]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: Stuff the sched_domain creation in a data-structure
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee 233/*
c4a8849a 234 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
6aa645ea
IM
315
316 struct rb_root tasks_timeline;
317 struct rb_node *rb_leftmost;
4a55bd5e
PZ
318
319 struct list_head tasks;
320 struct list_head *balance_iterator;
321
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
ac53db59 326 struct sched_entity *curr, *next, *last, *skip;
ddc97297 327
5ac5c4d6 328 unsigned int nr_spread_over;
ddc97297 329
62160e3f 330#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
331 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
332
41a2d6cf
IM
333 /*
334 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
335 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
336 * (like users, containers etc.)
337 *
338 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
339 * list is used during load balance.
340 */
3d4b47b4 341 int on_list;
41a2d6cf
IM
342 struct list_head leaf_cfs_rq_list;
343 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
344
345#ifdef CONFIG_SMP
c09595f6 346 /*
c8cba857 347 * the part of load.weight contributed by tasks
c09595f6 348 */
c8cba857 349 unsigned long task_weight;
c09595f6 350
c8cba857
PZ
351 /*
352 * h_load = weight * f(tg)
353 *
354 * Where f(tg) is the recursive weight fraction assigned to
355 * this group.
356 */
357 unsigned long h_load;
c09595f6 358
c8cba857 359 /*
3b3d190e
PT
360 * Maintaining per-cpu shares distribution for group scheduling
361 *
362 * load_stamp is the last time we updated the load average
363 * load_last is the last time we updated the load average and saw load
364 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 365 */
2069dd75
PZ
366 u64 load_avg;
367 u64 load_period;
3b3d190e 368 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 369
2069dd75 370 unsigned long load_contribution;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
dce840a0 420 struct rcu_head rcu;
c6c4927b
RR
421 cpumask_var_t span;
422 cpumask_var_t online;
637f5085 423
0eab9146 424 /*
637f5085
GH
425 * The "RT overload" flag: it gets set if a CPU has more than
426 * one runnable RT task.
427 */
c6c4927b 428 cpumask_var_t rto_mask;
0eab9146 429 atomic_t rto_count;
6e0534f2 430 struct cpupri cpupri;
57d885fe
GH
431};
432
dc938520
GH
433/*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
57d885fe
GH
437static struct root_domain def_root_domain;
438
ed2d372c 439#endif /* CONFIG_SMP */
57d885fe 440
1da177e4
LT
441/*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
70b97a7f 448struct rq {
d8016491 449 /* runqueue lock: */
05fa785c 450 raw_spinlock_t lock;
1da177e4
LT
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
6aa645ea
IM
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 459 unsigned long last_load_update_tick;
46cb4b7c 460#ifdef CONFIG_NO_HZ
39c0cbe2 461 u64 nohz_stamp;
83cd4fe2 462 unsigned char nohz_balance_kick;
46cb4b7c 463#endif
a64692a3
MG
464 unsigned int skip_clock_update;
465
d8016491
IM
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
6aa645ea
IM
468 unsigned long nr_load_updates;
469 u64 nr_switches;
470
471 struct cfs_rq cfs;
6f505b16 472 struct rt_rq rt;
6f505b16 473
6aa645ea 474#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
477#endif
478#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 479 struct list_head leaf_rt_rq_list;
1da177e4 480#endif
1da177e4
LT
481
482 /*
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
487 */
488 unsigned long nr_uninterruptible;
489
34f971f6 490 struct task_struct *curr, *idle, *stop;
c9819f45 491 unsigned long next_balance;
1da177e4 492 struct mm_struct *prev_mm;
6aa645ea 493
3e51f33f 494 u64 clock;
305e6835 495 u64 clock_task;
6aa645ea 496
1da177e4
LT
497 atomic_t nr_iowait;
498
499#ifdef CONFIG_SMP
0eab9146 500 struct root_domain *rd;
1da177e4
LT
501 struct sched_domain *sd;
502
e51fd5e2
PZ
503 unsigned long cpu_power;
504
a0a522ce 505 unsigned char idle_at_tick;
1da177e4 506 /* For active balancing */
3f029d3c 507 int post_schedule;
1da177e4
LT
508 int active_balance;
509 int push_cpu;
969c7921 510 struct cpu_stop_work active_balance_work;
d8016491
IM
511 /* cpu of this runqueue: */
512 int cpu;
1f11eb6a 513 int online;
1da177e4 514
a8a51d5e 515 unsigned long avg_load_per_task;
1da177e4 516
e9e9250b
PZ
517 u64 rt_avg;
518 u64 age_stamp;
1b9508f6
MG
519 u64 idle_stamp;
520 u64 avg_idle;
1da177e4
LT
521#endif
522
aa483808
VP
523#ifdef CONFIG_IRQ_TIME_ACCOUNTING
524 u64 prev_irq_time;
525#endif
526
dce48a84
TG
527 /* calc_load related fields */
528 unsigned long calc_load_update;
529 long calc_load_active;
530
8f4d37ec 531#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
532#ifdef CONFIG_SMP
533 int hrtick_csd_pending;
534 struct call_single_data hrtick_csd;
535#endif
8f4d37ec
PZ
536 struct hrtimer hrtick_timer;
537#endif
538
1da177e4
LT
539#ifdef CONFIG_SCHEDSTATS
540 /* latency stats */
541 struct sched_info rq_sched_info;
9c2c4802
KC
542 unsigned long long rq_cpu_time;
543 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
544
545 /* sys_sched_yield() stats */
480b9434 546 unsigned int yld_count;
1da177e4
LT
547
548 /* schedule() stats */
480b9434
KC
549 unsigned int sched_switch;
550 unsigned int sched_count;
551 unsigned int sched_goidle;
1da177e4
LT
552
553 /* try_to_wake_up() stats */
480b9434
KC
554 unsigned int ttwu_count;
555 unsigned int ttwu_local;
1da177e4
LT
556#endif
557};
558
f34e3b61 559static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 560
a64692a3 561
1e5a7405 562static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 563
0a2966b4
CL
564static inline int cpu_of(struct rq *rq)
565{
566#ifdef CONFIG_SMP
567 return rq->cpu;
568#else
569 return 0;
570#endif
571}
572
497f0ab3 573#define rcu_dereference_check_sched_domain(p) \
d11c563d 574 rcu_dereference_check((p), \
dce840a0 575 rcu_read_lock_held() || \
d11c563d
PM
576 lockdep_is_held(&sched_domains_mutex))
577
674311d5
NP
578/*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 580 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
48f24c4d 585#define for_each_domain(cpu, __sd) \
497f0ab3 586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
587
588#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589#define this_rq() (&__get_cpu_var(runqueues))
590#define task_rq(p) cpu_rq(task_cpu(p))
591#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 592#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 593
dc61b1d6
PZ
594#ifdef CONFIG_CGROUP_SCHED
595
596/*
597 * Return the group to which this tasks belongs.
598 *
599 * We use task_subsys_state_check() and extend the RCU verification
600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601 * holds that lock for each task it moves into the cgroup. Therefore
602 * by holding that lock, we pin the task to the current cgroup.
603 */
604static inline struct task_group *task_group(struct task_struct *p)
605{
5091faa4 606 struct task_group *tg;
dc61b1d6
PZ
607 struct cgroup_subsys_state *css;
608
609 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
610 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
611 tg = container_of(css, struct task_group, css);
612
613 return autogroup_task_group(p, tg);
dc61b1d6
PZ
614}
615
616/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
617static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
618{
619#ifdef CONFIG_FAIR_GROUP_SCHED
620 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
621 p->se.parent = task_group(p)->se[cpu];
622#endif
623
624#ifdef CONFIG_RT_GROUP_SCHED
625 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
626 p->rt.parent = task_group(p)->rt_se[cpu];
627#endif
628}
629
630#else /* CONFIG_CGROUP_SCHED */
631
632static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
633static inline struct task_group *task_group(struct task_struct *p)
634{
635 return NULL;
636}
637
638#endif /* CONFIG_CGROUP_SCHED */
639
fe44d621 640static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 641
fe44d621 642static void update_rq_clock(struct rq *rq)
3e51f33f 643{
fe44d621 644 s64 delta;
305e6835 645
f26f9aff
MG
646 if (rq->skip_clock_update)
647 return;
aa483808 648
fe44d621
PZ
649 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
650 rq->clock += delta;
651 update_rq_clock_task(rq, delta);
3e51f33f
PZ
652}
653
bf5c91ba
IM
654/*
655 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
656 */
657#ifdef CONFIG_SCHED_DEBUG
658# define const_debug __read_mostly
659#else
660# define const_debug static const
661#endif
662
017730c1 663/**
1fd06bb1 664 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 665 * @cpu: the processor in question.
017730c1 666 *
017730c1
IM
667 * This interface allows printk to be called with the runqueue lock
668 * held and know whether or not it is OK to wake up the klogd.
669 */
89f19f04 670int runqueue_is_locked(int cpu)
017730c1 671{
05fa785c 672 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
673}
674
bf5c91ba
IM
675/*
676 * Debugging: various feature bits
677 */
f00b45c1
PZ
678
679#define SCHED_FEAT(name, enabled) \
680 __SCHED_FEAT_##name ,
681
bf5c91ba 682enum {
f00b45c1 683#include "sched_features.h"
bf5c91ba
IM
684};
685
f00b45c1
PZ
686#undef SCHED_FEAT
687
688#define SCHED_FEAT(name, enabled) \
689 (1UL << __SCHED_FEAT_##name) * enabled |
690
bf5c91ba 691const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
692#include "sched_features.h"
693 0;
694
695#undef SCHED_FEAT
696
697#ifdef CONFIG_SCHED_DEBUG
698#define SCHED_FEAT(name, enabled) \
699 #name ,
700
983ed7a6 701static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
702#include "sched_features.h"
703 NULL
704};
705
706#undef SCHED_FEAT
707
34f3a814 708static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 709{
f00b45c1
PZ
710 int i;
711
712 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
713 if (!(sysctl_sched_features & (1UL << i)))
714 seq_puts(m, "NO_");
715 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 716 }
34f3a814 717 seq_puts(m, "\n");
f00b45c1 718
34f3a814 719 return 0;
f00b45c1
PZ
720}
721
722static ssize_t
723sched_feat_write(struct file *filp, const char __user *ubuf,
724 size_t cnt, loff_t *ppos)
725{
726 char buf[64];
7740191c 727 char *cmp;
f00b45c1
PZ
728 int neg = 0;
729 int i;
730
731 if (cnt > 63)
732 cnt = 63;
733
734 if (copy_from_user(&buf, ubuf, cnt))
735 return -EFAULT;
736
737 buf[cnt] = 0;
7740191c 738 cmp = strstrip(buf);
f00b45c1 739
524429c3 740 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
741 neg = 1;
742 cmp += 3;
743 }
744
745 for (i = 0; sched_feat_names[i]; i++) {
7740191c 746 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
747 if (neg)
748 sysctl_sched_features &= ~(1UL << i);
749 else
750 sysctl_sched_features |= (1UL << i);
751 break;
752 }
753 }
754
755 if (!sched_feat_names[i])
756 return -EINVAL;
757
42994724 758 *ppos += cnt;
f00b45c1
PZ
759
760 return cnt;
761}
762
34f3a814
LZ
763static int sched_feat_open(struct inode *inode, struct file *filp)
764{
765 return single_open(filp, sched_feat_show, NULL);
766}
767
828c0950 768static const struct file_operations sched_feat_fops = {
34f3a814
LZ
769 .open = sched_feat_open,
770 .write = sched_feat_write,
771 .read = seq_read,
772 .llseek = seq_lseek,
773 .release = single_release,
f00b45c1
PZ
774};
775
776static __init int sched_init_debug(void)
777{
f00b45c1
PZ
778 debugfs_create_file("sched_features", 0644, NULL, NULL,
779 &sched_feat_fops);
780
781 return 0;
782}
783late_initcall(sched_init_debug);
784
785#endif
786
787#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 788
b82d9fdd
PZ
789/*
790 * Number of tasks to iterate in a single balance run.
791 * Limited because this is done with IRQs disabled.
792 */
793const_debug unsigned int sysctl_sched_nr_migrate = 32;
794
e9e9250b
PZ
795/*
796 * period over which we average the RT time consumption, measured
797 * in ms.
798 *
799 * default: 1s
800 */
801const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
802
fa85ae24 803/*
9f0c1e56 804 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
805 * default: 1s
806 */
9f0c1e56 807unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 808
6892b75e
IM
809static __read_mostly int scheduler_running;
810
9f0c1e56
PZ
811/*
812 * part of the period that we allow rt tasks to run in us.
813 * default: 0.95s
814 */
815int sysctl_sched_rt_runtime = 950000;
fa85ae24 816
d0b27fa7
PZ
817static inline u64 global_rt_period(void)
818{
819 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
820}
821
822static inline u64 global_rt_runtime(void)
823{
e26873bb 824 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
825 return RUNTIME_INF;
826
827 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
828}
fa85ae24 829
1da177e4 830#ifndef prepare_arch_switch
4866cde0
NP
831# define prepare_arch_switch(next) do { } while (0)
832#endif
833#ifndef finish_arch_switch
834# define finish_arch_switch(prev) do { } while (0)
835#endif
836
051a1d1a
DA
837static inline int task_current(struct rq *rq, struct task_struct *p)
838{
839 return rq->curr == p;
840}
841
4866cde0 842#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 843static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 844{
051a1d1a 845 return task_current(rq, p);
4866cde0
NP
846}
847
70b97a7f 848static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
849{
850}
851
70b97a7f 852static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 853{
da04c035
IM
854#ifdef CONFIG_DEBUG_SPINLOCK
855 /* this is a valid case when another task releases the spinlock */
856 rq->lock.owner = current;
857#endif
8a25d5de
IM
858 /*
859 * If we are tracking spinlock dependencies then we have to
860 * fix up the runqueue lock - which gets 'carried over' from
861 * prev into current:
862 */
863 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
864
05fa785c 865 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
866}
867
868#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 869static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
870{
871#ifdef CONFIG_SMP
872 return p->oncpu;
873#else
051a1d1a 874 return task_current(rq, p);
4866cde0
NP
875#endif
876}
877
70b97a7f 878static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
879{
880#ifdef CONFIG_SMP
881 /*
882 * We can optimise this out completely for !SMP, because the
883 * SMP rebalancing from interrupt is the only thing that cares
884 * here.
885 */
886 next->oncpu = 1;
887#endif
888#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 889 raw_spin_unlock_irq(&rq->lock);
4866cde0 890#else
05fa785c 891 raw_spin_unlock(&rq->lock);
4866cde0
NP
892#endif
893}
894
70b97a7f 895static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
896{
897#ifdef CONFIG_SMP
898 /*
899 * After ->oncpu is cleared, the task can be moved to a different CPU.
900 * We must ensure this doesn't happen until the switch is completely
901 * finished.
902 */
903 smp_wmb();
904 prev->oncpu = 0;
905#endif
906#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
907 local_irq_enable();
1da177e4 908#endif
4866cde0
NP
909}
910#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 911
0970d299 912/*
65cc8e48
PZ
913 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
914 * against ttwu().
0970d299
PZ
915 */
916static inline int task_is_waking(struct task_struct *p)
917{
0017d735 918 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
919}
920
b29739f9
IM
921/*
922 * __task_rq_lock - lock the runqueue a given task resides on.
923 * Must be called interrupts disabled.
924 */
70b97a7f 925static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
926 __acquires(rq->lock)
927{
0970d299
PZ
928 struct rq *rq;
929
3a5c359a 930 for (;;) {
0970d299 931 rq = task_rq(p);
05fa785c 932 raw_spin_lock(&rq->lock);
65cc8e48 933 if (likely(rq == task_rq(p)))
3a5c359a 934 return rq;
05fa785c 935 raw_spin_unlock(&rq->lock);
b29739f9 936 }
b29739f9
IM
937}
938
1da177e4
LT
939/*
940 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 941 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
942 * explicitly disabling preemption.
943 */
70b97a7f 944static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
945 __acquires(rq->lock)
946{
70b97a7f 947 struct rq *rq;
1da177e4 948
3a5c359a
AK
949 for (;;) {
950 local_irq_save(*flags);
951 rq = task_rq(p);
05fa785c 952 raw_spin_lock(&rq->lock);
65cc8e48 953 if (likely(rq == task_rq(p)))
3a5c359a 954 return rq;
05fa785c 955 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 956 }
1da177e4
LT
957}
958
a9957449 959static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
960 __releases(rq->lock)
961{
05fa785c 962 raw_spin_unlock(&rq->lock);
b29739f9
IM
963}
964
70b97a7f 965static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
966 __releases(rq->lock)
967{
05fa785c 968 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
969}
970
1da177e4 971/*
cc2a73b5 972 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 973 */
a9957449 974static struct rq *this_rq_lock(void)
1da177e4
LT
975 __acquires(rq->lock)
976{
70b97a7f 977 struct rq *rq;
1da177e4
LT
978
979 local_irq_disable();
980 rq = this_rq();
05fa785c 981 raw_spin_lock(&rq->lock);
1da177e4
LT
982
983 return rq;
984}
985
8f4d37ec
PZ
986#ifdef CONFIG_SCHED_HRTICK
987/*
988 * Use HR-timers to deliver accurate preemption points.
989 *
990 * Its all a bit involved since we cannot program an hrt while holding the
991 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
992 * reschedule event.
993 *
994 * When we get rescheduled we reprogram the hrtick_timer outside of the
995 * rq->lock.
996 */
8f4d37ec
PZ
997
998/*
999 * Use hrtick when:
1000 * - enabled by features
1001 * - hrtimer is actually high res
1002 */
1003static inline int hrtick_enabled(struct rq *rq)
1004{
1005 if (!sched_feat(HRTICK))
1006 return 0;
ba42059f 1007 if (!cpu_active(cpu_of(rq)))
b328ca18 1008 return 0;
8f4d37ec
PZ
1009 return hrtimer_is_hres_active(&rq->hrtick_timer);
1010}
1011
8f4d37ec
PZ
1012static void hrtick_clear(struct rq *rq)
1013{
1014 if (hrtimer_active(&rq->hrtick_timer))
1015 hrtimer_cancel(&rq->hrtick_timer);
1016}
1017
8f4d37ec
PZ
1018/*
1019 * High-resolution timer tick.
1020 * Runs from hardirq context with interrupts disabled.
1021 */
1022static enum hrtimer_restart hrtick(struct hrtimer *timer)
1023{
1024 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1025
1026 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1027
05fa785c 1028 raw_spin_lock(&rq->lock);
3e51f33f 1029 update_rq_clock(rq);
8f4d37ec 1030 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1031 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1032
1033 return HRTIMER_NORESTART;
1034}
1035
95e904c7 1036#ifdef CONFIG_SMP
31656519
PZ
1037/*
1038 * called from hardirq (IPI) context
1039 */
1040static void __hrtick_start(void *arg)
b328ca18 1041{
31656519 1042 struct rq *rq = arg;
b328ca18 1043
05fa785c 1044 raw_spin_lock(&rq->lock);
31656519
PZ
1045 hrtimer_restart(&rq->hrtick_timer);
1046 rq->hrtick_csd_pending = 0;
05fa785c 1047 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1048}
1049
31656519
PZ
1050/*
1051 * Called to set the hrtick timer state.
1052 *
1053 * called with rq->lock held and irqs disabled
1054 */
1055static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1056{
31656519
PZ
1057 struct hrtimer *timer = &rq->hrtick_timer;
1058 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1059
cc584b21 1060 hrtimer_set_expires(timer, time);
31656519
PZ
1061
1062 if (rq == this_rq()) {
1063 hrtimer_restart(timer);
1064 } else if (!rq->hrtick_csd_pending) {
6e275637 1065 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1066 rq->hrtick_csd_pending = 1;
1067 }
b328ca18
PZ
1068}
1069
1070static int
1071hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1072{
1073 int cpu = (int)(long)hcpu;
1074
1075 switch (action) {
1076 case CPU_UP_CANCELED:
1077 case CPU_UP_CANCELED_FROZEN:
1078 case CPU_DOWN_PREPARE:
1079 case CPU_DOWN_PREPARE_FROZEN:
1080 case CPU_DEAD:
1081 case CPU_DEAD_FROZEN:
31656519 1082 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1083 return NOTIFY_OK;
1084 }
1085
1086 return NOTIFY_DONE;
1087}
1088
fa748203 1089static __init void init_hrtick(void)
b328ca18
PZ
1090{
1091 hotcpu_notifier(hotplug_hrtick, 0);
1092}
31656519
PZ
1093#else
1094/*
1095 * Called to set the hrtick timer state.
1096 *
1097 * called with rq->lock held and irqs disabled
1098 */
1099static void hrtick_start(struct rq *rq, u64 delay)
1100{
7f1e2ca9 1101 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1102 HRTIMER_MODE_REL_PINNED, 0);
31656519 1103}
b328ca18 1104
006c75f1 1105static inline void init_hrtick(void)
8f4d37ec 1106{
8f4d37ec 1107}
31656519 1108#endif /* CONFIG_SMP */
8f4d37ec 1109
31656519 1110static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1111{
31656519
PZ
1112#ifdef CONFIG_SMP
1113 rq->hrtick_csd_pending = 0;
8f4d37ec 1114
31656519
PZ
1115 rq->hrtick_csd.flags = 0;
1116 rq->hrtick_csd.func = __hrtick_start;
1117 rq->hrtick_csd.info = rq;
1118#endif
8f4d37ec 1119
31656519
PZ
1120 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1121 rq->hrtick_timer.function = hrtick;
8f4d37ec 1122}
006c75f1 1123#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1124static inline void hrtick_clear(struct rq *rq)
1125{
1126}
1127
8f4d37ec
PZ
1128static inline void init_rq_hrtick(struct rq *rq)
1129{
1130}
1131
b328ca18
PZ
1132static inline void init_hrtick(void)
1133{
1134}
006c75f1 1135#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1136
c24d20db
IM
1137/*
1138 * resched_task - mark a task 'to be rescheduled now'.
1139 *
1140 * On UP this means the setting of the need_resched flag, on SMP it
1141 * might also involve a cross-CPU call to trigger the scheduler on
1142 * the target CPU.
1143 */
1144#ifdef CONFIG_SMP
1145
1146#ifndef tsk_is_polling
1147#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1148#endif
1149
31656519 1150static void resched_task(struct task_struct *p)
c24d20db
IM
1151{
1152 int cpu;
1153
05fa785c 1154 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1155
5ed0cec0 1156 if (test_tsk_need_resched(p))
c24d20db
IM
1157 return;
1158
5ed0cec0 1159 set_tsk_need_resched(p);
c24d20db
IM
1160
1161 cpu = task_cpu(p);
1162 if (cpu == smp_processor_id())
1163 return;
1164
1165 /* NEED_RESCHED must be visible before we test polling */
1166 smp_mb();
1167 if (!tsk_is_polling(p))
1168 smp_send_reschedule(cpu);
1169}
1170
1171static void resched_cpu(int cpu)
1172{
1173 struct rq *rq = cpu_rq(cpu);
1174 unsigned long flags;
1175
05fa785c 1176 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1177 return;
1178 resched_task(cpu_curr(cpu));
05fa785c 1179 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1180}
06d8308c
TG
1181
1182#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1183/*
1184 * In the semi idle case, use the nearest busy cpu for migrating timers
1185 * from an idle cpu. This is good for power-savings.
1186 *
1187 * We don't do similar optimization for completely idle system, as
1188 * selecting an idle cpu will add more delays to the timers than intended
1189 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1190 */
1191int get_nohz_timer_target(void)
1192{
1193 int cpu = smp_processor_id();
1194 int i;
1195 struct sched_domain *sd;
1196
1197 for_each_domain(cpu, sd) {
1198 for_each_cpu(i, sched_domain_span(sd))
1199 if (!idle_cpu(i))
1200 return i;
1201 }
1202 return cpu;
1203}
06d8308c
TG
1204/*
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1213 */
1214void wake_up_idle_cpu(int cpu)
1215{
1216 struct rq *rq = cpu_rq(cpu);
1217
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /*
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1227 */
1228 if (rq->curr != rq->idle)
1229 return;
1230
1231 /*
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1235 */
5ed0cec0 1236 set_tsk_need_resched(rq->idle);
06d8308c
TG
1237
1238 /* NEED_RESCHED must be visible before we test polling */
1239 smp_mb();
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1242}
39c0cbe2 1243
6d6bc0ad 1244#endif /* CONFIG_NO_HZ */
06d8308c 1245
e9e9250b
PZ
1246static u64 sched_avg_period(void)
1247{
1248 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1249}
1250
1251static void sched_avg_update(struct rq *rq)
1252{
1253 s64 period = sched_avg_period();
1254
1255 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1256 /*
1257 * Inline assembly required to prevent the compiler
1258 * optimising this loop into a divmod call.
1259 * See __iter_div_u64_rem() for another example of this.
1260 */
1261 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265}
1266
1267static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268{
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271}
1272
6d6bc0ad 1273#else /* !CONFIG_SMP */
31656519 1274static void resched_task(struct task_struct *p)
c24d20db 1275{
05fa785c 1276 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1277 set_tsk_need_resched(p);
c24d20db 1278}
e9e9250b
PZ
1279
1280static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281{
1282}
da2b71ed
SS
1283
1284static void sched_avg_update(struct rq *rq)
1285{
1286}
6d6bc0ad 1287#endif /* CONFIG_SMP */
c24d20db 1288
45bf76df
IM
1289#if BITS_PER_LONG == 32
1290# define WMULT_CONST (~0UL)
1291#else
1292# define WMULT_CONST (1UL << 32)
1293#endif
1294
1295#define WMULT_SHIFT 32
1296
194081eb
IM
1297/*
1298 * Shift right and round:
1299 */
cf2ab469 1300#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1301
a7be37ac
PZ
1302/*
1303 * delta *= weight / lw
1304 */
cb1c4fc9 1305static unsigned long
45bf76df
IM
1306calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1307 struct load_weight *lw)
1308{
1309 u64 tmp;
1310
7a232e03
LJ
1311 if (!lw->inv_weight) {
1312 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1313 lw->inv_weight = 1;
1314 else
1315 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1316 / (lw->weight+1);
1317 }
45bf76df
IM
1318
1319 tmp = (u64)delta_exec * weight;
1320 /*
1321 * Check whether we'd overflow the 64-bit multiplication:
1322 */
194081eb 1323 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1324 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1325 WMULT_SHIFT/2);
1326 else
cf2ab469 1327 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1328
ecf691da 1329 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1330}
1331
1091985b 1332static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1333{
1334 lw->weight += inc;
e89996ae 1335 lw->inv_weight = 0;
45bf76df
IM
1336}
1337
1091985b 1338static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1339{
1340 lw->weight -= dec;
e89996ae 1341 lw->inv_weight = 0;
45bf76df
IM
1342}
1343
2069dd75
PZ
1344static inline void update_load_set(struct load_weight *lw, unsigned long w)
1345{
1346 lw->weight = w;
1347 lw->inv_weight = 0;
1348}
1349
2dd73a4f
PW
1350/*
1351 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1352 * of tasks with abnormal "nice" values across CPUs the contribution that
1353 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1354 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1355 * scaled version of the new time slice allocation that they receive on time
1356 * slice expiry etc.
1357 */
1358
cce7ade8
PZ
1359#define WEIGHT_IDLEPRIO 3
1360#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1361
1362/*
1363 * Nice levels are multiplicative, with a gentle 10% change for every
1364 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1365 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1366 * that remained on nice 0.
1367 *
1368 * The "10% effect" is relative and cumulative: from _any_ nice level,
1369 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1370 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1371 * If a task goes up by ~10% and another task goes down by ~10% then
1372 * the relative distance between them is ~25%.)
dd41f596
IM
1373 */
1374static const int prio_to_weight[40] = {
254753dc
IM
1375 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1376 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1377 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1378 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1379 /* 0 */ 1024, 820, 655, 526, 423,
1380 /* 5 */ 335, 272, 215, 172, 137,
1381 /* 10 */ 110, 87, 70, 56, 45,
1382 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1383};
1384
5714d2de
IM
1385/*
1386 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1387 *
1388 * In cases where the weight does not change often, we can use the
1389 * precalculated inverse to speed up arithmetics by turning divisions
1390 * into multiplications:
1391 */
dd41f596 1392static const u32 prio_to_wmult[40] = {
254753dc
IM
1393 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1394 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1395 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1396 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1397 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1398 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1399 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1400 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1401};
2dd73a4f 1402
ef12fefa
BR
1403/* Time spent by the tasks of the cpu accounting group executing in ... */
1404enum cpuacct_stat_index {
1405 CPUACCT_STAT_USER, /* ... user mode */
1406 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1407
1408 CPUACCT_STAT_NSTATS,
1409};
1410
d842de87
SV
1411#ifdef CONFIG_CGROUP_CPUACCT
1412static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1413static void cpuacct_update_stats(struct task_struct *tsk,
1414 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1415#else
1416static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1417static inline void cpuacct_update_stats(struct task_struct *tsk,
1418 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1419#endif
1420
18d95a28
PZ
1421static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1422{
1423 update_load_add(&rq->load, load);
1424}
1425
1426static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1427{
1428 update_load_sub(&rq->load, load);
1429}
1430
7940ca36 1431#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1432typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1433
1434/*
1435 * Iterate the full tree, calling @down when first entering a node and @up when
1436 * leaving it for the final time.
1437 */
eb755805 1438static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1439{
1440 struct task_group *parent, *child;
eb755805 1441 int ret;
c09595f6
PZ
1442
1443 rcu_read_lock();
1444 parent = &root_task_group;
1445down:
eb755805
PZ
1446 ret = (*down)(parent, data);
1447 if (ret)
1448 goto out_unlock;
c09595f6
PZ
1449 list_for_each_entry_rcu(child, &parent->children, siblings) {
1450 parent = child;
1451 goto down;
1452
1453up:
1454 continue;
1455 }
eb755805
PZ
1456 ret = (*up)(parent, data);
1457 if (ret)
1458 goto out_unlock;
c09595f6
PZ
1459
1460 child = parent;
1461 parent = parent->parent;
1462 if (parent)
1463 goto up;
eb755805 1464out_unlock:
c09595f6 1465 rcu_read_unlock();
eb755805
PZ
1466
1467 return ret;
c09595f6
PZ
1468}
1469
eb755805
PZ
1470static int tg_nop(struct task_group *tg, void *data)
1471{
1472 return 0;
c09595f6 1473}
eb755805
PZ
1474#endif
1475
1476#ifdef CONFIG_SMP
f5f08f39
PZ
1477/* Used instead of source_load when we know the type == 0 */
1478static unsigned long weighted_cpuload(const int cpu)
1479{
1480 return cpu_rq(cpu)->load.weight;
1481}
1482
1483/*
1484 * Return a low guess at the load of a migration-source cpu weighted
1485 * according to the scheduling class and "nice" value.
1486 *
1487 * We want to under-estimate the load of migration sources, to
1488 * balance conservatively.
1489 */
1490static unsigned long source_load(int cpu, int type)
1491{
1492 struct rq *rq = cpu_rq(cpu);
1493 unsigned long total = weighted_cpuload(cpu);
1494
1495 if (type == 0 || !sched_feat(LB_BIAS))
1496 return total;
1497
1498 return min(rq->cpu_load[type-1], total);
1499}
1500
1501/*
1502 * Return a high guess at the load of a migration-target cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 */
1505static unsigned long target_load(int cpu, int type)
1506{
1507 struct rq *rq = cpu_rq(cpu);
1508 unsigned long total = weighted_cpuload(cpu);
1509
1510 if (type == 0 || !sched_feat(LB_BIAS))
1511 return total;
1512
1513 return max(rq->cpu_load[type-1], total);
1514}
1515
ae154be1
PZ
1516static unsigned long power_of(int cpu)
1517{
e51fd5e2 1518 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1519}
1520
eb755805
PZ
1521static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1522
1523static unsigned long cpu_avg_load_per_task(int cpu)
1524{
1525 struct rq *rq = cpu_rq(cpu);
af6d596f 1526 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1527
4cd42620
SR
1528 if (nr_running)
1529 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1530 else
1531 rq->avg_load_per_task = 0;
eb755805
PZ
1532
1533 return rq->avg_load_per_task;
1534}
1535
1536#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1537
c09595f6 1538/*
c8cba857
PZ
1539 * Compute the cpu's hierarchical load factor for each task group.
1540 * This needs to be done in a top-down fashion because the load of a child
1541 * group is a fraction of its parents load.
c09595f6 1542 */
eb755805 1543static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1544{
c8cba857 1545 unsigned long load;
eb755805 1546 long cpu = (long)data;
c09595f6 1547
c8cba857
PZ
1548 if (!tg->parent) {
1549 load = cpu_rq(cpu)->load.weight;
1550 } else {
1551 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1552 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1553 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1554 }
c09595f6 1555
c8cba857 1556 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1557
eb755805 1558 return 0;
c09595f6
PZ
1559}
1560
eb755805 1561static void update_h_load(long cpu)
c09595f6 1562{
eb755805 1563 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1564}
1565
18d95a28
PZ
1566#endif
1567
8f45e2b5
GH
1568#ifdef CONFIG_PREEMPT
1569
b78bb868
PZ
1570static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1571
70574a99 1572/*
8f45e2b5
GH
1573 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1574 * way at the expense of forcing extra atomic operations in all
1575 * invocations. This assures that the double_lock is acquired using the
1576 * same underlying policy as the spinlock_t on this architecture, which
1577 * reduces latency compared to the unfair variant below. However, it
1578 * also adds more overhead and therefore may reduce throughput.
