]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: Add exports tracking cfs bandwidth control statistics
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
6e0534f2 82#include "sched_cpupri.h"
21aa9af0 83#include "workqueue_sched.h"
5091faa4 84#include "sched_autogroup.h"
6e0534f2 85
a8d154b0 86#define CREATE_TRACE_POINTS
ad8d75ff 87#include <trace/events/sched.h>
a8d154b0 88
1da177e4
LT
89/*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98/*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107/*
d7876a08 108 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 109 */
d6322faf 110#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 111
6aa645ea
IM
112#define NICE_0_LOAD SCHED_LOAD_SCALE
113#define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
1da177e4
LT
115/*
116 * These are the 'tuning knobs' of the scheduler:
117 *
a4ec24b4 118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
119 * Timeslices get refilled after they expire.
120 */
1da177e4 121#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 122
d0b27fa7
PZ
123/*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126#define RUNTIME_INF ((u64)~0ULL)
127
e05606d3
IM
128static inline int rt_policy(int policy)
129{
63f01241 130 if (policy == SCHED_FIFO || policy == SCHED_RR)
e05606d3
IM
131 return 1;
132 return 0;
133}
134
135static inline int task_has_rt_policy(struct task_struct *p)
136{
137 return rt_policy(p->policy);
138}
139
1da177e4 140/*
6aa645ea 141 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 142 */
6aa645ea
IM
143struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146};
147
d0b27fa7 148struct rt_bandwidth {
ea736ed5 149 /* nests inside the rq lock: */
0986b11b 150 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
d0b27fa7
PZ
154};
155
156static struct rt_bandwidth def_rt_bandwidth;
157
158static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161{
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179}
180
181static
182void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183{
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
0986b11b 187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 188
d0b27fa7
PZ
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
192}
193
c8bfff6d
KH
194static inline int rt_bandwidth_enabled(void)
195{
196 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
197}
198
58088ad0 199static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 200{
58088ad0
PT
201 unsigned long delta;
202 ktime_t soft, hard, now;
d0b27fa7 203
58088ad0
PT
204 for (;;) {
205 if (hrtimer_active(period_timer))
206 break;
207
208 now = hrtimer_cb_get_time(period_timer);
209 hrtimer_forward(period_timer, now, period);
210
211 soft = hrtimer_get_softexpires(period_timer);
212 hard = hrtimer_get_expires(period_timer);
213 delta = ktime_to_ns(ktime_sub(hard, soft));
214 __hrtimer_start_range_ns(period_timer, soft, delta,
215 HRTIMER_MODE_ABS_PINNED, 0);
216 }
217}
218
219static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220{
cac64d00 221 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
222 return;
223
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 return;
226
0986b11b 227 raw_spin_lock(&rt_b->rt_runtime_lock);
58088ad0 228 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
0986b11b 229 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
230}
231
232#ifdef CONFIG_RT_GROUP_SCHED
233static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234{
235 hrtimer_cancel(&rt_b->rt_period_timer);
236}
237#endif
238
712555ee 239/*
c4a8849a 240 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
241 * detach_destroy_domains and partition_sched_domains.
242 */
243static DEFINE_MUTEX(sched_domains_mutex);
244
7c941438 245#ifdef CONFIG_CGROUP_SCHED
29f59db3 246
68318b8e
SV
247#include <linux/cgroup.h>
248
29f59db3
SV
249struct cfs_rq;
250
6f505b16
PZ
251static LIST_HEAD(task_groups);
252
ab84d31e
PT
253struct cfs_bandwidth {
254#ifdef CONFIG_CFS_BANDWIDTH
255 raw_spinlock_t lock;
256 ktime_t period;
ec12cb7f 257 u64 quota, runtime;
a790de99 258 s64 hierarchal_quota;
a9cf55b2 259 u64 runtime_expires;
58088ad0
PT
260
261 int idle, timer_active;
262 struct hrtimer period_timer;
85dac906
PT
263 struct list_head throttled_cfs_rq;
264
e8da1b18
NR
265 /* statistics */
266 int nr_periods, nr_throttled;
267 u64 throttled_time;
ab84d31e
PT
268#endif
269};
270
29f59db3 271/* task group related information */
4cf86d77 272struct task_group {
68318b8e 273 struct cgroup_subsys_state css;
6c415b92 274
052f1dc7 275#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
276 /* schedulable entities of this group on each cpu */
277 struct sched_entity **se;
278 /* runqueue "owned" by this group on each cpu */
279 struct cfs_rq **cfs_rq;
280 unsigned long shares;
2069dd75
PZ
281
282 atomic_t load_weight;
052f1dc7
PZ
283#endif
284
285#ifdef CONFIG_RT_GROUP_SCHED
286 struct sched_rt_entity **rt_se;
287 struct rt_rq **rt_rq;
288
d0b27fa7 289 struct rt_bandwidth rt_bandwidth;
052f1dc7 290#endif
6b2d7700 291
ae8393e5 292 struct rcu_head rcu;
6f505b16 293 struct list_head list;
f473aa5e
PZ
294
295 struct task_group *parent;
296 struct list_head siblings;
297 struct list_head children;
5091faa4
MG
298
299#ifdef CONFIG_SCHED_AUTOGROUP
300 struct autogroup *autogroup;
301#endif
ab84d31e
PT
302
303 struct cfs_bandwidth cfs_bandwidth;
29f59db3
SV
304};
305
3d4b47b4 306/* task_group_lock serializes the addition/removal of task groups */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
e9036b36
CG
309#ifdef CONFIG_FAIR_GROUP_SCHED
310
07e06b01 311# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 312
cb4ad1ff 313/*
2e084786
LJ
314 * A weight of 0 or 1 can cause arithmetics problems.
315 * A weight of a cfs_rq is the sum of weights of which entities
316 * are queued on this cfs_rq, so a weight of a entity should not be
317 * too large, so as the shares value of a task group.
cb4ad1ff
MX
318 * (The default weight is 1024 - so there's no practical
319 * limitation from this.)
320 */
cd62287e
MG
321#define MIN_SHARES (1UL << 1)
322#define MAX_SHARES (1UL << 18)
18d95a28 323
07e06b01 324static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
325#endif
326
29f59db3 327/* Default task group.
3a252015 328 * Every task in system belong to this group at bootup.
29f59db3 329 */
07e06b01 330struct task_group root_task_group;
29f59db3 331
7c941438 332#endif /* CONFIG_CGROUP_SCHED */
29f59db3 333
6aa645ea
IM
334/* CFS-related fields in a runqueue */
335struct cfs_rq {
336 struct load_weight load;
953bfcd1 337 unsigned long nr_running, h_nr_running;
6aa645ea 338
6aa645ea 339 u64 exec_clock;
e9acbff6 340 u64 min_vruntime;
3fe1698b
PZ
341#ifndef CONFIG_64BIT
342 u64 min_vruntime_copy;
343#endif
6aa645ea
IM
344
345 struct rb_root tasks_timeline;
346 struct rb_node *rb_leftmost;
4a55bd5e
PZ
347
348 struct list_head tasks;
349 struct list_head *balance_iterator;
350
351 /*
352 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
353 * It is set to NULL otherwise (i.e when none are currently running).
354 */
ac53db59 355 struct sched_entity *curr, *next, *last, *skip;
ddc97297 356
4934a4d3 357#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 358 unsigned int nr_spread_over;
4934a4d3 359#endif
ddc97297 360
62160e3f 361#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363
41a2d6cf
IM
364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
371 */
3d4b47b4 372 int on_list;
41a2d6cf
IM
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
375
376#ifdef CONFIG_SMP
c09595f6 377 /*
c8cba857 378 * the part of load.weight contributed by tasks
c09595f6 379 */
c8cba857 380 unsigned long task_weight;
c09595f6 381
c8cba857
PZ
382 /*
383 * h_load = weight * f(tg)
384 *
385 * Where f(tg) is the recursive weight fraction assigned to
386 * this group.
387 */
388 unsigned long h_load;
c09595f6 389
c8cba857 390 /*
3b3d190e
PT
391 * Maintaining per-cpu shares distribution for group scheduling
392 *
393 * load_stamp is the last time we updated the load average
394 * load_last is the last time we updated the load average and saw load
395 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 396 */
2069dd75
PZ
397 u64 load_avg;
398 u64 load_period;
3b3d190e 399 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 400
2069dd75 401 unsigned long load_contribution;
c09595f6 402#endif
ab84d31e
PT
403#ifdef CONFIG_CFS_BANDWIDTH
404 int runtime_enabled;
a9cf55b2 405 u64 runtime_expires;
ab84d31e 406 s64 runtime_remaining;
85dac906 407
e8da1b18 408 u64 throttled_timestamp;
64660c86 409 int throttled, throttle_count;
85dac906 410 struct list_head throttled_list;
ab84d31e 411#endif
6aa645ea
IM
412#endif
413};
1da177e4 414
ab84d31e
PT
415#ifdef CONFIG_FAIR_GROUP_SCHED
416#ifdef CONFIG_CFS_BANDWIDTH
417static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
418{
419 return &tg->cfs_bandwidth;
420}
421
422static inline u64 default_cfs_period(void);
58088ad0
PT
423static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
424
425static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
426{
427 struct cfs_bandwidth *cfs_b =
428 container_of(timer, struct cfs_bandwidth, period_timer);
429 ktime_t now;
430 int overrun;
431 int idle = 0;
432
433 for (;;) {
434 now = hrtimer_cb_get_time(timer);
435 overrun = hrtimer_forward(timer, now, cfs_b->period);
436
437 if (!overrun)
438 break;
439
440 idle = do_sched_cfs_period_timer(cfs_b, overrun);
441 }
442
443 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
444}
ab84d31e
PT
445
446static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
447{
448 raw_spin_lock_init(&cfs_b->lock);
ec12cb7f 449 cfs_b->runtime = 0;
ab84d31e
PT
450 cfs_b->quota = RUNTIME_INF;
451 cfs_b->period = ns_to_ktime(default_cfs_period());
58088ad0 452
85dac906 453 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
58088ad0
PT
454 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
455 cfs_b->period_timer.function = sched_cfs_period_timer;
ab84d31e
PT
456}
457
458static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
459{
460 cfs_rq->runtime_enabled = 0;
85dac906 461 INIT_LIST_HEAD(&cfs_rq->throttled_list);
ab84d31e
PT
462}
463
58088ad0
PT
464/* requires cfs_b->lock, may release to reprogram timer */
465static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
466{
467 /*
468 * The timer may be active because we're trying to set a new bandwidth
469 * period or because we're racing with the tear-down path
470 * (timer_active==0 becomes visible before the hrtimer call-back
471 * terminates). In either case we ensure that it's re-programmed
472 */
473 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
474 raw_spin_unlock(&cfs_b->lock);
475 /* ensure cfs_b->lock is available while we wait */
476 hrtimer_cancel(&cfs_b->period_timer);
477
478 raw_spin_lock(&cfs_b->lock);
479 /* if someone else restarted the timer then we're done */
480 if (cfs_b->timer_active)
481 return;
482 }
483
484 cfs_b->timer_active = 1;
485 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
486}
487
ab84d31e 488static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
58088ad0
PT
489{
490 hrtimer_cancel(&cfs_b->period_timer);
491}
ab84d31e
PT
492#else
493static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
494static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
495static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
496
497static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
498{
499 return NULL;
500}
501#endif /* CONFIG_CFS_BANDWIDTH */
502#endif /* CONFIG_FAIR_GROUP_SCHED */
503
6aa645ea
IM
504/* Real-Time classes' related field in a runqueue: */
505struct rt_rq {
506 struct rt_prio_array active;
63489e45 507 unsigned long rt_nr_running;
052f1dc7 508#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
509 struct {
510 int curr; /* highest queued rt task prio */
398a153b 511#ifdef CONFIG_SMP
e864c499 512 int next; /* next highest */
398a153b 513#endif
e864c499 514 } highest_prio;
6f505b16 515#endif
fa85ae24 516#ifdef CONFIG_SMP
73fe6aae 517 unsigned long rt_nr_migratory;
a1ba4d8b 518 unsigned long rt_nr_total;
a22d7fc1 519 int overloaded;
917b627d 520 struct plist_head pushable_tasks;
fa85ae24 521#endif
6f505b16 522 int rt_throttled;
fa85ae24 523 u64 rt_time;
ac086bc2 524 u64 rt_runtime;
ea736ed5 525 /* Nests inside the rq lock: */
0986b11b 526 raw_spinlock_t rt_runtime_lock;
6f505b16 527
052f1dc7 528#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
529 unsigned long rt_nr_boosted;
530
6f505b16
PZ
531 struct rq *rq;
532 struct list_head leaf_rt_rq_list;
533 struct task_group *tg;
6f505b16 534#endif
6aa645ea
IM
535};
536
57d885fe
GH
537#ifdef CONFIG_SMP
538
539/*
540 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
541 * variables. Each exclusive cpuset essentially defines an island domain by
542 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
543 * exclusive cpuset is created, we also create and attach a new root-domain
544 * object.
545 *
57d885fe
GH
546 */
547struct root_domain {
548 atomic_t refcount;
26a148eb 549 atomic_t rto_count;
dce840a0 550 struct rcu_head rcu;
c6c4927b
RR
551 cpumask_var_t span;
552 cpumask_var_t online;
637f5085 553
0eab9146 554 /*
637f5085
GH
555 * The "RT overload" flag: it gets set if a CPU has more than
556 * one runnable RT task.
557 */
c6c4927b 558 cpumask_var_t rto_mask;
6e0534f2 559 struct cpupri cpupri;
57d885fe
GH
560};
561
dc938520
GH
562/*
563 * By default the system creates a single root-domain with all cpus as
564 * members (mimicking the global state we have today).
565 */
57d885fe
GH
566static struct root_domain def_root_domain;
567
ed2d372c 568#endif /* CONFIG_SMP */
57d885fe 569
1da177e4
LT
570/*
571 * This is the main, per-CPU runqueue data structure.
572 *
573 * Locking rule: those places that want to lock multiple runqueues
574 * (such as the load balancing or the thread migration code), lock
575 * acquire operations must be ordered by ascending &runqueue.
576 */
70b97a7f 577struct rq {
d8016491 578 /* runqueue lock: */
05fa785c 579 raw_spinlock_t lock;
1da177e4
LT
580
581 /*
582 * nr_running and cpu_load should be in the same cacheline because
583 * remote CPUs use both these fields when doing load calculation.
584 */
585 unsigned long nr_running;
6aa645ea
IM
586 #define CPU_LOAD_IDX_MAX 5
587 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 588 unsigned long last_load_update_tick;
46cb4b7c 589#ifdef CONFIG_NO_HZ
39c0cbe2 590 u64 nohz_stamp;
83cd4fe2 591 unsigned char nohz_balance_kick;
46cb4b7c 592#endif
61eadef6 593 int skip_clock_update;
a64692a3 594
d8016491
IM
595 /* capture load from *all* tasks on this cpu: */
596 struct load_weight load;
6aa645ea
IM
597 unsigned long nr_load_updates;
598 u64 nr_switches;
599
600 struct cfs_rq cfs;
6f505b16 601 struct rt_rq rt;
6f505b16 602
6aa645ea 603#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
604 /* list of leaf cfs_rq on this cpu: */
605 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
606#endif
607#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 608 struct list_head leaf_rt_rq_list;
1da177e4 609#endif
1da177e4
LT
610
611 /*
612 * This is part of a global counter where only the total sum
613 * over all CPUs matters. A task can increase this counter on
614 * one CPU and if it got migrated afterwards it may decrease
615 * it on another CPU. Always updated under the runqueue lock:
616 */
617 unsigned long nr_uninterruptible;
618
34f971f6 619 struct task_struct *curr, *idle, *stop;
c9819f45 620 unsigned long next_balance;
1da177e4 621 struct mm_struct *prev_mm;
6aa645ea 622
3e51f33f 623 u64 clock;
305e6835 624 u64 clock_task;
6aa645ea 625
1da177e4
LT
626 atomic_t nr_iowait;
627
628#ifdef CONFIG_SMP
0eab9146 629 struct root_domain *rd;
1da177e4
LT
630 struct sched_domain *sd;
631
e51fd5e2
PZ
632 unsigned long cpu_power;
633
a0a522ce 634 unsigned char idle_at_tick;
1da177e4 635 /* For active balancing */
3f029d3c 636 int post_schedule;
1da177e4
LT
637 int active_balance;
638 int push_cpu;
969c7921 639 struct cpu_stop_work active_balance_work;
d8016491
IM
640 /* cpu of this runqueue: */
641 int cpu;
1f11eb6a 642 int online;
1da177e4 643
e9e9250b
PZ
644 u64 rt_avg;
645 u64 age_stamp;
1b9508f6
MG
646 u64 idle_stamp;
647 u64 avg_idle;
1da177e4
LT
648#endif
649
aa483808
VP
650#ifdef CONFIG_IRQ_TIME_ACCOUNTING
651 u64 prev_irq_time;
652#endif
e6e6685a
GC
653#ifdef CONFIG_PARAVIRT
654 u64 prev_steal_time;
655#endif
095c0aa8
GC
656#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
657 u64 prev_steal_time_rq;
658#endif
aa483808 659
dce48a84
TG
660 /* calc_load related fields */
661 unsigned long calc_load_update;
662 long calc_load_active;
663
8f4d37ec 664#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
665#ifdef CONFIG_SMP
666 int hrtick_csd_pending;
667 struct call_single_data hrtick_csd;
668#endif
8f4d37ec
PZ
669 struct hrtimer hrtick_timer;
670#endif
671
1da177e4
LT
672#ifdef CONFIG_SCHEDSTATS
673 /* latency stats */
674 struct sched_info rq_sched_info;
9c2c4802
KC
675 unsigned long long rq_cpu_time;
676 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
677
678 /* sys_sched_yield() stats */
480b9434 679 unsigned int yld_count;
1da177e4
LT
680
681 /* schedule() stats */
480b9434
KC
682 unsigned int sched_switch;
683 unsigned int sched_count;
684 unsigned int sched_goidle;
1da177e4
LT
685
686 /* try_to_wake_up() stats */
480b9434
KC
687 unsigned int ttwu_count;
688 unsigned int ttwu_local;
1da177e4 689#endif
317f3941
PZ
690
691#ifdef CONFIG_SMP
692 struct task_struct *wake_list;
693#endif
1da177e4
LT
694};
695
f34e3b61 696static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 697
a64692a3 698
1e5a7405 699static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 700
0a2966b4
CL
701static inline int cpu_of(struct rq *rq)
702{
703#ifdef CONFIG_SMP
704 return rq->cpu;
705#else
706 return 0;
707#endif
708}
709
497f0ab3 710#define rcu_dereference_check_sched_domain(p) \
d11c563d 711 rcu_dereference_check((p), \
d11c563d
PM
712 lockdep_is_held(&sched_domains_mutex))
713
674311d5
NP
714/*
715 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 716 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
717 *
718 * The domain tree of any CPU may only be accessed from within
719 * preempt-disabled sections.
720 */
48f24c4d 721#define for_each_domain(cpu, __sd) \
497f0ab3 722 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
723
724#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
725#define this_rq() (&__get_cpu_var(runqueues))
726#define task_rq(p) cpu_rq(task_cpu(p))
727#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 728#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 729
dc61b1d6
PZ
730#ifdef CONFIG_CGROUP_SCHED
731
732/*
733 * Return the group to which this tasks belongs.
734 *
6c6c54e1
PZ
735 * We use task_subsys_state_check() and extend the RCU verification with
736 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
737 * task it moves into the cgroup. Therefore by holding either of those locks,
738 * we pin the task to the current cgroup.
dc61b1d6
PZ
739 */
740static inline struct task_group *task_group(struct task_struct *p)
741{
5091faa4 742 struct task_group *tg;
dc61b1d6
PZ
743 struct cgroup_subsys_state *css;
744
745 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
6c6c54e1
PZ
746 lockdep_is_held(&p->pi_lock) ||
747 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
748 tg = container_of(css, struct task_group, css);
749
750 return autogroup_task_group(p, tg);
dc61b1d6
PZ
751}
752
753/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
754static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
755{
756#ifdef CONFIG_FAIR_GROUP_SCHED
757 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
758 p->se.parent = task_group(p)->se[cpu];
759#endif
760
761#ifdef CONFIG_RT_GROUP_SCHED
762 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
763 p->rt.parent = task_group(p)->rt_se[cpu];
764#endif
765}
766
767#else /* CONFIG_CGROUP_SCHED */
768
769static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
770static inline struct task_group *task_group(struct task_struct *p)
771{
772 return NULL;
773}
774
775#endif /* CONFIG_CGROUP_SCHED */
776
fe44d621 777static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 778
fe44d621 779static void update_rq_clock(struct rq *rq)
3e51f33f 780{
fe44d621 781 s64 delta;
305e6835 782
61eadef6 783 if (rq->skip_clock_update > 0)
f26f9aff 784 return;
aa483808 785
fe44d621
PZ
786 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
787 rq->clock += delta;
788 update_rq_clock_task(rq, delta);
3e51f33f
PZ
789}
790
bf5c91ba
IM
791/*
792 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
793 */
794#ifdef CONFIG_SCHED_DEBUG
795# define const_debug __read_mostly
796#else
797# define const_debug static const
798#endif
799
017730c1 800/**
1fd06bb1 801 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 802 * @cpu: the processor in question.
017730c1 803 *
017730c1
IM
804 * This interface allows printk to be called with the runqueue lock
805 * held and know whether or not it is OK to wake up the klogd.
806 */
89f19f04 807int runqueue_is_locked(int cpu)
017730c1 808{
05fa785c 809 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
810}
811
bf5c91ba
IM
812/*
813 * Debugging: various feature bits
814 */
f00b45c1
PZ
815
816#define SCHED_FEAT(name, enabled) \
817 __SCHED_FEAT_##name ,
818
bf5c91ba 819enum {
f00b45c1 820#include "sched_features.h"
bf5c91ba
IM
821};
822
f00b45c1
PZ
823#undef SCHED_FEAT
824
825#define SCHED_FEAT(name, enabled) \
826 (1UL << __SCHED_FEAT_##name) * enabled |
827
bf5c91ba 828const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
829#include "sched_features.h"
830 0;
831
832#undef SCHED_FEAT
833
834#ifdef CONFIG_SCHED_DEBUG
835#define SCHED_FEAT(name, enabled) \
836 #name ,
837
983ed7a6 838static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
839#include "sched_features.h"
840 NULL
841};
842
843#undef SCHED_FEAT
844
34f3a814 845static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 846{
f00b45c1
PZ
847 int i;
848
849 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
850 if (!(sysctl_sched_features & (1UL << i)))
851 seq_puts(m, "NO_");
852 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 853 }
34f3a814 854 seq_puts(m, "\n");
f00b45c1 855
34f3a814 856 return 0;
f00b45c1
PZ
857}
858
859static ssize_t
860sched_feat_write(struct file *filp, const char __user *ubuf,
861 size_t cnt, loff_t *ppos)
862{
863 char buf[64];
7740191c 864 char *cmp;
f00b45c1
PZ
865 int neg = 0;
866 int i;
867
868 if (cnt > 63)
869 cnt = 63;
870
871 if (copy_from_user(&buf, ubuf, cnt))
872 return -EFAULT;
873
874 buf[cnt] = 0;
7740191c 875 cmp = strstrip(buf);
f00b45c1 876
524429c3 877 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
878 neg = 1;
879 cmp += 3;
880 }
881
882 for (i = 0; sched_feat_names[i]; i++) {
7740191c 883 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
884 if (neg)
885 sysctl_sched_features &= ~(1UL << i);
886 else
887 sysctl_sched_features |= (1UL << i);
888 break;
889 }
890 }
891
892 if (!sched_feat_names[i])
893 return -EINVAL;
894
42994724 895 *ppos += cnt;
f00b45c1
PZ
896
897 return cnt;
898}
899
34f3a814
LZ
900static int sched_feat_open(struct inode *inode, struct file *filp)
901{
902 return single_open(filp, sched_feat_show, NULL);
903}
904
828c0950 905static const struct file_operations sched_feat_fops = {
34f3a814
LZ
906 .open = sched_feat_open,
907 .write = sched_feat_write,
908 .read = seq_read,
909 .llseek = seq_lseek,
910 .release = single_release,
f00b45c1
PZ
911};
912
913static __init int sched_init_debug(void)
914{
f00b45c1
PZ
915 debugfs_create_file("sched_features", 0644, NULL, NULL,
916 &sched_feat_fops);
917
918 return 0;
919}
920late_initcall(sched_init_debug);
921
922#endif
923
924#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 925
b82d9fdd
PZ
926/*
927 * Number of tasks to iterate in a single balance run.
928 * Limited because this is done with IRQs disabled.
929 */
930const_debug unsigned int sysctl_sched_nr_migrate = 32;
931
e9e9250b
PZ
932/*
933 * period over which we average the RT time consumption, measured
934 * in ms.
935 *
936 * default: 1s
937 */
938const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
939
fa85ae24 940/*
9f0c1e56 941 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
942 * default: 1s
943 */
9f0c1e56 944unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 945
6892b75e
IM
946static __read_mostly int scheduler_running;
947
9f0c1e56
PZ
948/*
949 * part of the period that we allow rt tasks to run in us.
950 * default: 0.95s
951 */
952int sysctl_sched_rt_runtime = 950000;
fa85ae24 953
d0b27fa7
PZ
954static inline u64 global_rt_period(void)
955{
956 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
957}
958
959static inline u64 global_rt_runtime(void)
960{
e26873bb 961 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
962 return RUNTIME_INF;
963
964 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
965}
fa85ae24 966
1da177e4 967#ifndef prepare_arch_switch
4866cde0
NP
968# define prepare_arch_switch(next) do { } while (0)
969#endif
970#ifndef finish_arch_switch
971# define finish_arch_switch(prev) do { } while (0)
972#endif
973
051a1d1a
DA
974static inline int task_current(struct rq *rq, struct task_struct *p)
975{
976 return rq->curr == p;
977}
978
70b97a7f 979static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 980{
3ca7a440
PZ
981#ifdef CONFIG_SMP
982 return p->on_cpu;
983#else
051a1d1a 984 return task_current(rq, p);
3ca7a440 985#endif
4866cde0
NP
986}
987
3ca7a440 988#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 989static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 990{
3ca7a440
PZ
991#ifdef CONFIG_SMP
992 /*
993 * We can optimise this out completely for !SMP, because the
994 * SMP rebalancing from interrupt is the only thing that cares
995 * here.
996 */
997 next->on_cpu = 1;
998#endif
4866cde0
NP
999}
1000
70b97a7f 1001static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 1002{
3ca7a440
PZ
1003#ifdef CONFIG_SMP
1004 /*
1005 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1006 * We must ensure this doesn't happen until the switch is completely
1007 * finished.
1008 */
1009 smp_wmb();
1010 prev->on_cpu = 0;
1011#endif
da04c035
IM
1012#ifdef CONFIG_DEBUG_SPINLOCK
1013 /* this is a valid case when another task releases the spinlock */
1014 rq->lock.owner = current;
1015#endif
8a25d5de
IM
1016 /*
1017 * If we are tracking spinlock dependencies then we have to
1018 * fix up the runqueue lock - which gets 'carried over' from
1019 * prev into current:
1020 */
1021 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1022
05fa785c 1023 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
1024}
1025
1026#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 1027static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1028{
1029#ifdef CONFIG_SMP
1030 /*
1031 * We can optimise this out completely for !SMP, because the
1032 * SMP rebalancing from interrupt is the only thing that cares
1033 * here.
1034 */
3ca7a440 1035 next->on_cpu = 1;
4866cde0
NP
1036#endif
1037#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 1038 raw_spin_unlock_irq(&rq->lock);
4866cde0 1039#else
05fa785c 1040 raw_spin_unlock(&rq->lock);
4866cde0
NP
1041#endif
1042}
1043
70b97a7f 1044static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
1045{
1046#ifdef CONFIG_SMP
1047 /*
3ca7a440 1048 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
1049 * We must ensure this doesn't happen until the switch is completely
1050 * finished.
1051 */
1052 smp_wmb();
3ca7a440 1053 prev->on_cpu = 0;
4866cde0
NP
1054#endif
1055#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1056 local_irq_enable();
1da177e4 1057#endif
4866cde0
NP
1058}
1059#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 1060
0970d299 1061/*
0122ec5b 1062 * __task_rq_lock - lock the rq @p resides on.
b29739f9 1063 */
70b97a7f 1064static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
1065 __acquires(rq->lock)
1066{
0970d299
PZ
1067 struct rq *rq;
1068
0122ec5b
PZ
1069 lockdep_assert_held(&p->pi_lock);
1070
3a5c359a 1071 for (;;) {
0970d299 1072 rq = task_rq(p);
05fa785c 1073 raw_spin_lock(&rq->lock);
65cc8e48 1074 if (likely(rq == task_rq(p)))
3a5c359a 1075 return rq;
05fa785c 1076 raw_spin_unlock(&rq->lock);
b29739f9 1077 }
b29739f9
IM
1078}
1079
1da177e4 1080/*
0122ec5b 1081 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 1082 */
70b97a7f 1083static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 1084 __acquires(p->pi_lock)
1da177e4
LT
1085 __acquires(rq->lock)
1086{
70b97a7f 1087 struct rq *rq;
1da177e4 1088
3a5c359a 1089 for (;;) {
0122ec5b 1090 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 1091 rq = task_rq(p);
05fa785c 1092 raw_spin_lock(&rq->lock);
65cc8e48 1093 if (likely(rq == task_rq(p)))
3a5c359a 1094 return rq;
0122ec5b
PZ
1095 raw_spin_unlock(&rq->lock);
1096 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 1097 }
1da177e4
LT
1098}
1099
a9957449 1100static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1101 __releases(rq->lock)
1102{
05fa785c 1103 raw_spin_unlock(&rq->lock);
b29739f9
IM
1104}
1105
0122ec5b
PZ
1106static inline void
1107task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 1108 __releases(rq->lock)
0122ec5b 1109 __releases(p->pi_lock)
1da177e4 1110{
0122ec5b
PZ
1111 raw_spin_unlock(&rq->lock);
1112 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
1113}
1114
1da177e4 1115/*
cc2a73b5 1116 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1117 */
a9957449 1118static struct rq *this_rq_lock(void)
1da177e4
LT
1119 __acquires(rq->lock)
1120{
70b97a7f 1121 struct rq *rq;
1da177e4
LT
1122
1123 local_irq_disable();
1124 rq = this_rq();
05fa785c 1125 raw_spin_lock(&rq->lock);
1da177e4
LT
1126
1127 return rq;
1128}
1129
8f4d37ec
PZ
1130#ifdef CONFIG_SCHED_HRTICK
1131/*
1132 * Use HR-timers to deliver accurate preemption points.
1133 *
1134 * Its all a bit involved since we cannot program an hrt while holding the
1135 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1136 * reschedule event.
1137 *
1138 * When we get rescheduled we reprogram the hrtick_timer outside of the
1139 * rq->lock.
1140 */
8f4d37ec
PZ
1141
1142/*
1143 * Use hrtick when:
1144 * - enabled by features
1145 * - hrtimer is actually high res
1146 */
1147static inline int hrtick_enabled(struct rq *rq)
1148{
1149 if (!sched_feat(HRTICK))
1150 return 0;
ba42059f 1151 if (!cpu_active(cpu_of(rq)))
b328ca18 1152 return 0;
8f4d37ec
PZ
1153 return hrtimer_is_hres_active(&rq->hrtick_timer);
1154}
1155
8f4d37ec
PZ
1156static void hrtick_clear(struct rq *rq)
1157{
1158 if (hrtimer_active(&rq->hrtick_timer))
1159 hrtimer_cancel(&rq->hrtick_timer);
1160}
1161
8f4d37ec
PZ
1162/*
1163 * High-resolution timer tick.
1164 * Runs from hardirq context with interrupts disabled.
1165 */
1166static enum hrtimer_restart hrtick(struct hrtimer *timer)
1167{
1168 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1169
1170 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1171
05fa785c 1172 raw_spin_lock(&rq->lock);
3e51f33f 1173 update_rq_clock(rq);
8f4d37ec 1174 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1175 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1176
1177 return HRTIMER_NORESTART;
1178}
1179
95e904c7 1180#ifdef CONFIG_SMP
31656519
PZ
1181/*
1182 * called from hardirq (IPI) context
1183 */
1184static void __hrtick_start(void *arg)
b328ca18 1185{
31656519 1186 struct rq *rq = arg;
b328ca18 1187
05fa785c 1188 raw_spin_lock(&rq->lock);
31656519
PZ
1189 hrtimer_restart(&rq->hrtick_timer);
1190 rq->hrtick_csd_pending = 0;
05fa785c 1191 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1192}
1193
31656519
PZ
1194/*
1195 * Called to set the hrtick timer state.
1196 *
1197 * called with rq->lock held and irqs disabled
1198 */
1199static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1200{
31656519
PZ
1201 struct hrtimer *timer = &rq->hrtick_timer;
1202 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1203
cc584b21 1204 hrtimer_set_expires(timer, time);
31656519
PZ
1205
1206 if (rq == this_rq()) {
1207 hrtimer_restart(timer);
1208 } else if (!rq->hrtick_csd_pending) {
6e275637 1209 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1210 rq->hrtick_csd_pending = 1;
1211 }
b328ca18
PZ
1212}
1213
1214static int
1215hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1216{
1217 int cpu = (int)(long)hcpu;
1218
1219 switch (action) {
1220 case CPU_UP_CANCELED:
1221 case CPU_UP_CANCELED_FROZEN:
1222 case CPU_DOWN_PREPARE:
1223 case CPU_DOWN_PREPARE_FROZEN:
1224 case CPU_DEAD:
1225 case CPU_DEAD_FROZEN:
31656519 1226 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1227 return NOTIFY_OK;
1228 }
1229
1230 return NOTIFY_DONE;
1231}
1232
fa748203 1233static __init void init_hrtick(void)
b328ca18
PZ
1234{
1235 hotcpu_notifier(hotplug_hrtick, 0);
1236}
31656519
PZ
1237#else
1238/*
1239 * Called to set the hrtick timer state.
1240 *
1241 * called with rq->lock held and irqs disabled
1242 */
1243static void hrtick_start(struct rq *rq, u64 delay)
1244{
7f1e2ca9 1245 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1246 HRTIMER_MODE_REL_PINNED, 0);
31656519 1247}
b328ca18 1248
006c75f1 1249static inline void init_hrtick(void)
8f4d37ec 1250{
8f4d37ec 1251}
31656519 1252#endif /* CONFIG_SMP */
8f4d37ec 1253
31656519 1254static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1255{
31656519
PZ
1256#ifdef CONFIG_SMP
1257 rq->hrtick_csd_pending = 0;
8f4d37ec 1258
31656519
PZ
1259 rq->hrtick_csd.flags = 0;
1260 rq->hrtick_csd.func = __hrtick_start;
1261 rq->hrtick_csd.info = rq;
1262#endif
8f4d37ec 1263
31656519
PZ
1264 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1265 rq->hrtick_timer.function = hrtick;
8f4d37ec 1266}
006c75f1 1267#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1268static inline void hrtick_clear(struct rq *rq)
1269{
1270}
1271
8f4d37ec
PZ
1272static inline void init_rq_hrtick(struct rq *rq)
1273{
1274}
1275
b328ca18
PZ
1276static inline void init_hrtick(void)
1277{
1278}
006c75f1 1279#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1280
c24d20db
IM
1281/*
1282 * resched_task - mark a task 'to be rescheduled now'.
1283 *
1284 * On UP this means the setting of the need_resched flag, on SMP it
1285 * might also involve a cross-CPU call to trigger the scheduler on
1286 * the target CPU.
1287 */
1288#ifdef CONFIG_SMP
1289
1290#ifndef tsk_is_polling
1291#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1292#endif
1293
31656519 1294static void resched_task(struct task_struct *p)
c24d20db
IM
1295{
1296 int cpu;
1297
05fa785c 1298 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1299
5ed0cec0 1300 if (test_tsk_need_resched(p))
c24d20db
IM
1301 return;
1302
5ed0cec0 1303 set_tsk_need_resched(p);
c24d20db
IM
1304
1305 cpu = task_cpu(p);
1306 if (cpu == smp_processor_id())
1307 return;
1308
1309 /* NEED_RESCHED must be visible before we test polling */
1310 smp_mb();
1311 if (!tsk_is_polling(p))
1312 smp_send_reschedule(cpu);
1313}
1314
1315static void resched_cpu(int cpu)
1316{
1317 struct rq *rq = cpu_rq(cpu);
1318 unsigned long flags;
1319
05fa785c 1320 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1321 return;
1322 resched_task(cpu_curr(cpu));
05fa785c 1323 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1324}
06d8308c
TG
1325
1326#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1327/*
1328 * In the semi idle case, use the nearest busy cpu for migrating timers
1329 * from an idle cpu. This is good for power-savings.
