]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: Add TASK_WAKING
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
84e9dabf 296static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
57310a98
PZ
312#ifdef CONFIG_SMP
313static int root_task_group_empty(void)
314{
315 return list_empty(&root_task_group.children);
316}
317#endif
318
052f1dc7 319#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
320#ifdef CONFIG_USER_SCHED
321# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 322#else /* !CONFIG_USER_SCHED */
052f1dc7 323# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 324#endif /* CONFIG_USER_SCHED */
052f1dc7 325
cb4ad1ff 326/*
2e084786
LJ
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
cb4ad1ff
MX
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
18d95a28 334#define MIN_SHARES 2
2e084786 335#define MAX_SHARES (1UL << 18)
18d95a28 336
052f1dc7
PZ
337static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338#endif
339
29f59db3 340/* Default task group.
3a252015 341 * Every task in system belong to this group at bootup.
29f59db3 342 */
434d53b0 343struct task_group init_task_group;
29f59db3
SV
344
345/* return group to which a task belongs */
4cf86d77 346static inline struct task_group *task_group(struct task_struct *p)
29f59db3 347{
4cf86d77 348 struct task_group *tg;
9b5b7751 349
052f1dc7 350#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
052f1dc7 354#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
24e377a8 357#else
41a2d6cf 358 tg = &init_task_group;
24e377a8 359#endif
9b5b7751 360 return tg;
29f59db3
SV
361}
362
363/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 364static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 365{
052f1dc7 366#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
052f1dc7 369#endif
6f505b16 370
052f1dc7 371#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 374#endif
29f59db3
SV
375}
376
377#else
378
57310a98
PZ
379#ifdef CONFIG_SMP
380static int root_task_group_empty(void)
381{
382 return 1;
383}
384#endif
385
6f505b16 386static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
387static inline struct task_group *task_group(struct task_struct *p)
388{
389 return NULL;
390}
29f59db3 391
052f1dc7 392#endif /* CONFIG_GROUP_SCHED */
29f59db3 393
6aa645ea
IM
394/* CFS-related fields in a runqueue */
395struct cfs_rq {
396 struct load_weight load;
397 unsigned long nr_running;
398
6aa645ea 399 u64 exec_clock;
e9acbff6 400 u64 min_vruntime;
6aa645ea
IM
401
402 struct rb_root tasks_timeline;
403 struct rb_node *rb_leftmost;
4a55bd5e
PZ
404
405 struct list_head tasks;
406 struct list_head *balance_iterator;
407
408 /*
409 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
410 * It is set to NULL otherwise (i.e when none are currently running).
411 */
4793241b 412 struct sched_entity *curr, *next, *last;
ddc97297 413
5ac5c4d6 414 unsigned int nr_spread_over;
ddc97297 415
62160e3f 416#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
417 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
418
41a2d6cf
IM
419 /*
420 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
421 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
422 * (like users, containers etc.)
423 *
424 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
425 * list is used during load balance.
426 */
41a2d6cf
IM
427 struct list_head leaf_cfs_rq_list;
428 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
429
430#ifdef CONFIG_SMP
c09595f6 431 /*
c8cba857 432 * the part of load.weight contributed by tasks
c09595f6 433 */
c8cba857 434 unsigned long task_weight;
c09595f6 435
c8cba857
PZ
436 /*
437 * h_load = weight * f(tg)
438 *
439 * Where f(tg) is the recursive weight fraction assigned to
440 * this group.
441 */
442 unsigned long h_load;
c09595f6 443
c8cba857
PZ
444 /*
445 * this cpu's part of tg->shares
446 */
447 unsigned long shares;
f1d239f7
PZ
448
449 /*
450 * load.weight at the time we set shares
451 */
452 unsigned long rq_weight;
c09595f6 453#endif
6aa645ea
IM
454#endif
455};
1da177e4 456
6aa645ea
IM
457/* Real-Time classes' related field in a runqueue: */
458struct rt_rq {
459 struct rt_prio_array active;
63489e45 460 unsigned long rt_nr_running;
052f1dc7 461#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
462 struct {
463 int curr; /* highest queued rt task prio */
398a153b 464#ifdef CONFIG_SMP
e864c499 465 int next; /* next highest */
398a153b 466#endif
e864c499 467 } highest_prio;
6f505b16 468#endif
fa85ae24 469#ifdef CONFIG_SMP
73fe6aae 470 unsigned long rt_nr_migratory;
a1ba4d8b 471 unsigned long rt_nr_total;
a22d7fc1 472 int overloaded;
917b627d 473 struct plist_head pushable_tasks;
fa85ae24 474#endif
6f505b16 475 int rt_throttled;
fa85ae24 476 u64 rt_time;
ac086bc2 477 u64 rt_runtime;
ea736ed5 478 /* Nests inside the rq lock: */
ac086bc2 479 spinlock_t rt_runtime_lock;
6f505b16 480
052f1dc7 481#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
482 unsigned long rt_nr_boosted;
483
6f505b16
PZ
484 struct rq *rq;
485 struct list_head leaf_rt_rq_list;
486 struct task_group *tg;
487 struct sched_rt_entity *rt_se;
488#endif
6aa645ea
IM
489};
490
57d885fe
GH
491#ifdef CONFIG_SMP
492
493/*
494 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
495 * variables. Each exclusive cpuset essentially defines an island domain by
496 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
497 * exclusive cpuset is created, we also create and attach a new root-domain
498 * object.
499 *
57d885fe
GH
500 */
501struct root_domain {
502 atomic_t refcount;
c6c4927b
RR
503 cpumask_var_t span;
504 cpumask_var_t online;
637f5085 505
0eab9146 506 /*
637f5085
GH
507 * The "RT overload" flag: it gets set if a CPU has more than
508 * one runnable RT task.
509 */
c6c4927b 510 cpumask_var_t rto_mask;
0eab9146 511 atomic_t rto_count;
6e0534f2
GH
512#ifdef CONFIG_SMP
513 struct cpupri cpupri;
514#endif
7a09b1a2
VS
515#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
516 /*
517 * Preferred wake up cpu nominated by sched_mc balance that will be
518 * used when most cpus are idle in the system indicating overall very
519 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
520 */
521 unsigned int sched_mc_preferred_wakeup_cpu;
522#endif
57d885fe
GH
523};
524
dc938520
GH
525/*
526 * By default the system creates a single root-domain with all cpus as
527 * members (mimicking the global state we have today).
528 */
57d885fe
GH
529static struct root_domain def_root_domain;
530
531#endif
532
1da177e4
LT
533/*
534 * This is the main, per-CPU runqueue data structure.
535 *
536 * Locking rule: those places that want to lock multiple runqueues
537 * (such as the load balancing or the thread migration code), lock
538 * acquire operations must be ordered by ascending &runqueue.
539 */
70b97a7f 540struct rq {
d8016491
IM
541 /* runqueue lock: */
542 spinlock_t lock;
1da177e4
LT
543
544 /*
545 * nr_running and cpu_load should be in the same cacheline because
546 * remote CPUs use both these fields when doing load calculation.
547 */
548 unsigned long nr_running;
6aa645ea
IM
549 #define CPU_LOAD_IDX_MAX 5
550 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 551#ifdef CONFIG_NO_HZ
15934a37 552 unsigned long last_tick_seen;
46cb4b7c
SS
553 unsigned char in_nohz_recently;
554#endif
d8016491
IM
555 /* capture load from *all* tasks on this cpu: */
556 struct load_weight load;
6aa645ea
IM
557 unsigned long nr_load_updates;
558 u64 nr_switches;
23a185ca 559 u64 nr_migrations_in;
6aa645ea
IM
560
561 struct cfs_rq cfs;
6f505b16 562 struct rt_rq rt;
6f505b16 563
6aa645ea 564#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
565 /* list of leaf cfs_rq on this cpu: */
566 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
567#endif
568#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 569 struct list_head leaf_rt_rq_list;
1da177e4 570#endif
1da177e4
LT
571
572 /*
573 * This is part of a global counter where only the total sum
574 * over all CPUs matters. A task can increase this counter on
575 * one CPU and if it got migrated afterwards it may decrease
576 * it on another CPU. Always updated under the runqueue lock:
577 */
578 unsigned long nr_uninterruptible;
579
36c8b586 580 struct task_struct *curr, *idle;
c9819f45 581 unsigned long next_balance;
1da177e4 582 struct mm_struct *prev_mm;
6aa645ea 583
3e51f33f 584 u64 clock;
6aa645ea 585
1da177e4
LT
586 atomic_t nr_iowait;
587
588#ifdef CONFIG_SMP
0eab9146 589 struct root_domain *rd;
1da177e4
LT
590 struct sched_domain *sd;
591
a0a522ce 592 unsigned char idle_at_tick;
1da177e4 593 /* For active balancing */
3f029d3c 594 int post_schedule;
1da177e4
LT
595 int active_balance;
596 int push_cpu;
d8016491
IM
597 /* cpu of this runqueue: */
598 int cpu;
1f11eb6a 599 int online;
1da177e4 600
a8a51d5e 601 unsigned long avg_load_per_task;
1da177e4 602
36c8b586 603 struct task_struct *migration_thread;
1da177e4 604 struct list_head migration_queue;
e9e9250b
PZ
605
606 u64 rt_avg;
607 u64 age_stamp;
1da177e4
LT
608#endif
609
dce48a84
TG
610 /* calc_load related fields */
611 unsigned long calc_load_update;
612 long calc_load_active;
613
8f4d37ec 614#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
615#ifdef CONFIG_SMP
616 int hrtick_csd_pending;
617 struct call_single_data hrtick_csd;
618#endif
8f4d37ec
PZ
619 struct hrtimer hrtick_timer;
620#endif
621
1da177e4
LT
622#ifdef CONFIG_SCHEDSTATS
623 /* latency stats */
624 struct sched_info rq_sched_info;
9c2c4802
KC
625 unsigned long long rq_cpu_time;
626 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
627
628 /* sys_sched_yield() stats */
480b9434 629 unsigned int yld_count;
1da177e4
LT
630
631 /* schedule() stats */
480b9434
KC
632 unsigned int sched_switch;
633 unsigned int sched_count;
634 unsigned int sched_goidle;
1da177e4
LT
635
636 /* try_to_wake_up() stats */
480b9434
KC
637 unsigned int ttwu_count;
638 unsigned int ttwu_local;
b8efb561
IM
639
640 /* BKL stats */
480b9434 641 unsigned int bkl_count;
1da177e4
LT
642#endif
643};
644
f34e3b61 645static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 646
15afe09b 647static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 648{
15afe09b 649 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
650}
651
0a2966b4
CL
652static inline int cpu_of(struct rq *rq)
653{
654#ifdef CONFIG_SMP
655 return rq->cpu;
656#else
657 return 0;
658#endif
659}
660
674311d5
NP
661/*
662 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 663 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
664 *
665 * The domain tree of any CPU may only be accessed from within
666 * preempt-disabled sections.
667 */
48f24c4d
IM
668#define for_each_domain(cpu, __sd) \
669 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
670
671#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
672#define this_rq() (&__get_cpu_var(runqueues))
673#define task_rq(p) cpu_rq(task_cpu(p))
674#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 675#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 676
aa9c4c0f 677inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
678{
679 rq->clock = sched_clock_cpu(cpu_of(rq));
680}
681
bf5c91ba
IM
682/*
683 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
684 */
685#ifdef CONFIG_SCHED_DEBUG
686# define const_debug __read_mostly
687#else
688# define const_debug static const
689#endif
690
017730c1
IM
691/**
692 * runqueue_is_locked
693 *
694 * Returns true if the current cpu runqueue is locked.
695 * This interface allows printk to be called with the runqueue lock
696 * held and know whether or not it is OK to wake up the klogd.
697 */
698int runqueue_is_locked(void)
699{
700 int cpu = get_cpu();
701 struct rq *rq = cpu_rq(cpu);
702 int ret;
703
704 ret = spin_is_locked(&rq->lock);
705 put_cpu();
706 return ret;
707}
708
bf5c91ba
IM
709/*
710 * Debugging: various feature bits
711 */
f00b45c1
PZ
712
713#define SCHED_FEAT(name, enabled) \
714 __SCHED_FEAT_##name ,
715
bf5c91ba 716enum {
f00b45c1 717#include "sched_features.h"
bf5c91ba
IM
718};
719
f00b45c1
PZ
720#undef SCHED_FEAT
721
722#define SCHED_FEAT(name, enabled) \
723 (1UL << __SCHED_FEAT_##name) * enabled |
724
bf5c91ba 725const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
726#include "sched_features.h"
727 0;
728
729#undef SCHED_FEAT
730
731#ifdef CONFIG_SCHED_DEBUG
732#define SCHED_FEAT(name, enabled) \
733 #name ,
734
983ed7a6 735static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
736#include "sched_features.h"
737 NULL
738};
739
740#undef SCHED_FEAT
741
34f3a814 742static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 743{
f00b45c1
PZ
744 int i;
745
746 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
747 if (!(sysctl_sched_features & (1UL << i)))
748 seq_puts(m, "NO_");
749 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 750 }
34f3a814 751 seq_puts(m, "\n");
f00b45c1 752
34f3a814 753 return 0;
f00b45c1
PZ
754}
755
756static ssize_t
757sched_feat_write(struct file *filp, const char __user *ubuf,
758 size_t cnt, loff_t *ppos)
759{
760 char buf[64];
761 char *cmp = buf;
762 int neg = 0;
763 int i;
764
765 if (cnt > 63)
766 cnt = 63;
767
768 if (copy_from_user(&buf, ubuf, cnt))
769 return -EFAULT;
770
771 buf[cnt] = 0;
772
c24b7c52 773 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
774 neg = 1;
775 cmp += 3;
776 }
777
778 for (i = 0; sched_feat_names[i]; i++) {
779 int len = strlen(sched_feat_names[i]);
780
781 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
782 if (neg)
783 sysctl_sched_features &= ~(1UL << i);
784 else
785 sysctl_sched_features |= (1UL << i);
786 break;
787 }
788 }
789
790 if (!sched_feat_names[i])
791 return -EINVAL;
792
793 filp->f_pos += cnt;
794
795 return cnt;
796}
797
34f3a814
LZ
798static int sched_feat_open(struct inode *inode, struct file *filp)
799{
800 return single_open(filp, sched_feat_show, NULL);
801}
802
f00b45c1 803static struct file_operations sched_feat_fops = {
34f3a814
LZ
804 .open = sched_feat_open,
805 .write = sched_feat_write,
806 .read = seq_read,
807 .llseek = seq_lseek,
808 .release = single_release,
f00b45c1
PZ
809};
810
811static __init int sched_init_debug(void)
812{
f00b45c1
PZ
813 debugfs_create_file("sched_features", 0644, NULL, NULL,
814 &sched_feat_fops);
815
816 return 0;
817}
818late_initcall(sched_init_debug);
819
820#endif
821
822#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 823
b82d9fdd
PZ
824/*
825 * Number of tasks to iterate in a single balance run.
826 * Limited because this is done with IRQs disabled.
827 */
828const_debug unsigned int sysctl_sched_nr_migrate = 32;
829
2398f2c6
PZ
830/*
831 * ratelimit for updating the group shares.
55cd5340 832 * default: 0.25ms
2398f2c6 833 */
55cd5340 834unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 835
ffda12a1
PZ
836/*
837 * Inject some fuzzyness into changing the per-cpu group shares
838 * this avoids remote rq-locks at the expense of fairness.
839 * default: 4
840 */
841unsigned int sysctl_sched_shares_thresh = 4;
842
e9e9250b
PZ
843/*
844 * period over which we average the RT time consumption, measured
845 * in ms.
846 *
847 * default: 1s
848 */
849const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
850
fa85ae24 851/*
9f0c1e56 852 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
853 * default: 1s
854 */
9f0c1e56 855unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 856
6892b75e
IM
857static __read_mostly int scheduler_running;
858
9f0c1e56
PZ
859/*
860 * part of the period that we allow rt tasks to run in us.
861 * default: 0.95s
862 */
863int sysctl_sched_rt_runtime = 950000;
fa85ae24 864
d0b27fa7
PZ
865static inline u64 global_rt_period(void)
866{
867 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
868}
869
870static inline u64 global_rt_runtime(void)
871{
e26873bb 872 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
873 return RUNTIME_INF;
874
875 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
876}
fa85ae24 877
1da177e4 878#ifndef prepare_arch_switch
4866cde0
NP
879# define prepare_arch_switch(next) do { } while (0)
880#endif
881#ifndef finish_arch_switch
882# define finish_arch_switch(prev) do { } while (0)
883#endif
884
051a1d1a
DA
885static inline int task_current(struct rq *rq, struct task_struct *p)
886{
887 return rq->curr == p;
888}
889
4866cde0 890#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 891static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 892{
051a1d1a 893 return task_current(rq, p);
4866cde0
NP
894}
895
70b97a7f 896static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
897{
898}
899
70b97a7f 900static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 901{
da04c035
IM
902#ifdef CONFIG_DEBUG_SPINLOCK
903 /* this is a valid case when another task releases the spinlock */
904 rq->lock.owner = current;
905#endif
8a25d5de
IM
906 /*
907 * If we are tracking spinlock dependencies then we have to
908 * fix up the runqueue lock - which gets 'carried over' from
909 * prev into current:
910 */
911 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
912
4866cde0
NP
913 spin_unlock_irq(&rq->lock);
914}
915
916#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 917static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
918{
919#ifdef CONFIG_SMP
920 return p->oncpu;
921#else
051a1d1a 922 return task_current(rq, p);
4866cde0
NP
923#endif
924}
925
70b97a7f 926static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
927{
928#ifdef CONFIG_SMP
929 /*
930 * We can optimise this out completely for !SMP, because the
931 * SMP rebalancing from interrupt is the only thing that cares
932 * here.
933 */
934 next->oncpu = 1;
935#endif
936#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 spin_unlock_irq(&rq->lock);
938#else
939 spin_unlock(&rq->lock);
940#endif
941}
942
70b97a7f 943static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
944{
945#ifdef CONFIG_SMP
946 /*
947 * After ->oncpu is cleared, the task can be moved to a different CPU.
948 * We must ensure this doesn't happen until the switch is completely
949 * finished.
950 */
951 smp_wmb();
952 prev->oncpu = 0;
953#endif
954#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
955 local_irq_enable();
1da177e4 956#endif
4866cde0
NP
957}
958#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 959
b29739f9
IM
960/*
961 * __task_rq_lock - lock the runqueue a given task resides on.
962 * Must be called interrupts disabled.
963 */
70b97a7f 964static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
965 __acquires(rq->lock)
966{
3a5c359a
AK
967 for (;;) {
968 struct rq *rq = task_rq(p);
969 spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
b29739f9 972 spin_unlock(&rq->lock);
b29739f9 973 }
b29739f9
IM
974}
975
1da177e4
LT
976/*
977 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 978 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
979 * explicitly disabling preemption.
980 */
70b97a7f 981static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
982 __acquires(rq->lock)
983{
70b97a7f 984 struct rq *rq;
1da177e4 985
3a5c359a
AK
986 for (;;) {
987 local_irq_save(*flags);
988 rq = task_rq(p);
989 spin_lock(&rq->lock);
990 if (likely(rq == task_rq(p)))
991 return rq;
1da177e4 992 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 993 }
1da177e4
LT
994}
995
ad474cac
ON
996void task_rq_unlock_wait(struct task_struct *p)
997{
998 struct rq *rq = task_rq(p);
999
1000 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1001 spin_unlock_wait(&rq->lock);
1002}
1003
a9957449 1004static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1005 __releases(rq->lock)
1006{
1007 spin_unlock(&rq->lock);
1008}
1009
70b97a7f 1010static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1011 __releases(rq->lock)
1012{
1013 spin_unlock_irqrestore(&rq->lock, *flags);
1014}
1015
1da177e4 1016/*
cc2a73b5 1017 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1018 */
a9957449 1019static struct rq *this_rq_lock(void)
1da177e4
LT
1020 __acquires(rq->lock)
1021{
70b97a7f 1022 struct rq *rq;
1da177e4
LT
1023
1024 local_irq_disable();
1025 rq = this_rq();
1026 spin_lock(&rq->lock);
1027
1028 return rq;
1029}
1030
8f4d37ec
PZ
1031#ifdef CONFIG_SCHED_HRTICK
1032/*
1033 * Use HR-timers to deliver accurate preemption points.
1034 *
1035 * Its all a bit involved since we cannot program an hrt while holding the
1036 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1037 * reschedule event.
1038 *
1039 * When we get rescheduled we reprogram the hrtick_timer outside of the
1040 * rq->lock.
1041 */
8f4d37ec
PZ
1042
1043/*
1044 * Use hrtick when:
1045 * - enabled by features
1046 * - hrtimer is actually high res
1047 */
1048static inline int hrtick_enabled(struct rq *rq)
1049{
1050 if (!sched_feat(HRTICK))
1051 return 0;
ba42059f 1052 if (!cpu_active(cpu_of(rq)))
b328ca18 1053 return 0;
8f4d37ec
PZ
1054 return hrtimer_is_hres_active(&rq->hrtick_timer);
1055}
1056
8f4d37ec
PZ
1057static void hrtick_clear(struct rq *rq)
1058{
1059 if (hrtimer_active(&rq->hrtick_timer))
1060 hrtimer_cancel(&rq->hrtick_timer);
1061}
1062
8f4d37ec
PZ
1063/*
1064 * High-resolution timer tick.
1065 * Runs from hardirq context with interrupts disabled.
1066 */
1067static enum hrtimer_restart hrtick(struct hrtimer *timer)
1068{
1069 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1070
1071 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1072
1073 spin_lock(&rq->lock);
3e51f33f 1074 update_rq_clock(rq);
8f4d37ec
PZ
1075 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1076 spin_unlock(&rq->lock);
1077
1078 return HRTIMER_NORESTART;
1079}
1080
95e904c7 1081#ifdef CONFIG_SMP
31656519
PZ
1082/*
1083 * called from hardirq (IPI) context
1084 */
1085static void __hrtick_start(void *arg)
b328ca18 1086{
31656519 1087 struct rq *rq = arg;
b328ca18 1088
31656519
PZ
1089 spin_lock(&rq->lock);
1090 hrtimer_restart(&rq->hrtick_timer);
1091 rq->hrtick_csd_pending = 0;
1092 spin_unlock(&rq->lock);
b328ca18
PZ
1093}
1094
31656519
PZ
1095/*
1096 * Called to set the hrtick timer state.
1097 *
1098 * called with rq->lock held and irqs disabled
1099 */
1100static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1101{
31656519
PZ
1102 struct hrtimer *timer = &rq->hrtick_timer;
1103 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1104
cc584b21 1105 hrtimer_set_expires(timer, time);
31656519
PZ
1106
1107 if (rq == this_rq()) {
1108 hrtimer_restart(timer);
1109 } else if (!rq->hrtick_csd_pending) {
6e275637 1110 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1111 rq->hrtick_csd_pending = 1;
1112 }
b328ca18
PZ
1113}
1114
1115static int
1116hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1117{
1118 int cpu = (int)(long)hcpu;
1119
1120 switch (action) {
1121 case CPU_UP_CANCELED:
1122 case CPU_UP_CANCELED_FROZEN:
1123 case CPU_DOWN_PREPARE:
1124 case CPU_DOWN_PREPARE_FROZEN:
1125 case CPU_DEAD:
1126 case CPU_DEAD_FROZEN:
31656519 1127 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1128 return NOTIFY_OK;
1129 }
1130
1131 return NOTIFY_DONE;
1132}
1133
fa748203 1134static __init void init_hrtick(void)
b328ca18
PZ
1135{
1136 hotcpu_notifier(hotplug_hrtick, 0);
1137}
31656519
PZ
1138#else
1139/*
1140 * Called to set the hrtick timer state.
1141 *
1142 * called with rq->lock held and irqs disabled
1143 */
1144static void hrtick_start(struct rq *rq, u64 delay)
1145{
7f1e2ca9 1146 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1147 HRTIMER_MODE_REL_PINNED, 0);
31656519 1148}
b328ca18 1149
006c75f1 1150static inline void init_hrtick(void)
8f4d37ec 1151{
8f4d37ec 1152}
31656519 1153#endif /* CONFIG_SMP */
8f4d37ec 1154
31656519 1155static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1156{
31656519
PZ
1157#ifdef CONFIG_SMP
1158 rq->hrtick_csd_pending = 0;
8f4d37ec 1159
31656519
PZ
1160 rq->hrtick_csd.flags = 0;
1161 rq->hrtick_csd.func = __hrtick_start;
1162 rq->hrtick_csd.info = rq;
1163#endif
8f4d37ec 1164
31656519
PZ
1165 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1166 rq->hrtick_timer.function = hrtick;
8f4d37ec 1167}
006c75f1 1168#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1169static inline void hrtick_clear(struct rq *rq)
1170{
1171}
1172
8f4d37ec
PZ
1173static inline void init_rq_hrtick(struct rq *rq)
1174{
1175}
1176
b328ca18
PZ
1177static inline void init_hrtick(void)
1178{
1179}
006c75f1 1180#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1181
c24d20db
IM
1182/*
1183 * resched_task - mark a task 'to be rescheduled now'.
1184 *
1185 * On UP this means the setting of the need_resched flag, on SMP it
1186 * might also involve a cross-CPU call to trigger the scheduler on
1187 * the target CPU.
1188 */
1189#ifdef CONFIG_SMP
1190
1191#ifndef tsk_is_polling
1192#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1193#endif
1194
31656519 1195static void resched_task(struct task_struct *p)
c24d20db
IM
1196{
1197 int cpu;
1198
1199 assert_spin_locked(&task_rq(p)->lock);
1200
5ed0cec0 1201 if (test_tsk_need_resched(p))
c24d20db
IM
1202 return;
1203
5ed0cec0 1204 set_tsk_need_resched(p);
c24d20db
IM
1205
1206 cpu = task_cpu(p);
1207 if (cpu == smp_processor_id())
1208 return;
1209
1210 /* NEED_RESCHED must be visible before we test polling */
1211 smp_mb();
1212 if (!tsk_is_polling(p))
1213 smp_send_reschedule(cpu);
1214}
1215
1216static void resched_cpu(int cpu)
1217{
1218 struct rq *rq = cpu_rq(cpu);
1219 unsigned long flags;
1220
1221 if (!spin_trylock_irqsave(&rq->lock, flags))
1222 return;
1223 resched_task(cpu_curr(cpu));
1224 spin_unlock_irqrestore(&rq->lock, flags);
1225}
06d8308c
TG
1226
1227#ifdef CONFIG_NO_HZ
1228/*
1229 * When add_timer_on() enqueues a timer into the timer wheel of an
1230 * idle CPU then this timer might expire before the next timer event
1231 * which is scheduled to wake up that CPU. In case of a completely
1232 * idle system the next event might even be infinite time into the
1233 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1234 * leaves the inner idle loop so the newly added timer is taken into
1235 * account when the CPU goes back to idle and evaluates the timer
1236 * wheel for the next timer event.
1237 */
1238void wake_up_idle_cpu(int cpu)
1239{
1240 struct rq *rq = cpu_rq(cpu);
1241
1242 if (cpu == smp_processor_id())
1243 return;
1244
1245 /*
1246 * This is safe, as this function is called with the timer
1247 * wheel base lock of (cpu) held. When the CPU is on the way
1248 * to idle and has not yet set rq->curr to idle then it will
1249 * be serialized on the timer wheel base lock and take the new
1250 * timer into account automatically.
1251 */
1252 if (rq->curr != rq->idle)
1253 return;
1254
1255 /*
1256 * We can set TIF_RESCHED on the idle task of the other CPU
1257 * lockless. The worst case is that the other CPU runs the
1258 * idle task through an additional NOOP schedule()
1259 */
5ed0cec0 1260 set_tsk_need_resched(rq->idle);
06d8308c
TG
1261
1262 /* NEED_RESCHED must be visible before we test polling */
1263 smp_mb();
1264 if (!tsk_is_polling(rq->idle))
1265 smp_send_reschedule(cpu);
1266}
6d6bc0ad 1267#endif /* CONFIG_NO_HZ */
06d8308c 1268
e9e9250b
PZ
1269static u64 sched_avg_period(void)
1270{
1271 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1272}
1273
1274static void sched_avg_update(struct rq *rq)
1275{
1276 s64 period = sched_avg_period();
1277
1278 while ((s64)(rq->clock - rq->age_stamp) > period) {
1279 rq->age_stamp += period;
1280 rq->rt_avg /= 2;
1281 }
1282}
1283
1284static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285{
1286 rq->rt_avg += rt_delta;
1287 sched_avg_update(rq);
1288}
1289
6d6bc0ad 1290#else /* !CONFIG_SMP */
31656519 1291static void resched_task(struct task_struct *p)
c24d20db
IM
1292{
1293 assert_spin_locked(&task_rq(p)->lock);
31656519 1294 set_tsk_need_resched(p);
c24d20db 1295}
e9e9250b
PZ
1296
1297static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1298{
1299}
6d6bc0ad 1300#endif /* CONFIG_SMP */
c24d20db 1301
45bf76df
IM
1302#if BITS_PER_LONG == 32
1303# define WMULT_CONST (~0UL)
1304#else
1305# define WMULT_CONST (1UL << 32)
1306#endif
1307
1308#define WMULT_SHIFT 32
1309
194081eb
IM
1310/*
1311 * Shift right and round:
1312 */
cf2ab469 1313#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1314
a7be37ac
PZ
1315/*
1316 * delta *= weight / lw
1317 */
cb1c4fc9 1318static unsigned long
45bf76df
IM
1319calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1320 struct load_weight *lw)
1321{
1322 u64 tmp;
1323
7a232e03
LJ
1324 if (!lw->inv_weight) {
1325 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1326 lw->inv_weight = 1;
1327 else
1328 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1329 / (lw->weight+1);
1330 }
45bf76df
IM
1331
1332 tmp = (u64)delta_exec * weight;
1333 /*
1334 * Check whether we'd overflow the 64-bit multiplication:
1335 */
194081eb 1336 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1337 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1338 WMULT_SHIFT/2);
1339 else
cf2ab469 1340 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1341
ecf691da 1342 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1343}
1344
1091985b 1345static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1346{
1347 lw->weight += inc;
e89996ae 1348 lw->inv_weight = 0;
45bf76df
IM
1349}
1350
1091985b 1351static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1352{
1353 lw->weight -= dec;
e89996ae 1354 lw->inv_weight = 0;
45bf76df
IM
1355}
1356
2dd73a4f
PW
1357/*
1358 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1359 * of tasks with abnormal "nice" values across CPUs the contribution that
1360 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1361 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1362 * scaled version of the new time slice allocation that they receive on time
1363 * slice expiry etc.
1364 */
1365
cce7ade8
PZ
1366#define WEIGHT_IDLEPRIO 3
1367#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1368
1369/*
1370 * Nice levels are multiplicative, with a gentle 10% change for every
1371 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1372 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1373 * that remained on nice 0.
1374 *
1375 * The "10% effect" is relative and cumulative: from _any_ nice level,
1376 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1377 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1378 * If a task goes up by ~10% and another task goes down by ~10% then
1379 * the relative distance between them is ~25%.)
dd41f596
IM
1380 */
1381static const int prio_to_weight[40] = {
254753dc
IM
1382 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1383 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1384 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1385 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1386 /* 0 */ 1024, 820, 655, 526, 423,
1387 /* 5 */ 335, 272, 215, 172, 137,
1388 /* 10 */ 110, 87, 70, 56, 45,
1389 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1390};
1391
5714d2de
IM
1392/*
1393 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1394 *
1395 * In cases where the weight does not change often, we can use the
1396 * precalculated inverse to speed up arithmetics by turning divisions
1397 * into multiplications:
1398 */
dd41f596 1399static const u32 prio_to_wmult[40] = {
254753dc
IM
1400 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1401 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1402 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1403 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1404 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1405 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1406 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1407 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1408};
2dd73a4f 1409
dd41f596
IM
1410static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1411
1412/*
1413 * runqueue iterator, to support SMP load-balancing between different
1414 * scheduling classes, without having to expose their internal data
1415 * structures to the load-balancing proper:
1416 */
1417struct rq_iterator {
1418 void *arg;
1419 struct task_struct *(*start)(void *);
1420 struct task_struct *(*next)(void *);
1421};
1422
e1d1484f
PW
1423#ifdef CONFIG_SMP
1424static unsigned long
1425balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1426 unsigned long max_load_move, struct sched_domain *sd,
1427 enum cpu_idle_type idle, int *all_pinned,
1428 int *this_best_prio, struct rq_iterator *iterator);
1429
1430static int
1431iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1432 struct sched_domain *sd, enum cpu_idle_type idle,
1433 struct rq_iterator *iterator);
e1d1484f 1434#endif
dd41f596 1435
ef12fefa
BR
1436/* Time spent by the tasks of the cpu accounting group executing in ... */
1437enum cpuacct_stat_index {
1438 CPUACCT_STAT_USER, /* ... user mode */
1439 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1440
1441 CPUACCT_STAT_NSTATS,
1442};
1443
d842de87
SV
1444#ifdef CONFIG_CGROUP_CPUACCT
1445static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1446static void cpuacct_update_stats(struct task_struct *tsk,
1447 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1448#else
1449static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1450static inline void cpuacct_update_stats(struct task_struct *tsk,
1451 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1452#endif
1453
18d95a28
PZ
1454static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1455{
1456 update_load_add(&rq->load, load);
1457}
1458
1459static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1460{
1461 update_load_sub(&rq->load, load);
1462}
1463
7940ca36 1464#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1465typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1466
1467/*
1468 * Iterate the full tree, calling @down when first entering a node and @up when
1469 * leaving it for the final time.
1470 */
eb755805 1471static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1472{
1473 struct task_group *parent, *child;
eb755805 1474 int ret;
c09595f6
PZ
1475
1476 rcu_read_lock();
1477 parent = &root_task_group;
1478down:
eb755805
PZ
1479 ret = (*down)(parent, data);
1480 if (ret)
1481 goto out_unlock;
c09595f6
PZ
1482 list_for_each_entry_rcu(child, &parent->children, siblings) {
1483 parent = child;
1484 goto down;
1485
1486up:
1487 continue;
1488 }
eb755805
PZ
1489 ret = (*up)(parent, data);
1490 if (ret)
1491 goto out_unlock;
c09595f6
PZ
1492
1493 child = parent;
1494 parent = parent->parent;
1495 if (parent)
1496 goto up;
eb755805 1497out_unlock:
c09595f6 1498 rcu_read_unlock();
eb755805
PZ
1499
1500 return ret;
c09595f6
PZ
1501}
1502
eb755805
PZ
1503static int tg_nop(struct task_group *tg, void *data)
1504{
1505 return 0;
c09595f6 1506}
eb755805
PZ
1507#endif
1508
1509#ifdef CONFIG_SMP
f5f08f39
PZ
1510/* Used instead of source_load when we know the type == 0 */
1511static unsigned long weighted_cpuload(const int cpu)
1512{
1513 return cpu_rq(cpu)->load.weight;
1514}
1515
1516/*
1517 * Return a low guess at the load of a migration-source cpu weighted
1518 * according to the scheduling class and "nice" value.
1519 *
1520 * We want to under-estimate the load of migration sources, to
1521 * balance conservatively.
1522 */
1523static unsigned long source_load(int cpu, int type)
1524{
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return min(rq->cpu_load[type-1], total);
1532}
1533
1534/*
1535 * Return a high guess at the load of a migration-target cpu weighted
1536 * according to the scheduling class and "nice" value.
1537 */
1538static unsigned long target_load(int cpu, int type)
1539{
1540 struct rq *rq = cpu_rq(cpu);
1541 unsigned long total = weighted_cpuload(cpu);
1542
1543 if (type == 0 || !sched_feat(LB_BIAS))
1544 return total;
1545
1546 return max(rq->cpu_load[type-1], total);
1547}
1548
eb755805
PZ
1549static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1550
1551static unsigned long cpu_avg_load_per_task(int cpu)
1552{
1553 struct rq *rq = cpu_rq(cpu);
af6d596f 1554 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1555
4cd42620
SR
1556 if (nr_running)
1557 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1558 else
1559 rq->avg_load_per_task = 0;
eb755805
PZ
1560
1561 return rq->avg_load_per_task;
1562}
1563
1564#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1565
34d76c41
PZ
1566struct update_shares_data {
1567 unsigned long rq_weight[NR_CPUS];
1568};
1569
1570static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1571
c09595f6
PZ
1572static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1573
1574/*
1575 * Calculate and set the cpu's group shares.
1576 */
34d76c41
PZ
1577static void update_group_shares_cpu(struct task_group *tg, int cpu,
1578 unsigned long sd_shares,
1579 unsigned long sd_rq_weight,
1580 struct update_shares_data *usd)
18d95a28 1581{
34d76c41 1582 unsigned long shares, rq_weight;
a5004278 1583 int boost = 0;
c09595f6 1584
34d76c41 1585 rq_weight = usd->rq_weight[cpu];
a5004278
PZ
1586 if (!rq_weight) {
1587 boost = 1;
1588 rq_weight = NICE_0_LOAD;
1589 }
c8cba857 1590
c09595f6 1591 /*
a8af7246
PZ
1592 * \Sum_j shares_j * rq_weight_i
1593 * shares_i = -----------------------------
1594 * \Sum_j rq_weight_j
c09595f6 1595 */
ec4e0e2f 1596 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1597 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1598
ffda12a1
PZ
1599 if (abs(shares - tg->se[cpu]->load.weight) >
1600 sysctl_sched_shares_thresh) {
1601 struct rq *rq = cpu_rq(cpu);
1602 unsigned long flags;
c09595f6 1603
ffda12a1 1604 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1605 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1606 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1607 __set_se_shares(tg->se[cpu], shares);
1608 spin_unlock_irqrestore(&rq->lock, flags);
1609 }
18d95a28 1610}
c09595f6
PZ
1611
1612/*
c8cba857
PZ
1613 * Re-compute the task group their per cpu shares over the given domain.
1614 * This needs to be done in a bottom-up fashion because the rq weight of a
1615 * parent group depends on the shares of its child groups.
c09595f6 1616 */
eb755805 1617static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1618{
34d76c41
PZ
1619 unsigned long weight, rq_weight = 0, shares = 0;
1620 struct update_shares_data *usd;
eb755805 1621 struct sched_domain *sd = data;
34d76c41 1622 unsigned long flags;
c8cba857 1623 int i;
c09595f6 1624
34d76c41
PZ
1625 if (!tg->se[0])
1626 return 0;
1627
1628 local_irq_save(flags);
1629 usd = &__get_cpu_var(update_shares_data);
1630
758b2cdc 1631 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41
PZ
1632 weight = tg->cfs_rq[i]->load.weight;
1633 usd->rq_weight[i] = weight;
1634
ec4e0e2f
KC
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
ec4e0e2f
KC
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
ec4e0e2f 1643 rq_weight += weight;
c8cba857 1644 shares += tg->cfs_rq[i]->shares;
c09595f6 1645 }
c09595f6 1646
c8cba857
PZ
1647 if ((!shares && rq_weight) || shares > tg->shares)
1648 shares = tg->shares;
1649
1650 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1651 shares = tg->shares;
c09595f6 1652
758b2cdc 1653 for_each_cpu(i, sched_domain_span(sd))
34d76c41
PZ
1654 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1655
1656 local_irq_restore(flags);
eb755805
PZ
1657
1658 return 0;
c09595f6
PZ
1659}
1660
1661/*
c8cba857
PZ
1662 * Compute the cpu's hierarchical load factor for each task group.
1663 * This needs to be done in a top-down fashion because the load of a child
1664 * group is a fraction of its parents load.
c09595f6 1665 */
eb755805 1666static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1667{
c8cba857 1668 unsigned long load;
eb755805 1669 long cpu = (long)data;
c09595f6 1670
c8cba857
PZ
1671 if (!tg->parent) {
1672 load = cpu_rq(cpu)->load.weight;
1673 } else {
1674 load = tg->parent->cfs_rq[cpu]->h_load;
1675 load *= tg->cfs_rq[cpu]->shares;
1676 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1677 }
c09595f6 1678
c8cba857 1679 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1680
eb755805 1681 return 0;
c09595f6
PZ
1682}
1683
c8cba857 1684static void update_shares(struct sched_domain *sd)
4d8d595d 1685{
e7097159
PZ
1686 s64 elapsed;
1687 u64 now;
1688
1689 if (root_task_group_empty())
1690 return;
1691
1692 now = cpu_clock(raw_smp_processor_id());
1693 elapsed = now - sd->last_update;
2398f2c6
PZ
1694
1695 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1696 sd->last_update = now;
eb755805 1697 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1698 }
4d8d595d
PZ
1699}
1700
3e5459b4
PZ
1701static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1702{
e7097159
PZ
1703 if (root_task_group_empty())
1704 return;
1705
3e5459b4
PZ
1706 spin_unlock(&rq->lock);
1707 update_shares(sd);
1708 spin_lock(&rq->lock);
1709}
1710
eb755805 1711static void update_h_load(long cpu)
c09595f6 1712{
e7097159
PZ
1713 if (root_task_group_empty())
1714 return;
1715
eb755805 1716 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1717}
1718
c09595f6
PZ
1719#else
1720
c8cba857 1721static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1722{
1723}
1724
3e5459b4
PZ
1725static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1726{
1727}
1728
18d95a28
PZ
1729#endif
1730
8f45e2b5
GH
1731#ifdef CONFIG_PREEMPT
1732
b78bb868
PZ
1733static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1734
70574a99 1735/*
8f45e2b5
GH
1736 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1737 * way at the expense of forcing extra atomic operations in all
1738 * invocations. This assures that the double_lock is acquired using the
1739 * same underlying policy as the spinlock_t on this architecture, which
1740 * reduces latency compared to the unfair variant below. However, it
1741 * also adds more overhead and therefore may reduce throughput.
