sched_rt_global_constraints(void)
10422{
ac086bc2
PZ
10423 unsigned long flags;
10424 int i;
10425
ec5d4989
HS
10426 if (sysctl_sched_rt_period <= 0)
10427 return -EINVAL;
10428
60aa605d
PZ
10429 /*
10430 * There's always some RT tasks in the root group
10431 * -- migration, kstopmachine etc..
10432 */
10433 if (sysctl_sched_rt_runtime == 0)
10434 return -EBUSY;
10435
0986b11b 10436 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
10437 for_each_possible_cpu(i) {
10438 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10439
0986b11b 10440 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10441 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 10442 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10443 }
0986b11b 10444 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 10445
d0b27fa7
PZ
10446 return 0;
10447}
6d6bc0ad 10448#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10449
10450int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10451 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10452 loff_t *ppos)
10453{
10454 int ret;
10455 int old_period, old_runtime;
10456 static DEFINE_MUTEX(mutex);
10457
10458 mutex_lock(&mutex);
10459 old_period = sysctl_sched_rt_period;
10460 old_runtime = sysctl_sched_rt_runtime;
10461
8d65af78 10462 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10463
10464 if (!ret && write) {
10465 ret = sched_rt_global_constraints();
10466 if (ret) {
10467 sysctl_sched_rt_period = old_period;
10468 sysctl_sched_rt_runtime = old_runtime;
10469 } else {
10470 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10471 def_rt_bandwidth.rt_period =
10472 ns_to_ktime(global_rt_period());
10473 }
10474 }
10475 mutex_unlock(&mutex);
10476
10477 return ret;
10478}
68318b8e 10479
052f1dc7 10480#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10481
10482/* return corresponding task_group object of a cgroup */
2b01dfe3 10483static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10484{
2b01dfe3
PM
10485 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10486 struct task_group, css);
68318b8e
SV
10487}
10488
10489static struct cgroup_subsys_state *
2b01dfe3 10490cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10491{
ec7dc8ac 10492 struct task_group *tg, *parent;
68318b8e 10493
2b01dfe3 10494 if (!cgrp->parent) {
68318b8e 10495 /* This is early initialization for the top cgroup */
68318b8e
SV
10496 return &init_task_group.css;
10497 }
10498
ec7dc8ac
DG
10499 parent = cgroup_tg(cgrp->parent);
10500 tg = sched_create_group(parent);
68318b8e
SV
10501 if (IS_ERR(tg))
10502 return ERR_PTR(-ENOMEM);
10503
68318b8e
SV
10504 return &tg->css;
10505}
10506
41a2d6cf
IM
10507static void
10508cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10509{
2b01dfe3 10510 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10511
10512 sched_destroy_group(tg);
10513}
10514
41a2d6cf 10515static int
be367d09 10516cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10517{
b68aa230 10518#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10519 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10520 return -EINVAL;
10521#else
68318b8e
SV
10522 /* We don't support RT-tasks being in separate groups */
10523 if (tsk->sched_class != &fair_sched_class)
10524 return -EINVAL;
b68aa230 10525#endif
be367d09
BB
10526 return 0;
10527}
68318b8e 10528
be367d09
BB
10529static int
10530cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10531 struct task_struct *tsk, bool threadgroup)
10532{
10533 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10534 if (retval)
10535 return retval;
10536 if (threadgroup) {
10537 struct task_struct *c;
10538 rcu_read_lock();
10539 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10540 retval = cpu_cgroup_can_attach_task(cgrp, c);
10541 if (retval) {
10542 rcu_read_unlock();
10543 return retval;
10544 }
10545 }
10546 rcu_read_unlock();
10547 }
68318b8e
SV
10548 return 0;
10549}
10550
10551static void
2b01dfe3 10552cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10553 struct cgroup *old_cont, struct task_struct *tsk,
10554 bool threadgroup)
68318b8e
SV
10555{
10556 sched_move_task(tsk);
be367d09
BB
10557 if (threadgroup) {
10558 struct task_struct *c;
10559 rcu_read_lock();
10560 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10561 sched_move_task(c);
10562 }
10563 rcu_read_unlock();
10564 }
68318b8e
SV
10565}
10566
052f1dc7 10567#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10568static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10569 u64 shareval)