70574a99 1579 */
8f45e2b5
GH
1580static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1581 __releases(this_rq->lock)
1582 __acquires(busiest->lock)
1583 __acquires(this_rq->lock)
1584{
05fa785c 1585 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1586 double_rq_lock(this_rq, busiest);
1587
1588 return 1;
1589}
1590
1591#else
1592/*
1593 * Unfair double_lock_balance: Optimizes throughput at the expense of
1594 * latency by eliminating extra atomic operations when the locks are
1595 * already in proper order on entry. This favors lower cpu-ids and will
1596 * grant the double lock to lower cpus over higher ids under contention,
1597 * regardless of entry order into the function.
1598 */
1599static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1600 __releases(this_rq->lock)
1601 __acquires(busiest->lock)
1602 __acquires(this_rq->lock)
1603{
1604 int ret = 0;
1605
05fa785c 1606 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1607 if (busiest < this_rq) {
05fa785c
TG
1608 raw_spin_unlock(&this_rq->lock);
1609 raw_spin_lock(&busiest->lock);
1610 raw_spin_lock_nested(&this_rq->lock,
1611 SINGLE_DEPTH_NESTING);
70574a99
AD
1612 ret = 1;
1613 } else
05fa785c
TG
1614 raw_spin_lock_nested(&busiest->lock,
1615 SINGLE_DEPTH_NESTING);
70574a99
AD
1616 }
1617 return ret;
1618}
1619
8f45e2b5
GH
1620#endif /* CONFIG_PREEMPT */
1621
1622/*
1623 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1624 */
1625static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1626{
1627 if (unlikely(!irqs_disabled())) {
1628 /* printk() doesn't work good under rq->lock */
05fa785c 1629 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1630 BUG_ON(1);
1631 }
1632
1633 return _double_lock_balance(this_rq, busiest);
1634}
1635
70574a99
AD
1636static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1637 __releases(busiest->lock)
1638{
05fa785c 1639 raw_spin_unlock(&busiest->lock);
70574a99
AD
1640 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1641}
1e3c88bd
PZ
1642
1643/*
1644 * double_rq_lock - safely lock two runqueues
1645 *
1646 * Note this does not disable interrupts like task_rq_lock,
1647 * you need to do so manually before calling.
1648 */
1649static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1650 __acquires(rq1->lock)
1651 __acquires(rq2->lock)
1652{
1653 BUG_ON(!irqs_disabled());
1654 if (rq1 == rq2) {
1655 raw_spin_lock(&rq1->lock);
1656 __acquire(rq2->lock); /* Fake it out ;) */
1657 } else {
1658 if (rq1 < rq2) {
1659 raw_spin_lock(&rq1->lock);
1660 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1661 } else {
1662 raw_spin_lock(&rq2->lock);
1663 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1664 }
1665 }
1e3c88bd
PZ
1666}
1667
1668/*
1669 * double_rq_unlock - safely unlock two runqueues
1670 *
1671 * Note this does not restore interrupts like task_rq_unlock,
1672 * you need to do so manually after calling.
1673 */
1674static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1675 __releases(rq1->lock)
1676 __releases(rq2->lock)
1677{
1678 raw_spin_unlock(&rq1->lock);
1679 if (rq1 != rq2)
1680 raw_spin_unlock(&rq2->lock);
1681 else
1682 __release(rq2->lock);
1683}
1684
d95f4122
MG
1685#else /* CONFIG_SMP */
1686
1687/*
1688 * double_rq_lock - safely lock two runqueues
1689 *
1690 * Note this does not disable interrupts like task_rq_lock,
1691 * you need to do so manually before calling.
1692 */
1693static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1694 __acquires(rq1->lock)
1695 __acquires(rq2->lock)
1696{
1697 BUG_ON(!irqs_disabled());
1698 BUG_ON(rq1 != rq2);
1699 raw_spin_lock(&rq1->lock);
1700 __acquire(rq2->lock); /* Fake it out ;) */
1701}
1702
1703/*
1704 * double_rq_unlock - safely unlock two runqueues
1705 *
1706 * Note this does not restore interrupts like task_rq_unlock,
1707 * you need to do so manually after calling.
1708 */
1709static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1710 __releases(rq1->lock)
1711 __releases(rq2->lock)
1712{
1713 BUG_ON(rq1 != rq2);
1714 raw_spin_unlock(&rq1->lock);
1715 __release(rq2->lock);
1716}
1717
18d95a28
PZ
1718#endif
1719
74f5187a 1720static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1721static void update_sysctl(void);
acb4a848 1722static int get_update_sysctl_factor(void);
fdf3e95d 1723static void update_cpu_load(struct rq *this_rq);
dce48a84 1724
cd29fe6f
PZ
1725static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1726{
1727 set_task_rq(p, cpu);
1728#ifdef CONFIG_SMP
1729 /*
1730 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1731 * successfuly executed on another CPU. We must ensure that updates of
1732 * per-task data have been completed by this moment.
1733 */
1734 smp_wmb();
1735 task_thread_info(p)->cpu = cpu;
1736#endif
1737}
dce48a84 1738
1e3c88bd 1739static const struct sched_class rt_sched_class;
dd41f596 1740
34f971f6 1741#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1742#define for_each_class(class) \
1743 for (class = sched_class_highest; class; class = class->next)
dd41f596 1744
1e3c88bd
PZ
1745#include "sched_stats.h"
1746
c09595f6 1747static void inc_nr_running(struct rq *rq)
9c217245
IM
1748{
1749 rq->nr_running++;
9c217245
IM
1750}
1751
c09595f6 1752static void dec_nr_running(struct rq *rq)
9c217245
IM
1753{
1754 rq->nr_running--;
9c217245
IM
1755}
1756
45bf76df
IM
1757static void set_load_weight(struct task_struct *p)
1758{
dd41f596
IM
1759 /*
1760 * SCHED_IDLE tasks get minimal weight:
1761 */
1762 if (p->policy == SCHED_IDLE) {
1763 p->se.load.weight = WEIGHT_IDLEPRIO;
1764 p->se.load.inv_weight = WMULT_IDLEPRIO;
1765 return;
1766 }
71f8bd46 1767
dd41f596
IM
1768 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1769 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1770}
1771
371fd7e7 1772static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1773{
a64692a3 1774 update_rq_clock(rq);
dd41f596 1775 sched_info_queued(p);
371fd7e7 1776 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1777 p->se.on_rq = 1;
71f8bd46
IM
1778}
1779
371fd7e7 1780static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1781{
a64692a3 1782 update_rq_clock(rq);
46ac22ba 1783 sched_info_dequeued(p);
371fd7e7 1784 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1785 p->se.on_rq = 0;
71f8bd46
IM
1786}
1787
1e3c88bd
PZ
1788/*
1789 * activate_task - move a task to the runqueue.
1790 */
371fd7e7 1791static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1792{
1793 if (task_contributes_to_load(p))
1794 rq->nr_uninterruptible--;
1795
371fd7e7 1796 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1797 inc_nr_running(rq);
1798}
1799
1800/*
1801 * deactivate_task - remove a task from the runqueue.
1802 */
371fd7e7 1803static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1804{
1805 if (task_contributes_to_load(p))
1806 rq->nr_uninterruptible++;
1807
371fd7e7 1808 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1809 dec_nr_running(rq);
1810}
1811
b52bfee4
VP
1812#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1813
305e6835
VP
1814/*
1815 * There are no locks covering percpu hardirq/softirq time.
1816 * They are only modified in account_system_vtime, on corresponding CPU
1817 * with interrupts disabled. So, writes are safe.
1818 * They are read and saved off onto struct rq in update_rq_clock().
1819 * This may result in other CPU reading this CPU's irq time and can
1820 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1821 * or new value with a side effect of accounting a slice of irq time to wrong
1822 * task when irq is in progress while we read rq->clock. That is a worthy
1823 * compromise in place of having locks on each irq in account_system_time.
305e6835 1824 */
b52bfee4
VP
1825static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1826static DEFINE_PER_CPU(u64, cpu_softirq_time);
1827
1828static DEFINE_PER_CPU(u64, irq_start_time);
1829static int sched_clock_irqtime;
1830
1831void enable_sched_clock_irqtime(void)
1832{
1833 sched_clock_irqtime = 1;
1834}
1835
1836void disable_sched_clock_irqtime(void)
1837{
1838 sched_clock_irqtime = 0;
1839}
1840
8e92c201
PZ
1841#ifndef CONFIG_64BIT
1842static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1843
1844static inline void irq_time_write_begin(void)
1845{
1846 __this_cpu_inc(irq_time_seq.sequence);
1847 smp_wmb();
1848}
1849
1850static inline void irq_time_write_end(void)
1851{
1852 smp_wmb();
1853 __this_cpu_inc(irq_time_seq.sequence);
1854}
1855
1856static inline u64 irq_time_read(int cpu)
1857{
1858 u64 irq_time;
1859 unsigned seq;
1860
1861 do {
1862 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1863 irq_time = per_cpu(cpu_softirq_time, cpu) +
1864 per_cpu(cpu_hardirq_time, cpu);
1865 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1866
1867 return irq_time;
1868}
1869#else /* CONFIG_64BIT */
1870static inline void irq_time_write_begin(void)
1871{
1872}
1873
1874static inline void irq_time_write_end(void)
1875{
1876}
1877
1878static inline u64 irq_time_read(int cpu)
305e6835 1879{
305e6835
VP
1880 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1881}
8e92c201 1882#endif /* CONFIG_64BIT */
305e6835 1883
fe44d621
PZ
1884/*
1885 * Called before incrementing preempt_count on {soft,}irq_enter
1886 * and before decrementing preempt_count on {soft,}irq_exit.
1887 */
b52bfee4
VP
1888void account_system_vtime(struct task_struct *curr)
1889{
1890 unsigned long flags;
fe44d621 1891 s64 delta;
b52bfee4 1892 int cpu;
b52bfee4
VP
1893
1894 if (!sched_clock_irqtime)
1895 return;
1896
1897 local_irq_save(flags);
1898
b52bfee4 1899 cpu = smp_processor_id();
fe44d621
PZ
1900 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1901 __this_cpu_add(irq_start_time, delta);
1902
8e92c201 1903 irq_time_write_begin();
b52bfee4
VP
1904 /*
1905 * We do not account for softirq time from ksoftirqd here.
1906 * We want to continue accounting softirq time to ksoftirqd thread
1907 * in that case, so as not to confuse scheduler with a special task
1908 * that do not consume any time, but still wants to run.
1909 */
1910 if (hardirq_count())
fe44d621 1911 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1912 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1913 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1914
8e92c201 1915 irq_time_write_end();
b52bfee4
VP
1916 local_irq_restore(flags);
1917}
b7dadc38 1918EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1919
fe44d621 1920static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1921{
fe44d621
PZ
1922 s64 irq_delta;
1923
8e92c201 1924 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1925
1926 /*
1927 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1928 * this case when a previous update_rq_clock() happened inside a
1929 * {soft,}irq region.
1930 *
1931 * When this happens, we stop ->clock_task and only update the
1932 * prev_irq_time stamp to account for the part that fit, so that a next
1933 * update will consume the rest. This ensures ->clock_task is
1934 * monotonic.
1935 *
1936 * It does however cause some slight miss-attribution of {soft,}irq
1937 * time, a more accurate solution would be to update the irq_time using
1938 * the current rq->clock timestamp, except that would require using
1939 * atomic ops.
1940 */
1941 if (irq_delta > delta)
1942 irq_delta = delta;
1943
1944 rq->prev_irq_time += irq_delta;
1945 delta -= irq_delta;
1946 rq->clock_task += delta;
1947
1948 if (irq_delta && sched_feat(NONIRQ_POWER))
1949 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1950}
1951
abb74cef
VP
1952static int irqtime_account_hi_update(void)
1953{
1954 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1955 unsigned long flags;
1956 u64 latest_ns;
1957 int ret = 0;
1958
1959 local_irq_save(flags);
1960 latest_ns = this_cpu_read(cpu_hardirq_time);
1961 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1962 ret = 1;
1963 local_irq_restore(flags);
1964 return ret;
1965}
1966
1967static int irqtime_account_si_update(void)
1968{
1969 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1970 unsigned long flags;
1971 u64 latest_ns;
1972 int ret = 0;
1973
1974 local_irq_save(flags);
1975 latest_ns = this_cpu_read(cpu_softirq_time);
1976 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1977 ret = 1;
1978 local_irq_restore(flags);
1979 return ret;
1980}
1981
fe44d621 1982#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1983
abb74cef
VP
1984#define sched_clock_irqtime (0)
1985
fe44d621 1986static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1987{
fe44d621 1988 rq->clock_task += delta;
305e6835
VP
1989}
1990
fe44d621 1991#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1992
1e3c88bd
PZ
1993#include "sched_idletask.c"
1994#include "sched_fair.c"
1995#include "sched_rt.c"
5091faa4 1996#include "sched_autogroup.c"
34f971f6 1997#include "sched_stoptask.c"
1e3c88bd
PZ
1998#ifdef CONFIG_SCHED_DEBUG
1999# include "sched_debug.c"
2000#endif
2001
34f971f6
PZ
2002void sched_set_stop_task(int cpu, struct task_struct *stop)
2003{
2004 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2005 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2006
2007 if (stop) {
2008 /*
2009 * Make it appear like a SCHED_FIFO task, its something
2010 * userspace knows about and won't get confused about.
2011 *
2012 * Also, it will make PI more or less work without too
2013 * much confusion -- but then, stop work should not
2014 * rely on PI working anyway.
2015 */
2016 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2017
2018 stop->sched_class = &stop_sched_class;
2019 }
2020
2021 cpu_rq(cpu)->stop = stop;
2022
2023 if (old_stop) {
2024 /*
2025 * Reset it back to a normal scheduling class so that
2026 * it can die in pieces.
2027 */
2028 old_stop->sched_class = &rt_sched_class;
2029 }
2030}
2031
14531189 2032/*
dd41f596 2033 * __normal_prio - return the priority that is based on the static prio
14531189 2034 */
14531189
IM
2035static inline int __normal_prio(struct task_struct *p)
2036{
dd41f596 2037 return p->static_prio;
14531189
IM
2038}
2039
b29739f9
IM
2040/*
2041 * Calculate the expected normal priority: i.e. priority
2042 * without taking RT-inheritance into account. Might be
2043 * boosted by interactivity modifiers. Changes upon fork,
2044 * setprio syscalls, and whenever the interactivity
2045 * estimator recalculates.
2046 */
36c8b586 2047static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2048{
2049 int prio;
2050
e05606d3 2051 if (task_has_rt_policy(p))
b29739f9
IM
2052 prio = MAX_RT_PRIO-1 - p->rt_priority;
2053 else
2054 prio = __normal_prio(p);
2055 return prio;
2056}
2057
2058/*
2059 * Calculate the current priority, i.e. the priority
2060 * taken into account by the scheduler. This value might
2061 * be boosted by RT tasks, or might be boosted by
2062 * interactivity modifiers. Will be RT if the task got
2063 * RT-boosted. If not then it returns p->normal_prio.
2064 */
36c8b586 2065static int effective_prio(struct task_struct *p)
b29739f9
IM
2066{
2067 p->normal_prio = normal_prio(p);
2068 /*
2069 * If we are RT tasks or we were boosted to RT priority,
2070 * keep the priority unchanged. Otherwise, update priority
2071 * to the normal priority:
2072 */
2073 if (!rt_prio(p->prio))
2074 return p->normal_prio;
2075 return p->prio;
2076}
2077
1da177e4
LT
2078/**
2079 * task_curr - is this task currently executing on a CPU?
2080 * @p: the task in question.
2081 */
36c8b586 2082inline int task_curr(const struct task_struct *p)
1da177e4
LT
2083{
2084 return cpu_curr(task_cpu(p)) == p;
2085}
2086
cb469845
SR
2087static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2088 const struct sched_class *prev_class,
da7a735e 2089 int oldprio)
cb469845
SR
2090{
2091 if (prev_class != p->sched_class) {
2092 if (prev_class->switched_from)
da7a735e
PZ
2093 prev_class->switched_from(rq, p);
2094 p->sched_class->switched_to(rq, p);
2095 } else if (oldprio != p->prio)
2096 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2097}
2098
1e5a7405
PZ
2099static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2100{
2101 const struct sched_class *class;
2102
2103 if (p->sched_class == rq->curr->sched_class) {
2104 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2105 } else {
2106 for_each_class(class) {
2107 if (class == rq->curr->sched_class)
2108 break;
2109 if (class == p->sched_class) {
2110 resched_task(rq->curr);
2111 break;
2112 }
2113 }
2114 }
2115
2116 /*
2117 * A queue event has occurred, and we're going to schedule. In
2118 * this case, we can save a useless back to back clock update.
2119 */
f26f9aff 2120 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2121 rq->skip_clock_update = 1;
2122}
2123
1da177e4 2124#ifdef CONFIG_SMP
cc367732
IM
2125/*
2126 * Is this task likely cache-hot:
2127 */
e7693a36 2128static int
cc367732
IM
2129task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2130{
2131 s64 delta;
2132
e6c8fba7
PZ
2133 if (p->sched_class != &fair_sched_class)
2134 return 0;
2135
ef8002f6
NR
2136 if (unlikely(p->policy == SCHED_IDLE))
2137 return 0;
2138
f540a608
IM
2139 /*
2140 * Buddy candidates are cache hot:
2141 */
f685ceac 2142 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2143 (&p->se == cfs_rq_of(&p->se)->next ||
2144 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2145 return 1;
2146
6bc1665b
IM
2147 if (sysctl_sched_migration_cost == -1)
2148 return 1;
2149 if (sysctl_sched_migration_cost == 0)
2150 return 0;
2151
cc367732
IM
2152 delta = now - p->se.exec_start;
2153
2154 return delta < (s64)sysctl_sched_migration_cost;
2155}
2156
dd41f596 2157void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2158{
e2912009
PZ
2159#ifdef CONFIG_SCHED_DEBUG
2160 /*
2161 * We should never call set_task_cpu() on a blocked task,
2162 * ttwu() will sort out the placement.
2163 */
077614ee
PZ
2164 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2165 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2166#endif
2167
de1d7286 2168 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2169
0c69774e
PZ
2170 if (task_cpu(p) != new_cpu) {
2171 p->se.nr_migrations++;
2172 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2173 }
dd41f596
IM
2174
2175 __set_task_cpu(p, new_cpu);
c65cc870
IM
2176}
2177
969c7921 2178struct migration_arg {
36c8b586 2179 struct task_struct *task;
1da177e4 2180 int dest_cpu;
70b97a7f 2181};
1da177e4 2182
969c7921
TH
2183static int migration_cpu_stop(void *data);
2184
1da177e4
LT
2185/*
2186 * The task's runqueue lock must be held.
2187 * Returns true if you have to wait for migration thread.
2188 */
b7a2b39d 2189static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2190{
1da177e4
LT
2191 /*
2192 * If the task is not on a runqueue (and not running), then
e2912009 2193 * the next wake-up will properly place the task.
1da177e4 2194 */
969c7921 2195 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2196}
2197
2198/*
2199 * wait_task_inactive - wait for a thread to unschedule.
2200 *
85ba2d86
RM
2201 * If @match_state is nonzero, it's the @p->state value just checked and
2202 * not expected to change. If it changes, i.e. @p might have woken up,
2203 * then return zero. When we succeed in waiting for @p to be off its CPU,
2204 * we return a positive number (its total switch count). If a second call
2205 * a short while later returns the same number, the caller can be sure that
2206 * @p has remained unscheduled the whole time.
2207 *
1da177e4
LT
2208 * The caller must ensure that the task *will* unschedule sometime soon,
2209 * else this function might spin for a *long* time. This function can't
2210 * be called with interrupts off, or it may introduce deadlock with
2211 * smp_call_function() if an IPI is sent by the same process we are
2212 * waiting to become inactive.
2213 */
85ba2d86 2214unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2215{
2216 unsigned long flags;
dd41f596 2217 int running, on_rq;
85ba2d86 2218 unsigned long ncsw;
70b97a7f 2219 struct rq *rq;
1da177e4 2220
3a5c359a
AK
2221 for (;;) {
2222 /*
2223 * We do the initial early heuristics without holding
2224 * any task-queue locks at all. We'll only try to get
2225 * the runqueue lock when things look like they will
2226 * work out!
2227 */
2228 rq = task_rq(p);
fa490cfd 2229
3a5c359a
AK
2230 /*
2231 * If the task is actively running on another CPU
2232 * still, just relax and busy-wait without holding
2233 * any locks.
2234 *
2235 * NOTE! Since we don't hold any locks, it's not
2236 * even sure that "rq" stays as the right runqueue!
2237 * But we don't care, since "task_running()" will
2238 * return false if the runqueue has changed and p
2239 * is actually now running somewhere else!
2240 */
85ba2d86
RM
2241 while (task_running(rq, p)) {
2242 if (match_state && unlikely(p->state != match_state))
2243 return 0;
3a5c359a 2244 cpu_relax();
85ba2d86 2245 }
fa490cfd 2246
3a5c359a
AK
2247 /*
2248 * Ok, time to look more closely! We need the rq
2249 * lock now, to be *sure*. If we're wrong, we'll
2250 * just go back and repeat.
2251 */
2252 rq = task_rq_lock(p, &flags);
27a9da65 2253 trace_sched_wait_task(p);
3a5c359a
AK
2254 running = task_running(rq, p);
2255 on_rq = p->se.on_rq;
85ba2d86 2256 ncsw = 0;
f31e11d8 2257 if (!match_state || p->state == match_state)
93dcf55f 2258 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2259 task_rq_unlock(rq, &flags);
fa490cfd 2260
85ba2d86
RM
2261 /*
2262 * If it changed from the expected state, bail out now.
2263 */
2264 if (unlikely(!ncsw))
2265 break;
2266
3a5c359a
AK
2267 /*
2268 * Was it really running after all now that we
2269 * checked with the proper locks actually held?
2270 *
2271 * Oops. Go back and try again..
2272 */
2273 if (unlikely(running)) {
2274 cpu_relax();
2275 continue;
2276 }
fa490cfd 2277
3a5c359a
AK
2278 /*
2279 * It's not enough that it's not actively running,
2280 * it must be off the runqueue _entirely_, and not
2281 * preempted!
2282 *
80dd99b3 2283 * So if it was still runnable (but just not actively
3a5c359a
AK
2284 * running right now), it's preempted, and we should
2285 * yield - it could be a while.
2286 */
2287 if (unlikely(on_rq)) {
8eb90c30
TG
2288 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2289
2290 set_current_state(TASK_UNINTERRUPTIBLE);
2291 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2292 continue;
2293 }
fa490cfd 2294
3a5c359a
AK
2295 /*
2296 * Ahh, all good. It wasn't running, and it wasn't
2297 * runnable, which means that it will never become
2298 * running in the future either. We're all done!
2299 */
2300 break;
2301 }
85ba2d86
RM
2302
2303 return ncsw;
1da177e4
LT
2304}
2305
2306/***
2307 * kick_process - kick a running thread to enter/exit the kernel
2308 * @p: the to-be-kicked thread
2309 *
2310 * Cause a process which is running on another CPU to enter
2311 * kernel-mode, without any delay. (to get signals handled.)
2312 *
25985edc 2313 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2314 * because all it wants to ensure is that the remote task enters
2315 * the kernel. If the IPI races and the task has been migrated
2316 * to another CPU then no harm is done and the purpose has been
2317 * achieved as well.
2318 */
36c8b586 2319void kick_process(struct task_struct *p)
1da177e4
LT
2320{
2321 int cpu;
2322
2323 preempt_disable();
2324 cpu = task_cpu(p);
2325 if ((cpu != smp_processor_id()) && task_curr(p))
2326 smp_send_reschedule(cpu);
2327 preempt_enable();
2328}
b43e3521 2329EXPORT_SYMBOL_GPL(kick_process);
476d139c 2330#endif /* CONFIG_SMP */
1da177e4 2331
970b13ba 2332#ifdef CONFIG_SMP
30da688e
ON
2333/*
2334 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2335 */
5da9a0fb
PZ
2336static int select_fallback_rq(int cpu, struct task_struct *p)
2337{
2338 int dest_cpu;
2339 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2340
2341 /* Look for allowed, online CPU in same node. */
2342 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2343 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2344 return dest_cpu;
2345
2346 /* Any allowed, online CPU? */
2347 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2348 if (dest_cpu < nr_cpu_ids)
2349 return dest_cpu;
2350
2351 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2352 dest_cpu = cpuset_cpus_allowed_fallback(p);
2353 /*
2354 * Don't tell them about moving exiting tasks or
2355 * kernel threads (both mm NULL), since they never
2356 * leave kernel.
2357 */
2358 if (p->mm && printk_ratelimit()) {
2359 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2360 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2361 }
2362
2363 return dest_cpu;
2364}
2365
e2912009 2366/*
30da688e 2367 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2368 */
970b13ba 2369static inline
0017d735 2370int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2371{
0017d735 2372 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2373
2374 /*
2375 * In order not to call set_task_cpu() on a blocking task we need
2376 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2377 * cpu.
2378 *
2379 * Since this is common to all placement strategies, this lives here.
2380 *
2381 * [ this allows ->select_task() to simply return task_cpu(p) and
2382 * not worry about this generic constraint ]
2383 */
2384 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2385 !cpu_online(cpu)))
5da9a0fb 2386 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2387
2388 return cpu;
970b13ba 2389}
09a40af5
MG
2390
2391static void update_avg(u64 *avg, u64 sample)
2392{
2393 s64 diff = sample - *avg;
2394 *avg += diff >> 3;
2395}
970b13ba
PZ
2396#endif
2397
9ed3811a
TH
2398static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2399 bool is_sync, bool is_migrate, bool is_local,
2400 unsigned long en_flags)
2401{
2402 schedstat_inc(p, se.statistics.nr_wakeups);
2403 if (is_sync)
2404 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2405 if (is_migrate)
2406 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2407 if (is_local)
2408 schedstat_inc(p, se.statistics.nr_wakeups_local);
2409 else
2410 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2411
2412 activate_task(rq, p, en_flags);
2413}
2414
2415static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2416 int wake_flags, bool success)
2417{
2418 trace_sched_wakeup(p, success);
2419 check_preempt_curr(rq, p, wake_flags);
2420
2421 p->state = TASK_RUNNING;
2422#ifdef CONFIG_SMP
2423 if (p->sched_class->task_woken)
2424 p->sched_class->task_woken(rq, p);
2425
2426 if (unlikely(rq->idle_stamp)) {
2427 u64 delta = rq->clock - rq->idle_stamp;
2428 u64 max = 2*sysctl_sched_migration_cost;
2429
2430 if (delta > max)
2431 rq->avg_idle = max;
2432 else
2433 update_avg(&rq->avg_idle, delta);
2434 rq->idle_stamp = 0;
2435 }
2436#endif
21aa9af0
TH
2437 /* if a worker is waking up, notify workqueue */
2438 if ((p->flags & PF_WQ_WORKER) && success)
2439 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2440}
2441
2442/**
1da177e4 2443 * try_to_wake_up - wake up a thread
9ed3811a 2444 * @p: the thread to be awakened
1da177e4 2445 * @state: the mask of task states that can be woken
9ed3811a 2446 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2447 *
2448 * Put it on the run-queue if it's not already there. The "current"
2449 * thread is always on the run-queue (except when the actual
2450 * re-schedule is in progress), and as such you're allowed to do
2451 * the simpler "current->state = TASK_RUNNING" to mark yourself
2452 * runnable without the overhead of this.
2453 *
9ed3811a
TH
2454 * Returns %true if @p was woken up, %false if it was already running
2455 * or @state didn't match @p's state.
1da177e4 2456 */
7d478721
PZ
2457static int try_to_wake_up(struct task_struct *p, unsigned int state,
2458 int wake_flags)
1da177e4 2459{
cc367732 2460 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2461 unsigned long flags;
371fd7e7 2462 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2463 struct rq *rq;
1da177e4 2464
e9c84311 2465 this_cpu = get_cpu();
2398f2c6 2466
04e2f174 2467 smp_wmb();
ab3b3aa5 2468 rq = task_rq_lock(p, &flags);
e9c84311 2469 if (!(p->state & state))
1da177e4
LT
2470 goto out;
2471
dd41f596 2472 if (p->se.on_rq)
1da177e4
LT
2473 goto out_running;
2474
2475 cpu = task_cpu(p);
cc367732 2476 orig_cpu = cpu;
1da177e4
LT
2477
2478#ifdef CONFIG_SMP
2479 if (unlikely(task_running(rq, p)))
2480 goto out_activate;
2481
e9c84311
PZ
2482 /*
2483 * In order to handle concurrent wakeups and release the rq->lock
2484 * we put the task in TASK_WAKING state.
eb24073b
IM
2485 *
2486 * First fix up the nr_uninterruptible count:
e9c84311 2487 */
cc87f76a
PZ
2488 if (task_contributes_to_load(p)) {
2489 if (likely(cpu_online(orig_cpu)))
2490 rq->nr_uninterruptible--;
2491 else
2492 this_rq()->nr_uninterruptible--;
2493 }
e9c84311 2494 p->state = TASK_WAKING;
efbbd05a 2495
371fd7e7 2496 if (p->sched_class->task_waking) {
efbbd05a 2497 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2498 en_flags |= ENQUEUE_WAKING;
2499 }
efbbd05a 2500
0017d735
PZ
2501 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2502 if (cpu != orig_cpu)
5d2f5a61 2503 set_task_cpu(p, cpu);
0017d735 2504 __task_rq_unlock(rq);
ab19cb23 2505
0970d299
PZ
2506 rq = cpu_rq(cpu);
2507 raw_spin_lock(&rq->lock);
f5dc3753 2508
0970d299
PZ
2509 /*
2510 * We migrated the task without holding either rq->lock, however
2511 * since the task is not on the task list itself, nobody else
2512 * will try and migrate the task, hence the rq should match the
2513 * cpu we just moved it to.
2514 */
2515 WARN_ON(task_cpu(p) != cpu);
e9c84311 2516 WARN_ON(p->state != TASK_WAKING);
1da177e4 2517
e7693a36
GH
2518#ifdef CONFIG_SCHEDSTATS
2519 schedstat_inc(rq, ttwu_count);
2520 if (cpu == this_cpu)
2521 schedstat_inc(rq, ttwu_local);
2522 else {
2523 struct sched_domain *sd;
2524 for_each_domain(this_cpu, sd) {
758b2cdc 2525 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2526 schedstat_inc(sd, ttwu_wake_remote);
2527 break;
2528 }
2529 }
2530 }
6d6bc0ad 2531#endif /* CONFIG_SCHEDSTATS */
e7693a36 2532
1da177e4
LT
2533out_activate:
2534#endif /* CONFIG_SMP */
9ed3811a
TH
2535 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2536 cpu == this_cpu, en_flags);
1da177e4 2537 success = 1;
1da177e4 2538out_running:
9ed3811a 2539 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2540out:
2541 task_rq_unlock(rq, &flags);
e9c84311 2542 put_cpu();
1da177e4
LT
2543
2544 return success;
2545}
2546
21aa9af0
TH
2547/**
2548 * try_to_wake_up_local - try to wake up a local task with rq lock held
2549 * @p: the thread to be awakened
2550 *
b595076a 2551 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2552 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2553 * the current task. this_rq() stays locked over invocation.
2554 */
2555static void try_to_wake_up_local(struct task_struct *p)
2556{
2557 struct rq *rq = task_rq(p);
2558 bool success = false;
2559
2560 BUG_ON(rq != this_rq());
2561 BUG_ON(p == current);
2562 lockdep_assert_held(&rq->lock);
2563
2564 if (!(p->state & TASK_NORMAL))
2565 return;
2566
2567 if (!p->se.on_rq) {
2568 if (likely(!task_running(rq, p))) {
2569 schedstat_inc(rq, ttwu_count);
2570 schedstat_inc(rq, ttwu_local);
2571 }
2572 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2573 success = true;
2574 }
2575 ttwu_post_activation(p, rq, 0, success);
2576}
2577
50fa610a
DH
2578/**
2579 * wake_up_process - Wake up a specific process
2580 * @p: The process to be woken up.
2581 *
2582 * Attempt to wake up the nominated process and move it to the set of runnable
2583 * processes. Returns 1 if the process was woken up, 0 if it was already
2584 * running.
2585 *
2586 * It may be assumed that this function implies a write memory barrier before
2587 * changing the task state if and only if any tasks are woken up.
2588 */
7ad5b3a5 2589int wake_up_process(struct task_struct *p)
1da177e4 2590{
d9514f6c 2591 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2592}
1da177e4
LT
2593EXPORT_SYMBOL(wake_up_process);
2594
7ad5b3a5 2595int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2596{
2597 return try_to_wake_up(p, state, 0);
2598}
2599
1da177e4
LT
2600/*
2601 * Perform scheduler related setup for a newly forked process p.
2602 * p is forked by current.
dd41f596
IM
2603 *
2604 * __sched_fork() is basic setup used by init_idle() too:
2605 */
2606static void __sched_fork(struct task_struct *p)
2607{
dd41f596
IM
2608 p->se.exec_start = 0;
2609 p->se.sum_exec_runtime = 0;
f6cf891c 2610 p->se.prev_sum_exec_runtime = 0;
6c594c21 2611 p->se.nr_migrations = 0;
da7a735e 2612 p->se.vruntime = 0;
6cfb0d5d
IM
2613
2614#ifdef CONFIG_SCHEDSTATS
41acab88 2615 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2616#endif
476d139c 2617
fa717060 2618 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2619 p->se.on_rq = 0;
4a55bd5e 2620 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2621
e107be36
AK
2622#ifdef CONFIG_PREEMPT_NOTIFIERS
2623 INIT_HLIST_HEAD(&p->preempt_notifiers);
2624#endif
dd41f596
IM
2625}
2626
2627/*
2628 * fork()/clone()-time setup:
2629 */
2630void sched_fork(struct task_struct *p, int clone_flags)
2631{
2632 int cpu = get_cpu();
2633
2634 __sched_fork(p);
06b83b5f 2635 /*
0017d735 2636 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2637 * nobody will actually run it, and a signal or other external
2638 * event cannot wake it up and insert it on the runqueue either.
