]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched.c
sched: reorder update_cpu_load(rq) with the ->task_tick() call
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
1da177e4 64
5517d86b 65#include <asm/tlb.h>
1da177e4 66
b035b6de
AD
67/*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72unsigned long long __attribute__((weak)) sched_clock(void)
73{
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75}
76
1da177e4
LT
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
6aa645ea
IM
101#define NICE_0_LOAD SCHED_LOAD_SCALE
102#define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
1da177e4
LT
104/*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
5517d86b
ED
114#ifdef CONFIG_SMP
115/*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120{
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122}
123
124/*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129{
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132}
133#endif
134
634fa8c9
IM
135#define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
91fcdd4e 138/*
634fa8c9 139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 140 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 141 */
634fa8c9 142static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 143{
634fa8c9
IM
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
151}
152
e05606d3
IM
153static inline int rt_policy(int policy)
154{
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158}
159
160static inline int task_has_rt_policy(struct task_struct *p)
161{
162 return rt_policy(p->policy);
163}
164
1da177e4 165/*
6aa645ea 166 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 167 */
6aa645ea
IM
168struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171};
172
173struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177};
178
179/* CFS-related fields in a runqueue */
180struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193#ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208#endif
209};
1da177e4 210
6aa645ea
IM
211/* Real-Time classes' related field in a runqueue: */
212struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216};
217
1da177e4
LT
218/*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
70b97a7f 225struct rq {
6aa645ea 226 spinlock_t lock; /* runqueue lock */
1da177e4
LT
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
6aa645ea
IM
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 235 unsigned char idle_at_tick;
46cb4b7c
SS
236#ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238#endif
6aa645ea
IM
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 246#endif
6aa645ea 247 struct rt_rq rt;
1da177e4
LT
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
36c8b586 257 struct task_struct *curr, *idle;
c9819f45 258 unsigned long next_balance;
1da177e4 259 struct mm_struct *prev_mm;
6aa645ea 260
6aa645ea
IM
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
1da177e4
LT
267 atomic_t nr_iowait;
268
269#ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
0a2966b4 275 int cpu; /* cpu of this runqueue */
1da177e4 276
36c8b586 277 struct task_struct *migration_thread;
1da177e4
LT
278 struct list_head migration_queue;
279#endif
280
281#ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299#endif
fcb99371 300 struct lock_class_key rq_lock_key;
1da177e4
LT
301};
302
f34e3b61 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 304static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 305
dd41f596
IM
306static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307{
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309}
310
0a2966b4
CL
311static inline int cpu_of(struct rq *rq)
312{
313#ifdef CONFIG_SMP
314 return rq->cpu;
315#else
316 return 0;
317#endif
318}
319
20d315d4
IM
320/*
321 * Per-runqueue clock, as finegrained as the platform can give us:
322 */
323static unsigned long long __rq_clock(struct rq *rq)
324{
325 u64 prev_raw = rq->prev_clock_raw;
326 u64 now = sched_clock();
327 s64 delta = now - prev_raw;
328 u64 clock = rq->clock;
329
330 /*
331 * Protect against sched_clock() occasionally going backwards:
332 */
333 if (unlikely(delta < 0)) {
334 clock++;
335 rq->clock_warps++;
336 } else {
337 /*
338 * Catch too large forward jumps too:
339 */
340 if (unlikely(delta > 2*TICK_NSEC)) {
341 clock++;
342 rq->clock_overflows++;
343 } else {
344 if (unlikely(delta > rq->clock_max_delta))
345 rq->clock_max_delta = delta;
346 clock += delta;
347 }
348 }
349
350 rq->prev_clock_raw = now;
351 rq->clock = clock;
352
353 return clock;
354}
355
356static inline unsigned long long rq_clock(struct rq *rq)
357{
358 int this_cpu = smp_processor_id();
359
360 if (this_cpu == cpu_of(rq))
361 return __rq_clock(rq);
362
363 return rq->clock;
364}
365
674311d5
NP
366/*
367 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 368 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
369 *
370 * The domain tree of any CPU may only be accessed from within
371 * preempt-disabled sections.
372 */
48f24c4d
IM
373#define for_each_domain(cpu, __sd) \
374 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
375
376#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
377#define this_rq() (&__get_cpu_var(runqueues))
378#define task_rq(p) cpu_rq(task_cpu(p))
379#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
380
e436d800
IM
381/*
382 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
383 * clock constructed from sched_clock():
384 */
385unsigned long long cpu_clock(int cpu)
386{
e436d800
IM
387 unsigned long long now;
388 unsigned long flags;
389
2cd4d0ea
IM
390 local_irq_save(flags);
391 now = rq_clock(cpu_rq(cpu));
392 local_irq_restore(flags);
e436d800
IM
393
394 return now;
395}
396
138a8aeb
IM
397#ifdef CONFIG_FAIR_GROUP_SCHED
398/* Change a task's ->cfs_rq if it moves across CPUs */
399static inline void set_task_cfs_rq(struct task_struct *p)
400{
401 p->se.cfs_rq = &task_rq(p)->cfs;
402}
403#else
404static inline void set_task_cfs_rq(struct task_struct *p)
405{
406}
407#endif
408
1da177e4 409#ifndef prepare_arch_switch
4866cde0
NP
410# define prepare_arch_switch(next) do { } while (0)
411#endif
412#ifndef finish_arch_switch
413# define finish_arch_switch(prev) do { } while (0)
414#endif
415
416#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 417static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
418{
419 return rq->curr == p;
420}
421
70b97a7f 422static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
423{
424}
425
70b97a7f 426static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 427{
da04c035
IM
428#ifdef CONFIG_DEBUG_SPINLOCK
429 /* this is a valid case when another task releases the spinlock */
430 rq->lock.owner = current;
431#endif
8a25d5de
IM
432 /*
433 * If we are tracking spinlock dependencies then we have to
434 * fix up the runqueue lock - which gets 'carried over' from
435 * prev into current:
436 */
437 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
438
4866cde0
NP
439 spin_unlock_irq(&rq->lock);
440}
441
442#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 443static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
444{
445#ifdef CONFIG_SMP
446 return p->oncpu;
447#else
448 return rq->curr == p;
449#endif
450}
451
70b97a7f 452static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
453{
454#ifdef CONFIG_SMP
455 /*
456 * We can optimise this out completely for !SMP, because the
457 * SMP rebalancing from interrupt is the only thing that cares
458 * here.
459 */
460 next->oncpu = 1;
461#endif
462#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
463 spin_unlock_irq(&rq->lock);
464#else
465 spin_unlock(&rq->lock);
466#endif
467}
468
70b97a7f 469static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
470{
471#ifdef CONFIG_SMP
472 /*
473 * After ->oncpu is cleared, the task can be moved to a different CPU.
474 * We must ensure this doesn't happen until the switch is completely
475 * finished.
476 */
477 smp_wmb();
478 prev->oncpu = 0;
479#endif
480#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
481 local_irq_enable();
1da177e4 482#endif
4866cde0
NP
483}
484#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 485
b29739f9
IM
486/*
487 * __task_rq_lock - lock the runqueue a given task resides on.
488 * Must be called interrupts disabled.