68318b8e 10570{
2b01dfe3 10571 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10572}
10573
f4c753b7 10574static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10575{
2b01dfe3 10576 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10577
10578 return (u64) tg->shares;
10579}
6d6bc0ad 10580#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10581
052f1dc7 10582#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10583static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10584 s64 val)
6f505b16 10585{
06ecb27c 10586 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10587}
10588
06ecb27c 10589static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10590{
06ecb27c 10591 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10592}
d0b27fa7
PZ
10593
10594static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10595 u64 rt_period_us)
10596{
10597 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10598}
10599
10600static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10601{
10602 return sched_group_rt_period(cgroup_tg(cgrp));
10603}
6d6bc0ad 10604#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10605
fe5c7cc2 10606static struct cftype cpu_files[] = {
052f1dc7 10607#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10608 {
10609 .name = "shares",
f4c753b7
PM
10610 .read_u64 = cpu_shares_read_u64,
10611 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10612 },
052f1dc7
PZ
10613#endif
10614#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10615 {
9f0c1e56 10616 .name = "rt_runtime_us",
06ecb27c
PM
10617 .read_s64 = cpu_rt_runtime_read,
10618 .write_s64 = cpu_rt_runtime_write,
6f505b16 10619 },
d0b27fa7
PZ
10620 {
10621 .name = "rt_period_us",
f4c753b7
PM
10622 .read_u64 = cpu_rt_period_read_uint,
10623 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10624 },
052f1dc7 10625#endif
68318b8e
SV
10626};
10627
10628static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10629{
fe5c7cc2 10630 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10631}
10632
10633struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10634 .name = "cpu",
10635 .create = cpu_cgroup_create,
10636 .destroy = cpu_cgroup_destroy,
10637 .can_attach = cpu_cgroup_can_attach,
10638 .attach = cpu_cgroup_attach,
10639 .populate = cpu_cgroup_populate,
10640 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10641 .early_init = 1,
10642};
10643
052f1dc7 10644#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10645
10646#ifdef CONFIG_CGROUP_CPUACCT
10647
10648/*
10649 * CPU accounting code for task groups.
10650 *
10651 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10652 * (balbir@in.ibm.com).
10653 */
10654
934352f2 10655/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10656struct cpuacct {
10657 struct cgroup_subsys_state css;
10658 /* cpuusage holds pointer to a u64-type object on every cpu */
10659 u64 *cpuusage;
ef12fefa 10660 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10661 struct cpuacct *parent;
d842de87
SV
10662};
10663
10664struct cgroup_subsys cpuacct_subsys;
10665
10666/* return cpu accounting group corresponding to this container */
32cd756a 10667static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10668{
32cd756a 10669 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10670 struct cpuacct, css);
10671}
10672
10673/* return cpu accounting group to which this task belongs */
10674static inline struct cpuacct *task_ca(struct task_struct *tsk)
10675{
10676 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10677 struct cpuacct, css);
10678}
10679
10680/* create a new cpu accounting group */
10681static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10682 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10683{
10684 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10685 int i;
d842de87
SV
10686
10687 if (!ca)
ef12fefa 10688 goto out;
d842de87
SV
10689
10690 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10691 if (!ca->cpuusage)
10692 goto out_free_ca;
10693
10694 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10695 if (percpu_counter_init(&ca->cpustat[i], 0))
10696 goto out_free_counters;
d842de87 10697
934352f2
BR
10698 if (cgrp->parent)
10699 ca->parent = cgroup_ca(cgrp->parent);
10700
d842de87 10701 return &ca->css;
ef12fefa
BR
10702
10703out_free_counters:
10704 while (--i >= 0)
10705 percpu_counter_destroy(&ca->cpustat[i]);
10706 free_percpu(ca->cpuusage);
10707out_free_ca:
10708 kfree(ca);
10709out:
10710 return ERR_PTR(-ENOMEM);
d842de87
SV
10711}
10712