2639 */
0017d735 2640 p->state = TASK_RUNNING;
dd41f596 2641
b9dc29e7
MG
2642 /*
2643 * Revert to default priority/policy on fork if requested.
2644 */
2645 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2646 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2647 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2648 p->normal_prio = p->static_prio;
2649 }
b9dc29e7 2650
6c697bdf
MG
2651 if (PRIO_TO_NICE(p->static_prio) < 0) {
2652 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2653 p->normal_prio = p->static_prio;
6c697bdf
MG
2654 set_load_weight(p);
2655 }
2656
b9dc29e7
MG
2657 /*
2658 * We don't need the reset flag anymore after the fork. It has
2659 * fulfilled its duty:
2660 */
2661 p->sched_reset_on_fork = 0;
2662 }
ca94c442 2663
f83f9ac2
PW
2664 /*
2665 * Make sure we do not leak PI boosting priority to the child.
2666 */
2667 p->prio = current->normal_prio;
2668
2ddbf952
HS
2669 if (!rt_prio(p->prio))
2670 p->sched_class = &fair_sched_class;
b29739f9 2671
cd29fe6f
PZ
2672 if (p->sched_class->task_fork)
2673 p->sched_class->task_fork(p);
2674
86951599
PZ
2675 /*
2676 * The child is not yet in the pid-hash so no cgroup attach races,
2677 * and the cgroup is pinned to this child due to cgroup_fork()
2678 * is ran before sched_fork().
2679 *
2680 * Silence PROVE_RCU.
2681 */
2682 rcu_read_lock();
5f3edc1b 2683 set_task_cpu(p, cpu);
86951599 2684 rcu_read_unlock();
5f3edc1b 2685
52f17b6c 2686#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2687 if (likely(sched_info_on()))
52f17b6c 2688 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2689#endif
d6077cb8 2690#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2691 p->oncpu = 0;
2692#endif
1da177e4 2693#ifdef CONFIG_PREEMPT
4866cde0 2694 /* Want to start with kernel preemption disabled. */
a1261f54 2695 task_thread_info(p)->preempt_count = 1;
1da177e4 2696#endif
806c09a7 2697#ifdef CONFIG_SMP
917b627d 2698 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2699#endif
917b627d 2700
476d139c 2701 put_cpu();
1da177e4
LT
2702}
2703
2704/*
2705 * wake_up_new_task - wake up a newly created task for the first time.
2706 *
2707 * This function will do some initial scheduler statistics housekeeping
2708 * that must be done for every newly created context, then puts the task
2709 * on the runqueue and wakes it.
2710 */
7ad5b3a5 2711void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2712{
2713 unsigned long flags;
dd41f596 2714 struct rq *rq;
c890692b 2715 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2716
2717#ifdef CONFIG_SMP
0017d735
PZ
2718 rq = task_rq_lock(p, &flags);
2719 p->state = TASK_WAKING;
2720
fabf318e
PZ
2721 /*
2722 * Fork balancing, do it here and not earlier because:
2723 * - cpus_allowed can change in the fork path
2724 * - any previously selected cpu might disappear through hotplug
2725 *
0017d735
PZ
2726 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2727 * without people poking at ->cpus_allowed.
fabf318e 2728 */
0017d735 2729 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2730 set_task_cpu(p, cpu);
1da177e4 2731
06b83b5f 2732 p->state = TASK_RUNNING;
0017d735
PZ
2733 task_rq_unlock(rq, &flags);
2734#endif
2735
2736 rq = task_rq_lock(p, &flags);
cd29fe6f 2737 activate_task(rq, p, 0);
27a9da65 2738 trace_sched_wakeup_new(p, 1);
a7558e01 2739 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2740#ifdef CONFIG_SMP
efbbd05a
PZ
2741 if (p->sched_class->task_woken)
2742 p->sched_class->task_woken(rq, p);
9a897c5a 2743#endif
dd41f596 2744 task_rq_unlock(rq, &flags);
fabf318e 2745 put_cpu();
1da177e4
LT
2746}
2747
e107be36
AK
2748#ifdef CONFIG_PREEMPT_NOTIFIERS
2749
2750/**
80dd99b3 2751 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2752 * @notifier: notifier struct to register
e107be36
AK
2753 */
2754void preempt_notifier_register(struct preempt_notifier *notifier)
2755{
2756 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2757}
2758EXPORT_SYMBOL_GPL(preempt_notifier_register);
2759
2760/**
2761 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2762 * @notifier: notifier struct to unregister
e107be36
AK
2763 *
2764 * This is safe to call from within a preemption notifier.
2765 */
2766void preempt_notifier_unregister(struct preempt_notifier *notifier)
2767{
2768 hlist_del(&notifier->link);
2769}
2770EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2771
2772static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2773{
2774 struct preempt_notifier *notifier;
2775 struct hlist_node *node;
2776
2777 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2778 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2779}
2780
2781static void
2782fire_sched_out_preempt_notifiers(struct task_struct *curr,
2783 struct task_struct *next)
2784{
2785 struct preempt_notifier *notifier;
2786 struct hlist_node *node;
2787
2788 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2789 notifier->ops->sched_out(notifier, next);
2790}
2791
6d6bc0ad 2792#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2793
2794static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2795{
2796}
2797
2798static void
2799fire_sched_out_preempt_notifiers(struct task_struct *curr,
2800 struct task_struct *next)
2801{
2802}
2803
6d6bc0ad 2804#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2805
4866cde0
NP
2806/**
2807 * prepare_task_switch - prepare to switch tasks
2808 * @rq: the runqueue preparing to switch
421cee29 2809 * @prev: the current task that is being switched out
4866cde0
NP
2810 * @next: the task we are going to switch to.
2811 *
2812 * This is called with the rq lock held and interrupts off. It must
2813 * be paired with a subsequent finish_task_switch after the context
2814 * switch.
2815 *
2816 * prepare_task_switch sets up locking and calls architecture specific
2817 * hooks.
2818 */
e107be36
AK
2819static inline void
2820prepare_task_switch(struct rq *rq, struct task_struct *prev,
2821 struct task_struct *next)
4866cde0 2822{
fe4b04fa
PZ
2823 sched_info_switch(prev, next);
2824 perf_event_task_sched_out(prev, next);
e107be36 2825 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2826 prepare_lock_switch(rq, next);
2827 prepare_arch_switch(next);
fe4b04fa 2828 trace_sched_switch(prev, next);
4866cde0
NP
2829}
2830
1da177e4
LT
2831/**
2832 * finish_task_switch - clean up after a task-switch
344babaa 2833 * @rq: runqueue associated with task-switch
1da177e4
LT
2834 * @prev: the thread we just switched away from.
2835 *
4866cde0
NP
2836 * finish_task_switch must be called after the context switch, paired
2837 * with a prepare_task_switch call before the context switch.
2838 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2839 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2840 *
2841 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2842 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2843 * with the lock held can cause deadlocks; see schedule() for
2844 * details.)
2845 */
a9957449 2846static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2847 __releases(rq->lock)
2848{
1da177e4 2849 struct mm_struct *mm = rq->prev_mm;
55a101f8 2850 long prev_state;
1da177e4
LT
2851
2852 rq->prev_mm = NULL;
2853
2854 /*
2855 * A task struct has one reference for the use as "current".
c394cc9f 2856 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2857 * schedule one last time. The schedule call will never return, and
2858 * the scheduled task must drop that reference.
c394cc9f 2859 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2860 * still held, otherwise prev could be scheduled on another cpu, die
2861 * there before we look at prev->state, and then the reference would
2862 * be dropped twice.
2863 * Manfred Spraul <manfred@colorfullife.com>
2864 */
55a101f8 2865 prev_state = prev->state;
4866cde0 2866 finish_arch_switch(prev);
8381f65d
JI
2867#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2868 local_irq_disable();
2869#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2870 perf_event_task_sched_in(current);
8381f65d
JI
2871#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2872 local_irq_enable();
2873#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2874 finish_lock_switch(rq, prev);
e8fa1362 2875
e107be36 2876 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2877 if (mm)
2878 mmdrop(mm);
c394cc9f 2879 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2880 /*
2881 * Remove function-return probe instances associated with this
2882 * task and put them back on the free list.
9761eea8 2883 */
c6fd91f0 2884 kprobe_flush_task(prev);
1da177e4 2885 put_task_struct(prev);
c6fd91f0 2886 }
1da177e4
LT
2887}
2888
3f029d3c
GH
2889#ifdef CONFIG_SMP
2890
2891/* assumes rq->lock is held */
2892static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2893{
2894 if (prev->sched_class->pre_schedule)
2895 prev->sched_class->pre_schedule(rq, prev);
2896}
2897
2898/* rq->lock is NOT held, but preemption is disabled */
2899static inline void post_schedule(struct rq *rq)
2900{
2901 if (rq->post_schedule) {
2902 unsigned long flags;
2903
05fa785c 2904 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2905 if (rq->curr->sched_class->post_schedule)
2906 rq->curr->sched_class->post_schedule(rq);
05fa785c 2907 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2908
2909 rq->post_schedule = 0;
2910 }
2911}
2912
2913#else
da19ab51 2914
3f029d3c
GH
2915static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2916{
2917}
2918
2919static inline void post_schedule(struct rq *rq)
2920{
1da177e4
LT
2921}
2922
3f029d3c
GH
2923#endif
2924
1da177e4
LT
2925/**
2926 * schedule_tail - first thing a freshly forked thread must call.
2927 * @prev: the thread we just switched away from.
2928 */
36c8b586 2929asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2930 __releases(rq->lock)
2931{
70b97a7f
IM
2932 struct rq *rq = this_rq();
2933
4866cde0 2934 finish_task_switch(rq, prev);
da19ab51 2935
3f029d3c
GH
2936 /*
2937 * FIXME: do we need to worry about rq being invalidated by the
2938 * task_switch?
2939 */
2940 post_schedule(rq);
70b97a7f 2941
4866cde0
NP
2942#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2943 /* In this case, finish_task_switch does not reenable preemption */
2944 preempt_enable();
2945#endif
1da177e4 2946 if (current->set_child_tid)
b488893a 2947 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2948}
2949
2950/*
2951 * context_switch - switch to the new MM and the new
2952 * thread's register state.
2953 */
dd41f596 2954static inline void
70b97a7f 2955context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2956 struct task_struct *next)
1da177e4 2957{
dd41f596 2958 struct mm_struct *mm, *oldmm;
1da177e4 2959
e107be36 2960 prepare_task_switch(rq, prev, next);
fe4b04fa 2961
dd41f596
IM
2962 mm = next->mm;
2963 oldmm = prev->active_mm;
9226d125
ZA
2964 /*
2965 * For paravirt, this is coupled with an exit in switch_to to
2966 * combine the page table reload and the switch backend into
2967 * one hypercall.
2968 */
224101ed 2969 arch_start_context_switch(prev);
9226d125 2970
31915ab4 2971 if (!mm) {
1da177e4
LT
2972 next->active_mm = oldmm;
2973 atomic_inc(&oldmm->mm_count);
2974 enter_lazy_tlb(oldmm, next);
2975 } else
2976 switch_mm(oldmm, mm, next);
2977
31915ab4 2978 if (!prev->mm) {
1da177e4 2979 prev->active_mm = NULL;
1da177e4
LT
2980 rq->prev_mm = oldmm;
2981 }
3a5f5e48
IM
2982 /*
2983 * Since the runqueue lock will be released by the next
2984 * task (which is an invalid locking op but in the case
2985 * of the scheduler it's an obvious special-case), so we
2986 * do an early lockdep release here:
2987 */
2988#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2989 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2990#endif
1da177e4
LT
2991
2992 /* Here we just switch the register state and the stack. */
2993 switch_to(prev, next, prev);
2994
dd41f596
IM
2995 barrier();
2996 /*
2997 * this_rq must be evaluated again because prev may have moved
2998 * CPUs since it called schedule(), thus the 'rq' on its stack
2999 * frame will be invalid.
3000 */
3001 finish_task_switch(this_rq(), prev);
1da177e4
LT
3002}
3003
3004/*
3005 * nr_running, nr_uninterruptible and nr_context_switches:
3006 *
3007 * externally visible scheduler statistics: current number of runnable
3008 * threads, current number of uninterruptible-sleeping threads, total
3009 * number of context switches performed since bootup.
3010 */
3011unsigned long nr_running(void)
3012{
3013 unsigned long i, sum = 0;
3014
3015 for_each_online_cpu(i)
3016 sum += cpu_rq(i)->nr_running;
3017
3018 return sum;
f711f609 3019}
1da177e4
LT
3020
3021unsigned long nr_uninterruptible(void)
f711f609 3022{
1da177e4 3023 unsigned long i, sum = 0;
f711f609 3024
0a945022 3025 for_each_possible_cpu(i)
1da177e4 3026 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3027
3028 /*
1da177e4
LT
3029 * Since we read the counters lockless, it might be slightly
3030 * inaccurate. Do not allow it to go below zero though:
f711f609 3031 */
1da177e4
LT
3032 if (unlikely((long)sum < 0))
3033 sum = 0;
f711f609 3034
1da177e4 3035 return sum;
f711f609 3036}
f711f609 3037
1da177e4 3038unsigned long long nr_context_switches(void)
46cb4b7c 3039{
cc94abfc
SR
3040 int i;
3041 unsigned long long sum = 0;
46cb4b7c 3042
0a945022 3043 for_each_possible_cpu(i)
1da177e4 3044 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3045
1da177e4
LT
3046 return sum;
3047}
483b4ee6 3048
1da177e4
LT
3049unsigned long nr_iowait(void)
3050{
3051 unsigned long i, sum = 0;
483b4ee6 3052
0a945022 3053 for_each_possible_cpu(i)
1da177e4 3054 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3055
1da177e4
LT
3056 return sum;
3057}
483b4ee6 3058
8c215bd3 3059unsigned long nr_iowait_cpu(int cpu)
69d25870 3060{
8c215bd3 3061 struct rq *this = cpu_rq(cpu);
69d25870
AV
3062 return atomic_read(&this->nr_iowait);
3063}
46cb4b7c 3064
69d25870
AV
3065unsigned long this_cpu_load(void)
3066{
3067 struct rq *this = this_rq();
3068 return this->cpu_load[0];
3069}
e790fb0b 3070
46cb4b7c 3071
dce48a84
TG
3072/* Variables and functions for calc_load */
3073static atomic_long_t calc_load_tasks;
3074static unsigned long calc_load_update;
3075unsigned long avenrun[3];
3076EXPORT_SYMBOL(avenrun);
46cb4b7c 3077
74f5187a
PZ
3078static long calc_load_fold_active(struct rq *this_rq)
3079{
3080 long nr_active, delta = 0;
3081
3082 nr_active = this_rq->nr_running;
3083 nr_active += (long) this_rq->nr_uninterruptible;
3084
3085 if (nr_active != this_rq->calc_load_active) {
3086 delta = nr_active - this_rq->calc_load_active;
3087 this_rq->calc_load_active = nr_active;
3088 }
3089
3090 return delta;
3091}
3092
0f004f5a
PZ
3093static unsigned long
3094calc_load(unsigned long load, unsigned long exp, unsigned long active)
3095{
3096 load *= exp;
3097 load += active * (FIXED_1 - exp);
3098 load += 1UL << (FSHIFT - 1);
3099 return load >> FSHIFT;
3100}
3101
74f5187a
PZ
3102#ifdef CONFIG_NO_HZ
3103/*
3104 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3105 *
3106 * When making the ILB scale, we should try to pull this in as well.
3107 */
3108static atomic_long_t calc_load_tasks_idle;
3109
3110static void calc_load_account_idle(struct rq *this_rq)
3111{
3112 long delta;
3113
3114 delta = calc_load_fold_active(this_rq);
3115 if (delta)
3116 atomic_long_add(delta, &calc_load_tasks_idle);
3117}
3118
3119static long calc_load_fold_idle(void)
3120{
3121 long delta = 0;
3122
3123 /*
3124 * Its got a race, we don't care...
3125 */
3126 if (atomic_long_read(&calc_load_tasks_idle))
3127 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3128
3129 return delta;
3130}
0f004f5a
PZ
3131
3132/**
3133 * fixed_power_int - compute: x^n, in O(log n) time
3134 *
3135 * @x: base of the power
3136 * @frac_bits: fractional bits of @x
3137 * @n: power to raise @x to.
3138 *
3139 * By exploiting the relation between the definition of the natural power
3140 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3141 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3142 * (where: n_i \elem {0, 1}, the binary vector representing n),
3143 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3144 * of course trivially computable in O(log_2 n), the length of our binary
3145 * vector.
3146 */
3147static unsigned long
3148fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3149{
3150 unsigned long result = 1UL << frac_bits;
3151
3152 if (n) for (;;) {
3153 if (n & 1) {
3154 result *= x;
3155 result += 1UL << (frac_bits - 1);
3156 result >>= frac_bits;
3157 }
3158 n >>= 1;
3159 if (!n)
3160 break;
3161 x *= x;
3162 x += 1UL << (frac_bits - 1);
3163 x >>= frac_bits;
3164 }
3165
3166 return result;
3167}
3168
3169/*
3170 * a1 = a0 * e + a * (1 - e)
3171 *
3172 * a2 = a1 * e + a * (1 - e)
3173 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3174 * = a0 * e^2 + a * (1 - e) * (1 + e)
3175 *
3176 * a3 = a2 * e + a * (1 - e)
3177 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3178 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3179 *
3180 * ...
3181 *
3182 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3183 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3184 * = a0 * e^n + a * (1 - e^n)
3185 *
3186 * [1] application of the geometric series:
3187 *
3188 * n 1 - x^(n+1)
3189 * S_n := \Sum x^i = -------------
3190 * i=0 1 - x
3191 */
3192static unsigned long
3193calc_load_n(unsigned long load, unsigned long exp,
3194 unsigned long active, unsigned int n)
3195{
3196
3197 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3198}
3199
3200/*
3201 * NO_HZ can leave us missing all per-cpu ticks calling
3202 * calc_load_account_active(), but since an idle CPU folds its delta into
3203 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3204 * in the pending idle delta if our idle period crossed a load cycle boundary.
3205 *
3206 * Once we've updated the global active value, we need to apply the exponential
3207 * weights adjusted to the number of cycles missed.
3208 */
3209static void calc_global_nohz(unsigned long ticks)
3210{
3211 long delta, active, n;
3212
3213 if (time_before(jiffies, calc_load_update))
3214 return;
3215
3216 /*
3217 * If we crossed a calc_load_update boundary, make sure to fold
3218 * any pending idle changes, the respective CPUs might have
3219 * missed the tick driven calc_load_account_active() update
3220 * due to NO_HZ.
3221 */
3222 delta = calc_load_fold_idle();
3223 if (delta)
3224 atomic_long_add(delta, &calc_load_tasks);
3225
3226 /*
3227 * If we were idle for multiple load cycles, apply them.
3228 */
3229 if (ticks >= LOAD_FREQ) {
3230 n = ticks / LOAD_FREQ;
3231
3232 active = atomic_long_read(&calc_load_tasks);
3233 active = active > 0 ? active * FIXED_1 : 0;
3234
3235 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3236 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3237 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3238
3239 calc_load_update += n * LOAD_FREQ;
3240 }
3241
3242 /*
3243 * Its possible the remainder of the above division also crosses
3244 * a LOAD_FREQ period, the regular check in calc_global_load()
3245 * which comes after this will take care of that.
3246 *
3247 * Consider us being 11 ticks before a cycle completion, and us
3248 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3249 * age us 4 cycles, and the test in calc_global_load() will
3250 * pick up the final one.
3251 */
3252}
74f5187a
PZ
3253#else
3254static void calc_load_account_idle(struct rq *this_rq)
3255{
3256}
3257
3258static inline long calc_load_fold_idle(void)
3259{
3260 return 0;
3261}
0f004f5a
PZ
3262
3263static void calc_global_nohz(unsigned long ticks)
3264{
3265}
74f5187a
PZ
3266#endif
3267
2d02494f
TG
3268/**
3269 * get_avenrun - get the load average array
3270 * @loads: pointer to dest load array
3271 * @offset: offset to add
3272 * @shift: shift count to shift the result left
3273 *
3274 * These values are estimates at best, so no need for locking.
3275 */
3276void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3277{
3278 loads[0] = (avenrun[0] + offset) << shift;
3279 loads[1] = (avenrun[1] + offset) << shift;
3280 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3281}
46cb4b7c 3282
46cb4b7c 3283/*
dce48a84
TG
3284 * calc_load - update the avenrun load estimates 10 ticks after the
3285 * CPUs have updated calc_load_tasks.
7835b98b 3286 */
0f004f5a 3287void calc_global_load(unsigned long ticks)
7835b98b 3288{
dce48a84 3289 long active;
1da177e4 3290
0f004f5a
PZ
3291 calc_global_nohz(ticks);
3292
3293 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3294 return;
1da177e4 3295
dce48a84
TG
3296 active = atomic_long_read(&calc_load_tasks);
3297 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3298
dce48a84
TG
3299 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3300 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3301 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3302
dce48a84
TG
3303 calc_load_update += LOAD_FREQ;
3304}
1da177e4 3305
dce48a84 3306/*
74f5187a
PZ
3307 * Called from update_cpu_load() to periodically update this CPU's
3308 * active count.
dce48a84
TG
3309 */
3310static void calc_load_account_active(struct rq *this_rq)
3311{
74f5187a 3312 long delta;
08c183f3 3313
74f5187a
PZ
3314 if (time_before(jiffies, this_rq->calc_load_update))
3315 return;
783609c6 3316
74f5187a
PZ
3317 delta = calc_load_fold_active(this_rq);
3318 delta += calc_load_fold_idle();
3319 if (delta)
dce48a84 3320 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3321
3322 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3323}
3324
fdf3e95d
VP
3325/*
3326 * The exact cpuload at various idx values, calculated at every tick would be
3327 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3328 *
3329 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3330 * on nth tick when cpu may be busy, then we have:
3331 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3332 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3333 *
3334 * decay_load_missed() below does efficient calculation of
3335 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3336 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3337 *
3338 * The calculation is approximated on a 128 point scale.
3339 * degrade_zero_ticks is the number of ticks after which load at any
3340 * particular idx is approximated to be zero.
3341 * degrade_factor is a precomputed table, a row for each load idx.
3342 * Each column corresponds to degradation factor for a power of two ticks,
3343 * based on 128 point scale.
3344 * Example:
3345 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3346 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3347 *
3348 * With this power of 2 load factors, we can degrade the load n times
3349 * by looking at 1 bits in n and doing as many mult/shift instead of
3350 * n mult/shifts needed by the exact degradation.
3351 */
3352#define DEGRADE_SHIFT 7
3353static const unsigned char
3354 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3355static const unsigned char
3356 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3357 {0, 0, 0, 0, 0, 0, 0, 0},
3358 {64, 32, 8, 0, 0, 0, 0, 0},
3359 {96, 72, 40, 12, 1, 0, 0},
3360 {112, 98, 75, 43, 15, 1, 0},
3361 {120, 112, 98, 76, 45, 16, 2} };
3362
3363/*
3364 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3365 * would be when CPU is idle and so we just decay the old load without
3366 * adding any new load.
3367 */
3368static unsigned long
3369decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3370{
3371 int j = 0;
3372
3373 if (!missed_updates)
3374 return load;
3375
3376 if (missed_updates >= degrade_zero_ticks[idx])
3377 return 0;
3378
3379 if (idx == 1)
3380 return load >> missed_updates;
3381
3382 while (missed_updates) {
3383 if (missed_updates % 2)
3384 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3385
3386 missed_updates >>= 1;
3387 j++;
3388 }
3389 return load;
3390}
3391
46cb4b7c 3392/*
dd41f596 3393 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3394 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3395 * every tick. We fix it up based on jiffies.
46cb4b7c 3396 */
dd41f596 3397static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3398{
495eca49 3399 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3400 unsigned long curr_jiffies = jiffies;
3401 unsigned long pending_updates;
dd41f596 3402 int i, scale;
46cb4b7c 3403
dd41f596 3404 this_rq->nr_load_updates++;
46cb4b7c 3405
fdf3e95d
VP
3406 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3407 if (curr_jiffies == this_rq->last_load_update_tick)
3408 return;
3409
3410 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3411 this_rq->last_load_update_tick = curr_jiffies;
3412
dd41f596 3413 /* Update our load: */
fdf3e95d
VP
3414 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3415 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3416 unsigned long old_load, new_load;
7d1e6a9b 3417
dd41f596 3418 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3419
dd41f596 3420 old_load = this_rq->cpu_load[i];
fdf3e95d 3421 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3422 new_load = this_load;
a25707f3
IM
3423 /*
3424 * Round up the averaging division if load is increasing. This
3425 * prevents us from getting stuck on 9 if the load is 10, for
3426 * example.
3427 */
3428 if (new_load > old_load)
fdf3e95d
VP
3429 new_load += scale - 1;
3430
3431 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3432 }
da2b71ed
SS
3433
3434 sched_avg_update(this_rq);
fdf3e95d
VP
3435}
3436
3437static void update_cpu_load_active(struct rq *this_rq)
3438{
3439 update_cpu_load(this_rq);
46cb4b7c 3440
74f5187a 3441 calc_load_account_active(this_rq);
46cb4b7c
SS
3442}
3443
dd41f596 3444#ifdef CONFIG_SMP
8a0be9ef 3445
46cb4b7c 3446/*
38022906
PZ
3447 * sched_exec - execve() is a valuable balancing opportunity, because at
3448 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3449 */
38022906 3450void sched_exec(void)
46cb4b7c 3451{
38022906 3452 struct task_struct *p = current;
1da177e4 3453 unsigned long flags;
70b97a7f 3454 struct rq *rq;
0017d735 3455 int dest_cpu;
46cb4b7c 3456
1da177e4 3457 rq = task_rq_lock(p, &flags);
0017d735
PZ
3458 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3459 if (dest_cpu == smp_processor_id())
3460 goto unlock;
38022906 3461
46cb4b7c 3462 /*
38022906 3463 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3464 */
30da688e 3465 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3466 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3467 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3468
1da177e4 3469 task_rq_unlock(rq, &flags);
969c7921 3470 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3471 return;
3472 }
0017d735 3473unlock:
1da177e4 3474 task_rq_unlock(rq, &flags);
1da177e4 3475}
dd41f596 3476
1da177e4
LT
3477#endif
3478
1da177e4
LT
3479DEFINE_PER_CPU(struct kernel_stat, kstat);
3480
3481EXPORT_PER_CPU_SYMBOL(kstat);
3482
3483/*
c5f8d995 3484 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3485 * @p in case that task is currently running.
c5f8d995
HS
3486 *
3487 * Called with task_rq_lock() held on @rq.
1da177e4 3488 */
c5f8d995
HS
3489static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3490{
3491 u64 ns = 0;
3492
3493 if (task_current(rq, p)) {
3494 update_rq_clock(rq);
305e6835 3495 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3496 if ((s64)ns < 0)
3497 ns = 0;
3498 }
3499
3500 return ns;
3501}
3502
bb34d92f 3503unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3504{
1da177e4 3505 unsigned long flags;
41b86e9c 3506 struct rq *rq;
bb34d92f 3507 u64 ns = 0;
48f24c4d 3508
41b86e9c 3509 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3510 ns = do_task_delta_exec(p, rq);
3511 task_rq_unlock(rq, &flags);
1508487e 3512
c5f8d995
HS
3513 return ns;
3514}
f06febc9 3515
c5f8d995
HS
3516/*
3517 * Return accounted runtime for the task.
3518 * In case the task is currently running, return the runtime plus current's
3519 * pending runtime that have not been accounted yet.
3520 */
3521unsigned long long task_sched_runtime(struct task_struct *p)
3522{
3523 unsigned long flags;
3524 struct rq *rq;
3525 u64 ns = 0;
3526
3527 rq = task_rq_lock(p, &flags);
3528 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3529 task_rq_unlock(rq, &flags);
3530
3531 return ns;
3532}
48f24c4d 3533
c5f8d995
HS
3534/*
3535 * Return sum_exec_runtime for the thread group.
3536 * In case the task is currently running, return the sum plus current's
3537 * pending runtime that have not been accounted yet.
3538 *
3539 * Note that the thread group might have other running tasks as well,
3540 * so the return value not includes other pending runtime that other
3541 * running tasks might have.
3542 */
3543unsigned long long thread_group_sched_runtime(struct task_struct *p)
3544{
3545 struct task_cputime totals;
3546 unsigned long flags;
3547 struct rq *rq;
3548 u64 ns;
3549
3550 rq = task_rq_lock(p, &flags);
3551 thread_group_cputime(p, &totals);
3552 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3553 task_rq_unlock(rq, &flags);
48f24c4d 3554
1da177e4
LT
3555 return ns;
3556}
3557
1da177e4
LT
3558/*
3559 * Account user cpu time to a process.
3560 * @p: the process that the cpu time gets accounted to
1da177e4 3561 * @cputime: the cpu time spent in user space since the last update
457533a7 3562 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3563 */
457533a7
MS
3564void account_user_time(struct task_struct *p, cputime_t cputime,
3565 cputime_t cputime_scaled)
1da177e4
LT
3566{
3567 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3568 cputime64_t tmp;
3569
457533a7 3570 /* Add user time to process. */
1da177e4 3571 p->utime = cputime_add(p->utime, cputime);
457533a7 3572 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3573 account_group_user_time(p, cputime);
1da177e4
LT
3574
3575 /* Add user time to cpustat. */
3576 tmp = cputime_to_cputime64(cputime);
3577 if (TASK_NICE(p) > 0)
3578 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3579 else
3580 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3581
3582 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3583 /* Account for user time used */
3584 acct_update_integrals(p);
1da177e4
LT
3585}
3586
94886b84
LV
3587/*
3588 * Account guest cpu time to a process.
3589 * @p: the process that the cpu time gets accounted to
3590 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3591 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3592 */
457533a7
MS
3593static void account_guest_time(struct task_struct *p, cputime_t cputime,
3594 cputime_t cputime_scaled)
94886b84
LV
3595{
3596 cputime64_t tmp;
3597 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3598
3599 tmp = cputime_to_cputime64(cputime);
3600
457533a7 3601 /* Add guest time to process. */
94886b84 3602 p->utime = cputime_add(p->utime, cputime);
457533a7 3603 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3604 account_group_user_time(p, cputime);
94886b84
LV
3605 p->gtime = cputime_add(p->gtime, cputime);
3606
457533a7 3607 /* Add guest time to cpustat. */
ce0e7b28
RO
3608 if (TASK_NICE(p) > 0) {
3609 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3610 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3611 } else {
3612 cpustat->user = cputime64_add(cpustat->user, tmp);
3613 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3614 }
94886b84
LV
3615}
3616
70a89a66
VP
3617/*
3618 * Account system cpu time to a process and desired cpustat field
3619 * @p: the process that the cpu time gets accounted to
3620 * @cputime: the cpu time spent in kernel space since the last update
3621 * @cputime_scaled: cputime scaled by cpu frequency
3622 * @target_cputime64: pointer to cpustat field that has to be updated
3623 */
3624static inline
3625void __account_system_time(struct task_struct *p, cputime_t cputime,
3626 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3627{
3628 cputime64_t tmp = cputime_to_cputime64(cputime);
3629
3630 /* Add system time to process. */
3631 p->stime = cputime_add(p->stime, cputime);
3632 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3633 account_group_system_time(p, cputime);
3634
3635 /* Add system time to cpustat. */
3636 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3637 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3638
3639 /* Account for system time used */
3640 acct_update_integrals(p);
3641}
3642
1da177e4
LT
3643/*
3644 * Account system cpu time to a process.
3645 * @p: the process that the cpu time gets accounted to
3646 * @hardirq_offset: the offset to subtract from hardirq_count()
3647 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3648 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3649 */
3650void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3651 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3652{
3653 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3654 cputime64_t *target_cputime64;
1da177e4 3655
983ed7a6 3656 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3657 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3658 return;
3659 }
94886b84 3660
1da177e4 3661 if (hardirq_count() - hardirq_offset)
70a89a66 3662 target_cputime64 = &cpustat->irq;
75e1056f 3663 else if (in_serving_softirq())
70a89a66 3664 target_cputime64 = &cpustat->softirq;
1da177e4 3665 else
70a89a66 3666 target_cputime64 = &cpustat->system;
ef12fefa 3667
70a89a66 3668 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3669}
3670
c66f08be 3671/*
1da177e4 3672 * Account for involuntary wait time.
544b4a1f 3673 * @cputime: the cpu time spent in involuntary wait
c66f08be 3674 */
79741dd3 3675void account_steal_time(cputime_t cputime)
c66f08be 3676{
79741dd3
MS
3677 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3678 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3679
3680 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3681}
3682
1da177e4 3683/*
79741dd3
MS
3684 * Account for idle time.
3685 * @cputime: the cpu time spent in idle wait
1da177e4 3686 */
79741dd3 3687void account_idle_time(cputime_t cputime)
1da177e4
LT
3688{
3689 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3690 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3691 struct rq *rq = this_rq();
1da177e4 3692
79741dd3
MS
3693 if (atomic_read(&rq->nr_iowait) > 0)
3694 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3695 else
3696 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3697}
3698
79741dd3
MS
3699#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3700
abb74cef
VP
3701#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3702/*
3703 * Account a tick to a process and cpustat
3704 * @p: the process that the cpu time gets accounted to
3705 * @user_tick: is the tick from userspace
3706 * @rq: the pointer to rq
3707 *
3708 * Tick demultiplexing follows the order
3709 * - pending hardirq update
3710 * - pending softirq update
3711 * - user_time
3712 * - idle_time
3713 * - system time
3714 * - check for guest_time
3715 * - else account as system_time
3716 *
3717 * Check for hardirq is done both for system and user time as there is
3718 * no timer going off while we are on hardirq and hence we may never get an
3719 * opportunity to update it solely in system time.