70574a99 1742 */
8f45e2b5
GH
1743static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(this_rq->lock)
1745 __acquires(busiest->lock)
1746 __acquires(this_rq->lock)
1747{
1748 spin_unlock(&this_rq->lock);
1749 double_rq_lock(this_rq, busiest);
1750
1751 return 1;
1752}
1753
1754#else
1755/*
1756 * Unfair double_lock_balance: Optimizes throughput at the expense of
1757 * latency by eliminating extra atomic operations when the locks are
1758 * already in proper order on entry. This favors lower cpu-ids and will
1759 * grant the double lock to lower cpus over higher ids under contention,
1760 * regardless of entry order into the function.
1761 */
1762static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1763 __releases(this_rq->lock)
1764 __acquires(busiest->lock)
1765 __acquires(this_rq->lock)
1766{
1767 int ret = 0;
1768
70574a99
AD
1769 if (unlikely(!spin_trylock(&busiest->lock))) {
1770 if (busiest < this_rq) {
1771 spin_unlock(&this_rq->lock);
1772 spin_lock(&busiest->lock);
1773 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1774 ret = 1;
1775 } else
1776 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1777 }
1778 return ret;
1779}
1780
8f45e2b5
GH
1781#endif /* CONFIG_PREEMPT */
1782
1783/*
1784 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1785 */
1786static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1787{
1788 if (unlikely(!irqs_disabled())) {
1789 /* printk() doesn't work good under rq->lock */
1790 spin_unlock(&this_rq->lock);
1791 BUG_ON(1);
1792 }
1793
1794 return _double_lock_balance(this_rq, busiest);
1795}
1796
70574a99
AD
1797static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1798 __releases(busiest->lock)
1799{
1800 spin_unlock(&busiest->lock);
1801 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1802}
18d95a28
PZ
1803#endif
1804
30432094 1805#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1806static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1807{
30432094 1808#ifdef CONFIG_SMP
34e83e85
IM
1809 cfs_rq->shares = shares;
1810#endif
1811}
30432094 1812#endif
e7693a36 1813
dce48a84
TG
1814static void calc_load_account_active(struct rq *this_rq);
1815
dd41f596 1816#include "sched_stats.h"
dd41f596 1817#include "sched_idletask.c"
5522d5d5
IM
1818#include "sched_fair.c"
1819#include "sched_rt.c"
dd41f596
IM
1820#ifdef CONFIG_SCHED_DEBUG
1821# include "sched_debug.c"
1822#endif
1823
1824#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1825#define for_each_class(class) \
1826 for (class = sched_class_highest; class; class = class->next)
dd41f596 1827
c09595f6 1828static void inc_nr_running(struct rq *rq)
9c217245
IM
1829{
1830 rq->nr_running++;
9c217245
IM
1831}
1832
c09595f6 1833static void dec_nr_running(struct rq *rq)
9c217245
IM
1834{
1835 rq->nr_running--;
9c217245
IM
1836}
1837
45bf76df
IM
1838static void set_load_weight(struct task_struct *p)
1839{
1840 if (task_has_rt_policy(p)) {
dd41f596
IM
1841 p->se.load.weight = prio_to_weight[0] * 2;
1842 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1843 return;
1844 }
45bf76df 1845
dd41f596
IM
1846 /*
1847 * SCHED_IDLE tasks get minimal weight:
1848 */
1849 if (p->policy == SCHED_IDLE) {
1850 p->se.load.weight = WEIGHT_IDLEPRIO;
1851 p->se.load.inv_weight = WMULT_IDLEPRIO;
1852 return;
1853 }
71f8bd46 1854
dd41f596
IM
1855 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1856 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1857}
1858
2087a1ad
GH
1859static void update_avg(u64 *avg, u64 sample)
1860{
1861 s64 diff = sample - *avg;
1862 *avg += diff >> 3;
1863}
1864
8159f87e 1865static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1866{
831451ac
PZ
1867 if (wakeup)
1868 p->se.start_runtime = p->se.sum_exec_runtime;
1869
dd41f596 1870 sched_info_queued(p);
fd390f6a 1871 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1872 p->se.on_rq = 1;
71f8bd46
IM
1873}
1874
69be72c1 1875static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1876{
831451ac
PZ
1877 if (sleep) {
1878 if (p->se.last_wakeup) {
1879 update_avg(&p->se.avg_overlap,
1880 p->se.sum_exec_runtime - p->se.last_wakeup);
1881 p->se.last_wakeup = 0;
1882 } else {
1883 update_avg(&p->se.avg_wakeup,
1884 sysctl_sched_wakeup_granularity);
1885 }
2087a1ad
GH
1886 }
1887
46ac22ba 1888 sched_info_dequeued(p);
f02231e5 1889 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1890 p->se.on_rq = 0;
71f8bd46
IM
1891}
1892
14531189 1893/*
dd41f596 1894 * __normal_prio - return the priority that is based on the static prio
14531189 1895 */
14531189
IM
1896static inline int __normal_prio(struct task_struct *p)
1897{
dd41f596 1898 return p->static_prio;
14531189
IM
1899}
1900
b29739f9
IM
1901/*
1902 * Calculate the expected normal priority: i.e. priority
1903 * without taking RT-inheritance into account. Might be
1904 * boosted by interactivity modifiers. Changes upon fork,
1905 * setprio syscalls, and whenever the interactivity
1906 * estimator recalculates.
1907 */
36c8b586 1908static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1909{
1910 int prio;
1911
e05606d3 1912 if (task_has_rt_policy(p))
b29739f9
IM
1913 prio = MAX_RT_PRIO-1 - p->rt_priority;
1914 else
1915 prio = __normal_prio(p);
1916 return prio;
1917}
1918
1919/*
1920 * Calculate the current priority, i.e. the priority
1921 * taken into account by the scheduler. This value might
1922 * be boosted by RT tasks, or might be boosted by
1923 * interactivity modifiers. Will be RT if the task got
1924 * RT-boosted. If not then it returns p->normal_prio.
1925 */
36c8b586 1926static int effective_prio(struct task_struct *p)
b29739f9
IM
1927{
1928 p->normal_prio = normal_prio(p);
1929 /*
1930 * If we are RT tasks or we were boosted to RT priority,
1931 * keep the priority unchanged. Otherwise, update priority
1932 * to the normal priority:
1933 */
1934 if (!rt_prio(p->prio))
1935 return p->normal_prio;
1936 return p->prio;
1937}
1938
1da177e4 1939/*
dd41f596 1940 * activate_task - move a task to the runqueue.
1da177e4 1941 */
dd41f596 1942static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1943{
d9514f6c 1944 if (task_contributes_to_load(p))
dd41f596 1945 rq->nr_uninterruptible--;
1da177e4 1946
8159f87e 1947 enqueue_task(rq, p, wakeup);
c09595f6 1948 inc_nr_running(rq);
1da177e4
LT
1949}
1950
1da177e4
LT
1951/*
1952 * deactivate_task - remove a task from the runqueue.
1953 */
2e1cb74a 1954static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1955{
d9514f6c 1956 if (task_contributes_to_load(p))
dd41f596
IM
1957 rq->nr_uninterruptible++;
1958
69be72c1 1959 dequeue_task(rq, p, sleep);
c09595f6 1960 dec_nr_running(rq);
1da177e4
LT
1961}
1962
1da177e4
LT
1963/**
1964 * task_curr - is this task currently executing on a CPU?
1965 * @p: the task in question.
1966 */
36c8b586 1967inline int task_curr(const struct task_struct *p)
1da177e4
LT
1968{
1969 return cpu_curr(task_cpu(p)) == p;
1970}
1971
dd41f596
IM
1972static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1973{
6f505b16 1974 set_task_rq(p, cpu);
dd41f596 1975#ifdef CONFIG_SMP
ce96b5ac
DA
1976 /*
1977 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1978 * successfuly executed on another CPU. We must ensure that updates of
1979 * per-task data have been completed by this moment.
1980 */
1981 smp_wmb();
dd41f596 1982 task_thread_info(p)->cpu = cpu;
dd41f596 1983#endif
2dd73a4f
PW
1984}
1985
cb469845
SR
1986static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1987 const struct sched_class *prev_class,
1988 int oldprio, int running)
1989{
1990 if (prev_class != p->sched_class) {
1991 if (prev_class->switched_from)
1992 prev_class->switched_from(rq, p, running);
1993 p->sched_class->switched_to(rq, p, running);
1994 } else
1995 p->sched_class->prio_changed(rq, p, oldprio, running);
1996}
1997
1da177e4 1998#ifdef CONFIG_SMP
cc367732
IM
1999/*
2000 * Is this task likely cache-hot:
2001 */
e7693a36 2002static int
cc367732
IM
2003task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2004{
2005 s64 delta;
2006
f540a608
IM
2007 /*
2008 * Buddy candidates are cache hot:
2009 */
4793241b
PZ
2010 if (sched_feat(CACHE_HOT_BUDDY) &&
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2013 return 1;
2014
cc367732
IM
2015 if (p->sched_class != &fair_sched_class)
2016 return 0;
2017
6bc1665b
IM
2018 if (sysctl_sched_migration_cost == -1)
2019 return 1;
2020 if (sysctl_sched_migration_cost == 0)
2021 return 0;
2022
cc367732
IM
2023 delta = now - p->se.exec_start;
2024
2025 return delta < (s64)sysctl_sched_migration_cost;
2026}
2027
2028
dd41f596 2029void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2030{
dd41f596
IM
2031 int old_cpu = task_cpu(p);
2032 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2033 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2034 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2035 u64 clock_offset;
dd41f596
IM
2036
2037 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2038
de1d7286 2039 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2040
6cfb0d5d
IM
2041#ifdef CONFIG_SCHEDSTATS
2042 if (p->se.wait_start)
2043 p->se.wait_start -= clock_offset;
dd41f596
IM
2044 if (p->se.sleep_start)
2045 p->se.sleep_start -= clock_offset;
2046 if (p->se.block_start)
2047 p->se.block_start -= clock_offset;
6c594c21 2048#endif
cc367732 2049 if (old_cpu != new_cpu) {
6c594c21 2050 p->se.nr_migrations++;
23a185ca 2051 new_rq->nr_migrations_in++;
6c594c21 2052#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2053 if (task_hot(p, old_rq->clock, NULL))
2054 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2055#endif
e5289d4a
PZ
2056 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2057 1, 1, NULL, 0);
6c594c21 2058 }
2830cf8c
SV
2059 p->se.vruntime -= old_cfsrq->min_vruntime -
2060 new_cfsrq->min_vruntime;
dd41f596
IM
2061
2062 __set_task_cpu(p, new_cpu);
c65cc870
IM
2063}
2064
70b97a7f 2065struct migration_req {
1da177e4 2066 struct list_head list;
1da177e4 2067
36c8b586 2068 struct task_struct *task;
1da177e4
LT
2069 int dest_cpu;
2070
1da177e4 2071 struct completion done;
70b97a7f 2072};
1da177e4
LT
2073
2074/*
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2077 */
36c8b586 2078static int
70b97a7f 2079migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2080{
70b97a7f 2081 struct rq *rq = task_rq(p);
1da177e4
LT
2082
2083 /*
2084 * If the task is not on a runqueue (and not running), then
2085 * it is sufficient to simply update the task's cpu field.
2086 */
dd41f596 2087 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2088 set_task_cpu(p, dest_cpu);
2089 return 0;
2090 }
2091
2092 init_completion(&req->done);
1da177e4
LT
2093 req->task = p;
2094 req->dest_cpu = dest_cpu;
2095 list_add(&req->list, &rq->migration_queue);
48f24c4d 2096
1da177e4
LT
2097 return 1;
2098}
2099
a26b89f0
MM
2100/*
2101 * wait_task_context_switch - wait for a thread to complete at least one
2102 * context switch.
2103 *
2104 * @p must not be current.
2105 */
2106void wait_task_context_switch(struct task_struct *p)
2107{
2108 unsigned long nvcsw, nivcsw, flags;
2109 int running;
2110 struct rq *rq;
2111
2112 nvcsw = p->nvcsw;
2113 nivcsw = p->nivcsw;
2114 for (;;) {
2115 /*
2116 * The runqueue is assigned before the actual context
2117 * switch. We need to take the runqueue lock.
2118 *
2119 * We could check initially without the lock but it is
2120 * very likely that we need to take the lock in every
2121 * iteration.
2122 */
2123 rq = task_rq_lock(p, &flags);
2124 running = task_running(rq, p);
2125 task_rq_unlock(rq, &flags);
2126
2127 if (likely(!running))
2128 break;
2129 /*
2130 * The switch count is incremented before the actual
2131 * context switch. We thus wait for two switches to be
2132 * sure at least one completed.
2133 */
2134 if ((p->nvcsw - nvcsw) > 1)
2135 break;
2136 if ((p->nivcsw - nivcsw) > 1)
2137 break;
2138
2139 cpu_relax();
2140 }
2141}
2142
1da177e4
LT
2143/*
2144 * wait_task_inactive - wait for a thread to unschedule.
2145 *
85ba2d86
RM
2146 * If @match_state is nonzero, it's the @p->state value just checked and
2147 * not expected to change. If it changes, i.e. @p might have woken up,
2148 * then return zero. When we succeed in waiting for @p to be off its CPU,
2149 * we return a positive number (its total switch count). If a second call
2150 * a short while later returns the same number, the caller can be sure that
2151 * @p has remained unscheduled the whole time.
2152 *
1da177e4
LT
2153 * The caller must ensure that the task *will* unschedule sometime soon,
2154 * else this function might spin for a *long* time. This function can't
2155 * be called with interrupts off, or it may introduce deadlock with
2156 * smp_call_function() if an IPI is sent by the same process we are
2157 * waiting to become inactive.
2158 */
85ba2d86 2159unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2160{
2161 unsigned long flags;
dd41f596 2162 int running, on_rq;
85ba2d86 2163 unsigned long ncsw;
70b97a7f 2164 struct rq *rq;
1da177e4 2165
3a5c359a
AK
2166 for (;;) {
2167 /*
2168 * We do the initial early heuristics without holding
2169 * any task-queue locks at all. We'll only try to get
2170 * the runqueue lock when things look like they will
2171 * work out!
2172 */
2173 rq = task_rq(p);
fa490cfd 2174
3a5c359a
AK
2175 /*
2176 * If the task is actively running on another CPU
2177 * still, just relax and busy-wait without holding
2178 * any locks.
2179 *
2180 * NOTE! Since we don't hold any locks, it's not
2181 * even sure that "rq" stays as the right runqueue!
2182 * But we don't care, since "task_running()" will
2183 * return false if the runqueue has changed and p
2184 * is actually now running somewhere else!
2185 */
85ba2d86
RM
2186 while (task_running(rq, p)) {
2187 if (match_state && unlikely(p->state != match_state))
2188 return 0;
3a5c359a 2189 cpu_relax();
85ba2d86 2190 }
fa490cfd 2191
3a5c359a
AK
2192 /*
2193 * Ok, time to look more closely! We need the rq
2194 * lock now, to be *sure*. If we're wrong, we'll
2195 * just go back and repeat.
2196 */
2197 rq = task_rq_lock(p, &flags);
0a16b607 2198 trace_sched_wait_task(rq, p);
3a5c359a
AK
2199 running = task_running(rq, p);
2200 on_rq = p->se.on_rq;
85ba2d86 2201 ncsw = 0;
f31e11d8 2202 if (!match_state || p->state == match_state)
93dcf55f 2203 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2204 task_rq_unlock(rq, &flags);
fa490cfd 2205
85ba2d86
RM
2206 /*
2207 * If it changed from the expected state, bail out now.
2208 */
2209 if (unlikely(!ncsw))
2210 break;
2211
3a5c359a
AK
2212 /*
2213 * Was it really running after all now that we
2214 * checked with the proper locks actually held?
2215 *
2216 * Oops. Go back and try again..
2217 */
2218 if (unlikely(running)) {
2219 cpu_relax();
2220 continue;
2221 }
fa490cfd 2222
3a5c359a
AK
2223 /*
2224 * It's not enough that it's not actively running,
2225 * it must be off the runqueue _entirely_, and not
2226 * preempted!
2227 *
80dd99b3 2228 * So if it was still runnable (but just not actively
3a5c359a
AK
2229 * running right now), it's preempted, and we should
2230 * yield - it could be a while.
2231 */
2232 if (unlikely(on_rq)) {
2233 schedule_timeout_uninterruptible(1);
2234 continue;
2235 }
fa490cfd 2236
3a5c359a
AK
2237 /*
2238 * Ahh, all good. It wasn't running, and it wasn't
2239 * runnable, which means that it will never become
2240 * running in the future either. We're all done!
2241 */
2242 break;
2243 }
85ba2d86
RM
2244
2245 return ncsw;
1da177e4
LT
2246}
2247
2248/***
2249 * kick_process - kick a running thread to enter/exit the kernel
2250 * @p: the to-be-kicked thread
2251 *
2252 * Cause a process which is running on another CPU to enter
2253 * kernel-mode, without any delay. (to get signals handled.)
2254 *
2255 * NOTE: this function doesnt have to take the runqueue lock,
2256 * because all it wants to ensure is that the remote task enters
2257 * the kernel. If the IPI races and the task has been migrated
2258 * to another CPU then no harm is done and the purpose has been
2259 * achieved as well.
2260 */
36c8b586 2261void kick_process(struct task_struct *p)
1da177e4
LT
2262{
2263 int cpu;
2264
2265 preempt_disable();
2266 cpu = task_cpu(p);
2267 if ((cpu != smp_processor_id()) && task_curr(p))
2268 smp_send_reschedule(cpu);
2269 preempt_enable();
2270}
b43e3521 2271EXPORT_SYMBOL_GPL(kick_process);
476d139c 2272#endif /* CONFIG_SMP */
1da177e4 2273
0793a61d
TG
2274/**
2275 * task_oncpu_function_call - call a function on the cpu on which a task runs
2276 * @p: the task to evaluate
2277 * @func: the function to be called
2278 * @info: the function call argument
2279 *
2280 * Calls the function @func when the task is currently running. This might
2281 * be on the current CPU, which just calls the function directly
2282 */
2283void task_oncpu_function_call(struct task_struct *p,
2284 void (*func) (void *info), void *info)
2285{
2286 int cpu;
2287
2288 preempt_disable();
2289 cpu = task_cpu(p);
2290 if (task_curr(p))
2291 smp_call_function_single(cpu, func, info, 1);
2292 preempt_enable();
2293}
2294
1da177e4
LT
2295/***
2296 * try_to_wake_up - wake up a thread
2297 * @p: the to-be-woken-up thread
2298 * @state: the mask of task states that can be woken
2299 * @sync: do a synchronous wakeup?
2300 *
2301 * Put it on the run-queue if it's not already there. The "current"
2302 * thread is always on the run-queue (except when the actual
2303 * re-schedule is in progress), and as such you're allowed to do
2304 * the simpler "current->state = TASK_RUNNING" to mark yourself
2305 * runnable without the overhead of this.
2306 *
2307 * returns failure only if the task is already active.
2308 */
36c8b586 2309static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2310{
cc367732 2311 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2312 unsigned long flags;
70b97a7f 2313 struct rq *rq;
1da177e4 2314
b85d0667
IM
2315 if (!sched_feat(SYNC_WAKEUPS))
2316 sync = 0;
2317
2398f2c6 2318#ifdef CONFIG_SMP
57310a98 2319 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2320 struct sched_domain *sd;
2321
2322 this_cpu = raw_smp_processor_id();
2323 cpu = task_cpu(p);
2324
2325 for_each_domain(this_cpu, sd) {
758b2cdc 2326 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2327 update_shares(sd);
2328 break;
2329 }
2330 }
2331 }
2332#endif
2333
e9c84311
PZ
2334 this_cpu = get_cpu();
2335
04e2f174 2336 smp_wmb();
1da177e4 2337 rq = task_rq_lock(p, &flags);
03e89e45 2338 update_rq_clock(rq);
e9c84311 2339 if (!(p->state & state))
1da177e4
LT
2340 goto out;
2341
dd41f596 2342 if (p->se.on_rq)
1da177e4
LT
2343 goto out_running;
2344
2345 cpu = task_cpu(p);
cc367732 2346 orig_cpu = cpu;
1da177e4
LT
2347
2348#ifdef CONFIG_SMP
2349 if (unlikely(task_running(rq, p)))
2350 goto out_activate;
2351
e9c84311
PZ
2352 /*
2353 * In order to handle concurrent wakeups and release the rq->lock
2354 * we put the task in TASK_WAKING state.
2355 */
2356 p->state = TASK_WAKING;
2357 task_rq_unlock(rq, &flags);
2358
5f3edc1b 2359 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, sync);
e9c84311 2360 if (cpu != orig_cpu)
5d2f5a61 2361 set_task_cpu(p, cpu);
1da177e4 2362
e9c84311
PZ
2363 rq = task_rq_lock(p, &flags);
2364 WARN_ON(p->state != TASK_WAKING);
2365 cpu = task_cpu(p);
1da177e4 2366
e7693a36
GH
2367#ifdef CONFIG_SCHEDSTATS
2368 schedstat_inc(rq, ttwu_count);
2369 if (cpu == this_cpu)
2370 schedstat_inc(rq, ttwu_local);
2371 else {
2372 struct sched_domain *sd;
2373 for_each_domain(this_cpu, sd) {
758b2cdc 2374 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2375 schedstat_inc(sd, ttwu_wake_remote);
2376 break;
2377 }
2378 }
2379 }
6d6bc0ad 2380#endif /* CONFIG_SCHEDSTATS */
e7693a36 2381
1da177e4
LT
2382out_activate:
2383#endif /* CONFIG_SMP */
cc367732
IM
2384 schedstat_inc(p, se.nr_wakeups);
2385 if (sync)
2386 schedstat_inc(p, se.nr_wakeups_sync);
2387 if (orig_cpu != cpu)
2388 schedstat_inc(p, se.nr_wakeups_migrate);
2389 if (cpu == this_cpu)
2390 schedstat_inc(p, se.nr_wakeups_local);
2391 else
2392 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2393 activate_task(rq, p, 1);
1da177e4
LT
2394 success = 1;
2395
831451ac
PZ
2396 /*
2397 * Only attribute actual wakeups done by this task.
2398 */
2399 if (!in_interrupt()) {
2400 struct sched_entity *se = &current->se;
2401 u64 sample = se->sum_exec_runtime;
2402
2403 if (se->last_wakeup)
2404 sample -= se->last_wakeup;
2405 else
2406 sample -= se->start_runtime;
2407 update_avg(&se->avg_wakeup, sample);
2408
2409 se->last_wakeup = se->sum_exec_runtime;
2410 }
2411
1da177e4 2412out_running:
468a15bb 2413 trace_sched_wakeup(rq, p, success);
15afe09b 2414 check_preempt_curr(rq, p, sync);
4ae7d5ce 2415
1da177e4 2416 p->state = TASK_RUNNING;
9a897c5a
SR
2417#ifdef CONFIG_SMP
2418 if (p->sched_class->task_wake_up)
2419 p->sched_class->task_wake_up(rq, p);
2420#endif
1da177e4
LT
2421out:
2422 task_rq_unlock(rq, &flags);
e9c84311 2423 put_cpu();
1da177e4
LT
2424
2425 return success;
2426}
2427
50fa610a
DH
2428/**
2429 * wake_up_process - Wake up a specific process
2430 * @p: The process to be woken up.
2431 *
2432 * Attempt to wake up the nominated process and move it to the set of runnable
2433 * processes. Returns 1 if the process was woken up, 0 if it was already
2434 * running.
2435 *
2436 * It may be assumed that this function implies a write memory barrier before
2437 * changing the task state if and only if any tasks are woken up.
2438 */
7ad5b3a5 2439int wake_up_process(struct task_struct *p)
1da177e4 2440{
d9514f6c 2441 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2442}
1da177e4
LT
2443EXPORT_SYMBOL(wake_up_process);
2444
7ad5b3a5 2445int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2446{
2447 return try_to_wake_up(p, state, 0);
2448}
2449
1da177e4
LT
2450/*
2451 * Perform scheduler related setup for a newly forked process p.
2452 * p is forked by current.
dd41f596
IM
2453 *
2454 * __sched_fork() is basic setup used by init_idle() too:
2455 */
2456static void __sched_fork(struct task_struct *p)
2457{
dd41f596
IM
2458 p->se.exec_start = 0;
2459 p->se.sum_exec_runtime = 0;
f6cf891c 2460 p->se.prev_sum_exec_runtime = 0;
6c594c21 2461 p->se.nr_migrations = 0;
4ae7d5ce
IM
2462 p->se.last_wakeup = 0;
2463 p->se.avg_overlap = 0;
831451ac
PZ
2464 p->se.start_runtime = 0;
2465 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2466
2467#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2468 p->se.wait_start = 0;
2469 p->se.wait_max = 0;
2470 p->se.wait_count = 0;
2471 p->se.wait_sum = 0;
2472
2473 p->se.sleep_start = 0;
2474 p->se.sleep_max = 0;
2475 p->se.sum_sleep_runtime = 0;
2476
2477 p->se.block_start = 0;
2478 p->se.block_max = 0;
2479 p->se.exec_max = 0;
2480 p->se.slice_max = 0;
2481
2482 p->se.nr_migrations_cold = 0;
2483 p->se.nr_failed_migrations_affine = 0;
2484 p->se.nr_failed_migrations_running = 0;
2485 p->se.nr_failed_migrations_hot = 0;
2486 p->se.nr_forced_migrations = 0;
2487 p->se.nr_forced2_migrations = 0;
2488
2489 p->se.nr_wakeups = 0;
2490 p->se.nr_wakeups_sync = 0;
2491 p->se.nr_wakeups_migrate = 0;
2492 p->se.nr_wakeups_local = 0;
2493 p->se.nr_wakeups_remote = 0;
2494 p->se.nr_wakeups_affine = 0;
2495 p->se.nr_wakeups_affine_attempts = 0;
2496 p->se.nr_wakeups_passive = 0;
2497 p->se.nr_wakeups_idle = 0;
2498
6cfb0d5d 2499#endif
476d139c 2500
fa717060 2501 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2502 p->se.on_rq = 0;
4a55bd5e 2503 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2504
e107be36
AK
2505#ifdef CONFIG_PREEMPT_NOTIFIERS
2506 INIT_HLIST_HEAD(&p->preempt_notifiers);
2507#endif
2508
1da177e4
LT
2509 /*
2510 * We mark the process as running here, but have not actually
2511 * inserted it onto the runqueue yet. This guarantees that
2512 * nobody will actually run it, and a signal or other external
2513 * event cannot wake it up and insert it on the runqueue either.
2514 */
2515 p->state = TASK_RUNNING;
dd41f596
IM
2516}
2517
2518/*
2519 * fork()/clone()-time setup:
2520 */
2521void sched_fork(struct task_struct *p, int clone_flags)
2522{
2523 int cpu = get_cpu();
2524
2525 __sched_fork(p);
2526
b29739f9 2527 /*
b9dc29e7 2528 * Make sure we do not leak PI boosting priority to the child.
b29739f9
IM
2529 */
2530 p->prio = current->normal_prio;
ca94c442 2531
b9dc29e7
MG
2532 /*
2533 * Revert to default priority/policy on fork if requested.
2534 */
2535 if (unlikely(p->sched_reset_on_fork)) {
2536 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2537 p->policy = SCHED_NORMAL;
2538
2539 if (p->normal_prio < DEFAULT_PRIO)
2540 p->prio = DEFAULT_PRIO;
2541
6c697bdf
MG
2542 if (PRIO_TO_NICE(p->static_prio) < 0) {
2543 p->static_prio = NICE_TO_PRIO(0);
2544 set_load_weight(p);
2545 }
2546
b9dc29e7
MG
2547 /*
2548 * We don't need the reset flag anymore after the fork. It has
2549 * fulfilled its duty:
2550 */
2551 p->sched_reset_on_fork = 0;
2552 }
ca94c442 2553
2ddbf952
HS
2554 if (!rt_prio(p->prio))
2555 p->sched_class = &fair_sched_class;
b29739f9 2556
5f3edc1b
PZ
2557#ifdef CONFIG_SMP
2558 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2559#endif
2560 set_task_cpu(p, cpu);
2561
52f17b6c 2562#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2563 if (likely(sched_info_on()))
52f17b6c 2564 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2565#endif
d6077cb8 2566#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2567 p->oncpu = 0;
2568#endif
1da177e4 2569#ifdef CONFIG_PREEMPT
4866cde0 2570 /* Want to start with kernel preemption disabled. */
a1261f54 2571 task_thread_info(p)->preempt_count = 1;
1da177e4 2572#endif
917b627d
GH
2573 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2574
476d139c 2575 put_cpu();
1da177e4
LT
2576}
2577
2578/*
2579 * wake_up_new_task - wake up a newly created task for the first time.
2580 *
2581 * This function will do some initial scheduler statistics housekeeping
2582 * that must be done for every newly created context, then puts the task
2583 * on the runqueue and wakes it.
2584 */
7ad5b3a5 2585void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2586{
2587 unsigned long flags;
dd41f596 2588 struct rq *rq;
1da177e4
LT
2589
2590 rq = task_rq_lock(p, &flags);
147cbb4b 2591 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2592 update_rq_clock(rq);
1da177e4
LT
2593
2594 p->prio = effective_prio(p);
2595
b9dca1e0 2596 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2597 activate_task(rq, p, 0);
1da177e4 2598 } else {
1da177e4 2599 /*
dd41f596
IM
2600 * Let the scheduling class do new task startup
2601 * management (if any):
1da177e4 2602 */
ee0827d8 2603 p->sched_class->task_new(rq, p);
c09595f6 2604 inc_nr_running(rq);
1da177e4 2605 }
c71dd42d 2606 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2607 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2608#ifdef CONFIG_SMP
2609 if (p->sched_class->task_wake_up)
2610 p->sched_class->task_wake_up(rq, p);
2611#endif
dd41f596 2612 task_rq_unlock(rq, &flags);
1da177e4
LT
2613}
2614
e107be36
AK
2615#ifdef CONFIG_PREEMPT_NOTIFIERS
2616
2617/**
80dd99b3 2618 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2619 * @notifier: notifier struct to register
e107be36
AK
2620 */
2621void preempt_notifier_register(struct preempt_notifier *notifier)
2622{
2623 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2624}
2625EXPORT_SYMBOL_GPL(preempt_notifier_register);
2626
2627/**
2628 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2629 * @notifier: notifier struct to unregister
e107be36
AK
2630 *
2631 * This is safe to call from within a preemption notifier.
2632 */
2633void preempt_notifier_unregister(struct preempt_notifier *notifier)
2634{
2635 hlist_del(&notifier->link);
2636}
2637EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2638
2639static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2640{
2641 struct preempt_notifier *notifier;
2642 struct hlist_node *node;
2643
2644 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2645 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2646}
2647
2648static void
2649fire_sched_out_preempt_notifiers(struct task_struct *curr,
2650 struct task_struct *next)
2651{
2652 struct preempt_notifier *notifier;
2653 struct hlist_node *node;
2654
2655 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2656 notifier->ops->sched_out(notifier, next);
2657}
2658
6d6bc0ad 2659#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2660
2661static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2662{
2663}
2664
2665static void
2666fire_sched_out_preempt_notifiers(struct task_struct *curr,
2667 struct task_struct *next)
2668{
2669}
2670
6d6bc0ad 2671#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2672
4866cde0
NP
2673/**
2674 * prepare_task_switch - prepare to switch tasks
2675 * @rq: the runqueue preparing to switch
421cee29 2676 * @prev: the current task that is being switched out
4866cde0
NP
2677 * @next: the task we are going to switch to.
2678 *
2679 * This is called with the rq lock held and interrupts off. It must
2680 * be paired with a subsequent finish_task_switch after the context
2681 * switch.
2682 *
2683 * prepare_task_switch sets up locking and calls architecture specific
2684 * hooks.
2685 */
e107be36
AK
2686static inline void
2687prepare_task_switch(struct rq *rq, struct task_struct *prev,
2688 struct task_struct *next)
4866cde0 2689{
e107be36 2690 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2691 prepare_lock_switch(rq, next);
2692 prepare_arch_switch(next);
2693}
2694
1da177e4
LT
2695/**
2696 * finish_task_switch - clean up after a task-switch
344babaa 2697 * @rq: runqueue associated with task-switch
1da177e4
LT
2698 * @prev: the thread we just switched away from.
2699 *
4866cde0
NP
2700 * finish_task_switch must be called after the context switch, paired
2701 * with a prepare_task_switch call before the context switch.
2702 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2703 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2704 *
2705 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2706 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2707 * with the lock held can cause deadlocks; see schedule() for
2708 * details.)
2709 */
a9957449 2710static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2711 __releases(rq->lock)
2712{
1da177e4 2713 struct mm_struct *mm = rq->prev_mm;
55a101f8 2714 long prev_state;
1da177e4
LT
2715
2716 rq->prev_mm = NULL;
2717
2718 /*
2719 * A task struct has one reference for the use as "current".
c394cc9f 2720 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2721 * schedule one last time. The schedule call will never return, and
2722 * the scheduled task must drop that reference.
c394cc9f 2723 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2724 * still held, otherwise prev could be scheduled on another cpu, die
2725 * there before we look at prev->state, and then the reference would
2726 * be dropped twice.
2727 * Manfred Spraul <manfred@colorfullife.com>
2728 */
55a101f8 2729 prev_state = prev->state;
4866cde0 2730 finish_arch_switch(prev);
0793a61d 2731 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2732 finish_lock_switch(rq, prev);
e8fa1362 2733
e107be36 2734 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2735 if (mm)
2736 mmdrop(mm);
c394cc9f 2737 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2738 /*
2739 * Remove function-return probe instances associated with this
2740 * task and put them back on the free list.
9761eea8 2741 */
c6fd91f0 2742 kprobe_flush_task(prev);
1da177e4 2743 put_task_struct(prev);
c6fd91f0 2744 }
1da177e4
LT
2745}
2746
3f029d3c
GH
2747#ifdef CONFIG_SMP
2748
2749/* assumes rq->lock is held */
2750static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2751{
2752 if (prev->sched_class->pre_schedule)
2753 prev->sched_class->pre_schedule(rq, prev);
2754}
2755
2756/* rq->lock is NOT held, but preemption is disabled */
2757static inline void post_schedule(struct rq *rq)
2758{
2759 if (rq->post_schedule) {
2760 unsigned long flags;
2761
2762 spin_lock_irqsave(&rq->lock, flags);
2763 if (rq->curr->sched_class->post_schedule)
2764 rq->curr->sched_class->post_schedule(rq);
2765 spin_unlock_irqrestore(&rq->lock, flags);
2766
2767 rq->post_schedule = 0;
2768 }
2769}
2770
2771#else
da19ab51 2772
3f029d3c
GH
2773static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2774{
2775}
2776
2777static inline void post_schedule(struct rq *rq)
2778{
1da177e4
LT
2779}
2780
3f029d3c
GH
2781#endif
2782
1da177e4
LT
2783/**
2784 * schedule_tail - first thing a freshly forked thread must call.
2785 * @prev: the thread we just switched away from.
2786 */
36c8b586 2787asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2788 __releases(rq->lock)
2789{
70b97a7f
IM
2790 struct rq *rq = this_rq();
2791
4866cde0 2792 finish_task_switch(rq, prev);
da19ab51 2793
3f029d3c
GH
2794 /*
2795 * FIXME: do we need to worry about rq being invalidated by the
2796 * task_switch?
2797 */
2798 post_schedule(rq);
70b97a7f 2799
4866cde0
NP
2800#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2801 /* In this case, finish_task_switch does not reenable preemption */
2802 preempt_enable();
2803#endif
1da177e4 2804 if (current->set_child_tid)
b488893a 2805 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2806}
2807
2808/*
2809 * context_switch - switch to the new MM and the new
2810 * thread's register state.
2811 */
dd41f596 2812static inline void
70b97a7f 2813context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2814 struct task_struct *next)
1da177e4 2815{
dd41f596 2816 struct mm_struct *mm, *oldmm;
1da177e4 2817
e107be36 2818 prepare_task_switch(rq, prev, next);
0a16b607 2819 trace_sched_switch(rq, prev, next);
dd41f596
IM
2820 mm = next->mm;
2821 oldmm = prev->active_mm;
9226d125
ZA
2822 /*
2823 * For paravirt, this is coupled with an exit in switch_to to
2824 * combine the page table reload and the switch backend into
2825 * one hypercall.
2826 */
224101ed 2827 arch_start_context_switch(prev);
9226d125 2828
dd41f596 2829 if (unlikely(!mm)) {
1da177e4
LT
2830 next->active_mm = oldmm;
2831 atomic_inc(&oldmm->mm_count);
2832 enter_lazy_tlb(oldmm, next);
2833 } else
2834 switch_mm(oldmm, mm, next);
2835
dd41f596 2836 if (unlikely(!prev->mm)) {
1da177e4 2837 prev->active_mm = NULL;
1da177e4
LT
2838 rq->prev_mm = oldmm;
2839 }
3a5f5e48
IM
2840 /*
2841 * Since the runqueue lock will be released by the next
2842 * task (which is an invalid locking op but in the case
2843 * of the scheduler it's an obvious special-case), so we
2844 * do an early lockdep release here:
2845 */
2846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2847 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2848#endif
1da177e4
LT
2849
2850 /* Here we just switch the register state and the stack. */
2851 switch_to(prev, next, prev);
2852
dd41f596
IM
2853 barrier();
2854 /*
2855 * this_rq must be evaluated again because prev may have moved
2856 * CPUs since it called schedule(), thus the 'rq' on its stack
2857 * frame will be invalid.
2858 */
2859 finish_task_switch(this_rq(), prev);
1da177e4
LT
2860}
2861
2862/*
2863 * nr_running, nr_uninterruptible and nr_context_switches:
2864 *
2865 * externally visible scheduler statistics: current number of runnable
2866 * threads, current number of uninterruptible-sleeping threads, total
2867 * number of context switches performed since bootup.
2868 */
2869unsigned long nr_running(void)
2870{
2871 unsigned long i, sum = 0;
2872
2873 for_each_online_cpu(i)
2874 sum += cpu_rq(i)->nr_running;
2875
2876 return sum;
2877}
2878
2879unsigned long nr_uninterruptible(void)
2880{
2881 unsigned long i, sum = 0;
2882
0a945022 2883 for_each_possible_cpu(i)
1da177e4
LT
2884 sum += cpu_rq(i)->nr_uninterruptible;
2885
2886 /*
2887 * Since we read the counters lockless, it might be slightly
2888 * inaccurate. Do not allow it to go below zero though:
2889 */
2890 if (unlikely((long)sum < 0))
2891 sum = 0;
2892
2893 return sum;
2894}
2895
2896unsigned long long nr_context_switches(void)
2897{
cc94abfc
SR
2898 int i;
2899 unsigned long long sum = 0;
1da177e4 2900
0a945022 2901 for_each_possible_cpu(i)
1da177e4
LT
2902 sum += cpu_rq(i)->nr_switches;
2903
2904 return sum;
2905}
2906
2907unsigned long nr_iowait(void)
2908{
2909 unsigned long i, sum = 0;
2910
0a945022 2911 for_each_possible_cpu(i)
1da177e4
LT
2912 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2913
2914 return sum;
2915}
2916
dce48a84
TG
2917/* Variables and functions for calc_load */
2918static atomic_long_t calc_load_tasks;
2919static unsigned long calc_load_update;
2920unsigned long avenrun[3];
2921EXPORT_SYMBOL(avenrun);
2922
2d02494f
TG
2923/**
2924 * get_avenrun - get the load average array
2925 * @loads: pointer to dest load array
2926 * @offset: offset to add
2927 * @shift: shift count to shift the result left
2928 *
2929 * These values are estimates at best, so no need for locking.
2930 */
2931void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2932{
2933 loads[0] = (avenrun[0] + offset) << shift;
2934 loads[1] = (avenrun[1] + offset) << shift;
2935 loads[2] = (avenrun[2] + offset) << shift;
2936}
2937
dce48a84
TG
2938static unsigned long
2939calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2940{
dce48a84
TG
2941 load *= exp;
2942 load += active * (FIXED_1 - exp);
2943 return load >> FSHIFT;
2944}
db1b1fef 2945
dce48a84
TG
2946/*
2947 * calc_load - update the avenrun load estimates 10 ticks after the
2948 * CPUs have updated calc_load_tasks.