1330 *
1331 * We don't do similar optimization for completely idle system, as
1332 * selecting an idle cpu will add more delays to the timers than intended
1333 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1334 */
1335int get_nohz_timer_target(void)
1336{
1337 int cpu = smp_processor_id();
1338 int i;
1339 struct sched_domain *sd;
1340
057f3fad 1341 rcu_read_lock();
83cd4fe2 1342 for_each_domain(cpu, sd) {
057f3fad
PZ
1343 for_each_cpu(i, sched_domain_span(sd)) {
1344 if (!idle_cpu(i)) {
1345 cpu = i;
1346 goto unlock;
1347 }
1348 }
83cd4fe2 1349 }
057f3fad
PZ
1350unlock:
1351 rcu_read_unlock();
83cd4fe2
VP
1352 return cpu;
1353}
06d8308c
TG
1354/*
1355 * When add_timer_on() enqueues a timer into the timer wheel of an
1356 * idle CPU then this timer might expire before the next timer event
1357 * which is scheduled to wake up that CPU. In case of a completely
1358 * idle system the next event might even be infinite time into the
1359 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1360 * leaves the inner idle loop so the newly added timer is taken into
1361 * account when the CPU goes back to idle and evaluates the timer
1362 * wheel for the next timer event.
1363 */
1364void wake_up_idle_cpu(int cpu)
1365{
1366 struct rq *rq = cpu_rq(cpu);
1367
1368 if (cpu == smp_processor_id())
1369 return;
1370
1371 /*
1372 * This is safe, as this function is called with the timer
1373 * wheel base lock of (cpu) held. When the CPU is on the way
1374 * to idle and has not yet set rq->curr to idle then it will
1375 * be serialized on the timer wheel base lock and take the new
1376 * timer into account automatically.
1377 */
1378 if (rq->curr != rq->idle)
1379 return;
1380
1381 /*
1382 * We can set TIF_RESCHED on the idle task of the other CPU
1383 * lockless. The worst case is that the other CPU runs the
1384 * idle task through an additional NOOP schedule()
1385 */
5ed0cec0 1386 set_tsk_need_resched(rq->idle);
06d8308c
TG
1387
1388 /* NEED_RESCHED must be visible before we test polling */
1389 smp_mb();
1390 if (!tsk_is_polling(rq->idle))
1391 smp_send_reschedule(cpu);
1392}
39c0cbe2 1393
6d6bc0ad 1394#endif /* CONFIG_NO_HZ */
06d8308c 1395
e9e9250b
PZ
1396static u64 sched_avg_period(void)
1397{
1398 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1399}
1400
1401static void sched_avg_update(struct rq *rq)
1402{
1403 s64 period = sched_avg_period();
1404
1405 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1406 /*
1407 * Inline assembly required to prevent the compiler
1408 * optimising this loop into a divmod call.
1409 * See __iter_div_u64_rem() for another example of this.
1410 */
1411 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1412 rq->age_stamp += period;
1413 rq->rt_avg /= 2;
1414 }
1415}
1416
1417static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1418{
1419 rq->rt_avg += rt_delta;
1420 sched_avg_update(rq);
1421}
1422
6d6bc0ad 1423#else /* !CONFIG_SMP */
31656519 1424static void resched_task(struct task_struct *p)
c24d20db 1425{
05fa785c 1426 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1427 set_tsk_need_resched(p);
c24d20db 1428}
e9e9250b
PZ
1429
1430static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1431{
1432}
da2b71ed
SS
1433
1434static void sched_avg_update(struct rq *rq)
1435{
1436}
6d6bc0ad 1437#endif /* CONFIG_SMP */
c24d20db 1438
45bf76df
IM
1439#if BITS_PER_LONG == 32
1440# define WMULT_CONST (~0UL)
1441#else
1442# define WMULT_CONST (1UL << 32)
1443#endif
1444
1445#define WMULT_SHIFT 32
1446
194081eb
IM
1447/*
1448 * Shift right and round:
1449 */
cf2ab469 1450#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1451
a7be37ac
PZ
1452/*
1453 * delta *= weight / lw
1454 */
cb1c4fc9 1455static unsigned long
45bf76df
IM
1456calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1457 struct load_weight *lw)
1458{
1459 u64 tmp;
1460
c8b28116
NR
1461 /*
1462 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1463 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1464 * 2^SCHED_LOAD_RESOLUTION.
1465 */
1466 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1467 tmp = (u64)delta_exec * scale_load_down(weight);
1468 else
1469 tmp = (u64)delta_exec;
db670dac 1470
7a232e03 1471 if (!lw->inv_weight) {
c8b28116
NR
1472 unsigned long w = scale_load_down(lw->weight);
1473
1474 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1475 lw->inv_weight = 1;
c8b28116
NR
1476 else if (unlikely(!w))
1477 lw->inv_weight = WMULT_CONST;
7a232e03 1478 else
c8b28116 1479 lw->inv_weight = WMULT_CONST / w;
7a232e03 1480 }
45bf76df 1481
45bf76df
IM
1482 /*
1483 * Check whether we'd overflow the 64-bit multiplication:
1484 */
194081eb 1485 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1486 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1487 WMULT_SHIFT/2);
1488 else
cf2ab469 1489 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1490
ecf691da 1491 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1492}
1493
1091985b 1494static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1495{
1496 lw->weight += inc;
e89996ae 1497 lw->inv_weight = 0;
45bf76df
IM
1498}
1499
1091985b 1500static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1501{
1502 lw->weight -= dec;
e89996ae 1503 lw->inv_weight = 0;
45bf76df
IM
1504}
1505
2069dd75
PZ
1506static inline void update_load_set(struct load_weight *lw, unsigned long w)
1507{
1508 lw->weight = w;
1509 lw->inv_weight = 0;
1510}
1511
2dd73a4f
PW
1512/*
1513 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1514 * of tasks with abnormal "nice" values across CPUs the contribution that
1515 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1516 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1517 * scaled version of the new time slice allocation that they receive on time
1518 * slice expiry etc.
1519 */
1520
cce7ade8
PZ
1521#define WEIGHT_IDLEPRIO 3
1522#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1523
1524/*
1525 * Nice levels are multiplicative, with a gentle 10% change for every
1526 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1527 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1528 * that remained on nice 0.
1529 *
1530 * The "10% effect" is relative and cumulative: from _any_ nice level,
1531 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1532 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1533 * If a task goes up by ~10% and another task goes down by ~10% then
1534 * the relative distance between them is ~25%.)
dd41f596
IM
1535 */
1536static const int prio_to_weight[40] = {
254753dc
IM
1537 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1538 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1539 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1540 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1541 /* 0 */ 1024, 820, 655, 526, 423,
1542 /* 5 */ 335, 272, 215, 172, 137,
1543 /* 10 */ 110, 87, 70, 56, 45,
1544 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1545};
1546
5714d2de
IM
1547/*
1548 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1549 *
1550 * In cases where the weight does not change often, we can use the
1551 * precalculated inverse to speed up arithmetics by turning divisions
1552 * into multiplications:
1553 */
dd41f596 1554static const u32 prio_to_wmult[40] = {
254753dc
IM
1555 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1556 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1557 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1558 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1559 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1560 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1561 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1562 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1563};
2dd73a4f 1564
ef12fefa
BR
1565/* Time spent by the tasks of the cpu accounting group executing in ... */
1566enum cpuacct_stat_index {
1567 CPUACCT_STAT_USER, /* ... user mode */
1568 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1569
1570 CPUACCT_STAT_NSTATS,
1571};
1572
d842de87
SV
1573#ifdef CONFIG_CGROUP_CPUACCT
1574static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1575static void cpuacct_update_stats(struct task_struct *tsk,
1576 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1577#else
1578static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1579static inline void cpuacct_update_stats(struct task_struct *tsk,
1580 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1581#endif
1582
18d95a28
PZ
1583static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1584{
1585 update_load_add(&rq->load, load);
1586}
1587
1588static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1589{
1590 update_load_sub(&rq->load, load);
1591}
1592
a790de99
PT
1593#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1594 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
eb755805 1595typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1596
1597/*
8277434e
PT
1598 * Iterate task_group tree rooted at *from, calling @down when first entering a
1599 * node and @up when leaving it for the final time.
1600 *
1601 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1602 */
8277434e
PT
1603static int walk_tg_tree_from(struct task_group *from,
1604 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1605{
1606 struct task_group *parent, *child;
eb755805 1607 int ret;
c09595f6 1608
8277434e
PT
1609 parent = from;
1610
c09595f6 1611down:
eb755805
PZ
1612 ret = (*down)(parent, data);
1613 if (ret)
8277434e 1614 goto out;
c09595f6
PZ
1615 list_for_each_entry_rcu(child, &parent->children, siblings) {
1616 parent = child;
1617 goto down;
1618
1619up:
1620 continue;
1621 }
eb755805 1622 ret = (*up)(parent, data);
8277434e
PT
1623 if (ret || parent == from)
1624 goto out;
c09595f6
PZ
1625
1626 child = parent;
1627 parent = parent->parent;
1628 if (parent)
1629 goto up;
8277434e 1630out:
eb755805 1631 return ret;
c09595f6
PZ
1632}
1633
8277434e
PT
1634/*
1635 * Iterate the full tree, calling @down when first entering a node and @up when
1636 * leaving it for the final time.
1637 *
1638 * Caller must hold rcu_lock or sufficient equivalent.
1639 */
1640
1641static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1642{
1643 return walk_tg_tree_from(&root_task_group, down, up, data);
1644}
1645
eb755805
PZ
1646static int tg_nop(struct task_group *tg, void *data)
1647{
1648 return 0;
c09595f6 1649}
eb755805
PZ
1650#endif
1651
1652#ifdef CONFIG_SMP
f5f08f39
PZ
1653/* Used instead of source_load when we know the type == 0 */
1654static unsigned long weighted_cpuload(const int cpu)
1655{
1656 return cpu_rq(cpu)->load.weight;
1657}
1658
1659/*
1660 * Return a low guess at the load of a migration-source cpu weighted
1661 * according to the scheduling class and "nice" value.
1662 *
1663 * We want to under-estimate the load of migration sources, to
1664 * balance conservatively.
1665 */
1666static unsigned long source_load(int cpu, int type)
1667{
1668 struct rq *rq = cpu_rq(cpu);
1669 unsigned long total = weighted_cpuload(cpu);
1670
1671 if (type == 0 || !sched_feat(LB_BIAS))
1672 return total;
1673
1674 return min(rq->cpu_load[type-1], total);
1675}
1676
1677/*
1678 * Return a high guess at the load of a migration-target cpu weighted
1679 * according to the scheduling class and "nice" value.
1680 */
1681static unsigned long target_load(int cpu, int type)
1682{
1683 struct rq *rq = cpu_rq(cpu);
1684 unsigned long total = weighted_cpuload(cpu);
1685
1686 if (type == 0 || !sched_feat(LB_BIAS))
1687 return total;
1688
1689 return max(rq->cpu_load[type-1], total);
1690}
1691
ae154be1
PZ
1692static unsigned long power_of(int cpu)
1693{
e51fd5e2 1694 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1695}
1696
eb755805
PZ
1697static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1698
1699static unsigned long cpu_avg_load_per_task(int cpu)
1700{
1701 struct rq *rq = cpu_rq(cpu);
af6d596f 1702 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1703
4cd42620 1704 if (nr_running)
e2b245f8 1705 return rq->load.weight / nr_running;
eb755805 1706
e2b245f8 1707 return 0;
eb755805
PZ
1708}
1709
8f45e2b5
GH
1710#ifdef CONFIG_PREEMPT
1711
b78bb868
PZ
1712static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1713
70574a99 1714/*
8f45e2b5
GH
1715 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1716 * way at the expense of forcing extra atomic operations in all
1717 * invocations. This assures that the double_lock is acquired using the
1718 * same underlying policy as the spinlock_t on this architecture, which
1719 * reduces latency compared to the unfair variant below. However, it
1720 * also adds more overhead and therefore may reduce throughput.
70574a99 1721 */
8f45e2b5
GH
1722static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1723 __releases(this_rq->lock)
1724 __acquires(busiest->lock)
1725 __acquires(this_rq->lock)
1726{
05fa785c 1727 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1728 double_rq_lock(this_rq, busiest);
1729
1730 return 1;
1731}
1732
1733#else
1734/*
1735 * Unfair double_lock_balance: Optimizes throughput at the expense of
1736 * latency by eliminating extra atomic operations when the locks are
1737 * already in proper order on entry. This favors lower cpu-ids and will
1738 * grant the double lock to lower cpus over higher ids under contention,
1739 * regardless of entry order into the function.
1740 */
1741static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1742 __releases(this_rq->lock)
1743 __acquires(busiest->lock)
1744 __acquires(this_rq->lock)
1745{
1746 int ret = 0;
1747
05fa785c 1748 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1749 if (busiest < this_rq) {
05fa785c
TG
1750 raw_spin_unlock(&this_rq->lock);
1751 raw_spin_lock(&busiest->lock);
1752 raw_spin_lock_nested(&this_rq->lock,
1753 SINGLE_DEPTH_NESTING);
70574a99
AD
1754 ret = 1;
1755 } else
05fa785c
TG
1756 raw_spin_lock_nested(&busiest->lock,
1757 SINGLE_DEPTH_NESTING);
70574a99
AD
1758 }
1759 return ret;
1760}
1761
8f45e2b5
GH
1762#endif /* CONFIG_PREEMPT */
1763
1764/*
1765 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1766 */
1767static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1768{
1769 if (unlikely(!irqs_disabled())) {
1770 /* printk() doesn't work good under rq->lock */
05fa785c 1771 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1772 BUG_ON(1);
1773 }
1774
1775 return _double_lock_balance(this_rq, busiest);
1776}
1777
70574a99
AD
1778static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1779 __releases(busiest->lock)
1780{
05fa785c 1781 raw_spin_unlock(&busiest->lock);
70574a99
AD
1782 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1783}
1e3c88bd
PZ
1784
1785/*
1786 * double_rq_lock - safely lock two runqueues
1787 *
1788 * Note this does not disable interrupts like task_rq_lock,
1789 * you need to do so manually before calling.
1790 */
1791static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1792 __acquires(rq1->lock)
1793 __acquires(rq2->lock)
1794{
1795 BUG_ON(!irqs_disabled());
1796 if (rq1 == rq2) {
1797 raw_spin_lock(&rq1->lock);
1798 __acquire(rq2->lock); /* Fake it out ;) */
1799 } else {
1800 if (rq1 < rq2) {
1801 raw_spin_lock(&rq1->lock);
1802 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1803 } else {
1804 raw_spin_lock(&rq2->lock);
1805 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1806 }
1807 }
1e3c88bd
PZ
1808}
1809
1810/*
1811 * double_rq_unlock - safely unlock two runqueues
1812 *
1813 * Note this does not restore interrupts like task_rq_unlock,
1814 * you need to do so manually after calling.
1815 */
1816static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1817 __releases(rq1->lock)
1818 __releases(rq2->lock)
1819{
1820 raw_spin_unlock(&rq1->lock);
1821 if (rq1 != rq2)
1822 raw_spin_unlock(&rq2->lock);
1823 else
1824 __release(rq2->lock);
1825}
1826
d95f4122
MG
1827#else /* CONFIG_SMP */
1828
1829/*
1830 * double_rq_lock - safely lock two runqueues
1831 *
1832 * Note this does not disable interrupts like task_rq_lock,
1833 * you need to do so manually before calling.
1834 */
1835static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1836 __acquires(rq1->lock)
1837 __acquires(rq2->lock)
1838{
1839 BUG_ON(!irqs_disabled());
1840 BUG_ON(rq1 != rq2);
1841 raw_spin_lock(&rq1->lock);
1842 __acquire(rq2->lock); /* Fake it out ;) */
1843}
1844
1845/*
1846 * double_rq_unlock - safely unlock two runqueues
1847 *
1848 * Note this does not restore interrupts like task_rq_unlock,
1849 * you need to do so manually after calling.
1850 */
1851static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1852 __releases(rq1->lock)
1853 __releases(rq2->lock)
1854{
1855 BUG_ON(rq1 != rq2);
1856 raw_spin_unlock(&rq1->lock);
1857 __release(rq2->lock);
1858}
1859
18d95a28
PZ
1860#endif
1861
74f5187a 1862static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1863static void update_sysctl(void);
acb4a848 1864static int get_update_sysctl_factor(void);
fdf3e95d 1865static void update_cpu_load(struct rq *this_rq);
dce48a84 1866
cd29fe6f
PZ
1867static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1868{
1869 set_task_rq(p, cpu);
1870#ifdef CONFIG_SMP
1871 /*
1872 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1873 * successfuly executed on another CPU. We must ensure that updates of
1874 * per-task data have been completed by this moment.
1875 */
1876 smp_wmb();
1877 task_thread_info(p)->cpu = cpu;
1878#endif
1879}
dce48a84 1880
1e3c88bd 1881static const struct sched_class rt_sched_class;
dd41f596 1882
34f971f6 1883#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1884#define for_each_class(class) \
1885 for (class = sched_class_highest; class; class = class->next)
dd41f596 1886
1e3c88bd
PZ
1887#include "sched_stats.h"
1888
c09595f6 1889static void inc_nr_running(struct rq *rq)
9c217245
IM
1890{
1891 rq->nr_running++;
9c217245
IM
1892}
1893
c09595f6 1894static void dec_nr_running(struct rq *rq)
9c217245
IM
1895{
1896 rq->nr_running--;
9c217245
IM
1897}
1898
45bf76df
IM
1899static void set_load_weight(struct task_struct *p)
1900{
f05998d4
NR
1901 int prio = p->static_prio - MAX_RT_PRIO;
1902 struct load_weight *load = &p->se.load;
1903
dd41f596
IM
1904 /*
1905 * SCHED_IDLE tasks get minimal weight:
1906 */
1907 if (p->policy == SCHED_IDLE) {
c8b28116 1908 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1909 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1910 return;
1911 }
71f8bd46 1912
c8b28116 1913 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1914 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1915}
1916
371fd7e7 1917static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1918{
a64692a3 1919 update_rq_clock(rq);
dd41f596 1920 sched_info_queued(p);
371fd7e7 1921 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1922}
1923
371fd7e7 1924static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1925{
a64692a3 1926 update_rq_clock(rq);
46ac22ba 1927 sched_info_dequeued(p);
371fd7e7 1928 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1929}
1930
1e3c88bd
PZ
1931/*
1932 * activate_task - move a task to the runqueue.
1933 */
371fd7e7 1934static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1935{
1936 if (task_contributes_to_load(p))
1937 rq->nr_uninterruptible--;
1938
371fd7e7 1939 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1940}
1941
1942/*
1943 * deactivate_task - remove a task from the runqueue.
1944 */
371fd7e7 1945static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1946{
1947 if (task_contributes_to_load(p))
1948 rq->nr_uninterruptible++;
1949
371fd7e7 1950 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1951}
1952
b52bfee4
VP
1953#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1954
305e6835
VP
1955/*
1956 * There are no locks covering percpu hardirq/softirq time.
1957 * They are only modified in account_system_vtime, on corresponding CPU
1958 * with interrupts disabled. So, writes are safe.
1959 * They are read and saved off onto struct rq in update_rq_clock().
1960 * This may result in other CPU reading this CPU's irq time and can
1961 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1962 * or new value with a side effect of accounting a slice of irq time to wrong
1963 * task when irq is in progress while we read rq->clock. That is a worthy
1964 * compromise in place of having locks on each irq in account_system_time.
305e6835 1965 */
b52bfee4
VP
1966static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1967static DEFINE_PER_CPU(u64, cpu_softirq_time);
1968
1969static DEFINE_PER_CPU(u64, irq_start_time);
1970static int sched_clock_irqtime;
1971
1972void enable_sched_clock_irqtime(void)
1973{
1974 sched_clock_irqtime = 1;
1975}
1976
1977void disable_sched_clock_irqtime(void)
1978{
1979 sched_clock_irqtime = 0;
1980}
1981
8e92c201
PZ
1982#ifndef CONFIG_64BIT
1983static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1984
1985static inline void irq_time_write_begin(void)
1986{
1987 __this_cpu_inc(irq_time_seq.sequence);
1988 smp_wmb();
1989}
1990
1991static inline void irq_time_write_end(void)
1992{
1993 smp_wmb();
1994 __this_cpu_inc(irq_time_seq.sequence);
1995}
1996
1997static inline u64 irq_time_read(int cpu)
1998{
1999 u64 irq_time;
2000 unsigned seq;
2001
2002 do {
2003 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2004 irq_time = per_cpu(cpu_softirq_time, cpu) +
2005 per_cpu(cpu_hardirq_time, cpu);
2006 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2007
2008 return irq_time;
2009}
2010#else /* CONFIG_64BIT */
2011static inline void irq_time_write_begin(void)
2012{
2013}
2014
2015static inline void irq_time_write_end(void)
2016{
2017}
2018
2019static inline u64 irq_time_read(int cpu)
305e6835 2020{
305e6835
VP
2021 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2022}
8e92c201 2023#endif /* CONFIG_64BIT */
305e6835 2024
fe44d621
PZ
2025/*
2026 * Called before incrementing preempt_count on {soft,}irq_enter
2027 * and before decrementing preempt_count on {soft,}irq_exit.
2028 */
b52bfee4
VP
2029void account_system_vtime(struct task_struct *curr)
2030{
2031 unsigned long flags;
fe44d621 2032 s64 delta;
b52bfee4 2033 int cpu;
b52bfee4
VP
2034
2035 if (!sched_clock_irqtime)
2036 return;
2037
2038 local_irq_save(flags);
2039
b52bfee4 2040 cpu = smp_processor_id();
fe44d621
PZ
2041 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2042 __this_cpu_add(irq_start_time, delta);
2043
8e92c201 2044 irq_time_write_begin();
b52bfee4
VP
2045 /*
2046 * We do not account for softirq time from ksoftirqd here.
2047 * We want to continue accounting softirq time to ksoftirqd thread
2048 * in that case, so as not to confuse scheduler with a special task
2049 * that do not consume any time, but still wants to run.
2050 */
2051 if (hardirq_count())
fe44d621 2052 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 2053 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 2054 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 2055
8e92c201 2056 irq_time_write_end();
b52bfee4
VP
2057 local_irq_restore(flags);
2058}
b7dadc38 2059EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 2060
e6e6685a
GC
2061#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2062
2063#ifdef CONFIG_PARAVIRT
2064static inline u64 steal_ticks(u64 steal)
aa483808 2065{
e6e6685a
GC
2066 if (unlikely(steal > NSEC_PER_SEC))
2067 return div_u64(steal, TICK_NSEC);
fe44d621 2068
e6e6685a
GC
2069 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2070}
2071#endif
2072
fe44d621 2073static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 2074{
095c0aa8
GC
2075/*
2076 * In theory, the compile should just see 0 here, and optimize out the call
2077 * to sched_rt_avg_update. But I don't trust it...
2078 */
2079#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2080 s64 steal = 0, irq_delta = 0;
2081#endif
2082#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 2083 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
2084
2085 /*
2086 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2087 * this case when a previous update_rq_clock() happened inside a
2088 * {soft,}irq region.
2089 *
2090 * When this happens, we stop ->clock_task and only update the
2091 * prev_irq_time stamp to account for the part that fit, so that a next
2092 * update will consume the rest. This ensures ->clock_task is
2093 * monotonic.
2094 *
2095 * It does however cause some slight miss-attribution of {soft,}irq
2096 * time, a more accurate solution would be to update the irq_time using
2097 * the current rq->clock timestamp, except that would require using
2098 * atomic ops.
2099 */
2100 if (irq_delta > delta)
2101 irq_delta = delta;
2102
2103 rq->prev_irq_time += irq_delta;
2104 delta -= irq_delta;
095c0aa8
GC
2105#endif
2106#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2107 if (static_branch((&paravirt_steal_rq_enabled))) {
2108 u64 st;
2109
2110 steal = paravirt_steal_clock(cpu_of(rq));
2111 steal -= rq->prev_steal_time_rq;
2112
2113 if (unlikely(steal > delta))
2114 steal = delta;
2115
2116 st = steal_ticks(steal);
2117 steal = st * TICK_NSEC;
2118
2119 rq->prev_steal_time_rq += steal;
2120
2121 delta -= steal;
2122 }
2123#endif
2124
fe44d621
PZ
2125 rq->clock_task += delta;
2126
095c0aa8
GC
2127#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2128 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2129 sched_rt_avg_update(rq, irq_delta + steal);
2130#endif
aa483808
VP
2131}
2132
095c0aa8 2133#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
2134static int irqtime_account_hi_update(void)
2135{
2136 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2137 unsigned long flags;
2138 u64 latest_ns;
2139 int ret = 0;
2140
2141 local_irq_save(flags);
2142 latest_ns = this_cpu_read(cpu_hardirq_time);
2143 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2144 ret = 1;
2145 local_irq_restore(flags);
2146 return ret;
2147}
2148
2149static int irqtime_account_si_update(void)
2150{
2151 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2152 unsigned long flags;
2153 u64 latest_ns;
2154 int ret = 0;
2155
2156 local_irq_save(flags);
2157 latest_ns = this_cpu_read(cpu_softirq_time);
2158 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2159 ret = 1;
2160 local_irq_restore(flags);
2161 return ret;
2162}
2163
fe44d621 2164#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2165
abb74cef
VP
2166#define sched_clock_irqtime (0)
2167
095c0aa8 2168#endif
b52bfee4 2169
1e3c88bd
PZ
2170#include "sched_idletask.c"
2171#include "sched_fair.c"
2172#include "sched_rt.c"
5091faa4 2173#include "sched_autogroup.c"
34f971f6 2174#include "sched_stoptask.c"
1e3c88bd
PZ
2175#ifdef CONFIG_SCHED_DEBUG
2176# include "sched_debug.c"
2177#endif
2178
34f971f6
PZ
2179void sched_set_stop_task(int cpu, struct task_struct *stop)
2180{
2181 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2182 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2183
2184 if (stop) {
2185 /*
2186 * Make it appear like a SCHED_FIFO task, its something
2187 * userspace knows about and won't get confused about.
2188 *
2189 * Also, it will make PI more or less work without too
2190 * much confusion -- but then, stop work should not
2191 * rely on PI working anyway.
2192 */
2193 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2194
2195 stop->sched_class = &stop_sched_class;
2196 }
2197
2198 cpu_rq(cpu)->stop = stop;
2199
2200 if (old_stop) {
2201 /*
2202 * Reset it back to a normal scheduling class so that
2203 * it can die in pieces.
2204 */
2205 old_stop->sched_class = &rt_sched_class;
2206 }
2207}
2208
14531189 2209/*
dd41f596 2210 * __normal_prio - return the priority that is based on the static prio
14531189 2211 */
14531189
IM
2212static inline int __normal_prio(struct task_struct *p)
2213{
dd41f596 2214 return p->static_prio;
14531189
IM
2215}
2216
b29739f9
IM
2217/*
2218 * Calculate the expected normal priority: i.e. priority
2219 * without taking RT-inheritance into account. Might be
2220 * boosted by interactivity modifiers. Changes upon fork,
2221 * setprio syscalls, and whenever the interactivity
2222 * estimator recalculates.
2223 */
36c8b586 2224static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2225{
2226 int prio;
2227
e05606d3 2228 if (task_has_rt_policy(p))
b29739f9
IM
2229 prio = MAX_RT_PRIO-1 - p->rt_priority;
2230 else
2231 prio = __normal_prio(p);
2232 return prio;
2233}
2234
2235/*
2236 * Calculate the current priority, i.e. the priority
2237 * taken into account by the scheduler. This value might
2238 * be boosted by RT tasks, or might be boosted by
2239 * interactivity modifiers. Will be RT if the task got
2240 * RT-boosted. If not then it returns p->normal_prio.
2241 */
36c8b586 2242static int effective_prio(struct task_struct *p)
b29739f9
IM
2243{
2244 p->normal_prio = normal_prio(p);
2245 /*
2246 * If we are RT tasks or we were boosted to RT priority,
2247 * keep the priority unchanged. Otherwise, update priority
2248 * to the normal priority:
2249 */
2250 if (!rt_prio(p->prio))
2251 return p->normal_prio;
2252 return p->prio;
2253}
2254
1da177e4
LT
2255/**
2256 * task_curr - is this task currently executing on a CPU?
2257 * @p: the task in question.
2258 */
36c8b586 2259inline int task_curr(const struct task_struct *p)
1da177e4
LT
2260{
2261 return cpu_curr(task_cpu(p)) == p;
2262}
2263
cb469845
SR
2264static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2265 const struct sched_class *prev_class,
da7a735e 2266 int oldprio)
cb469845
SR
2267{
2268 if (prev_class != p->sched_class) {
2269 if (prev_class->switched_from)
da7a735e
PZ
2270 prev_class->switched_from(rq, p);
2271 p->sched_class->switched_to(rq, p);
2272 } else if (oldprio != p->prio)
2273 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2274}
2275
1e5a7405
PZ
2276static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2277{
2278 const struct sched_class *class;
2279
2280 if (p->sched_class == rq->curr->sched_class) {
2281 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2282 } else {
2283 for_each_class(class) {
2284 if (class == rq->curr->sched_class)
2285 break;
2286 if (class == p->sched_class) {
2287 resched_task(rq->curr);
2288 break;
2289 }
2290 }
2291 }
2292
2293 /*
2294 * A queue event has occurred, and we're going to schedule. In
2295 * this case, we can save a useless back to back clock update.
2296 */
fd2f4419 2297 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2298 rq->skip_clock_update = 1;
2299}
2300
1da177e4 2301#ifdef CONFIG_SMP
cc367732
IM
2302/*
2303 * Is this task likely cache-hot:
2304 */
e7693a36 2305static int
cc367732
IM
2306task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2307{
2308 s64 delta;
2309
e6c8fba7
PZ
2310 if (p->sched_class != &fair_sched_class)
2311 return 0;
2312
ef8002f6
NR
2313 if (unlikely(p->policy == SCHED_IDLE))
2314 return 0;
2315
f540a608
IM
2316 /*
2317 * Buddy candidates are cache hot:
2318 */
f685ceac 2319 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2320 (&p->se == cfs_rq_of(&p->se)->next ||
2321 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2322 return 1;
2323
6bc1665b
IM
2324 if (sysctl_sched_migration_cost == -1)
2325 return 1;
2326 if (sysctl_sched_migration_cost == 0)
2327 return 0;
2328
cc367732
IM
2329 delta = now - p->se.exec_start;
2330
2331 return delta < (s64)sysctl_sched_migration_cost;
2332}
2333
dd41f596 2334void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2335{
e2912009
PZ
2336#ifdef CONFIG_SCHED_DEBUG
2337 /*
2338 * We should never call set_task_cpu() on a blocked task,
2339 * ttwu() will sort out the placement.
2340 */
077614ee
PZ
2341 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2342 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2343
2344#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2345 /*
2346 * The caller should hold either p->pi_lock or rq->lock, when changing
2347 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2348 *
2349 * sched_move_task() holds both and thus holding either pins the cgroup,
2350 * see set_task_rq().
2351 *
2352 * Furthermore, all task_rq users should acquire both locks, see
2353 * task_rq_lock().
2354 */
0122ec5b
PZ
2355 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2356 lockdep_is_held(&task_rq(p)->lock)));
2357#endif
e2912009
PZ
2358#endif
2359
de1d7286 2360 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2361
0c69774e
PZ
2362 if (task_cpu(p) != new_cpu) {
2363 p->se.nr_migrations++;
a8b0ca17 2364 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 2365 }
dd41f596
IM
2366
2367 __set_task_cpu(p, new_cpu);
c65cc870
IM
2368}
2369
969c7921 2370struct migration_arg {
36c8b586 2371 struct task_struct *task;
1da177e4 2372 int dest_cpu;
70b97a7f 2373};
1da177e4 2374
969c7921
TH
2375static int migration_cpu_stop(void *data);
2376
1da177e4
LT
2377/*
2378 * wait_task_inactive - wait for a thread to unschedule.
2379 *
85ba2d86
RM
2380 * If @match_state is nonzero, it's the @p->state value just checked and
2381 * not expected to change. If it changes, i.e. @p might have woken up,
2382 * then return zero. When we succeed in waiting for @p to be off its CPU,
2383 * we return a positive number (its total switch count). If a second call
2384 * a short while later returns the same number, the caller can be sure that
2385 * @p has remained unscheduled the whole time.
2386 *
1da177e4
LT
2387 * The caller must ensure that the task *will* unschedule sometime soon,
2388 * else this function might spin for a *long* time. This function can't
2389 * be called with interrupts off, or it may introduce deadlock with
2390 * smp_call_function() if an IPI is sent by the same process we are
2391 * waiting to become inactive.
2392 */
85ba2d86 2393unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2394{
2395 unsigned long flags;
dd41f596 2396 int running, on_rq;
85ba2d86 2397 unsigned long ncsw;
70b97a7f 2398 struct rq *rq;
1da177e4 2399
3a5c359a
AK
2400 for (;;) {
2401 /*
2402 * We do the initial early heuristics without holding
2403 * any task-queue locks at all. We'll only try to get
2404 * the runqueue lock when things look like they will
2405 * work out!
2406 */
2407 rq = task_rq(p);
fa490cfd 2408
3a5c359a
AK
2409 /*
2410 * If the task is actively running on another CPU
2411 * still, just relax and busy-wait without holding
2412 * any locks.
2413 *
2414 * NOTE! Since we don't hold any locks, it's not
2415 * even sure that "rq" stays as the right runqueue!
2416 * But we don't care, since "task_running()" will
2417 * return false if the runqueue has changed and p
2418 * is actually now running somewhere else!
2419 */
85ba2d86
RM
2420 while (task_running(rq, p)) {
2421 if (match_state && unlikely(p->state != match_state))
2422 return 0;
3a5c359a 2423 cpu_relax();
85ba2d86 2424 }
fa490cfd 2425
3a5c359a
AK
2426 /*
2427 * Ok, time to look more closely! We need the rq
2428 * lock now, to be *sure*. If we're wrong, we'll
2429 * just go back and repeat.
2430 */
2431 rq = task_rq_lock(p, &flags);
27a9da65 2432 trace_sched_wait_task(p);
3a5c359a 2433 running = task_running(rq, p);
fd2f4419 2434 on_rq = p->on_rq;
85ba2d86 2435 ncsw = 0;
f31e11d8 2436 if (!match_state || p->state == match_state)
93dcf55f 2437 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2438 task_rq_unlock(rq, p, &flags);
fa490cfd 2439
85ba2d86
RM
2440 /*
2441 * If it changed from the expected state, bail out now.
2442 */
2443 if (unlikely(!ncsw))
2444 break;
2445
3a5c359a
AK
2446 /*
2447 * Was it really running after all now that we
2448 * checked with the proper locks actually held?
2449 *
2450 * Oops. Go back and try again..
2451 */
2452 if (unlikely(running)) {
2453 cpu_relax();
2454 continue;
2455 }
fa490cfd 2456
3a5c359a
AK
2457 /*
2458 * It's not enough that it's not actively running,
2459 * it must be off the runqueue _entirely_, and not
2460 * preempted!
2461 *
80dd99b3 2462 * So if it was still runnable (but just not actively
3a5c359a
AK
2463 * running right now), it's preempted, and we should
2464 * yield - it could be a while.
2465 */
2466 if (unlikely(on_rq)) {
8eb90c30
TG
2467 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2468
2469 set_current_state(TASK_UNINTERRUPTIBLE);
2470 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2471 continue;
2472 }
fa490cfd 2473
3a5c359a
AK
2474 /*
2475 * Ahh, all good. It wasn't running, and it wasn't
2476 * runnable, which means that it will never become
2477 * running in the future either. We're all done!
2478 */
2479 break;
2480 }
85ba2d86
RM
2481
2482 return ncsw;
1da177e4
LT
2483}
2484
2485/***
2486 * kick_process - kick a running thread to enter/exit the kernel
2487 * @p: the to-be-kicked thread
2488 *
2489 * Cause a process which is running on another CPU to enter
2490 * kernel-mode, without any delay. (to get signals handled.)
2491 *
25985edc 2492 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2493 * because all it wants to ensure is that the remote task enters
2494 * the kernel. If the IPI races and the task has been migrated
2495 * to another CPU then no harm is done and the purpose has been
2496 * achieved as well.
2497 */
36c8b586 2498void kick_process(struct task_struct *p)
1da177e4
LT
2499{
2500 int cpu;
2501
2502 preempt_disable();
2503 cpu = task_cpu(p);
2504 if ((cpu != smp_processor_id()) && task_curr(p))
2505 smp_send_reschedule(cpu);
2506 preempt_enable();
2507}
b43e3521 2508EXPORT_SYMBOL_GPL(kick_process);
476d139c 2509#endif /* CONFIG_SMP */
1da177e4 2510
970b13ba 2511#ifdef CONFIG_SMP
30da688e 2512/*
013fdb80 2513 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2514 */
5da9a0fb
PZ
2515static int select_fallback_rq(int cpu, struct task_struct *p)
2516{
2517 int dest_cpu;
2518 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2519
2520 /* Look for allowed, online CPU in same node. */
2521 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2522 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2523 return dest_cpu;
2524
2525 /* Any allowed, online CPU? */
2526 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2527 if (dest_cpu < nr_cpu_ids)
2528 return dest_cpu;
2529
2530 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2531 dest_cpu = cpuset_cpus_allowed_fallback(p);
2532 /*
2533 * Don't tell them about moving exiting tasks or
2534 * kernel threads (both mm NULL), since they never
2535 * leave kernel.
2536 */
2537 if (p->mm && printk_ratelimit()) {
2538 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2539 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2540 }
2541
2542 return dest_cpu;
2543}
2544
e2912009 2545/*
013fdb80 2546 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2547 */
970b13ba 2548static inline
7608dec2 2549int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2550{
7608dec2 2551 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2552
2553 /*
2554 * In order not to call set_task_cpu() on a blocking task we need
2555 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2556 * cpu.