10713/* destroy an existing cpu accounting group */
41a2d6cf 10714static void
32cd756a 10715cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10716{
32cd756a 10717 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10718 int i;
d842de87 10719
ef12fefa
BR
10720 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10721 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10722 free_percpu(ca->cpuusage);
10723 kfree(ca);
10724}
10725
720f5498
KC
10726static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10727{
b36128c8 10728 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10729 u64 data;
10730
10731#ifndef CONFIG_64BIT
10732 /*
10733 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10734 */
05fa785c 10735 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10736 data = *cpuusage;
05fa785c 10737 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10738#else
10739 data = *cpuusage;
10740#endif
10741
10742 return data;
10743}
10744
10745static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10746{
b36128c8 10747 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10748
10749#ifndef CONFIG_64BIT
10750 /*
10751 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10752 */
05fa785c 10753 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10754 *cpuusage = val;
05fa785c 10755 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10756#else
10757 *cpuusage = val;
10758#endif
10759}
10760
d842de87 10761/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10762static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10763{
32cd756a 10764 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10765 u64 totalcpuusage = 0;
10766 int i;
10767
720f5498
KC
10768 for_each_present_cpu(i)
10769 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10770
10771 return totalcpuusage;
10772}
10773
0297b803
DG
10774static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10775 u64 reset)
10776{
10777 struct cpuacct *ca = cgroup_ca(cgrp);
10778 int err = 0;
10779 int i;
10780
10781 if (reset) {
10782 err = -EINVAL;
10783 goto out;
10784 }
10785
720f5498
KC
10786 for_each_present_cpu(i)
10787 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10788
0297b803
DG
10789out:
10790 return err;
10791}
10792
e9515c3c
KC
10793static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10794 struct seq_file *m)
10795{
10796 struct cpuacct *ca = cgroup_ca(cgroup);
10797 u64 percpu;
10798 int i;
10799
10800 for_each_present_cpu(i) {
10801 percpu = cpuacct_cpuusage_read(ca, i);
10802 seq_printf(m, "%llu ", (unsigned long long) percpu);
10803 }
10804 seq_printf(m, "\n");
10805 return 0;
10806}
10807
ef12fefa
BR
10808static const char *cpuacct_stat_desc[] = {
10809 [CPUACCT_STAT_USER] = "user",
10810 [CPUACCT_STAT_SYSTEM] = "system",
10811};
10812
10813static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10814 struct cgroup_map_cb *cb)
10815{
10816 struct cpuacct *ca = cgroup_ca(cgrp);
10817 int i;
10818
10819 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10820 s64 val = percpu_counter_read(&ca->cpustat[i]);
10821 val = cputime64_to_clock_t(val);
10822 cb->fill(cb, cpuacct_stat_desc[i], val);
10823 }
10824 return 0;
10825}
10826
d842de87
SV
10827static struct cftype files[] = {
10828 {
10829 .name = "usage",
f4c753b7
PM
10830 .read_u64 = cpuusage_read,
10831 .write_u64 = cpuusage_write,
d842de87 10832 },
e9515c3c
KC
10833 {
10834 .name = "usage_percpu",
10835 .read_seq_string = cpuacct_percpu_seq_read,
10836 },
ef12fefa
BR
10837 {
10838 .name = "stat",
10839 .read_map = cpuacct_stats_show,
10840 },
d842de87
SV
10841};
10842
32cd756a 10843static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10844{
32cd756a 10845 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10846}
10847
10848/*
10849 * charge this task's execution time to its accounting group.
10850 *
10851 * called with rq->lock held.
10852 */
10853static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10854{
10855 struct cpuacct *ca;
934352f2 10856 int cpu;
d842de87 10857
c40c6f85 10858 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10859 return;
10860
934352f2 10861 cpu = task_cpu(tsk);
a18b83b7
BR
10862
10863 rcu_read_lock();
10864
d842de87 10865 ca = task_ca(tsk);
d842de87 10866
934352f2 10867 for (; ca; ca = ca->parent) {
b36128c8 10868 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10869 *cpuusage += cputime;
10870 }
a18b83b7
BR
10871
10872 rcu_read_unlock();
d842de87
SV
10873}
10874
ef12fefa
BR
10875/*
10876 * Charge the system/user time to the task's accounting group.