2949 */
2950void calc_global_load(void)
2951{
2952 unsigned long upd = calc_load_update + 10;
2953 long active;
2954
2955 if (time_before(jiffies, upd))
2956 return;
db1b1fef 2957
dce48a84
TG
2958 active = atomic_long_read(&calc_load_tasks);
2959 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2960
dce48a84
TG
2961 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2962 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2963 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2964
2965 calc_load_update += LOAD_FREQ;
2966}
2967
2968/*
2969 * Either called from update_cpu_load() or from a cpu going idle
2970 */
2971static void calc_load_account_active(struct rq *this_rq)
2972{
2973 long nr_active, delta;
2974
2975 nr_active = this_rq->nr_running;
2976 nr_active += (long) this_rq->nr_uninterruptible;
2977
2978 if (nr_active != this_rq->calc_load_active) {
2979 delta = nr_active - this_rq->calc_load_active;
2980 this_rq->calc_load_active = nr_active;
2981 atomic_long_add(delta, &calc_load_tasks);
2982 }
db1b1fef
JS
2983}
2984
23a185ca
PM
2985/*
2986 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
2987 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2988 */
23a185ca
PM
2989u64 cpu_nr_migrations(int cpu)
2990{
2991 return cpu_rq(cpu)->nr_migrations_in;
2992}
2993
48f24c4d 2994/*
dd41f596
IM
2995 * Update rq->cpu_load[] statistics. This function is usually called every
2996 * scheduler tick (TICK_NSEC).
48f24c4d 2997 */
dd41f596 2998static void update_cpu_load(struct rq *this_rq)
48f24c4d 2999{
495eca49 3000 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3001 int i, scale;
3002
3003 this_rq->nr_load_updates++;
dd41f596
IM
3004
3005 /* Update our load: */
3006 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3007 unsigned long old_load, new_load;
3008
3009 /* scale is effectively 1 << i now, and >> i divides by scale */
3010
3011 old_load = this_rq->cpu_load[i];
3012 new_load = this_load;
a25707f3
IM
3013 /*
3014 * Round up the averaging division if load is increasing. This
3015 * prevents us from getting stuck on 9 if the load is 10, for
3016 * example.
3017 */
3018 if (new_load > old_load)
3019 new_load += scale-1;
dd41f596
IM
3020 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3021 }
dce48a84
TG
3022
3023 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3024 this_rq->calc_load_update += LOAD_FREQ;
3025 calc_load_account_active(this_rq);
3026 }
48f24c4d
IM
3027}
3028
dd41f596
IM
3029#ifdef CONFIG_SMP
3030
1da177e4
LT
3031/*
3032 * double_rq_lock - safely lock two runqueues
3033 *
3034 * Note this does not disable interrupts like task_rq_lock,
3035 * you need to do so manually before calling.
3036 */
70b97a7f 3037static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3038 __acquires(rq1->lock)
3039 __acquires(rq2->lock)
3040{
054b9108 3041 BUG_ON(!irqs_disabled());
1da177e4
LT
3042 if (rq1 == rq2) {
3043 spin_lock(&rq1->lock);
3044 __acquire(rq2->lock); /* Fake it out ;) */
3045 } else {
c96d145e 3046 if (rq1 < rq2) {
1da177e4 3047 spin_lock(&rq1->lock);
5e710e37 3048 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3049 } else {
3050 spin_lock(&rq2->lock);
5e710e37 3051 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3052 }
3053 }
6e82a3be
IM
3054 update_rq_clock(rq1);
3055 update_rq_clock(rq2);
1da177e4
LT
3056}
3057
3058/*
3059 * double_rq_unlock - safely unlock two runqueues
3060 *
3061 * Note this does not restore interrupts like task_rq_unlock,
3062 * you need to do so manually after calling.
3063 */
70b97a7f 3064static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3065 __releases(rq1->lock)
3066 __releases(rq2->lock)
3067{
3068 spin_unlock(&rq1->lock);
3069 if (rq1 != rq2)
3070 spin_unlock(&rq2->lock);
3071 else
3072 __release(rq2->lock);
3073}
3074
1da177e4
LT
3075/*
3076 * If dest_cpu is allowed for this process, migrate the task to it.
3077 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3078 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3079 * the cpu_allowed mask is restored.
3080 */
36c8b586 3081static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3082{
70b97a7f 3083 struct migration_req req;
1da177e4 3084 unsigned long flags;
70b97a7f 3085 struct rq *rq;
1da177e4
LT
3086
3087 rq = task_rq_lock(p, &flags);
96f874e2 3088 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3089 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3090 goto out;
3091
3092 /* force the process onto the specified CPU */
3093 if (migrate_task(p, dest_cpu, &req)) {
3094 /* Need to wait for migration thread (might exit: take ref). */
3095 struct task_struct *mt = rq->migration_thread;
36c8b586 3096
1da177e4
LT
3097 get_task_struct(mt);
3098 task_rq_unlock(rq, &flags);
3099 wake_up_process(mt);
3100 put_task_struct(mt);
3101 wait_for_completion(&req.done);
36c8b586 3102
1da177e4
LT
3103 return;
3104 }
3105out:
3106 task_rq_unlock(rq, &flags);
3107}
3108
3109/*
476d139c
NP
3110 * sched_exec - execve() is a valuable balancing opportunity, because at
3111 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3112 */
3113void sched_exec(void)
3114{
1da177e4 3115 int new_cpu, this_cpu = get_cpu();
5f3edc1b 3116 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3117 put_cpu();
476d139c
NP
3118 if (new_cpu != this_cpu)
3119 sched_migrate_task(current, new_cpu);
1da177e4
LT
3120}
3121
3122/*
3123 * pull_task - move a task from a remote runqueue to the local runqueue.
3124 * Both runqueues must be locked.
3125 */
dd41f596
IM
3126static void pull_task(struct rq *src_rq, struct task_struct *p,
3127 struct rq *this_rq, int this_cpu)
1da177e4 3128{
2e1cb74a 3129 deactivate_task(src_rq, p, 0);
1da177e4 3130 set_task_cpu(p, this_cpu);
dd41f596 3131 activate_task(this_rq, p, 0);
1da177e4
LT
3132 /*
3133 * Note that idle threads have a prio of MAX_PRIO, for this test
3134 * to be always true for them.
3135 */
15afe09b 3136 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3137}
3138
3139/*
3140 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3141 */
858119e1 3142static
70b97a7f 3143int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3144 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3145 int *all_pinned)
1da177e4 3146{
708dc512 3147 int tsk_cache_hot = 0;
1da177e4
LT
3148 /*
3149 * We do not migrate tasks that are:
3150 * 1) running (obviously), or
3151 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3152 * 3) are cache-hot on their current CPU.
3153 */
96f874e2 3154 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3155 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3156 return 0;
cc367732 3157 }
81026794
NP
3158 *all_pinned = 0;
3159
cc367732
IM
3160 if (task_running(rq, p)) {
3161 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3162 return 0;
cc367732 3163 }
1da177e4 3164
da84d961
IM
3165 /*
3166 * Aggressive migration if:
3167 * 1) task is cache cold, or
3168 * 2) too many balance attempts have failed.
3169 */
3170
708dc512
LH
3171 tsk_cache_hot = task_hot(p, rq->clock, sd);
3172 if (!tsk_cache_hot ||
3173 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3174#ifdef CONFIG_SCHEDSTATS
708dc512 3175 if (tsk_cache_hot) {
da84d961 3176 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3177 schedstat_inc(p, se.nr_forced_migrations);
3178 }
da84d961
IM
3179#endif
3180 return 1;
3181 }
3182
708dc512 3183 if (tsk_cache_hot) {
cc367732 3184 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3185 return 0;
cc367732 3186 }
1da177e4
LT
3187 return 1;
3188}
3189
e1d1484f
PW
3190static unsigned long
3191balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3192 unsigned long max_load_move, struct sched_domain *sd,
3193 enum cpu_idle_type idle, int *all_pinned,
3194 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3195{
051c6764 3196 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3197 struct task_struct *p;
3198 long rem_load_move = max_load_move;
1da177e4 3199
e1d1484f 3200 if (max_load_move == 0)
1da177e4
LT
3201 goto out;
3202
81026794
NP
3203 pinned = 1;
3204
1da177e4 3205 /*
dd41f596 3206 * Start the load-balancing iterator:
1da177e4 3207 */
dd41f596
IM
3208 p = iterator->start(iterator->arg);
3209next:
b82d9fdd 3210 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3211 goto out;
051c6764
PZ
3212
3213 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3214 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3215 p = iterator->next(iterator->arg);
3216 goto next;
1da177e4
LT
3217 }
3218
dd41f596 3219 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3220 pulled++;
dd41f596 3221 rem_load_move -= p->se.load.weight;
1da177e4 3222
7e96fa58
GH
3223#ifdef CONFIG_PREEMPT
3224 /*
3225 * NEWIDLE balancing is a source of latency, so preemptible kernels
3226 * will stop after the first task is pulled to minimize the critical
3227 * section.
3228 */
3229 if (idle == CPU_NEWLY_IDLE)
3230 goto out;
3231#endif
3232
2dd73a4f 3233 /*
b82d9fdd 3234 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3235 */
e1d1484f 3236 if (rem_load_move > 0) {
a4ac01c3
PW
3237 if (p->prio < *this_best_prio)
3238 *this_best_prio = p->prio;
dd41f596
IM
3239 p = iterator->next(iterator->arg);
3240 goto next;
1da177e4
LT
3241 }
3242out:
3243 /*
e1d1484f 3244 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3245 * so we can safely collect pull_task() stats here rather than
3246 * inside pull_task().
3247 */
3248 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3249
3250 if (all_pinned)
3251 *all_pinned = pinned;
e1d1484f
PW
3252
3253 return max_load_move - rem_load_move;
1da177e4
LT
3254}
3255
dd41f596 3256/*
43010659
PW
3257 * move_tasks tries to move up to max_load_move weighted load from busiest to
3258 * this_rq, as part of a balancing operation within domain "sd".
3259 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3260 *
3261 * Called with both runqueues locked.
3262 */
3263static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3264 unsigned long max_load_move,
dd41f596
IM
3265 struct sched_domain *sd, enum cpu_idle_type idle,
3266 int *all_pinned)
3267{
5522d5d5 3268 const struct sched_class *class = sched_class_highest;
43010659 3269 unsigned long total_load_moved = 0;
a4ac01c3 3270 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3271
3272 do {
43010659
PW
3273 total_load_moved +=
3274 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3275 max_load_move - total_load_moved,
a4ac01c3 3276 sd, idle, all_pinned, &this_best_prio);
dd41f596 3277 class = class->next;
c4acb2c0 3278
7e96fa58
GH
3279#ifdef CONFIG_PREEMPT
3280 /*
3281 * NEWIDLE balancing is a source of latency, so preemptible
3282 * kernels will stop after the first task is pulled to minimize
3283 * the critical section.
3284 */
c4acb2c0
GH
3285 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3286 break;
7e96fa58 3287#endif
43010659 3288 } while (class && max_load_move > total_load_moved);
dd41f596 3289
43010659
PW
3290 return total_load_moved > 0;
3291}
3292
e1d1484f
PW
3293static int
3294iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3295 struct sched_domain *sd, enum cpu_idle_type idle,
3296 struct rq_iterator *iterator)
3297{
3298 struct task_struct *p = iterator->start(iterator->arg);
3299 int pinned = 0;
3300
3301 while (p) {
3302 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3303 pull_task(busiest, p, this_rq, this_cpu);
3304 /*
3305 * Right now, this is only the second place pull_task()
3306 * is called, so we can safely collect pull_task()
3307 * stats here rather than inside pull_task().
3308 */
3309 schedstat_inc(sd, lb_gained[idle]);
3310
3311 return 1;
3312 }
3313 p = iterator->next(iterator->arg);
3314 }
3315
3316 return 0;
3317}
3318
43010659
PW
3319/*
3320 * move_one_task tries to move exactly one task from busiest to this_rq, as
3321 * part of active balancing operations within "domain".
3322 * Returns 1 if successful and 0 otherwise.
3323 *
3324 * Called with both runqueues locked.
3325 */
3326static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3327 struct sched_domain *sd, enum cpu_idle_type idle)
3328{
5522d5d5 3329 const struct sched_class *class;
43010659 3330
cde7e5ca 3331 for_each_class(class) {
e1d1484f 3332 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3333 return 1;
cde7e5ca 3334 }
43010659
PW
3335
3336 return 0;
dd41f596 3337}
67bb6c03 3338/********** Helpers for find_busiest_group ************************/
1da177e4 3339/*
222d656d
GS
3340 * sd_lb_stats - Structure to store the statistics of a sched_domain
3341 * during load balancing.
1da177e4 3342 */
222d656d
GS
3343struct sd_lb_stats {
3344 struct sched_group *busiest; /* Busiest group in this sd */
3345 struct sched_group *this; /* Local group in this sd */
3346 unsigned long total_load; /* Total load of all groups in sd */
3347 unsigned long total_pwr; /* Total power of all groups in sd */
3348 unsigned long avg_load; /* Average load across all groups in sd */
3349
3350 /** Statistics of this group */
3351 unsigned long this_load;
3352 unsigned long this_load_per_task;
3353 unsigned long this_nr_running;
3354
3355 /* Statistics of the busiest group */
3356 unsigned long max_load;
3357 unsigned long busiest_load_per_task;
3358 unsigned long busiest_nr_running;
3359
3360 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3361#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3362 int power_savings_balance; /* Is powersave balance needed for this sd */
3363 struct sched_group *group_min; /* Least loaded group in sd */
3364 struct sched_group *group_leader; /* Group which relieves group_min */
3365 unsigned long min_load_per_task; /* load_per_task in group_min */
3366 unsigned long leader_nr_running; /* Nr running of group_leader */
3367 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3368#endif
222d656d 3369};
1da177e4 3370
d5ac537e 3371/*
381be78f
GS
3372 * sg_lb_stats - stats of a sched_group required for load_balancing
3373 */
3374struct sg_lb_stats {
3375 unsigned long avg_load; /*Avg load across the CPUs of the group */
3376 unsigned long group_load; /* Total load over the CPUs of the group */
3377 unsigned long sum_nr_running; /* Nr tasks running in the group */
3378 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3379 unsigned long group_capacity;
3380 int group_imb; /* Is there an imbalance in the group ? */
3381};
408ed066 3382
67bb6c03
GS
3383/**
3384 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3385 * @group: The group whose first cpu is to be returned.
3386 */
3387static inline unsigned int group_first_cpu(struct sched_group *group)
3388{
3389 return cpumask_first(sched_group_cpus(group));
3390}
3391
3392/**
3393 * get_sd_load_idx - Obtain the load index for a given sched domain.
3394 * @sd: The sched_domain whose load_idx is to be obtained.
3395 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3396 */
3397static inline int get_sd_load_idx(struct sched_domain *sd,
3398 enum cpu_idle_type idle)
3399{
3400 int load_idx;
3401
3402 switch (idle) {
3403 case CPU_NOT_IDLE:
7897986b 3404 load_idx = sd->busy_idx;
67bb6c03
GS
3405 break;
3406
3407 case CPU_NEWLY_IDLE:
7897986b 3408 load_idx = sd->newidle_idx;
67bb6c03
GS
3409 break;
3410 default:
7897986b 3411 load_idx = sd->idle_idx;
67bb6c03
GS
3412 break;
3413 }
1da177e4 3414
67bb6c03
GS
3415 return load_idx;
3416}
1da177e4 3417
1da177e4 3418
c071df18
GS
3419#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3420/**
3421 * init_sd_power_savings_stats - Initialize power savings statistics for
3422 * the given sched_domain, during load balancing.
3423 *
3424 * @sd: Sched domain whose power-savings statistics are to be initialized.
3425 * @sds: Variable containing the statistics for sd.
3426 * @idle: Idle status of the CPU at which we're performing load-balancing.
3427 */
3428static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3429 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3430{
3431 /*
3432 * Busy processors will not participate in power savings
3433 * balance.
3434 */
3435 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3436 sds->power_savings_balance = 0;
3437 else {
3438 sds->power_savings_balance = 1;
3439 sds->min_nr_running = ULONG_MAX;
3440 sds->leader_nr_running = 0;
3441 }
3442}
783609c6 3443
c071df18
GS
3444/**
3445 * update_sd_power_savings_stats - Update the power saving stats for a
3446 * sched_domain while performing load balancing.
3447 *
3448 * @group: sched_group belonging to the sched_domain under consideration.
3449 * @sds: Variable containing the statistics of the sched_domain
3450 * @local_group: Does group contain the CPU for which we're performing
3451 * load balancing ?
3452 * @sgs: Variable containing the statistics of the group.
3453 */
3454static inline void update_sd_power_savings_stats(struct sched_group *group,
3455 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3456{
408ed066 3457
c071df18
GS
3458 if (!sds->power_savings_balance)
3459 return;
1da177e4 3460
c071df18
GS
3461 /*
3462 * If the local group is idle or completely loaded
3463 * no need to do power savings balance at this domain
3464 */
3465 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3466 !sds->this_nr_running))
3467 sds->power_savings_balance = 0;
2dd73a4f 3468
c071df18
GS
3469 /*
3470 * If a group is already running at full capacity or idle,
3471 * don't include that group in power savings calculations
3472 */
3473 if (!sds->power_savings_balance ||
3474 sgs->sum_nr_running >= sgs->group_capacity ||
3475 !sgs->sum_nr_running)
3476 return;
5969fe06 3477
c071df18
GS
3478 /*
3479 * Calculate the group which has the least non-idle load.
3480 * This is the group from where we need to pick up the load
3481 * for saving power
3482 */
3483 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3484 (sgs->sum_nr_running == sds->min_nr_running &&
3485 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3486 sds->group_min = group;
3487 sds->min_nr_running = sgs->sum_nr_running;
3488 sds->min_load_per_task = sgs->sum_weighted_load /
3489 sgs->sum_nr_running;
3490 }
783609c6 3491
c071df18
GS
3492 /*
3493 * Calculate the group which is almost near its
3494 * capacity but still has some space to pick up some load
3495 * from other group and save more power
3496 */
d899a789 3497 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3498 return;
1da177e4 3499
c071df18
GS
3500 if (sgs->sum_nr_running > sds->leader_nr_running ||
3501 (sgs->sum_nr_running == sds->leader_nr_running &&
3502 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3503 sds->group_leader = group;
3504 sds->leader_nr_running = sgs->sum_nr_running;
3505 }
3506}
408ed066 3507
c071df18 3508/**
d5ac537e 3509 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3510 * @sds: Variable containing the statistics of the sched_domain
3511 * under consideration.
3512 * @this_cpu: Cpu at which we're currently performing load-balancing.
3513 * @imbalance: Variable to store the imbalance.
3514 *
d5ac537e
RD
3515 * Description:
3516 * Check if we have potential to perform some power-savings balance.
3517 * If yes, set the busiest group to be the least loaded group in the
3518 * sched_domain, so that it's CPUs can be put to idle.
3519 *
c071df18
GS
3520 * Returns 1 if there is potential to perform power-savings balance.
3521 * Else returns 0.
3522 */
3523static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3524 int this_cpu, unsigned long *imbalance)
3525{
3526 if (!sds->power_savings_balance)
3527 return 0;
1da177e4 3528
c071df18
GS
3529 if (sds->this != sds->group_leader ||
3530 sds->group_leader == sds->group_min)
3531 return 0;
783609c6 3532
c071df18
GS
3533 *imbalance = sds->min_load_per_task;
3534 sds->busiest = sds->group_min;
1da177e4 3535
c071df18
GS
3536 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3537 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3538 group_first_cpu(sds->group_leader);
3539 }
3540
3541 return 1;
1da177e4 3542
c071df18
GS
3543}
3544#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3545static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3546 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3547{
3548 return;
3549}
408ed066 3550
c071df18
GS
3551static inline void update_sd_power_savings_stats(struct sched_group *group,
3552 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3553{
3554 return;
3555}
3556
3557static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3558 int this_cpu, unsigned long *imbalance)
3559{
3560 return 0;
3561}
3562#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3563
e9e9250b 3564unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3565{
3566 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3567 unsigned long smt_gain = sd->smt_gain;
3568
3569 smt_gain /= weight;
3570
3571 return smt_gain;
3572}
3573
e9e9250b
PZ
3574unsigned long scale_rt_power(int cpu)
3575{
3576 struct rq *rq = cpu_rq(cpu);
3577 u64 total, available;
3578
3579 sched_avg_update(rq);
3580
3581 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3582 available = total - rq->rt_avg;
3583
3584 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3585 total = SCHED_LOAD_SCALE;
3586
3587 total >>= SCHED_LOAD_SHIFT;
3588
3589 return div_u64(available, total);
3590}
3591
ab29230e
PZ
3592static void update_cpu_power(struct sched_domain *sd, int cpu)
3593{
3594 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3595 unsigned long power = SCHED_LOAD_SCALE;
3596 struct sched_group *sdg = sd->groups;
ab29230e
PZ
3597
3598 /* here we could scale based on cpufreq */
3599
3600 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
e9e9250b 3601 power *= arch_scale_smt_power(sd, cpu);
ab29230e
PZ
3602 power >>= SCHED_LOAD_SHIFT;
3603 }
3604
e9e9250b
PZ
3605 power *= scale_rt_power(cpu);
3606 power >>= SCHED_LOAD_SHIFT;
3607
3608 if (!power)
3609 power = 1;
ab29230e 3610
18a3885f 3611 sdg->cpu_power = power;
ab29230e
PZ
3612}
3613
3614static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3615{
3616 struct sched_domain *child = sd->child;
3617 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3618 unsigned long power;
cc9fba7d
PZ
3619
3620 if (!child) {
ab29230e 3621 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3622 return;
3623 }
3624
d7ea17a7 3625 power = 0;
cc9fba7d
PZ
3626
3627 group = child->groups;
3628 do {
d7ea17a7 3629 power += group->cpu_power;
cc9fba7d
PZ
3630 group = group->next;
3631 } while (group != child->groups);
d7ea17a7
IM
3632
3633 sdg->cpu_power = power;
cc9fba7d 3634}
c071df18 3635
1f8c553d
GS
3636/**
3637 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3638 * @group: sched_group whose statistics are to be updated.
3639 * @this_cpu: Cpu for which load balance is currently performed.
3640 * @idle: Idle status of this_cpu
3641 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3642 * @sd_idle: Idle status of the sched_domain containing group.
3643 * @local_group: Does group contain this_cpu.
3644 * @cpus: Set of cpus considered for load balancing.
3645 * @balance: Should we balance.
3646 * @sgs: variable to hold the statistics for this group.
3647 */
cc9fba7d
PZ
3648static inline void update_sg_lb_stats(struct sched_domain *sd,
3649 struct sched_group *group, int this_cpu,
1f8c553d
GS
3650 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3651 int local_group, const struct cpumask *cpus,
3652 int *balance, struct sg_lb_stats *sgs)
3653{
3654 unsigned long load, max_cpu_load, min_cpu_load;
3655 int i;
3656 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3657 unsigned long sum_avg_load_per_task;
3658 unsigned long avg_load_per_task;
3659
cc9fba7d 3660 if (local_group) {
1f8c553d 3661 balance_cpu = group_first_cpu(group);
cc9fba7d 3662 if (balance_cpu == this_cpu)
ab29230e 3663 update_group_power(sd, this_cpu);
cc9fba7d 3664 }
1f8c553d
GS
3665
3666 /* Tally up the load of all CPUs in the group */
3667 sum_avg_load_per_task = avg_load_per_task = 0;
3668 max_cpu_load = 0;
3669 min_cpu_load = ~0UL;
408ed066 3670
1f8c553d
GS
3671 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3672 struct rq *rq = cpu_rq(i);
908a7c1b 3673
1f8c553d
GS
3674 if (*sd_idle && rq->nr_running)
3675 *sd_idle = 0;
5c45bf27 3676
1f8c553d 3677 /* Bias balancing toward cpus of our domain */
1da177e4 3678 if (local_group) {
1f8c553d
GS
3679 if (idle_cpu(i) && !first_idle_cpu) {
3680 first_idle_cpu = 1;
3681 balance_cpu = i;
3682 }
3683
3684 load = target_load(i, load_idx);
3685 } else {
3686 load = source_load(i, load_idx);
3687 if (load > max_cpu_load)
3688 max_cpu_load = load;
3689 if (min_cpu_load > load)
3690 min_cpu_load = load;
1da177e4 3691 }
5c45bf27 3692
1f8c553d
GS
3693 sgs->group_load += load;
3694 sgs->sum_nr_running += rq->nr_running;
3695 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3696
1f8c553d
GS
3697 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3698 }
5c45bf27 3699
1f8c553d
GS
3700 /*
3701 * First idle cpu or the first cpu(busiest) in this sched group
3702 * is eligible for doing load balancing at this and above
3703 * domains. In the newly idle case, we will allow all the cpu's
3704 * to do the newly idle load balance.
3705 */
3706 if (idle != CPU_NEWLY_IDLE && local_group &&
3707 balance_cpu != this_cpu && balance) {
3708 *balance = 0;
3709 return;
3710 }
5c45bf27 3711
1f8c553d 3712 /* Adjust by relative CPU power of the group */
18a3885f 3713 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3714
1f8c553d
GS
3715
3716 /*
3717 * Consider the group unbalanced when the imbalance is larger
3718 * than the average weight of two tasks.
3719 *
3720 * APZ: with cgroup the avg task weight can vary wildly and
3721 * might not be a suitable number - should we keep a
3722 * normalized nr_running number somewhere that negates
3723 * the hierarchy?
3724 */
18a3885f
PZ
3725 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3726 group->cpu_power;
1f8c553d
GS
3727
3728 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3729 sgs->group_imb = 1;
3730
bdb94aa5 3731 sgs->group_capacity =
18a3885f 3732 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3733}
dd41f596 3734
37abe198
GS
3735/**
3736 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3737 * @sd: sched_domain whose statistics are to be updated.
3738 * @this_cpu: Cpu for which load balance is currently performed.
3739 * @idle: Idle status of this_cpu
3740 * @sd_idle: Idle status of the sched_domain containing group.
3741 * @cpus: Set of cpus considered for load balancing.
3742 * @balance: Should we balance.
3743 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3744 */
37abe198
GS
3745static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3746 enum cpu_idle_type idle, int *sd_idle,
3747 const struct cpumask *cpus, int *balance,
3748 struct sd_lb_stats *sds)
1da177e4 3749{
b5d978e0 3750 struct sched_domain *child = sd->child;
222d656d 3751 struct sched_group *group = sd->groups;
37abe198 3752 struct sg_lb_stats sgs;
b5d978e0
PZ
3753 int load_idx, prefer_sibling = 0;
3754
3755 if (child && child->flags & SD_PREFER_SIBLING)
3756 prefer_sibling = 1;
222d656d 3757
c071df18 3758 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3759 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3760
3761 do {
1da177e4 3762 int local_group;
1da177e4 3763
758b2cdc
RR
3764 local_group = cpumask_test_cpu(this_cpu,
3765 sched_group_cpus(group));
381be78f 3766 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3767 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3768 local_group, cpus, balance, &sgs);
1da177e4 3769
37abe198
GS
3770 if (local_group && balance && !(*balance))
3771 return;
783609c6 3772
37abe198 3773 sds->total_load += sgs.group_load;
18a3885f 3774 sds->total_pwr += group->cpu_power;
1da177e4 3775
b5d978e0
PZ
3776 /*
3777 * In case the child domain prefers tasks go to siblings
3778 * first, lower the group capacity to one so that we'll try
3779 * and move all the excess tasks away.
3780 */
3781 if (prefer_sibling)
bdb94aa5 3782 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3783
1da177e4 3784 if (local_group) {
37abe198
GS
3785 sds->this_load = sgs.avg_load;
3786 sds->this = group;
3787 sds->this_nr_running = sgs.sum_nr_running;
3788 sds->this_load_per_task = sgs.sum_weighted_load;
3789 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3790 (sgs.sum_nr_running > sgs.group_capacity ||
3791 sgs.group_imb)) {
37abe198
GS
3792 sds->max_load = sgs.avg_load;
3793 sds->busiest = group;
3794 sds->busiest_nr_running = sgs.sum_nr_running;
3795 sds->busiest_load_per_task = sgs.sum_weighted_load;
3796 sds->group_imb = sgs.group_imb;
48f24c4d 3797 }
5c45bf27 3798
c071df18 3799 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3800 group = group->next;
3801 } while (group != sd->groups);
37abe198 3802}
1da177e4 3803
2e6f44ae
GS
3804/**
3805 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3806 * amongst the groups of a sched_domain, during
3807 * load balancing.
2e6f44ae
GS
3808 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3809 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3810 * @imbalance: Variable to store the imbalance.
3811 */
3812static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3813 int this_cpu, unsigned long *imbalance)
3814{
3815 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3816 unsigned int imbn = 2;
3817
3818 if (sds->this_nr_running) {
3819 sds->this_load_per_task /= sds->this_nr_running;
3820 if (sds->busiest_load_per_task >
3821 sds->this_load_per_task)
3822 imbn = 1;
3823 } else
3824 sds->this_load_per_task =
3825 cpu_avg_load_per_task(this_cpu);
1da177e4 3826
2e6f44ae
GS
3827 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3828 sds->busiest_load_per_task * imbn) {
3829 *imbalance = sds->busiest_load_per_task;
3830 return;
3831 }
908a7c1b 3832
1da177e4 3833 /*
2e6f44ae
GS
3834 * OK, we don't have enough imbalance to justify moving tasks,
3835 * however we may be able to increase total CPU power used by
3836 * moving them.
1da177e4 3837 */
2dd73a4f 3838
18a3885f 3839 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3840 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3841 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3842 min(sds->this_load_per_task, sds->this_load);
3843 pwr_now /= SCHED_LOAD_SCALE;
3844
3845 /* Amount of load we'd subtract */
18a3885f
PZ
3846 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3847 sds->busiest->cpu_power;
2e6f44ae 3848 if (sds->max_load > tmp)
18a3885f 3849 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3850 min(sds->busiest_load_per_task, sds->max_load - tmp);
3851
3852 /* Amount of load we'd add */
18a3885f 3853 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3854 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3855 tmp = (sds->max_load * sds->busiest->cpu_power) /
3856 sds->this->cpu_power;
2e6f44ae 3857 else
18a3885f
PZ
3858 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3859 sds->this->cpu_power;
3860 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3861 min(sds->this_load_per_task, sds->this_load + tmp);
3862 pwr_move /= SCHED_LOAD_SCALE;
3863
3864 /* Move if we gain throughput */
3865 if (pwr_move > pwr_now)
3866 *imbalance = sds->busiest_load_per_task;
3867}
dbc523a3
GS
3868
3869/**
3870 * calculate_imbalance - Calculate the amount of imbalance present within the
3871 * groups of a given sched_domain during load balance.
3872 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3873 * @this_cpu: Cpu for which currently load balance is being performed.
3874 * @imbalance: The variable to store the imbalance.
3875 */
3876static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3877 unsigned long *imbalance)
3878{
3879 unsigned long max_pull;
2dd73a4f
PW
3880 /*
3881 * In the presence of smp nice balancing, certain scenarios can have
3882 * max load less than avg load(as we skip the groups at or below
3883 * its cpu_power, while calculating max_load..)
3884 */
dbc523a3 3885 if (sds->max_load < sds->avg_load) {
2dd73a4f 3886 *imbalance = 0;
dbc523a3 3887 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3888 }
0c117f1b
SS
3889
3890 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3891 max_pull = min(sds->max_load - sds->avg_load,
3892 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3893
1da177e4 3894 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3895 *imbalance = min(max_pull * sds->busiest->cpu_power,
3896 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3897 / SCHED_LOAD_SCALE;
3898
2dd73a4f
PW
3899 /*
3900 * if *imbalance is less than the average load per runnable task
3901 * there is no gaurantee that any tasks will be moved so we'll have
3902 * a think about bumping its value to force at least one task to be
3903 * moved
3904 */
dbc523a3
GS
3905 if (*imbalance < sds->busiest_load_per_task)
3906 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3907
dbc523a3 3908}
37abe198 3909/******* find_busiest_group() helpers end here *********************/
1da177e4 3910
b7bb4c9b
GS
3911/**
3912 * find_busiest_group - Returns the busiest group within the sched_domain
3913 * if there is an imbalance. If there isn't an imbalance, and
3914 * the user has opted for power-savings, it returns a group whose
3915 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3916 * such a group exists.
3917 *
3918 * Also calculates the amount of weighted load which should be moved
3919 * to restore balance.
3920 *
3921 * @sd: The sched_domain whose busiest group is to be returned.
3922 * @this_cpu: The cpu for which load balancing is currently being performed.
3923 * @imbalance: Variable which stores amount of weighted load which should
3924 * be moved to restore balance/put a group to idle.
3925 * @idle: The idle status of this_cpu.
3926 * @sd_idle: The idleness of sd
3927 * @cpus: The set of CPUs under consideration for load-balancing.
3928 * @balance: Pointer to a variable indicating if this_cpu
3929 * is the appropriate cpu to perform load balancing at this_level.
3930 *
3931 * Returns: - the busiest group if imbalance exists.
3932 * - If no imbalance and user has opted for power-savings balance,
3933 * return the least loaded group whose CPUs can be
3934 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3935 */
3936static struct sched_group *
3937find_busiest_group(struct sched_domain *sd, int this_cpu,
3938 unsigned long *imbalance, enum cpu_idle_type idle,
3939 int *sd_idle, const struct cpumask *cpus, int *balance)
3940{
3941 struct sd_lb_stats sds;
1da177e4 3942
37abe198 3943 memset(&sds, 0, sizeof(sds));
1da177e4 3944
37abe198
GS
3945 /*
3946 * Compute the various statistics relavent for load balancing at
3947 * this level.
3948 */
3949 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3950 balance, &sds);
3951
b7bb4c9b
GS
3952 /* Cases where imbalance does not exist from POV of this_cpu */
3953 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3954 * at this level.
3955 * 2) There is no busy sibling group to pull from.
3956 * 3) This group is the busiest group.
3957 * 4) This group is more busy than the avg busieness at this
3958 * sched_domain.
3959 * 5) The imbalance is within the specified limit.
3960 * 6) Any rebalance would lead to ping-pong
3961 */
37abe198
GS
3962 if (balance && !(*balance))
3963 goto ret;
1da177e4 3964
b7bb4c9b
GS
3965 if (!sds.busiest || sds.busiest_nr_running == 0)
3966 goto out_balanced;
1da177e4 3967
b7bb4c9b 3968 if (sds.this_load >= sds.max_load)
1da177e4 3969 goto out_balanced;
1da177e4 3970
222d656d 3971 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3972
b7bb4c9b
GS
3973 if (sds.this_load >= sds.avg_load)
3974 goto out_balanced;
3975
3976 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3977 goto out_balanced;
3978
222d656d
GS
3979 sds.busiest_load_per_task /= sds.busiest_nr_running;
3980 if (sds.group_imb)
3981 sds.busiest_load_per_task =
3982 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3983
1da177e4
LT
3984 /*
3985 * We're trying to get all the cpus to the average_load, so we don't
3986 * want to push ourselves above the average load, nor do we wish to
3987 * reduce the max loaded cpu below the average load, as either of these
3988 * actions would just result in more rebalancing later, and ping-pong
3989 * tasks around. Thus we look for the minimum possible imbalance.
3990 * Negative imbalances (*we* are more loaded than anyone else) will
3991 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3992 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3993 * appear as very large values with unsigned longs.
3994 */
222d656d 3995 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3996 goto out_balanced;
3997
dbc523a3
GS
3998 /* Looks like there is an imbalance. Compute it */
3999 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4000 return sds.busiest;
1da177e4
LT
4001
4002out_balanced:
c071df18
GS
4003 /*
4004 * There is no obvious imbalance. But check if we can do some balancing
4005 * to save power.
4006 */
4007 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4008 return sds.busiest;
783609c6 4009ret:
1da177e4
LT
4010 *imbalance = 0;
4011 return NULL;
4012}
4013
bdb94aa5
PZ
4014static struct sched_group *group_of(int cpu)
4015{
4016 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
4017
4018 if (!sd)
4019 return NULL;
4020
4021 return sd->groups;
4022}
4023
4024static unsigned long power_of(int cpu)
4025{
4026 struct sched_group *group = group_of(cpu);
4027
4028 if (!group)
4029 return SCHED_LOAD_SCALE;
4030
18a3885f 4031 return group->cpu_power;
bdb94aa5
PZ
4032}
4033
1da177e4
LT
4034/*
4035 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4036 */
70b97a7f 4037static struct rq *
d15bcfdb 4038find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4039 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4040{
70b97a7f 4041 struct rq *busiest = NULL, *rq;
2dd73a4f 4042 unsigned long max_load = 0;
1da177e4
LT
4043 int i;
4044
758b2cdc 4045 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4046 unsigned long power = power_of(i);
4047 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4048 unsigned long wl;
0a2966b4 4049
96f874e2 4050 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4051 continue;
4052
48f24c4d 4053 rq = cpu_rq(i);
bdb94aa5
PZ
4054 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4055 wl /= power;
2dd73a4f 4056
bdb94aa5 4057 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4058 continue;
1da177e4 4059
dd41f596
IM
4060 if (wl > max_load) {
4061 max_load = wl;
48f24c4d 4062 busiest = rq;
1da177e4
LT
4063 }
4064 }
4065
4066 return busiest;
4067}
4068
77391d71
NP
4069/*
4070 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4071 * so long as it is large enough.
4072 */
4073#define MAX_PINNED_INTERVAL 512
4074
df7c8e84
RR
4075/* Working cpumask for load_balance and load_balance_newidle. */
4076static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4077
1da177e4
LT
4078/*
4079 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4080 * tasks if there is an imbalance.
1da177e4 4081 */
70b97a7f 4082static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4083 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4084 int *balance)
1da177e4 4085{
43010659 4086 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4087 struct sched_group *group;
1da177e4 4088 unsigned long imbalance;
70b97a7f 4089 struct rq *busiest;
fe2eea3f 4090 unsigned long flags;
df7c8e84 4091 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4092
96f874e2 4093 cpumask_setall(cpus);
7c16ec58 4094
89c4710e
SS
4095 /*
4096 * When power savings policy is enabled for the parent domain, idle
4097 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4098 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4099 * portraying it as CPU_NOT_IDLE.
89c4710e 4100 */
d15bcfdb 4101 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4102 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4103 sd_idle = 1;
1da177e4 4104
2d72376b 4105 schedstat_inc(sd, lb_count[idle]);
1da177e4 4106
0a2966b4 4107redo:
c8cba857 4108 update_shares(sd);
0a2966b4 4109 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4110 cpus, balance);
783609c6 4111
06066714 4112 if (*balance == 0)
783609c6 4113 goto out_balanced;
783609c6 4114
1da177e4
LT
4115 if (!group) {
4116 schedstat_inc(sd, lb_nobusyg[idle]);
4117 goto out_balanced;
4118 }
4119
7c16ec58 4120 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4121 if (!busiest) {
4122 schedstat_inc(sd, lb_nobusyq[idle]);
4123 goto out_balanced;
4124 }
4125
db935dbd 4126 BUG_ON(busiest == this_rq);
1da177e4
LT
4127
4128 schedstat_add(sd, lb_imbalance[idle], imbalance);
4129
43010659 4130 ld_moved = 0;
1da177e4
LT
4131 if (busiest->nr_running > 1) {
4132 /*
4133 * Attempt to move tasks. If find_busiest_group has found
4134 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4135 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4136 * correctly treated as an imbalance.
4137 */
fe2eea3f 4138 local_irq_save(flags);
e17224bf 4139 double_rq_lock(this_rq, busiest);
43010659 4140 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4141 imbalance, sd, idle, &all_pinned);
e17224bf 4142 double_rq_unlock(this_rq, busiest);
fe2eea3f 4143 local_irq_restore(flags);
81026794 4144
46cb4b7c
SS
4145 /*
4146 * some other cpu did the load balance for us.
4147 */
43010659 4148 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4149 resched_cpu(this_cpu);
4150
81026794 4151 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4152 if (unlikely(all_pinned)) {
96f874e2
RR
4153 cpumask_clear_cpu(cpu_of(busiest), cpus);
4154 if (!cpumask_empty(cpus))
0a2966b4 4155 goto redo;
81026794 4156 goto out_balanced;
0a2966b4 4157 }
1da177e4 4158 }
81026794 4159
43010659 4160 if (!ld_moved) {
1da177e4
LT
4161 schedstat_inc(sd, lb_failed[idle]);
4162 sd->nr_balance_failed++;
4163
4164 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4165
fe2eea3f 4166 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4167
4168 /* don't kick the migration_thread, if the curr
4169 * task on busiest cpu can't be moved to this_cpu
4170 */
96f874e2
RR
4171 if (!cpumask_test_cpu(this_cpu,
4172 &busiest->curr->cpus_allowed)) {
fe2eea3f 4173 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4174 all_pinned = 1;
4175 goto out_one_pinned;
4176 }
4177
1da177e4
LT
4178 if (!busiest->active_balance) {
4179 busiest->active_balance = 1;
4180 busiest->push_cpu = this_cpu;
81026794 4181 active_balance = 1;
1da177e4 4182 }
fe2eea3f 4183 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4184 if (active_balance)
1da177e4
LT
4185 wake_up_process(busiest->migration_thread);
4186
4187 /*
4188 * We've kicked active balancing, reset the failure
4189 * counter.
4190 */
39507451 4191 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4192 }
81026794 4193 } else
1da177e4
LT
4194 sd->nr_balance_failed = 0;
4195
81026794 4196 if (likely(!active_balance)) {
1da177e4
LT
4197 /* We were unbalanced, so reset the balancing interval */
4198 sd->balance_interval = sd->min_interval;
81026794
NP
4199 } else {
4200 /*
4201 * If we've begun active balancing, start to back off. This
4202 * case may not be covered by the all_pinned logic if there
4203 * is only 1 task on the busy runqueue (because we don't call
4204 * move_tasks).