489 */
70b97a7f 490static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
491 __acquires(rq->lock)
492{
70b97a7f 493 struct rq *rq;
b29739f9
IM
494
495repeat_lock_task:
496 rq = task_rq(p);
497 spin_lock(&rq->lock);
498 if (unlikely(rq != task_rq(p))) {
499 spin_unlock(&rq->lock);
500 goto repeat_lock_task;
501 }
502 return rq;
503}
504
1da177e4
LT
505/*
506 * task_rq_lock - lock the runqueue a given task resides on and disable
507 * interrupts. Note the ordering: we can safely lookup the task_rq without
508 * explicitly disabling preemption.
509 */
70b97a7f 510static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
511 __acquires(rq->lock)
512{
70b97a7f 513 struct rq *rq;
1da177e4
LT
514
515repeat_lock_task:
516 local_irq_save(*flags);
517 rq = task_rq(p);
518 spin_lock(&rq->lock);
519 if (unlikely(rq != task_rq(p))) {
520 spin_unlock_irqrestore(&rq->lock, *flags);
521 goto repeat_lock_task;
522 }
523 return rq;
524}
525
70b97a7f 526static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
527 __releases(rq->lock)
528{
529 spin_unlock(&rq->lock);
530}
531
70b97a7f 532static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
533 __releases(rq->lock)
534{
535 spin_unlock_irqrestore(&rq->lock, *flags);
536}
537
1da177e4 538/*
cc2a73b5 539 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 540 */
70b97a7f 541static inline struct rq *this_rq_lock(void)
1da177e4
LT
542 __acquires(rq->lock)
543{
70b97a7f 544 struct rq *rq;
1da177e4
LT
545
546 local_irq_disable();
547 rq = this_rq();
548 spin_lock(&rq->lock);
549
550 return rq;
551}
552
1b9f19c2
IM
553/*
554 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
555 */
556void sched_clock_unstable_event(void)
557{
558 unsigned long flags;
559 struct rq *rq;
560
561 rq = task_rq_lock(current, &flags);
562 rq->prev_clock_raw = sched_clock();
563 rq->clock_unstable_events++;
564 task_rq_unlock(rq, &flags);
565}
566
c24d20db
IM
567/*
568 * resched_task - mark a task 'to be rescheduled now'.
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
574#ifdef CONFIG_SMP
575
576#ifndef tsk_is_polling
577#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
578#endif
579
580static void resched_task(struct task_struct *p)
581{
582 int cpu;
583
584 assert_spin_locked(&task_rq(p)->lock);
585
586 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
587 return;
588
589 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
590
591 cpu = task_cpu(p);
592 if (cpu == smp_processor_id())
593 return;
594
595 /* NEED_RESCHED must be visible before we test polling */
596 smp_mb();
597 if (!tsk_is_polling(p))
598 smp_send_reschedule(cpu);
599}
600
601static void resched_cpu(int cpu)
602{
603 struct rq *rq = cpu_rq(cpu);
604 unsigned long flags;
605
606 if (!spin_trylock_irqsave(&rq->lock, flags))
607 return;
608 resched_task(cpu_curr(cpu));
609 spin_unlock_irqrestore(&rq->lock, flags);
610}
611#else
612static inline void resched_task(struct task_struct *p)
613{
614 assert_spin_locked(&task_rq(p)->lock);
615 set_tsk_need_resched(p);
616}
617#endif
618
45bf76df
IM
619static u64 div64_likely32(u64 divident, unsigned long divisor)
620{
621#if BITS_PER_LONG == 32
622 if (likely(divident <= 0xffffffffULL))
623 return (u32)divident / divisor;
624 do_div(divident, divisor);
625
626 return divident;
627#else
628 return divident / divisor;
629#endif
630}
631
632#if BITS_PER_LONG == 32
633# define WMULT_CONST (~0UL)
634#else
635# define WMULT_CONST (1UL << 32)
636#endif
637
638#define WMULT_SHIFT 32
639
cb1c4fc9 640static unsigned long
45bf76df
IM
641calc_delta_mine(unsigned long delta_exec, unsigned long weight,
642 struct load_weight *lw)
643{
644 u64 tmp;
645
646 if (unlikely(!lw->inv_weight))
647 lw->inv_weight = WMULT_CONST / lw->weight;
648
649 tmp = (u64)delta_exec * weight;
650 /*
651 * Check whether we'd overflow the 64-bit multiplication:
652 */
653 if (unlikely(tmp > WMULT_CONST)) {
654 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
655 >> (WMULT_SHIFT/2);
656 } else {
657 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
658 }
659
ecf691da 660 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
661}
662
663static inline unsigned long
664calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
665{
666 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
667}
668
669static void update_load_add(struct load_weight *lw, unsigned long inc)
670{
671 lw->weight += inc;
672 lw->inv_weight = 0;
673}
674
675static void update_load_sub(struct load_weight *lw, unsigned long dec)
676{
677 lw->weight -= dec;
678 lw->inv_weight = 0;
679}
680
2dd73a4f
PW
681/*
682 * To aid in avoiding the subversion of "niceness" due to uneven distribution
683 * of tasks with abnormal "nice" values across CPUs the contribution that
684 * each task makes to its run queue's load is weighted according to its
685 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
686 * scaled version of the new time slice allocation that they receive on time
687 * slice expiry etc.
688 */
689
dd41f596
IM
690#define WEIGHT_IDLEPRIO 2
691#define WMULT_IDLEPRIO (1 << 31)
692
693/*
694 * Nice levels are multiplicative, with a gentle 10% change for every
695 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
696 * nice 1, it will get ~10% less CPU time than another CPU-bound task
697 * that remained on nice 0.
698 *
699 * The "10% effect" is relative and cumulative: from _any_ nice level,
700 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
701 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
702 * If a task goes up by ~10% and another task goes down by ~10% then
703 * the relative distance between them is ~25%.)
dd41f596
IM
704 */
705static const int prio_to_weight[40] = {
706/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
707/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
708/* 0 */ NICE_0_LOAD /* 1024 */,
709/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
710/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
711};
712
5714d2de
IM
713/*
714 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
715 *
716 * In cases where the weight does not change often, we can use the
717 * precalculated inverse to speed up arithmetics by turning divisions
718 * into multiplications:
719 */
dd41f596 720static const u32 prio_to_wmult[40] = {
e4af30be
IM
721/* -20 */ 48356, 60446, 75558, 94446, 118058,
722/* -15 */ 147573, 184467, 230589, 288233, 360285,
723/* -10 */ 450347, 562979, 703746, 879575, 1099582,
724/* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
725/* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
726/* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
727/* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
728/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 729};
2dd73a4f 730
dd41f596
IM
731static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
732
733/*
734 * runqueue iterator, to support SMP load-balancing between different
735 * scheduling classes, without having to expose their internal data
736 * structures to the load-balancing proper:
737 */
738struct rq_iterator {
739 void *arg;
740 struct task_struct *(*start)(void *);
741 struct task_struct *(*next)(void *);
742};
743
744static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
745 unsigned long max_nr_move, unsigned long max_load_move,
746 struct sched_domain *sd, enum cpu_idle_type idle,
747 int *all_pinned, unsigned long *load_moved,
748 int this_best_prio, int best_prio, int best_prio_seen,
749 struct rq_iterator *iterator);
750
751#include "sched_stats.h"
752#include "sched_rt.c"
753#include "sched_fair.c"
754#include "sched_idletask.c"
755#ifdef CONFIG_SCHED_DEBUG
756# include "sched_debug.c"
757#endif
758
759#define sched_class_highest (&rt_sched_class)
760
9c217245
IM
761static void __update_curr_load(struct rq *rq, struct load_stat *ls)
762{
763 if (rq->curr != rq->idle && ls->load.weight) {
764 ls->delta_exec += ls->delta_stat;
765 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
766 ls->delta_stat = 0;
767 }
768}
769
770/*
771 * Update delta_exec, delta_fair fields for rq.