3720 * p->stime and friends are only updated on system time and not on irq
3721 * softirq as those do not count in task exec_runtime any more.
3722 */
3723static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3724 struct rq *rq)
3725{
3726 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3727 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3728 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3729
3730 if (irqtime_account_hi_update()) {
3731 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3732 } else if (irqtime_account_si_update()) {
3733 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3734 } else if (this_cpu_ksoftirqd() == p) {
3735 /*
3736 * ksoftirqd time do not get accounted in cpu_softirq_time.
3737 * So, we have to handle it separately here.
3738 * Also, p->stime needs to be updated for ksoftirqd.
3739 */
3740 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3741 &cpustat->softirq);
abb74cef
VP
3742 } else if (user_tick) {
3743 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3744 } else if (p == rq->idle) {
3745 account_idle_time(cputime_one_jiffy);
3746 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3747 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3748 } else {
3749 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3750 &cpustat->system);
3751 }
3752}
3753
3754static void irqtime_account_idle_ticks(int ticks)
3755{
3756 int i;
3757 struct rq *rq = this_rq();
3758
3759 for (i = 0; i < ticks; i++)
3760 irqtime_account_process_tick(current, 0, rq);
3761}
544b4a1f 3762#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3763static void irqtime_account_idle_ticks(int ticks) {}
3764static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3765 struct rq *rq) {}
544b4a1f 3766#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3767
3768/*
3769 * Account a single tick of cpu time.
3770 * @p: the process that the cpu time gets accounted to
3771 * @user_tick: indicates if the tick is a user or a system tick
3772 */
3773void account_process_tick(struct task_struct *p, int user_tick)
3774{
a42548a1 3775 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3776 struct rq *rq = this_rq();
3777
abb74cef
VP
3778 if (sched_clock_irqtime) {
3779 irqtime_account_process_tick(p, user_tick, rq);
3780 return;
3781 }
3782
79741dd3 3783 if (user_tick)
a42548a1 3784 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3785 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3786 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3787 one_jiffy_scaled);
3788 else
a42548a1 3789 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3790}
3791
3792/*
3793 * Account multiple ticks of steal time.
3794 * @p: the process from which the cpu time has been stolen
3795 * @ticks: number of stolen ticks
3796 */
3797void account_steal_ticks(unsigned long ticks)
3798{
3799 account_steal_time(jiffies_to_cputime(ticks));
3800}
3801
3802/*
3803 * Account multiple ticks of idle time.
3804 * @ticks: number of stolen ticks
3805 */
3806void account_idle_ticks(unsigned long ticks)
3807{
abb74cef
VP
3808
3809 if (sched_clock_irqtime) {
3810 irqtime_account_idle_ticks(ticks);
3811 return;
3812 }
3813
79741dd3 3814 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3815}
3816
79741dd3
MS
3817#endif
3818
49048622
BS
3819/*
3820 * Use precise platform statistics if available:
3821 */
3822#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3823void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3824{
d99ca3b9
HS
3825 *ut = p->utime;
3826 *st = p->stime;
49048622
BS
3827}
3828
0cf55e1e 3829void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3830{
0cf55e1e
HS
3831 struct task_cputime cputime;
3832
3833 thread_group_cputime(p, &cputime);
3834
3835 *ut = cputime.utime;
3836 *st = cputime.stime;
49048622
BS
3837}
3838#else
761b1d26
HS
3839
3840#ifndef nsecs_to_cputime
b7b20df9 3841# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3842#endif
3843
d180c5bc 3844void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3845{
d99ca3b9 3846 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3847
3848 /*
3849 * Use CFS's precise accounting:
3850 */
d180c5bc 3851 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3852
3853 if (total) {
e75e863d 3854 u64 temp = rtime;
d180c5bc 3855
e75e863d 3856 temp *= utime;
49048622 3857 do_div(temp, total);
d180c5bc
HS
3858 utime = (cputime_t)temp;
3859 } else
3860 utime = rtime;
49048622 3861
d180c5bc
HS
3862 /*
3863 * Compare with previous values, to keep monotonicity:
3864 */
761b1d26 3865 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3866 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3867
d99ca3b9
HS
3868 *ut = p->prev_utime;
3869 *st = p->prev_stime;
49048622
BS
3870}
3871
0cf55e1e
HS
3872/*
3873 * Must be called with siglock held.
3874 */
3875void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3876{
0cf55e1e
HS
3877 struct signal_struct *sig = p->signal;
3878 struct task_cputime cputime;
3879 cputime_t rtime, utime, total;
49048622 3880
0cf55e1e 3881 thread_group_cputime(p, &cputime);
49048622 3882
0cf55e1e
HS
3883 total = cputime_add(cputime.utime, cputime.stime);
3884 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3885
0cf55e1e 3886 if (total) {
e75e863d 3887 u64 temp = rtime;
49048622 3888
e75e863d 3889 temp *= cputime.utime;
0cf55e1e
HS
3890 do_div(temp, total);
3891 utime = (cputime_t)temp;
3892 } else
3893 utime = rtime;
3894
3895 sig->prev_utime = max(sig->prev_utime, utime);
3896 sig->prev_stime = max(sig->prev_stime,
3897 cputime_sub(rtime, sig->prev_utime));
3898
3899 *ut = sig->prev_utime;
3900 *st = sig->prev_stime;
49048622 3901}
49048622 3902#endif
49048622 3903
7835b98b
CL
3904/*
3905 * This function gets called by the timer code, with HZ frequency.
3906 * We call it with interrupts disabled.
3907 *
3908 * It also gets called by the fork code, when changing the parent's
3909 * timeslices.
3910 */
3911void scheduler_tick(void)
3912{
7835b98b
CL
3913 int cpu = smp_processor_id();
3914 struct rq *rq = cpu_rq(cpu);
dd41f596 3915 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3916
3917 sched_clock_tick();
dd41f596 3918
05fa785c 3919 raw_spin_lock(&rq->lock);
3e51f33f 3920 update_rq_clock(rq);
fdf3e95d 3921 update_cpu_load_active(rq);
fa85ae24 3922 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3923 raw_spin_unlock(&rq->lock);
7835b98b 3924
e9d2b064 3925 perf_event_task_tick();
e220d2dc 3926
e418e1c2 3927#ifdef CONFIG_SMP
dd41f596
IM
3928 rq->idle_at_tick = idle_cpu(cpu);
3929 trigger_load_balance(rq, cpu);
e418e1c2 3930#endif
1da177e4
LT
3931}
3932
132380a0 3933notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3934{
3935 if (in_lock_functions(addr)) {
3936 addr = CALLER_ADDR2;
3937 if (in_lock_functions(addr))
3938 addr = CALLER_ADDR3;
3939 }
3940 return addr;
3941}
1da177e4 3942
7e49fcce
SR
3943#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3944 defined(CONFIG_PREEMPT_TRACER))
3945
43627582 3946void __kprobes add_preempt_count(int val)
1da177e4 3947{
6cd8a4bb 3948#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3949 /*
3950 * Underflow?
3951 */
9a11b49a
IM
3952 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3953 return;
6cd8a4bb 3954#endif
1da177e4 3955 preempt_count() += val;
6cd8a4bb 3956#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3957 /*
3958 * Spinlock count overflowing soon?
3959 */
33859f7f
MOS
3960 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3961 PREEMPT_MASK - 10);
6cd8a4bb
SR
3962#endif
3963 if (preempt_count() == val)
3964 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3965}
3966EXPORT_SYMBOL(add_preempt_count);
3967
43627582 3968void __kprobes sub_preempt_count(int val)
1da177e4 3969{
6cd8a4bb 3970#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3971 /*
3972 * Underflow?
3973 */
01e3eb82 3974 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3975 return;
1da177e4
LT
3976 /*
3977 * Is the spinlock portion underflowing?
3978 */
9a11b49a
IM
3979 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3980 !(preempt_count() & PREEMPT_MASK)))
3981 return;
6cd8a4bb 3982#endif
9a11b49a 3983
6cd8a4bb
SR
3984 if (preempt_count() == val)
3985 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3986 preempt_count() -= val;
3987}
3988EXPORT_SYMBOL(sub_preempt_count);
3989
3990#endif
3991
3992/*
dd41f596 3993 * Print scheduling while atomic bug:
1da177e4 3994 */
dd41f596 3995static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3996{
838225b4
SS
3997 struct pt_regs *regs = get_irq_regs();
3998
3df0fc5b
PZ
3999 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4000 prev->comm, prev->pid, preempt_count());
838225b4 4001
dd41f596 4002 debug_show_held_locks(prev);
e21f5b15 4003 print_modules();
dd41f596
IM
4004 if (irqs_disabled())
4005 print_irqtrace_events(prev);
838225b4
SS
4006
4007 if (regs)
4008 show_regs(regs);
4009 else
4010 dump_stack();
dd41f596 4011}
1da177e4 4012
dd41f596
IM
4013/*
4014 * Various schedule()-time debugging checks and statistics:
4015 */
4016static inline void schedule_debug(struct task_struct *prev)
4017{
1da177e4 4018 /*
41a2d6cf 4019 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4020 * schedule() atomically, we ignore that path for now.
4021 * Otherwise, whine if we are scheduling when we should not be.
4022 */
3f33a7ce 4023 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4024 __schedule_bug(prev);
4025
1da177e4
LT
4026 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4027
2d72376b 4028 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4029#ifdef CONFIG_SCHEDSTATS
4030 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4031 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4032 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4033 }
4034#endif
dd41f596
IM
4035}
4036
6cecd084 4037static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4038{
a64692a3
MG
4039 if (prev->se.on_rq)
4040 update_rq_clock(rq);
6cecd084 4041 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4042}
4043
dd41f596
IM
4044/*
4045 * Pick up the highest-prio task:
4046 */
4047static inline struct task_struct *
b67802ea 4048pick_next_task(struct rq *rq)
dd41f596 4049{
5522d5d5 4050 const struct sched_class *class;
dd41f596 4051 struct task_struct *p;
1da177e4
LT
4052
4053 /*
dd41f596
IM
4054 * Optimization: we know that if all tasks are in
4055 * the fair class we can call that function directly:
1da177e4 4056 */
dd41f596 4057 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4058 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4059 if (likely(p))
4060 return p;
1da177e4
LT
4061 }
4062
34f971f6 4063 for_each_class(class) {
fb8d4724 4064 p = class->pick_next_task(rq);
dd41f596
IM
4065 if (p)
4066 return p;
dd41f596 4067 }
34f971f6
PZ
4068
4069 BUG(); /* the idle class will always have a runnable task */
dd41f596 4070}
1da177e4 4071
dd41f596
IM
4072/*
4073 * schedule() is the main scheduler function.
4074 */
ff743345 4075asmlinkage void __sched schedule(void)
dd41f596
IM
4076{
4077 struct task_struct *prev, *next;
67ca7bde 4078 unsigned long *switch_count;
dd41f596 4079 struct rq *rq;
31656519 4080 int cpu;
dd41f596 4081
ff743345
PZ
4082need_resched:
4083 preempt_disable();
dd41f596
IM
4084 cpu = smp_processor_id();
4085 rq = cpu_rq(cpu);
25502a6c 4086 rcu_note_context_switch(cpu);
dd41f596 4087 prev = rq->curr;
dd41f596 4088
dd41f596 4089 schedule_debug(prev);
1da177e4 4090
31656519 4091 if (sched_feat(HRTICK))
f333fdc9 4092 hrtick_clear(rq);
8f4d37ec 4093
05fa785c 4094 raw_spin_lock_irq(&rq->lock);
1da177e4 4095
246d86b5 4096 switch_count = &prev->nivcsw;
1da177e4 4097 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4098 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4099 prev->state = TASK_RUNNING;
21aa9af0
TH
4100 } else {
4101 /*
4102 * If a worker is going to sleep, notify and
4103 * ask workqueue whether it wants to wake up a
4104 * task to maintain concurrency. If so, wake
4105 * up the task.
4106 */
4107 if (prev->flags & PF_WQ_WORKER) {
4108 struct task_struct *to_wakeup;
4109
4110 to_wakeup = wq_worker_sleeping(prev, cpu);
4111 if (to_wakeup)
4112 try_to_wake_up_local(to_wakeup);
4113 }
371fd7e7 4114 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 4115 }
dd41f596 4116 switch_count = &prev->nvcsw;
1da177e4
LT
4117 }
4118
73c10101
JA
4119 /*
4120 * If we are going to sleep and we have plugged IO queued, make
4121 * sure to submit it to avoid deadlocks.
4122 */
4123 if (prev->state != TASK_RUNNING && blk_needs_flush_plug(prev)) {
4124 raw_spin_unlock(&rq->lock);
4125 blk_flush_plug(prev);
4126 raw_spin_lock(&rq->lock);
4127 }
4128
3f029d3c 4129 pre_schedule(rq, prev);
f65eda4f 4130
dd41f596 4131 if (unlikely(!rq->nr_running))
1da177e4 4132 idle_balance(cpu, rq);
1da177e4 4133
df1c99d4 4134 put_prev_task(rq, prev);
b67802ea 4135 next = pick_next_task(rq);
f26f9aff
MG
4136 clear_tsk_need_resched(prev);
4137 rq->skip_clock_update = 0;
1da177e4 4138
1da177e4 4139 if (likely(prev != next)) {
1da177e4
LT
4140 rq->nr_switches++;
4141 rq->curr = next;
4142 ++*switch_count;
4143
dd41f596 4144 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4145 /*
246d86b5
ON
4146 * The context switch have flipped the stack from under us
4147 * and restored the local variables which were saved when
4148 * this task called schedule() in the past. prev == current
4149 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4150 */
4151 cpu = smp_processor_id();
4152 rq = cpu_rq(cpu);
1da177e4 4153 } else
05fa785c 4154 raw_spin_unlock_irq(&rq->lock);
1da177e4 4155
3f029d3c 4156 post_schedule(rq);
1da177e4 4157
1da177e4 4158 preempt_enable_no_resched();
ff743345 4159 if (need_resched())
1da177e4
LT
4160 goto need_resched;
4161}
1da177e4
LT
4162EXPORT_SYMBOL(schedule);
4163
c08f7829 4164#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4165/*
4166 * Look out! "owner" is an entirely speculative pointer
4167 * access and not reliable.
4168 */
4169int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4170{
4171 unsigned int cpu;
4172 struct rq *rq;
4173
4174 if (!sched_feat(OWNER_SPIN))
4175 return 0;
4176
4177#ifdef CONFIG_DEBUG_PAGEALLOC
4178 /*
4179 * Need to access the cpu field knowing that
4180 * DEBUG_PAGEALLOC could have unmapped it if
4181 * the mutex owner just released it and exited.
4182 */
4183 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4184 return 0;
0d66bf6d
PZ
4185#else
4186 cpu = owner->cpu;
4187#endif
4188
4189 /*
4190 * Even if the access succeeded (likely case),
4191 * the cpu field may no longer be valid.
4192 */
4193 if (cpu >= nr_cpumask_bits)
4b402210 4194 return 0;
0d66bf6d
PZ
4195
4196 /*
4197 * We need to validate that we can do a
4198 * get_cpu() and that we have the percpu area.
4199 */
4200 if (!cpu_online(cpu))
4b402210 4201 return 0;
0d66bf6d
PZ
4202
4203 rq = cpu_rq(cpu);
4204
4205 for (;;) {
4206 /*
4207 * Owner changed, break to re-assess state.
4208 */
9d0f4dcc
TC
4209 if (lock->owner != owner) {
4210 /*
4211 * If the lock has switched to a different owner,
4212 * we likely have heavy contention. Return 0 to quit
4213 * optimistic spinning and not contend further:
4214 */
4215 if (lock->owner)
4216 return 0;
0d66bf6d 4217 break;
9d0f4dcc 4218 }
0d66bf6d
PZ
4219
4220 /*
4221 * Is that owner really running on that cpu?
4222 */
4223 if (task_thread_info(rq->curr) != owner || need_resched())
4224 return 0;
4225
335d7afb 4226 arch_mutex_cpu_relax();
0d66bf6d 4227 }
4b402210 4228
0d66bf6d
PZ
4229 return 1;
4230}
4231#endif
4232
1da177e4
LT
4233#ifdef CONFIG_PREEMPT
4234/*
2ed6e34f 4235 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4236 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4237 * occur there and call schedule directly.
4238 */
d1f74e20 4239asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4240{
4241 struct thread_info *ti = current_thread_info();
6478d880 4242
1da177e4
LT
4243 /*
4244 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4245 * we do not want to preempt the current task. Just return..
1da177e4 4246 */
beed33a8 4247 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4248 return;
4249
3a5c359a 4250 do {
d1f74e20 4251 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4252 schedule();
d1f74e20 4253 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4254
3a5c359a
AK
4255 /*
4256 * Check again in case we missed a preemption opportunity
4257 * between schedule and now.
4258 */
4259 barrier();
5ed0cec0 4260 } while (need_resched());
1da177e4 4261}
1da177e4
LT
4262EXPORT_SYMBOL(preempt_schedule);
4263
4264/*
2ed6e34f 4265 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4266 * off of irq context.
4267 * Note, that this is called and return with irqs disabled. This will
4268 * protect us against recursive calling from irq.
4269 */
4270asmlinkage void __sched preempt_schedule_irq(void)
4271{
4272 struct thread_info *ti = current_thread_info();
6478d880 4273
2ed6e34f 4274 /* Catch callers which need to be fixed */
1da177e4
LT
4275 BUG_ON(ti->preempt_count || !irqs_disabled());
4276
3a5c359a
AK
4277 do {
4278 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4279 local_irq_enable();
4280 schedule();
4281 local_irq_disable();
3a5c359a 4282 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4283
3a5c359a
AK
4284 /*
4285 * Check again in case we missed a preemption opportunity
4286 * between schedule and now.
4287 */
4288 barrier();
5ed0cec0 4289 } while (need_resched());
1da177e4
LT
4290}
4291
4292#endif /* CONFIG_PREEMPT */
4293
63859d4f 4294int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4295 void *key)
1da177e4 4296{
63859d4f 4297 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4298}
1da177e4
LT
4299EXPORT_SYMBOL(default_wake_function);
4300
4301/*
41a2d6cf
IM
4302 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4303 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4304 * number) then we wake all the non-exclusive tasks and one exclusive task.
4305 *
4306 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4307 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4308 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4309 */
78ddb08f 4310static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4311 int nr_exclusive, int wake_flags, void *key)
1da177e4 4312{
2e45874c 4313 wait_queue_t *curr, *next;
1da177e4 4314
2e45874c 4315 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4316 unsigned flags = curr->flags;
4317
63859d4f 4318 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4319 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4320 break;
4321 }
4322}
4323
4324/**
4325 * __wake_up - wake up threads blocked on a waitqueue.
4326 * @q: the waitqueue
4327 * @mode: which threads
4328 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4329 * @key: is directly passed to the wakeup function
50fa610a
DH
4330 *
4331 * It may be assumed that this function implies a write memory barrier before
4332 * changing the task state if and only if any tasks are woken up.
1da177e4 4333 */
7ad5b3a5 4334void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4335 int nr_exclusive, void *key)
1da177e4
LT
4336{
4337 unsigned long flags;
4338
4339 spin_lock_irqsave(&q->lock, flags);
4340 __wake_up_common(q, mode, nr_exclusive, 0, key);
4341 spin_unlock_irqrestore(&q->lock, flags);
4342}
1da177e4
LT
4343EXPORT_SYMBOL(__wake_up);
4344
4345/*
4346 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4347 */
7ad5b3a5 4348void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4349{
4350 __wake_up_common(q, mode, 1, 0, NULL);
4351}
22c43c81 4352EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4353
4ede816a
DL
4354void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4355{
4356 __wake_up_common(q, mode, 1, 0, key);
4357}
bf294b41 4358EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4359
1da177e4 4360/**
4ede816a 4361 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4362 * @q: the waitqueue
4363 * @mode: which threads
4364 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4365 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4366 *
4367 * The sync wakeup differs that the waker knows that it will schedule
4368 * away soon, so while the target thread will be woken up, it will not
4369 * be migrated to another CPU - ie. the two threads are 'synchronized'
4370 * with each other. This can prevent needless bouncing between CPUs.
4371 *
4372 * On UP it can prevent extra preemption.
50fa610a
DH
4373 *
4374 * It may be assumed that this function implies a write memory barrier before
4375 * changing the task state if and only if any tasks are woken up.
1da177e4 4376 */
4ede816a
DL
4377void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4378 int nr_exclusive, void *key)
1da177e4
LT
4379{
4380 unsigned long flags;
7d478721 4381 int wake_flags = WF_SYNC;
1da177e4
LT
4382
4383 if (unlikely(!q))
4384 return;
4385
4386 if (unlikely(!nr_exclusive))
7d478721 4387 wake_flags = 0;
1da177e4
LT
4388
4389 spin_lock_irqsave(&q->lock, flags);
7d478721 4390 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4391 spin_unlock_irqrestore(&q->lock, flags);
4392}
4ede816a
DL
4393EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4394
4395/*
4396 * __wake_up_sync - see __wake_up_sync_key()
4397 */
4398void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4399{
4400 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4401}
1da177e4
LT
4402EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4403
65eb3dc6
KD
4404/**
4405 * complete: - signals a single thread waiting on this completion
4406 * @x: holds the state of this particular completion
4407 *
4408 * This will wake up a single thread waiting on this completion. Threads will be
4409 * awakened in the same order in which they were queued.
4410 *
4411 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4412 *
4413 * It may be assumed that this function implies a write memory barrier before
4414 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4415 */
b15136e9 4416void complete(struct completion *x)
1da177e4
LT
4417{
4418 unsigned long flags;
4419
4420 spin_lock_irqsave(&x->wait.lock, flags);
4421 x->done++;
d9514f6c 4422 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4423 spin_unlock_irqrestore(&x->wait.lock, flags);
4424}
4425EXPORT_SYMBOL(complete);
4426
65eb3dc6
KD
4427/**
4428 * complete_all: - signals all threads waiting on this completion
4429 * @x: holds the state of this particular completion
4430 *
4431 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4432 *
4433 * It may be assumed that this function implies a write memory barrier before
4434 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4435 */
b15136e9 4436void complete_all(struct completion *x)
1da177e4
LT
4437{
4438 unsigned long flags;
4439
4440 spin_lock_irqsave(&x->wait.lock, flags);
4441 x->done += UINT_MAX/2;
d9514f6c 4442 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4443 spin_unlock_irqrestore(&x->wait.lock, flags);
4444}
4445EXPORT_SYMBOL(complete_all);
4446
8cbbe86d
AK
4447static inline long __sched
4448do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4449{
1da177e4
LT
4450 if (!x->done) {
4451 DECLARE_WAITQUEUE(wait, current);
4452
a93d2f17 4453 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4454 do {
94d3d824 4455 if (signal_pending_state(state, current)) {
ea71a546
ON
4456 timeout = -ERESTARTSYS;
4457 break;
8cbbe86d
AK
4458 }
4459 __set_current_state(state);
1da177e4
LT
4460 spin_unlock_irq(&x->wait.lock);
4461 timeout = schedule_timeout(timeout);
4462 spin_lock_irq(&x->wait.lock);
ea71a546 4463 } while (!x->done && timeout);
1da177e4 4464 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4465 if (!x->done)
4466 return timeout;
1da177e4
LT
4467 }
4468 x->done--;
ea71a546 4469 return timeout ?: 1;
1da177e4 4470}
1da177e4 4471
8cbbe86d
AK
4472static long __sched
4473wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4474{
1da177e4
LT
4475 might_sleep();
4476
4477 spin_lock_irq(&x->wait.lock);
8cbbe86d 4478 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4479 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4480 return timeout;
4481}
1da177e4 4482
65eb3dc6
KD
4483/**
4484 * wait_for_completion: - waits for completion of a task
4485 * @x: holds the state of this particular completion
4486 *
4487 * This waits to be signaled for completion of a specific task. It is NOT
4488 * interruptible and there is no timeout.
4489 *
4490 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4491 * and interrupt capability. Also see complete().
4492 */
b15136e9 4493void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4494{
4495 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4496}
8cbbe86d 4497EXPORT_SYMBOL(wait_for_completion);
1da177e4 4498
65eb3dc6
KD
4499/**
4500 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4501 * @x: holds the state of this particular completion
4502 * @timeout: timeout value in jiffies
4503 *
4504 * This waits for either a completion of a specific task to be signaled or for a
4505 * specified timeout to expire. The timeout is in jiffies. It is not
4506 * interruptible.
4507 */
b15136e9 4508unsigned long __sched
8cbbe86d 4509wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4510{
8cbbe86d 4511 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4512}
8cbbe86d 4513EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4514
65eb3dc6
KD
4515/**
4516 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4517 * @x: holds the state of this particular completion
4518 *
4519 * This waits for completion of a specific task to be signaled. It is
4520 * interruptible.
4521 */
8cbbe86d 4522int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4523{
51e97990
AK
4524 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4525 if (t == -ERESTARTSYS)
4526 return t;
4527 return 0;
0fec171c 4528}
8cbbe86d 4529EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4530
65eb3dc6
KD
4531/**
4532 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4533 * @x: holds the state of this particular completion
4534 * @timeout: timeout value in jiffies
4535 *
4536 * This waits for either a completion of a specific task to be signaled or for a
4537 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4538 */
6bf41237 4539long __sched
8cbbe86d
AK
4540wait_for_completion_interruptible_timeout(struct completion *x,
4541 unsigned long timeout)
0fec171c 4542{
8cbbe86d 4543 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4544}
8cbbe86d 4545EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4546
65eb3dc6
KD
4547/**
4548 * wait_for_completion_killable: - waits for completion of a task (killable)
4549 * @x: holds the state of this particular completion
4550 *
4551 * This waits to be signaled for completion of a specific task. It can be
4552 * interrupted by a kill signal.
4553 */
009e577e
MW
4554int __sched wait_for_completion_killable(struct completion *x)
4555{
4556 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4557 if (t == -ERESTARTSYS)
4558 return t;
4559 return 0;
4560}
4561EXPORT_SYMBOL(wait_for_completion_killable);
4562
0aa12fb4
SW
4563/**
4564 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4565 * @x: holds the state of this particular completion
4566 * @timeout: timeout value in jiffies
4567 *
4568 * This waits for either a completion of a specific task to be
4569 * signaled or for a specified timeout to expire. It can be
4570 * interrupted by a kill signal. The timeout is in jiffies.
4571 */
6bf41237 4572long __sched
0aa12fb4
SW
4573wait_for_completion_killable_timeout(struct completion *x,
4574 unsigned long timeout)
4575{
4576 return wait_for_common(x, timeout, TASK_KILLABLE);
4577}
4578EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4579
be4de352
DC
4580/**
4581 * try_wait_for_completion - try to decrement a completion without blocking
4582 * @x: completion structure
4583 *
4584 * Returns: 0 if a decrement cannot be done without blocking
4585 * 1 if a decrement succeeded.
4586 *
4587 * If a completion is being used as a counting completion,
4588 * attempt to decrement the counter without blocking. This
4589 * enables us to avoid waiting if the resource the completion
4590 * is protecting is not available.
4591 */
4592bool try_wait_for_completion(struct completion *x)
4593{
7539a3b3 4594 unsigned long flags;
be4de352
DC
4595 int ret = 1;
4596
7539a3b3 4597 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4598 if (!x->done)
4599 ret = 0;
4600 else
4601 x->done--;
7539a3b3 4602 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4603 return ret;
4604}
4605EXPORT_SYMBOL(try_wait_for_completion);
4606
4607/**
4608 * completion_done - Test to see if a completion has any waiters
4609 * @x: completion structure
4610 *
4611 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4612 * 1 if there are no waiters.
4613 *
4614 */
4615bool completion_done(struct completion *x)
4616{
7539a3b3 4617 unsigned long flags;
be4de352
DC
4618 int ret = 1;
4619
7539a3b3 4620 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4621 if (!x->done)
4622 ret = 0;
7539a3b3 4623 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4624 return ret;
4625}
4626EXPORT_SYMBOL(completion_done);
4627
8cbbe86d
AK
4628static long __sched
4629sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4630{
0fec171c
IM
4631 unsigned long flags;
4632 wait_queue_t wait;
4633
4634 init_waitqueue_entry(&wait, current);
1da177e4 4635
8cbbe86d 4636 __set_current_state(state);
1da177e4 4637
8cbbe86d
AK
4638 spin_lock_irqsave(&q->lock, flags);
4639 __add_wait_queue(q, &wait);
4640 spin_unlock(&q->lock);
4641 timeout = schedule_timeout(timeout);
4642 spin_lock_irq(&q->lock);
4643 __remove_wait_queue(q, &wait);
4644 spin_unlock_irqrestore(&q->lock, flags);
4645
4646 return timeout;
4647}
4648
4649void __sched interruptible_sleep_on(wait_queue_head_t *q)
4650{
4651 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4652}
1da177e4
LT
4653EXPORT_SYMBOL(interruptible_sleep_on);
4654
0fec171c 4655long __sched
95cdf3b7 4656interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4657{
8cbbe86d 4658 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4659}
1da177e4
LT
4660EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4661
0fec171c 4662void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4663{
8cbbe86d 4664 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4665}
1da177e4
LT
4666EXPORT_SYMBOL(sleep_on);
4667
0fec171c 4668long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4669{
8cbbe86d 4670 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4671}
1da177e4
LT
4672EXPORT_SYMBOL(sleep_on_timeout);
4673
b29739f9
IM
4674#ifdef CONFIG_RT_MUTEXES
4675
4676/*
4677 * rt_mutex_setprio - set the current priority of a task
4678 * @p: task
4679 * @prio: prio value (kernel-internal form)
4680 *
4681 * This function changes the 'effective' priority of a task. It does
4682 * not touch ->normal_prio like __setscheduler().
4683 *
4684 * Used by the rt_mutex code to implement priority inheritance logic.
4685 */
36c8b586 4686void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4687{
4688 unsigned long flags;
83b699ed 4689 int oldprio, on_rq, running;
70b97a7f 4690 struct rq *rq;
83ab0aa0 4691 const struct sched_class *prev_class;
b29739f9
IM
4692
4693 BUG_ON(prio < 0 || prio > MAX_PRIO);
4694
4695 rq = task_rq_lock(p, &flags);
4696
a8027073 4697 trace_sched_pi_setprio(p, prio);
d5f9f942 4698 oldprio = p->prio;
83ab0aa0 4699 prev_class = p->sched_class;
dd41f596 4700 on_rq = p->se.on_rq;
051a1d1a 4701 running = task_current(rq, p);
0e1f3483 4702 if (on_rq)
69be72c1 4703 dequeue_task(rq, p, 0);
0e1f3483
HS
4704 if (running)
4705 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4706
4707 if (rt_prio(prio))
4708 p->sched_class = &rt_sched_class;
4709 else
4710 p->sched_class = &fair_sched_class;
4711
b29739f9
IM
4712 p->prio = prio;
4713
0e1f3483
HS
4714 if (running)
4715 p->sched_class->set_curr_task(rq);
da7a735e 4716 if (on_rq)
371fd7e7 4717 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4718
da7a735e 4719 check_class_changed(rq, p, prev_class, oldprio);
b29739f9
IM
4720 task_rq_unlock(rq, &flags);
4721}
4722
4723#endif
4724
36c8b586 4725void set_user_nice(struct task_struct *p, long nice)
1da177e4 4726{
dd41f596 4727 int old_prio, delta, on_rq;
1da177e4 4728 unsigned long flags;
70b97a7f 4729 struct rq *rq;
1da177e4
LT
4730
4731 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4732 return;
4733 /*
4734 * We have to be careful, if called from sys_setpriority(),
4735 * the task might be in the middle of scheduling on another CPU.
4736 */
4737 rq = task_rq_lock(p, &flags);
4738 /*
4739 * The RT priorities are set via sched_setscheduler(), but we still
4740 * allow the 'normal' nice value to be set - but as expected
4741 * it wont have any effect on scheduling until the task is
dd41f596 4742 * SCHED_FIFO/SCHED_RR:
1da177e4 4743 */
e05606d3 4744 if (task_has_rt_policy(p)) {
1da177e4
LT
4745 p->static_prio = NICE_TO_PRIO(nice);
4746 goto out_unlock;
4747 }
dd41f596 4748 on_rq = p->se.on_rq;
c09595f6 4749 if (on_rq)
69be72c1 4750 dequeue_task(rq, p, 0);
1da177e4 4751
1da177e4 4752 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4753 set_load_weight(p);
b29739f9
IM
4754 old_prio = p->prio;
4755 p->prio = effective_prio(p);
4756 delta = p->prio - old_prio;
1da177e4 4757
dd41f596 4758 if (on_rq) {
371fd7e7 4759 enqueue_task(rq, p, 0);
1da177e4 4760 /*
d5f9f942
AM
4761 * If the task increased its priority or is running and
4762 * lowered its priority, then reschedule its CPU:
1da177e4 4763 */
d5f9f942 4764 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4765 resched_task(rq->curr);
4766 }
4767out_unlock:
4768 task_rq_unlock(rq, &flags);
4769}
1da177e4
LT
4770EXPORT_SYMBOL(set_user_nice);
4771
e43379f1
MM
4772/*
4773 * can_nice - check if a task can reduce its nice value
4774 * @p: task
4775 * @nice: nice value
4776 */
36c8b586 4777int can_nice(const struct task_struct *p, const int nice)
e43379f1 4778{
024f4747
MM
4779 /* convert nice value [19,-20] to rlimit style value [1,40] */
4780 int nice_rlim = 20 - nice;
48f24c4d 4781
78d7d407 4782 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4783 capable(CAP_SYS_NICE));
4784}
4785
1da177e4
LT
4786#ifdef __ARCH_WANT_SYS_NICE
4787
4788/*
4789 * sys_nice - change the priority of the current process.