4205 */
4206 if (sd->balance_interval < sd->max_interval)
4207 sd->balance_interval *= 2;
1da177e4
LT
4208 }
4209
43010659 4210 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4211 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4212 ld_moved = -1;
4213
4214 goto out;
1da177e4
LT
4215
4216out_balanced:
1da177e4
LT
4217 schedstat_inc(sd, lb_balanced[idle]);
4218
16cfb1c0 4219 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4220
4221out_one_pinned:
1da177e4 4222 /* tune up the balancing interval */
77391d71
NP
4223 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4224 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4225 sd->balance_interval *= 2;
4226
48f24c4d 4227 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4228 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4229 ld_moved = -1;
4230 else
4231 ld_moved = 0;
4232out:
c8cba857
PZ
4233 if (ld_moved)
4234 update_shares(sd);
c09595f6 4235 return ld_moved;
1da177e4
LT
4236}
4237
4238/*
4239 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4240 * tasks if there is an imbalance.
4241 *
d15bcfdb 4242 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4243 * this_rq is locked.
4244 */
48f24c4d 4245static int
df7c8e84 4246load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4247{
4248 struct sched_group *group;
70b97a7f 4249 struct rq *busiest = NULL;
1da177e4 4250 unsigned long imbalance;
43010659 4251 int ld_moved = 0;
5969fe06 4252 int sd_idle = 0;
969bb4e4 4253 int all_pinned = 0;
df7c8e84 4254 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4255
96f874e2 4256 cpumask_setall(cpus);
5969fe06 4257
89c4710e
SS
4258 /*
4259 * When power savings policy is enabled for the parent domain, idle
4260 * sibling can pick up load irrespective of busy siblings. In this case,
4261 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4262 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4263 */
4264 if (sd->flags & SD_SHARE_CPUPOWER &&
4265 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4266 sd_idle = 1;
1da177e4 4267
2d72376b 4268 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4269redo:
3e5459b4 4270 update_shares_locked(this_rq, sd);
d15bcfdb 4271 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4272 &sd_idle, cpus, NULL);
1da177e4 4273 if (!group) {
d15bcfdb 4274 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4275 goto out_balanced;
1da177e4
LT
4276 }
4277
7c16ec58 4278 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4279 if (!busiest) {
d15bcfdb 4280 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4281 goto out_balanced;
1da177e4
LT
4282 }
4283
db935dbd
NP
4284 BUG_ON(busiest == this_rq);
4285
d15bcfdb 4286 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4287
43010659 4288 ld_moved = 0;
d6d5cfaf
NP
4289 if (busiest->nr_running > 1) {
4290 /* Attempt to move tasks */
4291 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4292 /* this_rq->clock is already updated */
4293 update_rq_clock(busiest);
43010659 4294 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4295 imbalance, sd, CPU_NEWLY_IDLE,
4296 &all_pinned);
1b12bbc7 4297 double_unlock_balance(this_rq, busiest);
0a2966b4 4298
969bb4e4 4299 if (unlikely(all_pinned)) {
96f874e2
RR
4300 cpumask_clear_cpu(cpu_of(busiest), cpus);
4301 if (!cpumask_empty(cpus))
0a2966b4
CL
4302 goto redo;
4303 }
d6d5cfaf
NP
4304 }
4305
43010659 4306 if (!ld_moved) {
36dffab6 4307 int active_balance = 0;
ad273b32 4308
d15bcfdb 4309 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4310 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4311 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4312 return -1;
ad273b32
VS
4313
4314 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4315 return -1;
4316
4317 if (sd->nr_balance_failed++ < 2)
4318 return -1;
4319
4320 /*
4321 * The only task running in a non-idle cpu can be moved to this
4322 * cpu in an attempt to completely freeup the other CPU
4323 * package. The same method used to move task in load_balance()
4324 * have been extended for load_balance_newidle() to speedup
4325 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4326 *
4327 * The package power saving logic comes from
4328 * find_busiest_group(). If there are no imbalance, then
4329 * f_b_g() will return NULL. However when sched_mc={1,2} then
4330 * f_b_g() will select a group from which a running task may be
4331 * pulled to this cpu in order to make the other package idle.
4332 * If there is no opportunity to make a package idle and if
4333 * there are no imbalance, then f_b_g() will return NULL and no
4334 * action will be taken in load_balance_newidle().
4335 *
4336 * Under normal task pull operation due to imbalance, there
4337 * will be more than one task in the source run queue and
4338 * move_tasks() will succeed. ld_moved will be true and this
4339 * active balance code will not be triggered.
4340 */
4341
4342 /* Lock busiest in correct order while this_rq is held */
4343 double_lock_balance(this_rq, busiest);
4344
4345 /*
4346 * don't kick the migration_thread, if the curr
4347 * task on busiest cpu can't be moved to this_cpu
4348 */
6ca09dfc 4349 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4350 double_unlock_balance(this_rq, busiest);
4351 all_pinned = 1;
4352 return ld_moved;
4353 }
4354
4355 if (!busiest->active_balance) {
4356 busiest->active_balance = 1;
4357 busiest->push_cpu = this_cpu;
4358 active_balance = 1;
4359 }
4360
4361 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4362 /*
4363 * Should not call ttwu while holding a rq->lock
4364 */
4365 spin_unlock(&this_rq->lock);
ad273b32
VS
4366 if (active_balance)
4367 wake_up_process(busiest->migration_thread);
da8d5089 4368 spin_lock(&this_rq->lock);
ad273b32 4369
5969fe06 4370 } else
16cfb1c0 4371 sd->nr_balance_failed = 0;
1da177e4 4372
3e5459b4 4373 update_shares_locked(this_rq, sd);
43010659 4374 return ld_moved;
16cfb1c0
NP
4375
4376out_balanced:
d15bcfdb 4377 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4378 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4379 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4380 return -1;
16cfb1c0 4381 sd->nr_balance_failed = 0;
48f24c4d 4382
16cfb1c0 4383 return 0;
1da177e4
LT
4384}
4385
4386/*
4387 * idle_balance is called by schedule() if this_cpu is about to become
4388 * idle. Attempts to pull tasks from other CPUs.
4389 */
70b97a7f 4390static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4391{
4392 struct sched_domain *sd;
efbe027e 4393 int pulled_task = 0;
dd41f596 4394 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4395
4396 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4397 unsigned long interval;
4398
4399 if (!(sd->flags & SD_LOAD_BALANCE))
4400 continue;
4401
4402 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4403 /* If we've pulled tasks over stop searching: */
7c16ec58 4404 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4405 sd);
92c4ca5c
CL
4406
4407 interval = msecs_to_jiffies(sd->balance_interval);
4408 if (time_after(next_balance, sd->last_balance + interval))
4409 next_balance = sd->last_balance + interval;
4410 if (pulled_task)
4411 break;
1da177e4 4412 }
dd41f596 4413 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4414 /*
4415 * We are going idle. next_balance may be set based on
4416 * a busy processor. So reset next_balance.
4417 */
4418 this_rq->next_balance = next_balance;
dd41f596 4419 }
1da177e4
LT
4420}
4421
4422/*
4423 * active_load_balance is run by migration threads. It pushes running tasks
4424 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4425 * running on each physical CPU where possible, and avoids physical /
4426 * logical imbalances.
4427 *
4428 * Called with busiest_rq locked.
4429 */
70b97a7f 4430static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4431{
39507451 4432 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4433 struct sched_domain *sd;
4434 struct rq *target_rq;
39507451 4435
48f24c4d 4436 /* Is there any task to move? */
39507451 4437 if (busiest_rq->nr_running <= 1)
39507451
NP
4438 return;
4439
4440 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4441
4442 /*
39507451 4443 * This condition is "impossible", if it occurs
41a2d6cf 4444 * we need to fix it. Originally reported by
39507451 4445 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4446 */
39507451 4447 BUG_ON(busiest_rq == target_rq);
1da177e4 4448
39507451
NP
4449 /* move a task from busiest_rq to target_rq */
4450 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4451 update_rq_clock(busiest_rq);
4452 update_rq_clock(target_rq);
39507451
NP
4453
4454 /* Search for an sd spanning us and the target CPU. */
c96d145e 4455 for_each_domain(target_cpu, sd) {
39507451 4456 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4457 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4458 break;
c96d145e 4459 }
39507451 4460
48f24c4d 4461 if (likely(sd)) {
2d72376b 4462 schedstat_inc(sd, alb_count);
39507451 4463
43010659
PW
4464 if (move_one_task(target_rq, target_cpu, busiest_rq,
4465 sd, CPU_IDLE))
48f24c4d
IM
4466 schedstat_inc(sd, alb_pushed);
4467 else
4468 schedstat_inc(sd, alb_failed);
4469 }
1b12bbc7 4470 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4471}
4472
46cb4b7c
SS
4473#ifdef CONFIG_NO_HZ
4474static struct {
4475 atomic_t load_balancer;
7d1e6a9b 4476 cpumask_var_t cpu_mask;
f711f609 4477 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4478} nohz ____cacheline_aligned = {
4479 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4480};
4481
eea08f32
AB
4482int get_nohz_load_balancer(void)
4483{
4484 return atomic_read(&nohz.load_balancer);
4485}
4486
f711f609
GS
4487#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4488/**
4489 * lowest_flag_domain - Return lowest sched_domain containing flag.
4490 * @cpu: The cpu whose lowest level of sched domain is to
4491 * be returned.
4492 * @flag: The flag to check for the lowest sched_domain
4493 * for the given cpu.
4494 *
4495 * Returns the lowest sched_domain of a cpu which contains the given flag.
4496 */
4497static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4498{
4499 struct sched_domain *sd;
4500
4501 for_each_domain(cpu, sd)
4502 if (sd && (sd->flags & flag))
4503 break;
4504
4505 return sd;
4506}
4507
4508/**
4509 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4510 * @cpu: The cpu whose domains we're iterating over.
4511 * @sd: variable holding the value of the power_savings_sd
4512 * for cpu.
4513 * @flag: The flag to filter the sched_domains to be iterated.
4514 *
4515 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4516 * set, starting from the lowest sched_domain to the highest.
4517 */
4518#define for_each_flag_domain(cpu, sd, flag) \
4519 for (sd = lowest_flag_domain(cpu, flag); \
4520 (sd && (sd->flags & flag)); sd = sd->parent)
4521
4522/**
4523 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4524 * @ilb_group: group to be checked for semi-idleness
4525 *
4526 * Returns: 1 if the group is semi-idle. 0 otherwise.
4527 *
4528 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4529 * and atleast one non-idle CPU. This helper function checks if the given
4530 * sched_group is semi-idle or not.
4531 */
4532static inline int is_semi_idle_group(struct sched_group *ilb_group)
4533{
4534 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4535 sched_group_cpus(ilb_group));
4536
4537 /*
4538 * A sched_group is semi-idle when it has atleast one busy cpu
4539 * and atleast one idle cpu.
4540 */
4541 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4542 return 0;
4543
4544 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4545 return 0;
4546
4547 return 1;
4548}
4549/**
4550 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4551 * @cpu: The cpu which is nominating a new idle_load_balancer.
4552 *
4553 * Returns: Returns the id of the idle load balancer if it exists,
4554 * Else, returns >= nr_cpu_ids.
4555 *
4556 * This algorithm picks the idle load balancer such that it belongs to a
4557 * semi-idle powersavings sched_domain. The idea is to try and avoid
4558 * completely idle packages/cores just for the purpose of idle load balancing
4559 * when there are other idle cpu's which are better suited for that job.
4560 */
4561static int find_new_ilb(int cpu)
4562{
4563 struct sched_domain *sd;
4564 struct sched_group *ilb_group;
4565
4566 /*
4567 * Have idle load balancer selection from semi-idle packages only
4568 * when power-aware load balancing is enabled
4569 */
4570 if (!(sched_smt_power_savings || sched_mc_power_savings))
4571 goto out_done;
4572
4573 /*
4574 * Optimize for the case when we have no idle CPUs or only one
4575 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4576 */
4577 if (cpumask_weight(nohz.cpu_mask) < 2)
4578 goto out_done;
4579
4580 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4581 ilb_group = sd->groups;
4582
4583 do {
4584 if (is_semi_idle_group(ilb_group))
4585 return cpumask_first(nohz.ilb_grp_nohz_mask);
4586
4587 ilb_group = ilb_group->next;
4588
4589 } while (ilb_group != sd->groups);
4590 }
4591
4592out_done:
4593 return cpumask_first(nohz.cpu_mask);
4594}
4595#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4596static inline int find_new_ilb(int call_cpu)
4597{
6e29ec57 4598 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4599}
4600#endif
4601
7835b98b 4602/*
46cb4b7c
SS
4603 * This routine will try to nominate the ilb (idle load balancing)
4604 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4605 * load balancing on behalf of all those cpus. If all the cpus in the system
4606 * go into this tickless mode, then there will be no ilb owner (as there is
4607 * no need for one) and all the cpus will sleep till the next wakeup event
4608 * arrives...
4609 *
4610 * For the ilb owner, tick is not stopped. And this tick will be used
4611 * for idle load balancing. ilb owner will still be part of
4612 * nohz.cpu_mask..
7835b98b 4613 *
46cb4b7c
SS
4614 * While stopping the tick, this cpu will become the ilb owner if there
4615 * is no other owner. And will be the owner till that cpu becomes busy
4616 * or if all cpus in the system stop their ticks at which point
4617 * there is no need for ilb owner.
4618 *
4619 * When the ilb owner becomes busy, it nominates another owner, during the
4620 * next busy scheduler_tick()
4621 */
4622int select_nohz_load_balancer(int stop_tick)
4623{
4624 int cpu = smp_processor_id();
4625
4626 if (stop_tick) {
46cb4b7c
SS
4627 cpu_rq(cpu)->in_nohz_recently = 1;
4628
483b4ee6
SS
4629 if (!cpu_active(cpu)) {
4630 if (atomic_read(&nohz.load_balancer) != cpu)
4631 return 0;
4632
4633 /*
4634 * If we are going offline and still the leader,
4635 * give up!
4636 */
46cb4b7c
SS
4637 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4638 BUG();
483b4ee6 4639
46cb4b7c
SS
4640 return 0;
4641 }
4642
483b4ee6
SS
4643 cpumask_set_cpu(cpu, nohz.cpu_mask);
4644
46cb4b7c 4645 /* time for ilb owner also to sleep */
7d1e6a9b 4646 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4647 if (atomic_read(&nohz.load_balancer) == cpu)
4648 atomic_set(&nohz.load_balancer, -1);
4649 return 0;
4650 }
4651
4652 if (atomic_read(&nohz.load_balancer) == -1) {
4653 /* make me the ilb owner */
4654 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4655 return 1;
e790fb0b
GS
4656 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4657 int new_ilb;
4658
4659 if (!(sched_smt_power_savings ||
4660 sched_mc_power_savings))
4661 return 1;
4662 /*
4663 * Check to see if there is a more power-efficient
4664 * ilb.
4665 */
4666 new_ilb = find_new_ilb(cpu);
4667 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4668 atomic_set(&nohz.load_balancer, -1);
4669 resched_cpu(new_ilb);
4670 return 0;
4671 }
46cb4b7c 4672 return 1;
e790fb0b 4673 }
46cb4b7c 4674 } else {
7d1e6a9b 4675 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4676 return 0;
4677
7d1e6a9b 4678 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4679
4680 if (atomic_read(&nohz.load_balancer) == cpu)
4681 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4682 BUG();
4683 }
4684 return 0;
4685}
4686#endif
4687
4688static DEFINE_SPINLOCK(balancing);
4689
4690/*
7835b98b
CL
4691 * It checks each scheduling domain to see if it is due to be balanced,
4692 * and initiates a balancing operation if so.
4693 *
4694 * Balancing parameters are set up in arch_init_sched_domains.
4695 */
a9957449 4696static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4697{
46cb4b7c
SS
4698 int balance = 1;
4699 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4700 unsigned long interval;
4701 struct sched_domain *sd;
46cb4b7c 4702 /* Earliest time when we have to do rebalance again */
c9819f45 4703 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4704 int update_next_balance = 0;
d07355f5 4705 int need_serialize;
1da177e4 4706
46cb4b7c 4707 for_each_domain(cpu, sd) {
1da177e4
LT
4708 if (!(sd->flags & SD_LOAD_BALANCE))
4709 continue;
4710
4711 interval = sd->balance_interval;
d15bcfdb 4712 if (idle != CPU_IDLE)
1da177e4
LT
4713 interval *= sd->busy_factor;
4714
4715 /* scale ms to jiffies */
4716 interval = msecs_to_jiffies(interval);
4717 if (unlikely(!interval))
4718 interval = 1;
dd41f596
IM
4719 if (interval > HZ*NR_CPUS/10)
4720 interval = HZ*NR_CPUS/10;
4721
d07355f5 4722 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4723
d07355f5 4724 if (need_serialize) {
08c183f3
CL
4725 if (!spin_trylock(&balancing))
4726 goto out;
4727 }
4728
c9819f45 4729 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4730 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4731 /*
4732 * We've pulled tasks over so either we're no
5969fe06
NP
4733 * longer idle, or one of our SMT siblings is
4734 * not idle.
4735 */
d15bcfdb 4736 idle = CPU_NOT_IDLE;
1da177e4 4737 }
1bd77f2d 4738 sd->last_balance = jiffies;
1da177e4 4739 }
d07355f5 4740 if (need_serialize)
08c183f3
CL
4741 spin_unlock(&balancing);
4742out:
f549da84 4743 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4744 next_balance = sd->last_balance + interval;
f549da84
SS
4745 update_next_balance = 1;
4746 }
783609c6
SS
4747
4748 /*
4749 * Stop the load balance at this level. There is another
4750 * CPU in our sched group which is doing load balancing more
4751 * actively.
4752 */
4753 if (!balance)
4754 break;
1da177e4 4755 }
f549da84
SS
4756
4757 /*
4758 * next_balance will be updated only when there is a need.
4759 * When the cpu is attached to null domain for ex, it will not be
4760 * updated.
4761 */
4762 if (likely(update_next_balance))
4763 rq->next_balance = next_balance;
46cb4b7c
SS
4764}
4765
4766/*
4767 * run_rebalance_domains is triggered when needed from the scheduler tick.
4768 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4769 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4770 */
4771static void run_rebalance_domains(struct softirq_action *h)
4772{
dd41f596
IM
4773 int this_cpu = smp_processor_id();
4774 struct rq *this_rq = cpu_rq(this_cpu);
4775 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4776 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4777
dd41f596 4778 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4779
4780#ifdef CONFIG_NO_HZ
4781 /*
4782 * If this cpu is the owner for idle load balancing, then do the
4783 * balancing on behalf of the other idle cpus whose ticks are
4784 * stopped.
4785 */
dd41f596
IM
4786 if (this_rq->idle_at_tick &&
4787 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4788 struct rq *rq;
4789 int balance_cpu;
4790
7d1e6a9b
RR
4791 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4792 if (balance_cpu == this_cpu)
4793 continue;
4794
46cb4b7c
SS
4795 /*
4796 * If this cpu gets work to do, stop the load balancing
4797 * work being done for other cpus. Next load
4798 * balancing owner will pick it up.
4799 */
4800 if (need_resched())
4801 break;
4802
de0cf899 4803 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4804
4805 rq = cpu_rq(balance_cpu);
dd41f596
IM
4806 if (time_after(this_rq->next_balance, rq->next_balance))
4807 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4808 }
4809 }
4810#endif
4811}
4812
8a0be9ef
FW
4813static inline int on_null_domain(int cpu)
4814{
4815 return !rcu_dereference(cpu_rq(cpu)->sd);
4816}
4817
46cb4b7c
SS
4818/*
4819 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4820 *
4821 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4822 * idle load balancing owner or decide to stop the periodic load balancing,
4823 * if the whole system is idle.
4824 */
dd41f596 4825static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4826{
46cb4b7c
SS
4827#ifdef CONFIG_NO_HZ
4828 /*
4829 * If we were in the nohz mode recently and busy at the current
4830 * scheduler tick, then check if we need to nominate new idle
4831 * load balancer.
4832 */
4833 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4834 rq->in_nohz_recently = 0;
4835
4836 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4837 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4838 atomic_set(&nohz.load_balancer, -1);
4839 }
4840
4841 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4842 int ilb = find_new_ilb(cpu);
46cb4b7c 4843
434d53b0 4844 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4845 resched_cpu(ilb);
4846 }
4847 }
4848
4849 /*
4850 * If this cpu is idle and doing idle load balancing for all the
4851 * cpus with ticks stopped, is it time for that to stop?
4852 */
4853 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4854 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4855 resched_cpu(cpu);
4856 return;
4857 }
4858
4859 /*
4860 * If this cpu is idle and the idle load balancing is done by
4861 * someone else, then no need raise the SCHED_SOFTIRQ
4862 */
4863 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4864 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4865 return;
4866#endif
8a0be9ef
FW
4867 /* Don't need to rebalance while attached to NULL domain */
4868 if (time_after_eq(jiffies, rq->next_balance) &&
4869 likely(!on_null_domain(cpu)))
46cb4b7c 4870 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4871}
dd41f596
IM
4872
4873#else /* CONFIG_SMP */
4874
1da177e4
LT
4875/*
4876 * on UP we do not need to balance between CPUs:
4877 */
70b97a7f 4878static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4879{
4880}
dd41f596 4881
1da177e4
LT
4882#endif
4883
1da177e4
LT
4884DEFINE_PER_CPU(struct kernel_stat, kstat);
4885
4886EXPORT_PER_CPU_SYMBOL(kstat);
4887
4888/*
c5f8d995 4889 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4890 * @p in case that task is currently running.
c5f8d995
HS
4891 *
4892 * Called with task_rq_lock() held on @rq.
1da177e4 4893 */
c5f8d995
HS
4894static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4895{
4896 u64 ns = 0;
4897
4898 if (task_current(rq, p)) {
4899 update_rq_clock(rq);
4900 ns = rq->clock - p->se.exec_start;
4901 if ((s64)ns < 0)
4902 ns = 0;
4903 }
4904
4905 return ns;
4906}
4907
bb34d92f 4908unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4909{
1da177e4 4910 unsigned long flags;
41b86e9c 4911 struct rq *rq;
bb34d92f 4912 u64 ns = 0;
48f24c4d 4913
41b86e9c 4914 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4915 ns = do_task_delta_exec(p, rq);
4916 task_rq_unlock(rq, &flags);
1508487e 4917
c5f8d995
HS
4918 return ns;
4919}
f06febc9 4920
c5f8d995
HS
4921/*
4922 * Return accounted runtime for the task.
4923 * In case the task is currently running, return the runtime plus current's
4924 * pending runtime that have not been accounted yet.
4925 */
4926unsigned long long task_sched_runtime(struct task_struct *p)
4927{
4928 unsigned long flags;
4929 struct rq *rq;
4930 u64 ns = 0;
4931
4932 rq = task_rq_lock(p, &flags);
4933 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4934 task_rq_unlock(rq, &flags);
4935
4936 return ns;
4937}
48f24c4d 4938
c5f8d995
HS
4939/*
4940 * Return sum_exec_runtime for the thread group.
4941 * In case the task is currently running, return the sum plus current's
4942 * pending runtime that have not been accounted yet.
4943 *
4944 * Note that the thread group might have other running tasks as well,
4945 * so the return value not includes other pending runtime that other
4946 * running tasks might have.
4947 */
4948unsigned long long thread_group_sched_runtime(struct task_struct *p)
4949{
4950 struct task_cputime totals;
4951 unsigned long flags;
4952 struct rq *rq;
4953 u64 ns;
4954
4955 rq = task_rq_lock(p, &flags);
4956 thread_group_cputime(p, &totals);
4957 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4958 task_rq_unlock(rq, &flags);
48f24c4d 4959
1da177e4
LT
4960 return ns;
4961}
4962
1da177e4
LT
4963/*
4964 * Account user cpu time to a process.
4965 * @p: the process that the cpu time gets accounted to
1da177e4 4966 * @cputime: the cpu time spent in user space since the last update
457533a7 4967 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4968 */
457533a7
MS
4969void account_user_time(struct task_struct *p, cputime_t cputime,
4970 cputime_t cputime_scaled)
1da177e4
LT
4971{
4972 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4973 cputime64_t tmp;
4974
457533a7 4975 /* Add user time to process. */
1da177e4 4976 p->utime = cputime_add(p->utime, cputime);
457533a7 4977 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4978 account_group_user_time(p, cputime);
1da177e4
LT
4979
4980 /* Add user time to cpustat. */
4981 tmp = cputime_to_cputime64(cputime);
4982 if (TASK_NICE(p) > 0)
4983 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4984 else
4985 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4986
4987 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4988 /* Account for user time used */
4989 acct_update_integrals(p);
1da177e4
LT
4990}
4991
94886b84
LV
4992/*
4993 * Account guest cpu time to a process.
4994 * @p: the process that the cpu time gets accounted to
4995 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4996 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4997 */
457533a7
MS
4998static void account_guest_time(struct task_struct *p, cputime_t cputime,
4999 cputime_t cputime_scaled)
94886b84
LV
5000{
5001 cputime64_t tmp;
5002 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5003
5004 tmp = cputime_to_cputime64(cputime);
5005
457533a7 5006 /* Add guest time to process. */
94886b84 5007 p->utime = cputime_add(p->utime, cputime);
457533a7 5008 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5009 account_group_user_time(p, cputime);
94886b84
LV
5010 p->gtime = cputime_add(p->gtime, cputime);
5011
457533a7 5012 /* Add guest time to cpustat. */
94886b84
LV
5013 cpustat->user = cputime64_add(cpustat->user, tmp);
5014 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5015}
5016
1da177e4
LT
5017/*
5018 * Account system cpu time to a process.
5019 * @p: the process that the cpu time gets accounted to
5020 * @hardirq_offset: the offset to subtract from hardirq_count()
5021 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5022 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5023 */
5024void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5025 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5026{
5027 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5028 cputime64_t tmp;
5029
983ed7a6 5030 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5031 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5032 return;
5033 }
94886b84 5034
457533a7 5035 /* Add system time to process. */
1da177e4 5036 p->stime = cputime_add(p->stime, cputime);
457533a7 5037 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5038 account_group_system_time(p, cputime);
1da177e4
LT
5039
5040 /* Add system time to cpustat. */
5041 tmp = cputime_to_cputime64(cputime);
5042 if (hardirq_count() - hardirq_offset)
5043 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5044 else if (softirq_count())
5045 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5046 else
79741dd3
MS
5047 cpustat->system = cputime64_add(cpustat->system, tmp);
5048
ef12fefa
BR
5049 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5050
1da177e4
LT
5051 /* Account for system time used */
5052 acct_update_integrals(p);
1da177e4
LT
5053}
5054
c66f08be 5055/*
1da177e4 5056 * Account for involuntary wait time.
1da177e4 5057 * @steal: the cpu time spent in involuntary wait
c66f08be 5058 */
79741dd3 5059void account_steal_time(cputime_t cputime)
c66f08be 5060{
79741dd3
MS
5061 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5062 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5063
5064 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5065}
5066
1da177e4 5067/*
79741dd3
MS
5068 * Account for idle time.
5069 * @cputime: the cpu time spent in idle wait
1da177e4 5070 */
79741dd3 5071void account_idle_time(cputime_t cputime)
1da177e4
LT
5072{
5073 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5074 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5075 struct rq *rq = this_rq();
1da177e4 5076
79741dd3
MS
5077 if (atomic_read(&rq->nr_iowait) > 0)
5078 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5079 else
5080 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5081}
5082
79741dd3
MS
5083#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5084
5085/*
5086 * Account a single tick of cpu time.
5087 * @p: the process that the cpu time gets accounted to
5088 * @user_tick: indicates if the tick is a user or a system tick
5089 */
5090void account_process_tick(struct task_struct *p, int user_tick)
5091{
5092 cputime_t one_jiffy = jiffies_to_cputime(1);
5093 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5094 struct rq *rq = this_rq();
5095
5096 if (user_tick)
5097 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5098 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5099 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5100 one_jiffy_scaled);
5101 else
5102 account_idle_time(one_jiffy);
5103}
5104
5105/*
5106 * Account multiple ticks of steal time.
5107 * @p: the process from which the cpu time has been stolen
5108 * @ticks: number of stolen ticks
5109 */
5110void account_steal_ticks(unsigned long ticks)
5111{
5112 account_steal_time(jiffies_to_cputime(ticks));
5113}
5114
5115/*
5116 * Account multiple ticks of idle time.
5117 * @ticks: number of stolen ticks
5118 */
5119void account_idle_ticks(unsigned long ticks)
5120{
5121 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5122}
5123
79741dd3
MS
5124#endif
5125
49048622
BS
5126/*
5127 * Use precise platform statistics if available:
5128 */
5129#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5130cputime_t task_utime(struct task_struct *p)
5131{
5132 return p->utime;
5133}
5134
5135cputime_t task_stime(struct task_struct *p)
5136{
5137 return p->stime;
5138}
5139#else
5140cputime_t task_utime(struct task_struct *p)
5141{
5142 clock_t utime = cputime_to_clock_t(p->utime),
5143 total = utime + cputime_to_clock_t(p->stime);
5144 u64 temp;
5145
5146 /*
5147 * Use CFS's precise accounting:
5148 */
5149 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5150
5151 if (total) {
5152 temp *= utime;
5153 do_div(temp, total);
5154 }
5155 utime = (clock_t)temp;
5156
5157 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5158 return p->prev_utime;
5159}
5160
5161cputime_t task_stime(struct task_struct *p)
5162{
5163 clock_t stime;
5164
5165 /*
5166 * Use CFS's precise accounting. (we subtract utime from
5167 * the total, to make sure the total observed by userspace
5168 * grows monotonically - apps rely on that):
5169 */
5170 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5171 cputime_to_clock_t(task_utime(p));
5172
5173 if (stime >= 0)
5174 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5175
5176 return p->prev_stime;
5177}
5178#endif
5179
5180inline cputime_t task_gtime(struct task_struct *p)
5181{
5182 return p->gtime;
5183}
5184
7835b98b
CL
5185/*
5186 * This function gets called by the timer code, with HZ frequency.
5187 * We call it with interrupts disabled.
5188 *
5189 * It also gets called by the fork code, when changing the parent's
5190 * timeslices.
5191 */
5192void scheduler_tick(void)
5193{
7835b98b
CL
5194 int cpu = smp_processor_id();
5195 struct rq *rq = cpu_rq(cpu);
dd41f596 5196 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5197
5198 sched_clock_tick();
dd41f596
IM
5199
5200 spin_lock(&rq->lock);
3e51f33f 5201 update_rq_clock(rq);
f1a438d8 5202 update_cpu_load(rq);
fa85ae24 5203 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5204 spin_unlock(&rq->lock);
7835b98b 5205
e220d2dc
PZ
5206 perf_counter_task_tick(curr, cpu);
5207
e418e1c2 5208#ifdef CONFIG_SMP
dd41f596
IM
5209 rq->idle_at_tick = idle_cpu(cpu);
5210 trigger_load_balance(rq, cpu);
e418e1c2 5211#endif
1da177e4
LT
5212}
5213
132380a0 5214notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5215{
5216 if (in_lock_functions(addr)) {
5217 addr = CALLER_ADDR2;
5218 if (in_lock_functions(addr))
5219 addr = CALLER_ADDR3;
5220 }
5221 return addr;
5222}
1da177e4 5223
7e49fcce
SR
5224#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5225 defined(CONFIG_PREEMPT_TRACER))
5226
43627582 5227void __kprobes add_preempt_count(int val)
1da177e4 5228{
6cd8a4bb 5229#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5230 /*
5231 * Underflow?
5232 */
9a11b49a
IM
5233 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5234 return;
6cd8a4bb 5235#endif
1da177e4 5236 preempt_count() += val;
6cd8a4bb 5237#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5238 /*
5239 * Spinlock count overflowing soon?
5240 */
33859f7f
MOS
5241 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5242 PREEMPT_MASK - 10);
6cd8a4bb
SR
5243#endif
5244 if (preempt_count() == val)
5245 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5246}
5247EXPORT_SYMBOL(add_preempt_count);
5248
43627582 5249void __kprobes sub_preempt_count(int val)
1da177e4 5250{
6cd8a4bb 5251#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5252 /*
5253 * Underflow?
5254 */
01e3eb82 5255 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5256 return;
1da177e4
LT
5257 /*
5258 * Is the spinlock portion underflowing?
5259 */
9a11b49a
IM
5260 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5261 !(preempt_count() & PREEMPT_MASK)))
5262 return;
6cd8a4bb 5263#endif
9a11b49a 5264
6cd8a4bb
SR
5265 if (preempt_count() == val)
5266 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5267 preempt_count() -= val;
5268}
5269EXPORT_SYMBOL(sub_preempt_count);
5270
5271#endif
5272
5273/*
dd41f596 5274 * Print scheduling while atomic bug:
1da177e4 5275 */
dd41f596 5276static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5277{
838225b4
SS
5278 struct pt_regs *regs = get_irq_regs();
5279
5280 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5281 prev->comm, prev->pid, preempt_count());
5282
dd41f596 5283 debug_show_held_locks(prev);
e21f5b15 5284 print_modules();
dd41f596
IM
5285 if (irqs_disabled())
5286 print_irqtrace_events(prev);
838225b4
SS
5287
5288 if (regs)
5289 show_regs(regs);
5290 else
5291 dump_stack();
dd41f596 5292}
1da177e4 5293
dd41f596
IM
5294/*
5295 * Various schedule()-time debugging checks and statistics:
5296 */
5297static inline void schedule_debug(struct task_struct *prev)
5298{
1da177e4 5299 /*
41a2d6cf 5300 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5301 * schedule() atomically, we ignore that path for now.
5302 * Otherwise, whine if we are scheduling when we should not be.
5303 */
3f33a7ce 5304 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5305 __schedule_bug(prev);
5306
1da177e4
LT
5307 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5308
2d72376b 5309 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5310#ifdef CONFIG_SCHEDSTATS
5311 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5312 schedstat_inc(this_rq(), bkl_count);
5313 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5314 }
5315#endif
dd41f596
IM
5316}
5317
df1c99d4
MG
5318static void put_prev_task(struct rq *rq, struct task_struct *prev)
5319{
5320 if (prev->state == TASK_RUNNING) {
5321 u64 runtime = prev->se.sum_exec_runtime;
5322
5323 runtime -= prev->se.prev_sum_exec_runtime;
5324 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5325
5326 /*
5327 * In order to avoid avg_overlap growing stale when we are
5328 * indeed overlapping and hence not getting put to sleep, grow
5329 * the avg_overlap on preemption.
5330 *
5331 * We use the average preemption runtime because that
5332 * correlates to the amount of cache footprint a task can
5333 * build up.
5334 */
5335 update_avg(&prev->se.avg_overlap, runtime);
5336 }
5337 prev->sched_class->put_prev_task(rq, prev);
5338}
5339
dd41f596
IM
5340/*
5341 * Pick up the highest-prio task:
5342 */
5343static inline struct task_struct *
b67802ea 5344pick_next_task(struct rq *rq)
dd41f596 5345{
5522d5d5 5346 const struct sched_class *class;
dd41f596 5347 struct task_struct *p;
1da177e4
LT
5348
5349 /*
dd41f596
IM
5350 * Optimization: we know that if all tasks are in
5351 * the fair class we can call that function directly:
1da177e4 5352 */
dd41f596 5353 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5354 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5355 if (likely(p))
5356 return p;
1da177e4
LT
5357 }
5358
dd41f596
IM
5359 class = sched_class_highest;
5360 for ( ; ; ) {
fb8d4724 5361 p = class->pick_next_task(rq);
dd41f596
IM
5362 if (p)
5363 return p;
5364 /*
5365 * Will never be NULL as the idle class always
5366 * returns a non-NULL p:
5367 */
5368 class = class->next;
5369 }
5370}
1da177e4 5371
dd41f596
IM
5372/*
5373 * schedule() is the main scheduler function.
5374 */
ff743345 5375asmlinkage void __sched schedule(void)
dd41f596
IM
5376{
5377 struct task_struct *prev, *next;
67ca7bde 5378 unsigned long *switch_count;
dd41f596 5379 struct rq *rq;
31656519 5380 int cpu;
dd41f596 5381
ff743345
PZ
5382need_resched:
5383 preempt_disable();
dd41f596
IM
5384 cpu = smp_processor_id();
5385 rq = cpu_rq(cpu);
d6714c22 5386 rcu_sched_qs(cpu);
dd41f596
IM
5387 prev = rq->curr;
5388 switch_count = &prev->nivcsw;
5389
5390 release_kernel_lock(prev);
5391need_resched_nonpreemptible:
5392
5393 schedule_debug(prev);
1da177e4 5394
31656519 5395 if (sched_feat(HRTICK))
f333fdc9 5396 hrtick_clear(rq);
8f4d37ec 5397
8cd162ce 5398 spin_lock_irq(&rq->lock);
3e51f33f 5399 update_rq_clock(rq);
1e819950 5400 clear_tsk_need_resched(prev);
1da177e4 5401
1da177e4 5402 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5403 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5404 prev->state = TASK_RUNNING;
16882c1e 5405 else
2e1cb74a 5406 deactivate_task(rq, prev, 1);
dd41f596 5407 switch_count = &prev->nvcsw;
1da177e4
LT
5408 }
5409
3f029d3c 5410 pre_schedule(rq, prev);
f65eda4f 5411
dd41f596 5412 if (unlikely(!rq->nr_running))
1da177e4 5413 idle_balance(cpu, rq);
1da177e4 5414
df1c99d4 5415 put_prev_task(rq, prev);
b67802ea 5416 next = pick_next_task(rq);
1da177e4 5417
1da177e4 5418 if (likely(prev != next)) {
673a90a1 5419 sched_info_switch(prev, next);
564c2b21 5420 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5421
1da177e4
LT
5422 rq->nr_switches++;
5423 rq->curr = next;
5424 ++*switch_count;
5425
dd41f596 5426 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5427 /*
5428 * the context switch might have flipped the stack from under
5429 * us, hence refresh the local variables.
5430 */
5431 cpu = smp_processor_id();
5432 rq = cpu_rq(cpu);
1da177e4
LT
5433 } else
5434 spin_unlock_irq(&rq->lock);
5435
3f029d3c 5436 post_schedule(rq);
1da177e4 5437
8f4d37ec 5438 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5439 goto need_resched_nonpreemptible;
8f4d37ec 5440
1da177e4 5441 preempt_enable_no_resched();
ff743345 5442 if (need_resched())
1da177e4
LT
5443 goto need_resched;
5444}
1da177e4
LT
5445EXPORT_SYMBOL(schedule);
5446
0d66bf6d
PZ
5447#ifdef CONFIG_SMP
5448/*
5449 * Look out! "owner" is an entirely speculative pointer
5450 * access and not reliable.
5451 */
5452int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5453{
5454 unsigned int cpu;
5455 struct rq *rq;
5456
5457 if (!sched_feat(OWNER_SPIN))
5458 return 0;
5459
5460#ifdef CONFIG_DEBUG_PAGEALLOC
5461 /*
5462 * Need to access the cpu field knowing that
5463 * DEBUG_PAGEALLOC could have unmapped it if
5464 * the mutex owner just released it and exited.
5465 */
5466 if (probe_kernel_address(&owner->cpu, cpu))
5467 goto out;
5468#else
5469 cpu = owner->cpu;
5470#endif
5471
5472 /*
5473 * Even if the access succeeded (likely case),
5474 * the cpu field may no longer be valid.
5475 */
5476 if (cpu >= nr_cpumask_bits)
5477 goto out;
5478
5479 /*
5480 * We need to validate that we can do a
5481 * get_cpu() and that we have the percpu area.
5482 */
5483 if (!cpu_online(cpu))
5484 goto out;
5485
5486 rq = cpu_rq(cpu);
5487
5488 for (;;) {
5489 /*
5490 * Owner changed, break to re-assess state.
5491 */
5492 if (lock->owner != owner)
5493 break;
5494
5495 /*
5496 * Is that owner really running on that cpu?
5497 */
5498 if (task_thread_info(rq->curr) != owner || need_resched())
5499 return 0;
5500
5501 cpu_relax();
5502 }
5503out:
5504 return 1;
5505}
5506#endif
5507
1da177e4
LT
5508#ifdef CONFIG_PREEMPT
5509/*
2ed6e34f 5510 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5511 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5512 * occur there and call schedule directly.
5513 */
5514asmlinkage void __sched preempt_schedule(void)
5515{
5516 struct thread_info *ti = current_thread_info();
6478d880 5517
1da177e4
LT
5518 /*
5519 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5520 * we do not want to preempt the current task. Just return..
1da177e4 5521 */
beed33a8 5522 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5523 return;
5524
3a5c359a
AK
5525 do {
5526 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5527 schedule();
3a5c359a 5528 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5529
3a5c359a
AK
5530 /*
5531 * Check again in case we missed a preemption opportunity
5532 * between schedule and now.
5533 */
5534 barrier();
5ed0cec0 5535 } while (need_resched());
1da177e4 5536}
1da177e4
LT
5537EXPORT_SYMBOL(preempt_schedule);
5538
5539/*
2ed6e34f 5540 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5541 * off of irq context.
5542 * Note, that this is called and return with irqs disabled. This will
5543 * protect us against recursive calling from irq.