772 *
773 * delta_fair clock advances at a rate inversely proportional to
774 * total load (rq->ls.load.weight) on the runqueue, while
775 * delta_exec advances at the same rate as wall-clock (provided
776 * cpu is not idle).
777 *
778 * delta_exec / delta_fair is a measure of the (smoothened) load on this
779 * runqueue over any given interval. This (smoothened) load is used
780 * during load balance.
781 *
782 * This function is called /before/ updating rq->ls.load
783 * and when switching tasks.
784 */
785static void update_curr_load(struct rq *rq, u64 now)
786{
787 struct load_stat *ls = &rq->ls;
788 u64 start;
789
790 start = ls->load_update_start;
791 ls->load_update_start = now;
792 ls->delta_stat += now - start;
793 /*
794 * Stagger updates to ls->delta_fair. Very frequent updates
795 * can be expensive.
796 */
797 if (ls->delta_stat >= sysctl_sched_stat_granularity)
798 __update_curr_load(rq, ls);
799}
800
801static inline void
802inc_load(struct rq *rq, const struct task_struct *p, u64 now)
803{
804 update_curr_load(rq, now);
805 update_load_add(&rq->ls.load, p->se.load.weight);
806}
807
808static inline void
809dec_load(struct rq *rq, const struct task_struct *p, u64 now)
810{
811 update_curr_load(rq, now);
812 update_load_sub(&rq->ls.load, p->se.load.weight);
813}
814
815static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
816{
817 rq->nr_running++;
818 inc_load(rq, p, now);
819}
820
821static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
822{
823 rq->nr_running--;
824 dec_load(rq, p, now);
825}
826
45bf76df
IM
827static void set_load_weight(struct task_struct *p)
828{
dd41f596
IM
829 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
830 p->se.wait_runtime = 0;
831
45bf76df 832 if (task_has_rt_policy(p)) {
dd41f596
IM
833 p->se.load.weight = prio_to_weight[0] * 2;
834 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
835 return;
836 }
45bf76df 837
dd41f596
IM
838 /*
839 * SCHED_IDLE tasks get minimal weight:
840 */
841 if (p->policy == SCHED_IDLE) {
842 p->se.load.weight = WEIGHT_IDLEPRIO;
843 p->se.load.inv_weight = WMULT_IDLEPRIO;
844 return;
845 }
71f8bd46 846
dd41f596
IM
847 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
848 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
849}
850
dd41f596
IM
851static void
852enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
71f8bd46 853{
dd41f596
IM
854 sched_info_queued(p);
855 p->sched_class->enqueue_task(rq, p, wakeup, now);
856 p->se.on_rq = 1;
71f8bd46
IM
857}
858
dd41f596
IM
859static void
860dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
71f8bd46 861{
dd41f596
IM
862 p->sched_class->dequeue_task(rq, p, sleep, now);
863 p->se.on_rq = 0;
71f8bd46
IM
864}
865
14531189 866/*
dd41f596 867 * __normal_prio - return the priority that is based on the static prio
14531189 868 */
14531189
IM
869static inline int __normal_prio(struct task_struct *p)
870{
dd41f596 871 return p->static_prio;
14531189
IM
872}
873
b29739f9
IM
874/*
875 * Calculate the expected normal priority: i.e. priority
876 * without taking RT-inheritance into account. Might be
877 * boosted by interactivity modifiers. Changes upon fork,
878 * setprio syscalls, and whenever the interactivity
879 * estimator recalculates.
880 */
36c8b586 881static inline int normal_prio(struct task_struct *p)
b29739f9
IM
882{
883 int prio;
884
e05606d3 885 if (task_has_rt_policy(p))
b29739f9
IM
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890}
891
892/*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
36c8b586 899static int effective_prio(struct task_struct *p)
b29739f9
IM
900{
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910}
911
1da177e4 912/*
dd41f596 913 * activate_task - move a task to the runqueue.
1da177e4 914 */
dd41f596 915static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 916{
dd41f596 917 u64 now = rq_clock(rq);
d425b274 918
dd41f596
IM
919 if (p->state == TASK_UNINTERRUPTIBLE)
920 rq->nr_uninterruptible--;
1da177e4 921
dd41f596
IM
922 enqueue_task(rq, p, wakeup, now);
923 inc_nr_running(p, rq, now);
1da177e4
LT
924}
925
926/*
dd41f596 927 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 928 */
dd41f596 929static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 930{
dd41f596 931 u64 now = rq_clock(rq);
1da177e4 932
dd41f596
IM
933 if (p->state == TASK_UNINTERRUPTIBLE)
934 rq->nr_uninterruptible--;
ece8a684 935
dd41f596
IM
936 enqueue_task(rq, p, 0, now);
937 inc_nr_running(p, rq, now);
1da177e4
LT
938}
939
940/*
941 * deactivate_task - remove a task from the runqueue.
942 */
dd41f596 943static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 944{
dd41f596
IM
945 u64 now = rq_clock(rq);
946
947 if (p->state == TASK_UNINTERRUPTIBLE)
948 rq->nr_uninterruptible++;
949
950 dequeue_task(rq, p, sleep, now);
951 dec_nr_running(p, rq, now);
1da177e4
LT
952}
953
1da177e4
LT
954/**
955 * task_curr - is this task currently executing on a CPU?
956 * @p: the task in question.
957 */
36c8b586 958inline int task_curr(const struct task_struct *p)
1da177e4
LT
959{
960 return cpu_curr(task_cpu(p)) == p;
961}
962
2dd73a4f
PW
963/* Used instead of source_load when we know the type == 0 */
964unsigned long weighted_cpuload(const int cpu)
965{
dd41f596
IM
966 return cpu_rq(cpu)->ls.load.weight;
967}
968
969static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
970{
971#ifdef CONFIG_SMP
972 task_thread_info(p)->cpu = cpu;
973 set_task_cfs_rq(p);
974#endif
2dd73a4f
PW
975}
976
1da177e4 977#ifdef CONFIG_SMP
c65cc870 978
dd41f596 979void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 980{
dd41f596
IM
981 int old_cpu = task_cpu(p);
982 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
983 u64 clock_offset, fair_clock_offset;
984
985 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
986 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
987
dd41f596
IM
988 if (p->se.wait_start_fair)
989 p->se.wait_start_fair -= fair_clock_offset;
6cfb0d5d
IM
990 if (p->se.sleep_start_fair)
991 p->se.sleep_start_fair -= fair_clock_offset;
992
993#ifdef CONFIG_SCHEDSTATS
994 if (p->se.wait_start)
995 p->se.wait_start -= clock_offset;
dd41f596
IM
996 if (p->se.sleep_start)
997 p->se.sleep_start -= clock_offset;
998 if (p->se.block_start)
999 p->se.block_start -= clock_offset;
6cfb0d5d 1000#endif
dd41f596
IM
1001
1002 __set_task_cpu(p, new_cpu);
c65cc870
IM
1003}
1004
70b97a7f 1005struct migration_req {
1da177e4 1006 struct list_head list;
1da177e4 1007
36c8b586 1008 struct task_struct *task;
1da177e4
LT
1009 int dest_cpu;
1010
1da177e4 1011 struct completion done;
70b97a7f 1012};
1da177e4
LT
1013
1014/*
1015 * The task's runqueue lock must be held.