2557 *
2558 * Since this is common to all placement strategies, this lives here.
2559 *
2560 * [ this allows ->select_task() to simply return task_cpu(p) and
2561 * not worry about this generic constraint ]
2562 */
2563 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2564 !cpu_online(cpu)))
5da9a0fb 2565 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2566
2567 return cpu;
970b13ba 2568}
09a40af5
MG
2569
2570static void update_avg(u64 *avg, u64 sample)
2571{
2572 s64 diff = sample - *avg;
2573 *avg += diff >> 3;
2574}
970b13ba
PZ
2575#endif
2576
d7c01d27 2577static void
b84cb5df 2578ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2579{
d7c01d27 2580#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2581 struct rq *rq = this_rq();
2582
d7c01d27
PZ
2583#ifdef CONFIG_SMP
2584 int this_cpu = smp_processor_id();
2585
2586 if (cpu == this_cpu) {
2587 schedstat_inc(rq, ttwu_local);
2588 schedstat_inc(p, se.statistics.nr_wakeups_local);
2589 } else {
2590 struct sched_domain *sd;
2591
2592 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2593 rcu_read_lock();
d7c01d27
PZ
2594 for_each_domain(this_cpu, sd) {
2595 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2596 schedstat_inc(sd, ttwu_wake_remote);
2597 break;
2598 }
2599 }
057f3fad 2600 rcu_read_unlock();
d7c01d27 2601 }
f339b9dc
PZ
2602
2603 if (wake_flags & WF_MIGRATED)
2604 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2605
d7c01d27
PZ
2606#endif /* CONFIG_SMP */
2607
2608 schedstat_inc(rq, ttwu_count);
9ed3811a 2609 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2610
2611 if (wake_flags & WF_SYNC)
9ed3811a 2612 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 2613
d7c01d27
PZ
2614#endif /* CONFIG_SCHEDSTATS */
2615}
2616
2617static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2618{
9ed3811a 2619 activate_task(rq, p, en_flags);
fd2f4419 2620 p->on_rq = 1;
c2f7115e
PZ
2621
2622 /* if a worker is waking up, notify workqueue */
2623 if (p->flags & PF_WQ_WORKER)
2624 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2625}
2626
23f41eeb
PZ
2627/*
2628 * Mark the task runnable and perform wakeup-preemption.
2629 */
89363381 2630static void
23f41eeb 2631ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2632{
89363381 2633 trace_sched_wakeup(p, true);
9ed3811a
TH
2634 check_preempt_curr(rq, p, wake_flags);
2635
2636 p->state = TASK_RUNNING;
2637#ifdef CONFIG_SMP
2638 if (p->sched_class->task_woken)
2639 p->sched_class->task_woken(rq, p);
2640
e69c6341 2641 if (rq->idle_stamp) {
9ed3811a
TH
2642 u64 delta = rq->clock - rq->idle_stamp;
2643 u64 max = 2*sysctl_sched_migration_cost;
2644
2645 if (delta > max)
2646 rq->avg_idle = max;
2647 else
2648 update_avg(&rq->avg_idle, delta);
2649 rq->idle_stamp = 0;
2650 }
2651#endif
2652}
2653
c05fbafb
PZ
2654static void
2655ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2656{
2657#ifdef CONFIG_SMP
2658 if (p->sched_contributes_to_load)
2659 rq->nr_uninterruptible--;
2660#endif
2661
2662 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2663 ttwu_do_wakeup(rq, p, wake_flags);
2664}
2665
2666/*
2667 * Called in case the task @p isn't fully descheduled from its runqueue,
2668 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2669 * since all we need to do is flip p->state to TASK_RUNNING, since
2670 * the task is still ->on_rq.
2671 */
2672static int ttwu_remote(struct task_struct *p, int wake_flags)
2673{
2674 struct rq *rq;
2675 int ret = 0;
2676
2677 rq = __task_rq_lock(p);
2678 if (p->on_rq) {
2679 ttwu_do_wakeup(rq, p, wake_flags);
2680 ret = 1;
2681 }
2682 __task_rq_unlock(rq);
2683
2684 return ret;
2685}
2686
317f3941 2687#ifdef CONFIG_SMP
c5d753a5 2688static void sched_ttwu_do_pending(struct task_struct *list)
317f3941
PZ
2689{
2690 struct rq *rq = this_rq();
317f3941
PZ
2691
2692 raw_spin_lock(&rq->lock);
2693
2694 while (list) {
2695 struct task_struct *p = list;
2696 list = list->wake_entry;
2697 ttwu_do_activate(rq, p, 0);
2698 }
2699
2700 raw_spin_unlock(&rq->lock);
2701}
2702
c5d753a5
PZ
2703#ifdef CONFIG_HOTPLUG_CPU
2704
2705static void sched_ttwu_pending(void)
2706{
2707 struct rq *rq = this_rq();
2708 struct task_struct *list = xchg(&rq->wake_list, NULL);
2709
2710 if (!list)
2711 return;
2712
2713 sched_ttwu_do_pending(list);
2714}
2715
2716#endif /* CONFIG_HOTPLUG_CPU */
2717
317f3941
PZ
2718void scheduler_ipi(void)
2719{
c5d753a5
PZ
2720 struct rq *rq = this_rq();
2721 struct task_struct *list = xchg(&rq->wake_list, NULL);
2722
2723 if (!list)
2724 return;
2725
2726 /*
2727 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2728 * traditionally all their work was done from the interrupt return
2729 * path. Now that we actually do some work, we need to make sure
2730 * we do call them.
2731 *
2732 * Some archs already do call them, luckily irq_enter/exit nest
2733 * properly.
2734 *
2735 * Arguably we should visit all archs and update all handlers,
2736 * however a fair share of IPIs are still resched only so this would
2737 * somewhat pessimize the simple resched case.
2738 */
2739 irq_enter();
2740 sched_ttwu_do_pending(list);
2741 irq_exit();
317f3941
PZ
2742}
2743
2744static void ttwu_queue_remote(struct task_struct *p, int cpu)
2745{
2746 struct rq *rq = cpu_rq(cpu);
2747 struct task_struct *next = rq->wake_list;
2748
2749 for (;;) {
2750 struct task_struct *old = next;
2751
2752 p->wake_entry = next;
2753 next = cmpxchg(&rq->wake_list, old, p);
2754 if (next == old)
2755 break;
2756 }
2757
2758 if (!next)
2759 smp_send_reschedule(cpu);
2760}
d6aa8f85
PZ
2761
2762#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2763static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2764{
2765 struct rq *rq;
2766 int ret = 0;
2767
2768 rq = __task_rq_lock(p);
2769 if (p->on_cpu) {
2770 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2771 ttwu_do_wakeup(rq, p, wake_flags);
2772 ret = 1;
2773 }
2774 __task_rq_unlock(rq);
2775
2776 return ret;
2777
2778}
2779#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2780#endif /* CONFIG_SMP */
317f3941 2781
c05fbafb
PZ
2782static void ttwu_queue(struct task_struct *p, int cpu)
2783{
2784 struct rq *rq = cpu_rq(cpu);
2785
17d9f311 2786#if defined(CONFIG_SMP)
317f3941 2787 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 2788 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
2789 ttwu_queue_remote(p, cpu);
2790 return;
2791 }
2792#endif
2793
c05fbafb
PZ
2794 raw_spin_lock(&rq->lock);
2795 ttwu_do_activate(rq, p, 0);
2796 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2797}
2798
2799/**
1da177e4 2800 * try_to_wake_up - wake up a thread
9ed3811a 2801 * @p: the thread to be awakened
1da177e4 2802 * @state: the mask of task states that can be woken
9ed3811a 2803 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2804 *
2805 * Put it on the run-queue if it's not already there. The "current"
2806 * thread is always on the run-queue (except when the actual
2807 * re-schedule is in progress), and as such you're allowed to do
2808 * the simpler "current->state = TASK_RUNNING" to mark yourself
2809 * runnable without the overhead of this.
2810 *
9ed3811a
TH
2811 * Returns %true if @p was woken up, %false if it was already running
2812 * or @state didn't match @p's state.
1da177e4 2813 */
e4a52bcb
PZ
2814static int
2815try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2816{
1da177e4 2817 unsigned long flags;
c05fbafb 2818 int cpu, success = 0;
2398f2c6 2819
04e2f174 2820 smp_wmb();
013fdb80 2821 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2822 if (!(p->state & state))
1da177e4
LT
2823 goto out;
2824
c05fbafb 2825 success = 1; /* we're going to change ->state */
1da177e4 2826 cpu = task_cpu(p);
1da177e4 2827
c05fbafb
PZ
2828 if (p->on_rq && ttwu_remote(p, wake_flags))
2829 goto stat;
1da177e4 2830
1da177e4 2831#ifdef CONFIG_SMP
e9c84311 2832 /*
c05fbafb
PZ
2833 * If the owning (remote) cpu is still in the middle of schedule() with
2834 * this task as prev, wait until its done referencing the task.
e9c84311 2835 */
e4a52bcb
PZ
2836 while (p->on_cpu) {
2837#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2838 /*
d6aa8f85
PZ
2839 * In case the architecture enables interrupts in
2840 * context_switch(), we cannot busy wait, since that
2841 * would lead to deadlocks when an interrupt hits and
2842 * tries to wake up @prev. So bail and do a complete
2843 * remote wakeup.
e4a52bcb 2844 */
d6aa8f85 2845 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2846 goto stat;
d6aa8f85 2847#else
e4a52bcb 2848 cpu_relax();
d6aa8f85 2849#endif
371fd7e7 2850 }
0970d299 2851 /*
e4a52bcb 2852 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2853 */
e4a52bcb 2854 smp_rmb();
1da177e4 2855
a8e4f2ea 2856 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2857 p->state = TASK_WAKING;
e7693a36 2858
e4a52bcb 2859 if (p->sched_class->task_waking)
74f8e4b2 2860 p->sched_class->task_waking(p);
efbbd05a 2861
7608dec2 2862 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2863 if (task_cpu(p) != cpu) {
2864 wake_flags |= WF_MIGRATED;
e4a52bcb 2865 set_task_cpu(p, cpu);
f339b9dc 2866 }
1da177e4 2867#endif /* CONFIG_SMP */
1da177e4 2868
c05fbafb
PZ
2869 ttwu_queue(p, cpu);
2870stat:
b84cb5df 2871 ttwu_stat(p, cpu, wake_flags);
1da177e4 2872out:
013fdb80 2873 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2874
2875 return success;
2876}
2877
21aa9af0
TH
2878/**
2879 * try_to_wake_up_local - try to wake up a local task with rq lock held
2880 * @p: the thread to be awakened
2881 *
2acca55e 2882 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2883 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2884 * the current task.
21aa9af0
TH
2885 */
2886static void try_to_wake_up_local(struct task_struct *p)
2887{
2888 struct rq *rq = task_rq(p);
21aa9af0
TH
2889
2890 BUG_ON(rq != this_rq());
2891 BUG_ON(p == current);
2892 lockdep_assert_held(&rq->lock);
2893
2acca55e
PZ
2894 if (!raw_spin_trylock(&p->pi_lock)) {
2895 raw_spin_unlock(&rq->lock);
2896 raw_spin_lock(&p->pi_lock);
2897 raw_spin_lock(&rq->lock);
2898 }
2899
21aa9af0 2900 if (!(p->state & TASK_NORMAL))
2acca55e 2901 goto out;
21aa9af0 2902
fd2f4419 2903 if (!p->on_rq)
d7c01d27
PZ
2904 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2905
23f41eeb 2906 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2907 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2908out:
2909 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2910}
2911
50fa610a
DH
2912/**
2913 * wake_up_process - Wake up a specific process
2914 * @p: The process to be woken up.
2915 *
2916 * Attempt to wake up the nominated process and move it to the set of runnable
2917 * processes. Returns 1 if the process was woken up, 0 if it was already
2918 * running.
2919 *
2920 * It may be assumed that this function implies a write memory barrier before
2921 * changing the task state if and only if any tasks are woken up.
2922 */
7ad5b3a5 2923int wake_up_process(struct task_struct *p)
1da177e4 2924{
d9514f6c 2925 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2926}
1da177e4
LT
2927EXPORT_SYMBOL(wake_up_process);
2928
7ad5b3a5 2929int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2930{
2931 return try_to_wake_up(p, state, 0);
2932}
2933
1da177e4
LT
2934/*
2935 * Perform scheduler related setup for a newly forked process p.
2936 * p is forked by current.
dd41f596
IM
2937 *
2938 * __sched_fork() is basic setup used by init_idle() too:
2939 */
2940static void __sched_fork(struct task_struct *p)
2941{
fd2f4419
PZ
2942 p->on_rq = 0;
2943
2944 p->se.on_rq = 0;
dd41f596
IM
2945 p->se.exec_start = 0;
2946 p->se.sum_exec_runtime = 0;
f6cf891c 2947 p->se.prev_sum_exec_runtime = 0;
6c594c21 2948 p->se.nr_migrations = 0;
da7a735e 2949 p->se.vruntime = 0;
fd2f4419 2950 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2951
2952#ifdef CONFIG_SCHEDSTATS
41acab88 2953 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2954#endif
476d139c 2955
fa717060 2956 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2957
e107be36
AK
2958#ifdef CONFIG_PREEMPT_NOTIFIERS
2959 INIT_HLIST_HEAD(&p->preempt_notifiers);
2960#endif
dd41f596
IM
2961}
2962
2963/*
2964 * fork()/clone()-time setup:
2965 */
3e51e3ed 2966void sched_fork(struct task_struct *p)
dd41f596 2967{
0122ec5b 2968 unsigned long flags;
dd41f596
IM
2969 int cpu = get_cpu();
2970
2971 __sched_fork(p);
06b83b5f 2972 /*
0017d735 2973 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2974 * nobody will actually run it, and a signal or other external
2975 * event cannot wake it up and insert it on the runqueue either.
2976 */
0017d735 2977 p->state = TASK_RUNNING;
dd41f596 2978
c350a04e
MG
2979 /*
2980 * Make sure we do not leak PI boosting priority to the child.
2981 */
2982 p->prio = current->normal_prio;
2983
b9dc29e7
MG
2984 /*
2985 * Revert to default priority/policy on fork if requested.
2986 */
2987 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 2988 if (task_has_rt_policy(p)) {
b9dc29e7 2989 p->policy = SCHED_NORMAL;
6c697bdf 2990 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2991 p->rt_priority = 0;
2992 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2993 p->static_prio = NICE_TO_PRIO(0);
2994
2995 p->prio = p->normal_prio = __normal_prio(p);
2996 set_load_weight(p);
6c697bdf 2997
b9dc29e7
MG
2998 /*
2999 * We don't need the reset flag anymore after the fork. It has
3000 * fulfilled its duty:
3001 */
3002 p->sched_reset_on_fork = 0;
3003 }
ca94c442 3004
2ddbf952
HS
3005 if (!rt_prio(p->prio))
3006 p->sched_class = &fair_sched_class;
b29739f9 3007
cd29fe6f
PZ
3008 if (p->sched_class->task_fork)
3009 p->sched_class->task_fork(p);
3010
86951599
PZ
3011 /*
3012 * The child is not yet in the pid-hash so no cgroup attach races,
3013 * and the cgroup is pinned to this child due to cgroup_fork()
3014 * is ran before sched_fork().
3015 *
3016 * Silence PROVE_RCU.
3017 */
0122ec5b 3018 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 3019 set_task_cpu(p, cpu);
0122ec5b 3020 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 3021
52f17b6c 3022#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 3023 if (likely(sched_info_on()))
52f17b6c 3024 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 3025#endif
3ca7a440
PZ
3026#if defined(CONFIG_SMP)
3027 p->on_cpu = 0;
4866cde0 3028#endif
bdd4e85d 3029#ifdef CONFIG_PREEMPT_COUNT
4866cde0 3030 /* Want to start with kernel preemption disabled. */
a1261f54 3031 task_thread_info(p)->preempt_count = 1;
1da177e4 3032#endif
806c09a7 3033#ifdef CONFIG_SMP
917b627d 3034 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 3035#endif
917b627d 3036
476d139c 3037 put_cpu();
1da177e4
LT
3038}
3039
3040/*
3041 * wake_up_new_task - wake up a newly created task for the first time.
3042 *
3043 * This function will do some initial scheduler statistics housekeeping
3044 * that must be done for every newly created context, then puts the task
3045 * on the runqueue and wakes it.
3046 */
3e51e3ed 3047void wake_up_new_task(struct task_struct *p)
1da177e4
LT
3048{
3049 unsigned long flags;
dd41f596 3050 struct rq *rq;
fabf318e 3051
ab2515c4 3052 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
3053#ifdef CONFIG_SMP
3054 /*
3055 * Fork balancing, do it here and not earlier because:
3056 * - cpus_allowed can change in the fork path
3057 * - any previously selected cpu might disappear through hotplug
fabf318e 3058 */
ab2515c4 3059 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
3060#endif
3061
ab2515c4 3062 rq = __task_rq_lock(p);
cd29fe6f 3063 activate_task(rq, p, 0);
fd2f4419 3064 p->on_rq = 1;
89363381 3065 trace_sched_wakeup_new(p, true);
a7558e01 3066 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3067#ifdef CONFIG_SMP
efbbd05a
PZ
3068 if (p->sched_class->task_woken)
3069 p->sched_class->task_woken(rq, p);
9a897c5a 3070#endif
0122ec5b 3071 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3072}
3073
e107be36
AK
3074#ifdef CONFIG_PREEMPT_NOTIFIERS
3075
3076/**
80dd99b3 3077 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3078 * @notifier: notifier struct to register
e107be36
AK
3079 */
3080void preempt_notifier_register(struct preempt_notifier *notifier)
3081{
3082 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3083}
3084EXPORT_SYMBOL_GPL(preempt_notifier_register);
3085
3086/**
3087 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3088 * @notifier: notifier struct to unregister
e107be36
AK
3089 *
3090 * This is safe to call from within a preemption notifier.
3091 */
3092void preempt_notifier_unregister(struct preempt_notifier *notifier)
3093{
3094 hlist_del(&notifier->link);
3095}
3096EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3097
3098static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3099{
3100 struct preempt_notifier *notifier;
3101 struct hlist_node *node;
3102
3103 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3104 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3105}
3106
3107static void
3108fire_sched_out_preempt_notifiers(struct task_struct *curr,
3109 struct task_struct *next)
3110{
3111 struct preempt_notifier *notifier;
3112 struct hlist_node *node;
3113
3114 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3115 notifier->ops->sched_out(notifier, next);
3116}
3117
6d6bc0ad 3118#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
3119
3120static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3121{
3122}
3123
3124static void
3125fire_sched_out_preempt_notifiers(struct task_struct *curr,
3126 struct task_struct *next)
3127{
3128}
3129
6d6bc0ad 3130#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3131
4866cde0
NP
3132/**
3133 * prepare_task_switch - prepare to switch tasks
3134 * @rq: the runqueue preparing to switch
421cee29 3135 * @prev: the current task that is being switched out
4866cde0
NP
3136 * @next: the task we are going to switch to.
3137 *
3138 * This is called with the rq lock held and interrupts off. It must
3139 * be paired with a subsequent finish_task_switch after the context
3140 * switch.
3141 *
3142 * prepare_task_switch sets up locking and calls architecture specific
3143 * hooks.
3144 */
e107be36
AK
3145static inline void
3146prepare_task_switch(struct rq *rq, struct task_struct *prev,
3147 struct task_struct *next)
4866cde0 3148{
fe4b04fa
PZ
3149 sched_info_switch(prev, next);
3150 perf_event_task_sched_out(prev, next);
e107be36 3151 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
3152 prepare_lock_switch(rq, next);
3153 prepare_arch_switch(next);
fe4b04fa 3154 trace_sched_switch(prev, next);
4866cde0
NP
3155}
3156
1da177e4
LT
3157/**
3158 * finish_task_switch - clean up after a task-switch
344babaa 3159 * @rq: runqueue associated with task-switch
1da177e4
LT
3160 * @prev: the thread we just switched away from.
3161 *
4866cde0
NP
3162 * finish_task_switch must be called after the context switch, paired
3163 * with a prepare_task_switch call before the context switch.
3164 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3165 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3166 *
3167 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3168 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3169 * with the lock held can cause deadlocks; see schedule() for
3170 * details.)
3171 */
a9957449 3172static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
3173 __releases(rq->lock)
3174{
1da177e4 3175 struct mm_struct *mm = rq->prev_mm;
55a101f8 3176 long prev_state;
1da177e4
LT
3177
3178 rq->prev_mm = NULL;
3179
3180 /*
3181 * A task struct has one reference for the use as "current".
c394cc9f 3182 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3183 * schedule one last time. The schedule call will never return, and
3184 * the scheduled task must drop that reference.
c394cc9f 3185 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
3186 * still held, otherwise prev could be scheduled on another cpu, die
3187 * there before we look at prev->state, and then the reference would
3188 * be dropped twice.
3189 * Manfred Spraul <manfred@colorfullife.com>
3190 */
55a101f8 3191 prev_state = prev->state;
4866cde0 3192 finish_arch_switch(prev);
8381f65d
JI
3193#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3194 local_irq_disable();
3195#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 3196 perf_event_task_sched_in(current);
8381f65d
JI
3197#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3198 local_irq_enable();
3199#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3200 finish_lock_switch(rq, prev);
e8fa1362 3201
e107be36 3202 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3203 if (mm)
3204 mmdrop(mm);
c394cc9f 3205 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3206 /*
3207 * Remove function-return probe instances associated with this
3208 * task and put them back on the free list.
9761eea8 3209 */
c6fd91f0 3210 kprobe_flush_task(prev);
1da177e4 3211 put_task_struct(prev);
c6fd91f0 3212 }
1da177e4
LT
3213}
3214
3f029d3c
GH
3215#ifdef CONFIG_SMP
3216
3217/* assumes rq->lock is held */
3218static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3219{
3220 if (prev->sched_class->pre_schedule)
3221 prev->sched_class->pre_schedule(rq, prev);
3222}
3223
3224/* rq->lock is NOT held, but preemption is disabled */
3225static inline void post_schedule(struct rq *rq)
3226{
3227 if (rq->post_schedule) {
3228 unsigned long flags;
3229
05fa785c 3230 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3231 if (rq->curr->sched_class->post_schedule)
3232 rq->curr->sched_class->post_schedule(rq);
05fa785c 3233 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3234
3235 rq->post_schedule = 0;
3236 }
3237}
3238
3239#else
da19ab51 3240
3f029d3c
GH
3241static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3242{
3243}
3244
3245static inline void post_schedule(struct rq *rq)
3246{
1da177e4
LT
3247}
3248
3f029d3c
GH
3249#endif
3250
1da177e4
LT
3251/**
3252 * schedule_tail - first thing a freshly forked thread must call.
3253 * @prev: the thread we just switched away from.
3254 */
36c8b586 3255asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3256 __releases(rq->lock)
3257{
70b97a7f
IM
3258 struct rq *rq = this_rq();
3259
4866cde0 3260 finish_task_switch(rq, prev);
da19ab51 3261
3f029d3c
GH
3262 /*
3263 * FIXME: do we need to worry about rq being invalidated by the
3264 * task_switch?
3265 */
3266 post_schedule(rq);
70b97a7f 3267
4866cde0
NP
3268#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3269 /* In this case, finish_task_switch does not reenable preemption */
3270 preempt_enable();
3271#endif
1da177e4 3272 if (current->set_child_tid)
b488893a 3273 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3274}
3275
3276/*
3277 * context_switch - switch to the new MM and the new
3278 * thread's register state.
3279 */
dd41f596 3280static inline void
70b97a7f 3281context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3282 struct task_struct *next)
1da177e4 3283{
dd41f596 3284 struct mm_struct *mm, *oldmm;
1da177e4 3285
e107be36 3286 prepare_task_switch(rq, prev, next);
fe4b04fa 3287
dd41f596
IM
3288 mm = next->mm;
3289 oldmm = prev->active_mm;
9226d125
ZA
3290 /*
3291 * For paravirt, this is coupled with an exit in switch_to to
3292 * combine the page table reload and the switch backend into
3293 * one hypercall.
3294 */
224101ed 3295 arch_start_context_switch(prev);
9226d125 3296
31915ab4 3297 if (!mm) {
1da177e4
LT
3298 next->active_mm = oldmm;
3299 atomic_inc(&oldmm->mm_count);
3300 enter_lazy_tlb(oldmm, next);
3301 } else
3302 switch_mm(oldmm, mm, next);
3303
31915ab4 3304 if (!prev->mm) {
1da177e4 3305 prev->active_mm = NULL;
1da177e4
LT
3306 rq->prev_mm = oldmm;
3307 }
3a5f5e48
IM
3308 /*
3309 * Since the runqueue lock will be released by the next
3310 * task (which is an invalid locking op but in the case
3311 * of the scheduler it's an obvious special-case), so we
3312 * do an early lockdep release here:
3313 */
3314#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3315 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3316#endif
1da177e4
LT
3317
3318 /* Here we just switch the register state and the stack. */
3319 switch_to(prev, next, prev);
3320
dd41f596
IM
3321 barrier();
3322 /*
3323 * this_rq must be evaluated again because prev may have moved
3324 * CPUs since it called schedule(), thus the 'rq' on its stack
3325 * frame will be invalid.
3326 */
3327 finish_task_switch(this_rq(), prev);
1da177e4
LT
3328}
3329
3330/*
3331 * nr_running, nr_uninterruptible and nr_context_switches:
3332 *
3333 * externally visible scheduler statistics: current number of runnable
3334 * threads, current number of uninterruptible-sleeping threads, total
3335 * number of context switches performed since bootup.
3336 */
3337unsigned long nr_running(void)
3338{
3339 unsigned long i, sum = 0;
3340
3341 for_each_online_cpu(i)
3342 sum += cpu_rq(i)->nr_running;
3343
3344 return sum;
f711f609 3345}
1da177e4
LT
3346
3347unsigned long nr_uninterruptible(void)
f711f609 3348{
1da177e4 3349 unsigned long i, sum = 0;
f711f609 3350
0a945022 3351 for_each_possible_cpu(i)
1da177e4 3352 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3353
3354 /*
1da177e4
LT
3355 * Since we read the counters lockless, it might be slightly
3356 * inaccurate. Do not allow it to go below zero though:
f711f609 3357 */
1da177e4
LT
3358 if (unlikely((long)sum < 0))
3359 sum = 0;
f711f609 3360
1da177e4 3361 return sum;
f711f609 3362}
f711f609 3363
1da177e4 3364unsigned long long nr_context_switches(void)
46cb4b7c 3365{
cc94abfc
SR
3366 int i;
3367 unsigned long long sum = 0;
46cb4b7c 3368
0a945022 3369 for_each_possible_cpu(i)
1da177e4 3370 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3371
1da177e4
LT
3372 return sum;
3373}
483b4ee6 3374
1da177e4
LT
3375unsigned long nr_iowait(void)
3376{
3377 unsigned long i, sum = 0;
483b4ee6 3378
0a945022 3379 for_each_possible_cpu(i)
1da177e4 3380 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3381
1da177e4
LT
3382 return sum;
3383}
483b4ee6 3384
8c215bd3 3385unsigned long nr_iowait_cpu(int cpu)
69d25870 3386{
8c215bd3 3387 struct rq *this = cpu_rq(cpu);
69d25870
AV
3388 return atomic_read(&this->nr_iowait);
3389}
46cb4b7c 3390
69d25870
AV
3391unsigned long this_cpu_load(void)
3392{
3393 struct rq *this = this_rq();
3394 return this->cpu_load[0];
3395}
e790fb0b 3396
46cb4b7c 3397
dce48a84
TG
3398/* Variables and functions for calc_load */
3399static atomic_long_t calc_load_tasks;
3400static unsigned long calc_load_update;
3401unsigned long avenrun[3];
3402EXPORT_SYMBOL(avenrun);
46cb4b7c 3403
74f5187a
PZ
3404static long calc_load_fold_active(struct rq *this_rq)
3405{
3406 long nr_active, delta = 0;
3407
3408 nr_active = this_rq->nr_running;
3409 nr_active += (long) this_rq->nr_uninterruptible;
3410
3411 if (nr_active != this_rq->calc_load_active) {
3412 delta = nr_active - this_rq->calc_load_active;
3413 this_rq->calc_load_active = nr_active;
3414 }
3415
3416 return delta;
3417}
3418
0f004f5a
PZ
3419static unsigned long
3420calc_load(unsigned long load, unsigned long exp, unsigned long active)
3421{
3422 load *= exp;
3423 load += active * (FIXED_1 - exp);
3424 load += 1UL << (FSHIFT - 1);
3425 return load >> FSHIFT;
3426}
3427
74f5187a
PZ
3428#ifdef CONFIG_NO_HZ
3429/*
3430 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3431 *
3432 * When making the ILB scale, we should try to pull this in as well.
3433 */
3434static atomic_long_t calc_load_tasks_idle;
3435
3436static void calc_load_account_idle(struct rq *this_rq)
3437{
3438 long delta;
3439
3440 delta = calc_load_fold_active(this_rq);
3441 if (delta)
3442 atomic_long_add(delta, &calc_load_tasks_idle);
3443}
3444
3445static long calc_load_fold_idle(void)
3446{
3447 long delta = 0;
3448
3449 /*
3450 * Its got a race, we don't care...
3451 */
3452 if (atomic_long_read(&calc_load_tasks_idle))
3453 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3454
3455 return delta;
3456}
0f004f5a
PZ
3457
3458/**
3459 * fixed_power_int - compute: x^n, in O(log n) time
3460 *
3461 * @x: base of the power
3462 * @frac_bits: fractional bits of @x
3463 * @n: power to raise @x to.
3464 *
3465 * By exploiting the relation between the definition of the natural power
3466 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3467 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3468 * (where: n_i \elem {0, 1}, the binary vector representing n),
3469 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3470 * of course trivially computable in O(log_2 n), the length of our binary
3471 * vector.
3472 */
3473static unsigned long
3474fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3475{
3476 unsigned long result = 1UL << frac_bits;
3477
3478 if (n) for (;;) {
3479 if (n & 1) {
3480 result *= x;
3481 result += 1UL << (frac_bits - 1);
3482 result >>= frac_bits;
3483 }
3484 n >>= 1;
3485 if (!n)
3486 break;
3487 x *= x;
3488 x += 1UL << (frac_bits - 1);
3489 x >>= frac_bits;
3490 }
3491
3492 return result;
3493}
3494
3495/*
3496 * a1 = a0 * e + a * (1 - e)
3497 *
3498 * a2 = a1 * e + a * (1 - e)
3499 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3500 * = a0 * e^2 + a * (1 - e) * (1 + e)
3501 *
3502 * a3 = a2 * e + a * (1 - e)
3503 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3504 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3505 *
3506 * ...
3507 *
3508 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3509 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3510 * = a0 * e^n + a * (1 - e^n)
3511 *
3512 * [1] application of the geometric series:
3513 *
3514 * n 1 - x^(n+1)
3515 * S_n := \Sum x^i = -------------
3516 * i=0 1 - x
3517 */
3518static unsigned long
3519calc_load_n(unsigned long load, unsigned long exp,
3520 unsigned long active, unsigned int n)
3521{
3522
3523 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3524}
3525
3526/*
3527 * NO_HZ can leave us missing all per-cpu ticks calling
3528 * calc_load_account_active(), but since an idle CPU folds its delta into
3529 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3530 * in the pending idle delta if our idle period crossed a load cycle boundary.
3531 *
3532 * Once we've updated the global active value, we need to apply the exponential
3533 * weights adjusted to the number of cycles missed.
3534 */
3535static void calc_global_nohz(unsigned long ticks)
3536{
3537 long delta, active, n;
3538
3539 if (time_before(jiffies, calc_load_update))
3540 return;
3541
3542 /*
3543 * If we crossed a calc_load_update boundary, make sure to fold
3544 * any pending idle changes, the respective CPUs might have
3545 * missed the tick driven calc_load_account_active() update
3546 * due to NO_HZ.
3547 */
3548 delta = calc_load_fold_idle();
3549 if (delta)
3550 atomic_long_add(delta, &calc_load_tasks);
3551
3552 /*
3553 * If we were idle for multiple load cycles, apply them.
3554 */
3555 if (ticks >= LOAD_FREQ) {
3556 n = ticks / LOAD_FREQ;
3557
3558 active = atomic_long_read(&calc_load_tasks);
3559 active = active > 0 ? active * FIXED_1 : 0;
3560
3561 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3562 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3563 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3564
3565 calc_load_update += n * LOAD_FREQ;
3566 }
3567
3568 /*
3569 * Its possible the remainder of the above division also crosses
3570 * a LOAD_FREQ period, the regular check in calc_global_load()
3571 * which comes after this will take care of that.
3572 *
3573 * Consider us being 11 ticks before a cycle completion, and us
3574 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3575 * age us 4 cycles, and the test in calc_global_load() will
3576 * pick up the final one.
3577 */
3578}
74f5187a
PZ
3579#else
3580static void calc_load_account_idle(struct rq *this_rq)
3581{
3582}
3583
3584static inline long calc_load_fold_idle(void)
3585{
3586 return 0;
3587}
0f004f5a
PZ
3588
3589static void calc_global_nohz(unsigned long ticks)
3590{
3591}
74f5187a
PZ
3592#endif
3593
2d02494f
TG
3594/**
3595 * get_avenrun - get the load average array
3596 * @loads: pointer to dest load array
3597 * @offset: offset to add
3598 * @shift: shift count to shift the result left
3599 *
3600 * These values are estimates at best, so no need for locking.
3601 */
3602void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3603{
3604 loads[0] = (avenrun[0] + offset) << shift;
3605 loads[1] = (avenrun[1] + offset) << shift;
3606 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3607}
46cb4b7c 3608
46cb4b7c 3609/*
dce48a84
TG
3610 * calc_load - update the avenrun load estimates 10 ticks after the
3611 * CPUs have updated calc_load_tasks.
7835b98b 3612 */
0f004f5a 3613void calc_global_load(unsigned long ticks)
7835b98b 3614{
dce48a84 3615 long active;
1da177e4 3616
0f004f5a
PZ
3617 calc_global_nohz(ticks);
3618
3619 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3620 return;
1da177e4 3621
dce48a84
TG
3622 active = atomic_long_read(&calc_load_tasks);
3623 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3624
dce48a84
TG
3625 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3626 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3627 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3628
dce48a84
TG
3629 calc_load_update += LOAD_FREQ;
3630}
1da177e4 3631
dce48a84 3632/*
74f5187a
PZ
3633 * Called from update_cpu_load() to periodically update this CPU's
3634 * active count.
dce48a84
TG
3635 */
3636static void calc_load_account_active(struct rq *this_rq)
3637{
74f5187a 3638 long delta;
08c183f3 3639
74f5187a
PZ
3640 if (time_before(jiffies, this_rq->calc_load_update))
3641 return;
783609c6 3642
74f5187a
PZ
3643 delta = calc_load_fold_active(this_rq);
3644 delta += calc_load_fold_idle();
3645 if (delta)
dce48a84 3646 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3647
3648 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3649}
3650
fdf3e95d
VP
3651/*
3652 * The exact cpuload at various idx values, calculated at every tick would be
3653 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3654 *
3655 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3656 * on nth tick when cpu may be busy, then we have:
3657 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3658 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3659 *
3660 * decay_load_missed() below does efficient calculation of
3661 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3662 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3663 *
3664 * The calculation is approximated on a 128 point scale.
3665 * degrade_zero_ticks is the number of ticks after which load at any
3666 * particular idx is approximated to be zero.
3667 * degrade_factor is a precomputed table, a row for each load idx.
3668 * Each column corresponds to degradation factor for a power of two ticks,
3669 * based on 128 point scale.
3670 * Example:
3671 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3672 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3673 *
3674 * With this power of 2 load factors, we can degrade the load n times
3675 * by looking at 1 bits in n and doing as many mult/shift instead of
3676 * n mult/shifts needed by the exact degradation.
3677 */
3678#define DEGRADE_SHIFT 7
3679static const unsigned char
3680 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3681static const unsigned char
3682 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3683 {0, 0, 0, 0, 0, 0, 0, 0},
3684 {64, 32, 8, 0, 0, 0, 0, 0},
3685 {96, 72, 40, 12, 1, 0, 0},
3686 {112, 98, 75, 43, 15, 1, 0},
3687 {120, 112, 98, 76, 45, 16, 2} };
3688
3689/*
3690 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3691 * would be when CPU is idle and so we just decay the old load without
3692 * adding any new load.
3693 */
3694static unsigned long
3695decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3696{
3697 int j = 0;
3698
3699 if (!missed_updates)
3700 return load;
3701
3702 if (missed_updates >= degrade_zero_ticks[idx])
3703 return 0;
3704
3705 if (idx == 1)
3706 return load >> missed_updates;
3707
3708 while (missed_updates) {
3709 if (missed_updates % 2)
3710 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3711
3712 missed_updates >>= 1;
3713 j++;
3714 }
3715 return load;
3716}
3717
46cb4b7c 3718/*
dd41f596 3719 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3720 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3721 * every tick. We fix it up based on jiffies.