5544 */
5545asmlinkage void __sched preempt_schedule_irq(void)
5546{
5547 struct thread_info *ti = current_thread_info();
6478d880 5548
2ed6e34f 5549 /* Catch callers which need to be fixed */
1da177e4
LT
5550 BUG_ON(ti->preempt_count || !irqs_disabled());
5551
3a5c359a
AK
5552 do {
5553 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5554 local_irq_enable();
5555 schedule();
5556 local_irq_disable();
3a5c359a 5557 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5558
3a5c359a
AK
5559 /*
5560 * Check again in case we missed a preemption opportunity
5561 * between schedule and now.
5562 */
5563 barrier();
5ed0cec0 5564 } while (need_resched());
1da177e4
LT
5565}
5566
5567#endif /* CONFIG_PREEMPT */
5568
95cdf3b7
IM
5569int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5570 void *key)
1da177e4 5571{
48f24c4d 5572 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5573}
1da177e4
LT
5574EXPORT_SYMBOL(default_wake_function);
5575
5576/*
41a2d6cf
IM
5577 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5578 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5579 * number) then we wake all the non-exclusive tasks and one exclusive task.
5580 *
5581 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5582 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5583 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5584 */
78ddb08f 5585static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5586 int nr_exclusive, int sync, void *key)
1da177e4 5587{
2e45874c 5588 wait_queue_t *curr, *next;
1da177e4 5589
2e45874c 5590 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5591 unsigned flags = curr->flags;
5592
1da177e4 5593 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5594 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5595 break;
5596 }
5597}
5598
5599/**
5600 * __wake_up - wake up threads blocked on a waitqueue.
5601 * @q: the waitqueue
5602 * @mode: which threads
5603 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5604 * @key: is directly passed to the wakeup function
50fa610a
DH
5605 *
5606 * It may be assumed that this function implies a write memory barrier before
5607 * changing the task state if and only if any tasks are woken up.
1da177e4 5608 */
7ad5b3a5 5609void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5610 int nr_exclusive, void *key)
1da177e4
LT
5611{
5612 unsigned long flags;
5613
5614 spin_lock_irqsave(&q->lock, flags);
5615 __wake_up_common(q, mode, nr_exclusive, 0, key);
5616 spin_unlock_irqrestore(&q->lock, flags);
5617}
1da177e4
LT
5618EXPORT_SYMBOL(__wake_up);
5619
5620/*
5621 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5622 */
7ad5b3a5 5623void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5624{
5625 __wake_up_common(q, mode, 1, 0, NULL);
5626}
5627
4ede816a
DL
5628void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5629{
5630 __wake_up_common(q, mode, 1, 0, key);
5631}
5632
1da177e4 5633/**
4ede816a 5634 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5635 * @q: the waitqueue
5636 * @mode: which threads
5637 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5638 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5639 *
5640 * The sync wakeup differs that the waker knows that it will schedule
5641 * away soon, so while the target thread will be woken up, it will not
5642 * be migrated to another CPU - ie. the two threads are 'synchronized'
5643 * with each other. This can prevent needless bouncing between CPUs.
5644 *
5645 * On UP it can prevent extra preemption.
50fa610a
DH
5646 *
5647 * It may be assumed that this function implies a write memory barrier before
5648 * changing the task state if and only if any tasks are woken up.
1da177e4 5649 */
4ede816a
DL
5650void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5651 int nr_exclusive, void *key)
1da177e4
LT
5652{
5653 unsigned long flags;
5654 int sync = 1;
5655
5656 if (unlikely(!q))
5657 return;
5658
5659 if (unlikely(!nr_exclusive))
5660 sync = 0;
5661
5662 spin_lock_irqsave(&q->lock, flags);
4ede816a 5663 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5664 spin_unlock_irqrestore(&q->lock, flags);
5665}
4ede816a
DL
5666EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5667
5668/*
5669 * __wake_up_sync - see __wake_up_sync_key()
5670 */
5671void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5672{
5673 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5674}
1da177e4
LT
5675EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5676
65eb3dc6
KD
5677/**
5678 * complete: - signals a single thread waiting on this completion
5679 * @x: holds the state of this particular completion
5680 *
5681 * This will wake up a single thread waiting on this completion. Threads will be
5682 * awakened in the same order in which they were queued.
5683 *
5684 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5685 *
5686 * It may be assumed that this function implies a write memory barrier before
5687 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5688 */
b15136e9 5689void complete(struct completion *x)
1da177e4
LT
5690{
5691 unsigned long flags;
5692
5693 spin_lock_irqsave(&x->wait.lock, flags);
5694 x->done++;
d9514f6c 5695 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5696 spin_unlock_irqrestore(&x->wait.lock, flags);
5697}
5698EXPORT_SYMBOL(complete);
5699
65eb3dc6
KD
5700/**
5701 * complete_all: - signals all threads waiting on this completion
5702 * @x: holds the state of this particular completion
5703 *
5704 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5705 *
5706 * It may be assumed that this function implies a write memory barrier before
5707 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5708 */
b15136e9 5709void complete_all(struct completion *x)
1da177e4
LT
5710{
5711 unsigned long flags;
5712
5713 spin_lock_irqsave(&x->wait.lock, flags);
5714 x->done += UINT_MAX/2;
d9514f6c 5715 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5716 spin_unlock_irqrestore(&x->wait.lock, flags);
5717}
5718EXPORT_SYMBOL(complete_all);
5719
8cbbe86d
AK
5720static inline long __sched
5721do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5722{
1da177e4
LT
5723 if (!x->done) {
5724 DECLARE_WAITQUEUE(wait, current);
5725
5726 wait.flags |= WQ_FLAG_EXCLUSIVE;
5727 __add_wait_queue_tail(&x->wait, &wait);
5728 do {
94d3d824 5729 if (signal_pending_state(state, current)) {
ea71a546
ON
5730 timeout = -ERESTARTSYS;
5731 break;
8cbbe86d
AK
5732 }
5733 __set_current_state(state);
1da177e4
LT
5734 spin_unlock_irq(&x->wait.lock);
5735 timeout = schedule_timeout(timeout);
5736 spin_lock_irq(&x->wait.lock);
ea71a546 5737 } while (!x->done && timeout);
1da177e4 5738 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5739 if (!x->done)
5740 return timeout;
1da177e4
LT
5741 }
5742 x->done--;
ea71a546 5743 return timeout ?: 1;
1da177e4 5744}
1da177e4 5745
8cbbe86d
AK
5746static long __sched
5747wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5748{
1da177e4
LT
5749 might_sleep();
5750
5751 spin_lock_irq(&x->wait.lock);
8cbbe86d 5752 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5753 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5754 return timeout;
5755}
1da177e4 5756
65eb3dc6
KD
5757/**
5758 * wait_for_completion: - waits for completion of a task
5759 * @x: holds the state of this particular completion
5760 *
5761 * This waits to be signaled for completion of a specific task. It is NOT
5762 * interruptible and there is no timeout.
5763 *
5764 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5765 * and interrupt capability. Also see complete().
5766 */
b15136e9 5767void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5768{
5769 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5770}
8cbbe86d 5771EXPORT_SYMBOL(wait_for_completion);
1da177e4 5772
65eb3dc6
KD
5773/**
5774 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5775 * @x: holds the state of this particular completion
5776 * @timeout: timeout value in jiffies
5777 *
5778 * This waits for either a completion of a specific task to be signaled or for a
5779 * specified timeout to expire. The timeout is in jiffies. It is not
5780 * interruptible.
5781 */
b15136e9 5782unsigned long __sched
8cbbe86d 5783wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5784{
8cbbe86d 5785 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5786}
8cbbe86d 5787EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5788
65eb3dc6
KD
5789/**
5790 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5791 * @x: holds the state of this particular completion
5792 *
5793 * This waits for completion of a specific task to be signaled. It is
5794 * interruptible.
5795 */
8cbbe86d 5796int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5797{
51e97990
AK
5798 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5799 if (t == -ERESTARTSYS)
5800 return t;
5801 return 0;
0fec171c 5802}
8cbbe86d 5803EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5804
65eb3dc6
KD
5805/**
5806 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5807 * @x: holds the state of this particular completion
5808 * @timeout: timeout value in jiffies
5809 *
5810 * This waits for either a completion of a specific task to be signaled or for a
5811 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5812 */
b15136e9 5813unsigned long __sched
8cbbe86d
AK
5814wait_for_completion_interruptible_timeout(struct completion *x,
5815 unsigned long timeout)
0fec171c 5816{
8cbbe86d 5817 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5818}
8cbbe86d 5819EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5820
65eb3dc6
KD
5821/**
5822 * wait_for_completion_killable: - waits for completion of a task (killable)
5823 * @x: holds the state of this particular completion
5824 *
5825 * This waits to be signaled for completion of a specific task. It can be
5826 * interrupted by a kill signal.
5827 */
009e577e
MW
5828int __sched wait_for_completion_killable(struct completion *x)
5829{
5830 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5831 if (t == -ERESTARTSYS)
5832 return t;
5833 return 0;
5834}
5835EXPORT_SYMBOL(wait_for_completion_killable);
5836
be4de352
DC
5837/**
5838 * try_wait_for_completion - try to decrement a completion without blocking
5839 * @x: completion structure
5840 *
5841 * Returns: 0 if a decrement cannot be done without blocking
5842 * 1 if a decrement succeeded.
5843 *
5844 * If a completion is being used as a counting completion,
5845 * attempt to decrement the counter without blocking. This
5846 * enables us to avoid waiting if the resource the completion
5847 * is protecting is not available.
5848 */
5849bool try_wait_for_completion(struct completion *x)
5850{
5851 int ret = 1;
5852
5853 spin_lock_irq(&x->wait.lock);
5854 if (!x->done)
5855 ret = 0;
5856 else
5857 x->done--;
5858 spin_unlock_irq(&x->wait.lock);
5859 return ret;
5860}
5861EXPORT_SYMBOL(try_wait_for_completion);
5862
5863/**
5864 * completion_done - Test to see if a completion has any waiters
5865 * @x: completion structure
5866 *
5867 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5868 * 1 if there are no waiters.
5869 *
5870 */
5871bool completion_done(struct completion *x)
5872{
5873 int ret = 1;
5874
5875 spin_lock_irq(&x->wait.lock);
5876 if (!x->done)
5877 ret = 0;
5878 spin_unlock_irq(&x->wait.lock);
5879 return ret;
5880}
5881EXPORT_SYMBOL(completion_done);
5882
8cbbe86d
AK
5883static long __sched
5884sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5885{
0fec171c
IM
5886 unsigned long flags;
5887 wait_queue_t wait;
5888
5889 init_waitqueue_entry(&wait, current);
1da177e4 5890
8cbbe86d 5891 __set_current_state(state);
1da177e4 5892
8cbbe86d
AK
5893 spin_lock_irqsave(&q->lock, flags);
5894 __add_wait_queue(q, &wait);
5895 spin_unlock(&q->lock);
5896 timeout = schedule_timeout(timeout);
5897 spin_lock_irq(&q->lock);
5898 __remove_wait_queue(q, &wait);
5899 spin_unlock_irqrestore(&q->lock, flags);
5900
5901 return timeout;
5902}
5903
5904void __sched interruptible_sleep_on(wait_queue_head_t *q)
5905{
5906 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5907}
1da177e4
LT
5908EXPORT_SYMBOL(interruptible_sleep_on);
5909
0fec171c 5910long __sched
95cdf3b7 5911interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5912{
8cbbe86d 5913 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5914}
1da177e4
LT
5915EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5916
0fec171c 5917void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5918{
8cbbe86d 5919 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5920}
1da177e4
LT
5921EXPORT_SYMBOL(sleep_on);
5922
0fec171c 5923long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5924{
8cbbe86d 5925 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5926}
1da177e4
LT
5927EXPORT_SYMBOL(sleep_on_timeout);
5928
b29739f9
IM
5929#ifdef CONFIG_RT_MUTEXES
5930
5931/*
5932 * rt_mutex_setprio - set the current priority of a task
5933 * @p: task
5934 * @prio: prio value (kernel-internal form)
5935 *
5936 * This function changes the 'effective' priority of a task. It does
5937 * not touch ->normal_prio like __setscheduler().
5938 *
5939 * Used by the rt_mutex code to implement priority inheritance logic.
5940 */
36c8b586 5941void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5942{
5943 unsigned long flags;
83b699ed 5944 int oldprio, on_rq, running;
70b97a7f 5945 struct rq *rq;
cb469845 5946 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5947
5948 BUG_ON(prio < 0 || prio > MAX_PRIO);
5949
5950 rq = task_rq_lock(p, &flags);
a8e504d2 5951 update_rq_clock(rq);
b29739f9 5952
d5f9f942 5953 oldprio = p->prio;
dd41f596 5954 on_rq = p->se.on_rq;
051a1d1a 5955 running = task_current(rq, p);
0e1f3483 5956 if (on_rq)
69be72c1 5957 dequeue_task(rq, p, 0);
0e1f3483
HS
5958 if (running)
5959 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5960
5961 if (rt_prio(prio))
5962 p->sched_class = &rt_sched_class;
5963 else
5964 p->sched_class = &fair_sched_class;
5965
b29739f9
IM
5966 p->prio = prio;
5967
0e1f3483
HS
5968 if (running)
5969 p->sched_class->set_curr_task(rq);
dd41f596 5970 if (on_rq) {
8159f87e 5971 enqueue_task(rq, p, 0);
cb469845
SR
5972
5973 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5974 }
5975 task_rq_unlock(rq, &flags);
5976}
5977
5978#endif
5979
36c8b586 5980void set_user_nice(struct task_struct *p, long nice)
1da177e4 5981{
dd41f596 5982 int old_prio, delta, on_rq;
1da177e4 5983 unsigned long flags;
70b97a7f 5984 struct rq *rq;
1da177e4
LT
5985
5986 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5987 return;
5988 /*
5989 * We have to be careful, if called from sys_setpriority(),
5990 * the task might be in the middle of scheduling on another CPU.
5991 */
5992 rq = task_rq_lock(p, &flags);
a8e504d2 5993 update_rq_clock(rq);
1da177e4
LT
5994 /*
5995 * The RT priorities are set via sched_setscheduler(), but we still
5996 * allow the 'normal' nice value to be set - but as expected
5997 * it wont have any effect on scheduling until the task is
dd41f596 5998 * SCHED_FIFO/SCHED_RR:
1da177e4 5999 */
e05606d3 6000 if (task_has_rt_policy(p)) {
1da177e4
LT
6001 p->static_prio = NICE_TO_PRIO(nice);
6002 goto out_unlock;
6003 }
dd41f596 6004 on_rq = p->se.on_rq;
c09595f6 6005 if (on_rq)
69be72c1 6006 dequeue_task(rq, p, 0);
1da177e4 6007
1da177e4 6008 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6009 set_load_weight(p);
b29739f9
IM
6010 old_prio = p->prio;
6011 p->prio = effective_prio(p);
6012 delta = p->prio - old_prio;
1da177e4 6013
dd41f596 6014 if (on_rq) {
8159f87e 6015 enqueue_task(rq, p, 0);
1da177e4 6016 /*
d5f9f942
AM
6017 * If the task increased its priority or is running and
6018 * lowered its priority, then reschedule its CPU:
1da177e4 6019 */
d5f9f942 6020 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6021 resched_task(rq->curr);
6022 }
6023out_unlock:
6024 task_rq_unlock(rq, &flags);
6025}
1da177e4
LT
6026EXPORT_SYMBOL(set_user_nice);
6027
e43379f1
MM
6028/*
6029 * can_nice - check if a task can reduce its nice value
6030 * @p: task
6031 * @nice: nice value
6032 */
36c8b586 6033int can_nice(const struct task_struct *p, const int nice)
e43379f1 6034{
024f4747
MM
6035 /* convert nice value [19,-20] to rlimit style value [1,40] */
6036 int nice_rlim = 20 - nice;
48f24c4d 6037
e43379f1
MM
6038 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6039 capable(CAP_SYS_NICE));
6040}
6041
1da177e4
LT
6042#ifdef __ARCH_WANT_SYS_NICE
6043
6044/*
6045 * sys_nice - change the priority of the current process.
6046 * @increment: priority increment
6047 *
6048 * sys_setpriority is a more generic, but much slower function that
6049 * does similar things.
6050 */
5add95d4 6051SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6052{
48f24c4d 6053 long nice, retval;
1da177e4
LT
6054
6055 /*
6056 * Setpriority might change our priority at the same moment.
6057 * We don't have to worry. Conceptually one call occurs first
6058 * and we have a single winner.
6059 */
e43379f1
MM
6060 if (increment < -40)
6061 increment = -40;
1da177e4
LT
6062 if (increment > 40)
6063 increment = 40;
6064
2b8f836f 6065 nice = TASK_NICE(current) + increment;
1da177e4
LT
6066 if (nice < -20)
6067 nice = -20;
6068 if (nice > 19)
6069 nice = 19;
6070
e43379f1
MM
6071 if (increment < 0 && !can_nice(current, nice))
6072 return -EPERM;
6073
1da177e4
LT
6074 retval = security_task_setnice(current, nice);
6075 if (retval)
6076 return retval;
6077
6078 set_user_nice(current, nice);
6079 return 0;
6080}
6081
6082#endif
6083
6084/**
6085 * task_prio - return the priority value of a given task.
6086 * @p: the task in question.
6087 *
6088 * This is the priority value as seen by users in /proc.
6089 * RT tasks are offset by -200. Normal tasks are centered
6090 * around 0, value goes from -16 to +15.
6091 */
36c8b586 6092int task_prio(const struct task_struct *p)
1da177e4
LT
6093{
6094 return p->prio - MAX_RT_PRIO;
6095}
6096
6097/**
6098 * task_nice - return the nice value of a given task.
6099 * @p: the task in question.
6100 */
36c8b586 6101int task_nice(const struct task_struct *p)
1da177e4
LT
6102{
6103 return TASK_NICE(p);
6104}
150d8bed 6105EXPORT_SYMBOL(task_nice);
1da177e4
LT
6106
6107/**
6108 * idle_cpu - is a given cpu idle currently?
6109 * @cpu: the processor in question.
6110 */
6111int idle_cpu(int cpu)
6112{
6113 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6114}
6115
1da177e4
LT
6116/**
6117 * idle_task - return the idle task for a given cpu.
6118 * @cpu: the processor in question.
6119 */
36c8b586 6120struct task_struct *idle_task(int cpu)
1da177e4
LT
6121{
6122 return cpu_rq(cpu)->idle;
6123}
6124
6125/**
6126 * find_process_by_pid - find a process with a matching PID value.
6127 * @pid: the pid in question.
6128 */
a9957449 6129static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6130{
228ebcbe 6131 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6132}
6133
6134/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6135static void
6136__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6137{
dd41f596 6138 BUG_ON(p->se.on_rq);
48f24c4d 6139
1da177e4 6140 p->policy = policy;
dd41f596
IM
6141 switch (p->policy) {
6142 case SCHED_NORMAL:
6143 case SCHED_BATCH:
6144 case SCHED_IDLE:
6145 p->sched_class = &fair_sched_class;
6146 break;
6147 case SCHED_FIFO:
6148 case SCHED_RR:
6149 p->sched_class = &rt_sched_class;
6150 break;
6151 }
6152
1da177e4 6153 p->rt_priority = prio;
b29739f9
IM
6154 p->normal_prio = normal_prio(p);
6155 /* we are holding p->pi_lock already */
6156 p->prio = rt_mutex_getprio(p);
2dd73a4f 6157 set_load_weight(p);
1da177e4
LT
6158}
6159
c69e8d9c
DH
6160/*
6161 * check the target process has a UID that matches the current process's
6162 */
6163static bool check_same_owner(struct task_struct *p)
6164{
6165 const struct cred *cred = current_cred(), *pcred;
6166 bool match;
6167
6168 rcu_read_lock();
6169 pcred = __task_cred(p);
6170 match = (cred->euid == pcred->euid ||
6171 cred->euid == pcred->uid);
6172 rcu_read_unlock();
6173 return match;
6174}
6175
961ccddd
RR
6176static int __sched_setscheduler(struct task_struct *p, int policy,
6177 struct sched_param *param, bool user)
1da177e4 6178{
83b699ed 6179 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6180 unsigned long flags;
cb469845 6181 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6182 struct rq *rq;
ca94c442 6183 int reset_on_fork;
1da177e4 6184
66e5393a
SR
6185 /* may grab non-irq protected spin_locks */
6186 BUG_ON(in_interrupt());
1da177e4
LT
6187recheck:
6188 /* double check policy once rq lock held */
ca94c442
LP
6189 if (policy < 0) {
6190 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6191 policy = oldpolicy = p->policy;
ca94c442
LP
6192 } else {
6193 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6194 policy &= ~SCHED_RESET_ON_FORK;
6195
6196 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6197 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6198 policy != SCHED_IDLE)
6199 return -EINVAL;
6200 }
6201
1da177e4
LT
6202 /*
6203 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6204 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6205 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6206 */
6207 if (param->sched_priority < 0 ||
95cdf3b7 6208 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6209 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6210 return -EINVAL;
e05606d3 6211 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6212 return -EINVAL;
6213
37e4ab3f
OC
6214 /*
6215 * Allow unprivileged RT tasks to decrease priority:
6216 */
961ccddd 6217 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6218 if (rt_policy(policy)) {
8dc3e909 6219 unsigned long rlim_rtprio;
8dc3e909
ON
6220
6221 if (!lock_task_sighand(p, &flags))
6222 return -ESRCH;
6223 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6224 unlock_task_sighand(p, &flags);
6225
6226 /* can't set/change the rt policy */
6227 if (policy != p->policy && !rlim_rtprio)
6228 return -EPERM;
6229
6230 /* can't increase priority */
6231 if (param->sched_priority > p->rt_priority &&
6232 param->sched_priority > rlim_rtprio)
6233 return -EPERM;
6234 }
dd41f596
IM
6235 /*
6236 * Like positive nice levels, dont allow tasks to
6237 * move out of SCHED_IDLE either:
6238 */
6239 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6240 return -EPERM;
5fe1d75f 6241
37e4ab3f 6242 /* can't change other user's priorities */
c69e8d9c 6243 if (!check_same_owner(p))
37e4ab3f 6244 return -EPERM;
ca94c442
LP
6245
6246 /* Normal users shall not reset the sched_reset_on_fork flag */
6247 if (p->sched_reset_on_fork && !reset_on_fork)
6248 return -EPERM;
37e4ab3f 6249 }
1da177e4 6250
725aad24 6251 if (user) {
b68aa230 6252#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6253 /*
6254 * Do not allow realtime tasks into groups that have no runtime
6255 * assigned.
6256 */
9a7e0b18
PZ
6257 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6258 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6259 return -EPERM;
b68aa230
PZ
6260#endif
6261
725aad24
JF
6262 retval = security_task_setscheduler(p, policy, param);
6263 if (retval)
6264 return retval;
6265 }
6266
b29739f9
IM
6267 /*
6268 * make sure no PI-waiters arrive (or leave) while we are
6269 * changing the priority of the task:
6270 */
6271 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6272 /*
6273 * To be able to change p->policy safely, the apropriate
6274 * runqueue lock must be held.
6275 */
b29739f9 6276 rq = __task_rq_lock(p);
1da177e4
LT
6277 /* recheck policy now with rq lock held */
6278 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6279 policy = oldpolicy = -1;
b29739f9
IM
6280 __task_rq_unlock(rq);
6281 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6282 goto recheck;
6283 }
2daa3577 6284 update_rq_clock(rq);
dd41f596 6285 on_rq = p->se.on_rq;
051a1d1a 6286 running = task_current(rq, p);
0e1f3483 6287 if (on_rq)
2e1cb74a 6288 deactivate_task(rq, p, 0);
0e1f3483
HS
6289 if (running)
6290 p->sched_class->put_prev_task(rq, p);
f6b53205 6291
ca94c442
LP
6292 p->sched_reset_on_fork = reset_on_fork;
6293
1da177e4 6294 oldprio = p->prio;
dd41f596 6295 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6296
0e1f3483
HS
6297 if (running)
6298 p->sched_class->set_curr_task(rq);
dd41f596
IM
6299 if (on_rq) {
6300 activate_task(rq, p, 0);
cb469845
SR
6301
6302 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6303 }
b29739f9
IM
6304 __task_rq_unlock(rq);
6305 spin_unlock_irqrestore(&p->pi_lock, flags);
6306
95e02ca9
TG
6307 rt_mutex_adjust_pi(p);
6308
1da177e4
LT
6309 return 0;
6310}
961ccddd
RR
6311
6312/**
6313 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6314 * @p: the task in question.
6315 * @policy: new policy.
6316 * @param: structure containing the new RT priority.
6317 *
6318 * NOTE that the task may be already dead.
6319 */
6320int sched_setscheduler(struct task_struct *p, int policy,
6321 struct sched_param *param)
6322{
6323 return __sched_setscheduler(p, policy, param, true);
6324}
1da177e4
LT
6325EXPORT_SYMBOL_GPL(sched_setscheduler);
6326
961ccddd
RR
6327/**
6328 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6329 * @p: the task in question.
6330 * @policy: new policy.
6331 * @param: structure containing the new RT priority.
6332 *
6333 * Just like sched_setscheduler, only don't bother checking if the
6334 * current context has permission. For example, this is needed in
6335 * stop_machine(): we create temporary high priority worker threads,
6336 * but our caller might not have that capability.
6337 */
6338int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6339 struct sched_param *param)
6340{
6341 return __sched_setscheduler(p, policy, param, false);
6342}
6343
95cdf3b7
IM
6344static int
6345do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6346{
1da177e4
LT
6347 struct sched_param lparam;
6348 struct task_struct *p;
36c8b586 6349 int retval;
1da177e4
LT
6350
6351 if (!param || pid < 0)
6352 return -EINVAL;
6353 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6354 return -EFAULT;
5fe1d75f
ON
6355
6356 rcu_read_lock();
6357 retval = -ESRCH;
1da177e4 6358 p = find_process_by_pid(pid);
5fe1d75f
ON
6359 if (p != NULL)
6360 retval = sched_setscheduler(p, policy, &lparam);
6361 rcu_read_unlock();
36c8b586 6362
1da177e4
LT
6363 return retval;
6364}
6365
6366/**
6367 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6368 * @pid: the pid in question.
6369 * @policy: new policy.
6370 * @param: structure containing the new RT priority.
6371 */
5add95d4
HC
6372SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6373 struct sched_param __user *, param)
1da177e4 6374{
c21761f1
JB
6375 /* negative values for policy are not valid */
6376 if (policy < 0)
6377 return -EINVAL;
6378
1da177e4
LT
6379 return do_sched_setscheduler(pid, policy, param);
6380}
6381
6382/**
6383 * sys_sched_setparam - set/change the RT priority of a thread
6384 * @pid: the pid in question.
6385 * @param: structure containing the new RT priority.
6386 */
5add95d4 6387SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6388{
6389 return do_sched_setscheduler(pid, -1, param);
6390}
6391
6392/**
6393 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6394 * @pid: the pid in question.
6395 */
5add95d4 6396SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6397{
36c8b586 6398 struct task_struct *p;
3a5c359a 6399 int retval;
1da177e4
LT
6400
6401 if (pid < 0)
3a5c359a 6402 return -EINVAL;
1da177e4
LT
6403
6404 retval = -ESRCH;
6405 read_lock(&tasklist_lock);
6406 p = find_process_by_pid(pid);
6407 if (p) {
6408 retval = security_task_getscheduler(p);
6409 if (!retval)
ca94c442
LP
6410 retval = p->policy
6411 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6412 }
6413 read_unlock(&tasklist_lock);
1da177e4
LT
6414 return retval;
6415}
6416
6417/**
ca94c442 6418 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6419 * @pid: the pid in question.
6420 * @param: structure containing the RT priority.
6421 */
5add95d4 6422SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6423{
6424 struct sched_param lp;
36c8b586 6425 struct task_struct *p;
3a5c359a 6426 int retval;
1da177e4
LT
6427
6428 if (!param || pid < 0)
3a5c359a 6429 return -EINVAL;
1da177e4
LT
6430
6431 read_lock(&tasklist_lock);
6432 p = find_process_by_pid(pid);
6433 retval = -ESRCH;
6434 if (!p)
6435 goto out_unlock;
6436
6437 retval = security_task_getscheduler(p);
6438 if (retval)
6439 goto out_unlock;
6440
6441 lp.sched_priority = p->rt_priority;
6442 read_unlock(&tasklist_lock);
6443
6444 /*
6445 * This one might sleep, we cannot do it with a spinlock held ...
6446 */
6447 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6448
1da177e4
LT
6449 return retval;
6450
6451out_unlock:
6452 read_unlock(&tasklist_lock);
6453 return retval;
6454}
6455
96f874e2 6456long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6457{
5a16f3d3 6458 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6459 struct task_struct *p;
6460 int retval;
1da177e4 6461
95402b38 6462 get_online_cpus();
1da177e4
LT
6463 read_lock(&tasklist_lock);
6464
6465 p = find_process_by_pid(pid);
6466 if (!p) {
6467 read_unlock(&tasklist_lock);
95402b38 6468 put_online_cpus();
1da177e4
LT
6469 return -ESRCH;
6470 }
6471
6472 /*
6473 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6474 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6475 * usage count and then drop tasklist_lock.
6476 */
6477 get_task_struct(p);
6478 read_unlock(&tasklist_lock);
6479
5a16f3d3
RR
6480 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6481 retval = -ENOMEM;
6482 goto out_put_task;
6483 }
6484 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6485 retval = -ENOMEM;
6486 goto out_free_cpus_allowed;
6487 }
1da177e4 6488 retval = -EPERM;
c69e8d9c 6489 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6490 goto out_unlock;
6491
e7834f8f
DQ
6492 retval = security_task_setscheduler(p, 0, NULL);
6493 if (retval)
6494 goto out_unlock;
6495
5a16f3d3
RR
6496 cpuset_cpus_allowed(p, cpus_allowed);
6497 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6498 again:
5a16f3d3 6499 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6500
8707d8b8 6501 if (!retval) {
5a16f3d3
RR
6502 cpuset_cpus_allowed(p, cpus_allowed);
6503 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6504 /*
6505 * We must have raced with a concurrent cpuset
6506 * update. Just reset the cpus_allowed to the
6507 * cpuset's cpus_allowed
6508 */
5a16f3d3 6509 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6510 goto again;
6511 }
6512 }
1da177e4 6513out_unlock:
5a16f3d3
RR
6514 free_cpumask_var(new_mask);
6515out_free_cpus_allowed:
6516 free_cpumask_var(cpus_allowed);
6517out_put_task:
1da177e4 6518 put_task_struct(p);
95402b38 6519 put_online_cpus();
1da177e4
LT
6520 return retval;
6521}
6522
6523static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6524 struct cpumask *new_mask)
1da177e4 6525{
96f874e2
RR
6526 if (len < cpumask_size())
6527 cpumask_clear(new_mask);
6528 else if (len > cpumask_size())
6529 len = cpumask_size();
6530
1da177e4
LT
6531 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6532}
6533
6534/**
6535 * sys_sched_setaffinity - set the cpu affinity of a process
6536 * @pid: pid of the process
6537 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6538 * @user_mask_ptr: user-space pointer to the new cpu mask
6539 */
5add95d4
HC
6540SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6541 unsigned long __user *, user_mask_ptr)
1da177e4 6542{
5a16f3d3 6543 cpumask_var_t new_mask;
1da177e4
LT
6544 int retval;
6545
5a16f3d3
RR
6546 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6547 return -ENOMEM;
1da177e4 6548
5a16f3d3
RR
6549 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6550 if (retval == 0)
6551 retval = sched_setaffinity(pid, new_mask);
6552 free_cpumask_var(new_mask);
6553 return retval;
1da177e4
LT
6554}
6555
96f874e2 6556long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6557{
36c8b586 6558 struct task_struct *p;
1da177e4 6559 int retval;
1da177e4 6560
95402b38 6561 get_online_cpus();
1da177e4
LT
6562 read_lock(&tasklist_lock);
6563
6564 retval = -ESRCH;
6565 p = find_process_by_pid(pid);
6566 if (!p)
6567 goto out_unlock;
6568
e7834f8f
DQ
6569 retval = security_task_getscheduler(p);
6570 if (retval)
6571 goto out_unlock;
6572
96f874e2 6573 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6574
6575out_unlock:
6576 read_unlock(&tasklist_lock);
95402b38 6577 put_online_cpus();
1da177e4 6578
9531b62f 6579 return retval;
1da177e4
LT
6580}
6581
6582/**
6583 * sys_sched_getaffinity - get the cpu affinity of a process
6584 * @pid: pid of the process
6585 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6586 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6587 */
5add95d4
HC
6588SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6589 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6590{
6591 int ret;
f17c8607 6592 cpumask_var_t mask;
1da177e4 6593
f17c8607 6594 if (len < cpumask_size())
1da177e4
LT
6595 return -EINVAL;
6596
f17c8607
RR
6597 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6598 return -ENOMEM;
1da177e4 6599
f17c8607
RR
6600 ret = sched_getaffinity(pid, mask);
6601 if (ret == 0) {
6602 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6603 ret = -EFAULT;
6604 else
6605 ret = cpumask_size();
6606 }
6607 free_cpumask_var(mask);
1da177e4 6608
f17c8607 6609 return ret;
1da177e4
LT
6610}
6611
6612/**
6613 * sys_sched_yield - yield the current processor to other threads.
6614 *
dd41f596
IM
6615 * This function yields the current CPU to other tasks. If there are no
6616 * other threads running on this CPU then this function will return.
1da177e4 6617 */
5add95d4 6618SYSCALL_DEFINE0(sched_yield)
1da177e4 6619{
70b97a7f 6620 struct rq *rq = this_rq_lock();
1da177e4 6621
2d72376b 6622 schedstat_inc(rq, yld_count);
4530d7ab 6623 current->sched_class->yield_task(rq);
1da177e4
LT
6624
6625 /*
6626 * Since we are going to call schedule() anyway, there's
6627 * no need to preempt or enable interrupts:
6628 */
6629 __release(rq->lock);
8a25d5de 6630 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6631 _raw_spin_unlock(&rq->lock);
6632 preempt_enable_no_resched();
6633
6634 schedule();
6635
6636 return 0;
6637}
6638
d86ee480
PZ
6639static inline int should_resched(void)
6640{
6641 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6642}
6643
e7b38404 6644static void __cond_resched(void)
1da177e4 6645{
e7aaaa69
FW
6646 add_preempt_count(PREEMPT_ACTIVE);
6647 schedule();
6648 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6649}
6650
02b67cc3 6651int __sched _cond_resched(void)
1da177e4 6652{
d86ee480 6653 if (should_resched()) {
1da177e4
LT
6654 __cond_resched();
6655 return 1;
6656 }
6657 return 0;
6658}
02b67cc3 6659EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6660
6661/*
613afbf8 6662 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6663 * call schedule, and on return reacquire the lock.
6664 *
41a2d6cf 6665 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6666 * operations here to prevent schedule() from being called twice (once via
6667 * spin_unlock(), once by hand).
6668 */
613afbf8 6669int __cond_resched_lock(spinlock_t *lock)
1da177e4 6670{
d86ee480 6671 int resched = should_resched();
6df3cecb
JK
6672 int ret = 0;
6673
f607c668
PZ
6674 lockdep_assert_held(lock);
6675
95c354fe 6676 if (spin_needbreak(lock) || resched) {
1da177e4 6677 spin_unlock(lock);
d86ee480 6678 if (resched)
95c354fe
NP
6679 __cond_resched();
6680 else
6681 cpu_relax();
6df3cecb 6682 ret = 1;
1da177e4 6683 spin_lock(lock);
1da177e4 6684 }
6df3cecb 6685 return ret;
1da177e4 6686}
613afbf8 6687EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6688
613afbf8 6689int __sched __cond_resched_softirq(void)
1da177e4
LT
6690{
6691 BUG_ON(!in_softirq());
6692
d86ee480 6693 if (should_resched()) {
98d82567 6694 local_bh_enable();
1da177e4
LT
6695 __cond_resched();
6696 local_bh_disable();
6697 return 1;
6698 }
6699 return 0;
6700}
613afbf8 6701EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6702
1da177e4
LT
6703/**
6704 * yield - yield the current processor to other threads.
6705 *
72fd4a35 6706 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6707 * thread runnable and calls sys_sched_yield().
6708 */
6709void __sched yield(void)
6710{
6711 set_current_state(TASK_RUNNING);
6712 sys_sched_yield();
6713}
1da177e4
LT
6714EXPORT_SYMBOL(yield);
6715
6716/*
41a2d6cf 6717 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6718 * that process accounting knows that this is a task in IO wait state.
6719 *
6720 * But don't do that if it is a deliberate, throttling IO wait (this task
6721 * has set its backing_dev_info: the queue against which it should throttle)
6722 */
6723void __sched io_schedule(void)
6724{
54d35f29 6725 struct rq *rq = raw_rq();
1da177e4 6726
0ff92245 6727 delayacct_blkio_start();
1da177e4 6728 atomic_inc(&rq->nr_iowait);
8f0dfc34 6729 current->in_iowait = 1;
1da177e4 6730 schedule();
8f0dfc34 6731 current->in_iowait = 0;
1da177e4 6732 atomic_dec(&rq->nr_iowait);
0ff92245 6733 delayacct_blkio_end();
1da177e4 6734}
1da177e4
LT
6735EXPORT_SYMBOL(io_schedule);
6736
6737long __sched io_schedule_timeout(long timeout)
6738{
54d35f29 6739 struct rq *rq = raw_rq();
1da177e4
LT
6740 long ret;
6741
0ff92245 6742 delayacct_blkio_start();
1da177e4 6743 atomic_inc(&rq->nr_iowait);
8f0dfc34 6744 current->in_iowait = 1;
1da177e4 6745 ret = schedule_timeout(timeout);
8f0dfc34 6746 current->in_iowait = 0;
1da177e4 6747 atomic_dec(&rq->nr_iowait);
0ff92245 6748 delayacct_blkio_end();
1da177e4
LT
6749 return ret;
6750}
6751
6752/**
6753 * sys_sched_get_priority_max - return maximum RT priority.
6754 * @policy: scheduling class.
6755 *
6756 * this syscall returns the maximum rt_priority that can be used
6757 * by a given scheduling class.
6758 */
5add95d4 6759SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6760{
6761 int ret = -EINVAL;
6762
6763 switch (policy) {
6764 case SCHED_FIFO:
6765 case SCHED_RR:
6766 ret = MAX_USER_RT_PRIO-1;
6767 break;
6768 case SCHED_NORMAL:
b0a9499c 6769 case SCHED_BATCH:
dd41f596 6770 case SCHED_IDLE:
1da177e4
LT
6771 ret = 0;
6772 break;
6773 }
6774 return ret;
6775}
6776
6777/**
6778 * sys_sched_get_priority_min - return minimum RT priority.
6779 * @policy: scheduling class.
6780 *
6781 * this syscall returns the minimum rt_priority that can be used
6782 * by a given scheduling class.
6783 */
5add95d4 6784SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6785{
6786 int ret = -EINVAL;
6787
6788 switch (policy) {
6789 case SCHED_FIFO:
6790 case SCHED_RR:
6791 ret = 1;
6792 break;
6793 case SCHED_NORMAL:
b0a9499c 6794 case SCHED_BATCH:
dd41f596 6795 case SCHED_IDLE:
1da177e4
LT
6796 ret = 0;
6797 }
6798 return ret;
6799}
6800
6801/**
6802 * sys_sched_rr_get_interval - return the default timeslice of a process.
6803 * @pid: pid of the process.
6804 * @interval: userspace pointer to the timeslice value.
6805 *
6806 * this syscall writes the default timeslice value of a given process
6807 * into the user-space timespec buffer. A value of '0' means infinity.