1016 * Returns true if you have to wait for migration thread.
1017 */
36c8b586 1018static int
70b97a7f 1019migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1020{
70b97a7f 1021 struct rq *rq = task_rq(p);
1da177e4
LT
1022
1023 /*
1024 * If the task is not on a runqueue (and not running), then
1025 * it is sufficient to simply update the task's cpu field.
1026 */
dd41f596 1027 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1028 set_task_cpu(p, dest_cpu);
1029 return 0;
1030 }
1031
1032 init_completion(&req->done);
1da177e4
LT
1033 req->task = p;
1034 req->dest_cpu = dest_cpu;
1035 list_add(&req->list, &rq->migration_queue);
48f24c4d 1036
1da177e4
LT
1037 return 1;
1038}
1039
1040/*
1041 * wait_task_inactive - wait for a thread to unschedule.
1042 *
1043 * The caller must ensure that the task *will* unschedule sometime soon,
1044 * else this function might spin for a *long* time. This function can't
1045 * be called with interrupts off, or it may introduce deadlock with
1046 * smp_call_function() if an IPI is sent by the same process we are
1047 * waiting to become inactive.
1048 */
36c8b586 1049void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1050{
1051 unsigned long flags;
dd41f596 1052 int running, on_rq;
70b97a7f 1053 struct rq *rq;
1da177e4
LT
1054
1055repeat:
fa490cfd
LT
1056 /*
1057 * We do the initial early heuristics without holding
1058 * any task-queue locks at all. We'll only try to get
1059 * the runqueue lock when things look like they will
1060 * work out!
1061 */
1062 rq = task_rq(p);
1063
1064 /*
1065 * If the task is actively running on another CPU
1066 * still, just relax and busy-wait without holding
1067 * any locks.
1068 *
1069 * NOTE! Since we don't hold any locks, it's not
1070 * even sure that "rq" stays as the right runqueue!
1071 * But we don't care, since "task_running()" will
1072 * return false if the runqueue has changed and p
1073 * is actually now running somewhere else!
1074 */
1075 while (task_running(rq, p))
1076 cpu_relax();
1077
1078 /*
1079 * Ok, time to look more closely! We need the rq
1080 * lock now, to be *sure*. If we're wrong, we'll
1081 * just go back and repeat.
1082 */
1da177e4 1083 rq = task_rq_lock(p, &flags);
fa490cfd 1084 running = task_running(rq, p);
dd41f596 1085 on_rq = p->se.on_rq;
fa490cfd
LT
1086 task_rq_unlock(rq, &flags);
1087
1088 /*
1089 * Was it really running after all now that we
1090 * checked with the proper locks actually held?
1091 *
1092 * Oops. Go back and try again..
1093 */
1094 if (unlikely(running)) {
1da177e4 1095 cpu_relax();
1da177e4
LT
1096 goto repeat;
1097 }
fa490cfd
LT
1098
1099 /*
1100 * It's not enough that it's not actively running,
1101 * it must be off the runqueue _entirely_, and not
1102 * preempted!
1103 *
1104 * So if it wa still runnable (but just not actively
1105 * running right now), it's preempted, and we should
1106 * yield - it could be a while.
1107 */
dd41f596 1108 if (unlikely(on_rq)) {
fa490cfd
LT
1109 yield();
1110 goto repeat;
1111 }
1112
1113 /*
1114 * Ahh, all good. It wasn't running, and it wasn't
1115 * runnable, which means that it will never become
1116 * running in the future either. We're all done!
1117 */
1da177e4
LT
1118}
1119
1120/***
1121 * kick_process - kick a running thread to enter/exit the kernel
1122 * @p: the to-be-kicked thread
1123 *
1124 * Cause a process which is running on another CPU to enter
1125 * kernel-mode, without any delay. (to get signals handled.)
1126 *
1127 * NOTE: this function doesnt have to take the runqueue lock,
1128 * because all it wants to ensure is that the remote task enters
1129 * the kernel. If the IPI races and the task has been migrated
1130 * to another CPU then no harm is done and the purpose has been
1131 * achieved as well.
1132 */
36c8b586 1133void kick_process(struct task_struct *p)
1da177e4
LT
1134{
1135 int cpu;
1136
1137 preempt_disable();
1138 cpu = task_cpu(p);
1139 if ((cpu != smp_processor_id()) && task_curr(p))
1140 smp_send_reschedule(cpu);
1141 preempt_enable();
1142}
1143
1144/*
2dd73a4f
PW
1145 * Return a low guess at the load of a migration-source cpu weighted
1146 * according to the scheduling class and "nice" value.
1da177e4
LT
1147 *
1148 * We want to under-estimate the load of migration sources, to
1149 * balance conservatively.
1150 */
a2000572 1151static inline unsigned long source_load(int cpu, int type)
1da177e4 1152{
70b97a7f 1153 struct rq *rq = cpu_rq(cpu);
dd41f596 1154 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1155
3b0bd9bc 1156 if (type == 0)
dd41f596 1157 return total;
b910472d 1158
dd41f596 1159 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1160}
1161
1162/*
2dd73a4f
PW
1163 * Return a high guess at the load of a migration-target cpu weighted
1164 * according to the scheduling class and "nice" value.
1da177e4 1165 */
a2000572 1166static inline unsigned long target_load(int cpu, int type)
1da177e4 1167{
70b97a7f 1168 struct rq *rq = cpu_rq(cpu);
dd41f596 1169 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1170
7897986b 1171 if (type == 0)
dd41f596 1172 return total;
3b0bd9bc 1173
dd41f596 1174 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1175}
1176
1177/*
1178 * Return the average load per task on the cpu's run queue
1179 */
1180static inline unsigned long cpu_avg_load_per_task(int cpu)
1181{
70b97a7f 1182 struct rq *rq = cpu_rq(cpu);
dd41f596 1183 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1184 unsigned long n = rq->nr_running;
1185
dd41f596 1186 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1187}
1188
147cbb4b
NP
1189/*
1190 * find_idlest_group finds and returns the least busy CPU group within the
1191 * domain.