46cb4b7c 3722 */
dd41f596 3723static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3724{
495eca49 3725 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3726 unsigned long curr_jiffies = jiffies;
3727 unsigned long pending_updates;
dd41f596 3728 int i, scale;
46cb4b7c 3729
dd41f596 3730 this_rq->nr_load_updates++;
46cb4b7c 3731
fdf3e95d
VP
3732 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3733 if (curr_jiffies == this_rq->last_load_update_tick)
3734 return;
3735
3736 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3737 this_rq->last_load_update_tick = curr_jiffies;
3738
dd41f596 3739 /* Update our load: */
fdf3e95d
VP
3740 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3741 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3742 unsigned long old_load, new_load;
7d1e6a9b 3743
dd41f596 3744 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3745
dd41f596 3746 old_load = this_rq->cpu_load[i];
fdf3e95d 3747 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3748 new_load = this_load;
a25707f3
IM
3749 /*
3750 * Round up the averaging division if load is increasing. This
3751 * prevents us from getting stuck on 9 if the load is 10, for
3752 * example.
3753 */
3754 if (new_load > old_load)
fdf3e95d
VP
3755 new_load += scale - 1;
3756
3757 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3758 }
da2b71ed
SS
3759
3760 sched_avg_update(this_rq);
fdf3e95d
VP
3761}
3762
3763static void update_cpu_load_active(struct rq *this_rq)
3764{
3765 update_cpu_load(this_rq);
46cb4b7c 3766
74f5187a 3767 calc_load_account_active(this_rq);
46cb4b7c
SS
3768}
3769
dd41f596 3770#ifdef CONFIG_SMP
8a0be9ef 3771
46cb4b7c 3772/*
38022906
PZ
3773 * sched_exec - execve() is a valuable balancing opportunity, because at
3774 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3775 */
38022906 3776void sched_exec(void)
46cb4b7c 3777{
38022906 3778 struct task_struct *p = current;
1da177e4 3779 unsigned long flags;
0017d735 3780 int dest_cpu;
46cb4b7c 3781
8f42ced9 3782 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3783 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3784 if (dest_cpu == smp_processor_id())
3785 goto unlock;
38022906 3786
8f42ced9 3787 if (likely(cpu_active(dest_cpu))) {
969c7921 3788 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3789
8f42ced9
PZ
3790 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3791 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3792 return;
3793 }
0017d735 3794unlock:
8f42ced9 3795 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3796}
dd41f596 3797
1da177e4
LT
3798#endif
3799
1da177e4
LT
3800DEFINE_PER_CPU(struct kernel_stat, kstat);
3801
3802EXPORT_PER_CPU_SYMBOL(kstat);
3803
3804/*
c5f8d995 3805 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3806 * @p in case that task is currently running.
c5f8d995
HS
3807 *
3808 * Called with task_rq_lock() held on @rq.
1da177e4 3809 */
c5f8d995
HS
3810static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3811{
3812 u64 ns = 0;
3813
3814 if (task_current(rq, p)) {
3815 update_rq_clock(rq);
305e6835 3816 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3817 if ((s64)ns < 0)
3818 ns = 0;
3819 }
3820
3821 return ns;
3822}
3823
bb34d92f 3824unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3825{
1da177e4 3826 unsigned long flags;
41b86e9c 3827 struct rq *rq;
bb34d92f 3828 u64 ns = 0;
48f24c4d 3829
41b86e9c 3830 rq = task_rq_lock(p, &flags);
c5f8d995 3831 ns = do_task_delta_exec(p, rq);
0122ec5b 3832 task_rq_unlock(rq, p, &flags);
1508487e 3833
c5f8d995
HS
3834 return ns;
3835}
f06febc9 3836
c5f8d995
HS
3837/*
3838 * Return accounted runtime for the task.
3839 * In case the task is currently running, return the runtime plus current's
3840 * pending runtime that have not been accounted yet.
3841 */
3842unsigned long long task_sched_runtime(struct task_struct *p)
3843{
3844 unsigned long flags;
3845 struct rq *rq;
3846 u64 ns = 0;
3847
3848 rq = task_rq_lock(p, &flags);
3849 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3850 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3851
3852 return ns;
3853}
48f24c4d 3854
c5f8d995
HS
3855/*
3856 * Return sum_exec_runtime for the thread group.
3857 * In case the task is currently running, return the sum plus current's
3858 * pending runtime that have not been accounted yet.
3859 *
3860 * Note that the thread group might have other running tasks as well,
3861 * so the return value not includes other pending runtime that other
3862 * running tasks might have.
3863 */
3864unsigned long long thread_group_sched_runtime(struct task_struct *p)
3865{
3866 struct task_cputime totals;
3867 unsigned long flags;
3868 struct rq *rq;
3869 u64 ns;
3870
3871 rq = task_rq_lock(p, &flags);
3872 thread_group_cputime(p, &totals);
3873 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3874 task_rq_unlock(rq, p, &flags);
48f24c4d 3875
1da177e4
LT
3876 return ns;
3877}
3878
1da177e4
LT
3879/*
3880 * Account user cpu time to a process.
3881 * @p: the process that the cpu time gets accounted to
1da177e4 3882 * @cputime: the cpu time spent in user space since the last update
457533a7 3883 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3884 */
457533a7
MS
3885void account_user_time(struct task_struct *p, cputime_t cputime,
3886 cputime_t cputime_scaled)
1da177e4
LT
3887{
3888 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3889 cputime64_t tmp;
3890
457533a7 3891 /* Add user time to process. */
1da177e4 3892 p->utime = cputime_add(p->utime, cputime);
457533a7 3893 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3894 account_group_user_time(p, cputime);
1da177e4
LT
3895
3896 /* Add user time to cpustat. */
3897 tmp = cputime_to_cputime64(cputime);
3898 if (TASK_NICE(p) > 0)
3899 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3900 else
3901 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3902
3903 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3904 /* Account for user time used */
3905 acct_update_integrals(p);
1da177e4
LT
3906}
3907
94886b84
LV
3908/*
3909 * Account guest cpu time to a process.
3910 * @p: the process that the cpu time gets accounted to
3911 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3912 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3913 */
457533a7
MS
3914static void account_guest_time(struct task_struct *p, cputime_t cputime,
3915 cputime_t cputime_scaled)
94886b84
LV
3916{
3917 cputime64_t tmp;
3918 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3919
3920 tmp = cputime_to_cputime64(cputime);
3921
457533a7 3922 /* Add guest time to process. */
94886b84 3923 p->utime = cputime_add(p->utime, cputime);
457533a7 3924 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3925 account_group_user_time(p, cputime);
94886b84
LV
3926 p->gtime = cputime_add(p->gtime, cputime);
3927
457533a7 3928 /* Add guest time to cpustat. */
ce0e7b28
RO
3929 if (TASK_NICE(p) > 0) {
3930 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3931 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3932 } else {
3933 cpustat->user = cputime64_add(cpustat->user, tmp);
3934 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3935 }
94886b84
LV
3936}
3937
70a89a66
VP
3938/*
3939 * Account system cpu time to a process and desired cpustat field
3940 * @p: the process that the cpu time gets accounted to
3941 * @cputime: the cpu time spent in kernel space since the last update
3942 * @cputime_scaled: cputime scaled by cpu frequency
3943 * @target_cputime64: pointer to cpustat field that has to be updated
3944 */
3945static inline
3946void __account_system_time(struct task_struct *p, cputime_t cputime,
3947 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3948{
3949 cputime64_t tmp = cputime_to_cputime64(cputime);
3950
3951 /* Add system time to process. */
3952 p->stime = cputime_add(p->stime, cputime);
3953 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3954 account_group_system_time(p, cputime);
3955
3956 /* Add system time to cpustat. */
3957 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3958 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3959
3960 /* Account for system time used */
3961 acct_update_integrals(p);
3962}
3963
1da177e4
LT
3964/*
3965 * Account system cpu time to a process.
3966 * @p: the process that the cpu time gets accounted to
3967 * @hardirq_offset: the offset to subtract from hardirq_count()
3968 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3969 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3970 */
3971void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3972 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3973{
3974 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3975 cputime64_t *target_cputime64;
1da177e4 3976
983ed7a6 3977 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3978 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3979 return;
3980 }
94886b84 3981
1da177e4 3982 if (hardirq_count() - hardirq_offset)
70a89a66 3983 target_cputime64 = &cpustat->irq;
75e1056f 3984 else if (in_serving_softirq())
70a89a66 3985 target_cputime64 = &cpustat->softirq;
1da177e4 3986 else
70a89a66 3987 target_cputime64 = &cpustat->system;
ef12fefa 3988
70a89a66 3989 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3990}
3991
c66f08be 3992/*
1da177e4 3993 * Account for involuntary wait time.
544b4a1f 3994 * @cputime: the cpu time spent in involuntary wait
c66f08be 3995 */
79741dd3 3996void account_steal_time(cputime_t cputime)
c66f08be 3997{
79741dd3
MS
3998 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3999 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4000
4001 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4002}
4003
1da177e4 4004/*
79741dd3
MS
4005 * Account for idle time.
4006 * @cputime: the cpu time spent in idle wait
1da177e4 4007 */
79741dd3 4008void account_idle_time(cputime_t cputime)
1da177e4
LT
4009{
4010 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4011 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4012 struct rq *rq = this_rq();
1da177e4 4013
79741dd3
MS
4014 if (atomic_read(&rq->nr_iowait) > 0)
4015 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4016 else
4017 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4018}
4019
e6e6685a
GC
4020static __always_inline bool steal_account_process_tick(void)
4021{
4022#ifdef CONFIG_PARAVIRT
4023 if (static_branch(&paravirt_steal_enabled)) {
4024 u64 steal, st = 0;
4025
4026 steal = paravirt_steal_clock(smp_processor_id());
4027 steal -= this_rq()->prev_steal_time;
4028
4029 st = steal_ticks(steal);
4030 this_rq()->prev_steal_time += st * TICK_NSEC;
4031
4032 account_steal_time(st);
4033 return st;
4034 }
4035#endif
4036 return false;
4037}
4038
79741dd3
MS
4039#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4040
abb74cef
VP
4041#ifdef CONFIG_IRQ_TIME_ACCOUNTING
4042/*
4043 * Account a tick to a process and cpustat
4044 * @p: the process that the cpu time gets accounted to
4045 * @user_tick: is the tick from userspace
4046 * @rq: the pointer to rq
4047 *
4048 * Tick demultiplexing follows the order
4049 * - pending hardirq update
4050 * - pending softirq update
4051 * - user_time
4052 * - idle_time
4053 * - system time
4054 * - check for guest_time
4055 * - else account as system_time
4056 *
4057 * Check for hardirq is done both for system and user time as there is
4058 * no timer going off while we are on hardirq and hence we may never get an
4059 * opportunity to update it solely in system time.
4060 * p->stime and friends are only updated on system time and not on irq
4061 * softirq as those do not count in task exec_runtime any more.
4062 */
4063static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4064 struct rq *rq)
4065{
4066 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4067 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4068 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4069
e6e6685a
GC
4070 if (steal_account_process_tick())
4071 return;
4072
abb74cef
VP
4073 if (irqtime_account_hi_update()) {
4074 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4075 } else if (irqtime_account_si_update()) {
4076 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
4077 } else if (this_cpu_ksoftirqd() == p) {
4078 /*
4079 * ksoftirqd time do not get accounted in cpu_softirq_time.
4080 * So, we have to handle it separately here.
4081 * Also, p->stime needs to be updated for ksoftirqd.
4082 */
4083 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4084 &cpustat->softirq);
abb74cef
VP
4085 } else if (user_tick) {
4086 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4087 } else if (p == rq->idle) {
4088 account_idle_time(cputime_one_jiffy);
4089 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4090 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4091 } else {
4092 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4093 &cpustat->system);
4094 }
4095}
4096
4097static void irqtime_account_idle_ticks(int ticks)
4098{
4099 int i;
4100 struct rq *rq = this_rq();
4101
4102 for (i = 0; i < ticks; i++)
4103 irqtime_account_process_tick(current, 0, rq);
4104}
544b4a1f 4105#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
4106static void irqtime_account_idle_ticks(int ticks) {}
4107static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4108 struct rq *rq) {}
544b4a1f 4109#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
4110
4111/*
4112 * Account a single tick of cpu time.
4113 * @p: the process that the cpu time gets accounted to
4114 * @user_tick: indicates if the tick is a user or a system tick
4115 */
4116void account_process_tick(struct task_struct *p, int user_tick)
4117{
a42548a1 4118 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
4119 struct rq *rq = this_rq();
4120
abb74cef
VP
4121 if (sched_clock_irqtime) {
4122 irqtime_account_process_tick(p, user_tick, rq);
4123 return;
4124 }
4125
e6e6685a
GC
4126 if (steal_account_process_tick())
4127 return;
4128
79741dd3 4129 if (user_tick)
a42548a1 4130 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 4131 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 4132 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
4133 one_jiffy_scaled);
4134 else
a42548a1 4135 account_idle_time(cputime_one_jiffy);
79741dd3
MS
4136}
4137
4138/*
4139 * Account multiple ticks of steal time.
4140 * @p: the process from which the cpu time has been stolen
4141 * @ticks: number of stolen ticks
4142 */
4143void account_steal_ticks(unsigned long ticks)
4144{
4145 account_steal_time(jiffies_to_cputime(ticks));
4146}
4147
4148/*
4149 * Account multiple ticks of idle time.
4150 * @ticks: number of stolen ticks
4151 */
4152void account_idle_ticks(unsigned long ticks)
4153{
abb74cef
VP
4154
4155 if (sched_clock_irqtime) {
4156 irqtime_account_idle_ticks(ticks);
4157 return;
4158 }
4159
79741dd3 4160 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4161}
4162
79741dd3
MS
4163#endif
4164
49048622
BS
4165/*
4166 * Use precise platform statistics if available:
4167 */
4168#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 4169void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4170{
d99ca3b9
HS
4171 *ut = p->utime;
4172 *st = p->stime;
49048622
BS
4173}
4174
0cf55e1e 4175void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4176{
0cf55e1e
HS
4177 struct task_cputime cputime;
4178
4179 thread_group_cputime(p, &cputime);
4180
4181 *ut = cputime.utime;
4182 *st = cputime.stime;
49048622
BS
4183}
4184#else
761b1d26
HS
4185
4186#ifndef nsecs_to_cputime
b7b20df9 4187# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
4188#endif
4189
d180c5bc 4190void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4191{
d99ca3b9 4192 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
4193
4194 /*
4195 * Use CFS's precise accounting:
4196 */
d180c5bc 4197 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
4198
4199 if (total) {
e75e863d 4200 u64 temp = rtime;
d180c5bc 4201
e75e863d 4202 temp *= utime;
49048622 4203 do_div(temp, total);
d180c5bc
HS
4204 utime = (cputime_t)temp;
4205 } else
4206 utime = rtime;
49048622 4207
d180c5bc
HS
4208 /*
4209 * Compare with previous values, to keep monotonicity:
4210 */
761b1d26 4211 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4212 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4213
d99ca3b9
HS
4214 *ut = p->prev_utime;
4215 *st = p->prev_stime;
49048622
BS
4216}
4217
0cf55e1e
HS
4218/*
4219 * Must be called with siglock held.
4220 */
4221void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4222{
0cf55e1e
HS
4223 struct signal_struct *sig = p->signal;
4224 struct task_cputime cputime;
4225 cputime_t rtime, utime, total;
49048622 4226
0cf55e1e 4227 thread_group_cputime(p, &cputime);
49048622 4228
0cf55e1e
HS
4229 total = cputime_add(cputime.utime, cputime.stime);
4230 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4231
0cf55e1e 4232 if (total) {
e75e863d 4233 u64 temp = rtime;
49048622 4234
e75e863d 4235 temp *= cputime.utime;
0cf55e1e
HS
4236 do_div(temp, total);
4237 utime = (cputime_t)temp;
4238 } else
4239 utime = rtime;
4240
4241 sig->prev_utime = max(sig->prev_utime, utime);
4242 sig->prev_stime = max(sig->prev_stime,
4243 cputime_sub(rtime, sig->prev_utime));
4244
4245 *ut = sig->prev_utime;
4246 *st = sig->prev_stime;
49048622 4247}
49048622 4248#endif
49048622 4249
7835b98b
CL
4250/*
4251 * This function gets called by the timer code, with HZ frequency.
4252 * We call it with interrupts disabled.
7835b98b
CL
4253 */
4254void scheduler_tick(void)
4255{
7835b98b
CL
4256 int cpu = smp_processor_id();
4257 struct rq *rq = cpu_rq(cpu);
dd41f596 4258 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4259
4260 sched_clock_tick();
dd41f596 4261
05fa785c 4262 raw_spin_lock(&rq->lock);
3e51f33f 4263 update_rq_clock(rq);
fdf3e95d 4264 update_cpu_load_active(rq);
fa85ae24 4265 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4266 raw_spin_unlock(&rq->lock);
7835b98b 4267
e9d2b064 4268 perf_event_task_tick();
e220d2dc 4269
e418e1c2 4270#ifdef CONFIG_SMP
dd41f596
IM
4271 rq->idle_at_tick = idle_cpu(cpu);
4272 trigger_load_balance(rq, cpu);
e418e1c2 4273#endif
1da177e4
LT
4274}
4275
132380a0 4276notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4277{
4278 if (in_lock_functions(addr)) {
4279 addr = CALLER_ADDR2;
4280 if (in_lock_functions(addr))
4281 addr = CALLER_ADDR3;
4282 }
4283 return addr;
4284}
1da177e4 4285
7e49fcce
SR
4286#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4287 defined(CONFIG_PREEMPT_TRACER))
4288
43627582 4289void __kprobes add_preempt_count(int val)
1da177e4 4290{
6cd8a4bb 4291#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4292 /*
4293 * Underflow?
4294 */
9a11b49a
IM
4295 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4296 return;
6cd8a4bb 4297#endif
1da177e4 4298 preempt_count() += val;
6cd8a4bb 4299#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4300 /*
4301 * Spinlock count overflowing soon?
4302 */
33859f7f
MOS
4303 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4304 PREEMPT_MASK - 10);
6cd8a4bb
SR
4305#endif
4306 if (preempt_count() == val)
4307 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4308}
4309EXPORT_SYMBOL(add_preempt_count);
4310
43627582 4311void __kprobes sub_preempt_count(int val)
1da177e4 4312{
6cd8a4bb 4313#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4314 /*
4315 * Underflow?
4316 */
01e3eb82 4317 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4318 return;
1da177e4
LT
4319 /*
4320 * Is the spinlock portion underflowing?
4321 */
9a11b49a
IM
4322 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4323 !(preempt_count() & PREEMPT_MASK)))
4324 return;
6cd8a4bb 4325#endif
9a11b49a 4326
6cd8a4bb
SR
4327 if (preempt_count() == val)
4328 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4329 preempt_count() -= val;
4330}
4331EXPORT_SYMBOL(sub_preempt_count);
4332
4333#endif
4334
4335/*
dd41f596 4336 * Print scheduling while atomic bug:
1da177e4 4337 */
dd41f596 4338static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4339{
838225b4
SS
4340 struct pt_regs *regs = get_irq_regs();
4341
3df0fc5b
PZ
4342 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4343 prev->comm, prev->pid, preempt_count());
838225b4 4344
dd41f596 4345 debug_show_held_locks(prev);
e21f5b15 4346 print_modules();
dd41f596
IM
4347 if (irqs_disabled())
4348 print_irqtrace_events(prev);
838225b4
SS
4349
4350 if (regs)
4351 show_regs(regs);
4352 else
4353 dump_stack();
dd41f596 4354}
1da177e4 4355
dd41f596
IM
4356/*
4357 * Various schedule()-time debugging checks and statistics:
4358 */
4359static inline void schedule_debug(struct task_struct *prev)
4360{
1da177e4 4361 /*
41a2d6cf 4362 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4363 * schedule() atomically, we ignore that path for now.
4364 * Otherwise, whine if we are scheduling when we should not be.
4365 */
3f33a7ce 4366 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4367 __schedule_bug(prev);
4368
1da177e4
LT
4369 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4370
2d72376b 4371 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4372}
4373
6cecd084 4374static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4375{
61eadef6 4376 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4377 update_rq_clock(rq);
6cecd084 4378 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4379}
4380
dd41f596
IM
4381/*
4382 * Pick up the highest-prio task:
4383 */
4384static inline struct task_struct *
b67802ea 4385pick_next_task(struct rq *rq)
dd41f596 4386{
5522d5d5 4387 const struct sched_class *class;
dd41f596 4388 struct task_struct *p;
1da177e4
LT
4389
4390 /*
dd41f596
IM
4391 * Optimization: we know that if all tasks are in
4392 * the fair class we can call that function directly:
1da177e4 4393 */
953bfcd1 4394 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 4395 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4396 if (likely(p))
4397 return p;
1da177e4
LT
4398 }
4399
34f971f6 4400 for_each_class(class) {
fb8d4724 4401 p = class->pick_next_task(rq);
dd41f596
IM
4402 if (p)
4403 return p;
dd41f596 4404 }
34f971f6
PZ
4405
4406 BUG(); /* the idle class will always have a runnable task */
dd41f596 4407}
1da177e4 4408
dd41f596
IM
4409/*
4410 * schedule() is the main scheduler function.
4411 */
ff743345 4412asmlinkage void __sched schedule(void)
dd41f596
IM
4413{
4414 struct task_struct *prev, *next;
67ca7bde 4415 unsigned long *switch_count;
dd41f596 4416 struct rq *rq;
31656519 4417 int cpu;
dd41f596 4418
ff743345
PZ
4419need_resched:
4420 preempt_disable();
dd41f596
IM
4421 cpu = smp_processor_id();
4422 rq = cpu_rq(cpu);
25502a6c 4423 rcu_note_context_switch(cpu);
dd41f596 4424 prev = rq->curr;
dd41f596 4425
dd41f596 4426 schedule_debug(prev);
1da177e4 4427
31656519 4428 if (sched_feat(HRTICK))
f333fdc9 4429 hrtick_clear(rq);
8f4d37ec 4430
05fa785c 4431 raw_spin_lock_irq(&rq->lock);
1da177e4 4432
246d86b5 4433 switch_count = &prev->nivcsw;
1da177e4 4434 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4435 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4436 prev->state = TASK_RUNNING;
21aa9af0 4437 } else {
2acca55e
PZ
4438 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4439 prev->on_rq = 0;
4440
21aa9af0 4441 /*
2acca55e
PZ
4442 * If a worker went to sleep, notify and ask workqueue
4443 * whether it wants to wake up a task to maintain
4444 * concurrency.
21aa9af0
TH
4445 */
4446 if (prev->flags & PF_WQ_WORKER) {
4447 struct task_struct *to_wakeup;
4448
4449 to_wakeup = wq_worker_sleeping(prev, cpu);
4450 if (to_wakeup)
4451 try_to_wake_up_local(to_wakeup);
4452 }
fd2f4419 4453
6631e635 4454 /*
2acca55e
PZ
4455 * If we are going to sleep and we have plugged IO
4456 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4457 */
4458 if (blk_needs_flush_plug(prev)) {
4459 raw_spin_unlock(&rq->lock);
a237c1c5 4460 blk_schedule_flush_plug(prev);
6631e635
LT
4461 raw_spin_lock(&rq->lock);
4462 }
21aa9af0 4463 }
dd41f596 4464 switch_count = &prev->nvcsw;
1da177e4
LT
4465 }
4466
3f029d3c 4467 pre_schedule(rq, prev);
f65eda4f 4468
dd41f596 4469 if (unlikely(!rq->nr_running))
1da177e4 4470 idle_balance(cpu, rq);
1da177e4 4471
df1c99d4 4472 put_prev_task(rq, prev);
b67802ea 4473 next = pick_next_task(rq);
f26f9aff
MG
4474 clear_tsk_need_resched(prev);
4475 rq->skip_clock_update = 0;
1da177e4 4476
1da177e4 4477 if (likely(prev != next)) {
1da177e4
LT
4478 rq->nr_switches++;
4479 rq->curr = next;
4480 ++*switch_count;
4481
dd41f596 4482 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4483 /*
246d86b5
ON
4484 * The context switch have flipped the stack from under us
4485 * and restored the local variables which were saved when
4486 * this task called schedule() in the past. prev == current
4487 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4488 */
4489 cpu = smp_processor_id();
4490 rq = cpu_rq(cpu);
1da177e4 4491 } else
05fa785c 4492 raw_spin_unlock_irq(&rq->lock);
1da177e4 4493
3f029d3c 4494 post_schedule(rq);
1da177e4 4495
1da177e4 4496 preempt_enable_no_resched();
ff743345 4497 if (need_resched())
1da177e4
LT
4498 goto need_resched;
4499}
1da177e4
LT
4500EXPORT_SYMBOL(schedule);
4501
c08f7829 4502#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4503
c6eb3dda
PZ
4504static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4505{
c6eb3dda 4506 if (lock->owner != owner)
307bf980 4507 return false;
0d66bf6d
PZ
4508
4509 /*
c6eb3dda
PZ
4510 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4511 * lock->owner still matches owner, if that fails, owner might
4512 * point to free()d memory, if it still matches, the rcu_read_lock()
4513 * ensures the memory stays valid.
0d66bf6d 4514 */
c6eb3dda 4515 barrier();
0d66bf6d 4516
307bf980 4517 return owner->on_cpu;
c6eb3dda 4518}
0d66bf6d 4519
c6eb3dda
PZ
4520/*
4521 * Look out! "owner" is an entirely speculative pointer
4522 * access and not reliable.
4523 */
4524int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4525{
4526 if (!sched_feat(OWNER_SPIN))
4527 return 0;
0d66bf6d 4528
307bf980 4529 rcu_read_lock();
c6eb3dda
PZ
4530 while (owner_running(lock, owner)) {
4531 if (need_resched())
307bf980 4532 break;
0d66bf6d 4533
335d7afb 4534 arch_mutex_cpu_relax();
0d66bf6d 4535 }
307bf980 4536 rcu_read_unlock();
4b402210 4537
c6eb3dda 4538 /*
307bf980
TG
4539 * We break out the loop above on need_resched() and when the
4540 * owner changed, which is a sign for heavy contention. Return
4541 * success only when lock->owner is NULL.
c6eb3dda 4542 */
307bf980 4543 return lock->owner == NULL;
0d66bf6d
PZ
4544}
4545#endif
4546
1da177e4
LT
4547#ifdef CONFIG_PREEMPT
4548/*
2ed6e34f 4549 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4550 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4551 * occur there and call schedule directly.
4552 */
d1f74e20 4553asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4554{
4555 struct thread_info *ti = current_thread_info();
6478d880 4556
1da177e4
LT
4557 /*
4558 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4559 * we do not want to preempt the current task. Just return..
1da177e4 4560 */
beed33a8 4561 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4562 return;
4563
3a5c359a 4564 do {
d1f74e20 4565 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4566 schedule();
d1f74e20 4567 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4568
3a5c359a
AK
4569 /*
4570 * Check again in case we missed a preemption opportunity
4571 * between schedule and now.
4572 */
4573 barrier();
5ed0cec0 4574 } while (need_resched());
1da177e4 4575}
1da177e4
LT
4576EXPORT_SYMBOL(preempt_schedule);
4577
4578/*
2ed6e34f 4579 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4580 * off of irq context.
4581 * Note, that this is called and return with irqs disabled. This will
4582 * protect us against recursive calling from irq.
4583 */
4584asmlinkage void __sched preempt_schedule_irq(void)
4585{
4586 struct thread_info *ti = current_thread_info();
6478d880 4587
2ed6e34f 4588 /* Catch callers which need to be fixed */
1da177e4
LT
4589 BUG_ON(ti->preempt_count || !irqs_disabled());
4590
3a5c359a
AK
4591 do {
4592 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4593 local_irq_enable();
4594 schedule();
4595 local_irq_disable();
3a5c359a 4596 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4597
3a5c359a
AK
4598 /*
4599 * Check again in case we missed a preemption opportunity
4600 * between schedule and now.
4601 */
4602 barrier();
5ed0cec0 4603 } while (need_resched());
1da177e4
LT
4604}
4605
4606#endif /* CONFIG_PREEMPT */
4607
63859d4f 4608int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4609 void *key)
1da177e4 4610{
63859d4f 4611 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4612}
1da177e4
LT
4613EXPORT_SYMBOL(default_wake_function);
4614
4615/*
41a2d6cf
IM
4616 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4617 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4618 * number) then we wake all the non-exclusive tasks and one exclusive task.
4619 *
4620 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4621 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4622 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4623 */
78ddb08f 4624static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4625 int nr_exclusive, int wake_flags, void *key)
1da177e4 4626{
2e45874c 4627 wait_queue_t *curr, *next;
1da177e4 4628
2e45874c 4629 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4630 unsigned flags = curr->flags;
4631
63859d4f 4632 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4633 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4634 break;
4635 }
4636}
4637
4638/**
4639 * __wake_up - wake up threads blocked on a waitqueue.
4640 * @q: the waitqueue
4641 * @mode: which threads
4642 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4643 * @key: is directly passed to the wakeup function
50fa610a
DH
4644 *
4645 * It may be assumed that this function implies a write memory barrier before
4646 * changing the task state if and only if any tasks are woken up.
1da177e4 4647 */
7ad5b3a5 4648void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4649 int nr_exclusive, void *key)
1da177e4
LT
4650{
4651 unsigned long flags;
4652
4653 spin_lock_irqsave(&q->lock, flags);
4654 __wake_up_common(q, mode, nr_exclusive, 0, key);
4655 spin_unlock_irqrestore(&q->lock, flags);
4656}
1da177e4
LT
4657EXPORT_SYMBOL(__wake_up);
4658
4659/*
4660 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4661 */
7ad5b3a5 4662void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4663{
4664 __wake_up_common(q, mode, 1, 0, NULL);
4665}
22c43c81 4666EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4667
4ede816a
DL
4668void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4669{
4670 __wake_up_common(q, mode, 1, 0, key);
4671}
bf294b41 4672EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4673
1da177e4 4674/**
4ede816a 4675 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4676 * @q: the waitqueue
4677 * @mode: which threads
4678 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4679 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4680 *
4681 * The sync wakeup differs that the waker knows that it will schedule
4682 * away soon, so while the target thread will be woken up, it will not
4683 * be migrated to another CPU - ie. the two threads are 'synchronized'
4684 * with each other. This can prevent needless bouncing between CPUs.
4685 *
4686 * On UP it can prevent extra preemption.
50fa610a
DH
4687 *
4688 * It may be assumed that this function implies a write memory barrier before
4689 * changing the task state if and only if any tasks are woken up.
1da177e4 4690 */
4ede816a
DL
4691void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4692 int nr_exclusive, void *key)
1da177e4
LT
4693{
4694 unsigned long flags;
7d478721 4695 int wake_flags = WF_SYNC;
1da177e4
LT
4696
4697 if (unlikely(!q))
4698 return;
4699
4700 if (unlikely(!nr_exclusive))
7d478721 4701 wake_flags = 0;
1da177e4
LT
4702
4703 spin_lock_irqsave(&q->lock, flags);
7d478721 4704 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4705 spin_unlock_irqrestore(&q->lock, flags);
4706}
4ede816a
DL
4707EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4708
4709/*
4710 * __wake_up_sync - see __wake_up_sync_key()
4711 */
4712void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4713{
4714 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4715}
1da177e4
LT
4716EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4717
65eb3dc6
KD
4718/**
4719 * complete: - signals a single thread waiting on this completion
4720 * @x: holds the state of this particular completion
4721 *
4722 * This will wake up a single thread waiting on this completion. Threads will be
4723 * awakened in the same order in which they were queued.
4724 *
4725 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4726 *
4727 * It may be assumed that this function implies a write memory barrier before
4728 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4729 */
b15136e9 4730void complete(struct completion *x)
1da177e4
LT
4731{
4732 unsigned long flags;
4733
4734 spin_lock_irqsave(&x->wait.lock, flags);
4735 x->done++;
d9514f6c 4736 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4737 spin_unlock_irqrestore(&x->wait.lock, flags);
4738}
4739EXPORT_SYMBOL(complete);
4740
65eb3dc6
KD
4741/**
4742 * complete_all: - signals all threads waiting on this completion
4743 * @x: holds the state of this particular completion
4744 *
4745 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4746 *
4747 * It may be assumed that this function implies a write memory barrier before
4748 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4749 */
b15136e9 4750void complete_all(struct completion *x)
1da177e4
LT
4751{
4752 unsigned long flags;
4753
4754 spin_lock_irqsave(&x->wait.lock, flags);
4755 x->done += UINT_MAX/2;
d9514f6c 4756 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4757 spin_unlock_irqrestore(&x->wait.lock, flags);
4758}
4759EXPORT_SYMBOL(complete_all);
4760
8cbbe86d
AK
4761static inline long __sched
4762do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4763{
1da177e4
LT
4764 if (!x->done) {
4765 DECLARE_WAITQUEUE(wait, current);
4766
a93d2f17 4767 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4768 do {
94d3d824 4769 if (signal_pending_state(state, current)) {
ea71a546
ON
4770 timeout = -ERESTARTSYS;
4771 break;
8cbbe86d
AK
4772 }
4773 __set_current_state(state);
1da177e4
LT
4774 spin_unlock_irq(&x->wait.lock);
4775 timeout = schedule_timeout(timeout);
4776 spin_lock_irq(&x->wait.lock);
ea71a546 4777 } while (!x->done && timeout);
1da177e4 4778 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4779 if (!x->done)
4780 return timeout;
1da177e4
LT
4781 }
4782 x->done--;
ea71a546 4783 return timeout ?: 1;
1da177e4 4784}
1da177e4 4785
8cbbe86d
AK
4786static long __sched
4787wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4788{
1da177e4
LT
4789 might_sleep();
4790
4791 spin_lock_irq(&x->wait.lock);
8cbbe86d 4792 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4793 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4794 return timeout;
4795}
1da177e4 4796
65eb3dc6
KD
4797/**
4798 * wait_for_completion: - waits for completion of a task
4799 * @x: holds the state of this particular completion
4800 *
4801 * This waits to be signaled for completion of a specific task. It is NOT
4802 * interruptible and there is no timeout.
4803 *
4804 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4805 * and interrupt capability. Also see complete().
4806 */
b15136e9 4807void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4808{
4809 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4810}
8cbbe86d 4811EXPORT_SYMBOL(wait_for_completion);
1da177e4 4812
65eb3dc6
KD
4813/**
4814 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4815 * @x: holds the state of this particular completion
4816 * @timeout: timeout value in jiffies
4817 *
4818 * This waits for either a completion of a specific task to be signaled or for a
4819 * specified timeout to expire. The timeout is in jiffies. It is not
4820 * interruptible.
4821 */
b15136e9 4822unsigned long __sched
8cbbe86d 4823wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4824{
8cbbe86d 4825 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4826}
8cbbe86d 4827EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4828
65eb3dc6
KD
4829/**
4830 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4831 * @x: holds the state of this particular completion
4832 *
4833 * This waits for completion of a specific task to be signaled. It is
4834 * interruptible.
4835 */
8cbbe86d 4836int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4837{
51e97990
AK
4838 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4839 if (t == -ERESTARTSYS)
4840 return t;
4841 return 0;
0fec171c 4842}
8cbbe86d 4843EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4844
65eb3dc6
KD
4845/**
4846 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4847 * @x: holds the state of this particular completion
4848 * @timeout: timeout value in jiffies
4849 *
4850 * This waits for either a completion of a specific task to be signaled or for a
4851 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4852 */
6bf41237 4853long __sched
8cbbe86d
AK
4854wait_for_completion_interruptible_timeout(struct completion *x,
4855 unsigned long timeout)
0fec171c 4856{
8cbbe86d 4857 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4858}
8cbbe86d 4859EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4860
65eb3dc6
KD
4861/**
4862 * wait_for_completion_killable: - waits for completion of a task (killable)
4863 * @x: holds the state of this particular completion
4864 *
4865 * This waits to be signaled for completion of a specific task. It can be
4866 * interrupted by a kill signal.
4867 */
009e577e
MW
4868int __sched wait_for_completion_killable(struct completion *x)
4869{
4870 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4871 if (t == -ERESTARTSYS)
4872 return t;
4873 return 0;
4874}
4875EXPORT_SYMBOL(wait_for_completion_killable);
4876
0aa12fb4
SW
4877/**
4878 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4879 * @x: holds the state of this particular completion
4880 * @timeout: timeout value in jiffies
4881 *
4882 * This waits for either a completion of a specific task to be
4883 * signaled or for a specified timeout to expire. It can be
4884 * interrupted by a kill signal. The timeout is in jiffies.
4885 */
6bf41237 4886long __sched
0aa12fb4
SW
4887wait_for_completion_killable_timeout(struct completion *x,
4888 unsigned long timeout)
4889{
4890 return wait_for_common(x, timeout, TASK_KILLABLE);
4891}
4892EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4893
be4de352
DC
4894/**
4895 * try_wait_for_completion - try to decrement a completion without blocking
4896 * @x: completion structure
4897 *
4898 * Returns: 0 if a decrement cannot be done without blocking
4899 * 1 if a decrement succeeded.
4900 *
4901 * If a completion is being used as a counting completion,
4902 * attempt to decrement the counter without blocking. This
4903 * enables us to avoid waiting if the resource the completion
4904 * is protecting is not available.
4905 */
4906bool try_wait_for_completion(struct completion *x)
4907{
7539a3b3 4908 unsigned long flags;
be4de352
DC
4909 int ret = 1;
4910
7539a3b3 4911 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4912 if (!x->done)
4913 ret = 0;
4914 else
4915 x->done--;
7539a3b3 4916 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4917 return ret;
4918}
4919EXPORT_SYMBOL(try_wait_for_completion);
4920
4921/**
4922 * completion_done - Test to see if a completion has any waiters
4923 * @x: completion structure
4924 *
4925 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4926 * 1 if there are no waiters.