4790 * @increment: priority increment
4791 *
4792 * sys_setpriority is a more generic, but much slower function that
4793 * does similar things.
4794 */
5add95d4 4795SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4796{
48f24c4d 4797 long nice, retval;
1da177e4
LT
4798
4799 /*
4800 * Setpriority might change our priority at the same moment.
4801 * We don't have to worry. Conceptually one call occurs first
4802 * and we have a single winner.
4803 */
e43379f1
MM
4804 if (increment < -40)
4805 increment = -40;
1da177e4
LT
4806 if (increment > 40)
4807 increment = 40;
4808
2b8f836f 4809 nice = TASK_NICE(current) + increment;
1da177e4
LT
4810 if (nice < -20)
4811 nice = -20;
4812 if (nice > 19)
4813 nice = 19;
4814
e43379f1
MM
4815 if (increment < 0 && !can_nice(current, nice))
4816 return -EPERM;
4817
1da177e4
LT
4818 retval = security_task_setnice(current, nice);
4819 if (retval)
4820 return retval;
4821
4822 set_user_nice(current, nice);
4823 return 0;
4824}
4825
4826#endif
4827
4828/**
4829 * task_prio - return the priority value of a given task.
4830 * @p: the task in question.
4831 *
4832 * This is the priority value as seen by users in /proc.
4833 * RT tasks are offset by -200. Normal tasks are centered
4834 * around 0, value goes from -16 to +15.
4835 */
36c8b586 4836int task_prio(const struct task_struct *p)
1da177e4
LT
4837{
4838 return p->prio - MAX_RT_PRIO;
4839}
4840
4841/**
4842 * task_nice - return the nice value of a given task.
4843 * @p: the task in question.
4844 */
36c8b586 4845int task_nice(const struct task_struct *p)
1da177e4
LT
4846{
4847 return TASK_NICE(p);
4848}
150d8bed 4849EXPORT_SYMBOL(task_nice);
1da177e4
LT
4850
4851/**
4852 * idle_cpu - is a given cpu idle currently?
4853 * @cpu: the processor in question.
4854 */
4855int idle_cpu(int cpu)
4856{
4857 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4858}
4859
1da177e4
LT
4860/**
4861 * idle_task - return the idle task for a given cpu.
4862 * @cpu: the processor in question.
4863 */
36c8b586 4864struct task_struct *idle_task(int cpu)
1da177e4
LT
4865{
4866 return cpu_rq(cpu)->idle;
4867}
4868
4869/**
4870 * find_process_by_pid - find a process with a matching PID value.
4871 * @pid: the pid in question.
4872 */
a9957449 4873static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4874{
228ebcbe 4875 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4876}
4877
4878/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4879static void
4880__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4881{
dd41f596 4882 BUG_ON(p->se.on_rq);
48f24c4d 4883
1da177e4
LT
4884 p->policy = policy;
4885 p->rt_priority = prio;
b29739f9
IM
4886 p->normal_prio = normal_prio(p);
4887 /* we are holding p->pi_lock already */
4888 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4889 if (rt_prio(p->prio))
4890 p->sched_class = &rt_sched_class;
4891 else
4892 p->sched_class = &fair_sched_class;
2dd73a4f 4893 set_load_weight(p);
1da177e4
LT
4894}
4895
c69e8d9c
DH
4896/*
4897 * check the target process has a UID that matches the current process's
4898 */
4899static bool check_same_owner(struct task_struct *p)
4900{
4901 const struct cred *cred = current_cred(), *pcred;
4902 bool match;
4903
4904 rcu_read_lock();
4905 pcred = __task_cred(p);
b0e77598
SH
4906 if (cred->user->user_ns == pcred->user->user_ns)
4907 match = (cred->euid == pcred->euid ||
4908 cred->euid == pcred->uid);
4909 else
4910 match = false;
c69e8d9c
DH
4911 rcu_read_unlock();
4912 return match;
4913}
4914
961ccddd 4915static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4916 const struct sched_param *param, bool user)
1da177e4 4917{
83b699ed 4918 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4919 unsigned long flags;
83ab0aa0 4920 const struct sched_class *prev_class;
70b97a7f 4921 struct rq *rq;
ca94c442 4922 int reset_on_fork;
1da177e4 4923
66e5393a
SR
4924 /* may grab non-irq protected spin_locks */
4925 BUG_ON(in_interrupt());
1da177e4
LT
4926recheck:
4927 /* double check policy once rq lock held */
ca94c442
LP
4928 if (policy < 0) {
4929 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4930 policy = oldpolicy = p->policy;
ca94c442
LP
4931 } else {
4932 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4933 policy &= ~SCHED_RESET_ON_FORK;
4934
4935 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4936 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4937 policy != SCHED_IDLE)
4938 return -EINVAL;
4939 }
4940
1da177e4
LT
4941 /*
4942 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4943 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4944 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4945 */
4946 if (param->sched_priority < 0 ||
95cdf3b7 4947 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4948 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4949 return -EINVAL;
e05606d3 4950 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4951 return -EINVAL;
4952
37e4ab3f
OC
4953 /*
4954 * Allow unprivileged RT tasks to decrease priority:
4955 */
961ccddd 4956 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4957 if (rt_policy(policy)) {
a44702e8
ON
4958 unsigned long rlim_rtprio =
4959 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4960
4961 /* can't set/change the rt policy */
4962 if (policy != p->policy && !rlim_rtprio)
4963 return -EPERM;
4964
4965 /* can't increase priority */
4966 if (param->sched_priority > p->rt_priority &&
4967 param->sched_priority > rlim_rtprio)
4968 return -EPERM;
4969 }
c02aa73b 4970
dd41f596 4971 /*
c02aa73b
DH
4972 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4973 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4974 */
c02aa73b
DH
4975 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4976 if (!can_nice(p, TASK_NICE(p)))
4977 return -EPERM;
4978 }
5fe1d75f 4979
37e4ab3f 4980 /* can't change other user's priorities */
c69e8d9c 4981 if (!check_same_owner(p))
37e4ab3f 4982 return -EPERM;
ca94c442
LP
4983
4984 /* Normal users shall not reset the sched_reset_on_fork flag */
4985 if (p->sched_reset_on_fork && !reset_on_fork)
4986 return -EPERM;
37e4ab3f 4987 }
1da177e4 4988
725aad24 4989 if (user) {
b0ae1981 4990 retval = security_task_setscheduler(p);
725aad24
JF
4991 if (retval)
4992 return retval;
4993 }
4994
b29739f9
IM
4995 /*
4996 * make sure no PI-waiters arrive (or leave) while we are
4997 * changing the priority of the task:
4998 */
1d615482 4999 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4 5000 /*
25985edc 5001 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5002 * runqueue lock must be held.
5003 */
b29739f9 5004 rq = __task_rq_lock(p);
dc61b1d6 5005
34f971f6
PZ
5006 /*
5007 * Changing the policy of the stop threads its a very bad idea
5008 */
5009 if (p == rq->stop) {
5010 __task_rq_unlock(rq);
5011 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5012 return -EINVAL;
5013 }
5014
a51e9198
DF
5015 /*
5016 * If not changing anything there's no need to proceed further:
5017 */
5018 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5019 param->sched_priority == p->rt_priority))) {
5020
5021 __task_rq_unlock(rq);
5022 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5023 return 0;
5024 }
5025
dc61b1d6
PZ
5026#ifdef CONFIG_RT_GROUP_SCHED
5027 if (user) {
5028 /*
5029 * Do not allow realtime tasks into groups that have no runtime
5030 * assigned.
5031 */
5032 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5033 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5034 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
5035 __task_rq_unlock(rq);
5036 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5037 return -EPERM;
5038 }
5039 }
5040#endif
5041
1da177e4
LT
5042 /* recheck policy now with rq lock held */
5043 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5044 policy = oldpolicy = -1;
b29739f9 5045 __task_rq_unlock(rq);
1d615482 5046 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5047 goto recheck;
5048 }
dd41f596 5049 on_rq = p->se.on_rq;
051a1d1a 5050 running = task_current(rq, p);
0e1f3483 5051 if (on_rq)
2e1cb74a 5052 deactivate_task(rq, p, 0);
0e1f3483
HS
5053 if (running)
5054 p->sched_class->put_prev_task(rq, p);
f6b53205 5055
ca94c442
LP
5056 p->sched_reset_on_fork = reset_on_fork;
5057
1da177e4 5058 oldprio = p->prio;
83ab0aa0 5059 prev_class = p->sched_class;
dd41f596 5060 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5061
0e1f3483
HS
5062 if (running)
5063 p->sched_class->set_curr_task(rq);
da7a735e 5064 if (on_rq)
dd41f596 5065 activate_task(rq, p, 0);
cb469845 5066
da7a735e 5067 check_class_changed(rq, p, prev_class, oldprio);
b29739f9 5068 __task_rq_unlock(rq);
1d615482 5069 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5070
95e02ca9
TG
5071 rt_mutex_adjust_pi(p);
5072
1da177e4
LT
5073 return 0;
5074}
961ccddd
RR
5075
5076/**
5077 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5078 * @p: the task in question.
5079 * @policy: new policy.
5080 * @param: structure containing the new RT priority.
5081 *
5082 * NOTE that the task may be already dead.
5083 */
5084int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5085 const struct sched_param *param)
961ccddd
RR
5086{
5087 return __sched_setscheduler(p, policy, param, true);
5088}
1da177e4
LT
5089EXPORT_SYMBOL_GPL(sched_setscheduler);
5090
961ccddd
RR
5091/**
5092 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5093 * @p: the task in question.
5094 * @policy: new policy.
5095 * @param: structure containing the new RT priority.
5096 *
5097 * Just like sched_setscheduler, only don't bother checking if the
5098 * current context has permission. For example, this is needed in
5099 * stop_machine(): we create temporary high priority worker threads,
5100 * but our caller might not have that capability.
5101 */
5102int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5103 const struct sched_param *param)
961ccddd
RR
5104{
5105 return __sched_setscheduler(p, policy, param, false);
5106}
5107
95cdf3b7
IM
5108static int
5109do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5110{
1da177e4
LT
5111 struct sched_param lparam;
5112 struct task_struct *p;
36c8b586 5113 int retval;
1da177e4
LT
5114
5115 if (!param || pid < 0)
5116 return -EINVAL;
5117 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5118 return -EFAULT;
5fe1d75f
ON
5119
5120 rcu_read_lock();
5121 retval = -ESRCH;
1da177e4 5122 p = find_process_by_pid(pid);
5fe1d75f
ON
5123 if (p != NULL)
5124 retval = sched_setscheduler(p, policy, &lparam);
5125 rcu_read_unlock();
36c8b586 5126
1da177e4
LT
5127 return retval;
5128}
5129
5130/**
5131 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5132 * @pid: the pid in question.
5133 * @policy: new policy.
5134 * @param: structure containing the new RT priority.
5135 */
5add95d4
HC
5136SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5137 struct sched_param __user *, param)
1da177e4 5138{
c21761f1
JB
5139 /* negative values for policy are not valid */
5140 if (policy < 0)
5141 return -EINVAL;
5142
1da177e4
LT
5143 return do_sched_setscheduler(pid, policy, param);
5144}
5145
5146/**
5147 * sys_sched_setparam - set/change the RT priority of a thread
5148 * @pid: the pid in question.
5149 * @param: structure containing the new RT priority.
5150 */
5add95d4 5151SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5152{
5153 return do_sched_setscheduler(pid, -1, param);
5154}
5155
5156/**
5157 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5158 * @pid: the pid in question.
5159 */
5add95d4 5160SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5161{
36c8b586 5162 struct task_struct *p;
3a5c359a 5163 int retval;
1da177e4
LT
5164
5165 if (pid < 0)
3a5c359a 5166 return -EINVAL;
1da177e4
LT
5167
5168 retval = -ESRCH;
5fe85be0 5169 rcu_read_lock();
1da177e4
LT
5170 p = find_process_by_pid(pid);
5171 if (p) {
5172 retval = security_task_getscheduler(p);
5173 if (!retval)
ca94c442
LP
5174 retval = p->policy
5175 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5176 }
5fe85be0 5177 rcu_read_unlock();
1da177e4
LT
5178 return retval;
5179}
5180
5181/**
ca94c442 5182 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5183 * @pid: the pid in question.
5184 * @param: structure containing the RT priority.
5185 */
5add95d4 5186SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5187{
5188 struct sched_param lp;
36c8b586 5189 struct task_struct *p;
3a5c359a 5190 int retval;
1da177e4
LT
5191
5192 if (!param || pid < 0)
3a5c359a 5193 return -EINVAL;
1da177e4 5194
5fe85be0 5195 rcu_read_lock();
1da177e4
LT
5196 p = find_process_by_pid(pid);
5197 retval = -ESRCH;
5198 if (!p)
5199 goto out_unlock;
5200
5201 retval = security_task_getscheduler(p);
5202 if (retval)
5203 goto out_unlock;
5204
5205 lp.sched_priority = p->rt_priority;
5fe85be0 5206 rcu_read_unlock();
1da177e4
LT
5207
5208 /*
5209 * This one might sleep, we cannot do it with a spinlock held ...
5210 */
5211 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5212
1da177e4
LT
5213 return retval;
5214
5215out_unlock:
5fe85be0 5216 rcu_read_unlock();
1da177e4
LT
5217 return retval;
5218}
5219
96f874e2 5220long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5221{
5a16f3d3 5222 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5223 struct task_struct *p;
5224 int retval;
1da177e4 5225
95402b38 5226 get_online_cpus();
23f5d142 5227 rcu_read_lock();
1da177e4
LT
5228
5229 p = find_process_by_pid(pid);
5230 if (!p) {
23f5d142 5231 rcu_read_unlock();
95402b38 5232 put_online_cpus();
1da177e4
LT
5233 return -ESRCH;
5234 }
5235
23f5d142 5236 /* Prevent p going away */
1da177e4 5237 get_task_struct(p);
23f5d142 5238 rcu_read_unlock();
1da177e4 5239
5a16f3d3
RR
5240 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5241 retval = -ENOMEM;
5242 goto out_put_task;
5243 }
5244 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5245 retval = -ENOMEM;
5246 goto out_free_cpus_allowed;
5247 }
1da177e4 5248 retval = -EPERM;
b0e77598 5249 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5250 goto out_unlock;
5251
b0ae1981 5252 retval = security_task_setscheduler(p);
e7834f8f
DQ
5253 if (retval)
5254 goto out_unlock;
5255
5a16f3d3
RR
5256 cpuset_cpus_allowed(p, cpus_allowed);
5257 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5258again:
5a16f3d3 5259 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5260
8707d8b8 5261 if (!retval) {
5a16f3d3
RR
5262 cpuset_cpus_allowed(p, cpus_allowed);
5263 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5264 /*
5265 * We must have raced with a concurrent cpuset
5266 * update. Just reset the cpus_allowed to the
5267 * cpuset's cpus_allowed
5268 */
5a16f3d3 5269 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5270 goto again;
5271 }
5272 }
1da177e4 5273out_unlock:
5a16f3d3
RR
5274 free_cpumask_var(new_mask);
5275out_free_cpus_allowed:
5276 free_cpumask_var(cpus_allowed);
5277out_put_task:
1da177e4 5278 put_task_struct(p);
95402b38 5279 put_online_cpus();
1da177e4
LT
5280 return retval;
5281}
5282
5283static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5284 struct cpumask *new_mask)
1da177e4 5285{
96f874e2
RR
5286 if (len < cpumask_size())
5287 cpumask_clear(new_mask);
5288 else if (len > cpumask_size())
5289 len = cpumask_size();
5290
1da177e4
LT
5291 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5292}
5293
5294/**
5295 * sys_sched_setaffinity - set the cpu affinity of a process
5296 * @pid: pid of the process
5297 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5298 * @user_mask_ptr: user-space pointer to the new cpu mask
5299 */
5add95d4
HC
5300SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5301 unsigned long __user *, user_mask_ptr)
1da177e4 5302{
5a16f3d3 5303 cpumask_var_t new_mask;
1da177e4
LT
5304 int retval;
5305
5a16f3d3
RR
5306 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5307 return -ENOMEM;
1da177e4 5308
5a16f3d3
RR
5309 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5310 if (retval == 0)
5311 retval = sched_setaffinity(pid, new_mask);
5312 free_cpumask_var(new_mask);
5313 return retval;
1da177e4
LT
5314}
5315
96f874e2 5316long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5317{
36c8b586 5318 struct task_struct *p;
31605683
TG
5319 unsigned long flags;
5320 struct rq *rq;
1da177e4 5321 int retval;
1da177e4 5322
95402b38 5323 get_online_cpus();
23f5d142 5324 rcu_read_lock();
1da177e4
LT
5325
5326 retval = -ESRCH;
5327 p = find_process_by_pid(pid);
5328 if (!p)
5329 goto out_unlock;
5330
e7834f8f
DQ
5331 retval = security_task_getscheduler(p);
5332 if (retval)
5333 goto out_unlock;
5334
31605683 5335 rq = task_rq_lock(p, &flags);
96f874e2 5336 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5337 task_rq_unlock(rq, &flags);
1da177e4
LT
5338
5339out_unlock:
23f5d142 5340 rcu_read_unlock();
95402b38 5341 put_online_cpus();
1da177e4 5342
9531b62f 5343 return retval;
1da177e4
LT
5344}
5345
5346/**
5347 * sys_sched_getaffinity - get the cpu affinity of a process
5348 * @pid: pid of the process
5349 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5350 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5351 */
5add95d4
HC
5352SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5353 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5354{
5355 int ret;
f17c8607 5356 cpumask_var_t mask;
1da177e4 5357
84fba5ec 5358 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5359 return -EINVAL;
5360 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5361 return -EINVAL;
5362
f17c8607
RR
5363 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5364 return -ENOMEM;
1da177e4 5365
f17c8607
RR
5366 ret = sched_getaffinity(pid, mask);
5367 if (ret == 0) {
8bc037fb 5368 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5369
5370 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5371 ret = -EFAULT;
5372 else
cd3d8031 5373 ret = retlen;
f17c8607
RR
5374 }
5375 free_cpumask_var(mask);
1da177e4 5376
f17c8607 5377 return ret;
1da177e4
LT
5378}
5379
5380/**
5381 * sys_sched_yield - yield the current processor to other threads.
5382 *
dd41f596
IM
5383 * This function yields the current CPU to other tasks. If there are no
5384 * other threads running on this CPU then this function will return.
1da177e4 5385 */
5add95d4 5386SYSCALL_DEFINE0(sched_yield)
1da177e4 5387{
70b97a7f 5388 struct rq *rq = this_rq_lock();
1da177e4 5389
2d72376b 5390 schedstat_inc(rq, yld_count);
4530d7ab 5391 current->sched_class->yield_task(rq);
1da177e4
LT
5392
5393 /*
5394 * Since we are going to call schedule() anyway, there's
5395 * no need to preempt or enable interrupts:
5396 */
5397 __release(rq->lock);
8a25d5de 5398 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5399 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5400 preempt_enable_no_resched();
5401
5402 schedule();
5403
5404 return 0;
5405}
5406
d86ee480
PZ
5407static inline int should_resched(void)
5408{
5409 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5410}
5411
e7b38404 5412static void __cond_resched(void)
1da177e4 5413{
e7aaaa69
FW
5414 add_preempt_count(PREEMPT_ACTIVE);
5415 schedule();
5416 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5417}
5418
02b67cc3 5419int __sched _cond_resched(void)
1da177e4 5420{
d86ee480 5421 if (should_resched()) {
1da177e4
LT
5422 __cond_resched();
5423 return 1;
5424 }
5425 return 0;
5426}
02b67cc3 5427EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5428
5429/*
613afbf8 5430 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5431 * call schedule, and on return reacquire the lock.
5432 *
41a2d6cf 5433 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5434 * operations here to prevent schedule() from being called twice (once via
5435 * spin_unlock(), once by hand).
5436 */
613afbf8 5437int __cond_resched_lock(spinlock_t *lock)
1da177e4 5438{
d86ee480 5439 int resched = should_resched();
6df3cecb
JK
5440 int ret = 0;
5441
f607c668
PZ
5442 lockdep_assert_held(lock);
5443
95c354fe 5444 if (spin_needbreak(lock) || resched) {
1da177e4 5445 spin_unlock(lock);
d86ee480 5446 if (resched)
95c354fe
NP
5447 __cond_resched();
5448 else
5449 cpu_relax();
6df3cecb 5450 ret = 1;
1da177e4 5451 spin_lock(lock);
1da177e4 5452 }
6df3cecb 5453 return ret;
1da177e4 5454}
613afbf8 5455EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5456
613afbf8 5457int __sched __cond_resched_softirq(void)
1da177e4
LT
5458{
5459 BUG_ON(!in_softirq());
5460
d86ee480 5461 if (should_resched()) {
98d82567 5462 local_bh_enable();
1da177e4
LT
5463 __cond_resched();
5464 local_bh_disable();
5465 return 1;
5466 }
5467 return 0;
5468}
613afbf8 5469EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5470
1da177e4
LT
5471/**
5472 * yield - yield the current processor to other threads.
5473 *
72fd4a35 5474 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5475 * thread runnable and calls sys_sched_yield().
5476 */
5477void __sched yield(void)
5478{
5479 set_current_state(TASK_RUNNING);
5480 sys_sched_yield();
5481}
1da177e4
LT
5482EXPORT_SYMBOL(yield);
5483
d95f4122
MG
5484/**
5485 * yield_to - yield the current processor to another thread in
5486 * your thread group, or accelerate that thread toward the
5487 * processor it's on.
16addf95
RD
5488 * @p: target task
5489 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5490 *
5491 * It's the caller's job to ensure that the target task struct
5492 * can't go away on us before we can do any checks.
5493 *
5494 * Returns true if we indeed boosted the target task.
5495 */
5496bool __sched yield_to(struct task_struct *p, bool preempt)
5497{
5498 struct task_struct *curr = current;
5499 struct rq *rq, *p_rq;
5500 unsigned long flags;
5501 bool yielded = 0;
5502
5503 local_irq_save(flags);
5504 rq = this_rq();
5505
5506again:
5507 p_rq = task_rq(p);
5508 double_rq_lock(rq, p_rq);
5509 while (task_rq(p) != p_rq) {
5510 double_rq_unlock(rq, p_rq);
5511 goto again;
5512 }
5513
5514 if (!curr->sched_class->yield_to_task)
5515 goto out;
5516
5517 if (curr->sched_class != p->sched_class)
5518 goto out;
5519
5520 if (task_running(p_rq, p) || p->state)
5521 goto out;
5522
5523 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5524 if (yielded) {
d95f4122 5525 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5526 /*
5527 * Make p's CPU reschedule; pick_next_entity takes care of
5528 * fairness.
5529 */
5530 if (preempt && rq != p_rq)
5531 resched_task(p_rq->curr);
5532 }
d95f4122
MG
5533
5534out:
5535 double_rq_unlock(rq, p_rq);
5536 local_irq_restore(flags);
5537
5538 if (yielded)
5539 schedule();
5540
5541 return yielded;
5542}
5543EXPORT_SYMBOL_GPL(yield_to);
5544
1da177e4 5545/*
41a2d6cf 5546 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5547 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5548 */
5549void __sched io_schedule(void)
5550{
54d35f29 5551 struct rq *rq = raw_rq();
1da177e4 5552
0ff92245 5553 delayacct_blkio_start();
1da177e4 5554 atomic_inc(&rq->nr_iowait);
73c10101 5555 blk_flush_plug(current);
8f0dfc34 5556 current->in_iowait = 1;
1da177e4 5557 schedule();
8f0dfc34 5558 current->in_iowait = 0;
1da177e4 5559 atomic_dec(&rq->nr_iowait);
0ff92245 5560 delayacct_blkio_end();
1da177e4 5561}
1da177e4
LT
5562EXPORT_SYMBOL(io_schedule);
5563
5564long __sched io_schedule_timeout(long timeout)
5565{
54d35f29 5566 struct rq *rq = raw_rq();
1da177e4
LT
5567 long ret;
5568
0ff92245 5569 delayacct_blkio_start();
1da177e4 5570 atomic_inc(&rq->nr_iowait);
73c10101 5571 blk_flush_plug(current);
8f0dfc34 5572 current->in_iowait = 1;
1da177e4 5573 ret = schedule_timeout(timeout);
8f0dfc34 5574 current->in_iowait = 0;
1da177e4 5575 atomic_dec(&rq->nr_iowait);
0ff92245 5576 delayacct_blkio_end();
1da177e4
LT
5577 return ret;
5578}
5579
5580/**
5581 * sys_sched_get_priority_max - return maximum RT priority.
5582 * @policy: scheduling class.
5583 *
5584 * this syscall returns the maximum rt_priority that can be used
5585 * by a given scheduling class.
5586 */
5add95d4 5587SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5588{
5589 int ret = -EINVAL;
5590
5591 switch (policy) {
5592 case SCHED_FIFO:
5593 case SCHED_RR:
5594 ret = MAX_USER_RT_PRIO-1;
5595 break;
5596 case SCHED_NORMAL:
b0a9499c 5597 case SCHED_BATCH:
dd41f596 5598 case SCHED_IDLE:
1da177e4
LT
5599 ret = 0;
5600 break;
5601 }
5602 return ret;
5603}
5604
5605/**
5606 * sys_sched_get_priority_min - return minimum RT priority.
5607 * @policy: scheduling class.
5608 *
5609 * this syscall returns the minimum rt_priority that can be used
5610 * by a given scheduling class.
5611 */
5add95d4 5612SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5613{
5614 int ret = -EINVAL;
5615
5616 switch (policy) {
5617 case SCHED_FIFO:
5618 case SCHED_RR:
5619 ret = 1;
5620 break;
5621 case SCHED_NORMAL:
b0a9499c 5622 case SCHED_BATCH:
dd41f596 5623 case SCHED_IDLE:
1da177e4
LT
5624 ret = 0;
5625 }
5626 return ret;
5627}
5628
5629/**
5630 * sys_sched_rr_get_interval - return the default timeslice of a process.
5631 * @pid: pid of the process.
5632 * @interval: userspace pointer to the timeslice value.
5633 *
5634 * this syscall writes the default timeslice value of a given process
5635 * into the user-space timespec buffer. A value of '0' means infinity.
5636 */
17da2bd9 5637SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5638 struct timespec __user *, interval)
1da177e4 5639{
36c8b586 5640 struct task_struct *p;
a4ec24b4 5641 unsigned int time_slice;
dba091b9
TG
5642 unsigned long flags;
5643 struct rq *rq;
3a5c359a 5644 int retval;
1da177e4 5645 struct timespec t;
1da177e4
LT
5646
5647 if (pid < 0)
3a5c359a 5648 return -EINVAL;
1da177e4
LT
5649
5650 retval = -ESRCH;
1a551ae7 5651 rcu_read_lock();
1da177e4
LT
5652 p = find_process_by_pid(pid);
5653 if (!p)
5654 goto out_unlock;
5655
5656 retval = security_task_getscheduler(p);
5657 if (retval)
5658 goto out_unlock;
5659
dba091b9
TG
5660 rq = task_rq_lock(p, &flags);
5661 time_slice = p->sched_class->get_rr_interval(rq, p);
5662 task_rq_unlock(rq, &flags);
a4ec24b4 5663
1a551ae7 5664 rcu_read_unlock();
a4ec24b4 5665 jiffies_to_timespec(time_slice, &t);
1da177e4 5666 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5667 return retval;
3a5c359a 5668
1da177e4 5669out_unlock:
1a551ae7 5670 rcu_read_unlock();
1da177e4
LT
5671 return retval;
5672}
5673
7c731e0a 5674static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5675
82a1fcb9 5676void sched_show_task(struct task_struct *p)
1da177e4 5677{
1da177e4 5678 unsigned long free = 0;
36c8b586 5679 unsigned state;
1da177e4 5680
1da177e4 5681 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5682 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5683 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5684#if BITS_PER_LONG == 32
1da177e4 5685 if (state == TASK_RUNNING)
3df0fc5b 5686 printk(KERN_CONT " running ");
1da177e4 5687 else
3df0fc5b 5688 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5689#else
5690 if (state == TASK_RUNNING)
3df0fc5b 5691 printk(KERN_CONT " running task ");
1da177e4 5692 else
3df0fc5b 5693 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5694#endif
5695#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5696 free = stack_not_used(p);
1da177e4 5697#endif
3df0fc5b 5698 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5699 task_pid_nr(p), task_pid_nr(p->real_parent),
5700 (unsigned long)task_thread_info(p)->flags);
1da177e4 5701
5fb5e6de 5702 show_stack(p, NULL);
1da177e4
LT
5703}
5704
e59e2ae2 5705void show_state_filter(unsigned long state_filter)
1da177e4 5706{
36c8b586 5707 struct task_struct *g, *p;
1da177e4 5708
4bd77321 5709#if BITS_PER_LONG == 32
3df0fc5b
PZ
5710 printk(KERN_INFO
5711 " task PC stack pid father\n");
1da177e4 5712#else
3df0fc5b
PZ
5713 printk(KERN_INFO
5714 " task PC stack pid father\n");
1da177e4
LT
5715#endif
5716 read_lock(&tasklist_lock);
5717 do_each_thread(g, p) {
5718 /*
5719 * reset the NMI-timeout, listing all files on a slow
25985edc 5720 * console might take a lot of time:
1da177e4
LT
5721 */
5722 touch_nmi_watchdog();
39bc89fd 5723 if (!state_filter || (p->state & state_filter))
82a1fcb9 5724 sched_show_task(p);
1da177e4
LT
5725 } while_each_thread(g, p);
5726
04c9167f
JF
5727 touch_all_softlockup_watchdogs();
5728
dd41f596
IM
5729#ifdef CONFIG_SCHED_DEBUG
5730 sysrq_sched_debug_show();
5731#endif
1da177e4 5732 read_unlock(&tasklist_lock);
e59e2ae2
IM
5733 /*
5734 * Only show locks if all tasks are dumped:
5735 */
93335a21 5736 if (!state_filter)
e59e2ae2 5737 debug_show_all_locks();
1da177e4
LT
5738}
5739
1df21055
IM
5740void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5741{
dd41f596 5742 idle->sched_class = &idle_sched_class;
1df21055
IM
5743}
5744
f340c0d1
IM
5745/**
5746 * init_idle - set up an idle thread for a given CPU
5747 * @idle: task in question
5748 * @cpu: cpu the idle task belongs to
5749 *
5750 * NOTE: this function does not set the idle thread's NEED_RESCHED
5751 * flag, to make booting more robust.
5752 */
5c1e1767 5753void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5754{
70b97a7f 5755 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5756 unsigned long flags;
5757
05fa785c 5758 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5759
dd41f596 5760 __sched_fork(idle);
06b83b5f 5761 idle->state = TASK_RUNNING;
dd41f596
IM
5762 idle->se.exec_start = sched_clock();
5763
96f874e2 5764 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5765 /*
5766 * We're having a chicken and egg problem, even though we are
5767 * holding rq->lock, the cpu isn't yet set to this cpu so the
5768 * lockdep check in task_group() will fail.
5769 *
5770 * Similar case to sched_fork(). / Alternatively we could
5771 * use task_rq_lock() here and obtain the other rq->lock.
5772 *
5773 * Silence PROVE_RCU
5774 */
5775 rcu_read_lock();
dd41f596 5776 __set_task_cpu(idle, cpu);
6506cf6c 5777 rcu_read_unlock();
1da177e4 5778
1da177e4 5779 rq->curr = rq->idle = idle;
4866cde0
NP
5780#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5781 idle->oncpu = 1;
5782#endif
05fa785c 5783 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5784
5785 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5786#if defined(CONFIG_PREEMPT)
5787 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5788#else
a1261f54 5789 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5790#endif
dd41f596
IM
5791 /*
5792 * The idle tasks have their own, simple scheduling class:
5793 */
5794 idle->sched_class = &idle_sched_class;
868baf07 5795 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5796}
5797
5798/*
5799 * In a system that switches off the HZ timer nohz_cpu_mask
5800 * indicates which cpus entered this state. This is used
5801 * in the rcu update to wait only for active cpus. For system
5802 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5803 * always be CPU_BITS_NONE.
1da177e4 5804 */
6a7b3dc3 5805cpumask_var_t nohz_cpu_mask;
1da177e4 5806
19978ca6
IM
5807/*
5808 * Increase the granularity value when there are more CPUs,
5809 * because with more CPUs the 'effective latency' as visible
5810 * to users decreases. But the relationship is not linear,
5811 * so pick a second-best guess by going with the log2 of the
5812 * number of CPUs.