1192 */
1193static struct sched_group *
1194find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1195{
1196 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1197 unsigned long min_load = ULONG_MAX, this_load = 0;
1198 int load_idx = sd->forkexec_idx;
1199 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1200
1201 do {
1202 unsigned long load, avg_load;
1203 int local_group;
1204 int i;
1205
da5a5522
BD
1206 /* Skip over this group if it has no CPUs allowed */
1207 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1208 goto nextgroup;
1209
147cbb4b 1210 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1211
1212 /* Tally up the load of all CPUs in the group */
1213 avg_load = 0;
1214
1215 for_each_cpu_mask(i, group->cpumask) {
1216 /* Bias balancing toward cpus of our domain */
1217 if (local_group)
1218 load = source_load(i, load_idx);
1219 else
1220 load = target_load(i, load_idx);
1221
1222 avg_load += load;
1223 }
1224
1225 /* Adjust by relative CPU power of the group */
5517d86b
ED
1226 avg_load = sg_div_cpu_power(group,
1227 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1228
1229 if (local_group) {
1230 this_load = avg_load;
1231 this = group;
1232 } else if (avg_load < min_load) {
1233 min_load = avg_load;
1234 idlest = group;
1235 }
da5a5522 1236nextgroup:
147cbb4b
NP
1237 group = group->next;
1238 } while (group != sd->groups);
1239
1240 if (!idlest || 100*this_load < imbalance*min_load)
1241 return NULL;
1242 return idlest;
1243}
1244
1245/*
0feaece9 1246 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1247 */
95cdf3b7
IM
1248static int
1249find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1250{
da5a5522 1251 cpumask_t tmp;
147cbb4b
NP
1252 unsigned long load, min_load = ULONG_MAX;
1253 int idlest = -1;
1254 int i;
1255
da5a5522
BD
1256 /* Traverse only the allowed CPUs */
1257 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1258
1259 for_each_cpu_mask(i, tmp) {
2dd73a4f 1260 load = weighted_cpuload(i);
147cbb4b
NP
1261
1262 if (load < min_load || (load == min_load && i == this_cpu)) {
1263 min_load = load;
1264 idlest = i;
1265 }
1266 }
1267
1268 return idlest;
1269}
1270
476d139c
NP
1271/*
1272 * sched_balance_self: balance the current task (running on cpu) in domains
1273 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1274 * SD_BALANCE_EXEC.
1275 *
1276 * Balance, ie. select the least loaded group.
1277 *
1278 * Returns the target CPU number, or the same CPU if no balancing is needed.
1279 *
1280 * preempt must be disabled.
1281 */
1282static int sched_balance_self(int cpu, int flag)
1283{
1284 struct task_struct *t = current;
1285 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1286
c96d145e 1287 for_each_domain(cpu, tmp) {
9761eea8
IM
1288 /*
1289 * If power savings logic is enabled for a domain, stop there.
1290 */
5c45bf27
SS
1291 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1292 break;
476d139c
NP
1293 if (tmp->flags & flag)
1294 sd = tmp;
c96d145e 1295 }
476d139c
NP
1296
1297 while (sd) {
1298 cpumask_t span;
1299 struct sched_group *group;
1a848870
SS
1300 int new_cpu, weight;
1301
1302 if (!(sd->flags & flag)) {
1303 sd = sd->child;
1304 continue;
1305 }
476d139c
NP
1306
1307 span = sd->span;
1308 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1309 if (!group) {
1310 sd = sd->child;
1311 continue;
1312 }
476d139c 1313
da5a5522 1314 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1315 if (new_cpu == -1 || new_cpu == cpu) {
1316 /* Now try balancing at a lower domain level of cpu */
1317 sd = sd->child;
1318 continue;
1319 }
476d139c 1320
1a848870 1321 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1322 cpu = new_cpu;
476d139c
NP
1323 sd = NULL;
1324 weight = cpus_weight(span);
1325 for_each_domain(cpu, tmp) {
1326 if (weight <= cpus_weight(tmp->span))
1327 break;
1328 if (tmp->flags & flag)
1329 sd = tmp;
1330 }
1331 /* while loop will break here if sd == NULL */
1332 }
1333
1334 return cpu;
1335}
1336
1337#endif /* CONFIG_SMP */
1da177e4
LT
1338
1339/*
1340 * wake_idle() will wake a task on an idle cpu if task->cpu is
1341 * not idle and an idle cpu is available. The span of cpus to
1342 * search starts with cpus closest then further out as needed,
1343 * so we always favor a closer, idle cpu.
1344 *
1345 * Returns the CPU we should wake onto.
1346 */
1347#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1348static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1349{
1350 cpumask_t tmp;
1351 struct sched_domain *sd;
1352 int i;
1353
4953198b
SS
1354 /*
1355 * If it is idle, then it is the best cpu to run this task.
1356 *
1357 * This cpu is also the best, if it has more than one task already.
1358 * Siblings must be also busy(in most cases) as they didn't already
1359 * pickup the extra load from this cpu and hence we need not check
1360 * sibling runqueue info. This will avoid the checks and cache miss
1361 * penalities associated with that.
1362 */
1363 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1364 return cpu;
1365
1366 for_each_domain(cpu, sd) {
1367 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1368 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1369 for_each_cpu_mask(i, tmp) {
1370 if (idle_cpu(i))
1371 return i;
1372 }
9761eea8 1373 } else {
e0f364f4 1374 break;
9761eea8 1375 }
1da177e4
LT
1376 }
1377 return cpu;
1378}
1379#else
36c8b586 1380static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1381{
1382 return cpu;
1383}
1384#endif
1385
1386/***
1387 * try_to_wake_up - wake up a thread
1388 * @p: the to-be-woken-up thread
1389 * @state: the mask of task states that can be woken
1390 * @sync: do a synchronous wakeup?
1391 *
1392 * Put it on the run-queue if it's not already there. The "current"
1393 * thread is always on the run-queue (except when the actual
1394 * re-schedule is in progress), and as such you're allowed to do
1395 * the simpler "current->state = TASK_RUNNING" to mark yourself
1396 * runnable without the overhead of this.
1397 *
1398 * returns failure only if the task is already active.
1399 */
36c8b586 1400static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1401{
1402 int cpu, this_cpu, success = 0;
1403 unsigned long flags;
1404 long old_state;
70b97a7f 1405 struct rq *rq;
1da177e4 1406#ifdef CONFIG_SMP
7897986b 1407 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1408 unsigned long load, this_load;
1da177e4
LT
1409 int new_cpu;
1410#endif
1411
1412 rq = task_rq_lock(p, &flags);
1413 old_state = p->state;
1414 if (!(old_state & state))
1415 goto out;
1416
dd41f596 1417 if (p->se.on_rq)
1da177e4
LT
1418 goto out_running;
1419
1420 cpu = task_cpu(p);
1421 this_cpu = smp_processor_id();
1422
1423#ifdef CONFIG_SMP
1424 if (unlikely(task_running(rq, p)))
1425 goto out_activate;
1426
7897986b
NP
1427 new_cpu = cpu;
1428
1da177e4
LT
1429 schedstat_inc(rq, ttwu_cnt);
1430 if (cpu == this_cpu) {
1431 schedstat_inc(rq, ttwu_local);
7897986b
NP
1432 goto out_set_cpu;
1433 }
1434
1435 for_each_domain(this_cpu, sd) {
1436 if (cpu_isset(cpu, sd->span)) {
1437 schedstat_inc(sd, ttwu_wake_remote);
1438 this_sd = sd;
1439 break;
1da177e4
LT
1440 }
1441 }
1da177e4 1442
7897986b 1443 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1444 goto out_set_cpu;
1445
1da177e4 1446 /*
7897986b 1447 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1448 */
7897986b
NP
1449 if (this_sd) {
1450 int idx = this_sd->wake_idx;
1451 unsigned int imbalance;
1da177e4 1452
a3f21bce
NP
1453 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1454
7897986b
NP
1455 load = source_load(cpu, idx);
1456 this_load = target_load(this_cpu, idx);
1da177e4 1457
7897986b
NP
1458 new_cpu = this_cpu; /* Wake to this CPU if we can */
1459
a3f21bce
NP
1460 if (this_sd->flags & SD_WAKE_AFFINE) {
1461 unsigned long tl = this_load;
33859f7f
MOS
1462 unsigned long tl_per_task;
1463
1464 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1465
1da177e4 1466 /*
a3f21bce
NP
1467 * If sync wakeup then subtract the (maximum possible)
1468 * effect of the currently running task from the load
1469 * of the current CPU:
1da177e4 1470 */
a3f21bce 1471 if (sync)
dd41f596 1472 tl -= current->se.load.weight;
a3f21bce
NP
1473
1474 if ((tl <= load &&
2dd73a4f 1475 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1476 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1477 /*
1478 * This domain has SD_WAKE_AFFINE and
1479 * p is cache cold in this domain, and
1480 * there is no bad imbalance.