4927 *
4928 */
4929bool completion_done(struct completion *x)
4930{
7539a3b3 4931 unsigned long flags;
be4de352
DC
4932 int ret = 1;
4933
7539a3b3 4934 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4935 if (!x->done)
4936 ret = 0;
7539a3b3 4937 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4938 return ret;
4939}
4940EXPORT_SYMBOL(completion_done);
4941
8cbbe86d
AK
4942static long __sched
4943sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4944{
0fec171c
IM
4945 unsigned long flags;
4946 wait_queue_t wait;
4947
4948 init_waitqueue_entry(&wait, current);
1da177e4 4949
8cbbe86d 4950 __set_current_state(state);
1da177e4 4951
8cbbe86d
AK
4952 spin_lock_irqsave(&q->lock, flags);
4953 __add_wait_queue(q, &wait);
4954 spin_unlock(&q->lock);
4955 timeout = schedule_timeout(timeout);
4956 spin_lock_irq(&q->lock);
4957 __remove_wait_queue(q, &wait);
4958 spin_unlock_irqrestore(&q->lock, flags);
4959
4960 return timeout;
4961}
4962
4963void __sched interruptible_sleep_on(wait_queue_head_t *q)
4964{
4965 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4966}
1da177e4
LT
4967EXPORT_SYMBOL(interruptible_sleep_on);
4968
0fec171c 4969long __sched
95cdf3b7 4970interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4971{
8cbbe86d 4972 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4973}
1da177e4
LT
4974EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4975
0fec171c 4976void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4977{
8cbbe86d 4978 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4979}
1da177e4
LT
4980EXPORT_SYMBOL(sleep_on);
4981
0fec171c 4982long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4983{
8cbbe86d 4984 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4985}
1da177e4
LT
4986EXPORT_SYMBOL(sleep_on_timeout);
4987
b29739f9
IM
4988#ifdef CONFIG_RT_MUTEXES
4989
4990/*
4991 * rt_mutex_setprio - set the current priority of a task
4992 * @p: task
4993 * @prio: prio value (kernel-internal form)
4994 *
4995 * This function changes the 'effective' priority of a task. It does
4996 * not touch ->normal_prio like __setscheduler().
4997 *
4998 * Used by the rt_mutex code to implement priority inheritance logic.
4999 */
36c8b586 5000void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 5001{
83b699ed 5002 int oldprio, on_rq, running;
70b97a7f 5003 struct rq *rq;
83ab0aa0 5004 const struct sched_class *prev_class;
b29739f9
IM
5005
5006 BUG_ON(prio < 0 || prio > MAX_PRIO);
5007
0122ec5b 5008 rq = __task_rq_lock(p);
b29739f9 5009
a8027073 5010 trace_sched_pi_setprio(p, prio);
d5f9f942 5011 oldprio = p->prio;
83ab0aa0 5012 prev_class = p->sched_class;
fd2f4419 5013 on_rq = p->on_rq;
051a1d1a 5014 running = task_current(rq, p);
0e1f3483 5015 if (on_rq)
69be72c1 5016 dequeue_task(rq, p, 0);
0e1f3483
HS
5017 if (running)
5018 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5019
5020 if (rt_prio(prio))
5021 p->sched_class = &rt_sched_class;
5022 else
5023 p->sched_class = &fair_sched_class;
5024
b29739f9
IM
5025 p->prio = prio;
5026
0e1f3483
HS
5027 if (running)
5028 p->sched_class->set_curr_task(rq);
da7a735e 5029 if (on_rq)
371fd7e7 5030 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 5031
da7a735e 5032 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5033 __task_rq_unlock(rq);
b29739f9
IM
5034}
5035
5036#endif
5037
36c8b586 5038void set_user_nice(struct task_struct *p, long nice)
1da177e4 5039{
dd41f596 5040 int old_prio, delta, on_rq;
1da177e4 5041 unsigned long flags;
70b97a7f 5042 struct rq *rq;
1da177e4
LT
5043
5044 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5045 return;
5046 /*
5047 * We have to be careful, if called from sys_setpriority(),
5048 * the task might be in the middle of scheduling on another CPU.
5049 */
5050 rq = task_rq_lock(p, &flags);
5051 /*
5052 * The RT priorities are set via sched_setscheduler(), but we still
5053 * allow the 'normal' nice value to be set - but as expected
5054 * it wont have any effect on scheduling until the task is
dd41f596 5055 * SCHED_FIFO/SCHED_RR:
1da177e4 5056 */
e05606d3 5057 if (task_has_rt_policy(p)) {
1da177e4
LT
5058 p->static_prio = NICE_TO_PRIO(nice);
5059 goto out_unlock;
5060 }
fd2f4419 5061 on_rq = p->on_rq;
c09595f6 5062 if (on_rq)
69be72c1 5063 dequeue_task(rq, p, 0);
1da177e4 5064
1da177e4 5065 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5066 set_load_weight(p);
b29739f9
IM
5067 old_prio = p->prio;
5068 p->prio = effective_prio(p);
5069 delta = p->prio - old_prio;
1da177e4 5070
dd41f596 5071 if (on_rq) {
371fd7e7 5072 enqueue_task(rq, p, 0);
1da177e4 5073 /*
d5f9f942
AM
5074 * If the task increased its priority or is running and
5075 * lowered its priority, then reschedule its CPU:
1da177e4 5076 */
d5f9f942 5077 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5078 resched_task(rq->curr);
5079 }
5080out_unlock:
0122ec5b 5081 task_rq_unlock(rq, p, &flags);
1da177e4 5082}
1da177e4
LT
5083EXPORT_SYMBOL(set_user_nice);
5084
e43379f1
MM
5085/*
5086 * can_nice - check if a task can reduce its nice value
5087 * @p: task
5088 * @nice: nice value
5089 */
36c8b586 5090int can_nice(const struct task_struct *p, const int nice)
e43379f1 5091{
024f4747
MM
5092 /* convert nice value [19,-20] to rlimit style value [1,40] */
5093 int nice_rlim = 20 - nice;
48f24c4d 5094
78d7d407 5095 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5096 capable(CAP_SYS_NICE));
5097}
5098
1da177e4
LT
5099#ifdef __ARCH_WANT_SYS_NICE
5100
5101/*
5102 * sys_nice - change the priority of the current process.
5103 * @increment: priority increment
5104 *
5105 * sys_setpriority is a more generic, but much slower function that
5106 * does similar things.
5107 */
5add95d4 5108SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5109{
48f24c4d 5110 long nice, retval;
1da177e4
LT
5111
5112 /*
5113 * Setpriority might change our priority at the same moment.
5114 * We don't have to worry. Conceptually one call occurs first
5115 * and we have a single winner.
5116 */
e43379f1
MM
5117 if (increment < -40)
5118 increment = -40;
1da177e4
LT
5119 if (increment > 40)
5120 increment = 40;
5121
2b8f836f 5122 nice = TASK_NICE(current) + increment;
1da177e4
LT
5123 if (nice < -20)
5124 nice = -20;
5125 if (nice > 19)
5126 nice = 19;
5127
e43379f1
MM
5128 if (increment < 0 && !can_nice(current, nice))
5129 return -EPERM;
5130
1da177e4
LT
5131 retval = security_task_setnice(current, nice);
5132 if (retval)
5133 return retval;
5134
5135 set_user_nice(current, nice);
5136 return 0;
5137}
5138
5139#endif
5140
5141/**
5142 * task_prio - return the priority value of a given task.
5143 * @p: the task in question.
5144 *
5145 * This is the priority value as seen by users in /proc.
5146 * RT tasks are offset by -200. Normal tasks are centered
5147 * around 0, value goes from -16 to +15.
5148 */
36c8b586 5149int task_prio(const struct task_struct *p)
1da177e4
LT
5150{
5151 return p->prio - MAX_RT_PRIO;
5152}
5153
5154/**
5155 * task_nice - return the nice value of a given task.
5156 * @p: the task in question.
5157 */
36c8b586 5158int task_nice(const struct task_struct *p)
1da177e4
LT
5159{
5160 return TASK_NICE(p);
5161}
150d8bed 5162EXPORT_SYMBOL(task_nice);
1da177e4
LT
5163
5164/**
5165 * idle_cpu - is a given cpu idle currently?
5166 * @cpu: the processor in question.
5167 */
5168int idle_cpu(int cpu)
5169{
5170 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5171}
5172
1da177e4
LT
5173/**
5174 * idle_task - return the idle task for a given cpu.
5175 * @cpu: the processor in question.
5176 */
36c8b586 5177struct task_struct *idle_task(int cpu)
1da177e4
LT
5178{
5179 return cpu_rq(cpu)->idle;
5180}
5181
5182/**
5183 * find_process_by_pid - find a process with a matching PID value.
5184 * @pid: the pid in question.
5185 */
a9957449 5186static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5187{
228ebcbe 5188 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5189}
5190
5191/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5192static void
5193__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5194{
1da177e4
LT
5195 p->policy = policy;
5196 p->rt_priority = prio;
b29739f9
IM
5197 p->normal_prio = normal_prio(p);
5198 /* we are holding p->pi_lock already */
5199 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
5200 if (rt_prio(p->prio))
5201 p->sched_class = &rt_sched_class;
5202 else
5203 p->sched_class = &fair_sched_class;
2dd73a4f 5204 set_load_weight(p);
1da177e4
LT
5205}
5206
c69e8d9c
DH
5207/*
5208 * check the target process has a UID that matches the current process's
5209 */
5210static bool check_same_owner(struct task_struct *p)
5211{
5212 const struct cred *cred = current_cred(), *pcred;
5213 bool match;
5214
5215 rcu_read_lock();
5216 pcred = __task_cred(p);
b0e77598
SH
5217 if (cred->user->user_ns == pcred->user->user_ns)
5218 match = (cred->euid == pcred->euid ||
5219 cred->euid == pcred->uid);
5220 else
5221 match = false;
c69e8d9c
DH
5222 rcu_read_unlock();
5223 return match;
5224}
5225
961ccddd 5226static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5227 const struct sched_param *param, bool user)
1da177e4 5228{
83b699ed 5229 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5230 unsigned long flags;
83ab0aa0 5231 const struct sched_class *prev_class;
70b97a7f 5232 struct rq *rq;
ca94c442 5233 int reset_on_fork;
1da177e4 5234
66e5393a
SR
5235 /* may grab non-irq protected spin_locks */
5236 BUG_ON(in_interrupt());
1da177e4
LT
5237recheck:
5238 /* double check policy once rq lock held */
ca94c442
LP
5239 if (policy < 0) {
5240 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5241 policy = oldpolicy = p->policy;
ca94c442
LP
5242 } else {
5243 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5244 policy &= ~SCHED_RESET_ON_FORK;
5245
5246 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5247 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5248 policy != SCHED_IDLE)
5249 return -EINVAL;
5250 }
5251
1da177e4
LT
5252 /*
5253 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5254 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5255 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5256 */
5257 if (param->sched_priority < 0 ||
95cdf3b7 5258 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5259 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5260 return -EINVAL;
e05606d3 5261 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5262 return -EINVAL;
5263
37e4ab3f
OC
5264 /*
5265 * Allow unprivileged RT tasks to decrease priority:
5266 */
961ccddd 5267 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5268 if (rt_policy(policy)) {
a44702e8
ON
5269 unsigned long rlim_rtprio =
5270 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5271
5272 /* can't set/change the rt policy */
5273 if (policy != p->policy && !rlim_rtprio)
5274 return -EPERM;
5275
5276 /* can't increase priority */
5277 if (param->sched_priority > p->rt_priority &&
5278 param->sched_priority > rlim_rtprio)
5279 return -EPERM;
5280 }
c02aa73b 5281
dd41f596 5282 /*
c02aa73b
DH
5283 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5284 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5285 */
c02aa73b
DH
5286 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5287 if (!can_nice(p, TASK_NICE(p)))
5288 return -EPERM;
5289 }
5fe1d75f 5290
37e4ab3f 5291 /* can't change other user's priorities */
c69e8d9c 5292 if (!check_same_owner(p))
37e4ab3f 5293 return -EPERM;
ca94c442
LP
5294
5295 /* Normal users shall not reset the sched_reset_on_fork flag */
5296 if (p->sched_reset_on_fork && !reset_on_fork)
5297 return -EPERM;
37e4ab3f 5298 }
1da177e4 5299
725aad24 5300 if (user) {
b0ae1981 5301 retval = security_task_setscheduler(p);
725aad24
JF
5302 if (retval)
5303 return retval;
5304 }
5305
b29739f9
IM
5306 /*
5307 * make sure no PI-waiters arrive (or leave) while we are
5308 * changing the priority of the task:
0122ec5b 5309 *
25985edc 5310 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5311 * runqueue lock must be held.
5312 */
0122ec5b 5313 rq = task_rq_lock(p, &flags);
dc61b1d6 5314
34f971f6
PZ
5315 /*
5316 * Changing the policy of the stop threads its a very bad idea
5317 */
5318 if (p == rq->stop) {
0122ec5b 5319 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5320 return -EINVAL;
5321 }
5322
a51e9198
DF
5323 /*
5324 * If not changing anything there's no need to proceed further:
5325 */
5326 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5327 param->sched_priority == p->rt_priority))) {
5328
5329 __task_rq_unlock(rq);
5330 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5331 return 0;
5332 }
5333
dc61b1d6
PZ
5334#ifdef CONFIG_RT_GROUP_SCHED
5335 if (user) {
5336 /*
5337 * Do not allow realtime tasks into groups that have no runtime
5338 * assigned.
5339 */
5340 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5341 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5342 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5343 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5344 return -EPERM;
5345 }
5346 }
5347#endif
5348
1da177e4
LT
5349 /* recheck policy now with rq lock held */
5350 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5351 policy = oldpolicy = -1;
0122ec5b 5352 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5353 goto recheck;
5354 }
fd2f4419 5355 on_rq = p->on_rq;
051a1d1a 5356 running = task_current(rq, p);
0e1f3483 5357 if (on_rq)
2e1cb74a 5358 deactivate_task(rq, p, 0);
0e1f3483
HS
5359 if (running)
5360 p->sched_class->put_prev_task(rq, p);
f6b53205 5361
ca94c442
LP
5362 p->sched_reset_on_fork = reset_on_fork;
5363
1da177e4 5364 oldprio = p->prio;
83ab0aa0 5365 prev_class = p->sched_class;
dd41f596 5366 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5367
0e1f3483
HS
5368 if (running)
5369 p->sched_class->set_curr_task(rq);
da7a735e 5370 if (on_rq)
dd41f596 5371 activate_task(rq, p, 0);
cb469845 5372
da7a735e 5373 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5374 task_rq_unlock(rq, p, &flags);
b29739f9 5375
95e02ca9
TG
5376 rt_mutex_adjust_pi(p);
5377
1da177e4
LT
5378 return 0;
5379}
961ccddd
RR
5380
5381/**
5382 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5383 * @p: the task in question.
5384 * @policy: new policy.
5385 * @param: structure containing the new RT priority.
5386 *
5387 * NOTE that the task may be already dead.
5388 */
5389int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5390 const struct sched_param *param)
961ccddd
RR
5391{
5392 return __sched_setscheduler(p, policy, param, true);
5393}
1da177e4
LT
5394EXPORT_SYMBOL_GPL(sched_setscheduler);
5395
961ccddd
RR
5396/**
5397 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5398 * @p: the task in question.
5399 * @policy: new policy.
5400 * @param: structure containing the new RT priority.
5401 *
5402 * Just like sched_setscheduler, only don't bother checking if the
5403 * current context has permission. For example, this is needed in
5404 * stop_machine(): we create temporary high priority worker threads,
5405 * but our caller might not have that capability.
5406 */
5407int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5408 const struct sched_param *param)
961ccddd
RR
5409{
5410 return __sched_setscheduler(p, policy, param, false);
5411}
5412
95cdf3b7
IM
5413static int
5414do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5415{
1da177e4
LT
5416 struct sched_param lparam;
5417 struct task_struct *p;
36c8b586 5418 int retval;
1da177e4
LT
5419
5420 if (!param || pid < 0)
5421 return -EINVAL;
5422 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5423 return -EFAULT;
5fe1d75f
ON
5424
5425 rcu_read_lock();
5426 retval = -ESRCH;
1da177e4 5427 p = find_process_by_pid(pid);
5fe1d75f
ON
5428 if (p != NULL)
5429 retval = sched_setscheduler(p, policy, &lparam);
5430 rcu_read_unlock();
36c8b586 5431
1da177e4
LT
5432 return retval;
5433}
5434
5435/**
5436 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5437 * @pid: the pid in question.
5438 * @policy: new policy.
5439 * @param: structure containing the new RT priority.
5440 */
5add95d4
HC
5441SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5442 struct sched_param __user *, param)
1da177e4 5443{
c21761f1
JB
5444 /* negative values for policy are not valid */
5445 if (policy < 0)
5446 return -EINVAL;
5447
1da177e4
LT
5448 return do_sched_setscheduler(pid, policy, param);
5449}
5450
5451/**
5452 * sys_sched_setparam - set/change the RT priority of a thread
5453 * @pid: the pid in question.
5454 * @param: structure containing the new RT priority.
5455 */
5add95d4 5456SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5457{
5458 return do_sched_setscheduler(pid, -1, param);
5459}
5460
5461/**
5462 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5463 * @pid: the pid in question.
5464 */
5add95d4 5465SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5466{
36c8b586 5467 struct task_struct *p;
3a5c359a 5468 int retval;
1da177e4
LT
5469
5470 if (pid < 0)
3a5c359a 5471 return -EINVAL;
1da177e4
LT
5472
5473 retval = -ESRCH;
5fe85be0 5474 rcu_read_lock();
1da177e4
LT
5475 p = find_process_by_pid(pid);
5476 if (p) {
5477 retval = security_task_getscheduler(p);
5478 if (!retval)
ca94c442
LP
5479 retval = p->policy
5480 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5481 }
5fe85be0 5482 rcu_read_unlock();
1da177e4
LT
5483 return retval;
5484}
5485
5486/**
ca94c442 5487 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5488 * @pid: the pid in question.
5489 * @param: structure containing the RT priority.
5490 */
5add95d4 5491SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5492{
5493 struct sched_param lp;
36c8b586 5494 struct task_struct *p;
3a5c359a 5495 int retval;
1da177e4
LT
5496
5497 if (!param || pid < 0)
3a5c359a 5498 return -EINVAL;
1da177e4 5499
5fe85be0 5500 rcu_read_lock();
1da177e4
LT
5501 p = find_process_by_pid(pid);
5502 retval = -ESRCH;
5503 if (!p)
5504 goto out_unlock;
5505
5506 retval = security_task_getscheduler(p);
5507 if (retval)
5508 goto out_unlock;
5509
5510 lp.sched_priority = p->rt_priority;
5fe85be0 5511 rcu_read_unlock();
1da177e4
LT
5512
5513 /*
5514 * This one might sleep, we cannot do it with a spinlock held ...
5515 */
5516 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5517
1da177e4
LT
5518 return retval;
5519
5520out_unlock:
5fe85be0 5521 rcu_read_unlock();
1da177e4
LT
5522 return retval;
5523}
5524
96f874e2 5525long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5526{
5a16f3d3 5527 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5528 struct task_struct *p;
5529 int retval;
1da177e4 5530
95402b38 5531 get_online_cpus();
23f5d142 5532 rcu_read_lock();
1da177e4
LT
5533
5534 p = find_process_by_pid(pid);
5535 if (!p) {
23f5d142 5536 rcu_read_unlock();
95402b38 5537 put_online_cpus();
1da177e4
LT
5538 return -ESRCH;
5539 }
5540
23f5d142 5541 /* Prevent p going away */
1da177e4 5542 get_task_struct(p);
23f5d142 5543 rcu_read_unlock();
1da177e4 5544
5a16f3d3
RR
5545 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5546 retval = -ENOMEM;
5547 goto out_put_task;
5548 }
5549 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5550 retval = -ENOMEM;
5551 goto out_free_cpus_allowed;
5552 }
1da177e4 5553 retval = -EPERM;
b0e77598 5554 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5555 goto out_unlock;
5556
b0ae1981 5557 retval = security_task_setscheduler(p);
e7834f8f
DQ
5558 if (retval)
5559 goto out_unlock;
5560
5a16f3d3
RR
5561 cpuset_cpus_allowed(p, cpus_allowed);
5562 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5563again:
5a16f3d3 5564 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5565
8707d8b8 5566 if (!retval) {
5a16f3d3
RR
5567 cpuset_cpus_allowed(p, cpus_allowed);
5568 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5569 /*
5570 * We must have raced with a concurrent cpuset
5571 * update. Just reset the cpus_allowed to the
5572 * cpuset's cpus_allowed
5573 */
5a16f3d3 5574 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5575 goto again;
5576 }
5577 }
1da177e4 5578out_unlock:
5a16f3d3
RR
5579 free_cpumask_var(new_mask);
5580out_free_cpus_allowed:
5581 free_cpumask_var(cpus_allowed);
5582out_put_task:
1da177e4 5583 put_task_struct(p);
95402b38 5584 put_online_cpus();
1da177e4
LT
5585 return retval;
5586}
5587
5588static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5589 struct cpumask *new_mask)
1da177e4 5590{
96f874e2
RR
5591 if (len < cpumask_size())
5592 cpumask_clear(new_mask);
5593 else if (len > cpumask_size())
5594 len = cpumask_size();
5595
1da177e4
LT
5596 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5597}
5598
5599/**
5600 * sys_sched_setaffinity - set the cpu affinity of a process
5601 * @pid: pid of the process
5602 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5603 * @user_mask_ptr: user-space pointer to the new cpu mask
5604 */
5add95d4
HC
5605SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5606 unsigned long __user *, user_mask_ptr)
1da177e4 5607{
5a16f3d3 5608 cpumask_var_t new_mask;
1da177e4
LT
5609 int retval;
5610
5a16f3d3
RR
5611 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5612 return -ENOMEM;
1da177e4 5613
5a16f3d3
RR
5614 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5615 if (retval == 0)
5616 retval = sched_setaffinity(pid, new_mask);
5617 free_cpumask_var(new_mask);
5618 return retval;
1da177e4
LT
5619}
5620
96f874e2 5621long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5622{
36c8b586 5623 struct task_struct *p;
31605683 5624 unsigned long flags;
1da177e4 5625 int retval;
1da177e4 5626
95402b38 5627 get_online_cpus();
23f5d142 5628 rcu_read_lock();
1da177e4
LT
5629
5630 retval = -ESRCH;
5631 p = find_process_by_pid(pid);
5632 if (!p)
5633 goto out_unlock;
5634
e7834f8f
DQ
5635 retval = security_task_getscheduler(p);
5636 if (retval)
5637 goto out_unlock;
5638
013fdb80 5639 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5640 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5641 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5642
5643out_unlock:
23f5d142 5644 rcu_read_unlock();
95402b38 5645 put_online_cpus();
1da177e4 5646
9531b62f 5647 return retval;
1da177e4
LT
5648}
5649
5650/**
5651 * sys_sched_getaffinity - get the cpu affinity of a process
5652 * @pid: pid of the process
5653 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5654 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5655 */
5add95d4
HC
5656SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5657 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5658{
5659 int ret;
f17c8607 5660 cpumask_var_t mask;
1da177e4 5661
84fba5ec 5662 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5663 return -EINVAL;
5664 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5665 return -EINVAL;
5666
f17c8607
RR
5667 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5668 return -ENOMEM;
1da177e4 5669
f17c8607
RR
5670 ret = sched_getaffinity(pid, mask);
5671 if (ret == 0) {
8bc037fb 5672 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5673
5674 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5675 ret = -EFAULT;
5676 else
cd3d8031 5677 ret = retlen;
f17c8607
RR
5678 }
5679 free_cpumask_var(mask);
1da177e4 5680
f17c8607 5681 return ret;
1da177e4
LT
5682}
5683
5684/**
5685 * sys_sched_yield - yield the current processor to other threads.
5686 *
dd41f596
IM
5687 * This function yields the current CPU to other tasks. If there are no
5688 * other threads running on this CPU then this function will return.
1da177e4 5689 */
5add95d4 5690SYSCALL_DEFINE0(sched_yield)
1da177e4 5691{
70b97a7f 5692 struct rq *rq = this_rq_lock();
1da177e4 5693
2d72376b 5694 schedstat_inc(rq, yld_count);
4530d7ab 5695 current->sched_class->yield_task(rq);
1da177e4
LT
5696
5697 /*
5698 * Since we are going to call schedule() anyway, there's
5699 * no need to preempt or enable interrupts:
5700 */
5701 __release(rq->lock);
8a25d5de 5702 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5703 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5704 preempt_enable_no_resched();
5705
5706 schedule();
5707
5708 return 0;
5709}
5710
d86ee480
PZ
5711static inline int should_resched(void)
5712{
5713 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5714}
5715
e7b38404 5716static void __cond_resched(void)
1da177e4 5717{
e7aaaa69
FW
5718 add_preempt_count(PREEMPT_ACTIVE);
5719 schedule();
5720 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5721}
5722
02b67cc3 5723int __sched _cond_resched(void)
1da177e4 5724{
d86ee480 5725 if (should_resched()) {
1da177e4
LT
5726 __cond_resched();
5727 return 1;
5728 }
5729 return 0;
5730}
02b67cc3 5731EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5732
5733/*
613afbf8 5734 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5735 * call schedule, and on return reacquire the lock.
5736 *
41a2d6cf 5737 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5738 * operations here to prevent schedule() from being called twice (once via
5739 * spin_unlock(), once by hand).
5740 */
613afbf8 5741int __cond_resched_lock(spinlock_t *lock)
1da177e4 5742{
d86ee480 5743 int resched = should_resched();
6df3cecb
JK
5744 int ret = 0;
5745
f607c668
PZ
5746 lockdep_assert_held(lock);
5747
95c354fe 5748 if (spin_needbreak(lock) || resched) {
1da177e4 5749 spin_unlock(lock);
d86ee480 5750 if (resched)
95c354fe
NP
5751 __cond_resched();
5752 else
5753 cpu_relax();
6df3cecb 5754 ret = 1;
1da177e4 5755 spin_lock(lock);
1da177e4 5756 }
6df3cecb 5757 return ret;
1da177e4 5758}
613afbf8 5759EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5760
613afbf8 5761int __sched __cond_resched_softirq(void)
1da177e4
LT
5762{
5763 BUG_ON(!in_softirq());
5764
d86ee480 5765 if (should_resched()) {
98d82567 5766 local_bh_enable();
1da177e4
LT
5767 __cond_resched();
5768 local_bh_disable();
5769 return 1;
5770 }
5771 return 0;
5772}
613afbf8 5773EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5774
1da177e4
LT
5775/**
5776 * yield - yield the current processor to other threads.
5777 *
72fd4a35 5778 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5779 * thread runnable and calls sys_sched_yield().
5780 */
5781void __sched yield(void)
5782{
5783 set_current_state(TASK_RUNNING);
5784 sys_sched_yield();
5785}
1da177e4
LT
5786EXPORT_SYMBOL(yield);
5787
d95f4122
MG
5788/**
5789 * yield_to - yield the current processor to another thread in
5790 * your thread group, or accelerate that thread toward the
5791 * processor it's on.
16addf95
RD
5792 * @p: target task
5793 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5794 *
5795 * It's the caller's job to ensure that the target task struct
5796 * can't go away on us before we can do any checks.
5797 *
5798 * Returns true if we indeed boosted the target task.
5799 */
5800bool __sched yield_to(struct task_struct *p, bool preempt)
5801{
5802 struct task_struct *curr = current;
5803 struct rq *rq, *p_rq;
5804 unsigned long flags;
5805 bool yielded = 0;
5806
5807 local_irq_save(flags);
5808 rq = this_rq();
5809
5810again:
5811 p_rq = task_rq(p);
5812 double_rq_lock(rq, p_rq);
5813 while (task_rq(p) != p_rq) {
5814 double_rq_unlock(rq, p_rq);
5815 goto again;
5816 }
5817
5818 if (!curr->sched_class->yield_to_task)
5819 goto out;
5820
5821 if (curr->sched_class != p->sched_class)
5822 goto out;
5823
5824 if (task_running(p_rq, p) || p->state)
5825 goto out;
5826
5827 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5828 if (yielded) {
d95f4122 5829 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5830 /*
5831 * Make p's CPU reschedule; pick_next_entity takes care of
5832 * fairness.
5833 */
5834 if (preempt && rq != p_rq)
5835 resched_task(p_rq->curr);
5836 }
d95f4122
MG
5837
5838out:
5839 double_rq_unlock(rq, p_rq);
5840 local_irq_restore(flags);
5841
5842 if (yielded)
5843 schedule();
5844
5845 return yielded;
5846}
5847EXPORT_SYMBOL_GPL(yield_to);
5848
1da177e4 5849/*
41a2d6cf 5850 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5851 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5852 */
5853void __sched io_schedule(void)
5854{
54d35f29 5855 struct rq *rq = raw_rq();
1da177e4 5856
0ff92245 5857 delayacct_blkio_start();
1da177e4 5858 atomic_inc(&rq->nr_iowait);
73c10101 5859 blk_flush_plug(current);
8f0dfc34 5860 current->in_iowait = 1;
1da177e4 5861 schedule();
8f0dfc34 5862 current->in_iowait = 0;
1da177e4 5863 atomic_dec(&rq->nr_iowait);
0ff92245 5864 delayacct_blkio_end();
1da177e4 5865}
1da177e4
LT
5866EXPORT_SYMBOL(io_schedule);
5867
5868long __sched io_schedule_timeout(long timeout)
5869{
54d35f29 5870 struct rq *rq = raw_rq();
1da177e4
LT
5871 long ret;
5872
0ff92245 5873 delayacct_blkio_start();
1da177e4 5874 atomic_inc(&rq->nr_iowait);
73c10101 5875 blk_flush_plug(current);
8f0dfc34 5876 current->in_iowait = 1;
1da177e4 5877 ret = schedule_timeout(timeout);
8f0dfc34 5878 current->in_iowait = 0;
1da177e4 5879 atomic_dec(&rq->nr_iowait);
0ff92245 5880 delayacct_blkio_end();
1da177e4
LT
5881 return ret;
5882}
5883
5884/**
5885 * sys_sched_get_priority_max - return maximum RT priority.
5886 * @policy: scheduling class.
5887 *
5888 * this syscall returns the maximum rt_priority that can be used
5889 * by a given scheduling class.
5890 */
5add95d4 5891SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5892{
5893 int ret = -EINVAL;
5894
5895 switch (policy) {
5896 case SCHED_FIFO:
5897 case SCHED_RR:
5898 ret = MAX_USER_RT_PRIO-1;
5899 break;
5900 case SCHED_NORMAL:
b0a9499c 5901 case SCHED_BATCH:
dd41f596 5902 case SCHED_IDLE:
1da177e4
LT
5903 ret = 0;
5904 break;
5905 }
5906 return ret;
5907}
5908
5909/**
5910 * sys_sched_get_priority_min - return minimum RT priority.
5911 * @policy: scheduling class.
5912 *
5913 * this syscall returns the minimum rt_priority that can be used
5914 * by a given scheduling class.
5915 */
5add95d4 5916SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5917{
5918 int ret = -EINVAL;
5919
5920 switch (policy) {
5921 case SCHED_FIFO:
5922 case SCHED_RR:
5923 ret = 1;
5924 break;
5925 case SCHED_NORMAL:
b0a9499c 5926 case SCHED_BATCH:
dd41f596 5927 case SCHED_IDLE:
1da177e4
LT
5928 ret = 0;
5929 }
5930 return ret;
5931}
5932
5933/**
5934 * sys_sched_rr_get_interval - return the default timeslice of a process.
5935 * @pid: pid of the process.
5936 * @interval: userspace pointer to the timeslice value.
5937 *
5938 * this syscall writes the default timeslice value of a given process
5939 * into the user-space timespec buffer. A value of '0' means infinity.
5940 */
17da2bd9 5941SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5942 struct timespec __user *, interval)
1da177e4 5943{
36c8b586 5944 struct task_struct *p;
a4ec24b4 5945 unsigned int time_slice;
dba091b9
TG
5946 unsigned long flags;
5947 struct rq *rq;
3a5c359a 5948 int retval;
1da177e4 5949 struct timespec t;
1da177e4
LT
5950
5951 if (pid < 0)
3a5c359a 5952 return -EINVAL;
1da177e4
LT
5953
5954 retval = -ESRCH;
1a551ae7 5955 rcu_read_lock();
1da177e4
LT
5956 p = find_process_by_pid(pid);
5957 if (!p)
5958 goto out_unlock;
5959
5960 retval = security_task_getscheduler(p);
5961 if (retval)
5962 goto out_unlock;
5963
dba091b9
TG
5964 rq = task_rq_lock(p, &flags);
5965 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5966 task_rq_unlock(rq, p, &flags);
a4ec24b4 5967
1a551ae7 5968 rcu_read_unlock();
a4ec24b4 5969 jiffies_to_timespec(time_slice, &t);
1da177e4 5970 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5971 return retval;
3a5c359a 5972
1da177e4 5973out_unlock:
1a551ae7 5974 rcu_read_unlock();
1da177e4
LT
5975 return retval;
5976}
5977
7c731e0a 5978static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5979
82a1fcb9 5980void sched_show_task(struct task_struct *p)
1da177e4 5981{
1da177e4 5982 unsigned long free = 0;
36c8b586 5983 unsigned state;
1da177e4 5984
1da177e4 5985 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5986 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5987 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5988#if BITS_PER_LONG == 32
1da177e4 5989 if (state == TASK_RUNNING)
3df0fc5b 5990 printk(KERN_CONT " running ");
1da177e4 5991 else
3df0fc5b 5992 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5993#else
5994 if (state == TASK_RUNNING)
3df0fc5b 5995 printk(KERN_CONT " running task ");
1da177e4 5996 else
3df0fc5b 5997 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5998#endif
5999#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6000 free = stack_not_used(p);
1da177e4 6001#endif
3df0fc5b 6002 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6003 task_pid_nr(p), task_pid_nr(p->real_parent),
6004 (unsigned long)task_thread_info(p)->flags);
1da177e4 6005
5fb5e6de 6006 show_stack(p, NULL);
1da177e4
LT
6007}
6008
e59e2ae2 6009void show_state_filter(unsigned long state_filter)
1da177e4 6010{
36c8b586 6011 struct task_struct *g, *p;
1da177e4 6012
4bd77321 6013#if BITS_PER_LONG == 32
3df0fc5b
PZ
6014 printk(KERN_INFO
6015 " task PC stack pid father\n");
1da177e4 6016#else
3df0fc5b
PZ
6017 printk(KERN_INFO
6018 " task PC stack pid father\n");
1da177e4
LT
6019#endif
6020 read_lock(&tasklist_lock);
6021 do_each_thread(g, p) {
6022 /*
6023 * reset the NMI-timeout, listing all files on a slow
25985edc 6024 * console might take a lot of time:
1da177e4
LT
6025 */
6026 touch_nmi_watchdog();
39bc89fd 6027 if (!state_filter || (p->state & state_filter))
82a1fcb9 6028 sched_show_task(p);
1da177e4
LT
6029 } while_each_thread(g, p);
6030
04c9167f
JF
6031 touch_all_softlockup_watchdogs();
6032
dd41f596
IM
6033#ifdef CONFIG_SCHED_DEBUG
6034 sysrq_sched_debug_show();
6035#endif
1da177e4 6036 read_unlock(&tasklist_lock);
e59e2ae2
IM
6037 /*
6038 * Only show locks if all tasks are dumped:
6039 */
93335a21 6040 if (!state_filter)
e59e2ae2 6041 debug_show_all_locks();
1da177e4
LT
6042}
6043
1df21055
IM
6044void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6045{
dd41f596 6046 idle->sched_class = &idle_sched_class;
1df21055
IM
6047}
6048
f340c0d1
IM
6049/**
6050 * init_idle - set up an idle thread for a given CPU
6051 * @idle: task in question
6052 * @cpu: cpu the idle task belongs to
6053 *
6054 * NOTE: this function does not set the idle thread's NEED_RESCHED
6055 * flag, to make booting more robust.
6056 */
5c1e1767 6057void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6058{
70b97a7f 6059 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6060 unsigned long flags;
6061
05fa785c 6062 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 6063
dd41f596 6064 __sched_fork(idle);
06b83b5f 6065 idle->state = TASK_RUNNING;
dd41f596
IM
6066 idle->se.exec_start = sched_clock();
6067
1e1b6c51 6068 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
6069 /*
6070 * We're having a chicken and egg problem, even though we are
6071 * holding rq->lock, the cpu isn't yet set to this cpu so the
6072 * lockdep check in task_group() will fail.
6073 *
6074 * Similar case to sched_fork(). / Alternatively we could
6075 * use task_rq_lock() here and obtain the other rq->lock.