10877 */
10878static void cpuacct_update_stats(struct task_struct *tsk,
10879 enum cpuacct_stat_index idx, cputime_t val)
10880{
10881 struct cpuacct *ca;
10882
10883 if (unlikely(!cpuacct_subsys.active))
10884 return;
10885
10886 rcu_read_lock();
10887 ca = task_ca(tsk);
10888
10889 do {
10890 percpu_counter_add(&ca->cpustat[idx], val);
10891 ca = ca->parent;
10892 } while (ca);
10893 rcu_read_unlock();
10894}
10895
d842de87
SV
10896struct cgroup_subsys cpuacct_subsys = {
10897 .name = "cpuacct",
10898 .create = cpuacct_create,
10899 .destroy = cpuacct_destroy,
10900 .populate = cpuacct_populate,
10901 .subsys_id = cpuacct_subsys_id,
10902};
10903#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10904
10905#ifndef CONFIG_SMP
10906
10907int rcu_expedited_torture_stats(char *page)
10908{
10909 return 0;
10910}
10911EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10912
10913void synchronize_sched_expedited(void)
10914{
10915}
10916EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10917
10918#else /* #ifndef CONFIG_SMP */
10919
10920static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10921static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10922
10923#define RCU_EXPEDITED_STATE_POST -2
10924#define RCU_EXPEDITED_STATE_IDLE -1
10925
10926static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10927
10928int rcu_expedited_torture_stats(char *page)
10929{
10930 int cnt = 0;
10931 int cpu;
10932
10933 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10934 for_each_online_cpu(cpu) {
10935 cnt += sprintf(&page[cnt], " %d:%d",
10936 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10937 }
10938 cnt += sprintf(&page[cnt], "\n");
10939 return cnt;
10940}
10941EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10942
10943static long synchronize_sched_expedited_count;
10944
10945/*
10946 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10947 * approach to force grace period to end quickly. This consumes
10948 * significant time on all CPUs, and is thus not recommended for
10949 * any sort of common-case code.
10950 *
10951 * Note that it is illegal to call this function while holding any
10952 * lock that is acquired by a CPU-hotplug notifier. Failing to
10953 * observe this restriction will result in deadlock.
10954 */
10955void synchronize_sched_expedited(void)
10956{
10957 int cpu;
10958 unsigned long flags;
10959 bool need_full_sync = 0;
10960 struct rq *rq;
10961 struct migration_req *req;
10962 long snap;
10963 int trycount = 0;
10964
10965 smp_mb(); /* ensure prior mod happens before capturing snap. */
10966 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10967 get_online_cpus();
10968 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10969 put_online_cpus();
10970 if (trycount++ < 10)
10971 udelay(trycount * num_online_cpus());
10972 else {
10973 synchronize_sched();
10974 return;
10975 }
10976 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10977 smp_mb(); /* ensure test happens before caller kfree */
10978 return;
10979 }
10980 get_online_cpus();
10981 }
10982 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10983 for_each_online_cpu(cpu) {
10984 rq = cpu_rq(cpu);
10985 req = &per_cpu(rcu_migration_req, cpu);
10986 init_completion(&req->done);
10987 req->task = NULL;
10988 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 10989 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 10990 list_add(&req->list, &rq->migration_queue);
05fa785c 10991 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
10992 wake_up_process(rq->migration_thread);
10993 }
10994 for_each_online_cpu(cpu) {
10995 rcu_expedited_state = cpu;
10996 req = &per_cpu(rcu_migration_req, cpu);
10997 rq = cpu_rq(cpu);
10998 wait_for_completion(&req->done);
05fa785c 10999 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
11000 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11001 need_full_sync = 1;
11002 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 11003 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11004 }
11005 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 11006 synchronize_sched_expedited_count++;
03b042bf
PM
11007 mutex_unlock(&rcu_sched_expedited_mutex);
11008 put_online_cpus();
11009 if (need_full_sync)
11010 synchronize_sched();
11011}
11012EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11013
11014#endif /* #else #ifndef CONFIG_SMP */