5813 *
5814 * This idea comes from the SD scheduler of Con Kolivas:
5815 */
acb4a848 5816static int get_update_sysctl_factor(void)
19978ca6 5817{
4ca3ef71 5818 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5819 unsigned int factor;
5820
5821 switch (sysctl_sched_tunable_scaling) {
5822 case SCHED_TUNABLESCALING_NONE:
5823 factor = 1;
5824 break;
5825 case SCHED_TUNABLESCALING_LINEAR:
5826 factor = cpus;
5827 break;
5828 case SCHED_TUNABLESCALING_LOG:
5829 default:
5830 factor = 1 + ilog2(cpus);
5831 break;
5832 }
19978ca6 5833
acb4a848
CE
5834 return factor;
5835}
19978ca6 5836
acb4a848
CE
5837static void update_sysctl(void)
5838{
5839 unsigned int factor = get_update_sysctl_factor();
19978ca6 5840
0bcdcf28
CE
5841#define SET_SYSCTL(name) \
5842 (sysctl_##name = (factor) * normalized_sysctl_##name)
5843 SET_SYSCTL(sched_min_granularity);
5844 SET_SYSCTL(sched_latency);
5845 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5846#undef SET_SYSCTL
5847}
55cd5340 5848
0bcdcf28
CE
5849static inline void sched_init_granularity(void)
5850{
5851 update_sysctl();
19978ca6
IM
5852}
5853
1da177e4
LT
5854#ifdef CONFIG_SMP
5855/*
5856 * This is how migration works:
5857 *
969c7921
TH
5858 * 1) we invoke migration_cpu_stop() on the target CPU using
5859 * stop_one_cpu().
5860 * 2) stopper starts to run (implicitly forcing the migrated thread
5861 * off the CPU)
5862 * 3) it checks whether the migrated task is still in the wrong runqueue.
5863 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5864 * it and puts it into the right queue.
969c7921
TH
5865 * 5) stopper completes and stop_one_cpu() returns and the migration
5866 * is done.
1da177e4
LT
5867 */
5868
5869/*
5870 * Change a given task's CPU affinity. Migrate the thread to a
5871 * proper CPU and schedule it away if the CPU it's executing on
5872 * is removed from the allowed bitmask.
5873 *
5874 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5875 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5876 * call is not atomic; no spinlocks may be held.
5877 */
96f874e2 5878int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5879{
5880 unsigned long flags;
70b97a7f 5881 struct rq *rq;
969c7921 5882 unsigned int dest_cpu;
48f24c4d 5883 int ret = 0;
1da177e4 5884
65cc8e48
PZ
5885 /*
5886 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5887 * drop the rq->lock and still rely on ->cpus_allowed.
5888 */
5889again:
5890 while (task_is_waking(p))
5891 cpu_relax();
1da177e4 5892 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5893 if (task_is_waking(p)) {
5894 task_rq_unlock(rq, &flags);
5895 goto again;
5896 }
e2912009 5897
6ad4c188 5898 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5899 ret = -EINVAL;
5900 goto out;
5901 }
5902
9985b0ba 5903 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5904 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5905 ret = -EINVAL;
5906 goto out;
5907 }
5908
73fe6aae 5909 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5910 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5911 else {
96f874e2
RR
5912 cpumask_copy(&p->cpus_allowed, new_mask);
5913 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5914 }
5915
1da177e4 5916 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5917 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5918 goto out;
5919
969c7921 5920 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5921 if (migrate_task(p, rq)) {
969c7921 5922 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5923 /* Need help from migration thread: drop lock and wait. */
5924 task_rq_unlock(rq, &flags);
969c7921 5925 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5926 tlb_migrate_finish(p->mm);
5927 return 0;
5928 }
5929out:
5930 task_rq_unlock(rq, &flags);
48f24c4d 5931
1da177e4
LT
5932 return ret;
5933}
cd8ba7cd 5934EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5935
5936/*
41a2d6cf 5937 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5938 * this because either it can't run here any more (set_cpus_allowed()
5939 * away from this CPU, or CPU going down), or because we're
5940 * attempting to rebalance this task on exec (sched_exec).
5941 *
5942 * So we race with normal scheduler movements, but that's OK, as long
5943 * as the task is no longer on this CPU.
efc30814
KK
5944 *
5945 * Returns non-zero if task was successfully migrated.
1da177e4 5946 */
efc30814 5947static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5948{
70b97a7f 5949 struct rq *rq_dest, *rq_src;
e2912009 5950 int ret = 0;
1da177e4 5951
e761b772 5952 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5953 return ret;
1da177e4
LT
5954
5955 rq_src = cpu_rq(src_cpu);
5956 rq_dest = cpu_rq(dest_cpu);
5957
5958 double_rq_lock(rq_src, rq_dest);
5959 /* Already moved. */
5960 if (task_cpu(p) != src_cpu)
b1e38734 5961 goto done;
1da177e4 5962 /* Affinity changed (again). */
96f874e2 5963 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5964 goto fail;
1da177e4 5965
e2912009
PZ
5966 /*
5967 * If we're not on a rq, the next wake-up will ensure we're
5968 * placed properly.
5969 */
5970 if (p->se.on_rq) {
2e1cb74a 5971 deactivate_task(rq_src, p, 0);
e2912009 5972 set_task_cpu(p, dest_cpu);
dd41f596 5973 activate_task(rq_dest, p, 0);
15afe09b 5974 check_preempt_curr(rq_dest, p, 0);
1da177e4 5975 }
b1e38734 5976done:
efc30814 5977 ret = 1;
b1e38734 5978fail:
1da177e4 5979 double_rq_unlock(rq_src, rq_dest);
efc30814 5980 return ret;
1da177e4
LT
5981}
5982
5983/*
969c7921
TH
5984 * migration_cpu_stop - this will be executed by a highprio stopper thread
5985 * and performs thread migration by bumping thread off CPU then
5986 * 'pushing' onto another runqueue.
1da177e4 5987 */
969c7921 5988static int migration_cpu_stop(void *data)
1da177e4 5989{
969c7921 5990 struct migration_arg *arg = data;
f7b4cddc 5991
969c7921
TH
5992 /*
5993 * The original target cpu might have gone down and we might
5994 * be on another cpu but it doesn't matter.
5995 */
f7b4cddc 5996 local_irq_disable();
969c7921 5997 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5998 local_irq_enable();
1da177e4 5999 return 0;
f7b4cddc
ON
6000}
6001
1da177e4 6002#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6003
054b9108 6004/*
48c5ccae
PZ
6005 * Ensures that the idle task is using init_mm right before its cpu goes
6006 * offline.
054b9108 6007 */
48c5ccae 6008void idle_task_exit(void)
1da177e4 6009{
48c5ccae 6010 struct mm_struct *mm = current->active_mm;
e76bd8d9 6011
48c5ccae 6012 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6013
48c5ccae
PZ
6014 if (mm != &init_mm)
6015 switch_mm(mm, &init_mm, current);
6016 mmdrop(mm);
1da177e4
LT
6017}
6018
6019/*
6020 * While a dead CPU has no uninterruptible tasks queued at this point,
6021 * it might still have a nonzero ->nr_uninterruptible counter, because
6022 * for performance reasons the counter is not stricly tracking tasks to
6023 * their home CPUs. So we just add the counter to another CPU's counter,
6024 * to keep the global sum constant after CPU-down:
6025 */
70b97a7f 6026static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6027{
6ad4c188 6028 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6029
1da177e4
LT
6030 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6031 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6032}
6033
dd41f596 6034/*
48c5ccae 6035 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6036 */
48c5ccae 6037static void calc_global_load_remove(struct rq *rq)
1da177e4 6038{
48c5ccae
PZ
6039 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6040 rq->calc_load_active = 0;
1da177e4
LT
6041}
6042
48f24c4d 6043/*
48c5ccae
PZ
6044 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6045 * try_to_wake_up()->select_task_rq().
6046 *
6047 * Called with rq->lock held even though we'er in stop_machine() and
6048 * there's no concurrency possible, we hold the required locks anyway
6049 * because of lock validation efforts.
1da177e4 6050 */
48c5ccae 6051static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6052{
70b97a7f 6053 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6054 struct task_struct *next, *stop = rq->stop;
6055 int dest_cpu;
1da177e4
LT
6056
6057 /*
48c5ccae
PZ
6058 * Fudge the rq selection such that the below task selection loop
6059 * doesn't get stuck on the currently eligible stop task.
6060 *
6061 * We're currently inside stop_machine() and the rq is either stuck
6062 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6063 * either way we should never end up calling schedule() until we're
6064 * done here.
1da177e4 6065 */
48c5ccae 6066 rq->stop = NULL;
48f24c4d 6067
dd41f596 6068 for ( ; ; ) {
48c5ccae
PZ
6069 /*
6070 * There's this thread running, bail when that's the only
6071 * remaining thread.
6072 */
6073 if (rq->nr_running == 1)
dd41f596 6074 break;
48c5ccae 6075
b67802ea 6076 next = pick_next_task(rq);
48c5ccae 6077 BUG_ON(!next);
79c53799 6078 next->sched_class->put_prev_task(rq, next);
e692ab53 6079
48c5ccae
PZ
6080 /* Find suitable destination for @next, with force if needed. */
6081 dest_cpu = select_fallback_rq(dead_cpu, next);
6082 raw_spin_unlock(&rq->lock);
6083
6084 __migrate_task(next, dead_cpu, dest_cpu);
6085
6086 raw_spin_lock(&rq->lock);
1da177e4 6087 }
dce48a84 6088
48c5ccae 6089 rq->stop = stop;
dce48a84 6090}
48c5ccae 6091
1da177e4
LT
6092#endif /* CONFIG_HOTPLUG_CPU */
6093
e692ab53
NP
6094#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6095
6096static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6097 {
6098 .procname = "sched_domain",
c57baf1e 6099 .mode = 0555,
e0361851 6100 },
56992309 6101 {}
e692ab53
NP
6102};
6103
6104static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6105 {
6106 .procname = "kernel",
c57baf1e 6107 .mode = 0555,
e0361851
AD
6108 .child = sd_ctl_dir,
6109 },
56992309 6110 {}
e692ab53
NP
6111};
6112
6113static struct ctl_table *sd_alloc_ctl_entry(int n)
6114{
6115 struct ctl_table *entry =
5cf9f062 6116 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6117
e692ab53
NP
6118 return entry;
6119}
6120
6382bc90
MM
6121static void sd_free_ctl_entry(struct ctl_table **tablep)
6122{
cd790076 6123 struct ctl_table *entry;
6382bc90 6124
cd790076
MM
6125 /*
6126 * In the intermediate directories, both the child directory and
6127 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6128 * will always be set. In the lowest directory the names are
cd790076
MM
6129 * static strings and all have proc handlers.
6130 */
6131 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6132 if (entry->child)
6133 sd_free_ctl_entry(&entry->child);
cd790076
MM
6134 if (entry->proc_handler == NULL)
6135 kfree(entry->procname);
6136 }
6382bc90
MM
6137
6138 kfree(*tablep);
6139 *tablep = NULL;
6140}
6141
e692ab53 6142static void
e0361851 6143set_table_entry(struct ctl_table *entry,
e692ab53
NP
6144 const char *procname, void *data, int maxlen,
6145 mode_t mode, proc_handler *proc_handler)
6146{
e692ab53
NP
6147 entry->procname = procname;
6148 entry->data = data;
6149 entry->maxlen = maxlen;
6150 entry->mode = mode;
6151 entry->proc_handler = proc_handler;
6152}
6153
6154static struct ctl_table *
6155sd_alloc_ctl_domain_table(struct sched_domain *sd)
6156{
a5d8c348 6157 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6158
ad1cdc1d
MM
6159 if (table == NULL)
6160 return NULL;
6161
e0361851 6162 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6163 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6164 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6165 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6166 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6167 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6168 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6169 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6170 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6171 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6172 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6173 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6174 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6175 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6176 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6177 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6178 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6179 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6180 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6181 &sd->cache_nice_tries,
6182 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6183 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6184 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6185 set_table_entry(&table[11], "name", sd->name,
6186 CORENAME_MAX_SIZE, 0444, proc_dostring);
6187 /* &table[12] is terminator */
e692ab53
NP
6188
6189 return table;
6190}
6191
9a4e7159 6192static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6193{
6194 struct ctl_table *entry, *table;
6195 struct sched_domain *sd;
6196 int domain_num = 0, i;
6197 char buf[32];
6198
6199 for_each_domain(cpu, sd)
6200 domain_num++;
6201 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6202 if (table == NULL)
6203 return NULL;
e692ab53
NP
6204
6205 i = 0;
6206 for_each_domain(cpu, sd) {
6207 snprintf(buf, 32, "domain%d", i);
e692ab53 6208 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6209 entry->mode = 0555;
e692ab53
NP
6210 entry->child = sd_alloc_ctl_domain_table(sd);
6211 entry++;
6212 i++;
6213 }
6214 return table;
6215}
6216
6217static struct ctl_table_header *sd_sysctl_header;
6382bc90 6218static void register_sched_domain_sysctl(void)
e692ab53 6219{
6ad4c188 6220 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6221 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6222 char buf[32];
6223
7378547f
MM
6224 WARN_ON(sd_ctl_dir[0].child);
6225 sd_ctl_dir[0].child = entry;
6226
ad1cdc1d
MM
6227 if (entry == NULL)
6228 return;
6229
6ad4c188 6230 for_each_possible_cpu(i) {
e692ab53 6231 snprintf(buf, 32, "cpu%d", i);
e692ab53 6232 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6233 entry->mode = 0555;
e692ab53 6234 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6235 entry++;
e692ab53 6236 }
7378547f
MM
6237
6238 WARN_ON(sd_sysctl_header);
e692ab53
NP
6239 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6240}
6382bc90 6241
7378547f 6242/* may be called multiple times per register */
6382bc90
MM
6243static void unregister_sched_domain_sysctl(void)
6244{
7378547f
MM
6245 if (sd_sysctl_header)
6246 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6247 sd_sysctl_header = NULL;
7378547f
MM
6248 if (sd_ctl_dir[0].child)
6249 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6250}
e692ab53 6251#else
6382bc90
MM
6252static void register_sched_domain_sysctl(void)
6253{
6254}
6255static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6256{
6257}
6258#endif
6259
1f11eb6a
GH
6260static void set_rq_online(struct rq *rq)
6261{
6262 if (!rq->online) {
6263 const struct sched_class *class;
6264
c6c4927b 6265 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6266 rq->online = 1;
6267
6268 for_each_class(class) {
6269 if (class->rq_online)
6270 class->rq_online(rq);
6271 }
6272 }
6273}
6274
6275static void set_rq_offline(struct rq *rq)
6276{
6277 if (rq->online) {
6278 const struct sched_class *class;
6279
6280 for_each_class(class) {
6281 if (class->rq_offline)
6282 class->rq_offline(rq);
6283 }
6284
c6c4927b 6285 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6286 rq->online = 0;
6287 }
6288}
6289
1da177e4
LT
6290/*
6291 * migration_call - callback that gets triggered when a CPU is added.
6292 * Here we can start up the necessary migration thread for the new CPU.
6293 */
48f24c4d
IM
6294static int __cpuinit
6295migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6296{
48f24c4d 6297 int cpu = (long)hcpu;
1da177e4 6298 unsigned long flags;
969c7921 6299 struct rq *rq = cpu_rq(cpu);
1da177e4 6300
48c5ccae 6301 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6302
1da177e4 6303 case CPU_UP_PREPARE:
a468d389 6304 rq->calc_load_update = calc_load_update;
1da177e4 6305 break;
48f24c4d 6306
1da177e4 6307 case CPU_ONLINE:
1f94ef59 6308 /* Update our root-domain */
05fa785c 6309 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6310 if (rq->rd) {
c6c4927b 6311 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6312
6313 set_rq_online(rq);
1f94ef59 6314 }
05fa785c 6315 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6316 break;
48f24c4d 6317
1da177e4 6318#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6319 case CPU_DYING:
57d885fe 6320 /* Update our root-domain */
05fa785c 6321 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6322 if (rq->rd) {
c6c4927b 6323 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6324 set_rq_offline(rq);
57d885fe 6325 }
48c5ccae
PZ
6326 migrate_tasks(cpu);
6327 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6328 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6329
6330 migrate_nr_uninterruptible(rq);
6331 calc_global_load_remove(rq);
57d885fe 6332 break;
1da177e4
LT
6333#endif
6334 }
49c022e6
PZ
6335
6336 update_max_interval();
6337
1da177e4
LT
6338 return NOTIFY_OK;
6339}
6340
f38b0820
PM
6341/*
6342 * Register at high priority so that task migration (migrate_all_tasks)
6343 * happens before everything else. This has to be lower priority than
cdd6c482 6344 * the notifier in the perf_event subsystem, though.
1da177e4 6345 */
26c2143b 6346static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6347 .notifier_call = migration_call,
50a323b7 6348 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6349};
6350
3a101d05
TH
6351static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6352 unsigned long action, void *hcpu)
6353{
6354 switch (action & ~CPU_TASKS_FROZEN) {
6355 case CPU_ONLINE:
6356 case CPU_DOWN_FAILED:
6357 set_cpu_active((long)hcpu, true);
6358 return NOTIFY_OK;
6359 default:
6360 return NOTIFY_DONE;
6361 }
6362}
6363
6364static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6365 unsigned long action, void *hcpu)
6366{
6367 switch (action & ~CPU_TASKS_FROZEN) {
6368 case CPU_DOWN_PREPARE:
6369 set_cpu_active((long)hcpu, false);
6370 return NOTIFY_OK;
6371 default:
6372 return NOTIFY_DONE;
6373 }
6374}
6375
7babe8db 6376static int __init migration_init(void)
1da177e4
LT
6377{
6378 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6379 int err;
48f24c4d 6380
3a101d05 6381 /* Initialize migration for the boot CPU */
07dccf33
AM
6382 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6383 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6384 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6385 register_cpu_notifier(&migration_notifier);
7babe8db 6386
3a101d05
TH
6387 /* Register cpu active notifiers */
6388 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6389 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6390
a004cd42 6391 return 0;
1da177e4 6392}
7babe8db 6393early_initcall(migration_init);
1da177e4
LT
6394#endif
6395
6396#ifdef CONFIG_SMP
476f3534 6397
4cb98839
PZ
6398static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6399
3e9830dc 6400#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6401
f6630114
MT
6402static __read_mostly int sched_domain_debug_enabled;
6403
6404static int __init sched_domain_debug_setup(char *str)
6405{
6406 sched_domain_debug_enabled = 1;
6407
6408 return 0;
6409}
6410early_param("sched_debug", sched_domain_debug_setup);
6411
7c16ec58 6412static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6413 struct cpumask *groupmask)
1da177e4 6414{
4dcf6aff 6415 struct sched_group *group = sd->groups;
434d53b0 6416 char str[256];
1da177e4 6417
968ea6d8 6418 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6419 cpumask_clear(groupmask);
4dcf6aff
IM
6420
6421 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6422
6423 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6424 printk("does not load-balance\n");
4dcf6aff 6425 if (sd->parent)
3df0fc5b
PZ
6426 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6427 " has parent");
4dcf6aff 6428 return -1;
41c7ce9a
NP
6429 }
6430
3df0fc5b 6431 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6432
758b2cdc 6433 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6434 printk(KERN_ERR "ERROR: domain->span does not contain "
6435 "CPU%d\n", cpu);
4dcf6aff 6436 }
758b2cdc 6437 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6438 printk(KERN_ERR "ERROR: domain->groups does not contain"
6439 " CPU%d\n", cpu);
4dcf6aff 6440 }
1da177e4 6441
4dcf6aff 6442 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6443 do {
4dcf6aff 6444 if (!group) {
3df0fc5b
PZ
6445 printk("\n");
6446 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6447 break;
6448 }
6449
18a3885f 6450 if (!group->cpu_power) {
3df0fc5b
PZ
6451 printk(KERN_CONT "\n");
6452 printk(KERN_ERR "ERROR: domain->cpu_power not "
6453 "set\n");
4dcf6aff
IM
6454 break;
6455 }
1da177e4 6456
758b2cdc 6457 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6458 printk(KERN_CONT "\n");
6459 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6460 break;
6461 }
1da177e4 6462
758b2cdc 6463 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6464 printk(KERN_CONT "\n");
6465 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6466 break;
6467 }
1da177e4 6468
758b2cdc 6469 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6470
968ea6d8 6471 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6472
3df0fc5b 6473 printk(KERN_CONT " %s", str);
18a3885f 6474 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6475 printk(KERN_CONT " (cpu_power = %d)",
6476 group->cpu_power);
381512cf 6477 }
1da177e4 6478
4dcf6aff
IM
6479 group = group->next;
6480 } while (group != sd->groups);
3df0fc5b 6481 printk(KERN_CONT "\n");
1da177e4 6482
758b2cdc 6483 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6484 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6485
758b2cdc
RR
6486 if (sd->parent &&
6487 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6488 printk(KERN_ERR "ERROR: parent span is not a superset "
6489 "of domain->span\n");
4dcf6aff
IM
6490 return 0;
6491}
1da177e4 6492
4dcf6aff
IM
6493static void sched_domain_debug(struct sched_domain *sd, int cpu)
6494{
6495 int level = 0;
1da177e4 6496
f6630114
MT
6497 if (!sched_domain_debug_enabled)
6498 return;
6499
4dcf6aff
IM
6500 if (!sd) {
6501 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6502 return;
6503 }
1da177e4 6504
4dcf6aff
IM
6505 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6506
6507 for (;;) {
4cb98839 6508 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6509 break;
1da177e4
LT
6510 level++;
6511 sd = sd->parent;
33859f7f 6512 if (!sd)
4dcf6aff
IM
6513 break;
6514 }
1da177e4 6515}
6d6bc0ad 6516#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6517# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6518#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6519
1a20ff27 6520static int sd_degenerate(struct sched_domain *sd)
245af2c7 6521{
758b2cdc 6522 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6523 return 1;
6524
6525 /* Following flags need at least 2 groups */
6526 if (sd->flags & (SD_LOAD_BALANCE |
6527 SD_BALANCE_NEWIDLE |
6528 SD_BALANCE_FORK |
89c4710e
SS
6529 SD_BALANCE_EXEC |
6530 SD_SHARE_CPUPOWER |
6531 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6532 if (sd->groups != sd->groups->next)
6533 return 0;
6534 }
6535
6536 /* Following flags don't use groups */
c88d5910 6537 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6538 return 0;
6539
6540 return 1;
6541}
6542
48f24c4d
IM
6543static int
6544sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6545{
6546 unsigned long cflags = sd->flags, pflags = parent->flags;
6547
6548 if (sd_degenerate(parent))
6549 return 1;
6550
758b2cdc 6551 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6552 return 0;
6553
245af2c7
SS
6554 /* Flags needing groups don't count if only 1 group in parent */
6555 if (parent->groups == parent->groups->next) {
6556 pflags &= ~(SD_LOAD_BALANCE |
6557 SD_BALANCE_NEWIDLE |
6558 SD_BALANCE_FORK |
89c4710e
SS
6559 SD_BALANCE_EXEC |
6560 SD_SHARE_CPUPOWER |
6561 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6562 if (nr_node_ids == 1)
6563 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6564 }
6565 if (~cflags & pflags)
6566 return 0;
6567
6568 return 1;
6569}
6570
dce840a0 6571static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6572{
dce840a0 6573 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6574
68e74568 6575 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6576 free_cpumask_var(rd->rto_mask);
6577 free_cpumask_var(rd->online);
6578 free_cpumask_var(rd->span);
6579 kfree(rd);
6580}
6581
57d885fe
GH
6582static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6583{
a0490fa3 6584 struct root_domain *old_rd = NULL;
57d885fe 6585 unsigned long flags;
57d885fe 6586
05fa785c 6587 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6588
6589 if (rq->rd) {
a0490fa3 6590 old_rd = rq->rd;
57d885fe 6591
c6c4927b 6592 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6593 set_rq_offline(rq);
57d885fe 6594
c6c4927b 6595 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6596
a0490fa3
IM
6597 /*
6598 * If we dont want to free the old_rt yet then
6599 * set old_rd to NULL to skip the freeing later
6600 * in this function:
6601 */
6602 if (!atomic_dec_and_test(&old_rd->refcount))
6603 old_rd = NULL;
57d885fe
GH
6604 }
6605
6606 atomic_inc(&rd->refcount);
6607 rq->rd = rd;
6608
c6c4927b 6609 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6610 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6611 set_rq_online(rq);
57d885fe 6612
05fa785c 6613 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6614
6615 if (old_rd)
dce840a0 6616 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6617}
6618
68c38fc3 6619static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6620{
6621 memset(rd, 0, sizeof(*rd));
6622
68c38fc3 6623 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6624 goto out;
68c38fc3 6625 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6626 goto free_span;
68c38fc3 6627 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6628 goto free_online;
6e0534f2 6629
68c38fc3 6630 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6631 goto free_rto_mask;
c6c4927b 6632 return 0;
6e0534f2 6633
68e74568
RR
6634free_rto_mask:
6635 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6636free_online:
6637 free_cpumask_var(rd->online);
6638free_span:
6639 free_cpumask_var(rd->span);
0c910d28 6640out:
c6c4927b 6641 return -ENOMEM;
57d885fe
GH
6642}
6643
6644static void init_defrootdomain(void)
6645{
68c38fc3 6646 init_rootdomain(&def_root_domain);
c6c4927b 6647
57d885fe
GH
6648 atomic_set(&def_root_domain.refcount, 1);
6649}
6650
dc938520 6651static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6652{
6653 struct root_domain *rd;
6654
6655 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6656 if (!rd)
6657 return NULL;
6658
68c38fc3 6659 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6660 kfree(rd);
6661 return NULL;
6662 }
57d885fe
GH
6663
6664 return rd;
6665}
6666
dce840a0
PZ
6667static void free_sched_domain(struct rcu_head *rcu)
6668{
6669 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6670 if (atomic_dec_and_test(&sd->groups->ref))
6671 kfree(sd->groups);
6672 kfree(sd);
6673}
6674
6675static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6676{
6677 call_rcu(&sd->rcu, free_sched_domain);
6678}
6679
6680static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6681{
6682 for (; sd; sd = sd->parent)
6683 destroy_sched_domain(sd, cpu);
6684}
6685
1da177e4 6686/*
0eab9146 6687 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6688 * hold the hotplug lock.
6689 */
0eab9146
IM
6690static void
6691cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6692{
70b97a7f 6693 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6694 struct sched_domain *tmp;
6695
6696 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6697 for (tmp = sd; tmp; ) {
245af2c7
SS
6698 struct sched_domain *parent = tmp->parent;
6699 if (!parent)
6700 break;
f29c9b1c 6701
1a848870 6702 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6703 tmp->parent = parent->parent;
1a848870
SS
6704 if (parent->parent)
6705 parent->parent->child = tmp;
dce840a0 6706 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6707 } else
6708 tmp = tmp->parent;
245af2c7
SS
6709 }
6710
1a848870 6711 if (sd && sd_degenerate(sd)) {
dce840a0 6712 tmp = sd;
245af2c7 6713 sd = sd->parent;
dce840a0 6714 destroy_sched_domain(tmp, cpu);
1a848870
SS
6715 if (sd)
6716 sd->child = NULL;
6717 }
1da177e4 6718
4cb98839 6719 sched_domain_debug(sd, cpu);
1da177e4 6720
57d885fe 6721 rq_attach_root(rq, rd);
dce840a0 6722 tmp = rq->sd;
674311d5 6723 rcu_assign_pointer(rq->sd, sd);
dce840a0 6724 destroy_sched_domains(tmp, cpu);
1da177e4
LT
6725}
6726
6727/* cpus with isolated domains */
dcc30a35 6728static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6729
6730/* Setup the mask of cpus configured for isolated domains */
6731static int __init isolated_cpu_setup(char *str)
6732{
bdddd296 6733 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6734 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6735 return 1;
6736}
6737
8927f494 6738__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6739
9c1cfda2 6740#define SD_NODES_PER_DOMAIN 16
1da177e4 6741
9c1cfda2 6742#ifdef CONFIG_NUMA
198e2f18 6743
9c1cfda2
JH
6744/**
6745 * find_next_best_node - find the next node to include in a sched_domain
6746 * @node: node whose sched_domain we're building
6747 * @used_nodes: nodes already in the sched_domain
6748 *
41a2d6cf 6749 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6750 * finds the closest node not already in the @used_nodes map.
6751 *
6752 * Should use nodemask_t.
6753 */
c5f59f08 6754static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6755{
6756 int i, n, val, min_val, best_node = 0;
6757
6758 min_val = INT_MAX;
6759
076ac2af 6760 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6761 /* Start at @node */
076ac2af 6762 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6763
6764 if (!nr_cpus_node(n))
6765 continue;
6766
6767 /* Skip already used nodes */
c5f59f08 6768 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6769 continue;
6770
6771 /* Simple min distance search */
6772 val = node_distance(node, n);
6773
6774 if (val < min_val) {
6775 min_val = val;
6776 best_node = n;
6777 }
6778 }
6779
c5f59f08 6780 node_set(best_node, *used_nodes);
9c1cfda2
JH
6781 return best_node;
6782}
6783
6784/**
6785 * sched_domain_node_span - get a cpumask for a node's sched_domain
6786 * @node: node whose cpumask we're constructing
73486722 6787 * @span: resulting cpumask
9c1cfda2 6788 *
41a2d6cf 6789 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6790 * should be one that prevents unnecessary balancing, but also spreads tasks
6791 * out optimally.
6792 */
96f874e2 6793static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6794{
c5f59f08 6795 nodemask_t used_nodes;
48f24c4d 6796 int i;
9c1cfda2 6797
6ca09dfc 6798 cpumask_clear(span);
c5f59f08 6799 nodes_clear(used_nodes);
9c1cfda2 6800
6ca09dfc 6801 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6802 node_set(node, used_nodes);
9c1cfda2
JH
6803
6804 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6805 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6806
6ca09dfc 6807 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6808 }
9c1cfda2 6809}
d3081f52
PZ
6810
6811static const struct cpumask *cpu_node_mask(int cpu)
6812{
6813 lockdep_assert_held(&sched_domains_mutex);
6814
6815 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6816
6817 return sched_domains_tmpmask;
6818}
6d6bc0ad 6819#endif /* CONFIG_NUMA */
9c1cfda2 6820
d3081f52
PZ
6821static const struct cpumask *cpu_cpu_mask(int cpu)
6822{
6823 return cpumask_of_node(cpu_to_node(cpu));
6824}
6825
5c45bf27 6826int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6827
dce840a0
PZ
6828struct sd_data {
6829 struct sched_domain **__percpu sd;
6830 struct sched_group **__percpu sg;
6831};
6832
49a02c51 6833struct s_data {
21d42ccf 6834 struct sched_domain ** __percpu sd;
dce840a0 6835 struct sd_data sdd[SD_LV_MAX];
49a02c51
AH
6836 struct root_domain *rd;
6837};
6838
2109b99e 6839enum s_alloc {
2109b99e 6840 sa_rootdomain,
21d42ccf 6841 sa_sd,
dce840a0 6842 sa_sd_storage,
2109b99e
AH
6843 sa_none,
6844};
6845
eb7a74e6
PZ
6846typedef struct sched_domain *(*sched_domain_build_f)(struct s_data *d,
6847 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6848 struct sched_domain *parent, int cpu);
6849
6850typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6851
6852struct sched_domain_topology_level {
6853 sched_domain_build_f build;
6854};
6855
9c1cfda2 6856/*
dce840a0 6857 * Assumes the sched_domain tree is fully constructed
9c1cfda2 6858 */
dce840a0 6859static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6860{
dce840a0
PZ
6861 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6862 struct sched_domain *child = sd->child;
1da177e4 6863
dce840a0
PZ
6864 if (child)
6865 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6866
6711cab4 6867 if (sg)
dce840a0
PZ
6868 *sg = *per_cpu_ptr(sdd->sg, cpu);
6869
6870 return cpu;
1e9f28fa 6871}
1e9f28fa 6872
01a08546 6873/*
dce840a0
PZ
6874 * build_sched_groups takes the cpumask we wish to span, and a pointer
6875 * to a function which identifies what group(along with sched group) a CPU
6876 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6877 * (due to the fact that we keep track of groups covered with a struct cpumask).
6878 *
6879 * build_sched_groups will build a circular linked list of the groups
6880 * covered by the given span, and will set each group's ->cpumask correctly,
6881 * and ->cpu_power to 0.
01a08546 6882 */
dce840a0 6883static void
f96225fd 6884build_sched_groups(struct sched_domain *sd)
1da177e4 6885{
dce840a0
PZ
6886 struct sched_group *first = NULL, *last = NULL;
6887 struct sd_data *sdd = sd->private;
6888 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6889 struct cpumask *covered;
dce840a0 6890 int i;
9c1cfda2 6891
f96225fd
PZ
6892 lockdep_assert_held(&sched_domains_mutex);
6893 covered = sched_domains_tmpmask;
6894
dce840a0 6895 cpumask_clear(covered);
6711cab4 6896
dce840a0
PZ
6897 for_each_cpu(i, span) {
6898 struct sched_group *sg;
6899 int group = get_group(i, sdd, &sg);
6900 int j;
6711cab4 6901
dce840a0
PZ
6902 if (cpumask_test_cpu(i, covered))
6903 continue;
6711cab4 6904
dce840a0
PZ
6905 cpumask_clear(sched_group_cpus(sg));
6906 sg->cpu_power = 0;
0601a88d 6907
dce840a0
PZ
6908 for_each_cpu(j, span) {
6909 if (get_group(j, sdd, NULL) != group)
6910 continue;
0601a88d 6911
dce840a0
PZ
6912 cpumask_set_cpu(j, covered);
6913 cpumask_set_cpu(j, sched_group_cpus(sg));
6914 }
0601a88d 6915
dce840a0
PZ
6916 if (!first)
6917 first = sg;
6918 if (last)
6919 last->next = sg;
6920 last = sg;
6921 }
6922 last->next = first;
0601a88d 6923}
51888ca2 6924
89c4710e
SS
6925/*
6926 * Initialize sched groups cpu_power.
6927 *
6928 * cpu_power indicates the capacity of sched group, which is used while
6929 * distributing the load between different sched groups in a sched domain.
6930 * Typically cpu_power for all the groups in a sched domain will be same unless
6931 * there are asymmetries in the topology. If there are asymmetries, group
6932 * having more cpu_power will pickup more load compared to the group having
6933 * less cpu_power.