6076 *
6077 * Silence PROVE_RCU
6078 */
6079 rcu_read_lock();
dd41f596 6080 __set_task_cpu(idle, cpu);
6506cf6c 6081 rcu_read_unlock();
1da177e4 6082
1da177e4 6083 rq->curr = rq->idle = idle;
3ca7a440
PZ
6084#if defined(CONFIG_SMP)
6085 idle->on_cpu = 1;
4866cde0 6086#endif
05fa785c 6087 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
6088
6089 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 6090 task_thread_info(idle)->preempt_count = 0;
625f2a37 6091
dd41f596
IM
6092 /*
6093 * The idle tasks have their own, simple scheduling class:
6094 */
6095 idle->sched_class = &idle_sched_class;
868baf07 6096 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
6097}
6098
6099/*
6100 * In a system that switches off the HZ timer nohz_cpu_mask
6101 * indicates which cpus entered this state. This is used
6102 * in the rcu update to wait only for active cpus. For system
6103 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6104 * always be CPU_BITS_NONE.
1da177e4 6105 */
6a7b3dc3 6106cpumask_var_t nohz_cpu_mask;
1da177e4 6107
19978ca6
IM
6108/*
6109 * Increase the granularity value when there are more CPUs,
6110 * because with more CPUs the 'effective latency' as visible
6111 * to users decreases. But the relationship is not linear,
6112 * so pick a second-best guess by going with the log2 of the
6113 * number of CPUs.
6114 *
6115 * This idea comes from the SD scheduler of Con Kolivas:
6116 */
acb4a848 6117static int get_update_sysctl_factor(void)
19978ca6 6118{
4ca3ef71 6119 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
6120 unsigned int factor;
6121
6122 switch (sysctl_sched_tunable_scaling) {
6123 case SCHED_TUNABLESCALING_NONE:
6124 factor = 1;
6125 break;
6126 case SCHED_TUNABLESCALING_LINEAR:
6127 factor = cpus;
6128 break;
6129 case SCHED_TUNABLESCALING_LOG:
6130 default:
6131 factor = 1 + ilog2(cpus);
6132 break;
6133 }
19978ca6 6134
acb4a848
CE
6135 return factor;
6136}
19978ca6 6137
acb4a848
CE
6138static void update_sysctl(void)
6139{
6140 unsigned int factor = get_update_sysctl_factor();
19978ca6 6141
0bcdcf28
CE
6142#define SET_SYSCTL(name) \
6143 (sysctl_##name = (factor) * normalized_sysctl_##name)
6144 SET_SYSCTL(sched_min_granularity);
6145 SET_SYSCTL(sched_latency);
6146 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
6147#undef SET_SYSCTL
6148}
55cd5340 6149
0bcdcf28
CE
6150static inline void sched_init_granularity(void)
6151{
6152 update_sysctl();
19978ca6
IM
6153}
6154
1da177e4 6155#ifdef CONFIG_SMP
1e1b6c51
KM
6156void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6157{
6158 if (p->sched_class && p->sched_class->set_cpus_allowed)
6159 p->sched_class->set_cpus_allowed(p, new_mask);
6160 else {
6161 cpumask_copy(&p->cpus_allowed, new_mask);
6162 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6163 }
6164}
6165
1da177e4
LT
6166/*
6167 * This is how migration works:
6168 *
969c7921
TH
6169 * 1) we invoke migration_cpu_stop() on the target CPU using
6170 * stop_one_cpu().
6171 * 2) stopper starts to run (implicitly forcing the migrated thread
6172 * off the CPU)
6173 * 3) it checks whether the migrated task is still in the wrong runqueue.
6174 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 6175 * it and puts it into the right queue.
969c7921
TH
6176 * 5) stopper completes and stop_one_cpu() returns and the migration
6177 * is done.
1da177e4
LT
6178 */
6179
6180/*
6181 * Change a given task's CPU affinity. Migrate the thread to a
6182 * proper CPU and schedule it away if the CPU it's executing on
6183 * is removed from the allowed bitmask.
6184 *
6185 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6186 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6187 * call is not atomic; no spinlocks may be held.
6188 */
96f874e2 6189int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
6190{
6191 unsigned long flags;
70b97a7f 6192 struct rq *rq;
969c7921 6193 unsigned int dest_cpu;
48f24c4d 6194 int ret = 0;
1da177e4
LT
6195
6196 rq = task_rq_lock(p, &flags);
e2912009 6197
db44fc01
YZ
6198 if (cpumask_equal(&p->cpus_allowed, new_mask))
6199 goto out;
6200
6ad4c188 6201 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
6202 ret = -EINVAL;
6203 goto out;
6204 }
6205
db44fc01 6206 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
6207 ret = -EINVAL;
6208 goto out;
6209 }
6210
1e1b6c51 6211 do_set_cpus_allowed(p, new_mask);
73fe6aae 6212
1da177e4 6213 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6214 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6215 goto out;
6216
969c7921 6217 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6218 if (p->on_rq) {
969c7921 6219 struct migration_arg arg = { p, dest_cpu };
1da177e4 6220 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6221 task_rq_unlock(rq, p, &flags);
969c7921 6222 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6223 tlb_migrate_finish(p->mm);
6224 return 0;
6225 }
6226out:
0122ec5b 6227 task_rq_unlock(rq, p, &flags);
48f24c4d 6228
1da177e4
LT
6229 return ret;
6230}
cd8ba7cd 6231EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6232
6233/*
41a2d6cf 6234 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6235 * this because either it can't run here any more (set_cpus_allowed()
6236 * away from this CPU, or CPU going down), or because we're
6237 * attempting to rebalance this task on exec (sched_exec).
6238 *
6239 * So we race with normal scheduler movements, but that's OK, as long
6240 * as the task is no longer on this CPU.
efc30814
KK
6241 *
6242 * Returns non-zero if task was successfully migrated.
1da177e4 6243 */
efc30814 6244static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6245{
70b97a7f 6246 struct rq *rq_dest, *rq_src;
e2912009 6247 int ret = 0;
1da177e4 6248
e761b772 6249 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6250 return ret;
1da177e4
LT
6251
6252 rq_src = cpu_rq(src_cpu);
6253 rq_dest = cpu_rq(dest_cpu);
6254
0122ec5b 6255 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6256 double_rq_lock(rq_src, rq_dest);
6257 /* Already moved. */
6258 if (task_cpu(p) != src_cpu)
b1e38734 6259 goto done;
1da177e4 6260 /* Affinity changed (again). */
96f874e2 6261 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6262 goto fail;
1da177e4 6263
e2912009
PZ
6264 /*
6265 * If we're not on a rq, the next wake-up will ensure we're
6266 * placed properly.
6267 */
fd2f4419 6268 if (p->on_rq) {
2e1cb74a 6269 deactivate_task(rq_src, p, 0);
e2912009 6270 set_task_cpu(p, dest_cpu);
dd41f596 6271 activate_task(rq_dest, p, 0);
15afe09b 6272 check_preempt_curr(rq_dest, p, 0);
1da177e4 6273 }
b1e38734 6274done:
efc30814 6275 ret = 1;
b1e38734 6276fail:
1da177e4 6277 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6278 raw_spin_unlock(&p->pi_lock);
efc30814 6279 return ret;
1da177e4
LT
6280}
6281
6282/*
969c7921
TH
6283 * migration_cpu_stop - this will be executed by a highprio stopper thread
6284 * and performs thread migration by bumping thread off CPU then
6285 * 'pushing' onto another runqueue.
1da177e4 6286 */
969c7921 6287static int migration_cpu_stop(void *data)
1da177e4 6288{
969c7921 6289 struct migration_arg *arg = data;
f7b4cddc 6290
969c7921
TH
6291 /*
6292 * The original target cpu might have gone down and we might
6293 * be on another cpu but it doesn't matter.
6294 */
f7b4cddc 6295 local_irq_disable();
969c7921 6296 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6297 local_irq_enable();
1da177e4 6298 return 0;
f7b4cddc
ON
6299}
6300
1da177e4 6301#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6302
054b9108 6303/*
48c5ccae
PZ
6304 * Ensures that the idle task is using init_mm right before its cpu goes
6305 * offline.
054b9108 6306 */
48c5ccae 6307void idle_task_exit(void)
1da177e4 6308{
48c5ccae 6309 struct mm_struct *mm = current->active_mm;
e76bd8d9 6310
48c5ccae 6311 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6312
48c5ccae
PZ
6313 if (mm != &init_mm)
6314 switch_mm(mm, &init_mm, current);
6315 mmdrop(mm);
1da177e4
LT
6316}
6317
6318/*
6319 * While a dead CPU has no uninterruptible tasks queued at this point,
6320 * it might still have a nonzero ->nr_uninterruptible counter, because
6321 * for performance reasons the counter is not stricly tracking tasks to
6322 * their home CPUs. So we just add the counter to another CPU's counter,
6323 * to keep the global sum constant after CPU-down:
6324 */
70b97a7f 6325static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6326{
6ad4c188 6327 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6328
1da177e4
LT
6329 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6330 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6331}
6332
dd41f596 6333/*
48c5ccae 6334 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6335 */
48c5ccae 6336static void calc_global_load_remove(struct rq *rq)
1da177e4 6337{
48c5ccae
PZ
6338 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6339 rq->calc_load_active = 0;
1da177e4
LT
6340}
6341
8cb120d3
PT
6342#ifdef CONFIG_CFS_BANDWIDTH
6343static void unthrottle_offline_cfs_rqs(struct rq *rq)
6344{
6345 struct cfs_rq *cfs_rq;
6346
6347 for_each_leaf_cfs_rq(rq, cfs_rq) {
6348 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6349
6350 if (!cfs_rq->runtime_enabled)
6351 continue;
6352
6353 /*
6354 * clock_task is not advancing so we just need to make sure
6355 * there's some valid quota amount
6356 */
6357 cfs_rq->runtime_remaining = cfs_b->quota;
6358 if (cfs_rq_throttled(cfs_rq))
6359 unthrottle_cfs_rq(cfs_rq);
6360 }
6361}
6362#else
6363static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6364#endif
6365
48f24c4d 6366/*
48c5ccae
PZ
6367 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6368 * try_to_wake_up()->select_task_rq().
6369 *
6370 * Called with rq->lock held even though we'er in stop_machine() and
6371 * there's no concurrency possible, we hold the required locks anyway
6372 * because of lock validation efforts.
1da177e4 6373 */
48c5ccae 6374static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6375{
70b97a7f 6376 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6377 struct task_struct *next, *stop = rq->stop;
6378 int dest_cpu;
1da177e4
LT
6379
6380 /*
48c5ccae
PZ
6381 * Fudge the rq selection such that the below task selection loop
6382 * doesn't get stuck on the currently eligible stop task.
6383 *
6384 * We're currently inside stop_machine() and the rq is either stuck
6385 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6386 * either way we should never end up calling schedule() until we're
6387 * done here.
1da177e4 6388 */
48c5ccae 6389 rq->stop = NULL;
48f24c4d 6390
8cb120d3
PT
6391 /* Ensure any throttled groups are reachable by pick_next_task */
6392 unthrottle_offline_cfs_rqs(rq);
6393
dd41f596 6394 for ( ; ; ) {
48c5ccae
PZ
6395 /*
6396 * There's this thread running, bail when that's the only
6397 * remaining thread.
6398 */
6399 if (rq->nr_running == 1)
dd41f596 6400 break;
48c5ccae 6401
b67802ea 6402 next = pick_next_task(rq);
48c5ccae 6403 BUG_ON(!next);
79c53799 6404 next->sched_class->put_prev_task(rq, next);
e692ab53 6405
48c5ccae
PZ
6406 /* Find suitable destination for @next, with force if needed. */
6407 dest_cpu = select_fallback_rq(dead_cpu, next);
6408 raw_spin_unlock(&rq->lock);
6409
6410 __migrate_task(next, dead_cpu, dest_cpu);
6411
6412 raw_spin_lock(&rq->lock);
1da177e4 6413 }
dce48a84 6414
48c5ccae 6415 rq->stop = stop;
dce48a84 6416}
48c5ccae 6417
1da177e4
LT
6418#endif /* CONFIG_HOTPLUG_CPU */
6419
e692ab53
NP
6420#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6421
6422static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6423 {
6424 .procname = "sched_domain",
c57baf1e 6425 .mode = 0555,
e0361851 6426 },
56992309 6427 {}
e692ab53
NP
6428};
6429
6430static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6431 {
6432 .procname = "kernel",
c57baf1e 6433 .mode = 0555,
e0361851
AD
6434 .child = sd_ctl_dir,
6435 },
56992309 6436 {}
e692ab53
NP
6437};
6438
6439static struct ctl_table *sd_alloc_ctl_entry(int n)
6440{
6441 struct ctl_table *entry =
5cf9f062 6442 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6443
e692ab53
NP
6444 return entry;
6445}
6446
6382bc90
MM
6447static void sd_free_ctl_entry(struct ctl_table **tablep)
6448{
cd790076 6449 struct ctl_table *entry;
6382bc90 6450
cd790076
MM
6451 /*
6452 * In the intermediate directories, both the child directory and
6453 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6454 * will always be set. In the lowest directory the names are
cd790076
MM
6455 * static strings and all have proc handlers.
6456 */
6457 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6458 if (entry->child)
6459 sd_free_ctl_entry(&entry->child);
cd790076
MM
6460 if (entry->proc_handler == NULL)
6461 kfree(entry->procname);
6462 }
6382bc90
MM
6463
6464 kfree(*tablep);
6465 *tablep = NULL;
6466}
6467
e692ab53 6468static void
e0361851 6469set_table_entry(struct ctl_table *entry,
e692ab53
NP
6470 const char *procname, void *data, int maxlen,
6471 mode_t mode, proc_handler *proc_handler)
6472{
e692ab53
NP
6473 entry->procname = procname;
6474 entry->data = data;
6475 entry->maxlen = maxlen;
6476 entry->mode = mode;
6477 entry->proc_handler = proc_handler;
6478}
6479
6480static struct ctl_table *
6481sd_alloc_ctl_domain_table(struct sched_domain *sd)
6482{
a5d8c348 6483 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6484
ad1cdc1d
MM
6485 if (table == NULL)
6486 return NULL;
6487
e0361851 6488 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6489 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6490 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6491 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6492 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6493 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6494 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6495 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6496 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6497 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6498 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6499 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6500 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6501 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6502 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6503 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6504 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6505 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6506 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6507 &sd->cache_nice_tries,
6508 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6509 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6510 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6511 set_table_entry(&table[11], "name", sd->name,
6512 CORENAME_MAX_SIZE, 0444, proc_dostring);
6513 /* &table[12] is terminator */
e692ab53
NP
6514
6515 return table;
6516}
6517
9a4e7159 6518static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6519{
6520 struct ctl_table *entry, *table;
6521 struct sched_domain *sd;
6522 int domain_num = 0, i;
6523 char buf[32];
6524
6525 for_each_domain(cpu, sd)
6526 domain_num++;
6527 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6528 if (table == NULL)
6529 return NULL;
e692ab53
NP
6530
6531 i = 0;
6532 for_each_domain(cpu, sd) {
6533 snprintf(buf, 32, "domain%d", i);
e692ab53 6534 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6535 entry->mode = 0555;
e692ab53
NP
6536 entry->child = sd_alloc_ctl_domain_table(sd);
6537 entry++;
6538 i++;
6539 }
6540 return table;
6541}
6542
6543static struct ctl_table_header *sd_sysctl_header;
6382bc90 6544static void register_sched_domain_sysctl(void)
e692ab53 6545{
6ad4c188 6546 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6547 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6548 char buf[32];
6549
7378547f
MM
6550 WARN_ON(sd_ctl_dir[0].child);
6551 sd_ctl_dir[0].child = entry;
6552
ad1cdc1d
MM
6553 if (entry == NULL)
6554 return;
6555
6ad4c188 6556 for_each_possible_cpu(i) {
e692ab53 6557 snprintf(buf, 32, "cpu%d", i);
e692ab53 6558 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6559 entry->mode = 0555;
e692ab53 6560 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6561 entry++;
e692ab53 6562 }
7378547f
MM
6563
6564 WARN_ON(sd_sysctl_header);
e692ab53
NP
6565 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6566}
6382bc90 6567
7378547f 6568/* may be called multiple times per register */
6382bc90
MM
6569static void unregister_sched_domain_sysctl(void)
6570{
7378547f
MM
6571 if (sd_sysctl_header)
6572 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6573 sd_sysctl_header = NULL;
7378547f
MM
6574 if (sd_ctl_dir[0].child)
6575 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6576}
e692ab53 6577#else
6382bc90
MM
6578static void register_sched_domain_sysctl(void)
6579{
6580}
6581static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6582{
6583}
6584#endif
6585
1f11eb6a
GH
6586static void set_rq_online(struct rq *rq)
6587{
6588 if (!rq->online) {
6589 const struct sched_class *class;
6590
c6c4927b 6591 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6592 rq->online = 1;
6593
6594 for_each_class(class) {
6595 if (class->rq_online)
6596 class->rq_online(rq);
6597 }
6598 }
6599}
6600
6601static void set_rq_offline(struct rq *rq)
6602{
6603 if (rq->online) {
6604 const struct sched_class *class;
6605
6606 for_each_class(class) {
6607 if (class->rq_offline)
6608 class->rq_offline(rq);
6609 }
6610
c6c4927b 6611 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6612 rq->online = 0;
6613 }
6614}
6615
1da177e4
LT
6616/*
6617 * migration_call - callback that gets triggered when a CPU is added.
6618 * Here we can start up the necessary migration thread for the new CPU.
6619 */
48f24c4d
IM
6620static int __cpuinit
6621migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6622{
48f24c4d 6623 int cpu = (long)hcpu;
1da177e4 6624 unsigned long flags;
969c7921 6625 struct rq *rq = cpu_rq(cpu);
1da177e4 6626
48c5ccae 6627 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6628
1da177e4 6629 case CPU_UP_PREPARE:
a468d389 6630 rq->calc_load_update = calc_load_update;
1da177e4 6631 break;
48f24c4d 6632
1da177e4 6633 case CPU_ONLINE:
1f94ef59 6634 /* Update our root-domain */
05fa785c 6635 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6636 if (rq->rd) {
c6c4927b 6637 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6638
6639 set_rq_online(rq);
1f94ef59 6640 }
05fa785c 6641 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6642 break;
48f24c4d 6643
1da177e4 6644#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6645 case CPU_DYING:
317f3941 6646 sched_ttwu_pending();
57d885fe 6647 /* Update our root-domain */
05fa785c 6648 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6649 if (rq->rd) {
c6c4927b 6650 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6651 set_rq_offline(rq);
57d885fe 6652 }
48c5ccae
PZ
6653 migrate_tasks(cpu);
6654 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6655 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6656
6657 migrate_nr_uninterruptible(rq);
6658 calc_global_load_remove(rq);
57d885fe 6659 break;
1da177e4
LT
6660#endif
6661 }
49c022e6
PZ
6662
6663 update_max_interval();
6664
1da177e4
LT
6665 return NOTIFY_OK;
6666}
6667
f38b0820
PM
6668/*
6669 * Register at high priority so that task migration (migrate_all_tasks)
6670 * happens before everything else. This has to be lower priority than
cdd6c482 6671 * the notifier in the perf_event subsystem, though.
1da177e4 6672 */
26c2143b 6673static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6674 .notifier_call = migration_call,
50a323b7 6675 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6676};
6677
3a101d05
TH
6678static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6679 unsigned long action, void *hcpu)
6680{
6681 switch (action & ~CPU_TASKS_FROZEN) {
6682 case CPU_ONLINE:
6683 case CPU_DOWN_FAILED:
6684 set_cpu_active((long)hcpu, true);
6685 return NOTIFY_OK;
6686 default:
6687 return NOTIFY_DONE;
6688 }
6689}
6690
6691static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6692 unsigned long action, void *hcpu)
6693{
6694 switch (action & ~CPU_TASKS_FROZEN) {
6695 case CPU_DOWN_PREPARE:
6696 set_cpu_active((long)hcpu, false);
6697 return NOTIFY_OK;
6698 default:
6699 return NOTIFY_DONE;
6700 }
6701}
6702
7babe8db 6703static int __init migration_init(void)
1da177e4
LT
6704{
6705 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6706 int err;
48f24c4d 6707
3a101d05 6708 /* Initialize migration for the boot CPU */
07dccf33
AM
6709 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6710 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6711 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6712 register_cpu_notifier(&migration_notifier);
7babe8db 6713
3a101d05
TH
6714 /* Register cpu active notifiers */
6715 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6716 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6717
a004cd42 6718 return 0;
1da177e4 6719}
7babe8db 6720early_initcall(migration_init);
1da177e4
LT
6721#endif
6722
6723#ifdef CONFIG_SMP
476f3534 6724
4cb98839
PZ
6725static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6726
3e9830dc 6727#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6728
f6630114
MT
6729static __read_mostly int sched_domain_debug_enabled;
6730
6731static int __init sched_domain_debug_setup(char *str)
6732{
6733 sched_domain_debug_enabled = 1;
6734
6735 return 0;
6736}
6737early_param("sched_debug", sched_domain_debug_setup);
6738
7c16ec58 6739static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6740 struct cpumask *groupmask)
1da177e4 6741{
4dcf6aff 6742 struct sched_group *group = sd->groups;
434d53b0 6743 char str[256];
1da177e4 6744
968ea6d8 6745 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6746 cpumask_clear(groupmask);
4dcf6aff
IM
6747
6748 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6749
6750 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6751 printk("does not load-balance\n");
4dcf6aff 6752 if (sd->parent)
3df0fc5b
PZ
6753 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6754 " has parent");
4dcf6aff 6755 return -1;
41c7ce9a
NP
6756 }
6757
3df0fc5b 6758 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6759
758b2cdc 6760 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6761 printk(KERN_ERR "ERROR: domain->span does not contain "
6762 "CPU%d\n", cpu);
4dcf6aff 6763 }
758b2cdc 6764 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6765 printk(KERN_ERR "ERROR: domain->groups does not contain"
6766 " CPU%d\n", cpu);
4dcf6aff 6767 }
1da177e4 6768
4dcf6aff 6769 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6770 do {
4dcf6aff 6771 if (!group) {
3df0fc5b
PZ
6772 printk("\n");
6773 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6774 break;
6775 }
6776
9c3f75cb 6777 if (!group->sgp->power) {
3df0fc5b
PZ
6778 printk(KERN_CONT "\n");
6779 printk(KERN_ERR "ERROR: domain->cpu_power not "
6780 "set\n");
4dcf6aff
IM
6781 break;
6782 }
1da177e4 6783
758b2cdc 6784 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6785 printk(KERN_CONT "\n");
6786 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6787 break;
6788 }
1da177e4 6789
758b2cdc 6790 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6791 printk(KERN_CONT "\n");
6792 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6793 break;
6794 }
1da177e4 6795
758b2cdc 6796 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6797
968ea6d8 6798 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6799
3df0fc5b 6800 printk(KERN_CONT " %s", str);
9c3f75cb 6801 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 6802 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 6803 group->sgp->power);
381512cf 6804 }
1da177e4 6805
4dcf6aff
IM
6806 group = group->next;
6807 } while (group != sd->groups);
3df0fc5b 6808 printk(KERN_CONT "\n");
1da177e4 6809
758b2cdc 6810 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6811 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6812
758b2cdc
RR
6813 if (sd->parent &&
6814 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6815 printk(KERN_ERR "ERROR: parent span is not a superset "
6816 "of domain->span\n");
4dcf6aff
IM
6817 return 0;
6818}
1da177e4 6819
4dcf6aff
IM
6820static void sched_domain_debug(struct sched_domain *sd, int cpu)
6821{
6822 int level = 0;
1da177e4 6823
f6630114
MT
6824 if (!sched_domain_debug_enabled)
6825 return;
6826
4dcf6aff
IM
6827 if (!sd) {
6828 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6829 return;
6830 }
1da177e4 6831
4dcf6aff
IM
6832 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6833
6834 for (;;) {
4cb98839 6835 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6836 break;
1da177e4
LT
6837 level++;
6838 sd = sd->parent;
33859f7f 6839 if (!sd)
4dcf6aff
IM
6840 break;
6841 }
1da177e4 6842}
6d6bc0ad 6843#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6844# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6845#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6846
1a20ff27 6847static int sd_degenerate(struct sched_domain *sd)
245af2c7 6848{
758b2cdc 6849 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6850 return 1;
6851
6852 /* Following flags need at least 2 groups */
6853 if (sd->flags & (SD_LOAD_BALANCE |
6854 SD_BALANCE_NEWIDLE |
6855 SD_BALANCE_FORK |
89c4710e
SS
6856 SD_BALANCE_EXEC |
6857 SD_SHARE_CPUPOWER |
6858 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6859 if (sd->groups != sd->groups->next)
6860 return 0;
6861 }
6862
6863 /* Following flags don't use groups */
c88d5910 6864 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6865 return 0;
6866
6867 return 1;
6868}
6869
48f24c4d
IM
6870static int
6871sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6872{
6873 unsigned long cflags = sd->flags, pflags = parent->flags;
6874
6875 if (sd_degenerate(parent))
6876 return 1;
6877
758b2cdc 6878 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6879 return 0;
6880
245af2c7
SS
6881 /* Flags needing groups don't count if only 1 group in parent */
6882 if (parent->groups == parent->groups->next) {
6883 pflags &= ~(SD_LOAD_BALANCE |
6884 SD_BALANCE_NEWIDLE |
6885 SD_BALANCE_FORK |
89c4710e
SS
6886 SD_BALANCE_EXEC |
6887 SD_SHARE_CPUPOWER |
6888 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6889 if (nr_node_ids == 1)
6890 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6891 }
6892 if (~cflags & pflags)
6893 return 0;
6894
6895 return 1;
6896}
6897
dce840a0 6898static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6899{
dce840a0 6900 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6901
68e74568 6902 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6903 free_cpumask_var(rd->rto_mask);
6904 free_cpumask_var(rd->online);
6905 free_cpumask_var(rd->span);
6906 kfree(rd);
6907}
6908
57d885fe
GH
6909static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6910{
a0490fa3 6911 struct root_domain *old_rd = NULL;
57d885fe 6912 unsigned long flags;
57d885fe 6913
05fa785c 6914 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6915
6916 if (rq->rd) {
a0490fa3 6917 old_rd = rq->rd;
57d885fe 6918
c6c4927b 6919 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6920 set_rq_offline(rq);
57d885fe 6921
c6c4927b 6922 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6923
a0490fa3
IM
6924 /*
6925 * If we dont want to free the old_rt yet then
6926 * set old_rd to NULL to skip the freeing later
6927 * in this function:
6928 */
6929 if (!atomic_dec_and_test(&old_rd->refcount))
6930 old_rd = NULL;
57d885fe
GH
6931 }
6932
6933 atomic_inc(&rd->refcount);
6934 rq->rd = rd;
6935
c6c4927b 6936 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6937 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6938 set_rq_online(rq);
57d885fe 6939
05fa785c 6940 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6941
6942 if (old_rd)
dce840a0 6943 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6944}
6945
68c38fc3 6946static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6947{
6948 memset(rd, 0, sizeof(*rd));
6949
68c38fc3 6950 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6951 goto out;
68c38fc3 6952 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6953 goto free_span;
68c38fc3 6954 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6955 goto free_online;
6e0534f2 6956
68c38fc3 6957 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6958 goto free_rto_mask;
c6c4927b 6959 return 0;
6e0534f2 6960
68e74568
RR
6961free_rto_mask:
6962 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6963free_online:
6964 free_cpumask_var(rd->online);
6965free_span:
6966 free_cpumask_var(rd->span);
0c910d28 6967out:
c6c4927b 6968 return -ENOMEM;
57d885fe
GH
6969}
6970
6971static void init_defrootdomain(void)
6972{
68c38fc3 6973 init_rootdomain(&def_root_domain);
c6c4927b 6974
57d885fe
GH
6975 atomic_set(&def_root_domain.refcount, 1);
6976}
6977
dc938520 6978static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6979{
6980 struct root_domain *rd;
6981
6982 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6983 if (!rd)
6984 return NULL;
6985
68c38fc3 6986 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6987 kfree(rd);
6988 return NULL;
6989 }
57d885fe
GH
6990
6991 return rd;
6992}
6993
e3589f6c
PZ
6994static void free_sched_groups(struct sched_group *sg, int free_sgp)
6995{
6996 struct sched_group *tmp, *first;
6997
6998 if (!sg)
6999 return;
7000
7001 first = sg;
7002 do {
7003 tmp = sg->next;
7004
7005 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
7006 kfree(sg->sgp);
7007
7008 kfree(sg);
7009 sg = tmp;
7010 } while (sg != first);
7011}
7012
dce840a0
PZ
7013static void free_sched_domain(struct rcu_head *rcu)
7014{
7015 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
7016
7017 /*
7018 * If its an overlapping domain it has private groups, iterate and
7019 * nuke them all.
7020 */
7021 if (sd->flags & SD_OVERLAP) {
7022 free_sched_groups(sd->groups, 1);
7023 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 7024 kfree(sd->groups->sgp);
dce840a0 7025 kfree(sd->groups);
9c3f75cb 7026 }
dce840a0
PZ
7027 kfree(sd);
7028}
7029
7030static void destroy_sched_domain(struct sched_domain *sd, int cpu)
7031{
7032 call_rcu(&sd->rcu, free_sched_domain);
7033}
7034
7035static void destroy_sched_domains(struct sched_domain *sd, int cpu)
7036{
7037 for (; sd; sd = sd->parent)
7038 destroy_sched_domain(sd, cpu);
7039}
7040
1da177e4 7041/*
0eab9146 7042 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7043 * hold the hotplug lock.
7044 */
0eab9146
IM
7045static void
7046cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7047{
70b97a7f 7048 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7049 struct sched_domain *tmp;
7050
7051 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7052 for (tmp = sd; tmp; ) {
245af2c7
SS
7053 struct sched_domain *parent = tmp->parent;
7054 if (!parent)
7055 break;
f29c9b1c 7056
1a848870 7057 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7058 tmp->parent = parent->parent;
1a848870
SS
7059 if (parent->parent)
7060 parent->parent->child = tmp;
dce840a0 7061 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
7062 } else
7063 tmp = tmp->parent;
245af2c7
SS
7064 }
7065
1a848870 7066 if (sd && sd_degenerate(sd)) {
dce840a0 7067 tmp = sd;
245af2c7 7068 sd = sd->parent;
dce840a0 7069 destroy_sched_domain(tmp, cpu);
1a848870
SS
7070 if (sd)
7071 sd->child = NULL;
7072 }
1da177e4 7073
4cb98839 7074 sched_domain_debug(sd, cpu);
1da177e4 7075
57d885fe 7076 rq_attach_root(rq, rd);
dce840a0 7077 tmp = rq->sd;
674311d5 7078 rcu_assign_pointer(rq->sd, sd);
dce840a0 7079 destroy_sched_domains(tmp, cpu);
1da177e4
LT
7080}
7081
7082/* cpus with isolated domains */
dcc30a35 7083static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7084
7085/* Setup the mask of cpus configured for isolated domains */
7086static int __init isolated_cpu_setup(char *str)
7087{
bdddd296 7088 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 7089 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7090 return 1;
7091}
7092
8927f494 7093__setup("isolcpus=", isolated_cpu_setup);
1da177e4 7094
9c1cfda2 7095#define SD_NODES_PER_DOMAIN 16
1da177e4 7096
9c1cfda2 7097#ifdef CONFIG_NUMA
198e2f18 7098
9c1cfda2
JH
7099/**
7100 * find_next_best_node - find the next node to include in a sched_domain
7101 * @node: node whose sched_domain we're building
7102 * @used_nodes: nodes already in the sched_domain
7103 *
41a2d6cf 7104 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7105 * finds the closest node not already in the @used_nodes map.
7106 *
7107 * Should use nodemask_t.
7108 */
c5f59f08 7109static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 7110{
7142d17e 7111 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
7112
7113 min_val = INT_MAX;
7114
076ac2af 7115 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7116 /* Start at @node */
076ac2af 7117 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7118
7119 if (!nr_cpus_node(n))
7120 continue;
7121
7122 /* Skip already used nodes */
c5f59f08 7123 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7124 continue;
7125
7126 /* Simple min distance search */
7127 val = node_distance(node, n);
7128
7129 if (val < min_val) {
7130 min_val = val;
7131 best_node = n;
7132 }
7133 }
7134
7142d17e
HD
7135 if (best_node != -1)
7136 node_set(best_node, *used_nodes);
9c1cfda2
JH
7137 return best_node;
7138}
7139
7140/**
7141 * sched_domain_node_span - get a cpumask for a node's sched_domain
7142 * @node: node whose cpumask we're constructing
73486722 7143 * @span: resulting cpumask
9c1cfda2 7144 *
41a2d6cf 7145 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7146 * should be one that prevents unnecessary balancing, but also spreads tasks
7147 * out optimally.
7148 */
96f874e2 7149static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7150{
c5f59f08 7151 nodemask_t used_nodes;
48f24c4d 7152 int i;
9c1cfda2 7153
6ca09dfc 7154 cpumask_clear(span);
c5f59f08 7155 nodes_clear(used_nodes);
9c1cfda2 7156
6ca09dfc 7157 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7158 node_set(node, used_nodes);
9c1cfda2
JH
7159
7160 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7161 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
7162 if (next_node < 0)
7163 break;
6ca09dfc 7164 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7165 }
9c1cfda2 7166}
d3081f52
PZ
7167
7168static const struct cpumask *cpu_node_mask(int cpu)
7169{
7170 lockdep_assert_held(&sched_domains_mutex);
7171
7172 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7173
7174 return sched_domains_tmpmask;
7175}
2c402dc3
PZ
7176
7177static const struct cpumask *cpu_allnodes_mask(int cpu)
7178{
7179 return cpu_possible_mask;
7180}
6d6bc0ad 7181#endif /* CONFIG_NUMA */
9c1cfda2 7182
d3081f52
PZ
7183static const struct cpumask *cpu_cpu_mask(int cpu)
7184{
7185 return cpumask_of_node(cpu_to_node(cpu));
7186}
7187
5c45bf27 7188int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7189
dce840a0
PZ
7190struct sd_data {
7191 struct sched_domain **__percpu sd;
7192 struct sched_group **__percpu sg;
9c3f75cb 7193 struct sched_group_power **__percpu sgp;
dce840a0
PZ
7194};
7195
49a02c51 7196struct s_data {
21d42ccf 7197 struct sched_domain ** __percpu sd;
49a02c51
AH
7198 struct root_domain *rd;
7199};
7200
2109b99e 7201enum s_alloc {
2109b99e 7202 sa_rootdomain,
21d42ccf 7203 sa_sd,
dce840a0 7204 sa_sd_storage,
2109b99e
AH
7205 sa_none,
7206};
7207
54ab4ff4
PZ
7208struct sched_domain_topology_level;
7209
7210typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
7211typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7212
e3589f6c
PZ
7213#define SDTL_OVERLAP 0x01
7214
eb7a74e6 7215struct sched_domain_topology_level {
2c402dc3
PZ
7216 sched_domain_init_f init;
7217 sched_domain_mask_f mask;
e3589f6c 7218 int flags;
54ab4ff4 7219 struct sd_data data;
eb7a74e6
PZ
7220};
7221
e3589f6c
PZ
7222static int
7223build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7224{
7225 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7226 const struct cpumask *span = sched_domain_span(sd);
7227 struct cpumask *covered = sched_domains_tmpmask;
7228 struct sd_data *sdd = sd->private;
7229 struct sched_domain *child;
7230 int i;
7231
7232 cpumask_clear(covered);
7233
7234 for_each_cpu(i, span) {
7235 struct cpumask *sg_span;
7236
7237 if (cpumask_test_cpu(i, covered))
7238 continue;
7239
7240 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7241 GFP_KERNEL, cpu_to_node(i));
7242
7243 if (!sg)
7244 goto fail;
7245
7246 sg_span = sched_group_cpus(sg);
7247
7248 child = *per_cpu_ptr(sdd->sd, i);
7249 if (child->child) {
7250 child = child->child;
7251 cpumask_copy(sg_span, sched_domain_span(child));
7252 } else
7253 cpumask_set_cpu(i, sg_span);
7254
7255 cpumask_or(covered, covered, sg_span);
7256
7257 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7258 atomic_inc(&sg->sgp->ref);
7259
7260 if (cpumask_test_cpu(cpu, sg_span))
7261 groups = sg;
7262
7263 if (!first)
7264 first = sg;
7265 if (last)
7266 last->next = sg;
7267 last = sg;
7268 last->next = first;
7269 }
7270 sd->groups = groups;
7271
7272 return 0;
7273
7274fail:
7275 free_sched_groups(first, 0);
7276
7277 return -ENOMEM;
7278}
7279
dce840a0 7280static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 7281{
dce840a0
PZ
7282 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7283 struct sched_domain *child = sd->child;
1da177e4 7284
dce840a0
PZ
7285 if (child)
7286 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 7287
9c3f75cb 7288 if (sg) {
dce840a0 7289 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 7290 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 7291 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 7292 }
dce840a0
PZ
7293
7294 return cpu;
1e9f28fa 7295}
1e9f28fa 7296
01a08546 7297/*
dce840a0
PZ
7298 * build_sched_groups will build a circular linked list of the groups
7299 * covered by the given span, and will set each group's ->cpumask correctly,
7300 * and ->cpu_power to 0.
e3589f6c
PZ
7301 *
7302 * Assumes the sched_domain tree is fully constructed
01a08546 7303 */
e3589f6c
PZ
7304static int
7305build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 7306{
dce840a0
PZ
7307 struct sched_group *first = NULL, *last = NULL;
7308 struct sd_data *sdd = sd->private;
7309 const struct cpumask *span = sched_domain_span(sd);
f96225fd 7310 struct cpumask *covered;
dce840a0 7311 int i;
9c1cfda2 7312
e3589f6c
PZ
7313 get_group(cpu, sdd, &sd->groups);
7314 atomic_inc(&sd->groups->ref);
7315
7316 if (cpu != cpumask_first(sched_domain_span(sd)))
7317 return 0;
7318
f96225fd
PZ
7319 lockdep_assert_held(&sched_domains_mutex);
7320 covered = sched_domains_tmpmask;
7321
dce840a0 7322 cpumask_clear(covered);
6711cab4 7323
dce840a0
PZ
7324 for_each_cpu(i, span) {
7325 struct sched_group *sg;
7326 int group = get_group(i, sdd, &sg);
7327 int j;
6711cab4 7328
dce840a0
PZ
7329 if (cpumask_test_cpu(i, covered))
7330 continue;
6711cab4 7331
dce840a0 7332 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 7333 sg->sgp->power = 0;
0601a88d 7334
dce840a0
PZ
7335 for_each_cpu(j, span) {
7336 if (get_group(j, sdd, NULL) != group)
7337 continue;
0601a88d 7338
dce840a0
PZ
7339 cpumask_set_cpu(j, covered);
7340 cpumask_set_cpu(j, sched_group_cpus(sg));
7341 }
0601a88d 7342
dce840a0
PZ
7343 if (!first)
7344 first = sg;
7345 if (last)
7346 last->next = sg;
7347 last = sg;
7348 }
7349 last->next = first;
e3589f6c
PZ
7350
7351 return 0;
0601a88d 7352}
51888ca2 7353
89c4710e
SS
7354/*
7355 * Initialize sched groups cpu_power.