1481 */
1482 schedstat_inc(this_sd, ttwu_move_affine);
1483 goto out_set_cpu;
1484 }
1485 }
1486
1487 /*
1488 * Start passive balancing when half the imbalance_pct
1489 * limit is reached.
1490 */
1491 if (this_sd->flags & SD_WAKE_BALANCE) {
1492 if (imbalance*this_load <= 100*load) {
1493 schedstat_inc(this_sd, ttwu_move_balance);
1494 goto out_set_cpu;
1495 }
1da177e4
LT
1496 }
1497 }
1498
1499 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1500out_set_cpu:
1501 new_cpu = wake_idle(new_cpu, p);
1502 if (new_cpu != cpu) {
1503 set_task_cpu(p, new_cpu);
1504 task_rq_unlock(rq, &flags);
1505 /* might preempt at this point */
1506 rq = task_rq_lock(p, &flags);
1507 old_state = p->state;
1508 if (!(old_state & state))
1509 goto out;
dd41f596 1510 if (p->se.on_rq)
1da177e4
LT
1511 goto out_running;
1512
1513 this_cpu = smp_processor_id();
1514 cpu = task_cpu(p);
1515 }
1516
1517out_activate:
1518#endif /* CONFIG_SMP */
dd41f596 1519 activate_task(rq, p, 1);
1da177e4
LT
1520 /*
1521 * Sync wakeups (i.e. those types of wakeups where the waker
1522 * has indicated that it will leave the CPU in short order)
1523 * don't trigger a preemption, if the woken up task will run on
1524 * this cpu. (in this case the 'I will reschedule' promise of
1525 * the waker guarantees that the freshly woken up task is going
1526 * to be considered on this CPU.)
1527 */
dd41f596
IM
1528 if (!sync || cpu != this_cpu)
1529 check_preempt_curr(rq, p);
1da177e4
LT
1530 success = 1;
1531
1532out_running:
1533 p->state = TASK_RUNNING;
1534out:
1535 task_rq_unlock(rq, &flags);
1536
1537 return success;
1538}
1539
36c8b586 1540int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1541{
1542 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1543 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1544}
1da177e4
LT
1545EXPORT_SYMBOL(wake_up_process);
1546
36c8b586 1547int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1548{
1549 return try_to_wake_up(p, state, 0);
1550}
1551
1da177e4
LT
1552/*
1553 * Perform scheduler related setup for a newly forked process p.
1554 * p is forked by current.
dd41f596
IM
1555 *
1556 * __sched_fork() is basic setup used by init_idle() too:
1557 */
1558static void __sched_fork(struct task_struct *p)
1559{
1560 p->se.wait_start_fair = 0;
dd41f596
IM
1561 p->se.exec_start = 0;
1562 p->se.sum_exec_runtime = 0;
1563 p->se.delta_exec = 0;
1564 p->se.delta_fair_run = 0;
1565 p->se.delta_fair_sleep = 0;
1566 p->se.wait_runtime = 0;
6cfb0d5d
IM
1567 p->se.sleep_start_fair = 0;
1568
1569#ifdef CONFIG_SCHEDSTATS
1570 p->se.wait_start = 0;
dd41f596
IM
1571 p->se.sum_wait_runtime = 0;
1572 p->se.sum_sleep_runtime = 0;
1573 p->se.sleep_start = 0;
dd41f596
IM
1574 p->se.block_start = 0;
1575 p->se.sleep_max = 0;
1576 p->se.block_max = 0;
1577 p->se.exec_max = 0;
1578 p->se.wait_max = 0;
1579 p->se.wait_runtime_overruns = 0;
1580 p->se.wait_runtime_underruns = 0;
6cfb0d5d 1581#endif
476d139c 1582
dd41f596
IM
1583 INIT_LIST_HEAD(&p->run_list);
1584 p->se.on_rq = 0;
476d139c 1585
e107be36
AK
1586#ifdef CONFIG_PREEMPT_NOTIFIERS
1587 INIT_HLIST_HEAD(&p->preempt_notifiers);
1588#endif
1589
1da177e4
LT
1590 /*
1591 * We mark the process as running here, but have not actually
1592 * inserted it onto the runqueue yet. This guarantees that
1593 * nobody will actually run it, and a signal or other external
1594 * event cannot wake it up and insert it on the runqueue either.
1595 */
1596 p->state = TASK_RUNNING;
dd41f596
IM
1597}
1598
1599/*
1600 * fork()/clone()-time setup:
1601 */
1602void sched_fork(struct task_struct *p, int clone_flags)
1603{
1604 int cpu = get_cpu();
1605
1606 __sched_fork(p);
1607
1608#ifdef CONFIG_SMP
1609 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1610#endif
1611 __set_task_cpu(p, cpu);
b29739f9
IM
1612
1613 /*
1614 * Make sure we do not leak PI boosting priority to the child:
1615 */
1616 p->prio = current->normal_prio;
1617
52f17b6c 1618#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1619 if (likely(sched_info_on()))
52f17b6c 1620 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1621#endif
d6077cb8 1622#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1623 p->oncpu = 0;
1624#endif
1da177e4 1625#ifdef CONFIG_PREEMPT
4866cde0 1626 /* Want to start with kernel preemption disabled. */
a1261f54 1627 task_thread_info(p)->preempt_count = 1;
1da177e4 1628#endif
476d139c 1629 put_cpu();
1da177e4
LT
1630}
1631
dd41f596
IM
1632/*
1633 * After fork, child runs first. (default) If set to 0 then
1634 * parent will (try to) run first.
1635 */
1636unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1637
1da177e4
LT
1638/*
1639 * wake_up_new_task - wake up a newly created task for the first time.
1640 *
1641 * This function will do some initial scheduler statistics housekeeping
1642 * that must be done for every newly created context, then puts the task
1643 * on the runqueue and wakes it.