89c4710e
SS
6934 */
6935static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6936{
89c4710e
SS
6937 WARN_ON(!sd || !sd->groups);
6938
13318a71 6939 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6940 return;
6941
aae6d3dd
SS
6942 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
6943
d274cb30 6944 update_group_power(sd, cpu);
89c4710e
SS
6945}
6946
7c16ec58
MT
6947/*
6948 * Initializers for schedule domains
6949 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6950 */
6951
a5d8c348
IM
6952#ifdef CONFIG_SCHED_DEBUG
6953# define SD_INIT_NAME(sd, type) sd->name = #type
6954#else
6955# define SD_INIT_NAME(sd, type) do { } while (0)
6956#endif
6957
dce840a0
PZ
6958#define SD_INIT_FUNC(type) \
6959static noinline struct sched_domain *sd_init_##type(struct s_data *d, int cpu) \
6960{ \
6961 struct sched_domain *sd = *per_cpu_ptr(d->sdd[SD_LV_##type].sd, cpu); \
6962 *sd = SD_##type##_INIT; \
6963 sd->level = SD_LV_##type; \
6964 SD_INIT_NAME(sd, type); \
6965 sd->private = &d->sdd[SD_LV_##type]; \
6966 return sd; \
7c16ec58
MT
6967}
6968
6969SD_INIT_FUNC(CPU)
6970#ifdef CONFIG_NUMA
6971 SD_INIT_FUNC(ALLNODES)
6972 SD_INIT_FUNC(NODE)
6973#endif
6974#ifdef CONFIG_SCHED_SMT
6975 SD_INIT_FUNC(SIBLING)
6976#endif
6977#ifdef CONFIG_SCHED_MC
6978 SD_INIT_FUNC(MC)
6979#endif
01a08546
HC
6980#ifdef CONFIG_SCHED_BOOK
6981 SD_INIT_FUNC(BOOK)
6982#endif
7c16ec58 6983
1d3504fc
HS
6984static int default_relax_domain_level = -1;
6985
6986static int __init setup_relax_domain_level(char *str)
6987{
30e0e178
LZ
6988 unsigned long val;
6989
6990 val = simple_strtoul(str, NULL, 0);
6991 if (val < SD_LV_MAX)
6992 default_relax_domain_level = val;
6993
1d3504fc
HS
6994 return 1;
6995}
6996__setup("relax_domain_level=", setup_relax_domain_level);
6997
6998static void set_domain_attribute(struct sched_domain *sd,
6999 struct sched_domain_attr *attr)
7000{
7001 int request;
7002
7003 if (!attr || attr->relax_domain_level < 0) {
7004 if (default_relax_domain_level < 0)
7005 return;
7006 else
7007 request = default_relax_domain_level;
7008 } else
7009 request = attr->relax_domain_level;
7010 if (request < sd->level) {
7011 /* turn off idle balance on this domain */
c88d5910 7012 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7013 } else {
7014 /* turn on idle balance on this domain */
c88d5910 7015 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7016 }
7017}
7018
2109b99e
AH
7019static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7020 const struct cpumask *cpu_map)
7021{
dce840a0
PZ
7022 int i, j;
7023
2109b99e 7024 switch (what) {
2109b99e 7025 case sa_rootdomain:
822ff793
PZ
7026 if (!atomic_read(&d->rd->refcount))
7027 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7028 case sa_sd:
7029 free_percpu(d->sd); /* fall through */
dce840a0
PZ
7030 case sa_sd_storage:
7031 for (i = 0; i < SD_LV_MAX; i++) {
7032 for_each_cpu(j, cpu_map) {
7033 kfree(*per_cpu_ptr(d->sdd[i].sd, j));
7034 kfree(*per_cpu_ptr(d->sdd[i].sg, j));
7035 }
7036 free_percpu(d->sdd[i].sd);
7037 free_percpu(d->sdd[i].sg);
7038 } /* fall through */
2109b99e
AH
7039 case sa_none:
7040 break;
7041 }
7042}
3404c8d9 7043
2109b99e
AH
7044static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7045 const struct cpumask *cpu_map)
7046{
dce840a0
PZ
7047 int i, j;
7048
7049 memset(d, 0, sizeof(*d));
7050
dce840a0
PZ
7051 for (i = 0; i < SD_LV_MAX; i++) {
7052 d->sdd[i].sd = alloc_percpu(struct sched_domain *);
7053 if (!d->sdd[i].sd)
7054 return sa_sd_storage;
7055
7056 d->sdd[i].sg = alloc_percpu(struct sched_group *);
7057 if (!d->sdd[i].sg)
7058 return sa_sd_storage;
7059
7060 for_each_cpu(j, cpu_map) {
7061 struct sched_domain *sd;
7062 struct sched_group *sg;
7063
7064 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7065 GFP_KERNEL, cpu_to_node(j));
7066 if (!sd)
7067 return sa_sd_storage;
7068
7069 *per_cpu_ptr(d->sdd[i].sd, j) = sd;
7070
7071 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7072 GFP_KERNEL, cpu_to_node(j));
7073 if (!sg)
7074 return sa_sd_storage;
7075
7076 *per_cpu_ptr(d->sdd[i].sg, j) = sg;
7077 }
21d42ccf 7078 }
dce840a0
PZ
7079 d->sd = alloc_percpu(struct sched_domain *);
7080 if (!d->sd)
7081 return sa_sd_storage;
2109b99e 7082 d->rd = alloc_rootdomain();
dce840a0 7083 if (!d->rd)
21d42ccf 7084 return sa_sd;
2109b99e
AH
7085 return sa_rootdomain;
7086}
57d885fe 7087
dce840a0
PZ
7088/*
7089 * NULL the sd_data elements we've used to build the sched_domain and
7090 * sched_group structure so that the subsequent __free_domain_allocs()
7091 * will not free the data we're using.
7092 */
7093static void claim_allocations(int cpu, struct sched_domain *sd)
7094{
7095 struct sd_data *sdd = sd->private;
7096 struct sched_group *sg = sd->groups;
7097
7098 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7099 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7100
7101 if (cpu == cpumask_first(sched_group_cpus(sg))) {
7102 WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
7103 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7104 }
7105}
7106
3bd65a80
PZ
7107static struct sched_domain *__build_allnodes_sched_domain(struct s_data *d,
7108 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7109 struct sched_domain *parent, int i)
7f4588f3
AH
7110{
7111 struct sched_domain *sd = NULL;
7c16ec58 7112#ifdef CONFIG_NUMA
3bd65a80
PZ
7113 sd = sd_init_ALLNODES(d, i);
7114 set_domain_attribute(sd, attr);
d3081f52 7115 cpumask_and(sched_domain_span(sd), cpu_map, cpu_possible_mask);
3bd65a80
PZ
7116 sd->parent = parent;
7117 if (parent)
7118 parent->child = sd;
7119#endif
7120 return sd;
7121}
7f4588f3 7122
3bd65a80
PZ
7123static struct sched_domain *__build_node_sched_domain(struct s_data *d,
7124 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7125 struct sched_domain *parent, int i)
7126{
7127 struct sched_domain *sd = NULL;
7128#ifdef CONFIG_NUMA
dce840a0 7129 sd = sd_init_NODE(d, i);
7f4588f3 7130 set_domain_attribute(sd, attr);
d3081f52 7131 cpumask_and(sched_domain_span(sd), cpu_map, cpu_node_mask(i));
7f4588f3
AH
7132 sd->parent = parent;
7133 if (parent)
7134 parent->child = sd;
1da177e4 7135#endif
7f4588f3
AH
7136 return sd;
7137}
1da177e4 7138
87cce662
AH
7139static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7140 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7141 struct sched_domain *parent, int i)
7142{
7143 struct sched_domain *sd;
dce840a0 7144 sd = sd_init_CPU(d, i);
87cce662 7145 set_domain_attribute(sd, attr);
d3081f52 7146 cpumask_and(sched_domain_span(sd), cpu_map, cpu_cpu_mask(i));
87cce662
AH
7147 sd->parent = parent;
7148 if (parent)
7149 parent->child = sd;
87cce662
AH
7150 return sd;
7151}
1da177e4 7152
01a08546
HC
7153static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7154 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7155 struct sched_domain *parent, int i)
7156{
7157 struct sched_domain *sd = parent;
7158#ifdef CONFIG_SCHED_BOOK
dce840a0 7159 sd = sd_init_BOOK(d, i);
01a08546
HC
7160 set_domain_attribute(sd, attr);
7161 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7162 sd->parent = parent;
7163 parent->child = sd;
01a08546
HC
7164#endif
7165 return sd;
7166}
7167
410c4081
AH
7168static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7169 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7170 struct sched_domain *parent, int i)
7171{
7172 struct sched_domain *sd = parent;
1e9f28fa 7173#ifdef CONFIG_SCHED_MC
dce840a0 7174 sd = sd_init_MC(d, i);
410c4081
AH
7175 set_domain_attribute(sd, attr);
7176 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7177 sd->parent = parent;
7178 parent->child = sd;
1e9f28fa 7179#endif
410c4081
AH
7180 return sd;
7181}
1e9f28fa 7182
d8173535
AH
7183static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7184 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7185 struct sched_domain *parent, int i)
7186{
7187 struct sched_domain *sd = parent;
1da177e4 7188#ifdef CONFIG_SCHED_SMT
dce840a0 7189 sd = sd_init_SIBLING(d, i);
d8173535
AH
7190 set_domain_attribute(sd, attr);
7191 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7192 sd->parent = parent;
7193 parent->child = sd;
1da177e4 7194#endif
d8173535
AH
7195 return sd;
7196}
1da177e4 7197
eb7a74e6
PZ
7198static struct sched_domain_topology_level default_topology[] = {
7199 { __build_allnodes_sched_domain, },
7200 { __build_node_sched_domain, },
7201 { __build_cpu_sched_domain, },
7202 { __build_book_sched_domain, },
7203 { __build_mc_sched_domain, },
7204 { __build_smt_sched_domain, },
7205 { NULL, },
7206};
7207
7208static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7209
2109b99e
AH
7210/*
7211 * Build sched domains for a given set of cpus and attach the sched domains
7212 * to the individual cpus
7213 */
dce840a0
PZ
7214static int build_sched_domains(const struct cpumask *cpu_map,
7215 struct sched_domain_attr *attr)
2109b99e
AH
7216{
7217 enum s_alloc alloc_state = sa_none;
dce840a0 7218 struct sched_domain *sd;
2109b99e 7219 struct s_data d;
822ff793 7220 int i, ret = -ENOMEM;
9c1cfda2 7221
2109b99e
AH
7222 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7223 if (alloc_state != sa_rootdomain)
7224 goto error;
9c1cfda2 7225
dce840a0 7226 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7227 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7228 struct sched_domain_topology_level *tl;
7229
3bd65a80 7230 sd = NULL;
eb7a74e6
PZ
7231 for (tl = sched_domain_topology; tl->build; tl++)
7232 sd = tl->build(&d, cpu_map, attr, sd, i);
d274cb30 7233
21d42ccf 7234 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7235 }
7236
7237 /* Build the groups for the domains */
7238 for_each_cpu(i, cpu_map) {
7239 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7240 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7241 get_group(i, sd->private, &sd->groups);
7242 atomic_inc(&sd->groups->ref);
21d42ccf 7243
dce840a0
PZ
7244 if (i != cpumask_first(sched_domain_span(sd)))
7245 continue;
7246
f96225fd 7247 build_sched_groups(sd);
1cf51902 7248 }
a06dadbe 7249 }
9c1cfda2 7250
1da177e4 7251 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7252 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7253 if (!cpumask_test_cpu(i, cpu_map))
7254 continue;
9c1cfda2 7255
dce840a0
PZ
7256 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7257 claim_allocations(i, sd);
cd4ea6ae 7258 init_sched_groups_power(i, sd);
dce840a0 7259 }
f712c0c7 7260 }
9c1cfda2 7261
1da177e4 7262 /* Attach the domains */
dce840a0 7263 rcu_read_lock();
abcd083a 7264 for_each_cpu(i, cpu_map) {
21d42ccf 7265 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7266 cpu_attach_domain(sd, d.rd, i);
1da177e4 7267 }
dce840a0 7268 rcu_read_unlock();
51888ca2 7269
822ff793 7270 ret = 0;
51888ca2 7271error:
2109b99e 7272 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7273 return ret;
1da177e4 7274}
029190c5 7275
acc3f5d7 7276static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7277static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7278static struct sched_domain_attr *dattr_cur;
7279 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7280
7281/*
7282 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7283 * cpumask) fails, then fallback to a single sched domain,
7284 * as determined by the single cpumask fallback_doms.
029190c5 7285 */
4212823f 7286static cpumask_var_t fallback_doms;
029190c5 7287
ee79d1bd
HC
7288/*
7289 * arch_update_cpu_topology lets virtualized architectures update the
7290 * cpu core maps. It is supposed to return 1 if the topology changed
7291 * or 0 if it stayed the same.
7292 */
7293int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7294{
ee79d1bd 7295 return 0;
22e52b07
HC
7296}
7297
acc3f5d7
RR
7298cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7299{
7300 int i;
7301 cpumask_var_t *doms;
7302
7303 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7304 if (!doms)
7305 return NULL;
7306 for (i = 0; i < ndoms; i++) {
7307 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7308 free_sched_domains(doms, i);
7309 return NULL;
7310 }
7311 }
7312 return doms;
7313}
7314
7315void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7316{
7317 unsigned int i;
7318 for (i = 0; i < ndoms; i++)
7319 free_cpumask_var(doms[i]);
7320 kfree(doms);
7321}
7322
1a20ff27 7323/*
41a2d6cf 7324 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7325 * For now this just excludes isolated cpus, but could be used to
7326 * exclude other special cases in the future.
1a20ff27 7327 */
c4a8849a 7328static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7329{
7378547f
MM
7330 int err;
7331
22e52b07 7332 arch_update_cpu_topology();
029190c5 7333 ndoms_cur = 1;
acc3f5d7 7334 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7335 if (!doms_cur)
acc3f5d7
RR
7336 doms_cur = &fallback_doms;
7337 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7338 dattr_cur = NULL;
dce840a0 7339 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7340 register_sched_domain_sysctl();
7378547f
MM
7341
7342 return err;
1a20ff27
DG
7343}
7344
1a20ff27
DG
7345/*
7346 * Detach sched domains from a group of cpus specified in cpu_map
7347 * These cpus will now be attached to the NULL domain
7348 */
96f874e2 7349static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7350{
7351 int i;
7352
dce840a0 7353 rcu_read_lock();
abcd083a 7354 for_each_cpu(i, cpu_map)
57d885fe 7355 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7356 rcu_read_unlock();
1a20ff27
DG
7357}
7358
1d3504fc
HS
7359/* handle null as "default" */
7360static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7361 struct sched_domain_attr *new, int idx_new)
7362{
7363 struct sched_domain_attr tmp;
7364
7365 /* fast path */
7366 if (!new && !cur)
7367 return 1;
7368
7369 tmp = SD_ATTR_INIT;
7370 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7371 new ? (new + idx_new) : &tmp,
7372 sizeof(struct sched_domain_attr));
7373}
7374
029190c5
PJ
7375/*
7376 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7377 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7378 * doms_new[] to the current sched domain partitioning, doms_cur[].
7379 * It destroys each deleted domain and builds each new domain.
7380 *
acc3f5d7 7381 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7382 * The masks don't intersect (don't overlap.) We should setup one
7383 * sched domain for each mask. CPUs not in any of the cpumasks will
7384 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7385 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7386 * it as it is.
7387 *
acc3f5d7
RR
7388 * The passed in 'doms_new' should be allocated using
7389 * alloc_sched_domains. This routine takes ownership of it and will
7390 * free_sched_domains it when done with it. If the caller failed the
7391 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7392 * and partition_sched_domains() will fallback to the single partition
7393 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7394 *
96f874e2 7395 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7396 * ndoms_new == 0 is a special case for destroying existing domains,
7397 * and it will not create the default domain.
dfb512ec 7398 *
029190c5
PJ
7399 * Call with hotplug lock held
7400 */
acc3f5d7 7401void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7402 struct sched_domain_attr *dattr_new)
029190c5 7403{
dfb512ec 7404 int i, j, n;
d65bd5ec 7405 int new_topology;
029190c5 7406
712555ee 7407 mutex_lock(&sched_domains_mutex);
a1835615 7408
7378547f
MM
7409 /* always unregister in case we don't destroy any domains */
7410 unregister_sched_domain_sysctl();
7411
d65bd5ec
HC
7412 /* Let architecture update cpu core mappings. */
7413 new_topology = arch_update_cpu_topology();
7414
dfb512ec 7415 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7416
7417 /* Destroy deleted domains */
7418 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7419 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7420 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7421 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7422 goto match1;
7423 }
7424 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7425 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7426match1:
7427 ;
7428 }
7429
e761b772
MK
7430 if (doms_new == NULL) {
7431 ndoms_cur = 0;
acc3f5d7 7432 doms_new = &fallback_doms;
6ad4c188 7433 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7434 WARN_ON_ONCE(dattr_new);
e761b772
MK
7435 }
7436
029190c5
PJ
7437 /* Build new domains */
7438 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7439 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7440 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7441 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7442 goto match2;
7443 }
7444 /* no match - add a new doms_new */
dce840a0 7445 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7446match2:
7447 ;
7448 }
7449
7450 /* Remember the new sched domains */
acc3f5d7
RR
7451 if (doms_cur != &fallback_doms)
7452 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7453 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7454 doms_cur = doms_new;
1d3504fc 7455 dattr_cur = dattr_new;
029190c5 7456 ndoms_cur = ndoms_new;
7378547f
MM
7457
7458 register_sched_domain_sysctl();
a1835615 7459
712555ee 7460 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7461}
7462
5c45bf27 7463#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7464static void reinit_sched_domains(void)
5c45bf27 7465{
95402b38 7466 get_online_cpus();
dfb512ec
MK
7467
7468 /* Destroy domains first to force the rebuild */
7469 partition_sched_domains(0, NULL, NULL);
7470
e761b772 7471 rebuild_sched_domains();
95402b38 7472 put_online_cpus();
5c45bf27
SS
7473}
7474
7475static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7476{
afb8a9b7 7477 unsigned int level = 0;
5c45bf27 7478
afb8a9b7
GS
7479 if (sscanf(buf, "%u", &level) != 1)
7480 return -EINVAL;
7481
7482 /*
7483 * level is always be positive so don't check for
7484 * level < POWERSAVINGS_BALANCE_NONE which is 0
7485 * What happens on 0 or 1 byte write,
7486 * need to check for count as well?
7487 */
7488
7489 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7490 return -EINVAL;
7491
7492 if (smt)
afb8a9b7 7493 sched_smt_power_savings = level;
5c45bf27 7494 else
afb8a9b7 7495 sched_mc_power_savings = level;
5c45bf27 7496
c4a8849a 7497 reinit_sched_domains();
5c45bf27 7498
c70f22d2 7499 return count;
5c45bf27
SS
7500}
7501
5c45bf27 7502#ifdef CONFIG_SCHED_MC
f718cd4a 7503static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7504 struct sysdev_class_attribute *attr,
f718cd4a 7505 char *page)
5c45bf27
SS
7506{
7507 return sprintf(page, "%u\n", sched_mc_power_savings);
7508}
f718cd4a 7509static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7510 struct sysdev_class_attribute *attr,
48f24c4d 7511 const char *buf, size_t count)
5c45bf27
SS
7512{
7513 return sched_power_savings_store(buf, count, 0);
7514}
f718cd4a
AK
7515static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7516 sched_mc_power_savings_show,
7517 sched_mc_power_savings_store);
5c45bf27
SS
7518#endif
7519
7520#ifdef CONFIG_SCHED_SMT
f718cd4a 7521static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7522 struct sysdev_class_attribute *attr,
f718cd4a 7523 char *page)
5c45bf27
SS
7524{
7525 return sprintf(page, "%u\n", sched_smt_power_savings);
7526}
f718cd4a 7527static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7528 struct sysdev_class_attribute *attr,
48f24c4d 7529 const char *buf, size_t count)
5c45bf27
SS
7530{
7531 return sched_power_savings_store(buf, count, 1);
7532}
f718cd4a
AK
7533static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7534 sched_smt_power_savings_show,
6707de00
AB
7535 sched_smt_power_savings_store);
7536#endif
7537
39aac648 7538int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7539{
7540 int err = 0;
7541
7542#ifdef CONFIG_SCHED_SMT
7543 if (smt_capable())
7544 err = sysfs_create_file(&cls->kset.kobj,
7545 &attr_sched_smt_power_savings.attr);
7546#endif
7547#ifdef CONFIG_SCHED_MC
7548 if (!err && mc_capable())
7549 err = sysfs_create_file(&cls->kset.kobj,
7550 &attr_sched_mc_power_savings.attr);
7551#endif
7552 return err;
7553}
6d6bc0ad 7554#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7555
1da177e4 7556/*
3a101d05
TH
7557 * Update cpusets according to cpu_active mask. If cpusets are
7558 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7559 * around partition_sched_domains().
1da177e4 7560 */
0b2e918a
TH
7561static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7562 void *hcpu)
e761b772 7563{
3a101d05 7564 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7565 case CPU_ONLINE:
6ad4c188 7566 case CPU_DOWN_FAILED:
3a101d05 7567 cpuset_update_active_cpus();
e761b772 7568 return NOTIFY_OK;
3a101d05
TH
7569 default:
7570 return NOTIFY_DONE;
7571 }
7572}
e761b772 7573
0b2e918a
TH
7574static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7575 void *hcpu)
3a101d05
TH
7576{
7577 switch (action & ~CPU_TASKS_FROZEN) {
7578 case CPU_DOWN_PREPARE:
7579 cpuset_update_active_cpus();
7580 return NOTIFY_OK;
e761b772
MK
7581 default:
7582 return NOTIFY_DONE;
7583 }
7584}
e761b772
MK
7585
7586static int update_runtime(struct notifier_block *nfb,
7587 unsigned long action, void *hcpu)
1da177e4 7588{
7def2be1
PZ
7589 int cpu = (int)(long)hcpu;
7590
1da177e4 7591 switch (action) {
1da177e4 7592 case CPU_DOWN_PREPARE:
8bb78442 7593 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7594 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7595 return NOTIFY_OK;
7596
1da177e4 7597 case CPU_DOWN_FAILED:
8bb78442 7598 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7599 case CPU_ONLINE:
8bb78442 7600 case CPU_ONLINE_FROZEN:
7def2be1 7601 enable_runtime(cpu_rq(cpu));
e761b772
MK
7602 return NOTIFY_OK;
7603
1da177e4
LT
7604 default:
7605 return NOTIFY_DONE;
7606 }
1da177e4 7607}
1da177e4
LT
7608
7609void __init sched_init_smp(void)
7610{
dcc30a35
RR
7611 cpumask_var_t non_isolated_cpus;
7612
7613 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7614 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7615
95402b38 7616 get_online_cpus();
712555ee 7617 mutex_lock(&sched_domains_mutex);
c4a8849a 7618 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7619 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7620 if (cpumask_empty(non_isolated_cpus))
7621 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7622 mutex_unlock(&sched_domains_mutex);
95402b38 7623 put_online_cpus();
e761b772 7624
3a101d05
TH
7625 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7626 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7627
7628 /* RT runtime code needs to handle some hotplug events */
7629 hotcpu_notifier(update_runtime, 0);
7630
b328ca18 7631 init_hrtick();
5c1e1767
NP
7632
7633 /* Move init over to a non-isolated CPU */
dcc30a35 7634 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7635 BUG();
19978ca6 7636 sched_init_granularity();
dcc30a35 7637 free_cpumask_var(non_isolated_cpus);
4212823f 7638
0e3900e6 7639 init_sched_rt_class();
1da177e4
LT
7640}
7641#else
7642void __init sched_init_smp(void)
7643{
19978ca6 7644 sched_init_granularity();
1da177e4
LT
7645}
7646#endif /* CONFIG_SMP */
7647
cd1bb94b
AB
7648const_debug unsigned int sysctl_timer_migration = 1;
7649
1da177e4
LT
7650int in_sched_functions(unsigned long addr)
7651{
1da177e4
LT
7652 return in_lock_functions(addr) ||
7653 (addr >= (unsigned long)__sched_text_start
7654 && addr < (unsigned long)__sched_text_end);
7655}
7656
a9957449 7657static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7658{
7659 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7660 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7661#ifdef CONFIG_FAIR_GROUP_SCHED
7662 cfs_rq->rq = rq;
f07333bf 7663 /* allow initial update_cfs_load() to truncate */
6ea72f12 7664#ifdef CONFIG_SMP
f07333bf 7665 cfs_rq->load_stamp = 1;
6ea72f12 7666#endif
dd41f596 7667#endif
67e9fb2a 7668 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7669}
7670
fa85ae24
PZ
7671static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7672{
7673 struct rt_prio_array *array;
7674 int i;
7675
7676 array = &rt_rq->active;
7677 for (i = 0; i < MAX_RT_PRIO; i++) {
7678 INIT_LIST_HEAD(array->queue + i);
7679 __clear_bit(i, array->bitmap);
7680 }
7681 /* delimiter for bitsearch: */
7682 __set_bit(MAX_RT_PRIO, array->bitmap);
7683
052f1dc7 7684#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7685 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7686#ifdef CONFIG_SMP
e864c499 7687 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7688#endif
48d5e258 7689#endif
fa85ae24
PZ
7690#ifdef CONFIG_SMP
7691 rt_rq->rt_nr_migratory = 0;
fa85ae24 7692 rt_rq->overloaded = 0;
05fa785c 7693 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7694#endif
7695
7696 rt_rq->rt_time = 0;
7697 rt_rq->rt_throttled = 0;
ac086bc2 7698 rt_rq->rt_runtime = 0;
0986b11b 7699 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7700
052f1dc7 7701#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7702 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7703 rt_rq->rq = rq;
7704#endif
fa85ae24
PZ
7705}
7706
6f505b16 7707#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7708static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7709 struct sched_entity *se, int cpu,
ec7dc8ac 7710 struct sched_entity *parent)
6f505b16 7711{
ec7dc8ac 7712 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7713 tg->cfs_rq[cpu] = cfs_rq;
7714 init_cfs_rq(cfs_rq, rq);
7715 cfs_rq->tg = tg;
6f505b16
PZ
7716
7717 tg->se[cpu] = se;
07e06b01 7718 /* se could be NULL for root_task_group */
354d60c2
DG
7719 if (!se)
7720 return;
7721
ec7dc8ac
DG
7722 if (!parent)
7723 se->cfs_rq = &rq->cfs;
7724 else
7725 se->cfs_rq = parent->my_q;
7726
6f505b16 7727 se->my_q = cfs_rq;
9437178f 7728 update_load_set(&se->load, 0);
ec7dc8ac 7729 se->parent = parent;
6f505b16 7730}
052f1dc7 7731#endif
6f505b16 7732
052f1dc7 7733#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7734static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7735 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7736 struct sched_rt_entity *parent)
6f505b16 7737{
ec7dc8ac
DG
7738 struct rq *rq = cpu_rq(cpu);
7739
6f505b16
PZ
7740 tg->rt_rq[cpu] = rt_rq;
7741 init_rt_rq(rt_rq, rq);
7742 rt_rq->tg = tg;
ac086bc2 7743 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7744
7745 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7746 if (!rt_se)
7747 return;
7748
ec7dc8ac
DG
7749 if (!parent)
7750 rt_se->rt_rq = &rq->rt;
7751 else
7752 rt_se->rt_rq = parent->my_q;
7753
6f505b16 7754 rt_se->my_q = rt_rq;
ec7dc8ac 7755 rt_se->parent = parent;
6f505b16
PZ
7756 INIT_LIST_HEAD(&rt_se->run_list);
7757}
7758#endif
7759
1da177e4
LT
7760void __init sched_init(void)
7761{
dd41f596 7762 int i, j;
434d53b0
MT
7763 unsigned long alloc_size = 0, ptr;
7764
7765#ifdef CONFIG_FAIR_GROUP_SCHED
7766 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7767#endif
7768#ifdef CONFIG_RT_GROUP_SCHED
7769 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7770#endif
df7c8e84 7771#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7772 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7773#endif
434d53b0 7774 if (alloc_size) {
36b7b6d4 7775 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7776
7777#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7778 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7779 ptr += nr_cpu_ids * sizeof(void **);
7780
07e06b01 7781 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7782 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7783
6d6bc0ad 7784#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7785#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7786 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7787 ptr += nr_cpu_ids * sizeof(void **);
7788
07e06b01 7789 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7790 ptr += nr_cpu_ids * sizeof(void **);
7791
6d6bc0ad 7792#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7793#ifdef CONFIG_CPUMASK_OFFSTACK
7794 for_each_possible_cpu(i) {
7795 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7796 ptr += cpumask_size();
7797 }
7798#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7799 }
dd41f596 7800
57d885fe
GH
7801#ifdef CONFIG_SMP
7802 init_defrootdomain();
7803#endif
7804
d0b27fa7
PZ
7805 init_rt_bandwidth(&def_rt_bandwidth,
7806 global_rt_period(), global_rt_runtime());
7807
7808#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7809 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7810 global_rt_period(), global_rt_runtime());
6d6bc0ad 7811#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7812
7c941438 7813#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7814 list_add(&root_task_group.list, &task_groups);
7815 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 7816 autogroup_init(&init_task);
7c941438 7817#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7818
0a945022 7819 for_each_possible_cpu(i) {
70b97a7f 7820 struct rq *rq;
1da177e4
LT
7821
7822 rq = cpu_rq(i);
05fa785c 7823 raw_spin_lock_init(&rq->lock);
7897986b 7824 rq->nr_running = 0;
dce48a84
TG
7825 rq->calc_load_active = 0;
7826 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7827 init_cfs_rq(&rq->cfs, rq);
6f505b16 7828 init_rt_rq(&rq->rt, rq);
dd41f596 7829#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7830 root_task_group.shares = root_task_group_load;
6f505b16 7831 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7832 /*
07e06b01 7833 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7834 *
7835 * In case of task-groups formed thr' the cgroup filesystem, it
7836 * gets 100% of the cpu resources in the system. This overall
7837 * system cpu resource is divided among the tasks of
07e06b01 7838 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7839 * based on each entity's (task or task-group's) weight
7840 * (se->load.weight).
7841 *
07e06b01 7842 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7843 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7844 * then A0's share of the cpu resource is:
7845 *
0d905bca 7846 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7847 *
07e06b01
YZ
7848 * We achieve this by letting root_task_group's tasks sit
7849 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7850 */
07e06b01 7851 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7852#endif /* CONFIG_FAIR_GROUP_SCHED */
7853
7854 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7855#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7856 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7857 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7858#endif
1da177e4 7859
dd41f596
IM
7860 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7861 rq->cpu_load[j] = 0;
fdf3e95d
VP
7862
7863 rq->last_load_update_tick = jiffies;
7864
1da177e4 7865#ifdef CONFIG_SMP
41c7ce9a 7866 rq->sd = NULL;
57d885fe 7867 rq->rd = NULL;
e51fd5e2 7868 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7869 rq->post_schedule = 0;
1da177e4 7870 rq->active_balance = 0;
dd41f596 7871 rq->next_balance = jiffies;
1da177e4 7872 rq->push_cpu = 0;
0a2966b4 7873 rq->cpu = i;
1f11eb6a 7874 rq->online = 0;
eae0c9df
MG
7875 rq->idle_stamp = 0;
7876 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7877 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7878#ifdef CONFIG_NO_HZ
7879 rq->nohz_balance_kick = 0;
7880 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7881#endif
1da177e4 7882#endif
8f4d37ec 7883 init_rq_hrtick(rq);
1da177e4 7884 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7885 }
7886
2dd73a4f 7887 set_load_weight(&init_task);
b50f60ce 7888
e107be36
AK
7889#ifdef CONFIG_PREEMPT_NOTIFIERS
7890 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7891#endif
7892
c9819f45 7893#ifdef CONFIG_SMP
962cf36c 7894 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7895#endif
7896
b50f60ce 7897#ifdef CONFIG_RT_MUTEXES
1d615482 7898 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7899#endif
7900
1da177e4
LT
7901 /*
7902 * The boot idle thread does lazy MMU switching as well:
7903 */
7904 atomic_inc(&init_mm.mm_count);
7905 enter_lazy_tlb(&init_mm, current);
7906
7907 /*
7908 * Make us the idle thread. Technically, schedule() should not be
7909 * called from this thread, however somewhere below it might be,
7910 * but because we are the idle thread, we just pick up running again
7911 * when this runqueue becomes "idle".