7356 *
7357 * cpu_power indicates the capacity of sched group, which is used while
7358 * distributing the load between different sched groups in a sched domain.
7359 * Typically cpu_power for all the groups in a sched domain will be same unless
7360 * there are asymmetries in the topology. If there are asymmetries, group
7361 * having more cpu_power will pickup more load compared to the group having
7362 * less cpu_power.
89c4710e
SS
7363 */
7364static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7365{
e3589f6c 7366 struct sched_group *sg = sd->groups;
89c4710e 7367
e3589f6c
PZ
7368 WARN_ON(!sd || !sg);
7369
7370 do {
7371 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7372 sg = sg->next;
7373 } while (sg != sd->groups);
89c4710e 7374
e3589f6c
PZ
7375 if (cpu != group_first_cpu(sg))
7376 return;
aae6d3dd 7377
d274cb30 7378 update_group_power(sd, cpu);
89c4710e
SS
7379}
7380
7c16ec58
MT
7381/*
7382 * Initializers for schedule domains
7383 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7384 */
7385
a5d8c348
IM
7386#ifdef CONFIG_SCHED_DEBUG
7387# define SD_INIT_NAME(sd, type) sd->name = #type
7388#else
7389# define SD_INIT_NAME(sd, type) do { } while (0)
7390#endif
7391
54ab4ff4
PZ
7392#define SD_INIT_FUNC(type) \
7393static noinline struct sched_domain * \
7394sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7395{ \
7396 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7397 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7398 SD_INIT_NAME(sd, type); \
7399 sd->private = &tl->data; \
7400 return sd; \
7c16ec58
MT
7401}
7402
7403SD_INIT_FUNC(CPU)
7404#ifdef CONFIG_NUMA
7405 SD_INIT_FUNC(ALLNODES)
7406 SD_INIT_FUNC(NODE)
7407#endif
7408#ifdef CONFIG_SCHED_SMT
7409 SD_INIT_FUNC(SIBLING)
7410#endif
7411#ifdef CONFIG_SCHED_MC
7412 SD_INIT_FUNC(MC)
7413#endif
01a08546
HC
7414#ifdef CONFIG_SCHED_BOOK
7415 SD_INIT_FUNC(BOOK)
7416#endif
7c16ec58 7417
1d3504fc 7418static int default_relax_domain_level = -1;
60495e77 7419int sched_domain_level_max;
1d3504fc
HS
7420
7421static int __init setup_relax_domain_level(char *str)
7422{
30e0e178
LZ
7423 unsigned long val;
7424
7425 val = simple_strtoul(str, NULL, 0);
60495e77 7426 if (val < sched_domain_level_max)
30e0e178
LZ
7427 default_relax_domain_level = val;
7428
1d3504fc
HS
7429 return 1;
7430}
7431__setup("relax_domain_level=", setup_relax_domain_level);
7432
7433static void set_domain_attribute(struct sched_domain *sd,
7434 struct sched_domain_attr *attr)
7435{
7436 int request;
7437
7438 if (!attr || attr->relax_domain_level < 0) {
7439 if (default_relax_domain_level < 0)
7440 return;
7441 else
7442 request = default_relax_domain_level;
7443 } else
7444 request = attr->relax_domain_level;
7445 if (request < sd->level) {
7446 /* turn off idle balance on this domain */
c88d5910 7447 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7448 } else {
7449 /* turn on idle balance on this domain */
c88d5910 7450 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7451 }
7452}
7453
54ab4ff4
PZ
7454static void __sdt_free(const struct cpumask *cpu_map);
7455static int __sdt_alloc(const struct cpumask *cpu_map);
7456
2109b99e
AH
7457static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7458 const struct cpumask *cpu_map)
7459{
7460 switch (what) {
2109b99e 7461 case sa_rootdomain:
822ff793
PZ
7462 if (!atomic_read(&d->rd->refcount))
7463 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7464 case sa_sd:
7465 free_percpu(d->sd); /* fall through */
dce840a0 7466 case sa_sd_storage:
54ab4ff4 7467 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7468 case sa_none:
7469 break;
7470 }
7471}
3404c8d9 7472
2109b99e
AH
7473static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7474 const struct cpumask *cpu_map)
7475{
dce840a0
PZ
7476 memset(d, 0, sizeof(*d));
7477
54ab4ff4
PZ
7478 if (__sdt_alloc(cpu_map))
7479 return sa_sd_storage;
dce840a0
PZ
7480 d->sd = alloc_percpu(struct sched_domain *);
7481 if (!d->sd)
7482 return sa_sd_storage;
2109b99e 7483 d->rd = alloc_rootdomain();
dce840a0 7484 if (!d->rd)
21d42ccf 7485 return sa_sd;
2109b99e
AH
7486 return sa_rootdomain;
7487}
57d885fe 7488
dce840a0
PZ
7489/*
7490 * NULL the sd_data elements we've used to build the sched_domain and
7491 * sched_group structure so that the subsequent __free_domain_allocs()
7492 * will not free the data we're using.
7493 */
7494static void claim_allocations(int cpu, struct sched_domain *sd)
7495{
7496 struct sd_data *sdd = sd->private;
dce840a0
PZ
7497
7498 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7499 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7500
e3589f6c 7501 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 7502 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
7503
7504 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 7505 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
7506}
7507
2c402dc3
PZ
7508#ifdef CONFIG_SCHED_SMT
7509static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7510{
2c402dc3 7511 return topology_thread_cpumask(cpu);
3bd65a80 7512}
2c402dc3 7513#endif
7f4588f3 7514
d069b916
PZ
7515/*
7516 * Topology list, bottom-up.
7517 */
2c402dc3 7518static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7519#ifdef CONFIG_SCHED_SMT
7520 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7521#endif
1e9f28fa 7522#ifdef CONFIG_SCHED_MC
2c402dc3 7523 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7524#endif
d069b916
PZ
7525#ifdef CONFIG_SCHED_BOOK
7526 { sd_init_BOOK, cpu_book_mask, },
7527#endif
7528 { sd_init_CPU, cpu_cpu_mask, },
7529#ifdef CONFIG_NUMA
e3589f6c 7530 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 7531 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7532#endif
eb7a74e6
PZ
7533 { NULL, },
7534};
7535
7536static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7537
54ab4ff4
PZ
7538static int __sdt_alloc(const struct cpumask *cpu_map)
7539{
7540 struct sched_domain_topology_level *tl;
7541 int j;
7542
7543 for (tl = sched_domain_topology; tl->init; tl++) {
7544 struct sd_data *sdd = &tl->data;
7545
7546 sdd->sd = alloc_percpu(struct sched_domain *);
7547 if (!sdd->sd)
7548 return -ENOMEM;
7549
7550 sdd->sg = alloc_percpu(struct sched_group *);
7551 if (!sdd->sg)
7552 return -ENOMEM;
7553
9c3f75cb
PZ
7554 sdd->sgp = alloc_percpu(struct sched_group_power *);
7555 if (!sdd->sgp)
7556 return -ENOMEM;
7557
54ab4ff4
PZ
7558 for_each_cpu(j, cpu_map) {
7559 struct sched_domain *sd;
7560 struct sched_group *sg;
9c3f75cb 7561 struct sched_group_power *sgp;
54ab4ff4
PZ
7562
7563 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7564 GFP_KERNEL, cpu_to_node(j));
7565 if (!sd)
7566 return -ENOMEM;
7567
7568 *per_cpu_ptr(sdd->sd, j) = sd;
7569
7570 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7571 GFP_KERNEL, cpu_to_node(j));
7572 if (!sg)
7573 return -ENOMEM;
7574
7575 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
7576
7577 sgp = kzalloc_node(sizeof(struct sched_group_power),
7578 GFP_KERNEL, cpu_to_node(j));
7579 if (!sgp)
7580 return -ENOMEM;
7581
7582 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
7583 }
7584 }
7585
7586 return 0;
7587}
7588
7589static void __sdt_free(const struct cpumask *cpu_map)
7590{
7591 struct sched_domain_topology_level *tl;
7592 int j;
7593
7594 for (tl = sched_domain_topology; tl->init; tl++) {
7595 struct sd_data *sdd = &tl->data;
7596
7597 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
7598 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7599 if (sd && (sd->flags & SD_OVERLAP))
7600 free_sched_groups(sd->groups, 0);
54ab4ff4 7601 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 7602 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
7603 }
7604 free_percpu(sdd->sd);
7605 free_percpu(sdd->sg);
9c3f75cb 7606 free_percpu(sdd->sgp);
54ab4ff4
PZ
7607 }
7608}
7609
2c402dc3
PZ
7610struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7611 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7612 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7613 int cpu)
7614{
54ab4ff4 7615 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7616 if (!sd)
d069b916 7617 return child;
2c402dc3
PZ
7618
7619 set_domain_attribute(sd, attr);
7620 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7621 if (child) {
7622 sd->level = child->level + 1;
7623 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7624 child->parent = sd;
60495e77 7625 }
d069b916 7626 sd->child = child;
2c402dc3
PZ
7627
7628 return sd;
7629}
7630
2109b99e
AH
7631/*
7632 * Build sched domains for a given set of cpus and attach the sched domains
7633 * to the individual cpus
7634 */
dce840a0
PZ
7635static int build_sched_domains(const struct cpumask *cpu_map,
7636 struct sched_domain_attr *attr)
2109b99e
AH
7637{
7638 enum s_alloc alloc_state = sa_none;
dce840a0 7639 struct sched_domain *sd;
2109b99e 7640 struct s_data d;
822ff793 7641 int i, ret = -ENOMEM;
9c1cfda2 7642
2109b99e
AH
7643 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7644 if (alloc_state != sa_rootdomain)
7645 goto error;
9c1cfda2 7646
dce840a0 7647 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7648 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7649 struct sched_domain_topology_level *tl;
7650
3bd65a80 7651 sd = NULL;
e3589f6c 7652 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 7653 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
7654 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7655 sd->flags |= SD_OVERLAP;
d110235d
PZ
7656 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7657 break;
e3589f6c 7658 }
d274cb30 7659
d069b916
PZ
7660 while (sd->child)
7661 sd = sd->child;
7662
21d42ccf 7663 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7664 }
7665
7666 /* Build the groups for the domains */
7667 for_each_cpu(i, cpu_map) {
7668 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7669 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7670 if (sd->flags & SD_OVERLAP) {
7671 if (build_overlap_sched_groups(sd, i))
7672 goto error;
7673 } else {
7674 if (build_sched_groups(sd, i))
7675 goto error;
7676 }
1cf51902 7677 }
a06dadbe 7678 }
9c1cfda2 7679
1da177e4 7680 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7681 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7682 if (!cpumask_test_cpu(i, cpu_map))
7683 continue;
9c1cfda2 7684
dce840a0
PZ
7685 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7686 claim_allocations(i, sd);
cd4ea6ae 7687 init_sched_groups_power(i, sd);
dce840a0 7688 }
f712c0c7 7689 }
9c1cfda2 7690
1da177e4 7691 /* Attach the domains */
dce840a0 7692 rcu_read_lock();
abcd083a 7693 for_each_cpu(i, cpu_map) {
21d42ccf 7694 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7695 cpu_attach_domain(sd, d.rd, i);
1da177e4 7696 }
dce840a0 7697 rcu_read_unlock();
51888ca2 7698
822ff793 7699 ret = 0;
51888ca2 7700error:
2109b99e 7701 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7702 return ret;
1da177e4 7703}
029190c5 7704
acc3f5d7 7705static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7706static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7707static struct sched_domain_attr *dattr_cur;
7708 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7709
7710/*
7711 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7712 * cpumask) fails, then fallback to a single sched domain,
7713 * as determined by the single cpumask fallback_doms.
029190c5 7714 */
4212823f 7715static cpumask_var_t fallback_doms;
029190c5 7716
ee79d1bd
HC
7717/*
7718 * arch_update_cpu_topology lets virtualized architectures update the
7719 * cpu core maps. It is supposed to return 1 if the topology changed
7720 * or 0 if it stayed the same.
7721 */
7722int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7723{
ee79d1bd 7724 return 0;
22e52b07
HC
7725}
7726
acc3f5d7
RR
7727cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7728{
7729 int i;
7730 cpumask_var_t *doms;
7731
7732 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7733 if (!doms)
7734 return NULL;
7735 for (i = 0; i < ndoms; i++) {
7736 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7737 free_sched_domains(doms, i);
7738 return NULL;
7739 }
7740 }
7741 return doms;
7742}
7743
7744void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7745{
7746 unsigned int i;
7747 for (i = 0; i < ndoms; i++)
7748 free_cpumask_var(doms[i]);
7749 kfree(doms);
7750}
7751
1a20ff27 7752/*
41a2d6cf 7753 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7754 * For now this just excludes isolated cpus, but could be used to
7755 * exclude other special cases in the future.
1a20ff27 7756 */
c4a8849a 7757static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7758{
7378547f
MM
7759 int err;
7760
22e52b07 7761 arch_update_cpu_topology();
029190c5 7762 ndoms_cur = 1;
acc3f5d7 7763 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7764 if (!doms_cur)
acc3f5d7
RR
7765 doms_cur = &fallback_doms;
7766 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7767 dattr_cur = NULL;
dce840a0 7768 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7769 register_sched_domain_sysctl();
7378547f
MM
7770
7771 return err;
1a20ff27
DG
7772}
7773
1a20ff27
DG
7774/*
7775 * Detach sched domains from a group of cpus specified in cpu_map
7776 * These cpus will now be attached to the NULL domain
7777 */
96f874e2 7778static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7779{
7780 int i;
7781
dce840a0 7782 rcu_read_lock();
abcd083a 7783 for_each_cpu(i, cpu_map)
57d885fe 7784 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7785 rcu_read_unlock();
1a20ff27
DG
7786}
7787
1d3504fc
HS
7788/* handle null as "default" */
7789static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7790 struct sched_domain_attr *new, int idx_new)
7791{
7792 struct sched_domain_attr tmp;
7793
7794 /* fast path */
7795 if (!new && !cur)
7796 return 1;
7797
7798 tmp = SD_ATTR_INIT;
7799 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7800 new ? (new + idx_new) : &tmp,
7801 sizeof(struct sched_domain_attr));
7802}
7803
029190c5
PJ
7804/*
7805 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7806 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7807 * doms_new[] to the current sched domain partitioning, doms_cur[].
7808 * It destroys each deleted domain and builds each new domain.
7809 *
acc3f5d7 7810 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7811 * The masks don't intersect (don't overlap.) We should setup one
7812 * sched domain for each mask. CPUs not in any of the cpumasks will
7813 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7814 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7815 * it as it is.
7816 *
acc3f5d7
RR
7817 * The passed in 'doms_new' should be allocated using
7818 * alloc_sched_domains. This routine takes ownership of it and will
7819 * free_sched_domains it when done with it. If the caller failed the
7820 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7821 * and partition_sched_domains() will fallback to the single partition
7822 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7823 *
96f874e2 7824 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7825 * ndoms_new == 0 is a special case for destroying existing domains,
7826 * and it will not create the default domain.
dfb512ec 7827 *
029190c5
PJ
7828 * Call with hotplug lock held
7829 */
acc3f5d7 7830void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7831 struct sched_domain_attr *dattr_new)
029190c5 7832{
dfb512ec 7833 int i, j, n;
d65bd5ec 7834 int new_topology;
029190c5 7835
712555ee 7836 mutex_lock(&sched_domains_mutex);
a1835615 7837
7378547f
MM
7838 /* always unregister in case we don't destroy any domains */
7839 unregister_sched_domain_sysctl();
7840
d65bd5ec
HC
7841 /* Let architecture update cpu core mappings. */
7842 new_topology = arch_update_cpu_topology();
7843
dfb512ec 7844 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7845
7846 /* Destroy deleted domains */
7847 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7848 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7849 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7850 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7851 goto match1;
7852 }
7853 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7854 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7855match1:
7856 ;
7857 }
7858
e761b772
MK
7859 if (doms_new == NULL) {
7860 ndoms_cur = 0;
acc3f5d7 7861 doms_new = &fallback_doms;
6ad4c188 7862 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7863 WARN_ON_ONCE(dattr_new);
e761b772
MK
7864 }
7865
029190c5
PJ
7866 /* Build new domains */
7867 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7868 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7869 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7870 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7871 goto match2;
7872 }
7873 /* no match - add a new doms_new */
dce840a0 7874 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7875match2:
7876 ;
7877 }
7878
7879 /* Remember the new sched domains */
acc3f5d7
RR
7880 if (doms_cur != &fallback_doms)
7881 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7882 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7883 doms_cur = doms_new;
1d3504fc 7884 dattr_cur = dattr_new;
029190c5 7885 ndoms_cur = ndoms_new;
7378547f
MM
7886
7887 register_sched_domain_sysctl();
a1835615 7888
712555ee 7889 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7890}
7891
5c45bf27 7892#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7893static void reinit_sched_domains(void)
5c45bf27 7894{
95402b38 7895 get_online_cpus();
dfb512ec
MK
7896
7897 /* Destroy domains first to force the rebuild */
7898 partition_sched_domains(0, NULL, NULL);
7899
e761b772 7900 rebuild_sched_domains();
95402b38 7901 put_online_cpus();
5c45bf27
SS
7902}
7903
7904static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7905{
afb8a9b7 7906 unsigned int level = 0;
5c45bf27 7907
afb8a9b7
GS
7908 if (sscanf(buf, "%u", &level) != 1)
7909 return -EINVAL;
7910
7911 /*
7912 * level is always be positive so don't check for
7913 * level < POWERSAVINGS_BALANCE_NONE which is 0
7914 * What happens on 0 or 1 byte write,
7915 * need to check for count as well?
7916 */
7917
7918 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7919 return -EINVAL;
7920
7921 if (smt)
afb8a9b7 7922 sched_smt_power_savings = level;
5c45bf27 7923 else
afb8a9b7 7924 sched_mc_power_savings = level;
5c45bf27 7925
c4a8849a 7926 reinit_sched_domains();
5c45bf27 7927
c70f22d2 7928 return count;
5c45bf27
SS
7929}
7930
5c45bf27 7931#ifdef CONFIG_SCHED_MC
f718cd4a 7932static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7933 struct sysdev_class_attribute *attr,
f718cd4a 7934 char *page)
5c45bf27
SS
7935{
7936 return sprintf(page, "%u\n", sched_mc_power_savings);
7937}
f718cd4a 7938static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7939 struct sysdev_class_attribute *attr,
48f24c4d 7940 const char *buf, size_t count)
5c45bf27
SS
7941{
7942 return sched_power_savings_store(buf, count, 0);
7943}
f718cd4a
AK
7944static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7945 sched_mc_power_savings_show,
7946 sched_mc_power_savings_store);
5c45bf27
SS
7947#endif
7948
7949#ifdef CONFIG_SCHED_SMT
f718cd4a 7950static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7951 struct sysdev_class_attribute *attr,
f718cd4a 7952 char *page)
5c45bf27
SS
7953{
7954 return sprintf(page, "%u\n", sched_smt_power_savings);
7955}
f718cd4a 7956static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7957 struct sysdev_class_attribute *attr,
48f24c4d 7958 const char *buf, size_t count)
5c45bf27
SS
7959{
7960 return sched_power_savings_store(buf, count, 1);
7961}
f718cd4a
AK
7962static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7963 sched_smt_power_savings_show,
6707de00
AB
7964 sched_smt_power_savings_store);
7965#endif
7966
39aac648 7967int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7968{
7969 int err = 0;
7970
7971#ifdef CONFIG_SCHED_SMT
7972 if (smt_capable())
7973 err = sysfs_create_file(&cls->kset.kobj,
7974 &attr_sched_smt_power_savings.attr);
7975#endif
7976#ifdef CONFIG_SCHED_MC
7977 if (!err && mc_capable())
7978 err = sysfs_create_file(&cls->kset.kobj,
7979 &attr_sched_mc_power_savings.attr);
7980#endif
7981 return err;
7982}
6d6bc0ad 7983#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7984
1da177e4 7985/*
3a101d05
TH
7986 * Update cpusets according to cpu_active mask. If cpusets are
7987 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7988 * around partition_sched_domains().
1da177e4 7989 */
0b2e918a
TH
7990static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7991 void *hcpu)
e761b772 7992{
3a101d05 7993 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7994 case CPU_ONLINE:
6ad4c188 7995 case CPU_DOWN_FAILED:
3a101d05 7996 cpuset_update_active_cpus();
e761b772 7997 return NOTIFY_OK;
3a101d05
TH
7998 default:
7999 return NOTIFY_DONE;
8000 }
8001}
e761b772 8002
0b2e918a
TH
8003static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
8004 void *hcpu)
3a101d05
TH
8005{
8006 switch (action & ~CPU_TASKS_FROZEN) {
8007 case CPU_DOWN_PREPARE:
8008 cpuset_update_active_cpus();
8009 return NOTIFY_OK;
e761b772
MK
8010 default:
8011 return NOTIFY_DONE;
8012 }
8013}
e761b772
MK
8014
8015static int update_runtime(struct notifier_block *nfb,
8016 unsigned long action, void *hcpu)
1da177e4 8017{
7def2be1
PZ
8018 int cpu = (int)(long)hcpu;
8019
1da177e4 8020 switch (action) {
1da177e4 8021 case CPU_DOWN_PREPARE:
8bb78442 8022 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8023 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8024 return NOTIFY_OK;
8025
1da177e4 8026 case CPU_DOWN_FAILED:
8bb78442 8027 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8028 case CPU_ONLINE:
8bb78442 8029 case CPU_ONLINE_FROZEN:
7def2be1 8030 enable_runtime(cpu_rq(cpu));
e761b772
MK
8031 return NOTIFY_OK;
8032
1da177e4
LT
8033 default:
8034 return NOTIFY_DONE;
8035 }
1da177e4 8036}
1da177e4
LT
8037
8038void __init sched_init_smp(void)
8039{
dcc30a35
RR
8040 cpumask_var_t non_isolated_cpus;
8041
8042 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 8043 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 8044
95402b38 8045 get_online_cpus();
712555ee 8046 mutex_lock(&sched_domains_mutex);
c4a8849a 8047 init_sched_domains(cpu_active_mask);
dcc30a35
RR
8048 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8049 if (cpumask_empty(non_isolated_cpus))
8050 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8051 mutex_unlock(&sched_domains_mutex);
95402b38 8052 put_online_cpus();
e761b772 8053
3a101d05
TH
8054 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8055 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
8056
8057 /* RT runtime code needs to handle some hotplug events */
8058 hotcpu_notifier(update_runtime, 0);
8059
b328ca18 8060 init_hrtick();
5c1e1767
NP
8061
8062 /* Move init over to a non-isolated CPU */
dcc30a35 8063 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8064 BUG();
19978ca6 8065 sched_init_granularity();
dcc30a35 8066 free_cpumask_var(non_isolated_cpus);
4212823f 8067
0e3900e6 8068 init_sched_rt_class();
1da177e4
LT
8069}
8070#else
8071void __init sched_init_smp(void)
8072{
19978ca6 8073 sched_init_granularity();
1da177e4
LT
8074}
8075#endif /* CONFIG_SMP */
8076
cd1bb94b
AB
8077const_debug unsigned int sysctl_timer_migration = 1;
8078
1da177e4
LT
8079int in_sched_functions(unsigned long addr)
8080{
1da177e4
LT
8081 return in_lock_functions(addr) ||
8082 (addr >= (unsigned long)__sched_text_start
8083 && addr < (unsigned long)__sched_text_end);
8084}
8085
acb5a9ba 8086static void init_cfs_rq(struct cfs_rq *cfs_rq)
dd41f596
IM
8087{
8088 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8089 INIT_LIST_HEAD(&cfs_rq->tasks);
67e9fb2a 8090 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
c64be78f
PZ
8091#ifndef CONFIG_64BIT
8092 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8093#endif
dd41f596
IM
8094}
8095
fa85ae24
PZ
8096static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8097{
8098 struct rt_prio_array *array;
8099 int i;
8100
8101 array = &rt_rq->active;
8102 for (i = 0; i < MAX_RT_PRIO; i++) {
8103 INIT_LIST_HEAD(array->queue + i);
8104 __clear_bit(i, array->bitmap);
8105 }
8106 /* delimiter for bitsearch: */
8107 __set_bit(MAX_RT_PRIO, array->bitmap);
8108
acb5a9ba 8109#if defined CONFIG_SMP
e864c499
GH
8110 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8111 rt_rq->highest_prio.next = MAX_RT_PRIO;
fa85ae24 8112 rt_rq->rt_nr_migratory = 0;
fa85ae24 8113 rt_rq->overloaded = 0;
732375c6 8114 plist_head_init(&rt_rq->pushable_tasks);
fa85ae24
PZ
8115#endif
8116
8117 rt_rq->rt_time = 0;
8118 rt_rq->rt_throttled = 0;
ac086bc2 8119 rt_rq->rt_runtime = 0;
0986b11b 8120 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
fa85ae24
PZ
8121}
8122
6f505b16 8123#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8124static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8125 struct sched_entity *se, int cpu,
ec7dc8ac 8126 struct sched_entity *parent)
6f505b16 8127{
ec7dc8ac 8128 struct rq *rq = cpu_rq(cpu);
acb5a9ba 8129
6f505b16 8130 cfs_rq->tg = tg;
acb5a9ba
JS
8131 cfs_rq->rq = rq;
8132#ifdef CONFIG_SMP
8133 /* allow initial update_cfs_load() to truncate */
8134 cfs_rq->load_stamp = 1;
8135#endif
ab84d31e 8136 init_cfs_rq_runtime(cfs_rq);
6f505b16 8137
acb5a9ba 8138 tg->cfs_rq[cpu] = cfs_rq;
6f505b16 8139 tg->se[cpu] = se;
acb5a9ba 8140
07e06b01 8141 /* se could be NULL for root_task_group */
354d60c2
DG
8142 if (!se)
8143 return;
8144
ec7dc8ac
DG
8145 if (!parent)
8146 se->cfs_rq = &rq->cfs;
8147 else
8148 se->cfs_rq = parent->my_q;
8149
6f505b16 8150 se->my_q = cfs_rq;
9437178f 8151 update_load_set(&se->load, 0);
ec7dc8ac 8152 se->parent = parent;
6f505b16 8153}
052f1dc7 8154#endif
6f505b16 8155
052f1dc7 8156#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8157static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8158 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8159 struct sched_rt_entity *parent)
6f505b16 8160{
ec7dc8ac
DG
8161 struct rq *rq = cpu_rq(cpu);
8162
acb5a9ba
JS
8163 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8164 rt_rq->rt_nr_boosted = 0;
8165 rt_rq->rq = rq;
6f505b16 8166 rt_rq->tg = tg;
6f505b16 8167
acb5a9ba 8168 tg->rt_rq[cpu] = rt_rq;
6f505b16 8169 tg->rt_se[cpu] = rt_se;
acb5a9ba 8170
354d60c2
DG
8171 if (!rt_se)
8172 return;
8173
ec7dc8ac
DG
8174 if (!parent)
8175 rt_se->rt_rq = &rq->rt;
8176 else
8177 rt_se->rt_rq = parent->my_q;
8178
6f505b16 8179 rt_se->my_q = rt_rq;
ec7dc8ac 8180 rt_se->parent = parent;
6f505b16
PZ
8181 INIT_LIST_HEAD(&rt_se->run_list);
8182}
8183#endif
8184
1da177e4
LT
8185void __init sched_init(void)
8186{
dd41f596 8187 int i, j;
434d53b0
MT
8188 unsigned long alloc_size = 0, ptr;
8189
8190#ifdef CONFIG_FAIR_GROUP_SCHED
8191 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8192#endif
8193#ifdef CONFIG_RT_GROUP_SCHED
8194 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8195#endif
df7c8e84 8196#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8197 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8198#endif
434d53b0 8199 if (alloc_size) {
36b7b6d4 8200 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8201
8202#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8203 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8204 ptr += nr_cpu_ids * sizeof(void **);
8205
07e06b01 8206 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8207 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8208
6d6bc0ad 8209#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8210#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8211 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8212 ptr += nr_cpu_ids * sizeof(void **);
8213
07e06b01 8214 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8215 ptr += nr_cpu_ids * sizeof(void **);
8216
6d6bc0ad 8217#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8218#ifdef CONFIG_CPUMASK_OFFSTACK
8219 for_each_possible_cpu(i) {
8220 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8221 ptr += cpumask_size();
8222 }
8223#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8224 }
dd41f596 8225
57d885fe
GH
8226#ifdef CONFIG_SMP
8227 init_defrootdomain();
8228#endif
8229
d0b27fa7
PZ
8230 init_rt_bandwidth(&def_rt_bandwidth,
8231 global_rt_period(), global_rt_runtime());
8232
8233#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8234 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8235 global_rt_period(), global_rt_runtime());
6d6bc0ad 8236#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8237
7c941438 8238#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8239 list_add(&root_task_group.list, &task_groups);
8240 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8241 autogroup_init(&init_task);
7c941438 8242#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8243
0a945022 8244 for_each_possible_cpu(i) {
70b97a7f 8245 struct rq *rq;
1da177e4
LT
8246
8247 rq = cpu_rq(i);
05fa785c 8248 raw_spin_lock_init(&rq->lock);
7897986b 8249 rq->nr_running = 0;
dce48a84
TG
8250 rq->calc_load_active = 0;
8251 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8252 init_cfs_rq(&rq->cfs);
6f505b16 8253 init_rt_rq(&rq->rt, rq);
dd41f596 8254#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8255 root_task_group.shares = root_task_group_load;
6f505b16 8256 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8257 /*
07e06b01 8258 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8259 *
8260 * In case of task-groups formed thr' the cgroup filesystem, it
8261 * gets 100% of the cpu resources in the system. This overall
8262 * system cpu resource is divided among the tasks of
07e06b01 8263 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8264 * based on each entity's (task or task-group's) weight
8265 * (se->load.weight).
8266 *
07e06b01 8267 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8268 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8269 * then A0's share of the cpu resource is:
8270 *
0d905bca 8271 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8272 *
07e06b01
YZ
8273 * We achieve this by letting root_task_group's tasks sit
8274 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8275 */
ab84d31e 8276 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 8277 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8278#endif /* CONFIG_FAIR_GROUP_SCHED */
8279
8280 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8281#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8282 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8283 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8284#endif
1da177e4 8285
dd41f596
IM
8286 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8287 rq->cpu_load[j] = 0;
fdf3e95d
VP
8288
8289 rq->last_load_update_tick = jiffies;
8290
1da177e4 8291#ifdef CONFIG_SMP
41c7ce9a 8292 rq->sd = NULL;
57d885fe 8293 rq->rd = NULL;
1399fa78 8294 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 8295 rq->post_schedule = 0;
1da177e4 8296 rq->active_balance = 0;
dd41f596 8297 rq->next_balance = jiffies;
1da177e4 8298 rq->push_cpu = 0;
0a2966b4 8299 rq->cpu = i;
1f11eb6a 8300 rq->online = 0;
eae0c9df
MG
8301 rq->idle_stamp = 0;
8302 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8303 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8304#ifdef CONFIG_NO_HZ
8305 rq->nohz_balance_kick = 0;
8306 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8307#endif
1da177e4 8308#endif
8f4d37ec 8309 init_rq_hrtick(rq);
1da177e4 8310 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8311 }
8312
2dd73a4f 8313 set_load_weight(&init_task);
b50f60ce 8314
e107be36
AK
8315#ifdef CONFIG_PREEMPT_NOTIFIERS
8316 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8317#endif
8318
c9819f45 8319#ifdef CONFIG_SMP
962cf36c 8320 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8321#endif
8322
b50f60ce 8323#ifdef CONFIG_RT_MUTEXES
732375c6 8324 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
8325#endif
8326
1da177e4
LT
8327 /*
8328 * The boot idle thread does lazy MMU switching as well:
8329 */
8330 atomic_inc(&init_mm.mm_count);
8331 enter_lazy_tlb(&init_mm, current);
8332
8333 /*
8334 * Make us the idle thread. Technically, schedule() should not be
8335 * called from this thread, however somewhere below it might be,
8336 * but because we are the idle thread, we just pick up running again
8337 * when this runqueue becomes "idle".
8338 */
8339 init_idle(current, smp_processor_id());
dce48a84
TG
8340
8341 calc_load_update = jiffies + LOAD_FREQ;
8342
dd41f596
IM
8343 /*
8344 * During early bootup we pretend to be a normal task:
8345 */
8346 current->sched_class = &fair_sched_class;
6892b75e 8347
6a7b3dc3 8348 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8349 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8350#ifdef CONFIG_SMP
4cb98839 8351 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 8352#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8353 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8354 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8355 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8356 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8357 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8358#endif
bdddd296
RR
8359 /* May be allocated at isolcpus cmdline parse time */
8360 if (cpu_isolated_map == NULL)
8361 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8362#endif /* SMP */
6a7b3dc3 8363
6892b75e 8364 scheduler_running = 1;
1da177e4
LT
8365}
8366
d902db1e 8367#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8368static inline int preempt_count_equals(int preempt_offset)
8369{
234da7bc 8370 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8371
4ba8216c 8372 return (nested == preempt_offset);
e4aafea2
FW
8373}
8374
d894837f 8375void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8376{
1da177e4
LT
8377 static unsigned long prev_jiffy; /* ratelimiting */
8378
e4aafea2
FW
8379 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8380 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8381 return;
8382 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8383 return;
8384 prev_jiffy = jiffies;
8385
3df0fc5b
PZ
8386 printk(KERN_ERR
8387 "BUG: sleeping function called from invalid context at %s:%d\n",
8388 file, line);
8389 printk(KERN_ERR
8390 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8391 in_atomic(), irqs_disabled(),
8392 current->pid, current->comm);
aef745fc
IM
8393
8394 debug_show_held_locks(current);
8395 if (irqs_disabled())
8396 print_irqtrace_events(current);
8397 dump_stack();
1da177e4
LT
8398}
8399EXPORT_SYMBOL(__might_sleep);
8400#endif
8401
8402#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8403static void normalize_task(struct rq *rq, struct task_struct *p)
8404{
da7a735e
PZ
8405 const struct sched_class *prev_class = p->sched_class;
8406 int old_prio = p->prio;
3a5e4dc1 8407 int on_rq;
3e51f33f 8408
fd2f4419 8409 on_rq = p->on_rq;
3a5e4dc1
AK
8410 if (on_rq)
8411 deactivate_task(rq, p, 0);
8412 __setscheduler(rq, p, SCHED_NORMAL, 0);
8413 if (on_rq) {
8414 activate_task(rq, p, 0);
8415 resched_task(rq->curr);
8416 }
da7a735e
PZ
8417
8418 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8419}
8420
1da177e4
LT
8421void normalize_rt_tasks(void)
8422{
a0f98a1c 8423 struct task_struct *g, *p;
1da177e4 8424 unsigned long flags;
70b97a7f 8425 struct rq *rq;
1da177e4 8426
4cf5d77a 8427 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8428 do_each_thread(g, p) {
178be793
IM
8429 /*
8430 * Only normalize user tasks:
8431 */
8432 if (!p->mm)
8433 continue;
8434
6cfb0d5d 8435 p->se.exec_start = 0;
6cfb0d5d 8436#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8437 p->se.statistics.wait_start = 0;
8438 p->se.statistics.sleep_start = 0;
8439 p->se.statistics.block_start = 0;
6cfb0d5d 8440#endif
dd41f596
IM
8441
8442 if (!rt_task(p)) {
8443 /*
8444 * Renice negative nice level userspace
8445 * tasks back to 0:
8446 */
8447 if (TASK_NICE(p) < 0 && p->mm)
8448 set_user_nice(p, 0);
1da177e4 8449 continue;
dd41f596 8450 }
1da177e4 8451
1d615482 8452 raw_spin_lock(&p->pi_lock);
b29739f9 8453 rq = __task_rq_lock(p);
1da177e4 8454
178be793 8455 normalize_task(rq, p);
3a5e4dc1 8456
b29739f9 8457 __task_rq_unlock(rq);
1d615482 8458 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8459 } while_each_thread(g, p);
8460
4cf5d77a 8461 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8462}
8463
8464#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8465
67fc4e0c 8466#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8467/*
67fc4e0c 8468 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8469 *
8470 * They can only be called when the whole system has been
8471 * stopped - every CPU needs to be quiescent, and no scheduling
8472 * activity can take place. Using them for anything else would
8473 * be a serious bug, and as a result, they aren't even visible
8474 * under any other configuration.