1644 */
36c8b586 1645void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1646{
1647 unsigned long flags;
dd41f596
IM
1648 struct rq *rq;
1649 int this_cpu;
cad60d93 1650 u64 now;
1da177e4
LT
1651
1652 rq = task_rq_lock(p, &flags);
147cbb4b 1653 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1654 this_cpu = smp_processor_id(); /* parent's CPU */
cad60d93 1655 now = rq_clock(rq);
1da177e4
LT
1656
1657 p->prio = effective_prio(p);
1658
cad60d93
IM
1659 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1660 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1661 !current->se.on_rq) {
1662
dd41f596 1663 activate_task(rq, p, 0);
1da177e4 1664 } else {
1da177e4 1665 /*
dd41f596
IM
1666 * Let the scheduling class do new task startup
1667 * management (if any):
1da177e4 1668 */
cad60d93
IM
1669 p->sched_class->task_new(rq, p, now);
1670 inc_nr_running(p, rq, now);
1da177e4 1671 }
dd41f596
IM
1672 check_preempt_curr(rq, p);
1673 task_rq_unlock(rq, &flags);
1da177e4
LT
1674}
1675
e107be36
AK
1676#ifdef CONFIG_PREEMPT_NOTIFIERS
1677
1678/**
421cee29
RD
1679 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1680 * @notifier: notifier struct to register
e107be36
AK
1681 */
1682void preempt_notifier_register(struct preempt_notifier *notifier)
1683{
1684 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1685}
1686EXPORT_SYMBOL_GPL(preempt_notifier_register);
1687
1688/**
1689 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1690 * @notifier: notifier struct to unregister
e107be36
AK
1691 *
1692 * This is safe to call from within a preemption notifier.
1693 */
1694void preempt_notifier_unregister(struct preempt_notifier *notifier)
1695{
1696 hlist_del(&notifier->link);
1697}
1698EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1699
1700static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1701{
1702 struct preempt_notifier *notifier;
1703 struct hlist_node *node;
1704
1705 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1706 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1707}
1708
1709static void
1710fire_sched_out_preempt_notifiers(struct task_struct *curr,
1711 struct task_struct *next)
1712{
1713 struct preempt_notifier *notifier;
1714 struct hlist_node *node;
1715
1716 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1717 notifier->ops->sched_out(notifier, next);
1718}
1719
1720#else
1721
1722static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1723{
1724}
1725
1726static void
1727fire_sched_out_preempt_notifiers(struct task_struct *curr,
1728 struct task_struct *next)
1729{
1730}
1731
1732#endif
1733
4866cde0
NP
1734/**
1735 * prepare_task_switch - prepare to switch tasks
1736 * @rq: the runqueue preparing to switch
421cee29 1737 * @prev: the current task that is being switched out
4866cde0
NP
1738 * @next: the task we are going to switch to.
1739 *
1740 * This is called with the rq lock held and interrupts off. It must
1741 * be paired with a subsequent finish_task_switch after the context
1742 * switch.
1743 *
1744 * prepare_task_switch sets up locking and calls architecture specific
1745 * hooks.
1746 */
e107be36
AK
1747static inline void
1748prepare_task_switch(struct rq *rq, struct task_struct *prev,
1749 struct task_struct *next)
4866cde0 1750{
e107be36 1751 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1752 prepare_lock_switch(rq, next);
1753 prepare_arch_switch(next);
1754}
1755
1da177e4
LT
1756/**
1757 * finish_task_switch - clean up after a task-switch
344babaa 1758 * @rq: runqueue associated with task-switch
1da177e4
LT
1759 * @prev: the thread we just switched away from.
1760 *
4866cde0
NP
1761 * finish_task_switch must be called after the context switch, paired
1762 * with a prepare_task_switch call before the context switch.
1763 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1764 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1765 *
1766 * Note that we may have delayed dropping an mm in context_switch(). If
1767 * so, we finish that here outside of the runqueue lock. (Doing it
1768 * with the lock held can cause deadlocks; see schedule() for
1769 * details.)
1770 */
70b97a7f 1771static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1772 __releases(rq->lock)
1773{
1da177e4 1774 struct mm_struct *mm = rq->prev_mm;
55a101f8 1775 long prev_state;
1da177e4
LT
1776
1777 rq->prev_mm = NULL;
1778
1779 /*
1780 * A task struct has one reference for the use as "current".
c394cc9f 1781 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1782 * schedule one last time. The schedule call will never return, and
1783 * the scheduled task must drop that reference.
c394cc9f 1784 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1785 * still held, otherwise prev could be scheduled on another cpu, die
1786 * there before we look at prev->state, and then the reference would
1787 * be dropped twice.
1788 * Manfred Spraul <manfred@colorfullife.com>
1789 */
55a101f8 1790 prev_state = prev->state;
4866cde0
NP
1791 finish_arch_switch(prev);
1792 finish_lock_switch(rq, prev);
e107be36 1793 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1794 if (mm)
1795 mmdrop(mm);
c394cc9f 1796 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1797 /*
1798 * Remove function-return probe instances associated with this
1799 * task and put them back on the free list.
9761eea8 1800 */
c6fd91f0 1801 kprobe_flush_task(prev);
1da177e4 1802 put_task_struct(prev);
c6fd91f0 1803 }
1da177e4
LT
1804}
1805
1806/**
1807 * schedule_tail - first thing a freshly forked thread must call.
1808 * @prev: the thread we just switched away from.
1809 */
36c8b586 1810asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1811 __releases(rq->lock)
1812{
70b97a7f
IM
1813 struct rq *rq = this_rq();
1814
4866cde0
NP
1815 finish_task_switch(rq, prev);
1816#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1817 /* In this case, finish_task_switch does not reenable preemption */
1818 preempt_enable();
1819#endif
1da177e4
LT
1820 if (current->set_child_tid)
1821 put_user(current->pid, current->set_child_tid);
1822}
1823
1824/*
1825 * context_switch - switch to the new MM and the new
1826 * thread's register state.
1827 */
dd41f596 1828static inline void
70b97a7f 1829context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1830 struct task_struct *next)
1da177e4 1831{
dd41f596 1832 struct mm_struct *mm, *oldmm;
1da177e4 1833
e107be36 1834 prepare_task_switch(rq, prev, next);
dd41f596
IM
1835 mm = next->mm;
1836 oldmm = prev->active_mm;
9226d125
ZA
1837 /*
1838 * For paravirt, this is coupled with an exit in switch_to to
1839 * combine the page table reload and the switch backend into
1840 * one hypercall.
1841 */
1842 arch_enter_lazy_cpu_mode();
1843
dd41f596 1844 if (unlikely(!mm)) {
1da177e4
LT
1845 next->active_mm = oldmm;
1846 atomic_inc(&oldmm->mm_count);
1847 enter_lazy_tlb(oldmm, next);
1848 } else
1849 switch_mm(oldmm, mm, next);
1850
dd41f596 1851 if (unlikely(!prev->mm)) {
1da177e4 1852 prev->active_mm = NULL;
1da177e4
LT
1853 rq->prev_mm = oldmm;
1854 }
3a5f5e48
IM
1855 /*
1856 * Since the runqueue lock will be released by the next
1857 * task (which is an invalid locking op but in the case
1858 * of the scheduler it's an obvious special-case), so we
1859 * do an early lockdep release here:
1860 */
1861#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1862 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1863#endif
1da177e4
LT
1864
1865 /* Here we just switch the register state and the stack. */
1866 switch_to(prev, next, prev);
1867
dd41f596
IM
1868 barrier();
1869 /*
1870 * this_rq must be evaluated again because prev may have moved
1871 * CPUs since it called schedule(), thus the 'rq' on its stack
1872 * frame will be invalid.