6808 */
17da2bd9 6809SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6810 struct timespec __user *, interval)
1da177e4 6811{
36c8b586 6812 struct task_struct *p;
a4ec24b4 6813 unsigned int time_slice;
3a5c359a 6814 int retval;
1da177e4 6815 struct timespec t;
1da177e4
LT
6816
6817 if (pid < 0)
3a5c359a 6818 return -EINVAL;
1da177e4
LT
6819
6820 retval = -ESRCH;
6821 read_lock(&tasklist_lock);
6822 p = find_process_by_pid(pid);
6823 if (!p)
6824 goto out_unlock;
6825
6826 retval = security_task_getscheduler(p);
6827 if (retval)
6828 goto out_unlock;
6829
77034937
IM
6830 /*
6831 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6832 * tasks that are on an otherwise idle runqueue:
6833 */
6834 time_slice = 0;
6835 if (p->policy == SCHED_RR) {
a4ec24b4 6836 time_slice = DEF_TIMESLICE;
1868f958 6837 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6838 struct sched_entity *se = &p->se;
6839 unsigned long flags;
6840 struct rq *rq;
6841
6842 rq = task_rq_lock(p, &flags);
77034937
IM
6843 if (rq->cfs.load.weight)
6844 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6845 task_rq_unlock(rq, &flags);
6846 }
1da177e4 6847 read_unlock(&tasklist_lock);
a4ec24b4 6848 jiffies_to_timespec(time_slice, &t);
1da177e4 6849 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6850 return retval;
3a5c359a 6851
1da177e4
LT
6852out_unlock:
6853 read_unlock(&tasklist_lock);
6854 return retval;
6855}
6856
7c731e0a 6857static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6858
82a1fcb9 6859void sched_show_task(struct task_struct *p)
1da177e4 6860{
1da177e4 6861 unsigned long free = 0;
36c8b586 6862 unsigned state;
1da177e4 6863
1da177e4 6864 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6865 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6866 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6867#if BITS_PER_LONG == 32
1da177e4 6868 if (state == TASK_RUNNING)
cc4ea795 6869 printk(KERN_CONT " running ");
1da177e4 6870 else
cc4ea795 6871 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6872#else
6873 if (state == TASK_RUNNING)
cc4ea795 6874 printk(KERN_CONT " running task ");
1da177e4 6875 else
cc4ea795 6876 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6877#endif
6878#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6879 free = stack_not_used(p);
1da177e4 6880#endif
aa47b7e0
DR
6881 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6882 task_pid_nr(p), task_pid_nr(p->real_parent),
6883 (unsigned long)task_thread_info(p)->flags);
1da177e4 6884
5fb5e6de 6885 show_stack(p, NULL);
1da177e4
LT
6886}
6887
e59e2ae2 6888void show_state_filter(unsigned long state_filter)
1da177e4 6889{
36c8b586 6890 struct task_struct *g, *p;
1da177e4 6891
4bd77321
IM
6892#if BITS_PER_LONG == 32
6893 printk(KERN_INFO
6894 " task PC stack pid father\n");
1da177e4 6895#else
4bd77321
IM
6896 printk(KERN_INFO
6897 " task PC stack pid father\n");
1da177e4
LT
6898#endif
6899 read_lock(&tasklist_lock);
6900 do_each_thread(g, p) {
6901 /*
6902 * reset the NMI-timeout, listing all files on a slow
6903 * console might take alot of time:
6904 */
6905 touch_nmi_watchdog();
39bc89fd 6906 if (!state_filter || (p->state & state_filter))
82a1fcb9 6907 sched_show_task(p);
1da177e4
LT
6908 } while_each_thread(g, p);
6909
04c9167f
JF
6910 touch_all_softlockup_watchdogs();
6911
dd41f596
IM
6912#ifdef CONFIG_SCHED_DEBUG
6913 sysrq_sched_debug_show();
6914#endif
1da177e4 6915 read_unlock(&tasklist_lock);
e59e2ae2
IM
6916 /*
6917 * Only show locks if all tasks are dumped:
6918 */
6919 if (state_filter == -1)
6920 debug_show_all_locks();
1da177e4
LT
6921}
6922
1df21055
IM
6923void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6924{
dd41f596 6925 idle->sched_class = &idle_sched_class;
1df21055
IM
6926}
6927
f340c0d1
IM
6928/**
6929 * init_idle - set up an idle thread for a given CPU
6930 * @idle: task in question
6931 * @cpu: cpu the idle task belongs to
6932 *
6933 * NOTE: this function does not set the idle thread's NEED_RESCHED
6934 * flag, to make booting more robust.
6935 */
5c1e1767 6936void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6937{
70b97a7f 6938 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6939 unsigned long flags;
6940
5cbd54ef
IM
6941 spin_lock_irqsave(&rq->lock, flags);
6942
dd41f596
IM
6943 __sched_fork(idle);
6944 idle->se.exec_start = sched_clock();
6945
b29739f9 6946 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6947 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6948 __set_task_cpu(idle, cpu);
1da177e4 6949
1da177e4 6950 rq->curr = rq->idle = idle;
4866cde0
NP
6951#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6952 idle->oncpu = 1;
6953#endif
1da177e4
LT
6954 spin_unlock_irqrestore(&rq->lock, flags);
6955
6956 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6957#if defined(CONFIG_PREEMPT)
6958 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6959#else
a1261f54 6960 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6961#endif
dd41f596
IM
6962 /*
6963 * The idle tasks have their own, simple scheduling class:
6964 */
6965 idle->sched_class = &idle_sched_class;
fb52607a 6966 ftrace_graph_init_task(idle);
1da177e4
LT
6967}
6968
6969/*
6970 * In a system that switches off the HZ timer nohz_cpu_mask
6971 * indicates which cpus entered this state. This is used
6972 * in the rcu update to wait only for active cpus. For system
6973 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6974 * always be CPU_BITS_NONE.
1da177e4 6975 */
6a7b3dc3 6976cpumask_var_t nohz_cpu_mask;
1da177e4 6977
19978ca6
IM
6978/*
6979 * Increase the granularity value when there are more CPUs,
6980 * because with more CPUs the 'effective latency' as visible
6981 * to users decreases. But the relationship is not linear,
6982 * so pick a second-best guess by going with the log2 of the
6983 * number of CPUs.
6984 *
6985 * This idea comes from the SD scheduler of Con Kolivas:
6986 */
6987static inline void sched_init_granularity(void)
6988{
6989 unsigned int factor = 1 + ilog2(num_online_cpus());
6990 const unsigned long limit = 200000000;
6991
6992 sysctl_sched_min_granularity *= factor;
6993 if (sysctl_sched_min_granularity > limit)
6994 sysctl_sched_min_granularity = limit;
6995
6996 sysctl_sched_latency *= factor;
6997 if (sysctl_sched_latency > limit)
6998 sysctl_sched_latency = limit;
6999
7000 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7001
7002 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7003}
7004
1da177e4
LT
7005#ifdef CONFIG_SMP
7006/*
7007 * This is how migration works:
7008 *
70b97a7f 7009 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7010 * runqueue and wake up that CPU's migration thread.
7011 * 2) we down() the locked semaphore => thread blocks.
7012 * 3) migration thread wakes up (implicitly it forces the migrated
7013 * thread off the CPU)
7014 * 4) it gets the migration request and checks whether the migrated
7015 * task is still in the wrong runqueue.
7016 * 5) if it's in the wrong runqueue then the migration thread removes
7017 * it and puts it into the right queue.
7018 * 6) migration thread up()s the semaphore.
7019 * 7) we wake up and the migration is done.
7020 */
7021
7022/*
7023 * Change a given task's CPU affinity. Migrate the thread to a
7024 * proper CPU and schedule it away if the CPU it's executing on
7025 * is removed from the allowed bitmask.
7026 *
7027 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7028 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7029 * call is not atomic; no spinlocks may be held.
7030 */
96f874e2 7031int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7032{
70b97a7f 7033 struct migration_req req;
1da177e4 7034 unsigned long flags;
70b97a7f 7035 struct rq *rq;
48f24c4d 7036 int ret = 0;
1da177e4
LT
7037
7038 rq = task_rq_lock(p, &flags);
96f874e2 7039 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7040 ret = -EINVAL;
7041 goto out;
7042 }
7043
9985b0ba 7044 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7045 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7046 ret = -EINVAL;
7047 goto out;
7048 }
7049
73fe6aae 7050 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7051 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7052 else {
96f874e2
RR
7053 cpumask_copy(&p->cpus_allowed, new_mask);
7054 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7055 }
7056
1da177e4 7057 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7058 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7059 goto out;
7060
1e5ce4f4 7061 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7062 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7063 struct task_struct *mt = rq->migration_thread;
7064
7065 get_task_struct(mt);
1da177e4
LT
7066 task_rq_unlock(rq, &flags);
7067 wake_up_process(rq->migration_thread);
693525e3 7068 put_task_struct(mt);
1da177e4
LT
7069 wait_for_completion(&req.done);
7070 tlb_migrate_finish(p->mm);
7071 return 0;
7072 }
7073out:
7074 task_rq_unlock(rq, &flags);
48f24c4d 7075
1da177e4
LT
7076 return ret;
7077}
cd8ba7cd 7078EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7079
7080/*
41a2d6cf 7081 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7082 * this because either it can't run here any more (set_cpus_allowed()
7083 * away from this CPU, or CPU going down), or because we're
7084 * attempting to rebalance this task on exec (sched_exec).
7085 *
7086 * So we race with normal scheduler movements, but that's OK, as long
7087 * as the task is no longer on this CPU.
efc30814
KK
7088 *
7089 * Returns non-zero if task was successfully migrated.
1da177e4 7090 */
efc30814 7091static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7092{
70b97a7f 7093 struct rq *rq_dest, *rq_src;
dd41f596 7094 int ret = 0, on_rq;
1da177e4 7095
e761b772 7096 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7097 return ret;
1da177e4
LT
7098
7099 rq_src = cpu_rq(src_cpu);
7100 rq_dest = cpu_rq(dest_cpu);
7101
7102 double_rq_lock(rq_src, rq_dest);
7103 /* Already moved. */
7104 if (task_cpu(p) != src_cpu)
b1e38734 7105 goto done;
1da177e4 7106 /* Affinity changed (again). */
96f874e2 7107 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7108 goto fail;
1da177e4 7109
dd41f596 7110 on_rq = p->se.on_rq;
6e82a3be 7111 if (on_rq)
2e1cb74a 7112 deactivate_task(rq_src, p, 0);
6e82a3be 7113
1da177e4 7114 set_task_cpu(p, dest_cpu);
dd41f596
IM
7115 if (on_rq) {
7116 activate_task(rq_dest, p, 0);
15afe09b 7117 check_preempt_curr(rq_dest, p, 0);
1da177e4 7118 }
b1e38734 7119done:
efc30814 7120 ret = 1;
b1e38734 7121fail:
1da177e4 7122 double_rq_unlock(rq_src, rq_dest);
efc30814 7123 return ret;
1da177e4
LT
7124}
7125
03b042bf
PM
7126#define RCU_MIGRATION_IDLE 0
7127#define RCU_MIGRATION_NEED_QS 1
7128#define RCU_MIGRATION_GOT_QS 2
7129#define RCU_MIGRATION_MUST_SYNC 3
7130
1da177e4
LT
7131/*
7132 * migration_thread - this is a highprio system thread that performs
7133 * thread migration by bumping thread off CPU then 'pushing' onto
7134 * another runqueue.
7135 */
95cdf3b7 7136static int migration_thread(void *data)
1da177e4 7137{
03b042bf 7138 int badcpu;
1da177e4 7139 int cpu = (long)data;
70b97a7f 7140 struct rq *rq;
1da177e4
LT
7141
7142 rq = cpu_rq(cpu);
7143 BUG_ON(rq->migration_thread != current);
7144
7145 set_current_state(TASK_INTERRUPTIBLE);
7146 while (!kthread_should_stop()) {
70b97a7f 7147 struct migration_req *req;
1da177e4 7148 struct list_head *head;
1da177e4 7149
1da177e4
LT
7150 spin_lock_irq(&rq->lock);
7151
7152 if (cpu_is_offline(cpu)) {
7153 spin_unlock_irq(&rq->lock);
371cbb38 7154 break;
1da177e4
LT
7155 }
7156
7157 if (rq->active_balance) {
7158 active_load_balance(rq, cpu);
7159 rq->active_balance = 0;
7160 }
7161
7162 head = &rq->migration_queue;
7163
7164 if (list_empty(head)) {
7165 spin_unlock_irq(&rq->lock);
7166 schedule();
7167 set_current_state(TASK_INTERRUPTIBLE);
7168 continue;
7169 }
70b97a7f 7170 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7171 list_del_init(head->next);
7172
03b042bf
PM
7173 if (req->task != NULL) {
7174 spin_unlock(&rq->lock);
7175 __migrate_task(req->task, cpu, req->dest_cpu);
7176 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7177 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7178 spin_unlock(&rq->lock);
7179 } else {
7180 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7181 spin_unlock(&rq->lock);
7182 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7183 }
674311d5 7184 local_irq_enable();
1da177e4
LT
7185
7186 complete(&req->done);
7187 }
7188 __set_current_state(TASK_RUNNING);
1da177e4 7189
1da177e4
LT
7190 return 0;
7191}
7192
7193#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7194
7195static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7196{
7197 int ret;
7198
7199 local_irq_disable();
7200 ret = __migrate_task(p, src_cpu, dest_cpu);
7201 local_irq_enable();
7202 return ret;
7203}
7204
054b9108 7205/*
3a4fa0a2 7206 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7207 */
48f24c4d 7208static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7209{
70b97a7f 7210 int dest_cpu;
6ca09dfc 7211 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7212
7213again:
7214 /* Look for allowed, online CPU in same node. */
7215 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7216 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7217 goto move;
7218
7219 /* Any allowed, online CPU? */
7220 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7221 if (dest_cpu < nr_cpu_ids)
7222 goto move;
7223
7224 /* No more Mr. Nice Guy. */
7225 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7226 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7227 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7228
e76bd8d9
RR
7229 /*
7230 * Don't tell them about moving exiting tasks or
7231 * kernel threads (both mm NULL), since they never
7232 * leave kernel.
7233 */
7234 if (p->mm && printk_ratelimit()) {
7235 printk(KERN_INFO "process %d (%s) no "
7236 "longer affine to cpu%d\n",
7237 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7238 }
e76bd8d9
RR
7239 }
7240
7241move:
7242 /* It can have affinity changed while we were choosing. */
7243 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7244 goto again;
1da177e4
LT
7245}
7246
7247/*
7248 * While a dead CPU has no uninterruptible tasks queued at this point,
7249 * it might still have a nonzero ->nr_uninterruptible counter, because
7250 * for performance reasons the counter is not stricly tracking tasks to
7251 * their home CPUs. So we just add the counter to another CPU's counter,
7252 * to keep the global sum constant after CPU-down:
7253 */
70b97a7f 7254static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7255{
1e5ce4f4 7256 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7257 unsigned long flags;
7258
7259 local_irq_save(flags);
7260 double_rq_lock(rq_src, rq_dest);
7261 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7262 rq_src->nr_uninterruptible = 0;
7263 double_rq_unlock(rq_src, rq_dest);
7264 local_irq_restore(flags);
7265}
7266
7267/* Run through task list and migrate tasks from the dead cpu. */
7268static void migrate_live_tasks(int src_cpu)
7269{
48f24c4d 7270 struct task_struct *p, *t;
1da177e4 7271
f7b4cddc 7272 read_lock(&tasklist_lock);
1da177e4 7273
48f24c4d
IM
7274 do_each_thread(t, p) {
7275 if (p == current)
1da177e4
LT
7276 continue;
7277
48f24c4d
IM
7278 if (task_cpu(p) == src_cpu)
7279 move_task_off_dead_cpu(src_cpu, p);
7280 } while_each_thread(t, p);
1da177e4 7281
f7b4cddc 7282 read_unlock(&tasklist_lock);
1da177e4
LT
7283}
7284
dd41f596
IM
7285/*
7286 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7287 * It does so by boosting its priority to highest possible.
7288 * Used by CPU offline code.
1da177e4
LT
7289 */
7290void sched_idle_next(void)
7291{
48f24c4d 7292 int this_cpu = smp_processor_id();
70b97a7f 7293 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7294 struct task_struct *p = rq->idle;
7295 unsigned long flags;
7296
7297 /* cpu has to be offline */
48f24c4d 7298 BUG_ON(cpu_online(this_cpu));
1da177e4 7299
48f24c4d
IM
7300 /*
7301 * Strictly not necessary since rest of the CPUs are stopped by now
7302 * and interrupts disabled on the current cpu.
1da177e4
LT
7303 */
7304 spin_lock_irqsave(&rq->lock, flags);
7305
dd41f596 7306 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7307
94bc9a7b
DA
7308 update_rq_clock(rq);
7309 activate_task(rq, p, 0);
1da177e4
LT
7310
7311 spin_unlock_irqrestore(&rq->lock, flags);
7312}
7313
48f24c4d
IM
7314/*
7315 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7316 * offline.
7317 */
7318void idle_task_exit(void)
7319{
7320 struct mm_struct *mm = current->active_mm;
7321
7322 BUG_ON(cpu_online(smp_processor_id()));
7323
7324 if (mm != &init_mm)
7325 switch_mm(mm, &init_mm, current);
7326 mmdrop(mm);
7327}
7328
054b9108 7329/* called under rq->lock with disabled interrupts */
36c8b586 7330static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7331{
70b97a7f 7332 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7333
7334 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7335 BUG_ON(!p->exit_state);
1da177e4
LT
7336
7337 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7338 BUG_ON(p->state == TASK_DEAD);
1da177e4 7339
48f24c4d 7340 get_task_struct(p);
1da177e4
LT
7341
7342 /*
7343 * Drop lock around migration; if someone else moves it,
41a2d6cf 7344 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7345 * fine.
7346 */
f7b4cddc 7347 spin_unlock_irq(&rq->lock);
48f24c4d 7348 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7349 spin_lock_irq(&rq->lock);
1da177e4 7350
48f24c4d 7351 put_task_struct(p);
1da177e4
LT
7352}
7353
7354/* release_task() removes task from tasklist, so we won't find dead tasks. */
7355static void migrate_dead_tasks(unsigned int dead_cpu)
7356{
70b97a7f 7357 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7358 struct task_struct *next;
48f24c4d 7359
dd41f596
IM
7360 for ( ; ; ) {
7361 if (!rq->nr_running)
7362 break;
a8e504d2 7363 update_rq_clock(rq);
b67802ea 7364 next = pick_next_task(rq);
dd41f596
IM
7365 if (!next)
7366 break;
79c53799 7367 next->sched_class->put_prev_task(rq, next);
dd41f596 7368 migrate_dead(dead_cpu, next);
e692ab53 7369
1da177e4
LT
7370 }
7371}
dce48a84
TG
7372
7373/*
7374 * remove the tasks which were accounted by rq from calc_load_tasks.
7375 */
7376static void calc_global_load_remove(struct rq *rq)
7377{
7378 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7379 rq->calc_load_active = 0;
dce48a84 7380}
1da177e4
LT
7381#endif /* CONFIG_HOTPLUG_CPU */
7382
e692ab53
NP
7383#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7384
7385static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7386 {
7387 .procname = "sched_domain",
c57baf1e 7388 .mode = 0555,
e0361851 7389 },
38605cae 7390 {0, },
e692ab53
NP
7391};
7392
7393static struct ctl_table sd_ctl_root[] = {
e0361851 7394 {
c57baf1e 7395 .ctl_name = CTL_KERN,
e0361851 7396 .procname = "kernel",
c57baf1e 7397 .mode = 0555,
e0361851
AD
7398 .child = sd_ctl_dir,
7399 },
38605cae 7400 {0, },
e692ab53
NP
7401};
7402
7403static struct ctl_table *sd_alloc_ctl_entry(int n)
7404{
7405 struct ctl_table *entry =
5cf9f062 7406 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7407
e692ab53
NP
7408 return entry;
7409}
7410
6382bc90
MM
7411static void sd_free_ctl_entry(struct ctl_table **tablep)
7412{
cd790076 7413 struct ctl_table *entry;
6382bc90 7414
cd790076
MM
7415 /*
7416 * In the intermediate directories, both the child directory and
7417 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7418 * will always be set. In the lowest directory the names are
cd790076
MM
7419 * static strings and all have proc handlers.
7420 */
7421 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7422 if (entry->child)
7423 sd_free_ctl_entry(&entry->child);
cd790076
MM
7424 if (entry->proc_handler == NULL)
7425 kfree(entry->procname);
7426 }
6382bc90
MM
7427
7428 kfree(*tablep);
7429 *tablep = NULL;
7430}
7431
e692ab53 7432static void
e0361851 7433set_table_entry(struct ctl_table *entry,
e692ab53
NP
7434 const char *procname, void *data, int maxlen,
7435 mode_t mode, proc_handler *proc_handler)
7436{
e692ab53
NP
7437 entry->procname = procname;
7438 entry->data = data;
7439 entry->maxlen = maxlen;
7440 entry->mode = mode;
7441 entry->proc_handler = proc_handler;
7442}
7443
7444static struct ctl_table *
7445sd_alloc_ctl_domain_table(struct sched_domain *sd)
7446{
a5d8c348 7447 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7448
ad1cdc1d
MM
7449 if (table == NULL)
7450 return NULL;
7451
e0361851 7452 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7453 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7454 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7455 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7456 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7457 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7458 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7459 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7460 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7461 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7462 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7463 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7464 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7465 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7466 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7467 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7468 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7469 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7470 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7471 &sd->cache_nice_tries,
7472 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7473 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7474 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7475 set_table_entry(&table[11], "name", sd->name,
7476 CORENAME_MAX_SIZE, 0444, proc_dostring);
7477 /* &table[12] is terminator */
e692ab53
NP
7478
7479 return table;
7480}
7481
9a4e7159 7482static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7483{
7484 struct ctl_table *entry, *table;
7485 struct sched_domain *sd;
7486 int domain_num = 0, i;
7487 char buf[32];
7488
7489 for_each_domain(cpu, sd)
7490 domain_num++;
7491 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7492 if (table == NULL)
7493 return NULL;
e692ab53
NP
7494
7495 i = 0;
7496 for_each_domain(cpu, sd) {
7497 snprintf(buf, 32, "domain%d", i);
e692ab53 7498 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7499 entry->mode = 0555;
e692ab53
NP
7500 entry->child = sd_alloc_ctl_domain_table(sd);
7501 entry++;
7502 i++;
7503 }
7504 return table;
7505}
7506
7507static struct ctl_table_header *sd_sysctl_header;
6382bc90 7508static void register_sched_domain_sysctl(void)
e692ab53
NP
7509{
7510 int i, cpu_num = num_online_cpus();
7511 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7512 char buf[32];
7513
7378547f
MM
7514 WARN_ON(sd_ctl_dir[0].child);
7515 sd_ctl_dir[0].child = entry;
7516
ad1cdc1d
MM
7517 if (entry == NULL)
7518 return;
7519
97b6ea7b 7520 for_each_online_cpu(i) {
e692ab53 7521 snprintf(buf, 32, "cpu%d", i);
e692ab53 7522 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7523 entry->mode = 0555;
e692ab53 7524 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7525 entry++;
e692ab53 7526 }
7378547f
MM
7527
7528 WARN_ON(sd_sysctl_header);
e692ab53
NP
7529 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7530}
6382bc90 7531
7378547f 7532/* may be called multiple times per register */
6382bc90
MM
7533static void unregister_sched_domain_sysctl(void)
7534{
7378547f
MM
7535 if (sd_sysctl_header)
7536 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7537 sd_sysctl_header = NULL;
7378547f
MM
7538 if (sd_ctl_dir[0].child)
7539 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7540}
e692ab53 7541#else
6382bc90
MM
7542static void register_sched_domain_sysctl(void)
7543{
7544}
7545static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7546{
7547}
7548#endif
7549
1f11eb6a
GH
7550static void set_rq_online(struct rq *rq)
7551{
7552 if (!rq->online) {
7553 const struct sched_class *class;
7554
c6c4927b 7555 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7556 rq->online = 1;
7557
7558 for_each_class(class) {
7559 if (class->rq_online)
7560 class->rq_online(rq);
7561 }
7562 }
7563}
7564
7565static void set_rq_offline(struct rq *rq)
7566{
7567 if (rq->online) {
7568 const struct sched_class *class;
7569
7570 for_each_class(class) {
7571 if (class->rq_offline)
7572 class->rq_offline(rq);
7573 }
7574
c6c4927b 7575 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7576 rq->online = 0;
7577 }
7578}
7579
1da177e4
LT
7580/*
7581 * migration_call - callback that gets triggered when a CPU is added.
7582 * Here we can start up the necessary migration thread for the new CPU.
7583 */
48f24c4d
IM
7584static int __cpuinit
7585migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7586{
1da177e4 7587 struct task_struct *p;
48f24c4d 7588 int cpu = (long)hcpu;
1da177e4 7589 unsigned long flags;
70b97a7f 7590 struct rq *rq;
1da177e4
LT
7591
7592 switch (action) {
5be9361c 7593
1da177e4 7594 case CPU_UP_PREPARE:
8bb78442 7595 case CPU_UP_PREPARE_FROZEN:
dd41f596 7596 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7597 if (IS_ERR(p))
7598 return NOTIFY_BAD;
1da177e4
LT
7599 kthread_bind(p, cpu);
7600 /* Must be high prio: stop_machine expects to yield to it. */
7601 rq = task_rq_lock(p, &flags);
dd41f596 7602 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7603 task_rq_unlock(rq, &flags);
371cbb38 7604 get_task_struct(p);
1da177e4 7605 cpu_rq(cpu)->migration_thread = p;
a468d389 7606 rq->calc_load_update = calc_load_update;
1da177e4 7607 break;
48f24c4d 7608
1da177e4 7609 case CPU_ONLINE:
8bb78442 7610 case CPU_ONLINE_FROZEN:
3a4fa0a2 7611 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7612 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7613
7614 /* Update our root-domain */
7615 rq = cpu_rq(cpu);
7616 spin_lock_irqsave(&rq->lock, flags);
7617 if (rq->rd) {
c6c4927b 7618 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7619
7620 set_rq_online(rq);
1f94ef59
GH
7621 }
7622 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7623 break;
48f24c4d 7624
1da177e4
LT
7625#ifdef CONFIG_HOTPLUG_CPU
7626 case CPU_UP_CANCELED:
8bb78442 7627 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7628 if (!cpu_rq(cpu)->migration_thread)
7629 break;
41a2d6cf 7630 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7631 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7632 cpumask_any(cpu_online_mask));
1da177e4 7633 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7634 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7635 cpu_rq(cpu)->migration_thread = NULL;
7636 break;
48f24c4d 7637
1da177e4 7638 case CPU_DEAD:
8bb78442 7639 case CPU_DEAD_FROZEN:
470fd646 7640 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7641 migrate_live_tasks(cpu);
7642 rq = cpu_rq(cpu);
7643 kthread_stop(rq->migration_thread);
371cbb38 7644 put_task_struct(rq->migration_thread);
1da177e4
LT
7645 rq->migration_thread = NULL;
7646 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7647 spin_lock_irq(&rq->lock);
a8e504d2 7648 update_rq_clock(rq);
2e1cb74a 7649 deactivate_task(rq, rq->idle, 0);
1da177e4 7650 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7651 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7652 rq->idle->sched_class = &idle_sched_class;
1da177e4 7653 migrate_dead_tasks(cpu);
d2da272a 7654 spin_unlock_irq(&rq->lock);
470fd646 7655 cpuset_unlock();
1da177e4
LT
7656 migrate_nr_uninterruptible(rq);
7657 BUG_ON(rq->nr_running != 0);
dce48a84 7658 calc_global_load_remove(rq);
41a2d6cf
IM
7659 /*
7660 * No need to migrate the tasks: it was best-effort if
7661 * they didn't take sched_hotcpu_mutex. Just wake up
7662 * the requestors.
7663 */
1da177e4
LT
7664 spin_lock_irq(&rq->lock);
7665 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7666 struct migration_req *req;
7667
1da177e4 7668 req = list_entry(rq->migration_queue.next,
70b97a7f 7669 struct migration_req, list);
1da177e4 7670 list_del_init(&req->list);
9a2bd244 7671 spin_unlock_irq(&rq->lock);
1da177e4 7672 complete(&req->done);
9a2bd244 7673 spin_lock_irq(&rq->lock);
1da177e4
LT
7674 }
7675 spin_unlock_irq(&rq->lock);
7676 break;
57d885fe 7677
08f503b0
GH
7678 case CPU_DYING:
7679 case CPU_DYING_FROZEN:
57d885fe
GH
7680 /* Update our root-domain */
7681 rq = cpu_rq(cpu);
7682 spin_lock_irqsave(&rq->lock, flags);
7683 if (rq->rd) {
c6c4927b 7684 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7685 set_rq_offline(rq);
57d885fe
GH
7686 }
7687 spin_unlock_irqrestore(&rq->lock, flags);
7688 break;
1da177e4
LT
7689#endif
7690 }
7691 return NOTIFY_OK;
7692}
7693
f38b0820
PM
7694/*
7695 * Register at high priority so that task migration (migrate_all_tasks)
7696 * happens before everything else. This has to be lower priority than
7697 * the notifier in the perf_counter subsystem, though.
1da177e4 7698 */
26c2143b 7699static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7700 .notifier_call = migration_call,
7701 .priority = 10
7702};
7703
7babe8db 7704static int __init migration_init(void)
1da177e4
LT
7705{
7706 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7707 int err;
48f24c4d
IM
7708
7709 /* Start one for the boot CPU: */
07dccf33
AM
7710 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7711 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7712 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7713 register_cpu_notifier(&migration_notifier);
7babe8db 7714
a004cd42 7715 return 0;
1da177e4 7716}
7babe8db 7717early_initcall(migration_init);
1da177e4
LT
7718#endif
7719
7720#ifdef CONFIG_SMP
476f3534 7721
3e9830dc 7722#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7723
7c16ec58 7724static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7725 struct cpumask *groupmask)
1da177e4 7726{
4dcf6aff 7727 struct sched_group *group = sd->groups;
434d53b0 7728 char str[256];
1da177e4 7729
968ea6d8 7730 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7731 cpumask_clear(groupmask);
4dcf6aff
IM
7732
7733 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7734
7735 if (!(sd->flags & SD_LOAD_BALANCE)) {
7736 printk("does not load-balance\n");
7737 if (sd->parent)
7738 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7739 " has parent");
7740 return -1;
41c7ce9a
NP
7741 }
7742
eefd796a 7743 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7744
758b2cdc 7745 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7746 printk(KERN_ERR "ERROR: domain->span does not contain "
7747 "CPU%d\n", cpu);
7748 }
758b2cdc 7749 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7750 printk(KERN_ERR "ERROR: domain->groups does not contain"
7751 " CPU%d\n", cpu);
7752 }
1da177e4 7753
4dcf6aff 7754 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7755 do {
4dcf6aff
IM
7756 if (!group) {
7757 printk("\n");
7758 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7759 break;
7760 }
7761
18a3885f 7762 if (!group->cpu_power) {
4dcf6aff
IM
7763 printk(KERN_CONT "\n");
7764 printk(KERN_ERR "ERROR: domain->cpu_power not "
7765 "set\n");
7766 break;
7767 }
1da177e4 7768
758b2cdc 7769 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7770 printk(KERN_CONT "\n");
7771 printk(KERN_ERR "ERROR: empty group\n");
7772 break;
7773 }
1da177e4 7774
758b2cdc 7775 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7776 printk(KERN_CONT "\n");
7777 printk(KERN_ERR "ERROR: repeated CPUs\n");
7778 break;
7779 }
1da177e4 7780
758b2cdc 7781 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7782
968ea6d8 7783 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7784
7785 printk(KERN_CONT " %s", str);
18a3885f
PZ
7786 if (group->cpu_power != SCHED_LOAD_SCALE) {
7787 printk(KERN_CONT " (cpu_power = %d)",
7788 group->cpu_power);
381512cf 7789 }
1da177e4 7790
4dcf6aff
IM
7791 group = group->next;
7792 } while (group != sd->groups);
7793 printk(KERN_CONT "\n");
1da177e4 7794
758b2cdc 7795 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7796 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7797
758b2cdc
RR
7798 if (sd->parent &&
7799 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7800 printk(KERN_ERR "ERROR: parent span is not a superset "
7801 "of domain->span\n");
7802 return 0;
7803}
1da177e4 7804
4dcf6aff
IM
7805static void sched_domain_debug(struct sched_domain *sd, int cpu)
7806{
d5dd3db1 7807 cpumask_var_t groupmask;
4dcf6aff 7808 int level = 0;
1da177e4 7809
4dcf6aff
IM
7810 if (!sd) {
7811 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7812 return;
7813 }
1da177e4 7814
4dcf6aff
IM
7815 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7816
d5dd3db1 7817 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7818 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7819 return;
7820 }
7821
4dcf6aff 7822 for (;;) {
7c16ec58 7823 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7824 break;
1da177e4
LT
7825 level++;
7826 sd = sd->parent;
33859f7f 7827 if (!sd)
4dcf6aff
IM
7828 break;
7829 }
d5dd3db1 7830 free_cpumask_var(groupmask);
1da177e4 7831}
6d6bc0ad 7832#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7833# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7834#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7835
1a20ff27 7836static int sd_degenerate(struct sched_domain *sd)
245af2c7 7837{
758b2cdc 7838 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7839 return 1;
7840
7841 /* Following flags need at least 2 groups */
7842 if (sd->flags & (SD_LOAD_BALANCE |
7843 SD_BALANCE_NEWIDLE |
7844 SD_BALANCE_FORK |
89c4710e
SS
7845 SD_BALANCE_EXEC |
7846 SD_SHARE_CPUPOWER |
7847 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7848 if (sd->groups != sd->groups->next)
7849 return 0;
7850 }
7851
7852 /* Following flags don't use groups */
7853 if (sd->flags & (SD_WAKE_IDLE |
7854 SD_WAKE_AFFINE |
7855 SD_WAKE_BALANCE))
7856 return 0;
7857
7858 return 1;
7859}
7860
48f24c4d
IM
7861static int
7862sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7863{
7864 unsigned long cflags = sd->flags, pflags = parent->flags;
7865
7866 if (sd_degenerate(parent))
7867 return 1;
7868
758b2cdc 7869 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7870 return 0;
7871
7872 /* Does parent contain flags not in child? */
7873 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7874 if (cflags & SD_WAKE_AFFINE)
7875 pflags &= ~SD_WAKE_BALANCE;
7876 /* Flags needing groups don't count if only 1 group in parent */
7877 if (parent->groups == parent->groups->next) {
7878 pflags &= ~(SD_LOAD_BALANCE |
7879 SD_BALANCE_NEWIDLE |
7880 SD_BALANCE_FORK |
89c4710e
SS
7881 SD_BALANCE_EXEC |
7882 SD_SHARE_CPUPOWER |
7883 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7884 if (nr_node_ids == 1)
7885 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7886 }
7887 if (~cflags & pflags)
7888 return 0;
7889
7890 return 1;
7891}
7892
c6c4927b
RR
7893static void free_rootdomain(struct root_domain *rd)
7894{
68e74568
RR
7895 cpupri_cleanup(&rd->cpupri);
7896
c6c4927b
RR
7897 free_cpumask_var(rd->rto_mask);
7898 free_cpumask_var(rd->online);
7899 free_cpumask_var(rd->span);
7900 kfree(rd);
7901}
7902
57d885fe
GH
7903static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7904{
a0490fa3 7905 struct root_domain *old_rd = NULL;
57d885fe 7906 unsigned long flags;
57d885fe
GH
7907
7908 spin_lock_irqsave(&rq->lock, flags);
7909
7910 if (rq->rd) {
a0490fa3 7911 old_rd = rq->rd;
57d885fe 7912
c6c4927b 7913 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7914 set_rq_offline(rq);
57d885fe 7915
c6c4927b 7916 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7917
a0490fa3
IM
7918 /*
7919 * If we dont want to free the old_rt yet then
7920 * set old_rd to NULL to skip the freeing later
7921 * in this function:
7922 */
7923 if (!atomic_dec_and_test(&old_rd->refcount))
7924 old_rd = NULL;
57d885fe
GH
7925 }
7926
7927 atomic_inc(&rd->refcount);
7928 rq->rd = rd;
7929
c6c4927b 7930 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7931 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7932 set_rq_online(rq);
57d885fe
GH
7933
7934 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7935
7936 if (old_rd)
7937 free_rootdomain(old_rd);
57d885fe
GH
7938}
7939
fd5e1b5d 7940static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7941{
36b7b6d4
PE
7942 gfp_t gfp = GFP_KERNEL;
7943
57d885fe
GH
7944 memset(rd, 0, sizeof(*rd));
7945
36b7b6d4
PE
7946 if (bootmem)
7947 gfp = GFP_NOWAIT;
c6c4927b 7948
36b7b6d4 7949 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7950 goto out;
36b7b6d4 7951 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7952 goto free_span;
36b7b6d4 7953 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7954 goto free_online;
6e0534f2 7955
0fb53029 7956 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7957 goto free_rto_mask;
c6c4927b 7958 return 0;
6e0534f2 7959
68e74568
RR
7960free_rto_mask:
7961 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7962free_online:
7963 free_cpumask_var(rd->online);
7964free_span:
7965 free_cpumask_var(rd->span);
0c910d28 7966out:
c6c4927b 7967 return -ENOMEM;
57d885fe
GH
7968}
7969
7970static void init_defrootdomain(void)
7971{
c6c4927b
RR
7972 init_rootdomain(&def_root_domain, true);
7973
57d885fe
GH
7974 atomic_set(&def_root_domain.refcount, 1);
7975}
7976
dc938520 7977static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7978{
7979 struct root_domain *rd;
7980
7981 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7982 if (!rd)
7983 return NULL;
7984
c6c4927b
RR
7985 if (init_rootdomain(rd, false) != 0) {
7986 kfree(rd);
7987 return NULL;
7988 }
57d885fe
GH
7989
7990 return rd;
7991}
7992
1da177e4 7993/*
0eab9146 7994 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7995 * hold the hotplug lock.
7996 */
0eab9146
IM
7997static void
7998cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7999{
70b97a7f 8000 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8001 struct sched_domain *tmp;
8002
8003 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8004 for (tmp = sd; tmp; ) {
245af2c7
SS
8005 struct sched_domain *parent = tmp->parent;
8006 if (!parent)
8007 break;
f29c9b1c 8008
1a848870 8009 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8010 tmp->parent = parent->parent;
1a848870
SS
8011 if (parent->parent)
8012 parent->parent->child = tmp;
f29c9b1c
LZ
8013 } else
8014 tmp = tmp->parent;
245af2c7
SS
8015 }
8016
1a848870 8017 if (sd && sd_degenerate(sd)) {
245af2c7 8018 sd = sd->parent;
1a848870
SS
8019 if (sd)
8020 sd->child = NULL;
8021 }
1da177e4
LT
8022
8023 sched_domain_debug(sd, cpu);
8024
57d885fe 8025 rq_attach_root(rq, rd);
674311d5 8026 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8027}
8028
8029/* cpus with isolated domains */
dcc30a35 8030static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8031
8032/* Setup the mask of cpus configured for isolated domains */
8033static int __init isolated_cpu_setup(char *str)
8034{
968ea6d8 8035 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8036 return 1;
8037}
8038
8927f494 8039__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8040
8041/*
6711cab4
SS
8042 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8043 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8044 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8045 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8046 *
8047 * init_sched_build_groups will build a circular linked list of the groups
8048 * covered by the given span, and will set each group's ->cpumask correctly,
8049 * and ->cpu_power to 0.
8050 */
a616058b 8051static void
96f874e2
RR
8052init_sched_build_groups(const struct cpumask *span,
8053 const struct cpumask *cpu_map,
8054 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8055 struct sched_group **sg,
96f874e2
RR
8056 struct cpumask *tmpmask),
8057 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8058{
8059 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8060 int i;
8061
96f874e2 8062 cpumask_clear(covered);
7c16ec58 8063
abcd083a 8064 for_each_cpu(i, span) {
6711cab4 8065 struct sched_group *sg;
7c16ec58 8066 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8067 int j;
8068
758b2cdc 8069 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8070 continue;
8071
758b2cdc 8072 cpumask_clear(sched_group_cpus(sg));
18a3885f 8073 sg->cpu_power = 0;
1da177e4 8074
abcd083a 8075 for_each_cpu(j, span) {
7c16ec58 8076 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8077 continue;
8078
96f874e2 8079 cpumask_set_cpu(j, covered);
758b2cdc 8080 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8081 }
8082 if (!first)
8083 first = sg;
8084 if (last)
8085 last->next = sg;
8086 last = sg;
8087 }
8088 last->next = first;
8089}
8090
9c1cfda2 8091#define SD_NODES_PER_DOMAIN 16
1da177e4 8092
9c1cfda2 8093#ifdef CONFIG_NUMA
198e2f18 8094
9c1cfda2
JH
8095/**
8096 * find_next_best_node - find the next node to include in a sched_domain
8097 * @node: node whose sched_domain we're building
8098 * @used_nodes: nodes already in the sched_domain
8099 *
41a2d6cf 8100 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8101 * finds the closest node not already in the @used_nodes map.
8102 *
8103 * Should use nodemask_t.
8104 */
c5f59f08 8105static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8106{
8107 int i, n, val, min_val, best_node = 0;
8108
8109 min_val = INT_MAX;
8110
076ac2af 8111 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8112 /* Start at @node */
076ac2af 8113 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8114
8115 if (!nr_cpus_node(n))
8116 continue;
8117
8118 /* Skip already used nodes */
c5f59f08 8119 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8120 continue;
8121
8122 /* Simple min distance search */
8123 val = node_distance(node, n);
8124
8125 if (val < min_val) {
8126 min_val = val;
8127 best_node = n;
8128 }
8129 }
8130
c5f59f08 8131 node_set(best_node, *used_nodes);
9c1cfda2
JH
8132 return best_node;
8133}
8134
8135/**
8136 * sched_domain_node_span - get a cpumask for a node's sched_domain
8137 * @node: node whose cpumask we're constructing
73486722 8138 * @span: resulting cpumask
9c1cfda2 8139 *
41a2d6cf 8140 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8141 * should be one that prevents unnecessary balancing, but also spreads tasks
8142 * out optimally.