8475 */
8476
8477/**
8478 * curr_task - return the current task for a given cpu.
8479 * @cpu: the processor in question.
8480 *
8481 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8482 */
36c8b586 8483struct task_struct *curr_task(int cpu)
1df5c10a
LT
8484{
8485 return cpu_curr(cpu);
8486}
8487
67fc4e0c
JW
8488#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8489
8490#ifdef CONFIG_IA64
1df5c10a
LT
8491/**
8492 * set_curr_task - set the current task for a given cpu.
8493 * @cpu: the processor in question.
8494 * @p: the task pointer to set.
8495 *
8496 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8497 * are serviced on a separate stack. It allows the architecture to switch the
8498 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8499 * must be called with all CPU's synchronized, and interrupts disabled, the
8500 * and caller must save the original value of the current task (see
8501 * curr_task() above) and restore that value before reenabling interrupts and
8502 * re-starting the system.
8503 *
8504 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8505 */
36c8b586 8506void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8507{
8508 cpu_curr(cpu) = p;
8509}
8510
8511#endif
29f59db3 8512
bccbe08a
PZ
8513#ifdef CONFIG_FAIR_GROUP_SCHED
8514static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8515{
8516 int i;
8517
ab84d31e
PT
8518 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8519
6f505b16
PZ
8520 for_each_possible_cpu(i) {
8521 if (tg->cfs_rq)
8522 kfree(tg->cfs_rq[i]);
8523 if (tg->se)
8524 kfree(tg->se[i]);
6f505b16
PZ
8525 }
8526
8527 kfree(tg->cfs_rq);
8528 kfree(tg->se);
6f505b16
PZ
8529}
8530
ec7dc8ac
DG
8531static
8532int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8533{
29f59db3 8534 struct cfs_rq *cfs_rq;
eab17229 8535 struct sched_entity *se;
29f59db3
SV
8536 int i;
8537
434d53b0 8538 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8539 if (!tg->cfs_rq)
8540 goto err;
434d53b0 8541 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8542 if (!tg->se)
8543 goto err;
052f1dc7
PZ
8544
8545 tg->shares = NICE_0_LOAD;
29f59db3 8546
ab84d31e
PT
8547 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8548
29f59db3 8549 for_each_possible_cpu(i) {
eab17229
LZ
8550 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8551 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8552 if (!cfs_rq)
8553 goto err;
8554
eab17229
LZ
8555 se = kzalloc_node(sizeof(struct sched_entity),
8556 GFP_KERNEL, cpu_to_node(i));
29f59db3 8557 if (!se)
dfc12eb2 8558 goto err_free_rq;
29f59db3 8559
acb5a9ba 8560 init_cfs_rq(cfs_rq);
3d4b47b4 8561 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8562 }
8563
8564 return 1;
8565
49246274 8566err_free_rq:
dfc12eb2 8567 kfree(cfs_rq);
49246274 8568err:
bccbe08a
PZ
8569 return 0;
8570}
8571
bccbe08a
PZ
8572static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8573{
3d4b47b4
PZ
8574 struct rq *rq = cpu_rq(cpu);
8575 unsigned long flags;
3d4b47b4
PZ
8576
8577 /*
8578 * Only empty task groups can be destroyed; so we can speculatively
8579 * check on_list without danger of it being re-added.
8580 */
8581 if (!tg->cfs_rq[cpu]->on_list)
8582 return;
8583
8584 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8585 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8586 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8587}
5f817d67 8588#else /* !CONFIG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8589static inline void free_fair_sched_group(struct task_group *tg)
8590{
8591}
8592
ec7dc8ac
DG
8593static inline
8594int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8595{
8596 return 1;
8597}
8598
bccbe08a
PZ
8599static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8600{
8601}
6d6bc0ad 8602#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8603
8604#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8605static void free_rt_sched_group(struct task_group *tg)
8606{
8607 int i;
8608
99bc5242
BL
8609 if (tg->rt_se)
8610 destroy_rt_bandwidth(&tg->rt_bandwidth);
d0b27fa7 8611
bccbe08a
PZ
8612 for_each_possible_cpu(i) {
8613 if (tg->rt_rq)
8614 kfree(tg->rt_rq[i]);
8615 if (tg->rt_se)
8616 kfree(tg->rt_se[i]);
8617 }
8618
8619 kfree(tg->rt_rq);
8620 kfree(tg->rt_se);
8621}
8622
ec7dc8ac
DG
8623static
8624int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8625{
8626 struct rt_rq *rt_rq;
eab17229 8627 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8628 int i;
8629
434d53b0 8630 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8631 if (!tg->rt_rq)
8632 goto err;
434d53b0 8633 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8634 if (!tg->rt_se)
8635 goto err;
8636
d0b27fa7
PZ
8637 init_rt_bandwidth(&tg->rt_bandwidth,
8638 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8639
8640 for_each_possible_cpu(i) {
eab17229
LZ
8641 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8642 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8643 if (!rt_rq)
8644 goto err;
29f59db3 8645
eab17229
LZ
8646 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8647 GFP_KERNEL, cpu_to_node(i));
6f505b16 8648 if (!rt_se)
dfc12eb2 8649 goto err_free_rq;
29f59db3 8650
acb5a9ba
JS
8651 init_rt_rq(rt_rq, cpu_rq(i));
8652 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
3d4b47b4 8653 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8654 }
8655
bccbe08a
PZ
8656 return 1;
8657
49246274 8658err_free_rq:
dfc12eb2 8659 kfree(rt_rq);
49246274 8660err:
bccbe08a
PZ
8661 return 0;
8662}
6d6bc0ad 8663#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8664static inline void free_rt_sched_group(struct task_group *tg)
8665{
8666}
8667
ec7dc8ac
DG
8668static inline
8669int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8670{
8671 return 1;
8672}
6d6bc0ad 8673#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8674
7c941438 8675#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8676static void free_sched_group(struct task_group *tg)
8677{
8678 free_fair_sched_group(tg);
8679 free_rt_sched_group(tg);
e9aa1dd1 8680 autogroup_free(tg);
bccbe08a
PZ
8681 kfree(tg);
8682}
8683
8684/* allocate runqueue etc for a new task group */
ec7dc8ac 8685struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8686{
8687 struct task_group *tg;
8688 unsigned long flags;
bccbe08a
PZ
8689
8690 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8691 if (!tg)
8692 return ERR_PTR(-ENOMEM);
8693
ec7dc8ac 8694 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8695 goto err;
8696
ec7dc8ac 8697 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8698 goto err;
8699
8ed36996 8700 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8701 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8702
8703 WARN_ON(!parent); /* root should already exist */
8704
8705 tg->parent = parent;
f473aa5e 8706 INIT_LIST_HEAD(&tg->children);
09f2724a 8707 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8708 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8709
9b5b7751 8710 return tg;
29f59db3
SV
8711
8712err:
6f505b16 8713 free_sched_group(tg);
29f59db3
SV
8714 return ERR_PTR(-ENOMEM);
8715}
8716
9b5b7751 8717/* rcu callback to free various structures associated with a task group */
6f505b16 8718static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8719{
29f59db3 8720 /* now it should be safe to free those cfs_rqs */
6f505b16 8721 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8722}
8723
9b5b7751 8724/* Destroy runqueue etc associated with a task group */
4cf86d77 8725void sched_destroy_group(struct task_group *tg)
29f59db3 8726{
8ed36996 8727 unsigned long flags;
9b5b7751 8728 int i;
29f59db3 8729
3d4b47b4
PZ
8730 /* end participation in shares distribution */
8731 for_each_possible_cpu(i)
bccbe08a 8732 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8733
8734 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8735 list_del_rcu(&tg->list);
f473aa5e 8736 list_del_rcu(&tg->siblings);
8ed36996 8737 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8738
9b5b7751 8739 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8740 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8741}
8742
9b5b7751 8743/* change task's runqueue when it moves between groups.
3a252015
IM
8744 * The caller of this function should have put the task in its new group
8745 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8746 * reflect its new group.
9b5b7751
SV
8747 */
8748void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8749{
8750 int on_rq, running;
8751 unsigned long flags;
8752 struct rq *rq;
8753
8754 rq = task_rq_lock(tsk, &flags);
8755
051a1d1a 8756 running = task_current(rq, tsk);
fd2f4419 8757 on_rq = tsk->on_rq;
29f59db3 8758
0e1f3483 8759 if (on_rq)
29f59db3 8760 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8761 if (unlikely(running))
8762 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8763
810b3817 8764#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8765 if (tsk->sched_class->task_move_group)
8766 tsk->sched_class->task_move_group(tsk, on_rq);
8767 else
810b3817 8768#endif
b2b5ce02 8769 set_task_rq(tsk, task_cpu(tsk));
810b3817 8770
0e1f3483
HS
8771 if (unlikely(running))
8772 tsk->sched_class->set_curr_task(rq);
8773 if (on_rq)
371fd7e7 8774 enqueue_task(rq, tsk, 0);
29f59db3 8775
0122ec5b 8776 task_rq_unlock(rq, tsk, &flags);
29f59db3 8777}
7c941438 8778#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8779
052f1dc7 8780#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8781static DEFINE_MUTEX(shares_mutex);
8782
4cf86d77 8783int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8784{
8785 int i;
8ed36996 8786 unsigned long flags;
c61935fd 8787
ec7dc8ac
DG
8788 /*
8789 * We can't change the weight of the root cgroup.
8790 */
8791 if (!tg->se[0])
8792 return -EINVAL;
8793
cd62287e 8794 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
62fb1851 8795
8ed36996 8796 mutex_lock(&shares_mutex);
9b5b7751 8797 if (tg->shares == shares)
5cb350ba 8798 goto done;
29f59db3 8799
9b5b7751 8800 tg->shares = shares;
c09595f6 8801 for_each_possible_cpu(i) {
9437178f
PT
8802 struct rq *rq = cpu_rq(i);
8803 struct sched_entity *se;
8804
8805 se = tg->se[i];
8806 /* Propagate contribution to hierarchy */
8807 raw_spin_lock_irqsave(&rq->lock, flags);
8808 for_each_sched_entity(se)
6d5ab293 8809 update_cfs_shares(group_cfs_rq(se));
9437178f 8810 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8811 }
29f59db3 8812
5cb350ba 8813done:
8ed36996 8814 mutex_unlock(&shares_mutex);
9b5b7751 8815 return 0;
29f59db3
SV
8816}
8817
5cb350ba
DG
8818unsigned long sched_group_shares(struct task_group *tg)
8819{
8820 return tg->shares;
8821}
052f1dc7 8822#endif
5cb350ba 8823
a790de99 8824#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
8825static unsigned long to_ratio(u64 period, u64 runtime)
8826{
8827 if (runtime == RUNTIME_INF)
9a7e0b18 8828 return 1ULL << 20;
9f0c1e56 8829
9a7e0b18 8830 return div64_u64(runtime << 20, period);
9f0c1e56 8831}
a790de99
PT
8832#endif
8833
8834#ifdef CONFIG_RT_GROUP_SCHED
8835/*
8836 * Ensure that the real time constraints are schedulable.
8837 */
8838static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 8839
9a7e0b18
PZ
8840/* Must be called with tasklist_lock held */
8841static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8842{
9a7e0b18 8843 struct task_struct *g, *p;
b40b2e8e 8844
9a7e0b18
PZ
8845 do_each_thread(g, p) {
8846 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8847 return 1;
8848 } while_each_thread(g, p);
b40b2e8e 8849
9a7e0b18
PZ
8850 return 0;
8851}
b40b2e8e 8852
9a7e0b18
PZ
8853struct rt_schedulable_data {
8854 struct task_group *tg;
8855 u64 rt_period;
8856 u64 rt_runtime;
8857};
b40b2e8e 8858
a790de99 8859static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8860{
8861 struct rt_schedulable_data *d = data;
8862 struct task_group *child;
8863 unsigned long total, sum = 0;
8864 u64 period, runtime;
b40b2e8e 8865
9a7e0b18
PZ
8866 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8867 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8868
9a7e0b18
PZ
8869 if (tg == d->tg) {
8870 period = d->rt_period;
8871 runtime = d->rt_runtime;
b40b2e8e 8872 }
b40b2e8e 8873
4653f803
PZ
8874 /*
8875 * Cannot have more runtime than the period.
8876 */
8877 if (runtime > period && runtime != RUNTIME_INF)
8878 return -EINVAL;
6f505b16 8879
4653f803
PZ
8880 /*
8881 * Ensure we don't starve existing RT tasks.
8882 */
9a7e0b18
PZ
8883 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8884 return -EBUSY;
6f505b16 8885
9a7e0b18 8886 total = to_ratio(period, runtime);
6f505b16 8887
4653f803
PZ
8888 /*
8889 * Nobody can have more than the global setting allows.
8890 */
8891 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8892 return -EINVAL;
6f505b16 8893
4653f803
PZ
8894 /*
8895 * The sum of our children's runtime should not exceed our own.
8896 */
9a7e0b18
PZ
8897 list_for_each_entry_rcu(child, &tg->children, siblings) {
8898 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8899 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8900
9a7e0b18
PZ
8901 if (child == d->tg) {
8902 period = d->rt_period;
8903 runtime = d->rt_runtime;
8904 }
6f505b16 8905
9a7e0b18 8906 sum += to_ratio(period, runtime);
9f0c1e56 8907 }
6f505b16 8908
9a7e0b18
PZ
8909 if (sum > total)
8910 return -EINVAL;
8911
8912 return 0;
6f505b16
PZ
8913}
8914
9a7e0b18 8915static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8916{
8277434e
PT
8917 int ret;
8918
9a7e0b18
PZ
8919 struct rt_schedulable_data data = {
8920 .tg = tg,
8921 .rt_period = period,
8922 .rt_runtime = runtime,
8923 };
8924
8277434e
PT
8925 rcu_read_lock();
8926 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8927 rcu_read_unlock();
8928
8929 return ret;
521f1a24
DG
8930}
8931
ab84d31e 8932static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8933 u64 rt_period, u64 rt_runtime)
6f505b16 8934{
ac086bc2 8935 int i, err = 0;
9f0c1e56 8936
9f0c1e56 8937 mutex_lock(&rt_constraints_mutex);
521f1a24 8938 read_lock(&tasklist_lock);
9a7e0b18
PZ
8939 err = __rt_schedulable(tg, rt_period, rt_runtime);
8940 if (err)
9f0c1e56 8941 goto unlock;
ac086bc2 8942
0986b11b 8943 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8944 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8945 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8946
8947 for_each_possible_cpu(i) {
8948 struct rt_rq *rt_rq = tg->rt_rq[i];
8949
0986b11b 8950 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8951 rt_rq->rt_runtime = rt_runtime;
0986b11b 8952 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8953 }
0986b11b 8954 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8955unlock:
521f1a24 8956 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8957 mutex_unlock(&rt_constraints_mutex);
8958
8959 return err;
6f505b16
PZ
8960}
8961
d0b27fa7
PZ
8962int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8963{
8964 u64 rt_runtime, rt_period;
8965
8966 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8967 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8968 if (rt_runtime_us < 0)
8969 rt_runtime = RUNTIME_INF;
8970
ab84d31e 8971 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8972}
8973
9f0c1e56
PZ
8974long sched_group_rt_runtime(struct task_group *tg)
8975{
8976 u64 rt_runtime_us;
8977
d0b27fa7 8978 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8979 return -1;
8980
d0b27fa7 8981 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8982 do_div(rt_runtime_us, NSEC_PER_USEC);
8983 return rt_runtime_us;
8984}
d0b27fa7
PZ
8985
8986int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8987{
8988 u64 rt_runtime, rt_period;
8989
8990 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8991 rt_runtime = tg->rt_bandwidth.rt_runtime;
8992
619b0488
R
8993 if (rt_period == 0)
8994 return -EINVAL;
8995
ab84d31e 8996 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8997}
8998
8999long sched_group_rt_period(struct task_group *tg)
9000{
9001 u64 rt_period_us;
9002
9003 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9004 do_div(rt_period_us, NSEC_PER_USEC);
9005 return rt_period_us;
9006}
9007
9008static int sched_rt_global_constraints(void)
9009{
4653f803 9010 u64 runtime, period;
d0b27fa7
PZ
9011 int ret = 0;
9012
ec5d4989
HS
9013 if (sysctl_sched_rt_period <= 0)
9014 return -EINVAL;
9015
4653f803
PZ
9016 runtime = global_rt_runtime();
9017 period = global_rt_period();
9018
9019 /*
9020 * Sanity check on the sysctl variables.
9021 */
9022 if (runtime > period && runtime != RUNTIME_INF)
9023 return -EINVAL;
10b612f4 9024
d0b27fa7 9025 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9026 read_lock(&tasklist_lock);
4653f803 9027 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9028 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9029 mutex_unlock(&rt_constraints_mutex);
9030
9031 return ret;
9032}
54e99124
DG
9033
9034int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9035{
9036 /* Don't accept realtime tasks when there is no way for them to run */
9037 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9038 return 0;
9039
9040 return 1;
9041}
9042
6d6bc0ad 9043#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9044static int sched_rt_global_constraints(void)
9045{
ac086bc2
PZ
9046 unsigned long flags;
9047 int i;
9048
ec5d4989
HS
9049 if (sysctl_sched_rt_period <= 0)
9050 return -EINVAL;
9051
60aa605d
PZ
9052 /*
9053 * There's always some RT tasks in the root group
9054 * -- migration, kstopmachine etc..
9055 */
9056 if (sysctl_sched_rt_runtime == 0)
9057 return -EBUSY;
9058
0986b11b 9059 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
9060 for_each_possible_cpu(i) {
9061 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9062
0986b11b 9063 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 9064 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 9065 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 9066 }
0986b11b 9067 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 9068
d0b27fa7
PZ
9069 return 0;
9070}
6d6bc0ad 9071#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9072
9073int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 9074 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9075 loff_t *ppos)
9076{
9077 int ret;
9078 int old_period, old_runtime;
9079 static DEFINE_MUTEX(mutex);
9080
9081 mutex_lock(&mutex);
9082 old_period = sysctl_sched_rt_period;
9083 old_runtime = sysctl_sched_rt_runtime;
9084
8d65af78 9085 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9086
9087 if (!ret && write) {
9088 ret = sched_rt_global_constraints();
9089 if (ret) {
9090 sysctl_sched_rt_period = old_period;
9091 sysctl_sched_rt_runtime = old_runtime;
9092 } else {
9093 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9094 def_rt_bandwidth.rt_period =
9095 ns_to_ktime(global_rt_period());
9096 }
9097 }
9098 mutex_unlock(&mutex);
9099
9100 return ret;
9101}
68318b8e 9102
052f1dc7 9103#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9104
9105/* return corresponding task_group object of a cgroup */
2b01dfe3 9106static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9107{
2b01dfe3
PM
9108 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9109 struct task_group, css);
68318b8e
SV
9110}
9111
9112static struct cgroup_subsys_state *
2b01dfe3 9113cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9114{
ec7dc8ac 9115 struct task_group *tg, *parent;
68318b8e 9116
2b01dfe3 9117 if (!cgrp->parent) {
68318b8e 9118 /* This is early initialization for the top cgroup */
07e06b01 9119 return &root_task_group.css;
68318b8e
SV
9120 }
9121
ec7dc8ac
DG
9122 parent = cgroup_tg(cgrp->parent);
9123 tg = sched_create_group(parent);
68318b8e
SV
9124 if (IS_ERR(tg))
9125 return ERR_PTR(-ENOMEM);
9126
68318b8e
SV
9127 return &tg->css;
9128}
9129
41a2d6cf
IM
9130static void
9131cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9132{
2b01dfe3 9133 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9134
9135 sched_destroy_group(tg);
9136}
9137
41a2d6cf 9138static int
be367d09 9139cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9140{
b68aa230 9141#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9142 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9143 return -EINVAL;
9144#else
68318b8e
SV
9145 /* We don't support RT-tasks being in separate groups */
9146 if (tsk->sched_class != &fair_sched_class)
9147 return -EINVAL;
b68aa230 9148#endif
be367d09
BB
9149 return 0;
9150}
68318b8e 9151
68318b8e 9152static void
f780bdb7 9153cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
9154{
9155 sched_move_task(tsk);
9156}
9157
068c5cc5 9158static void
d41d5a01
PZ
9159cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9160 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9161{
9162 /*
9163 * cgroup_exit() is called in the copy_process() failure path.
9164 * Ignore this case since the task hasn't ran yet, this avoids
9165 * trying to poke a half freed task state from generic code.
9166 */
9167 if (!(task->flags & PF_EXITING))
9168 return;
9169
9170 sched_move_task(task);
9171}
9172
052f1dc7 9173#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9174static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9175 u64 shareval)
68318b8e 9176{
c8b28116 9177 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
9178}
9179
f4c753b7 9180static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9181{
2b01dfe3 9182 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 9183
c8b28116 9184 return (u64) scale_load_down(tg->shares);
68318b8e 9185}
ab84d31e
PT
9186
9187#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
9188static DEFINE_MUTEX(cfs_constraints_mutex);
9189
ab84d31e
PT
9190const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9191const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9192
a790de99
PT
9193static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9194
ab84d31e
PT
9195static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9196{
58088ad0 9197 int i, ret = 0, runtime_enabled;
ab84d31e 9198 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
ab84d31e
PT
9199
9200 if (tg == &root_task_group)
9201 return -EINVAL;
9202
9203 /*
9204 * Ensure we have at some amount of bandwidth every period. This is
9205 * to prevent reaching a state of large arrears when throttled via
9206 * entity_tick() resulting in prolonged exit starvation.
9207 */
9208 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9209 return -EINVAL;
9210
9211 /*
9212 * Likewise, bound things on the otherside by preventing insane quota
9213 * periods. This also allows us to normalize in computing quota
9214 * feasibility.
9215 */
9216 if (period > max_cfs_quota_period)
9217 return -EINVAL;
9218
a790de99
PT
9219 mutex_lock(&cfs_constraints_mutex);
9220 ret = __cfs_schedulable(tg, period, quota);
9221 if (ret)
9222 goto out_unlock;
9223
58088ad0 9224 runtime_enabled = quota != RUNTIME_INF;
ab84d31e
PT
9225 raw_spin_lock_irq(&cfs_b->lock);
9226 cfs_b->period = ns_to_ktime(period);
9227 cfs_b->quota = quota;
58088ad0 9228
a9cf55b2 9229 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
9230 /* restart the period timer (if active) to handle new period expiry */
9231 if (runtime_enabled && cfs_b->timer_active) {
9232 /* force a reprogram */
9233 cfs_b->timer_active = 0;
9234 __start_cfs_bandwidth(cfs_b);
9235 }
ab84d31e
PT
9236 raw_spin_unlock_irq(&cfs_b->lock);
9237
9238 for_each_possible_cpu(i) {
9239 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9240 struct rq *rq = rq_of(cfs_rq);
9241
9242 raw_spin_lock_irq(&rq->lock);
58088ad0 9243 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 9244 cfs_rq->runtime_remaining = 0;
671fd9da
PT
9245
9246 if (cfs_rq_throttled(cfs_rq))
9247 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
9248 raw_spin_unlock_irq(&rq->lock);
9249 }
a790de99
PT
9250out_unlock:
9251 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 9252
a790de99 9253 return ret;
ab84d31e
PT
9254}
9255
9256int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9257{
9258 u64 quota, period;
9259
9260 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9261 if (cfs_quota_us < 0)
9262 quota = RUNTIME_INF;
9263 else
9264 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9265
9266 return tg_set_cfs_bandwidth(tg, period, quota);
9267}
9268
9269long tg_get_cfs_quota(struct task_group *tg)
9270{
9271 u64 quota_us;
9272
9273 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9274 return -1;
9275
9276 quota_us = tg_cfs_bandwidth(tg)->quota;
9277 do_div(quota_us, NSEC_PER_USEC);
9278
9279 return quota_us;
9280}
9281
9282int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9283{
9284 u64 quota, period;
9285
9286 period = (u64)cfs_period_us * NSEC_PER_USEC;
9287 quota = tg_cfs_bandwidth(tg)->quota;
9288
9289 if (period <= 0)
9290 return -EINVAL;
9291
9292 return tg_set_cfs_bandwidth(tg, period, quota);
9293}
9294
9295long tg_get_cfs_period(struct task_group *tg)
9296{
9297 u64 cfs_period_us;
9298
9299 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9300 do_div(cfs_period_us, NSEC_PER_USEC);
9301
9302 return cfs_period_us;
9303}
9304
9305static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9306{
9307 return tg_get_cfs_quota(cgroup_tg(cgrp));
9308}
9309
9310static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9311 s64 cfs_quota_us)
9312{
9313 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9314}
9315
9316static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9317{
9318 return tg_get_cfs_period(cgroup_tg(cgrp));
9319}
9320
9321static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9322 u64 cfs_period_us)
9323{
9324 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9325}
9326
a790de99
PT
9327struct cfs_schedulable_data {
9328 struct task_group *tg;
9329 u64 period, quota;
9330};
9331
9332/*
9333 * normalize group quota/period to be quota/max_period
9334 * note: units are usecs
9335 */
9336static u64 normalize_cfs_quota(struct task_group *tg,
9337 struct cfs_schedulable_data *d)
9338{
9339 u64 quota, period;
9340
9341 if (tg == d->tg) {
9342 period = d->period;
9343 quota = d->quota;
9344 } else {
9345 period = tg_get_cfs_period(tg);
9346 quota = tg_get_cfs_quota(tg);
9347 }
9348
9349 /* note: these should typically be equivalent */
9350 if (quota == RUNTIME_INF || quota == -1)
9351 return RUNTIME_INF;
9352
9353 return to_ratio(period, quota);
9354}
9355
9356static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9357{
9358 struct cfs_schedulable_data *d = data;
9359 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9360 s64 quota = 0, parent_quota = -1;
9361
9362 if (!tg->parent) {
9363 quota = RUNTIME_INF;
9364 } else {
9365 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9366
9367 quota = normalize_cfs_quota(tg, d);
9368 parent_quota = parent_b->hierarchal_quota;
9369
9370 /*
9371 * ensure max(child_quota) <= parent_quota, inherit when no
9372 * limit is set
9373 */
9374 if (quota == RUNTIME_INF)
9375 quota = parent_quota;
9376 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9377 return -EINVAL;
9378 }
9379 cfs_b->hierarchal_quota = quota;
9380
9381 return 0;
9382}
9383
9384static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9385{
8277434e 9386 int ret;
a790de99
PT
9387 struct cfs_schedulable_data data = {
9388 .tg = tg,
9389 .period = period,
9390 .quota = quota,
9391 };
9392
9393 if (quota != RUNTIME_INF) {
9394 do_div(data.period, NSEC_PER_USEC);
9395 do_div(data.quota, NSEC_PER_USEC);
9396 }
9397
8277434e
PT
9398 rcu_read_lock();
9399 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9400 rcu_read_unlock();
9401
9402 return ret;
a790de99 9403}
e8da1b18
NR
9404
9405static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
9406 struct cgroup_map_cb *cb)
9407{
9408 struct task_group *tg = cgroup_tg(cgrp);
9409 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9410
9411 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
9412 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
9413 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
9414
9415 return 0;
9416}
ab84d31e 9417#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 9418#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9419
052f1dc7 9420#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9421static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9422 s64 val)
6f505b16 9423{
06ecb27c 9424 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9425}
9426
06ecb27c 9427static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9428{
06ecb27c 9429 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9430}
d0b27fa7
PZ
9431
9432static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9433 u64 rt_period_us)
9434{
9435 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9436}
9437
9438static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9439{
9440 return sched_group_rt_period(cgroup_tg(cgrp));
9441}
6d6bc0ad 9442#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9443
fe5c7cc2 9444static struct cftype cpu_files[] = {
052f1dc7 9445#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9446 {
9447 .name = "shares",
f4c753b7
PM
9448 .read_u64 = cpu_shares_read_u64,
9449 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9450 },
052f1dc7 9451#endif
ab84d31e
PT
9452#ifdef CONFIG_CFS_BANDWIDTH
9453 {
9454 .name = "cfs_quota_us",
9455 .read_s64 = cpu_cfs_quota_read_s64,
9456 .write_s64 = cpu_cfs_quota_write_s64,
9457 },
9458 {
9459 .name = "cfs_period_us",
9460 .read_u64 = cpu_cfs_period_read_u64,
9461 .write_u64 = cpu_cfs_period_write_u64,
9462 },
e8da1b18
NR
9463 {
9464 .name = "stat",
9465 .read_map = cpu_stats_show,
9466 },
ab84d31e 9467#endif
052f1dc7 9468#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9469 {
9f0c1e56 9470 .name = "rt_runtime_us",
06ecb27c
PM
9471 .read_s64 = cpu_rt_runtime_read,
9472 .write_s64 = cpu_rt_runtime_write,
6f505b16 9473 },
d0b27fa7
PZ
9474 {
9475 .name = "rt_period_us",
f4c753b7
PM
9476 .read_u64 = cpu_rt_period_read_uint,
9477 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9478 },
052f1dc7 9479#endif
68318b8e
SV
9480};
9481
9482static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9483{
fe5c7cc2 9484 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9485}
9486
9487struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9488 .name = "cpu",
9489 .create = cpu_cgroup_create,
9490 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
9491 .can_attach_task = cpu_cgroup_can_attach_task,
9492 .attach_task = cpu_cgroup_attach_task,
068c5cc5 9493 .exit = cpu_cgroup_exit,
38605cae
IM
9494 .populate = cpu_cgroup_populate,
9495 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9496 .early_init = 1,
9497};
9498
052f1dc7 9499#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9500
9501#ifdef CONFIG_CGROUP_CPUACCT
9502
9503/*
9504 * CPU accounting code for task groups.
9505 *
9506 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9507 * (balbir@in.ibm.com).
9508 */
9509
934352f2 9510/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9511struct cpuacct {
9512 struct cgroup_subsys_state css;
9513 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9514 u64 __percpu *cpuusage;
ef12fefa 9515 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9516 struct cpuacct *parent;
d842de87
SV
9517};
9518
9519struct cgroup_subsys cpuacct_subsys;
9520
9521/* return cpu accounting group corresponding to this container */
32cd756a 9522static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9523{
32cd756a 9524 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9525 struct cpuacct, css);
9526}
9527
9528/* return cpu accounting group to which this task belongs */
9529static inline struct cpuacct *task_ca(struct task_struct *tsk)
9530{
9531 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9532 struct cpuacct, css);
9533}
9534
9535/* create a new cpu accounting group */
9536static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9537 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9538{
9539 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9540 int i;
d842de87
SV
9541
9542 if (!ca)
ef12fefa 9543 goto out;
d842de87
SV
9544
9545 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9546 if (!ca->cpuusage)
9547 goto out_free_ca;
9548
9549 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9550 if (percpu_counter_init(&ca->cpustat[i], 0))
9551 goto out_free_counters;
d842de87 9552
934352f2
BR
9553 if (cgrp->parent)
9554 ca->parent = cgroup_ca(cgrp->parent);
9555
d842de87 9556 return &ca->css;
ef12fefa
BR
9557
9558out_free_counters:
9559 while (--i >= 0)
9560 percpu_counter_destroy(&ca->cpustat[i]);
9561 free_percpu(ca->cpuusage);
9562out_free_ca:
9563 kfree(ca);
9564out:
9565 return ERR_PTR(-ENOMEM);
d842de87
SV
9566}
9567
9568/* destroy an existing cpu accounting group */
41a2d6cf 9569static void
32cd756a 9570cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9571{
32cd756a 9572 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9573 int i;
d842de87 9574
ef12fefa
BR
9575 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9576 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9577 free_percpu(ca->cpuusage);
9578 kfree(ca);
9579}
9580
720f5498
KC
9581static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9582{
b36128c8 9583 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9584 u64 data;
9585
9586#ifndef CONFIG_64BIT
9587 /*
9588 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9589 */
05fa785c 9590 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9591 data = *cpuusage;
05fa785c 9592 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9593#else
9594 data = *cpuusage;
9595#endif
9596
9597 return data;
9598}
9599
9600static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9601{
b36128c8 9602 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9603
9604#ifndef CONFIG_64BIT
9605 /*
9606 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9607 */
05fa785c 9608 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9609 *cpuusage = val;
05fa785c 9610 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9611#else
9612 *cpuusage = val;
9613#endif
9614}
9615
d842de87 9616/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9617static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9618{
32cd756a 9619 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9620 u64 totalcpuusage = 0;
9621 int i;
9622
720f5498
KC
9623 for_each_present_cpu(i)
9624 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9625
9626 return totalcpuusage;
9627}
9628
0297b803
DG
9629static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9630 u64 reset)
9631{
9632 struct cpuacct *ca = cgroup_ca(cgrp);
9633 int err = 0;
9634 int i;
9635
9636 if (reset) {
9637 err = -EINVAL;
9638 goto out;
9639 }
9640
720f5498
KC
9641 for_each_present_cpu(i)
9642 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9643
0297b803
DG
9644out:
9645 return err;
9646}
9647
e9515c3c
KC
9648static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9649 struct seq_file *m)
9650{
9651 struct cpuacct *ca = cgroup_ca(cgroup);
9652 u64 percpu;
9653 int i;
9654
9655 for_each_present_cpu(i) {
9656 percpu = cpuacct_cpuusage_read(ca, i);
9657 seq_printf(m, "%llu ", (unsigned long long) percpu);
9658 }
9659 seq_printf(m, "\n");
9660 return 0;
9661}
9662
ef12fefa
BR
9663static const char *cpuacct_stat_desc[] = {
9664 [CPUACCT_STAT_USER] = "user",
9665 [CPUACCT_STAT_SYSTEM] = "system",
9666};
9667
9668static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9669 struct cgroup_map_cb *cb)
9670{
9671 struct cpuacct *ca = cgroup_ca(cgrp);
9672 int i;
9673
9674 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9675 s64 val = percpu_counter_read(&ca->cpustat[i]);
9676 val = cputime64_to_clock_t(val);
9677 cb->fill(cb, cpuacct_stat_desc[i], val);
9678 }
9679 return 0;
9680}
9681
d842de87
SV
9682static struct cftype files[] = {
9683 {
9684 .name = "usage",
f4c753b7
PM
9685 .read_u64 = cpuusage_read,
9686 .write_u64 = cpuusage_write,
d842de87 9687 },
e9515c3c
KC
9688 {
9689 .name = "usage_percpu",
9690 .read_seq_string = cpuacct_percpu_seq_read,
9691 },
ef12fefa
BR
9692 {
9693 .name = "stat",
9694 .read_map = cpuacct_stats_show,
9695 },
d842de87
SV
9696};
9697
32cd756a 9698static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9699{
32cd756a 9700 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9701}
9702
9703/*
9704 * charge this task's execution time to its accounting group.
9705 *
9706 * called with rq->lock held.
9707 */
9708static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9709{
9710 struct cpuacct *ca;
934352f2 9711 int cpu;
d842de87 9712
c40c6f85 9713 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9714 return;
9715
934352f2 9716 cpu = task_cpu(tsk);
a18b83b7
BR
9717
9718 rcu_read_lock();
9719
d842de87 9720 ca = task_ca(tsk);
d842de87 9721
934352f2 9722 for (; ca; ca = ca->parent) {
b36128c8 9723 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9724 *cpuusage += cputime;
9725 }
a18b83b7
BR
9726
9727 rcu_read_unlock();
d842de87
SV
9728}
9729
fa535a77
AB
9730/*
9731 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9732 * in cputime_t units. As a result, cpuacct_update_stats calls
9733 * percpu_counter_add with values large enough to always overflow the
9734 * per cpu batch limit causing bad SMP scalability.
9735 *
9736 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9737 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9738 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9739 */
9740#ifdef CONFIG_SMP
9741#define CPUACCT_BATCH \
9742 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9743#else
9744#define CPUACCT_BATCH 0
9745#endif
9746
ef12fefa
BR
9747/*
9748 * Charge the system/user time to the task's accounting group.
9749 */
9750static void cpuacct_update_stats(struct task_struct *tsk,
9751 enum cpuacct_stat_index idx, cputime_t val)
9752{
9753 struct cpuacct *ca;
fa535a77 9754 int batch = CPUACCT_BATCH;
ef12fefa
BR
9755
9756 if (unlikely(!cpuacct_subsys.active))
9757 return;
9758
9759 rcu_read_lock();
9760 ca = task_ca(tsk);
9761
9762 do {
fa535a77 9763 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9764 ca = ca->parent;
9765 } while (ca);
9766 rcu_read_unlock();
9767}
9768
d842de87
SV
9769struct cgroup_subsys cpuacct_subsys = {
9770 .name = "cpuacct",
9771 .create = cpuacct_create,
9772 .destroy = cpuacct_destroy,
9773 .populate = cpuacct_populate,
9774 .subsys_id = cpuacct_subsys_id,
9775};
9776#endif /* CONFIG_CGROUP_CPUACCT */