7912 */
7913 init_idle(current, smp_processor_id());
dce48a84
TG
7914
7915 calc_load_update = jiffies + LOAD_FREQ;
7916
dd41f596
IM
7917 /*
7918 * During early bootup we pretend to be a normal task:
7919 */
7920 current->sched_class = &fair_sched_class;
6892b75e 7921
6a7b3dc3 7922 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7923 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7924#ifdef CONFIG_SMP
4cb98839 7925 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 7926#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7927 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7928 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7929 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7930 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7931 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 7932#endif
bdddd296
RR
7933 /* May be allocated at isolcpus cmdline parse time */
7934 if (cpu_isolated_map == NULL)
7935 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7936#endif /* SMP */
6a7b3dc3 7937
6892b75e 7938 scheduler_running = 1;
1da177e4
LT
7939}
7940
7941#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7942static inline int preempt_count_equals(int preempt_offset)
7943{
234da7bc 7944 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7945
4ba8216c 7946 return (nested == preempt_offset);
e4aafea2
FW
7947}
7948
d894837f 7949void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7950{
48f24c4d 7951#ifdef in_atomic
1da177e4
LT
7952 static unsigned long prev_jiffy; /* ratelimiting */
7953
e4aafea2
FW
7954 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7955 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7956 return;
7957 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7958 return;
7959 prev_jiffy = jiffies;
7960
3df0fc5b
PZ
7961 printk(KERN_ERR
7962 "BUG: sleeping function called from invalid context at %s:%d\n",
7963 file, line);
7964 printk(KERN_ERR
7965 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7966 in_atomic(), irqs_disabled(),
7967 current->pid, current->comm);
aef745fc
IM
7968
7969 debug_show_held_locks(current);
7970 if (irqs_disabled())
7971 print_irqtrace_events(current);
7972 dump_stack();
1da177e4
LT
7973#endif
7974}
7975EXPORT_SYMBOL(__might_sleep);
7976#endif
7977
7978#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7979static void normalize_task(struct rq *rq, struct task_struct *p)
7980{
da7a735e
PZ
7981 const struct sched_class *prev_class = p->sched_class;
7982 int old_prio = p->prio;
3a5e4dc1 7983 int on_rq;
3e51f33f 7984
3a5e4dc1
AK
7985 on_rq = p->se.on_rq;
7986 if (on_rq)
7987 deactivate_task(rq, p, 0);
7988 __setscheduler(rq, p, SCHED_NORMAL, 0);
7989 if (on_rq) {
7990 activate_task(rq, p, 0);
7991 resched_task(rq->curr);
7992 }
da7a735e
PZ
7993
7994 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7995}
7996
1da177e4
LT
7997void normalize_rt_tasks(void)
7998{
a0f98a1c 7999 struct task_struct *g, *p;
1da177e4 8000 unsigned long flags;
70b97a7f 8001 struct rq *rq;
1da177e4 8002
4cf5d77a 8003 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8004 do_each_thread(g, p) {
178be793
IM
8005 /*
8006 * Only normalize user tasks:
8007 */
8008 if (!p->mm)
8009 continue;
8010
6cfb0d5d 8011 p->se.exec_start = 0;
6cfb0d5d 8012#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8013 p->se.statistics.wait_start = 0;
8014 p->se.statistics.sleep_start = 0;
8015 p->se.statistics.block_start = 0;
6cfb0d5d 8016#endif
dd41f596
IM
8017
8018 if (!rt_task(p)) {
8019 /*
8020 * Renice negative nice level userspace
8021 * tasks back to 0:
8022 */
8023 if (TASK_NICE(p) < 0 && p->mm)
8024 set_user_nice(p, 0);
1da177e4 8025 continue;
dd41f596 8026 }
1da177e4 8027
1d615482 8028 raw_spin_lock(&p->pi_lock);
b29739f9 8029 rq = __task_rq_lock(p);
1da177e4 8030
178be793 8031 normalize_task(rq, p);
3a5e4dc1 8032
b29739f9 8033 __task_rq_unlock(rq);
1d615482 8034 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8035 } while_each_thread(g, p);
8036
4cf5d77a 8037 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8038}
8039
8040#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8041
67fc4e0c 8042#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8043/*
67fc4e0c 8044 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8045 *
8046 * They can only be called when the whole system has been
8047 * stopped - every CPU needs to be quiescent, and no scheduling
8048 * activity can take place. Using them for anything else would
8049 * be a serious bug, and as a result, they aren't even visible
8050 * under any other configuration.
8051 */
8052
8053/**
8054 * curr_task - return the current task for a given cpu.
8055 * @cpu: the processor in question.
8056 *
8057 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8058 */
36c8b586 8059struct task_struct *curr_task(int cpu)
1df5c10a
LT
8060{
8061 return cpu_curr(cpu);
8062}
8063
67fc4e0c
JW
8064#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8065
8066#ifdef CONFIG_IA64
1df5c10a
LT
8067/**
8068 * set_curr_task - set the current task for a given cpu.
8069 * @cpu: the processor in question.
8070 * @p: the task pointer to set.
8071 *
8072 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8073 * are serviced on a separate stack. It allows the architecture to switch the
8074 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8075 * must be called with all CPU's synchronized, and interrupts disabled, the
8076 * and caller must save the original value of the current task (see
8077 * curr_task() above) and restore that value before reenabling interrupts and
8078 * re-starting the system.
8079 *
8080 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8081 */
36c8b586 8082void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8083{
8084 cpu_curr(cpu) = p;
8085}
8086
8087#endif
29f59db3 8088
bccbe08a
PZ
8089#ifdef CONFIG_FAIR_GROUP_SCHED
8090static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8091{
8092 int i;
8093
8094 for_each_possible_cpu(i) {
8095 if (tg->cfs_rq)
8096 kfree(tg->cfs_rq[i]);
8097 if (tg->se)
8098 kfree(tg->se[i]);
6f505b16
PZ
8099 }
8100
8101 kfree(tg->cfs_rq);
8102 kfree(tg->se);
6f505b16
PZ
8103}
8104
ec7dc8ac
DG
8105static
8106int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8107{
29f59db3 8108 struct cfs_rq *cfs_rq;
eab17229 8109 struct sched_entity *se;
29f59db3
SV
8110 int i;
8111
434d53b0 8112 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8113 if (!tg->cfs_rq)
8114 goto err;
434d53b0 8115 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8116 if (!tg->se)
8117 goto err;
052f1dc7
PZ
8118
8119 tg->shares = NICE_0_LOAD;
29f59db3
SV
8120
8121 for_each_possible_cpu(i) {
eab17229
LZ
8122 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8123 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8124 if (!cfs_rq)
8125 goto err;
8126
eab17229
LZ
8127 se = kzalloc_node(sizeof(struct sched_entity),
8128 GFP_KERNEL, cpu_to_node(i));
29f59db3 8129 if (!se)
dfc12eb2 8130 goto err_free_rq;
29f59db3 8131
3d4b47b4 8132 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8133 }
8134
8135 return 1;
8136
49246274 8137err_free_rq:
dfc12eb2 8138 kfree(cfs_rq);
49246274 8139err:
bccbe08a
PZ
8140 return 0;
8141}
8142
bccbe08a
PZ
8143static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8144{
3d4b47b4
PZ
8145 struct rq *rq = cpu_rq(cpu);
8146 unsigned long flags;
3d4b47b4
PZ
8147
8148 /*
8149 * Only empty task groups can be destroyed; so we can speculatively
8150 * check on_list without danger of it being re-added.
8151 */
8152 if (!tg->cfs_rq[cpu]->on_list)
8153 return;
8154
8155 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8156 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8157 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8158}
6d6bc0ad 8159#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8160static inline void free_fair_sched_group(struct task_group *tg)
8161{
8162}
8163
ec7dc8ac
DG
8164static inline
8165int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8166{
8167 return 1;
8168}
8169
bccbe08a
PZ
8170static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8171{
8172}
6d6bc0ad 8173#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8174
8175#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8176static void free_rt_sched_group(struct task_group *tg)
8177{
8178 int i;
8179
d0b27fa7
PZ
8180 destroy_rt_bandwidth(&tg->rt_bandwidth);
8181
bccbe08a
PZ
8182 for_each_possible_cpu(i) {
8183 if (tg->rt_rq)
8184 kfree(tg->rt_rq[i]);
8185 if (tg->rt_se)
8186 kfree(tg->rt_se[i]);
8187 }
8188
8189 kfree(tg->rt_rq);
8190 kfree(tg->rt_se);
8191}
8192
ec7dc8ac
DG
8193static
8194int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8195{
8196 struct rt_rq *rt_rq;
eab17229 8197 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8198 struct rq *rq;
8199 int i;
8200
434d53b0 8201 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8202 if (!tg->rt_rq)
8203 goto err;
434d53b0 8204 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8205 if (!tg->rt_se)
8206 goto err;
8207
d0b27fa7
PZ
8208 init_rt_bandwidth(&tg->rt_bandwidth,
8209 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8210
8211 for_each_possible_cpu(i) {
8212 rq = cpu_rq(i);
8213
eab17229
LZ
8214 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8215 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8216 if (!rt_rq)
8217 goto err;
29f59db3 8218
eab17229
LZ
8219 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8220 GFP_KERNEL, cpu_to_node(i));
6f505b16 8221 if (!rt_se)
dfc12eb2 8222 goto err_free_rq;
29f59db3 8223
3d4b47b4 8224 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8225 }
8226
bccbe08a
PZ
8227 return 1;
8228
49246274 8229err_free_rq:
dfc12eb2 8230 kfree(rt_rq);
49246274 8231err:
bccbe08a
PZ
8232 return 0;
8233}
6d6bc0ad 8234#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8235static inline void free_rt_sched_group(struct task_group *tg)
8236{
8237}
8238
ec7dc8ac
DG
8239static inline
8240int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8241{
8242 return 1;
8243}
6d6bc0ad 8244#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8245
7c941438 8246#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8247static void free_sched_group(struct task_group *tg)
8248{
8249 free_fair_sched_group(tg);
8250 free_rt_sched_group(tg);
e9aa1dd1 8251 autogroup_free(tg);
bccbe08a
PZ
8252 kfree(tg);
8253}
8254
8255/* allocate runqueue etc for a new task group */
ec7dc8ac 8256struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8257{
8258 struct task_group *tg;
8259 unsigned long flags;
bccbe08a
PZ
8260
8261 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8262 if (!tg)
8263 return ERR_PTR(-ENOMEM);
8264
ec7dc8ac 8265 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8266 goto err;
8267
ec7dc8ac 8268 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8269 goto err;
8270
8ed36996 8271 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8272 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8273
8274 WARN_ON(!parent); /* root should already exist */
8275
8276 tg->parent = parent;
f473aa5e 8277 INIT_LIST_HEAD(&tg->children);
09f2724a 8278 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8279 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8280
9b5b7751 8281 return tg;
29f59db3
SV
8282
8283err:
6f505b16 8284 free_sched_group(tg);
29f59db3
SV
8285 return ERR_PTR(-ENOMEM);
8286}
8287
9b5b7751 8288/* rcu callback to free various structures associated with a task group */
6f505b16 8289static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8290{
29f59db3 8291 /* now it should be safe to free those cfs_rqs */
6f505b16 8292 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8293}
8294
9b5b7751 8295/* Destroy runqueue etc associated with a task group */
4cf86d77 8296void sched_destroy_group(struct task_group *tg)
29f59db3 8297{
8ed36996 8298 unsigned long flags;
9b5b7751 8299 int i;
29f59db3 8300
3d4b47b4
PZ
8301 /* end participation in shares distribution */
8302 for_each_possible_cpu(i)
bccbe08a 8303 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8304
8305 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8306 list_del_rcu(&tg->list);
f473aa5e 8307 list_del_rcu(&tg->siblings);
8ed36996 8308 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8309
9b5b7751 8310 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8311 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8312}
8313
9b5b7751 8314/* change task's runqueue when it moves between groups.
3a252015
IM
8315 * The caller of this function should have put the task in its new group
8316 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8317 * reflect its new group.
9b5b7751
SV
8318 */
8319void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8320{
8321 int on_rq, running;
8322 unsigned long flags;
8323 struct rq *rq;
8324
8325 rq = task_rq_lock(tsk, &flags);
8326
051a1d1a 8327 running = task_current(rq, tsk);
29f59db3
SV
8328 on_rq = tsk->se.on_rq;
8329
0e1f3483 8330 if (on_rq)
29f59db3 8331 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8332 if (unlikely(running))
8333 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8334
810b3817 8335#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8336 if (tsk->sched_class->task_move_group)
8337 tsk->sched_class->task_move_group(tsk, on_rq);
8338 else
810b3817 8339#endif
b2b5ce02 8340 set_task_rq(tsk, task_cpu(tsk));
810b3817 8341
0e1f3483
HS
8342 if (unlikely(running))
8343 tsk->sched_class->set_curr_task(rq);
8344 if (on_rq)
371fd7e7 8345 enqueue_task(rq, tsk, 0);
29f59db3 8346
29f59db3
SV
8347 task_rq_unlock(rq, &flags);
8348}
7c941438 8349#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8350
052f1dc7 8351#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8352static DEFINE_MUTEX(shares_mutex);
8353
4cf86d77 8354int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8355{
8356 int i;
8ed36996 8357 unsigned long flags;
c61935fd 8358
ec7dc8ac
DG
8359 /*
8360 * We can't change the weight of the root cgroup.
8361 */
8362 if (!tg->se[0])
8363 return -EINVAL;
8364
18d95a28
PZ
8365 if (shares < MIN_SHARES)
8366 shares = MIN_SHARES;
cb4ad1ff
MX
8367 else if (shares > MAX_SHARES)
8368 shares = MAX_SHARES;
62fb1851 8369
8ed36996 8370 mutex_lock(&shares_mutex);
9b5b7751 8371 if (tg->shares == shares)
5cb350ba 8372 goto done;
29f59db3 8373
9b5b7751 8374 tg->shares = shares;
c09595f6 8375 for_each_possible_cpu(i) {
9437178f
PT
8376 struct rq *rq = cpu_rq(i);
8377 struct sched_entity *se;
8378
8379 se = tg->se[i];
8380 /* Propagate contribution to hierarchy */
8381 raw_spin_lock_irqsave(&rq->lock, flags);
8382 for_each_sched_entity(se)
6d5ab293 8383 update_cfs_shares(group_cfs_rq(se));
9437178f 8384 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8385 }
29f59db3 8386
5cb350ba 8387done:
8ed36996 8388 mutex_unlock(&shares_mutex);
9b5b7751 8389 return 0;
29f59db3
SV
8390}
8391
5cb350ba
DG
8392unsigned long sched_group_shares(struct task_group *tg)
8393{
8394 return tg->shares;
8395}
052f1dc7 8396#endif
5cb350ba 8397
052f1dc7 8398#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8399/*
9f0c1e56 8400 * Ensure that the real time constraints are schedulable.
6f505b16 8401 */
9f0c1e56
PZ
8402static DEFINE_MUTEX(rt_constraints_mutex);
8403
8404static unsigned long to_ratio(u64 period, u64 runtime)
8405{
8406 if (runtime == RUNTIME_INF)
9a7e0b18 8407 return 1ULL << 20;
9f0c1e56 8408
9a7e0b18 8409 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8410}
8411
9a7e0b18
PZ
8412/* Must be called with tasklist_lock held */
8413static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8414{
9a7e0b18 8415 struct task_struct *g, *p;
b40b2e8e 8416
9a7e0b18
PZ
8417 do_each_thread(g, p) {
8418 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8419 return 1;
8420 } while_each_thread(g, p);
b40b2e8e 8421
9a7e0b18
PZ
8422 return 0;
8423}
b40b2e8e 8424
9a7e0b18
PZ
8425struct rt_schedulable_data {
8426 struct task_group *tg;
8427 u64 rt_period;
8428 u64 rt_runtime;
8429};
b40b2e8e 8430
9a7e0b18
PZ
8431static int tg_schedulable(struct task_group *tg, void *data)
8432{
8433 struct rt_schedulable_data *d = data;
8434 struct task_group *child;
8435 unsigned long total, sum = 0;
8436 u64 period, runtime;
b40b2e8e 8437
9a7e0b18
PZ
8438 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8439 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8440
9a7e0b18
PZ
8441 if (tg == d->tg) {
8442 period = d->rt_period;
8443 runtime = d->rt_runtime;
b40b2e8e 8444 }
b40b2e8e 8445
4653f803
PZ
8446 /*
8447 * Cannot have more runtime than the period.
8448 */
8449 if (runtime > period && runtime != RUNTIME_INF)
8450 return -EINVAL;
6f505b16 8451
4653f803
PZ
8452 /*
8453 * Ensure we don't starve existing RT tasks.
8454 */
9a7e0b18
PZ
8455 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8456 return -EBUSY;
6f505b16 8457
9a7e0b18 8458 total = to_ratio(period, runtime);
6f505b16 8459
4653f803
PZ
8460 /*
8461 * Nobody can have more than the global setting allows.
8462 */
8463 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8464 return -EINVAL;
6f505b16 8465
4653f803
PZ
8466 /*
8467 * The sum of our children's runtime should not exceed our own.
8468 */
9a7e0b18
PZ
8469 list_for_each_entry_rcu(child, &tg->children, siblings) {
8470 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8471 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8472
9a7e0b18
PZ
8473 if (child == d->tg) {
8474 period = d->rt_period;
8475 runtime = d->rt_runtime;
8476 }
6f505b16 8477
9a7e0b18 8478 sum += to_ratio(period, runtime);
9f0c1e56 8479 }
6f505b16 8480
9a7e0b18
PZ
8481 if (sum > total)
8482 return -EINVAL;
8483
8484 return 0;
6f505b16
PZ
8485}
8486
9a7e0b18 8487static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8488{
9a7e0b18
PZ
8489 struct rt_schedulable_data data = {
8490 .tg = tg,
8491 .rt_period = period,
8492 .rt_runtime = runtime,
8493 };
8494
8495 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8496}
8497
d0b27fa7
PZ
8498static int tg_set_bandwidth(struct task_group *tg,
8499 u64 rt_period, u64 rt_runtime)
6f505b16 8500{
ac086bc2 8501 int i, err = 0;
9f0c1e56 8502
9f0c1e56 8503 mutex_lock(&rt_constraints_mutex);
521f1a24 8504 read_lock(&tasklist_lock);
9a7e0b18
PZ
8505 err = __rt_schedulable(tg, rt_period, rt_runtime);
8506 if (err)
9f0c1e56 8507 goto unlock;
ac086bc2 8508
0986b11b 8509 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8510 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8511 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8512
8513 for_each_possible_cpu(i) {
8514 struct rt_rq *rt_rq = tg->rt_rq[i];
8515
0986b11b 8516 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8517 rt_rq->rt_runtime = rt_runtime;
0986b11b 8518 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8519 }
0986b11b 8520 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8521unlock:
521f1a24 8522 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8523 mutex_unlock(&rt_constraints_mutex);
8524
8525 return err;
6f505b16
PZ
8526}
8527
d0b27fa7
PZ
8528int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8529{
8530 u64 rt_runtime, rt_period;
8531
8532 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8533 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8534 if (rt_runtime_us < 0)
8535 rt_runtime = RUNTIME_INF;
8536
8537 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8538}
8539
9f0c1e56
PZ
8540long sched_group_rt_runtime(struct task_group *tg)
8541{
8542 u64 rt_runtime_us;
8543
d0b27fa7 8544 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8545 return -1;
8546
d0b27fa7 8547 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8548 do_div(rt_runtime_us, NSEC_PER_USEC);
8549 return rt_runtime_us;
8550}
d0b27fa7
PZ
8551
8552int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8553{
8554 u64 rt_runtime, rt_period;
8555
8556 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8557 rt_runtime = tg->rt_bandwidth.rt_runtime;
8558
619b0488
R
8559 if (rt_period == 0)
8560 return -EINVAL;
8561
d0b27fa7
PZ
8562 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8563}
8564
8565long sched_group_rt_period(struct task_group *tg)
8566{
8567 u64 rt_period_us;
8568
8569 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8570 do_div(rt_period_us, NSEC_PER_USEC);
8571 return rt_period_us;
8572}
8573
8574static int sched_rt_global_constraints(void)
8575{
4653f803 8576 u64 runtime, period;
d0b27fa7
PZ
8577 int ret = 0;
8578
ec5d4989
HS
8579 if (sysctl_sched_rt_period <= 0)
8580 return -EINVAL;
8581
4653f803
PZ
8582 runtime = global_rt_runtime();
8583 period = global_rt_period();
8584
8585 /*
8586 * Sanity check on the sysctl variables.
8587 */
8588 if (runtime > period && runtime != RUNTIME_INF)
8589 return -EINVAL;
10b612f4 8590
d0b27fa7 8591 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8592 read_lock(&tasklist_lock);
4653f803 8593 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8594 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8595 mutex_unlock(&rt_constraints_mutex);
8596
8597 return ret;
8598}
54e99124
DG
8599
8600int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8601{
8602 /* Don't accept realtime tasks when there is no way for them to run */
8603 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8604 return 0;
8605
8606 return 1;
8607}
8608
6d6bc0ad 8609#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8610static int sched_rt_global_constraints(void)
8611{
ac086bc2
PZ
8612 unsigned long flags;
8613 int i;
8614
ec5d4989
HS
8615 if (sysctl_sched_rt_period <= 0)
8616 return -EINVAL;
8617
60aa605d
PZ
8618 /*
8619 * There's always some RT tasks in the root group
8620 * -- migration, kstopmachine etc..
8621 */
8622 if (sysctl_sched_rt_runtime == 0)
8623 return -EBUSY;
8624
0986b11b 8625 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8626 for_each_possible_cpu(i) {
8627 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8628
0986b11b 8629 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8630 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8631 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8632 }
0986b11b 8633 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8634
d0b27fa7
PZ
8635 return 0;
8636}
6d6bc0ad 8637#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8638
8639int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8640 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8641 loff_t *ppos)
8642{
8643 int ret;
8644 int old_period, old_runtime;
8645 static DEFINE_MUTEX(mutex);
8646
8647 mutex_lock(&mutex);
8648 old_period = sysctl_sched_rt_period;
8649 old_runtime = sysctl_sched_rt_runtime;
8650
8d65af78 8651 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8652
8653 if (!ret && write) {
8654 ret = sched_rt_global_constraints();
8655 if (ret) {
8656 sysctl_sched_rt_period = old_period;
8657 sysctl_sched_rt_runtime = old_runtime;
8658 } else {
8659 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8660 def_rt_bandwidth.rt_period =
8661 ns_to_ktime(global_rt_period());
8662 }
8663 }
8664 mutex_unlock(&mutex);
8665
8666 return ret;
8667}
68318b8e 8668
052f1dc7 8669#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8670
8671/* return corresponding task_group object of a cgroup */
2b01dfe3 8672static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8673{
2b01dfe3
PM
8674 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8675 struct task_group, css);
68318b8e
SV
8676}
8677
8678static struct cgroup_subsys_state *
2b01dfe3 8679cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8680{
ec7dc8ac 8681 struct task_group *tg, *parent;
68318b8e 8682
2b01dfe3 8683 if (!cgrp->parent) {
68318b8e 8684 /* This is early initialization for the top cgroup */
07e06b01 8685 return &root_task_group.css;
68318b8e
SV
8686 }
8687
ec7dc8ac
DG
8688 parent = cgroup_tg(cgrp->parent);
8689 tg = sched_create_group(parent);
68318b8e
SV
8690 if (IS_ERR(tg))
8691 return ERR_PTR(-ENOMEM);
8692
68318b8e
SV
8693 return &tg->css;
8694}
8695
41a2d6cf
IM
8696static void
8697cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8698{
2b01dfe3 8699 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8700
8701 sched_destroy_group(tg);
8702}
8703
41a2d6cf 8704static int
be367d09 8705cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8706{
b68aa230 8707#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8708 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8709 return -EINVAL;
8710#else
68318b8e
SV
8711 /* We don't support RT-tasks being in separate groups */
8712 if (tsk->sched_class != &fair_sched_class)
8713 return -EINVAL;
b68aa230 8714#endif
be367d09
BB
8715 return 0;
8716}
68318b8e 8717
be367d09
BB
8718static int
8719cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8720 struct task_struct *tsk, bool threadgroup)
8721{
8722 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8723 if (retval)
8724 return retval;
8725 if (threadgroup) {
8726 struct task_struct *c;
8727 rcu_read_lock();
8728 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8729 retval = cpu_cgroup_can_attach_task(cgrp, c);
8730 if (retval) {
8731 rcu_read_unlock();
8732 return retval;
8733 }
8734 }
8735 rcu_read_unlock();
8736 }
68318b8e
SV
8737 return 0;
8738}
8739
8740static void
2b01dfe3 8741cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8742 struct cgroup *old_cont, struct task_struct *tsk,
8743 bool threadgroup)
68318b8e
SV
8744{
8745 sched_move_task(tsk);
be367d09
BB
8746 if (threadgroup) {
8747 struct task_struct *c;
8748 rcu_read_lock();
8749 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8750 sched_move_task(c);
8751 }
8752 rcu_read_unlock();
8753 }
68318b8e
SV
8754}
8755
068c5cc5 8756static void
d41d5a01
PZ
8757cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8758 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
8759{
8760 /*
8761 * cgroup_exit() is called in the copy_process() failure path.
8762 * Ignore this case since the task hasn't ran yet, this avoids
8763 * trying to poke a half freed task state from generic code.
8764 */
8765 if (!(task->flags & PF_EXITING))
8766 return;
8767
8768 sched_move_task(task);
8769}
8770
052f1dc7 8771#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8772static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8773 u64 shareval)
68318b8e 8774{
2b01dfe3 8775 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8776}
8777
f4c753b7 8778static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8779{
2b01dfe3 8780 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8781
8782 return (u64) tg->shares;
8783}
6d6bc0ad 8784#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8785
052f1dc7 8786#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8787static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8788 s64 val)
6f505b16 8789{
06ecb27c 8790 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8791}
8792
06ecb27c 8793static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8794{
06ecb27c 8795 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8796}
d0b27fa7
PZ
8797
8798static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8799 u64 rt_period_us)
8800{
8801 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8802}
8803
8804static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8805{
8806 return sched_group_rt_period(cgroup_tg(cgrp));
8807}
6d6bc0ad 8808#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8809
fe5c7cc2 8810static struct cftype cpu_files[] = {
052f1dc7 8811#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8812 {
8813 .name = "shares",
f4c753b7
PM
8814 .read_u64 = cpu_shares_read_u64,
8815 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8816 },
052f1dc7
PZ
8817#endif
8818#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8819 {
9f0c1e56 8820 .name = "rt_runtime_us",
06ecb27c
PM
8821 .read_s64 = cpu_rt_runtime_read,
8822 .write_s64 = cpu_rt_runtime_write,
6f505b16 8823 },
d0b27fa7
PZ
8824 {
8825 .name = "rt_period_us",
f4c753b7
PM
8826 .read_u64 = cpu_rt_period_read_uint,
8827 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8828 },
052f1dc7 8829#endif
68318b8e
SV
8830};
8831
8832static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8833{
fe5c7cc2 8834 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8835}
8836
8837struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8838 .name = "cpu",
8839 .create = cpu_cgroup_create,
8840 .destroy = cpu_cgroup_destroy,
8841 .can_attach = cpu_cgroup_can_attach,
8842 .attach = cpu_cgroup_attach,
068c5cc5 8843 .exit = cpu_cgroup_exit,
38605cae
IM
8844 .populate = cpu_cgroup_populate,
8845 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8846 .early_init = 1,
8847};
8848
052f1dc7 8849#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8850
8851#ifdef CONFIG_CGROUP_CPUACCT
8852
8853/*
8854 * CPU accounting code for task groups.
8855 *
8856 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8857 * (balbir@in.ibm.com).
8858 */
8859
934352f2 8860/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8861struct cpuacct {
8862 struct cgroup_subsys_state css;
8863 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8864 u64 __percpu *cpuusage;
ef12fefa 8865 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8866 struct cpuacct *parent;
d842de87
SV
8867};
8868
8869struct cgroup_subsys cpuacct_subsys;
8870
8871/* return cpu accounting group corresponding to this container */
32cd756a 8872static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8873{
32cd756a 8874 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8875 struct cpuacct, css);
8876}
8877
8878/* return cpu accounting group to which this task belongs */
8879static inline struct cpuacct *task_ca(struct task_struct *tsk)
8880{
8881 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8882 struct cpuacct, css);
8883}
8884
8885/* create a new cpu accounting group */
8886static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8887 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8888{
8889 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8890 int i;
d842de87
SV
8891
8892 if (!ca)
ef12fefa 8893 goto out;
d842de87
SV
8894
8895 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8896 if (!ca->cpuusage)
8897 goto out_free_ca;
8898
8899 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8900 if (percpu_counter_init(&ca->cpustat[i], 0))
8901 goto out_free_counters;
d842de87 8902
934352f2
BR
8903 if (cgrp->parent)
8904 ca->parent = cgroup_ca(cgrp->parent);
8905
d842de87 8906 return &ca->css;
ef12fefa
BR
8907
8908out_free_counters:
8909 while (--i >= 0)
8910 percpu_counter_destroy(&ca->cpustat[i]);
8911 free_percpu(ca->cpuusage);
8912out_free_ca:
8913 kfree(ca);
8914out:
8915 return ERR_PTR(-ENOMEM);
d842de87
SV
8916}
8917
8918/* destroy an existing cpu accounting group */
41a2d6cf 8919static void
32cd756a 8920cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8921{
32cd756a 8922 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8923 int i;
d842de87 8924
ef12fefa
BR
8925 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8926 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8927 free_percpu(ca->cpuusage);
8928 kfree(ca);
8929}
8930
720f5498
KC
8931static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8932{
b36128c8 8933 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8934 u64 data;
8935
8936#ifndef CONFIG_64BIT
8937 /*
8938 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8939 */
05fa785c 8940 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8941 data = *cpuusage;
05fa785c 8942 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8943#else
8944 data = *cpuusage;
8945#endif
8946
8947 return data;
8948}
8949
8950static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8951{
b36128c8 8952 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8953
8954#ifndef CONFIG_64BIT
8955 /*
8956 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8957 */
05fa785c 8958 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8959 *cpuusage = val;
05fa785c 8960 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8961#else
8962 *cpuusage = val;
8963#endif
8964}
8965
d842de87 8966/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8967static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8968{
32cd756a 8969 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8970 u64 totalcpuusage = 0;
8971 int i;
8972
720f5498
KC
8973 for_each_present_cpu(i)
8974 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8975
8976 return totalcpuusage;
8977}
8978
0297b803
DG
8979static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8980 u64 reset)
8981{
8982 struct cpuacct *ca = cgroup_ca(cgrp);
8983 int err = 0;
8984 int i;
8985
8986 if (reset) {
8987 err = -EINVAL;
8988 goto out;
8989 }
8990
720f5498
KC
8991 for_each_present_cpu(i)
8992 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8993
0297b803
DG
8994out:
8995 return err;
8996}
8997
e9515c3c
KC
8998static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8999 struct seq_file *m)
9000{
9001 struct cpuacct *ca = cgroup_ca(cgroup);
9002 u64 percpu;
9003 int i;
9004
9005 for_each_present_cpu(i) {
9006 percpu = cpuacct_cpuusage_read(ca, i);
9007 seq_printf(m, "%llu ", (unsigned long long) percpu);
9008 }
9009 seq_printf(m, "\n");
9010 return 0;
9011}
9012
ef12fefa
BR
9013static const char *cpuacct_stat_desc[] = {
9014 [CPUACCT_STAT_USER] = "user",
9015 [CPUACCT_STAT_SYSTEM] = "system",
9016};
9017
9018static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9019 struct cgroup_map_cb *cb)
9020{
9021 struct cpuacct *ca = cgroup_ca(cgrp);
9022 int i;
9023
9024 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9025 s64 val = percpu_counter_read(&ca->cpustat[i]);
9026 val = cputime64_to_clock_t(val);
9027 cb->fill(cb, cpuacct_stat_desc[i], val);
9028 }
9029 return 0;
9030}
9031
d842de87
SV
9032static struct cftype files[] = {
9033 {
9034 .name = "usage",
f4c753b7
PM
9035 .read_u64 = cpuusage_read,
9036 .write_u64 = cpuusage_write,
d842de87 9037 },
e9515c3c
KC
9038 {
9039 .name = "usage_percpu",
9040 .read_seq_string = cpuacct_percpu_seq_read,
9041 },
ef12fefa
BR
9042 {
9043 .name = "stat",
9044 .read_map = cpuacct_stats_show,
9045 },
d842de87
SV
9046};
9047
32cd756a 9048static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9049{
32cd756a 9050 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9051}
9052
9053/*
9054 * charge this task's execution time to its accounting group.
9055 *
9056 * called with rq->lock held.
9057 */
9058static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9059{
9060 struct cpuacct *ca;
934352f2 9061 int cpu;
d842de87 9062
c40c6f85 9063 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9064 return;
9065
934352f2 9066 cpu = task_cpu(tsk);
a18b83b7
BR
9067
9068 rcu_read_lock();
9069
d842de87 9070 ca = task_ca(tsk);
d842de87 9071
934352f2 9072 for (; ca; ca = ca->parent) {
b36128c8 9073 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9074 *cpuusage += cputime;
9075 }
a18b83b7
BR
9076
9077 rcu_read_unlock();
d842de87
SV
9078}
9079
fa535a77
AB
9080/*
9081 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9082 * in cputime_t units. As a result, cpuacct_update_stats calls
9083 * percpu_counter_add with values large enough to always overflow the
9084 * per cpu batch limit causing bad SMP scalability.
9085 *
9086 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9087 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9088 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9089 */
9090#ifdef CONFIG_SMP
9091#define CPUACCT_BATCH \
9092 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9093#else
9094#define CPUACCT_BATCH 0
9095#endif
9096
ef12fefa
BR
9097/*
9098 * Charge the system/user time to the task's accounting group.
9099 */
9100static void cpuacct_update_stats(struct task_struct *tsk,
9101 enum cpuacct_stat_index idx, cputime_t val)
9102{
9103 struct cpuacct *ca;
fa535a77 9104 int batch = CPUACCT_BATCH;
ef12fefa
BR
9105
9106 if (unlikely(!cpuacct_subsys.active))
9107 return;
9108
9109 rcu_read_lock();
9110 ca = task_ca(tsk);
9111
9112 do {
fa535a77 9113 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9114 ca = ca->parent;
9115 } while (ca);
9116 rcu_read_unlock();
9117}
9118
d842de87
SV
9119struct cgroup_subsys cpuacct_subsys = {
9120 .name = "cpuacct",
9121 .create = cpuacct_create,
9122 .destroy = cpuacct_destroy,
9123 .populate = cpuacct_populate,
9124 .subsys_id = cpuacct_subsys_id,
9125};
9126#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9127