8143 */
96f874e2 8144static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8145{
c5f59f08 8146 nodemask_t used_nodes;
48f24c4d 8147 int i;
9c1cfda2 8148
6ca09dfc 8149 cpumask_clear(span);
c5f59f08 8150 nodes_clear(used_nodes);
9c1cfda2 8151
6ca09dfc 8152 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8153 node_set(node, used_nodes);
9c1cfda2
JH
8154
8155 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8156 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8157
6ca09dfc 8158 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8159 }
9c1cfda2 8160}
6d6bc0ad 8161#endif /* CONFIG_NUMA */
9c1cfda2 8162
5c45bf27 8163int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8164
6c99e9ad
RR
8165/*
8166 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8167 *
8168 * ( See the the comments in include/linux/sched.h:struct sched_group
8169 * and struct sched_domain. )
6c99e9ad
RR
8170 */
8171struct static_sched_group {
8172 struct sched_group sg;
8173 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8174};
8175
8176struct static_sched_domain {
8177 struct sched_domain sd;
8178 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8179};
8180
49a02c51
AH
8181struct s_data {
8182#ifdef CONFIG_NUMA
8183 int sd_allnodes;
8184 cpumask_var_t domainspan;
8185 cpumask_var_t covered;
8186 cpumask_var_t notcovered;
8187#endif
8188 cpumask_var_t nodemask;
8189 cpumask_var_t this_sibling_map;
8190 cpumask_var_t this_core_map;
8191 cpumask_var_t send_covered;
8192 cpumask_var_t tmpmask;
8193 struct sched_group **sched_group_nodes;
8194 struct root_domain *rd;
8195};
8196
2109b99e
AH
8197enum s_alloc {
8198 sa_sched_groups = 0,
8199 sa_rootdomain,
8200 sa_tmpmask,
8201 sa_send_covered,
8202 sa_this_core_map,
8203 sa_this_sibling_map,
8204 sa_nodemask,
8205 sa_sched_group_nodes,
8206#ifdef CONFIG_NUMA
8207 sa_notcovered,
8208 sa_covered,
8209 sa_domainspan,
8210#endif
8211 sa_none,
8212};
8213
9c1cfda2 8214/*
48f24c4d 8215 * SMT sched-domains:
9c1cfda2 8216 */
1da177e4 8217#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8218static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8219static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8220
41a2d6cf 8221static int
96f874e2
RR
8222cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8223 struct sched_group **sg, struct cpumask *unused)
1da177e4 8224{
6711cab4 8225 if (sg)
6c99e9ad 8226 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8227 return cpu;
8228}
6d6bc0ad 8229#endif /* CONFIG_SCHED_SMT */
1da177e4 8230
48f24c4d
IM
8231/*
8232 * multi-core sched-domains:
8233 */
1e9f28fa 8234#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8235static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8236static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8237#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8238
8239#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8240static int
96f874e2
RR
8241cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8242 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8243{
6711cab4 8244 int group;
7c16ec58 8245
c69fc56d 8246 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8247 group = cpumask_first(mask);
6711cab4 8248 if (sg)
6c99e9ad 8249 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8250 return group;
1e9f28fa
SS
8251}
8252#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8253static int
96f874e2
RR
8254cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8255 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8256{
6711cab4 8257 if (sg)
6c99e9ad 8258 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8259 return cpu;
8260}
8261#endif
8262
6c99e9ad
RR
8263static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8264static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8265
41a2d6cf 8266static int
96f874e2
RR
8267cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8268 struct sched_group **sg, struct cpumask *mask)
1da177e4 8269{
6711cab4 8270 int group;
48f24c4d 8271#ifdef CONFIG_SCHED_MC
6ca09dfc 8272 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8273 group = cpumask_first(mask);
1e9f28fa 8274#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8275 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8276 group = cpumask_first(mask);
1da177e4 8277#else
6711cab4 8278 group = cpu;
1da177e4 8279#endif
6711cab4 8280 if (sg)
6c99e9ad 8281 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8282 return group;
1da177e4
LT
8283}
8284
8285#ifdef CONFIG_NUMA
1da177e4 8286/*
9c1cfda2
JH
8287 * The init_sched_build_groups can't handle what we want to do with node
8288 * groups, so roll our own. Now each node has its own list of groups which
8289 * gets dynamically allocated.
1da177e4 8290 */
62ea9ceb 8291static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8292static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8293
62ea9ceb 8294static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8295static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8296
96f874e2
RR
8297static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8298 struct sched_group **sg,
8299 struct cpumask *nodemask)
9c1cfda2 8300{
6711cab4
SS
8301 int group;
8302
6ca09dfc 8303 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8304 group = cpumask_first(nodemask);
6711cab4
SS
8305
8306 if (sg)
6c99e9ad 8307 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8308 return group;
1da177e4 8309}
6711cab4 8310
08069033
SS
8311static void init_numa_sched_groups_power(struct sched_group *group_head)
8312{
8313 struct sched_group *sg = group_head;
8314 int j;
8315
8316 if (!sg)
8317 return;
3a5c359a 8318 do {
758b2cdc 8319 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8320 struct sched_domain *sd;
08069033 8321
6c99e9ad 8322 sd = &per_cpu(phys_domains, j).sd;
13318a71 8323 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8324 /*
8325 * Only add "power" once for each
8326 * physical package.
8327 */
8328 continue;
8329 }
08069033 8330
18a3885f 8331 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8332 }
8333 sg = sg->next;
8334 } while (sg != group_head);
08069033 8335}
0601a88d
AH
8336
8337static int build_numa_sched_groups(struct s_data *d,
8338 const struct cpumask *cpu_map, int num)
8339{
8340 struct sched_domain *sd;
8341 struct sched_group *sg, *prev;
8342 int n, j;
8343
8344 cpumask_clear(d->covered);
8345 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8346 if (cpumask_empty(d->nodemask)) {
8347 d->sched_group_nodes[num] = NULL;
8348 goto out;
8349 }
8350
8351 sched_domain_node_span(num, d->domainspan);
8352 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8353
8354 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8355 GFP_KERNEL, num);
8356 if (!sg) {
8357 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8358 num);
8359 return -ENOMEM;
8360 }
8361 d->sched_group_nodes[num] = sg;
8362
8363 for_each_cpu(j, d->nodemask) {
8364 sd = &per_cpu(node_domains, j).sd;
8365 sd->groups = sg;
8366 }
8367
18a3885f 8368 sg->cpu_power = 0;
0601a88d
AH
8369 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8370 sg->next = sg;
8371 cpumask_or(d->covered, d->covered, d->nodemask);
8372
8373 prev = sg;
8374 for (j = 0; j < nr_node_ids; j++) {
8375 n = (num + j) % nr_node_ids;
8376 cpumask_complement(d->notcovered, d->covered);
8377 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8378 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8379 if (cpumask_empty(d->tmpmask))
8380 break;
8381 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8382 if (cpumask_empty(d->tmpmask))
8383 continue;
8384 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8385 GFP_KERNEL, num);
8386 if (!sg) {
8387 printk(KERN_WARNING
8388 "Can not alloc domain group for node %d\n", j);
8389 return -ENOMEM;
8390 }
18a3885f 8391 sg->cpu_power = 0;
0601a88d
AH
8392 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8393 sg->next = prev->next;
8394 cpumask_or(d->covered, d->covered, d->tmpmask);
8395 prev->next = sg;
8396 prev = sg;
8397 }
8398out:
8399 return 0;
8400}
6d6bc0ad 8401#endif /* CONFIG_NUMA */
1da177e4 8402
a616058b 8403#ifdef CONFIG_NUMA
51888ca2 8404/* Free memory allocated for various sched_group structures */
96f874e2
RR
8405static void free_sched_groups(const struct cpumask *cpu_map,
8406 struct cpumask *nodemask)
51888ca2 8407{
a616058b 8408 int cpu, i;
51888ca2 8409
abcd083a 8410 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8411 struct sched_group **sched_group_nodes
8412 = sched_group_nodes_bycpu[cpu];
8413
51888ca2
SV
8414 if (!sched_group_nodes)
8415 continue;
8416
076ac2af 8417 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8418 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8419
6ca09dfc 8420 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8421 if (cpumask_empty(nodemask))
51888ca2
SV
8422 continue;
8423
8424 if (sg == NULL)
8425 continue;
8426 sg = sg->next;
8427next_sg:
8428 oldsg = sg;
8429 sg = sg->next;
8430 kfree(oldsg);
8431 if (oldsg != sched_group_nodes[i])
8432 goto next_sg;
8433 }
8434 kfree(sched_group_nodes);
8435 sched_group_nodes_bycpu[cpu] = NULL;
8436 }
51888ca2 8437}
6d6bc0ad 8438#else /* !CONFIG_NUMA */
96f874e2
RR
8439static void free_sched_groups(const struct cpumask *cpu_map,
8440 struct cpumask *nodemask)
a616058b
SS
8441{
8442}
6d6bc0ad 8443#endif /* CONFIG_NUMA */
51888ca2 8444
89c4710e
SS
8445/*
8446 * Initialize sched groups cpu_power.
8447 *
8448 * cpu_power indicates the capacity of sched group, which is used while
8449 * distributing the load between different sched groups in a sched domain.
8450 * Typically cpu_power for all the groups in a sched domain will be same unless
8451 * there are asymmetries in the topology. If there are asymmetries, group
8452 * having more cpu_power will pickup more load compared to the group having
8453 * less cpu_power.
89c4710e
SS
8454 */
8455static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8456{
8457 struct sched_domain *child;
8458 struct sched_group *group;
f93e65c1
PZ
8459 long power;
8460 int weight;
89c4710e
SS
8461
8462 WARN_ON(!sd || !sd->groups);
8463
13318a71 8464 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8465 return;
8466
8467 child = sd->child;
8468
18a3885f 8469 sd->groups->cpu_power = 0;
5517d86b 8470
f93e65c1
PZ
8471 if (!child) {
8472 power = SCHED_LOAD_SCALE;
8473 weight = cpumask_weight(sched_domain_span(sd));
8474 /*
8475 * SMT siblings share the power of a single core.
a52bfd73
PZ
8476 * Usually multiple threads get a better yield out of
8477 * that one core than a single thread would have,
8478 * reflect that in sd->smt_gain.
f93e65c1 8479 */
a52bfd73
PZ
8480 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8481 power *= sd->smt_gain;
f93e65c1 8482 power /= weight;
a52bfd73
PZ
8483 power >>= SCHED_LOAD_SHIFT;
8484 }
18a3885f 8485 sd->groups->cpu_power += power;
89c4710e
SS
8486 return;
8487 }
8488
89c4710e 8489 /*
f93e65c1 8490 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8491 */
8492 group = child->groups;
8493 do {
18a3885f 8494 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8495 group = group->next;
8496 } while (group != child->groups);
8497}
8498
7c16ec58
MT
8499/*
8500 * Initializers for schedule domains
8501 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8502 */
8503
a5d8c348
IM
8504#ifdef CONFIG_SCHED_DEBUG
8505# define SD_INIT_NAME(sd, type) sd->name = #type
8506#else
8507# define SD_INIT_NAME(sd, type) do { } while (0)
8508#endif
8509
7c16ec58 8510#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8511
7c16ec58
MT
8512#define SD_INIT_FUNC(type) \
8513static noinline void sd_init_##type(struct sched_domain *sd) \
8514{ \
8515 memset(sd, 0, sizeof(*sd)); \
8516 *sd = SD_##type##_INIT; \
1d3504fc 8517 sd->level = SD_LV_##type; \
a5d8c348 8518 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8519}
8520
8521SD_INIT_FUNC(CPU)
8522#ifdef CONFIG_NUMA
8523 SD_INIT_FUNC(ALLNODES)
8524 SD_INIT_FUNC(NODE)
8525#endif
8526#ifdef CONFIG_SCHED_SMT
8527 SD_INIT_FUNC(SIBLING)
8528#endif
8529#ifdef CONFIG_SCHED_MC
8530 SD_INIT_FUNC(MC)
8531#endif
8532
1d3504fc
HS
8533static int default_relax_domain_level = -1;
8534
8535static int __init setup_relax_domain_level(char *str)
8536{
30e0e178
LZ
8537 unsigned long val;
8538
8539 val = simple_strtoul(str, NULL, 0);
8540 if (val < SD_LV_MAX)
8541 default_relax_domain_level = val;
8542
1d3504fc
HS
8543 return 1;
8544}
8545__setup("relax_domain_level=", setup_relax_domain_level);
8546
8547static void set_domain_attribute(struct sched_domain *sd,
8548 struct sched_domain_attr *attr)
8549{
8550 int request;
8551
8552 if (!attr || attr->relax_domain_level < 0) {
8553 if (default_relax_domain_level < 0)
8554 return;
8555 else
8556 request = default_relax_domain_level;
8557 } else
8558 request = attr->relax_domain_level;
8559 if (request < sd->level) {
8560 /* turn off idle balance on this domain */
8561 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8562 } else {
8563 /* turn on idle balance on this domain */
8564 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8565 }
8566}
8567
2109b99e
AH
8568static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8569 const struct cpumask *cpu_map)
8570{
8571 switch (what) {
8572 case sa_sched_groups:
8573 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8574 d->sched_group_nodes = NULL;
8575 case sa_rootdomain:
8576 free_rootdomain(d->rd); /* fall through */
8577 case sa_tmpmask:
8578 free_cpumask_var(d->tmpmask); /* fall through */
8579 case sa_send_covered:
8580 free_cpumask_var(d->send_covered); /* fall through */
8581 case sa_this_core_map:
8582 free_cpumask_var(d->this_core_map); /* fall through */
8583 case sa_this_sibling_map:
8584 free_cpumask_var(d->this_sibling_map); /* fall through */
8585 case sa_nodemask:
8586 free_cpumask_var(d->nodemask); /* fall through */
8587 case sa_sched_group_nodes:
d1b55138 8588#ifdef CONFIG_NUMA
2109b99e
AH
8589 kfree(d->sched_group_nodes); /* fall through */
8590 case sa_notcovered:
8591 free_cpumask_var(d->notcovered); /* fall through */
8592 case sa_covered:
8593 free_cpumask_var(d->covered); /* fall through */
8594 case sa_domainspan:
8595 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8596#endif
2109b99e
AH
8597 case sa_none:
8598 break;
8599 }
8600}
3404c8d9 8601
2109b99e
AH
8602static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8603 const struct cpumask *cpu_map)
8604{
3404c8d9 8605#ifdef CONFIG_NUMA
2109b99e
AH
8606 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8607 return sa_none;
8608 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8609 return sa_domainspan;
8610 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8611 return sa_covered;
8612 /* Allocate the per-node list of sched groups */
8613 d->sched_group_nodes = kcalloc(nr_node_ids,
8614 sizeof(struct sched_group *), GFP_KERNEL);
8615 if (!d->sched_group_nodes) {
d1b55138 8616 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8617 return sa_notcovered;
d1b55138 8618 }
2109b99e 8619 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8620#endif
2109b99e
AH
8621 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8622 return sa_sched_group_nodes;
8623 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8624 return sa_nodemask;
8625 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8626 return sa_this_sibling_map;
8627 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8628 return sa_this_core_map;
8629 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8630 return sa_send_covered;
8631 d->rd = alloc_rootdomain();
8632 if (!d->rd) {
57d885fe 8633 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8634 return sa_tmpmask;
57d885fe 8635 }
2109b99e
AH
8636 return sa_rootdomain;
8637}
57d885fe 8638
7f4588f3
AH
8639static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8640 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8641{
8642 struct sched_domain *sd = NULL;
7c16ec58 8643#ifdef CONFIG_NUMA
7f4588f3 8644 struct sched_domain *parent;
1da177e4 8645
7f4588f3
AH
8646 d->sd_allnodes = 0;
8647 if (cpumask_weight(cpu_map) >
8648 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8649 sd = &per_cpu(allnodes_domains, i).sd;
8650 SD_INIT(sd, ALLNODES);
1d3504fc 8651 set_domain_attribute(sd, attr);
7f4588f3
AH
8652 cpumask_copy(sched_domain_span(sd), cpu_map);
8653 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8654 d->sd_allnodes = 1;
8655 }
8656 parent = sd;
8657
8658 sd = &per_cpu(node_domains, i).sd;
8659 SD_INIT(sd, NODE);
8660 set_domain_attribute(sd, attr);
8661 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8662 sd->parent = parent;
8663 if (parent)
8664 parent->child = sd;
8665 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8666#endif
7f4588f3
AH
8667 return sd;
8668}
1da177e4 8669
87cce662
AH
8670static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8671 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8672 struct sched_domain *parent, int i)
8673{
8674 struct sched_domain *sd;
8675 sd = &per_cpu(phys_domains, i).sd;
8676 SD_INIT(sd, CPU);
8677 set_domain_attribute(sd, attr);
8678 cpumask_copy(sched_domain_span(sd), d->nodemask);
8679 sd->parent = parent;
8680 if (parent)
8681 parent->child = sd;
8682 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8683 return sd;
8684}
1da177e4 8685
410c4081
AH
8686static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8687 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8688 struct sched_domain *parent, int i)
8689{
8690 struct sched_domain *sd = parent;
1e9f28fa 8691#ifdef CONFIG_SCHED_MC
410c4081
AH
8692 sd = &per_cpu(core_domains, i).sd;
8693 SD_INIT(sd, MC);
8694 set_domain_attribute(sd, attr);
8695 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8696 sd->parent = parent;
8697 parent->child = sd;
8698 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8699#endif
410c4081
AH
8700 return sd;
8701}
1e9f28fa 8702
d8173535
AH
8703static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8704 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8705 struct sched_domain *parent, int i)
8706{
8707 struct sched_domain *sd = parent;
1da177e4 8708#ifdef CONFIG_SCHED_SMT
d8173535
AH
8709 sd = &per_cpu(cpu_domains, i).sd;
8710 SD_INIT(sd, SIBLING);
8711 set_domain_attribute(sd, attr);
8712 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8713 sd->parent = parent;
8714 parent->child = sd;
8715 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8716#endif
d8173535
AH
8717 return sd;
8718}
1da177e4 8719
0e8e85c9
AH
8720static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8721 const struct cpumask *cpu_map, int cpu)
8722{
8723 switch (l) {
1da177e4 8724#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8725 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8726 cpumask_and(d->this_sibling_map, cpu_map,
8727 topology_thread_cpumask(cpu));
8728 if (cpu == cpumask_first(d->this_sibling_map))
8729 init_sched_build_groups(d->this_sibling_map, cpu_map,
8730 &cpu_to_cpu_group,
8731 d->send_covered, d->tmpmask);
8732 break;
1da177e4 8733#endif
1e9f28fa 8734#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8735 case SD_LV_MC: /* set up multi-core groups */
8736 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8737 if (cpu == cpumask_first(d->this_core_map))
8738 init_sched_build_groups(d->this_core_map, cpu_map,
8739 &cpu_to_core_group,
8740 d->send_covered, d->tmpmask);
8741 break;
1e9f28fa 8742#endif
86548096
AH
8743 case SD_LV_CPU: /* set up physical groups */
8744 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8745 if (!cpumask_empty(d->nodemask))
8746 init_sched_build_groups(d->nodemask, cpu_map,
8747 &cpu_to_phys_group,
8748 d->send_covered, d->tmpmask);
8749 break;
1da177e4 8750#ifdef CONFIG_NUMA
de616e36
AH
8751 case SD_LV_ALLNODES:
8752 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8753 d->send_covered, d->tmpmask);
8754 break;
8755#endif
0e8e85c9
AH
8756 default:
8757 break;
7c16ec58 8758 }
0e8e85c9 8759}
9c1cfda2 8760
2109b99e
AH
8761/*
8762 * Build sched domains for a given set of cpus and attach the sched domains
8763 * to the individual cpus
8764 */
8765static int __build_sched_domains(const struct cpumask *cpu_map,
8766 struct sched_domain_attr *attr)
8767{
8768 enum s_alloc alloc_state = sa_none;
8769 struct s_data d;
294b0c96 8770 struct sched_domain *sd;
2109b99e 8771 int i;
7c16ec58 8772#ifdef CONFIG_NUMA
2109b99e 8773 d.sd_allnodes = 0;
7c16ec58 8774#endif
9c1cfda2 8775
2109b99e
AH
8776 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8777 if (alloc_state != sa_rootdomain)
8778 goto error;
8779 alloc_state = sa_sched_groups;
9c1cfda2 8780
1da177e4 8781 /*
1a20ff27 8782 * Set up domains for cpus specified by the cpu_map.
1da177e4 8783 */
abcd083a 8784 for_each_cpu(i, cpu_map) {
49a02c51
AH
8785 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8786 cpu_map);
9761eea8 8787
7f4588f3 8788 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8789 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8790 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8791 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8792 }
9c1cfda2 8793
abcd083a 8794 for_each_cpu(i, cpu_map) {
0e8e85c9 8795 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8796 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8797 }
9c1cfda2 8798
1da177e4 8799 /* Set up physical groups */
86548096
AH
8800 for (i = 0; i < nr_node_ids; i++)
8801 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8802
1da177e4
LT
8803#ifdef CONFIG_NUMA
8804 /* Set up node groups */
de616e36
AH
8805 if (d.sd_allnodes)
8806 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8807
0601a88d
AH
8808 for (i = 0; i < nr_node_ids; i++)
8809 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8810 goto error;
1da177e4
LT
8811#endif
8812
8813 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8814#ifdef CONFIG_SCHED_SMT
abcd083a 8815 for_each_cpu(i, cpu_map) {
294b0c96 8816 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8817 init_sched_groups_power(i, sd);
5c45bf27 8818 }
1da177e4 8819#endif
1e9f28fa 8820#ifdef CONFIG_SCHED_MC
abcd083a 8821 for_each_cpu(i, cpu_map) {
294b0c96 8822 sd = &per_cpu(core_domains, i).sd;
89c4710e 8823 init_sched_groups_power(i, sd);
5c45bf27
SS
8824 }
8825#endif
1e9f28fa 8826
abcd083a 8827 for_each_cpu(i, cpu_map) {
294b0c96 8828 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8829 init_sched_groups_power(i, sd);
1da177e4
LT
8830 }
8831
9c1cfda2 8832#ifdef CONFIG_NUMA
076ac2af 8833 for (i = 0; i < nr_node_ids; i++)
49a02c51 8834 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8835
49a02c51 8836 if (d.sd_allnodes) {
6711cab4 8837 struct sched_group *sg;
f712c0c7 8838
96f874e2 8839 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8840 d.tmpmask);
f712c0c7
SS
8841 init_numa_sched_groups_power(sg);
8842 }
9c1cfda2
JH
8843#endif
8844
1da177e4 8845 /* Attach the domains */
abcd083a 8846 for_each_cpu(i, cpu_map) {
1da177e4 8847#ifdef CONFIG_SCHED_SMT
6c99e9ad 8848 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8849#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8850 sd = &per_cpu(core_domains, i).sd;
1da177e4 8851#else
6c99e9ad 8852 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8853#endif
49a02c51 8854 cpu_attach_domain(sd, d.rd, i);
1da177e4 8855 }
51888ca2 8856
2109b99e
AH
8857 d.sched_group_nodes = NULL; /* don't free this we still need it */
8858 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8859 return 0;
51888ca2 8860
51888ca2 8861error:
2109b99e
AH
8862 __free_domain_allocs(&d, alloc_state, cpu_map);
8863 return -ENOMEM;
1da177e4 8864}
029190c5 8865
96f874e2 8866static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8867{
8868 return __build_sched_domains(cpu_map, NULL);
8869}
8870
96f874e2 8871static struct cpumask *doms_cur; /* current sched domains */
029190c5 8872static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8873static struct sched_domain_attr *dattr_cur;
8874 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8875
8876/*
8877 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8878 * cpumask) fails, then fallback to a single sched domain,
8879 * as determined by the single cpumask fallback_doms.
029190c5 8880 */
4212823f 8881static cpumask_var_t fallback_doms;
029190c5 8882
ee79d1bd
HC
8883/*
8884 * arch_update_cpu_topology lets virtualized architectures update the
8885 * cpu core maps. It is supposed to return 1 if the topology changed
8886 * or 0 if it stayed the same.
8887 */
8888int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8889{
ee79d1bd 8890 return 0;
22e52b07
HC
8891}
8892
1a20ff27 8893/*
41a2d6cf 8894 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8895 * For now this just excludes isolated cpus, but could be used to
8896 * exclude other special cases in the future.
1a20ff27 8897 */
96f874e2 8898static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8899{
7378547f
MM
8900 int err;
8901
22e52b07 8902 arch_update_cpu_topology();
029190c5 8903 ndoms_cur = 1;
96f874e2 8904 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8905 if (!doms_cur)
4212823f 8906 doms_cur = fallback_doms;
dcc30a35 8907 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8908 dattr_cur = NULL;
7378547f 8909 err = build_sched_domains(doms_cur);
6382bc90 8910 register_sched_domain_sysctl();
7378547f
MM
8911
8912 return err;
1a20ff27
DG
8913}
8914
96f874e2
RR
8915static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8916 struct cpumask *tmpmask)
1da177e4 8917{
7c16ec58 8918 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8919}
1da177e4 8920
1a20ff27
DG
8921/*
8922 * Detach sched domains from a group of cpus specified in cpu_map
8923 * These cpus will now be attached to the NULL domain
8924 */
96f874e2 8925static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8926{
96f874e2
RR
8927 /* Save because hotplug lock held. */
8928 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8929 int i;
8930
abcd083a 8931 for_each_cpu(i, cpu_map)
57d885fe 8932 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8933 synchronize_sched();
96f874e2 8934 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8935}
8936
1d3504fc
HS
8937/* handle null as "default" */
8938static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8939 struct sched_domain_attr *new, int idx_new)
8940{
8941 struct sched_domain_attr tmp;
8942
8943 /* fast path */
8944 if (!new && !cur)
8945 return 1;
8946
8947 tmp = SD_ATTR_INIT;
8948 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8949 new ? (new + idx_new) : &tmp,
8950 sizeof(struct sched_domain_attr));
8951}
8952
029190c5
PJ
8953/*
8954 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8955 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8956 * doms_new[] to the current sched domain partitioning, doms_cur[].
8957 * It destroys each deleted domain and builds each new domain.
8958 *
96f874e2 8959 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8960 * The masks don't intersect (don't overlap.) We should setup one
8961 * sched domain for each mask. CPUs not in any of the cpumasks will
8962 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8963 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8964 * it as it is.
8965 *
41a2d6cf
IM
8966 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8967 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8968 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8969 * ndoms_new == 1, and partition_sched_domains() will fallback to
8970 * the single partition 'fallback_doms', it also forces the domains
8971 * to be rebuilt.
029190c5 8972 *
96f874e2 8973 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8974 * ndoms_new == 0 is a special case for destroying existing domains,
8975 * and it will not create the default domain.
dfb512ec 8976 *
029190c5
PJ
8977 * Call with hotplug lock held
8978 */
96f874e2
RR
8979/* FIXME: Change to struct cpumask *doms_new[] */
8980void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8981 struct sched_domain_attr *dattr_new)
029190c5 8982{
dfb512ec 8983 int i, j, n;
d65bd5ec 8984 int new_topology;
029190c5 8985
712555ee 8986 mutex_lock(&sched_domains_mutex);
a1835615 8987
7378547f
MM
8988 /* always unregister in case we don't destroy any domains */
8989 unregister_sched_domain_sysctl();
8990
d65bd5ec
HC
8991 /* Let architecture update cpu core mappings. */
8992 new_topology = arch_update_cpu_topology();
8993
dfb512ec 8994 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8995
8996 /* Destroy deleted domains */
8997 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8998 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8999 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 9000 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9001 goto match1;
9002 }
9003 /* no match - a current sched domain not in new doms_new[] */
9004 detach_destroy_domains(doms_cur + i);
9005match1:
9006 ;
9007 }
9008
e761b772
MK
9009 if (doms_new == NULL) {
9010 ndoms_cur = 0;
4212823f 9011 doms_new = fallback_doms;
dcc30a35 9012 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 9013 WARN_ON_ONCE(dattr_new);
e761b772
MK
9014 }
9015
029190c5
PJ
9016 /* Build new domains */
9017 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9018 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 9019 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 9020 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9021 goto match2;
9022 }
9023 /* no match - add a new doms_new */
1d3504fc
HS
9024 __build_sched_domains(doms_new + i,
9025 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9026match2:
9027 ;
9028 }
9029
9030 /* Remember the new sched domains */
4212823f 9031 if (doms_cur != fallback_doms)
029190c5 9032 kfree(doms_cur);
1d3504fc 9033 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9034 doms_cur = doms_new;
1d3504fc 9035 dattr_cur = dattr_new;
029190c5 9036 ndoms_cur = ndoms_new;
7378547f
MM
9037
9038 register_sched_domain_sysctl();
a1835615 9039
712555ee 9040 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9041}
9042
5c45bf27 9043#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9044static void arch_reinit_sched_domains(void)
5c45bf27 9045{
95402b38 9046 get_online_cpus();
dfb512ec
MK
9047
9048 /* Destroy domains first to force the rebuild */
9049 partition_sched_domains(0, NULL, NULL);
9050
e761b772 9051 rebuild_sched_domains();
95402b38 9052 put_online_cpus();
5c45bf27
SS
9053}
9054
9055static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9056{
afb8a9b7 9057 unsigned int level = 0;
5c45bf27 9058
afb8a9b7
GS
9059 if (sscanf(buf, "%u", &level) != 1)
9060 return -EINVAL;
9061
9062 /*
9063 * level is always be positive so don't check for
9064 * level < POWERSAVINGS_BALANCE_NONE which is 0
9065 * What happens on 0 or 1 byte write,
9066 * need to check for count as well?
9067 */
9068
9069 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9070 return -EINVAL;
9071
9072 if (smt)
afb8a9b7 9073 sched_smt_power_savings = level;
5c45bf27 9074 else
afb8a9b7 9075 sched_mc_power_savings = level;
5c45bf27 9076
c70f22d2 9077 arch_reinit_sched_domains();
5c45bf27 9078
c70f22d2 9079 return count;
5c45bf27
SS
9080}
9081
5c45bf27 9082#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9083static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9084 char *page)
5c45bf27
SS
9085{
9086 return sprintf(page, "%u\n", sched_mc_power_savings);
9087}
f718cd4a 9088static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9089 const char *buf, size_t count)
5c45bf27
SS
9090{
9091 return sched_power_savings_store(buf, count, 0);
9092}
f718cd4a
AK
9093static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9094 sched_mc_power_savings_show,
9095 sched_mc_power_savings_store);
5c45bf27
SS
9096#endif
9097
9098#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9099static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9100 char *page)
5c45bf27
SS
9101{
9102 return sprintf(page, "%u\n", sched_smt_power_savings);
9103}
f718cd4a 9104static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9105 const char *buf, size_t count)
5c45bf27
SS
9106{
9107 return sched_power_savings_store(buf, count, 1);
9108}
f718cd4a
AK
9109static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9110 sched_smt_power_savings_show,
6707de00
AB
9111 sched_smt_power_savings_store);
9112#endif
9113
39aac648 9114int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9115{
9116 int err = 0;
9117
9118#ifdef CONFIG_SCHED_SMT
9119 if (smt_capable())
9120 err = sysfs_create_file(&cls->kset.kobj,
9121 &attr_sched_smt_power_savings.attr);
9122#endif
9123#ifdef CONFIG_SCHED_MC
9124 if (!err && mc_capable())
9125 err = sysfs_create_file(&cls->kset.kobj,
9126 &attr_sched_mc_power_savings.attr);
9127#endif
9128 return err;
9129}
6d6bc0ad 9130#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9131
e761b772 9132#ifndef CONFIG_CPUSETS
1da177e4 9133/*
e761b772
MK
9134 * Add online and remove offline CPUs from the scheduler domains.
9135 * When cpusets are enabled they take over this function.
1da177e4
LT
9136 */
9137static int update_sched_domains(struct notifier_block *nfb,
9138 unsigned long action, void *hcpu)
e761b772
MK
9139{
9140 switch (action) {
9141 case CPU_ONLINE:
9142 case CPU_ONLINE_FROZEN:
9143 case CPU_DEAD:
9144 case CPU_DEAD_FROZEN:
dfb512ec 9145 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9146 return NOTIFY_OK;
9147
9148 default:
9149 return NOTIFY_DONE;
9150 }
9151}
9152#endif
9153
9154static int update_runtime(struct notifier_block *nfb,
9155 unsigned long action, void *hcpu)
1da177e4 9156{
7def2be1
PZ
9157 int cpu = (int)(long)hcpu;
9158
1da177e4 9159 switch (action) {
1da177e4 9160 case CPU_DOWN_PREPARE:
8bb78442 9161 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9162 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9163 return NOTIFY_OK;
9164
1da177e4 9165 case CPU_DOWN_FAILED:
8bb78442 9166 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9167 case CPU_ONLINE:
8bb78442 9168 case CPU_ONLINE_FROZEN:
7def2be1 9169 enable_runtime(cpu_rq(cpu));
e761b772
MK
9170 return NOTIFY_OK;
9171
1da177e4
LT
9172 default:
9173 return NOTIFY_DONE;
9174 }
1da177e4 9175}
1da177e4
LT
9176
9177void __init sched_init_smp(void)
9178{
dcc30a35
RR
9179 cpumask_var_t non_isolated_cpus;
9180
9181 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9182
434d53b0
MT
9183#if defined(CONFIG_NUMA)
9184 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9185 GFP_KERNEL);
9186 BUG_ON(sched_group_nodes_bycpu == NULL);
9187#endif
95402b38 9188 get_online_cpus();
712555ee 9189 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9190 arch_init_sched_domains(cpu_online_mask);
9191 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9192 if (cpumask_empty(non_isolated_cpus))
9193 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9194 mutex_unlock(&sched_domains_mutex);
95402b38 9195 put_online_cpus();
e761b772
MK
9196
9197#ifndef CONFIG_CPUSETS
1da177e4
LT
9198 /* XXX: Theoretical race here - CPU may be hotplugged now */
9199 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9200#endif
9201
9202 /* RT runtime code needs to handle some hotplug events */
9203 hotcpu_notifier(update_runtime, 0);
9204
b328ca18 9205 init_hrtick();
5c1e1767
NP
9206
9207 /* Move init over to a non-isolated CPU */
dcc30a35 9208 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9209 BUG();
19978ca6 9210 sched_init_granularity();
dcc30a35 9211 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9212
9213 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9214 init_sched_rt_class();
1da177e4
LT
9215}
9216#else
9217void __init sched_init_smp(void)
9218{
19978ca6 9219 sched_init_granularity();
1da177e4
LT
9220}
9221#endif /* CONFIG_SMP */
9222
cd1bb94b
AB
9223const_debug unsigned int sysctl_timer_migration = 1;
9224
1da177e4
LT
9225int in_sched_functions(unsigned long addr)
9226{
1da177e4
LT
9227 return in_lock_functions(addr) ||
9228 (addr >= (unsigned long)__sched_text_start
9229 && addr < (unsigned long)__sched_text_end);
9230}
9231
a9957449 9232static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9233{
9234 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9235 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9236#ifdef CONFIG_FAIR_GROUP_SCHED
9237 cfs_rq->rq = rq;
9238#endif
67e9fb2a 9239 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9240}
9241
fa85ae24
PZ
9242static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9243{
9244 struct rt_prio_array *array;
9245 int i;
9246
9247 array = &rt_rq->active;
9248 for (i = 0; i < MAX_RT_PRIO; i++) {
9249 INIT_LIST_HEAD(array->queue + i);
9250 __clear_bit(i, array->bitmap);
9251 }
9252 /* delimiter for bitsearch: */
9253 __set_bit(MAX_RT_PRIO, array->bitmap);
9254
052f1dc7 9255#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9256 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9257#ifdef CONFIG_SMP
e864c499 9258 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9259#endif
48d5e258 9260#endif
fa85ae24
PZ
9261#ifdef CONFIG_SMP
9262 rt_rq->rt_nr_migratory = 0;
fa85ae24 9263 rt_rq->overloaded = 0;
c20b08e3 9264 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9265#endif
9266
9267 rt_rq->rt_time = 0;
9268 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9269 rt_rq->rt_runtime = 0;
9270 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9271
052f1dc7 9272#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9273 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9274 rt_rq->rq = rq;
9275#endif
fa85ae24
PZ
9276}
9277
6f505b16 9278#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9279static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9280 struct sched_entity *se, int cpu, int add,
9281 struct sched_entity *parent)
6f505b16 9282{
ec7dc8ac 9283 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9284 tg->cfs_rq[cpu] = cfs_rq;
9285 init_cfs_rq(cfs_rq, rq);
9286 cfs_rq->tg = tg;
9287 if (add)
9288 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9289
9290 tg->se[cpu] = se;
354d60c2
DG
9291 /* se could be NULL for init_task_group */
9292 if (!se)
9293 return;
9294
ec7dc8ac
DG
9295 if (!parent)
9296 se->cfs_rq = &rq->cfs;
9297 else
9298 se->cfs_rq = parent->my_q;
9299
6f505b16
PZ
9300 se->my_q = cfs_rq;
9301 se->load.weight = tg->shares;
e05510d0 9302 se->load.inv_weight = 0;
ec7dc8ac 9303 se->parent = parent;
6f505b16 9304}
052f1dc7 9305#endif
6f505b16 9306
052f1dc7 9307#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9308static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9309 struct sched_rt_entity *rt_se, int cpu, int add,
9310 struct sched_rt_entity *parent)
6f505b16 9311{
ec7dc8ac
DG
9312 struct rq *rq = cpu_rq(cpu);
9313
6f505b16
PZ
9314 tg->rt_rq[cpu] = rt_rq;
9315 init_rt_rq(rt_rq, rq);
9316 rt_rq->tg = tg;
9317 rt_rq->rt_se = rt_se;
ac086bc2 9318 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9319 if (add)
9320 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9321
9322 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9323 if (!rt_se)
9324 return;
9325
ec7dc8ac
DG
9326 if (!parent)
9327 rt_se->rt_rq = &rq->rt;
9328 else
9329 rt_se->rt_rq = parent->my_q;
9330
6f505b16 9331 rt_se->my_q = rt_rq;
ec7dc8ac 9332 rt_se->parent = parent;
6f505b16
PZ
9333 INIT_LIST_HEAD(&rt_se->run_list);
9334}
9335#endif
9336
1da177e4
LT
9337void __init sched_init(void)
9338{
dd41f596 9339 int i, j;
434d53b0
MT
9340 unsigned long alloc_size = 0, ptr;
9341
9342#ifdef CONFIG_FAIR_GROUP_SCHED
9343 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9344#endif
9345#ifdef CONFIG_RT_GROUP_SCHED
9346 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9347#endif
9348#ifdef CONFIG_USER_SCHED
9349 alloc_size *= 2;
df7c8e84
RR
9350#endif
9351#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9352 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9353#endif
9354 /*
9355 * As sched_init() is called before page_alloc is setup,
9356 * we use alloc_bootmem().
9357 */
9358 if (alloc_size) {
36b7b6d4 9359 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9360
9361#ifdef CONFIG_FAIR_GROUP_SCHED
9362 init_task_group.se = (struct sched_entity **)ptr;
9363 ptr += nr_cpu_ids * sizeof(void **);
9364
9365 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9366 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9367
9368#ifdef CONFIG_USER_SCHED
9369 root_task_group.se = (struct sched_entity **)ptr;
9370 ptr += nr_cpu_ids * sizeof(void **);
9371
9372 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9373 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9374#endif /* CONFIG_USER_SCHED */
9375#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9376#ifdef CONFIG_RT_GROUP_SCHED
9377 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9378 ptr += nr_cpu_ids * sizeof(void **);
9379
9380 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9381 ptr += nr_cpu_ids * sizeof(void **);
9382
9383#ifdef CONFIG_USER_SCHED
9384 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9385 ptr += nr_cpu_ids * sizeof(void **);
9386
9387 root_task_group.rt_rq = (struct rt_rq **)ptr;
9388 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9389#endif /* CONFIG_USER_SCHED */
9390#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9391#ifdef CONFIG_CPUMASK_OFFSTACK
9392 for_each_possible_cpu(i) {
9393 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9394 ptr += cpumask_size();
9395 }
9396#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9397 }
dd41f596 9398
57d885fe
GH
9399#ifdef CONFIG_SMP
9400 init_defrootdomain();
9401#endif
9402
d0b27fa7
PZ
9403 init_rt_bandwidth(&def_rt_bandwidth,
9404 global_rt_period(), global_rt_runtime());
9405
9406#ifdef CONFIG_RT_GROUP_SCHED
9407 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9408 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9409#ifdef CONFIG_USER_SCHED
9410 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9411 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9412#endif /* CONFIG_USER_SCHED */
9413#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9414
052f1dc7 9415#ifdef CONFIG_GROUP_SCHED
6f505b16 9416 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9417 INIT_LIST_HEAD(&init_task_group.children);
9418
9419#ifdef CONFIG_USER_SCHED
9420 INIT_LIST_HEAD(&root_task_group.children);
9421 init_task_group.parent = &root_task_group;
9422 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9423#endif /* CONFIG_USER_SCHED */
9424#endif /* CONFIG_GROUP_SCHED */
6f505b16 9425
0a945022 9426 for_each_possible_cpu(i) {
70b97a7f 9427 struct rq *rq;
1da177e4
LT
9428
9429 rq = cpu_rq(i);
9430 spin_lock_init(&rq->lock);
7897986b 9431 rq->nr_running = 0;
dce48a84
TG
9432 rq->calc_load_active = 0;
9433 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9434 init_cfs_rq(&rq->cfs, rq);
6f505b16 9435 init_rt_rq(&rq->rt, rq);
dd41f596 9436#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9437 init_task_group.shares = init_task_group_load;
6f505b16 9438 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9439#ifdef CONFIG_CGROUP_SCHED
9440 /*
9441 * How much cpu bandwidth does init_task_group get?
9442 *
9443 * In case of task-groups formed thr' the cgroup filesystem, it
9444 * gets 100% of the cpu resources in the system. This overall
9445 * system cpu resource is divided among the tasks of
9446 * init_task_group and its child task-groups in a fair manner,
9447 * based on each entity's (task or task-group's) weight
9448 * (se->load.weight).
9449 *
9450 * In other words, if init_task_group has 10 tasks of weight
9451 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9452 * then A0's share of the cpu resource is:
9453 *
0d905bca 9454 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9455 *
9456 * We achieve this by letting init_task_group's tasks sit
9457 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9458 */
ec7dc8ac 9459 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9460#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9461 root_task_group.shares = NICE_0_LOAD;
9462 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9463 /*
9464 * In case of task-groups formed thr' the user id of tasks,
9465 * init_task_group represents tasks belonging to root user.
9466 * Hence it forms a sibling of all subsequent groups formed.
9467 * In this case, init_task_group gets only a fraction of overall
9468 * system cpu resource, based on the weight assigned to root
9469 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9470 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9471 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9472 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9473 */
ec7dc8ac 9474 init_tg_cfs_entry(&init_task_group,
84e9dabf 9475 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9476 &per_cpu(init_sched_entity, i), i, 1,
9477 root_task_group.se[i]);
6f505b16 9478
052f1dc7 9479#endif
354d60c2
DG
9480#endif /* CONFIG_FAIR_GROUP_SCHED */
9481
9482 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9483#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9484 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9485#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9486 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9487#elif defined CONFIG_USER_SCHED
eff766a6 9488 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9489 init_tg_rt_entry(&init_task_group,
6f505b16 9490 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9491 &per_cpu(init_sched_rt_entity, i), i, 1,
9492 root_task_group.rt_se[i]);
354d60c2 9493#endif
dd41f596 9494#endif
1da177e4 9495
dd41f596
IM
9496 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9497 rq->cpu_load[j] = 0;
1da177e4 9498#ifdef CONFIG_SMP
41c7ce9a 9499 rq->sd = NULL;
57d885fe 9500 rq->rd = NULL;
3f029d3c 9501 rq->post_schedule = 0;
1da177e4 9502 rq->active_balance = 0;
dd41f596 9503 rq->next_balance = jiffies;
1da177e4 9504 rq->push_cpu = 0;
0a2966b4 9505 rq->cpu = i;
1f11eb6a 9506 rq->online = 0;
1da177e4
LT
9507 rq->migration_thread = NULL;
9508 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9509 rq_attach_root(rq, &def_root_domain);
1da177e4 9510#endif
8f4d37ec 9511 init_rq_hrtick(rq);
1da177e4 9512 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9513 }
9514
2dd73a4f 9515 set_load_weight(&init_task);
b50f60ce 9516
e107be36
AK
9517#ifdef CONFIG_PREEMPT_NOTIFIERS
9518 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9519#endif
9520
c9819f45 9521#ifdef CONFIG_SMP
962cf36c 9522 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9523#endif
9524
b50f60ce
HC
9525#ifdef CONFIG_RT_MUTEXES
9526 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9527#endif
9528
1da177e4
LT
9529 /*
9530 * The boot idle thread does lazy MMU switching as well:
9531 */
9532 atomic_inc(&init_mm.mm_count);
9533 enter_lazy_tlb(&init_mm, current);
9534
9535 /*
9536 * Make us the idle thread. Technically, schedule() should not be
9537 * called from this thread, however somewhere below it might be,
9538 * but because we are the idle thread, we just pick up running again
9539 * when this runqueue becomes "idle".
9540 */
9541 init_idle(current, smp_processor_id());
dce48a84
TG
9542
9543 calc_load_update = jiffies + LOAD_FREQ;
9544
dd41f596
IM
9545 /*
9546 * During early bootup we pretend to be a normal task:
9547 */
9548 current->sched_class = &fair_sched_class;
6892b75e 9549
6a7b3dc3 9550 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9551 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9552#ifdef CONFIG_SMP
7d1e6a9b 9553#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9554 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9555 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9556#endif
4bdddf8f 9557 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9558#endif /* SMP */
6a7b3dc3 9559
0d905bca
IM
9560 perf_counter_init();
9561
6892b75e 9562 scheduler_running = 1;
1da177e4
LT
9563}
9564
9565#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9566static inline int preempt_count_equals(int preempt_offset)
9567{
9568 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9569
9570 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9571}
9572
9573void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9574{
48f24c4d 9575#ifdef in_atomic
1da177e4
LT
9576 static unsigned long prev_jiffy; /* ratelimiting */
9577
e4aafea2
FW
9578 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9579 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9580 return;
9581 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9582 return;
9583 prev_jiffy = jiffies;
9584
9585 printk(KERN_ERR
9586 "BUG: sleeping function called from invalid context at %s:%d\n",
9587 file, line);
9588 printk(KERN_ERR
9589 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9590 in_atomic(), irqs_disabled(),
9591 current->pid, current->comm);
9592
9593 debug_show_held_locks(current);
9594 if (irqs_disabled())
9595 print_irqtrace_events(current);
9596 dump_stack();
1da177e4
LT
9597#endif
9598}
9599EXPORT_SYMBOL(__might_sleep);
9600#endif
9601
9602#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9603static void normalize_task(struct rq *rq, struct task_struct *p)
9604{
9605 int on_rq;
3e51f33f 9606
3a5e4dc1
AK
9607 update_rq_clock(rq);
9608 on_rq = p->se.on_rq;
9609 if (on_rq)
9610 deactivate_task(rq, p, 0);
9611 __setscheduler(rq, p, SCHED_NORMAL, 0);
9612 if (on_rq) {
9613 activate_task(rq, p, 0);
9614 resched_task(rq->curr);
9615 }
9616}
9617
1da177e4
LT
9618void normalize_rt_tasks(void)
9619{
a0f98a1c 9620 struct task_struct *g, *p;
1da177e4 9621 unsigned long flags;
70b97a7f 9622 struct rq *rq;
1da177e4 9623
4cf5d77a 9624 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9625 do_each_thread(g, p) {
178be793
IM
9626 /*
9627 * Only normalize user tasks:
9628 */
9629 if (!p->mm)
9630 continue;
9631
6cfb0d5d 9632 p->se.exec_start = 0;
6cfb0d5d 9633#ifdef CONFIG_SCHEDSTATS
dd41f596 9634 p->se.wait_start = 0;
dd41f596 9635 p->se.sleep_start = 0;
dd41f596 9636 p->se.block_start = 0;
6cfb0d5d 9637#endif
dd41f596
IM
9638
9639 if (!rt_task(p)) {
9640 /*
9641 * Renice negative nice level userspace
9642 * tasks back to 0:
9643 */
9644 if (TASK_NICE(p) < 0 && p->mm)
9645 set_user_nice(p, 0);
1da177e4 9646 continue;
dd41f596 9647 }
1da177e4 9648
4cf5d77a 9649 spin_lock(&p->pi_lock);
b29739f9 9650 rq = __task_rq_lock(p);
1da177e4 9651
178be793 9652 normalize_task(rq, p);
3a5e4dc1 9653
b29739f9 9654 __task_rq_unlock(rq);
4cf5d77a 9655 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9656 } while_each_thread(g, p);
9657
4cf5d77a 9658 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9659}
9660
9661#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9662
9663#ifdef CONFIG_IA64
9664/*
9665 * These functions are only useful for the IA64 MCA handling.
9666 *
9667 * They can only be called when the whole system has been
9668 * stopped - every CPU needs to be quiescent, and no scheduling
9669 * activity can take place. Using them for anything else would
9670 * be a serious bug, and as a result, they aren't even visible
9671 * under any other configuration.
9672 */
9673
9674/**
9675 * curr_task - return the current task for a given cpu.
9676 * @cpu: the processor in question.
9677 *
9678 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9679 */
36c8b586 9680struct task_struct *curr_task(int cpu)
1df5c10a
LT
9681{
9682 return cpu_curr(cpu);
9683}
9684
9685/**
9686 * set_curr_task - set the current task for a given cpu.
9687 * @cpu: the processor in question.
9688 * @p: the task pointer to set.
9689 *
9690 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9691 * are serviced on a separate stack. It allows the architecture to switch the
9692 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9693 * must be called with all CPU's synchronized, and interrupts disabled, the
9694 * and caller must save the original value of the current task (see
9695 * curr_task() above) and restore that value before reenabling interrupts and
9696 * re-starting the system.
9697 *
9698 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9699 */
36c8b586 9700void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9701{
9702 cpu_curr(cpu) = p;
9703}
9704
9705#endif
29f59db3 9706
bccbe08a
PZ
9707#ifdef CONFIG_FAIR_GROUP_SCHED
9708static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9709{
9710 int i;
9711
9712 for_each_possible_cpu(i) {
9713 if (tg->cfs_rq)
9714 kfree(tg->cfs_rq[i]);
9715 if (tg->se)
9716 kfree(tg->se[i]);
6f505b16
PZ
9717 }
9718
9719 kfree(tg->cfs_rq);
9720 kfree(tg->se);
6f505b16
PZ
9721}
9722
ec7dc8ac
DG
9723static
9724int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9725{
29f59db3 9726 struct cfs_rq *cfs_rq;
eab17229 9727 struct sched_entity *se;
9b5b7751 9728 struct rq *rq;
29f59db3
SV
9729 int i;
9730
434d53b0 9731 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9732 if (!tg->cfs_rq)
9733 goto err;
434d53b0 9734 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9735 if (!tg->se)
9736 goto err;
052f1dc7
PZ
9737
9738 tg->shares = NICE_0_LOAD;
29f59db3
SV
9739
9740 for_each_possible_cpu(i) {
9b5b7751 9741 rq = cpu_rq(i);
29f59db3 9742
eab17229
LZ
9743 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9744 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9745 if (!cfs_rq)
9746 goto err;
9747
eab17229
LZ
9748 se = kzalloc_node(sizeof(struct sched_entity),
9749 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9750 if (!se)
9751 goto err;
9752
eab17229 9753 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9754 }
9755
9756 return 1;
9757
9758 err:
9759 return 0;
9760}
9761
9762static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9763{
9764 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9765 &cpu_rq(cpu)->leaf_cfs_rq_list);
9766}
9767
9768static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9769{
9770 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9771}
6d6bc0ad 9772#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9773static inline void free_fair_sched_group(struct task_group *tg)
9774{
9775}
9776
ec7dc8ac
DG
9777static inline
9778int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9779{
9780 return 1;
9781}
9782
9783static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9784{
9785}
9786
9787static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9788{
9789}
6d6bc0ad 9790#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9791
9792#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9793static void free_rt_sched_group(struct task_group *tg)
9794{
9795 int i;
9796
d0b27fa7
PZ
9797 destroy_rt_bandwidth(&tg->rt_bandwidth);
9798
bccbe08a
PZ
9799 for_each_possible_cpu(i) {
9800 if (tg->rt_rq)
9801 kfree(tg->rt_rq[i]);
9802 if (tg->rt_se)
9803 kfree(tg->rt_se[i]);
9804 }
9805
9806 kfree(tg->rt_rq);
9807 kfree(tg->rt_se);
9808}
9809
ec7dc8ac
DG
9810static
9811int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9812{
9813 struct rt_rq *rt_rq;
eab17229 9814 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9815 struct rq *rq;
9816 int i;
9817
434d53b0 9818 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9819 if (!tg->rt_rq)
9820 goto err;
434d53b0 9821 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9822 if (!tg->rt_se)
9823 goto err;
9824
d0b27fa7
PZ
9825 init_rt_bandwidth(&tg->rt_bandwidth,
9826 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9827
9828 for_each_possible_cpu(i) {
9829 rq = cpu_rq(i);
9830
eab17229
LZ
9831 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9832 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9833 if (!rt_rq)
9834 goto err;
29f59db3 9835
eab17229
LZ
9836 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9837 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9838 if (!rt_se)
9839 goto err;
29f59db3 9840
eab17229 9841 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9842 }
9843
bccbe08a
PZ
9844 return 1;
9845
9846 err:
9847 return 0;
9848}
9849
9850static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9851{
9852 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9853 &cpu_rq(cpu)->leaf_rt_rq_list);
9854}
9855
9856static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9857{
9858 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9859}
6d6bc0ad 9860#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9861static inline void free_rt_sched_group(struct task_group *tg)
9862{
9863}
9864
ec7dc8ac
DG
9865static inline
9866int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9867{
9868 return 1;
9869}
9870
9871static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9872{
9873}
9874
9875static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9876{
9877}
6d6bc0ad 9878#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9879
d0b27fa7 9880#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9881static void free_sched_group(struct task_group *tg)
9882{
9883 free_fair_sched_group(tg);
9884 free_rt_sched_group(tg);
9885 kfree(tg);
9886}
9887
9888/* allocate runqueue etc for a new task group */
ec7dc8ac 9889struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9890{
9891 struct task_group *tg;
9892 unsigned long flags;
9893 int i;
9894
9895 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9896 if (!tg)
9897 return ERR_PTR(-ENOMEM);
9898
ec7dc8ac 9899 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9900 goto err;
9901
ec7dc8ac 9902 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9903 goto err;
9904
8ed36996 9905 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9906 for_each_possible_cpu(i) {
bccbe08a
PZ
9907 register_fair_sched_group(tg, i);
9908 register_rt_sched_group(tg, i);
9b5b7751 9909 }
6f505b16 9910 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9911
9912 WARN_ON(!parent); /* root should already exist */
9913
9914 tg->parent = parent;
f473aa5e 9915 INIT_LIST_HEAD(&tg->children);
09f2724a 9916 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9917 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9918
9b5b7751 9919 return tg;
29f59db3
SV
9920
9921err:
6f505b16 9922 free_sched_group(tg);
29f59db3
SV
9923 return ERR_PTR(-ENOMEM);
9924}
9925
9b5b7751 9926/* rcu callback to free various structures associated with a task group */
6f505b16 9927static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9928{
29f59db3 9929 /* now it should be safe to free those cfs_rqs */
6f505b16 9930 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9931}
9932
9b5b7751 9933/* Destroy runqueue etc associated with a task group */
4cf86d77 9934void sched_destroy_group(struct task_group *tg)
29f59db3 9935{
8ed36996 9936 unsigned long flags;
9b5b7751 9937 int i;
29f59db3 9938
8ed36996 9939 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9940 for_each_possible_cpu(i) {
bccbe08a
PZ
9941 unregister_fair_sched_group(tg, i);
9942 unregister_rt_sched_group(tg, i);
9b5b7751 9943 }
6f505b16 9944 list_del_rcu(&tg->list);
f473aa5e 9945 list_del_rcu(&tg->siblings);
8ed36996 9946 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9947
9b5b7751 9948 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9949 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9950}
9951
9b5b7751 9952/* change task's runqueue when it moves between groups.
3a252015
IM
9953 * The caller of this function should have put the task in its new group
9954 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9955 * reflect its new group.
9b5b7751
SV
9956 */
9957void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9958{
9959 int on_rq, running;
9960 unsigned long flags;
9961 struct rq *rq;
9962
9963 rq = task_rq_lock(tsk, &flags);
9964
29f59db3
SV
9965 update_rq_clock(rq);
9966
051a1d1a 9967 running = task_current(rq, tsk);
29f59db3
SV
9968 on_rq = tsk->se.on_rq;
9969
0e1f3483 9970 if (on_rq)
29f59db3 9971 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9972 if (unlikely(running))
9973 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9974
6f505b16 9975 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9976
810b3817
PZ
9977#ifdef CONFIG_FAIR_GROUP_SCHED
9978 if (tsk->sched_class->moved_group)
9979 tsk->sched_class->moved_group(tsk);
9980#endif
9981
0e1f3483
HS
9982 if (unlikely(running))
9983 tsk->sched_class->set_curr_task(rq);
9984 if (on_rq)
7074badb 9985 enqueue_task(rq, tsk, 0);
29f59db3 9986
29f59db3
SV
9987 task_rq_unlock(rq, &flags);
9988}
6d6bc0ad 9989#endif /* CONFIG_GROUP_SCHED */
29f59db3 9990
052f1dc7 9991#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9992static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9993{
9994 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9995 int on_rq;
9996
29f59db3 9997 on_rq = se->on_rq;
62fb1851 9998 if (on_rq)
29f59db3
SV
9999 dequeue_entity(cfs_rq, se, 0);
10000
10001 se->load.weight = shares;
e05510d0 10002 se->load.inv_weight = 0;
29f59db3 10003
62fb1851 10004 if (on_rq)
29f59db3 10005 enqueue_entity(cfs_rq, se, 0);
c09595f6 10006}
62fb1851 10007
c09595f6
PZ
10008static void set_se_shares(struct sched_entity *se, unsigned long shares)
10009{
10010 struct cfs_rq *cfs_rq = se->cfs_rq;
10011 struct rq *rq = cfs_rq->rq;
10012 unsigned long flags;
10013
10014 spin_lock_irqsave(&rq->lock, flags);
10015 __set_se_shares(se, shares);
10016 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10017}
10018
8ed36996
PZ
10019static DEFINE_MUTEX(shares_mutex);
10020
4cf86d77 10021int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10022{
10023 int i;
8ed36996 10024 unsigned long flags;
c61935fd 10025
ec7dc8ac
DG
10026 /*
10027 * We can't change the weight of the root cgroup.
10028 */
10029 if (!tg->se[0])
10030 return -EINVAL;
10031
18d95a28
PZ
10032 if (shares < MIN_SHARES)
10033 shares = MIN_SHARES;
cb4ad1ff
MX
10034 else if (shares > MAX_SHARES)
10035 shares = MAX_SHARES;
62fb1851 10036
8ed36996 10037 mutex_lock(&shares_mutex);
9b5b7751 10038 if (tg->shares == shares)
5cb350ba 10039 goto done;
29f59db3 10040
8ed36996 10041 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10042 for_each_possible_cpu(i)
10043 unregister_fair_sched_group(tg, i);
f473aa5e 10044 list_del_rcu(&tg->siblings);
8ed36996 10045 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10046
10047 /* wait for any ongoing reference to this group to finish */
10048 synchronize_sched();
10049
10050 /*
10051 * Now we are free to modify the group's share on each cpu
10052 * w/o tripping rebalance_share or load_balance_fair.
10053 */
9b5b7751 10054 tg->shares = shares;
c09595f6
PZ
10055 for_each_possible_cpu(i) {
10056 /*
10057 * force a rebalance
10058 */
10059 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10060 set_se_shares(tg->se[i], shares);
c09595f6 10061 }
29f59db3 10062
6b2d7700
SV
10063 /*
10064 * Enable load balance activity on this group, by inserting it back on
10065 * each cpu's rq->leaf_cfs_rq_list.
10066 */
8ed36996 10067 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10068 for_each_possible_cpu(i)
10069 register_fair_sched_group(tg, i);
f473aa5e 10070 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10071 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10072done:
8ed36996 10073 mutex_unlock(&shares_mutex);
9b5b7751 10074 return 0;
29f59db3
SV
10075}
10076
5cb350ba
DG
10077unsigned long sched_group_shares(struct task_group *tg)
10078{
10079 return tg->shares;
10080}
052f1dc7 10081#endif
5cb350ba 10082
052f1dc7 10083#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10084/*
9f0c1e56 10085 * Ensure that the real time constraints are schedulable.
6f505b16 10086 */
9f0c1e56
PZ
10087static DEFINE_MUTEX(rt_constraints_mutex);
10088
10089static unsigned long to_ratio(u64 period, u64 runtime)
10090{
10091 if (runtime == RUNTIME_INF)
9a7e0b18 10092 return 1ULL << 20;
9f0c1e56 10093
9a7e0b18 10094 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10095}
10096
9a7e0b18
PZ
10097/* Must be called with tasklist_lock held */
10098static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10099{
9a7e0b18 10100 struct task_struct *g, *p;
b40b2e8e 10101
9a7e0b18
PZ
10102 do_each_thread(g, p) {
10103 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10104 return 1;
10105 } while_each_thread(g, p);
b40b2e8e 10106
9a7e0b18
PZ
10107 return 0;
10108}
b40b2e8e 10109
9a7e0b18
PZ
10110struct rt_schedulable_data {
10111 struct task_group *tg;
10112 u64 rt_period;
10113 u64 rt_runtime;
10114};
b40b2e8e 10115
9a7e0b18
PZ
10116static int tg_schedulable(struct task_group *tg, void *data)
10117{
10118 struct rt_schedulable_data *d = data;
10119 struct task_group *child;
10120 unsigned long total, sum = 0;
10121 u64 period, runtime;
b40b2e8e 10122
9a7e0b18
PZ
10123 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10124 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10125
9a7e0b18
PZ
10126 if (tg == d->tg) {
10127 period = d->rt_period;
10128 runtime = d->rt_runtime;
b40b2e8e 10129 }
b40b2e8e 10130
98a4826b
PZ
10131#ifdef CONFIG_USER_SCHED
10132 if (tg == &root_task_group) {
10133 period = global_rt_period();
10134 runtime = global_rt_runtime();
10135 }
10136#endif
10137
4653f803
PZ
10138 /*
10139 * Cannot have more runtime than the period.
10140 */
10141 if (runtime > period && runtime != RUNTIME_INF)
10142 return -EINVAL;
6f505b16 10143
4653f803
PZ
10144 /*
10145 * Ensure we don't starve existing RT tasks.
10146 */
9a7e0b18
PZ
10147 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10148 return -EBUSY;
6f505b16 10149
9a7e0b18 10150 total = to_ratio(period, runtime);
6f505b16 10151
4653f803
PZ
10152 /*
10153 * Nobody can have more than the global setting allows.
10154 */
10155 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10156 return -EINVAL;
6f505b16 10157
4653f803
PZ
10158 /*
10159 * The sum of our children's runtime should not exceed our own.
10160 */
9a7e0b18
PZ
10161 list_for_each_entry_rcu(child, &tg->children, siblings) {
10162 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10163 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10164
9a7e0b18
PZ
10165 if (child == d->tg) {
10166 period = d->rt_period;
10167 runtime = d->rt_runtime;
10168 }
6f505b16 10169
9a7e0b18 10170 sum += to_ratio(period, runtime);
9f0c1e56 10171 }
6f505b16 10172
9a7e0b18
PZ
10173 if (sum > total)
10174 return -EINVAL;
10175
10176 return 0;
6f505b16
PZ
10177}
10178
9a7e0b18 10179static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10180{
9a7e0b18
PZ
10181 struct rt_schedulable_data data = {
10182 .tg = tg,
10183 .rt_period = period,
10184 .rt_runtime = runtime,
10185 };
10186
10187 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10188}
10189
d0b27fa7
PZ
10190static int tg_set_bandwidth(struct task_group *tg,
10191 u64 rt_period, u64 rt_runtime)
6f505b16 10192{
ac086bc2 10193 int i, err = 0;
9f0c1e56 10194
9f0c1e56 10195 mutex_lock(&rt_constraints_mutex);
521f1a24 10196 read_lock(&tasklist_lock);
9a7e0b18
PZ
10197 err = __rt_schedulable(tg, rt_period, rt_runtime);
10198 if (err)
9f0c1e56 10199 goto unlock;
ac086bc2
PZ
10200
10201 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10202 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10203 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10204
10205 for_each_possible_cpu(i) {
10206 struct rt_rq *rt_rq = tg->rt_rq[i];
10207
10208 spin_lock(&rt_rq->rt_runtime_lock);
10209 rt_rq->rt_runtime = rt_runtime;
10210 spin_unlock(&rt_rq->rt_runtime_lock);
10211 }
10212 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10213 unlock:
521f1a24 10214 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10215 mutex_unlock(&rt_constraints_mutex);
10216
10217 return err;
6f505b16
PZ
10218}
10219
d0b27fa7
PZ
10220int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10221{
10222 u64 rt_runtime, rt_period;
10223
10224 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10225 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10226 if (rt_runtime_us < 0)
10227 rt_runtime = RUNTIME_INF;
10228
10229 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10230}
10231
9f0c1e56
PZ
10232long sched_group_rt_runtime(struct task_group *tg)
10233{
10234 u64 rt_runtime_us;
10235
d0b27fa7 10236 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10237 return -1;
10238
d0b27fa7 10239 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10240 do_div(rt_runtime_us, NSEC_PER_USEC);
10241 return rt_runtime_us;
10242}
d0b27fa7
PZ
10243
10244int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10245{
10246 u64 rt_runtime, rt_period;
10247
10248 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10249 rt_runtime = tg->rt_bandwidth.rt_runtime;
10250
619b0488
R
10251 if (rt_period == 0)
10252 return -EINVAL;
10253
d0b27fa7
PZ
10254 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10255}
10256
10257long sched_group_rt_period(struct task_group *tg)
10258{
10259 u64 rt_period_us;
10260
10261 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10262 do_div(rt_period_us, NSEC_PER_USEC);
10263 return rt_period_us;
10264}
10265
10266static int sched_rt_global_constraints(void)
10267{
4653f803 10268 u64 runtime, period;
d0b27fa7
PZ
10269 int ret = 0;
10270
ec5d4989
HS
10271 if (sysctl_sched_rt_period <= 0)
10272 return -EINVAL;
10273
4653f803
PZ
10274 runtime = global_rt_runtime();
10275 period = global_rt_period();
10276
10277 /*
10278 * Sanity check on the sysctl variables.
10279 */
10280 if (runtime > period && runtime != RUNTIME_INF)
10281 return -EINVAL;
10b612f4 10282
d0b27fa7 10283 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10284 read_lock(&tasklist_lock);
4653f803 10285 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10286 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10287 mutex_unlock(&rt_constraints_mutex);
10288
10289 return ret;
10290}
54e99124
DG
10291
10292int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10293{
10294 /* Don't accept realtime tasks when there is no way for them to run */
10295 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10296 return 0;
10297
10298 return 1;
10299}
10300
6d6bc0ad 10301#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10302static int sched_rt_global_constraints(void)
10303{
ac086bc2
PZ
10304 unsigned long flags;
10305 int i;
10306
ec5d4989
HS
10307 if (sysctl_sched_rt_period <= 0)
10308 return -EINVAL;
10309
60aa605d
PZ
10310 /*
10311 * There's always some RT tasks in the root group
10312 * -- migration, kstopmachine etc..
10313 */
10314 if (sysctl_sched_rt_runtime == 0)
10315 return -EBUSY;
10316
ac086bc2
PZ
10317 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10318 for_each_possible_cpu(i) {
10319 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10320
10321 spin_lock(&rt_rq->rt_runtime_lock);
10322 rt_rq->rt_runtime = global_rt_runtime();
10323 spin_unlock(&rt_rq->rt_runtime_lock);
10324 }
10325 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10326
d0b27fa7
PZ
10327 return 0;
10328}
6d6bc0ad 10329#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10330
10331int sched_rt_handler(struct ctl_table *table, int write,
10332 struct file *filp, void __user *buffer, size_t *lenp,
10333 loff_t *ppos)
10334{
10335 int ret;
10336 int old_period, old_runtime;
10337 static DEFINE_MUTEX(mutex);
10338
10339 mutex_lock(&mutex);
10340 old_period = sysctl_sched_rt_period;
10341 old_runtime = sysctl_sched_rt_runtime;
10342
10343 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10344
10345 if (!ret && write) {
10346 ret = sched_rt_global_constraints();
10347 if (ret) {
10348 sysctl_sched_rt_period = old_period;
10349 sysctl_sched_rt_runtime = old_runtime;
10350 } else {
10351 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10352 def_rt_bandwidth.rt_period =
10353 ns_to_ktime(global_rt_period());
10354 }
10355 }
10356 mutex_unlock(&mutex);
10357
10358 return ret;
10359}
68318b8e 10360
052f1dc7 10361#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10362
10363/* return corresponding task_group object of a cgroup */
2b01dfe3 10364static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10365{
2b01dfe3
PM
10366 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10367 struct task_group, css);
68318b8e
SV
10368}
10369
10370static struct cgroup_subsys_state *
2b01dfe3 10371cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10372{
ec7dc8ac 10373 struct task_group *tg, *parent;
68318b8e 10374
2b01dfe3 10375 if (!cgrp->parent) {
68318b8e 10376 /* This is early initialization for the top cgroup */
68318b8e
SV
10377 return &init_task_group.css;
10378 }
10379
ec7dc8ac
DG
10380 parent = cgroup_tg(cgrp->parent);
10381 tg = sched_create_group(parent);
68318b8e
SV
10382 if (IS_ERR(tg))
10383 return ERR_PTR(-ENOMEM);
10384
68318b8e
SV
10385 return &tg->css;
10386}
10387
41a2d6cf
IM
10388static void
10389cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10390{
2b01dfe3 10391 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10392
10393 sched_destroy_group(tg);
10394}
10395
41a2d6cf
IM
10396static int
10397cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10398 struct task_struct *tsk)
68318b8e 10399{
b68aa230 10400#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10401 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10402 return -EINVAL;
10403#else
68318b8e
SV
10404 /* We don't support RT-tasks being in separate groups */
10405 if (tsk->sched_class != &fair_sched_class)
10406 return -EINVAL;
b68aa230 10407#endif
68318b8e
SV
10408
10409 return 0;
10410}
10411
10412static void
2b01dfe3 10413cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10414 struct cgroup *old_cont, struct task_struct *tsk)
10415{
10416 sched_move_task(tsk);
10417}
10418
052f1dc7 10419#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10420static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10421 u64 shareval)
68318b8e 10422{
2b01dfe3 10423 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10424}
10425
f4c753b7 10426static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10427{
2b01dfe3 10428 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10429
10430 return (u64) tg->shares;
10431}
6d6bc0ad 10432#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10433
052f1dc7 10434#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10435static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10436 s64 val)
6f505b16 10437{
06ecb27c 10438 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10439}
10440
06ecb27c 10441static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10442{
06ecb27c 10443 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10444}
d0b27fa7
PZ
10445
10446static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10447 u64 rt_period_us)
10448{
10449 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10450}
10451
10452static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10453{
10454 return sched_group_rt_period(cgroup_tg(cgrp));
10455}
6d6bc0ad 10456#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10457
fe5c7cc2 10458static struct cftype cpu_files[] = {
052f1dc7 10459#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10460 {
10461 .name = "shares",
f4c753b7
PM
10462 .read_u64 = cpu_shares_read_u64,
10463 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10464 },
052f1dc7
PZ
10465#endif
10466#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10467 {
9f0c1e56 10468 .name = "rt_runtime_us",
06ecb27c
PM
10469 .read_s64 = cpu_rt_runtime_read,
10470 .write_s64 = cpu_rt_runtime_write,
6f505b16 10471 },
d0b27fa7
PZ
10472 {
10473 .name = "rt_period_us",
f4c753b7
PM
10474 .read_u64 = cpu_rt_period_read_uint,
10475 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10476 },
052f1dc7 10477#endif
68318b8e
SV
10478};
10479
10480static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10481{
fe5c7cc2 10482 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10483}
10484
10485struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10486 .name = "cpu",
10487 .create = cpu_cgroup_create,
10488 .destroy = cpu_cgroup_destroy,
10489 .can_attach = cpu_cgroup_can_attach,
10490 .attach = cpu_cgroup_attach,
10491 .populate = cpu_cgroup_populate,
10492 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10493 .early_init = 1,
10494};
10495
052f1dc7 10496#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10497
10498#ifdef CONFIG_CGROUP_CPUACCT
10499
10500/*
10501 * CPU accounting code for task groups.
10502 *
10503 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10504 * (balbir@in.ibm.com).
10505 */
10506
934352f2 10507/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10508struct cpuacct {
10509 struct cgroup_subsys_state css;
10510 /* cpuusage holds pointer to a u64-type object on every cpu */
10511 u64 *cpuusage;
ef12fefa 10512 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10513 struct cpuacct *parent;
d842de87
SV
10514};
10515
10516struct cgroup_subsys cpuacct_subsys;
10517
10518/* return cpu accounting group corresponding to this container */
32cd756a 10519static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10520{
32cd756a 10521 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10522 struct cpuacct, css);
10523}
10524
10525/* return cpu accounting group to which this task belongs */
10526static inline struct cpuacct *task_ca(struct task_struct *tsk)
10527{
10528 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10529 struct cpuacct, css);
10530}
10531
10532/* create a new cpu accounting group */
10533static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10534 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10535{
10536 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10537 int i;
d842de87
SV
10538
10539 if (!ca)
ef12fefa 10540 goto out;
d842de87
SV
10541
10542 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10543 if (!ca->cpuusage)
10544 goto out_free_ca;
10545
10546 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10547 if (percpu_counter_init(&ca->cpustat[i], 0))
10548 goto out_free_counters;
d842de87 10549
934352f2
BR
10550 if (cgrp->parent)
10551 ca->parent = cgroup_ca(cgrp->parent);
10552
d842de87 10553 return &ca->css;
ef12fefa
BR
10554
10555out_free_counters:
10556 while (--i >= 0)
10557 percpu_counter_destroy(&ca->cpustat[i]);
10558 free_percpu(ca->cpuusage);
10559out_free_ca:
10560 kfree(ca);
10561out:
10562 return ERR_PTR(-ENOMEM);
d842de87
SV
10563}
10564
10565/* destroy an existing cpu accounting group */
41a2d6cf 10566static void
32cd756a 10567cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10568{
32cd756a 10569 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10570 int i;
d842de87 10571
ef12fefa
BR
10572 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10573 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10574 free_percpu(ca->cpuusage);
10575 kfree(ca);
10576}
10577
720f5498
KC
10578static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10579{
b36128c8 10580 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10581 u64 data;
10582
10583#ifndef CONFIG_64BIT
10584 /*
10585 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10586 */
10587 spin_lock_irq(&cpu_rq(cpu)->lock);
10588 data = *cpuusage;
10589 spin_unlock_irq(&cpu_rq(cpu)->lock);
10590#else
10591 data = *cpuusage;
10592#endif
10593
10594 return data;
10595}
10596
10597static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10598{
b36128c8 10599 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10600
10601#ifndef CONFIG_64BIT
10602 /*
10603 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10604 */
10605 spin_lock_irq(&cpu_rq(cpu)->lock);
10606 *cpuusage = val;
10607 spin_unlock_irq(&cpu_rq(cpu)->lock);
10608#else
10609 *cpuusage = val;
10610#endif
10611}
10612
d842de87 10613/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10614static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10615{
32cd756a 10616 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10617 u64 totalcpuusage = 0;
10618 int i;
10619
720f5498
KC
10620 for_each_present_cpu(i)
10621 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10622
10623 return totalcpuusage;
10624}
10625
0297b803
DG
10626static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10627 u64 reset)
10628{
10629 struct cpuacct *ca = cgroup_ca(cgrp);
10630 int err = 0;
10631 int i;
10632
10633 if (reset) {
10634 err = -EINVAL;
10635 goto out;
10636 }
10637
720f5498
KC
10638 for_each_present_cpu(i)
10639 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10640
0297b803
DG
10641out:
10642 return err;
10643}
10644
e9515c3c
KC
10645static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10646 struct seq_file *m)
10647{
10648 struct cpuacct *ca = cgroup_ca(cgroup);
10649 u64 percpu;
10650 int i;
10651
10652 for_each_present_cpu(i) {
10653 percpu = cpuacct_cpuusage_read(ca, i);
10654 seq_printf(m, "%llu ", (unsigned long long) percpu);
10655 }
10656 seq_printf(m, "\n");
10657 return 0;
10658}
10659
ef12fefa
BR
10660static const char *cpuacct_stat_desc[] = {
10661 [CPUACCT_STAT_USER] = "user",
10662 [CPUACCT_STAT_SYSTEM] = "system",
10663};
10664
10665static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10666 struct cgroup_map_cb *cb)
10667{
10668 struct cpuacct *ca = cgroup_ca(cgrp);
10669 int i;
10670
10671 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10672 s64 val = percpu_counter_read(&ca->cpustat[i]);
10673 val = cputime64_to_clock_t(val);
10674 cb->fill(cb, cpuacct_stat_desc[i], val);
10675 }
10676 return 0;
10677}
10678
d842de87
SV
10679static struct cftype files[] = {
10680 {
10681 .name = "usage",
f4c753b7
PM
10682 .read_u64 = cpuusage_read,
10683 .write_u64 = cpuusage_write,
d842de87 10684 },
e9515c3c
KC
10685 {
10686 .name = "usage_percpu",
10687 .read_seq_string = cpuacct_percpu_seq_read,
10688 },
ef12fefa
BR
10689 {
10690 .name = "stat",
10691 .read_map = cpuacct_stats_show,
10692 },
d842de87
SV
10693};
10694
32cd756a 10695static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10696{
32cd756a 10697 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10698}
10699
10700/*
10701 * charge this task's execution time to its accounting group.
10702 *
10703 * called with rq->lock held.
10704 */
10705static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10706{
10707 struct cpuacct *ca;
934352f2 10708 int cpu;
d842de87 10709
c40c6f85 10710 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10711 return;
10712
934352f2 10713 cpu = task_cpu(tsk);
a18b83b7
BR
10714
10715 rcu_read_lock();
10716
d842de87 10717 ca = task_ca(tsk);
d842de87 10718
934352f2 10719 for (; ca; ca = ca->parent) {
b36128c8 10720 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10721 *cpuusage += cputime;
10722 }
a18b83b7
BR
10723
10724 rcu_read_unlock();
d842de87
SV
10725}
10726
ef12fefa
BR
10727/*
10728 * Charge the system/user time to the task's accounting group.
10729 */
10730static void cpuacct_update_stats(struct task_struct *tsk,
10731 enum cpuacct_stat_index idx, cputime_t val)
10732{
10733 struct cpuacct *ca;
10734
10735 if (unlikely(!cpuacct_subsys.active))
10736 return;
10737
10738 rcu_read_lock();
10739 ca = task_ca(tsk);
10740
10741 do {
10742 percpu_counter_add(&ca->cpustat[idx], val);
10743 ca = ca->parent;
10744 } while (ca);
10745 rcu_read_unlock();
10746}
10747
d842de87
SV
10748struct cgroup_subsys cpuacct_subsys = {
10749 .name = "cpuacct",
10750 .create = cpuacct_create,
10751 .destroy = cpuacct_destroy,
10752 .populate = cpuacct_populate,
10753 .subsys_id = cpuacct_subsys_id,
10754};
10755#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10756
10757#ifndef CONFIG_SMP
10758
10759int rcu_expedited_torture_stats(char *page)
10760{
10761 return 0;
10762}
10763EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10764
10765void synchronize_sched_expedited(void)
10766{
10767}
10768EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10769
10770#else /* #ifndef CONFIG_SMP */
10771
10772static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10773static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10774
10775#define RCU_EXPEDITED_STATE_POST -2
10776#define RCU_EXPEDITED_STATE_IDLE -1
10777
10778static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10779
10780int rcu_expedited_torture_stats(char *page)
10781{
10782 int cnt = 0;
10783 int cpu;
10784
10785 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10786 for_each_online_cpu(cpu) {
10787 cnt += sprintf(&page[cnt], " %d:%d",
10788 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10789 }
10790 cnt += sprintf(&page[cnt], "\n");
10791 return cnt;
10792}
10793EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10794
10795static long synchronize_sched_expedited_count;
10796
10797/*
10798 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10799 * approach to force grace period to end quickly. This consumes
10800 * significant time on all CPUs, and is thus not recommended for
10801 * any sort of common-case code.
10802 *
10803 * Note that it is illegal to call this function while holding any
10804 * lock that is acquired by a CPU-hotplug notifier. Failing to
10805 * observe this restriction will result in deadlock.
10806 */
10807void synchronize_sched_expedited(void)
10808{
10809 int cpu;
10810 unsigned long flags;
10811 bool need_full_sync = 0;
10812 struct rq *rq;
10813 struct migration_req *req;
10814 long snap;
10815 int trycount = 0;
10816
10817 smp_mb(); /* ensure prior mod happens before capturing snap. */
10818 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10819 get_online_cpus();
10820 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10821 put_online_cpus();
10822 if (trycount++ < 10)
10823 udelay(trycount * num_online_cpus());
10824 else {
10825 synchronize_sched();
10826 return;
10827 }
10828 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10829 smp_mb(); /* ensure test happens before caller kfree */
10830 return;
10831 }
10832 get_online_cpus();
10833 }
10834 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10835 for_each_online_cpu(cpu) {
10836 rq = cpu_rq(cpu);
10837 req = &per_cpu(rcu_migration_req, cpu);
10838 init_completion(&req->done);
10839 req->task = NULL;
10840 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10841 spin_lock_irqsave(&rq->lock, flags);
10842 list_add(&req->list, &rq->migration_queue);
10843 spin_unlock_irqrestore(&rq->lock, flags);
10844 wake_up_process(rq->migration_thread);
10845 }
10846 for_each_online_cpu(cpu) {
10847 rcu_expedited_state = cpu;
10848 req = &per_cpu(rcu_migration_req, cpu);
10849 rq = cpu_rq(cpu);
10850 wait_for_completion(&req->done);
10851 spin_lock_irqsave(&rq->lock, flags);
10852 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10853 need_full_sync = 1;
10854 req->dest_cpu = RCU_MIGRATION_IDLE;
10855 spin_unlock_irqrestore(&rq->lock, flags);
10856 }
10857 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10858 mutex_unlock(&rcu_sched_expedited_mutex);
10859 put_online_cpus();
10860 if (need_full_sync)
10861 synchronize_sched();
10862}
10863EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10864
10865#endif /* #else #ifndef CONFIG_SMP */