1873 */
1874 finish_task_switch(this_rq(), prev);
1da177e4
LT
1875}
1876
1877/*
1878 * nr_running, nr_uninterruptible and nr_context_switches:
1879 *
1880 * externally visible scheduler statistics: current number of runnable
1881 * threads, current number of uninterruptible-sleeping threads, total
1882 * number of context switches performed since bootup.
1883 */
1884unsigned long nr_running(void)
1885{
1886 unsigned long i, sum = 0;
1887
1888 for_each_online_cpu(i)
1889 sum += cpu_rq(i)->nr_running;
1890
1891 return sum;
1892}
1893
1894unsigned long nr_uninterruptible(void)
1895{
1896 unsigned long i, sum = 0;
1897
0a945022 1898 for_each_possible_cpu(i)
1da177e4
LT
1899 sum += cpu_rq(i)->nr_uninterruptible;
1900
1901 /*
1902 * Since we read the counters lockless, it might be slightly
1903 * inaccurate. Do not allow it to go below zero though:
1904 */
1905 if (unlikely((long)sum < 0))
1906 sum = 0;
1907
1908 return sum;
1909}
1910
1911unsigned long long nr_context_switches(void)
1912{
cc94abfc
SR
1913 int i;
1914 unsigned long long sum = 0;
1da177e4 1915
0a945022 1916 for_each_possible_cpu(i)
1da177e4
LT
1917 sum += cpu_rq(i)->nr_switches;
1918
1919 return sum;
1920}
1921
1922unsigned long nr_iowait(void)
1923{
1924 unsigned long i, sum = 0;
1925
0a945022 1926 for_each_possible_cpu(i)
1da177e4
LT
1927 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1928
1929 return sum;
1930}
1931
db1b1fef
JS
1932unsigned long nr_active(void)
1933{
1934 unsigned long i, running = 0, uninterruptible = 0;
1935
1936 for_each_online_cpu(i) {
1937 running += cpu_rq(i)->nr_running;
1938 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1939 }
1940
1941 if (unlikely((long)uninterruptible < 0))
1942 uninterruptible = 0;
1943
1944 return running + uninterruptible;
1945}
1946
48f24c4d 1947/*
dd41f596
IM
1948 * Update rq->cpu_load[] statistics. This function is usually called every
1949 * scheduler tick (TICK_NSEC).
48f24c4d 1950 */
dd41f596 1951static void update_cpu_load(struct rq *this_rq)
48f24c4d 1952{
dd41f596
IM
1953 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1954 unsigned long total_load = this_rq->ls.load.weight;
1955 unsigned long this_load = total_load;
1956 struct load_stat *ls = &this_rq->ls;
1957 u64 now = __rq_clock(this_rq);
1958 int i, scale;
1959
1960 this_rq->nr_load_updates++;
1961 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1962 goto do_avg;
1963
1964 /* Update delta_fair/delta_exec fields first */
1965 update_curr_load(this_rq, now);
1966
1967 fair_delta64 = ls->delta_fair + 1;
1968 ls->delta_fair = 0;
1969
1970 exec_delta64 = ls->delta_exec + 1;
1971 ls->delta_exec = 0;
1972
1973 sample_interval64 = now - ls->load_update_last;
1974 ls->load_update_last = now;
1975
1976 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1977 sample_interval64 = TICK_NSEC;
1978
1979 if (exec_delta64 > sample_interval64)
1980 exec_delta64 = sample_interval64;
1981
1982 idle_delta64 = sample_interval64 - exec_delta64;
1983
1984 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1985 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1986
1987 this_load = (unsigned long)tmp64;
1988
1989do_avg:
1990
1991 /* Update our load: */
1992 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1993 unsigned long old_load, new_load;
1994
1995 /* scale is effectively 1 << i now, and >> i divides by scale */
1996
1997 old_load = this_rq->cpu_load[i];
1998 new_load = this_load;
1999
2000 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2001 }
48f24c4d
IM
2002}
2003
dd41f596
IM
2004#ifdef CONFIG_SMP
2005
1da177e4
LT
2006/*
2007 * double_rq_lock - safely lock two runqueues
2008 *
2009 * Note this does not disable interrupts like task_rq_lock,
2010 * you need to do so manually before calling.
2011 */
70b97a7f 2012static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2013 __acquires(rq1->lock)
2014 __acquires(rq2->lock)
2015{
054b9108 2016 BUG_ON(!irqs_disabled());
1da177e4
LT
2017 if (rq1 == rq2) {
2018 spin_lock(&rq1->lock);
2019 __acquire(rq2->lock); /* Fake it out ;) */
2020 } else {
c96d145e 2021 if (rq1 < rq2) {
1da177e4
LT
2022 spin_lock(&rq1->lock);
2023 spin_lock(&rq2->lock);
2024 } else {
2025 spin_lock(&rq2->lock);
2026 spin_lock(&rq1->lock);
2027 }
2028 }
2029}
2030
2031/*
2032 * double_rq_unlock - safely unlock two runqueues
2033 *
2034 * Note this does not restore interrupts like task_rq_unlock,
2035 * you need to do so manually after calling.
2036 */
70b97a7f 2037static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2038 __releases(rq1->lock)
2039 __releases(rq2->lock)
2040{
2041 spin_unlock(&rq1->lock);
2042 if (rq1 != rq2)
2043 spin_unlock(&rq2->lock);
2044 else
2045 __release(rq2->lock);
2046}
2047
2048/*
2049 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2050 */
70b97a7f 2051static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2052 __releases(this_rq->lock)
2053 __acquires(busiest->lock)
2054 __acquires(this_rq->lock)
2055{
054b9108
KK
2056 if (unlikely(!irqs_disabled())) {
2057 /* printk() doesn't work good under rq->lock */
2058 spin_unlock(&this_rq->lock);
2059 BUG_ON(1);
2060 }
1da177e4 2061 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2062 if (busiest < this_rq) {
1da177e4
LT
2063 spin_unlock(&this_rq->lock);
2064 spin_lock(&busiest->lock);
2065 spin_lock(&this_rq->lock);
2066 } else
2067 spin_lock(&busiest->lock);
2068 }
2069}
2070
1da177e4
LT
2071/*
2072 * If dest_cpu is allowed for this process, migrate the task to it.
2073 * This is accomplished by forcing the cpu_allowed mask to only
2074 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2075 * the cpu_allowed mask is restored.
2076 */
36c8b586 2077static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2078{
70b97a7f 2079 struct migration_req req;
1da177e4 2080 unsigned long flags;
70b97a7f 2081 struct rq *rq;
1da177e4
LT
2082
2083 rq = task_rq_lock(p, &flags);
2084 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2085 || unlikely(cpu_is_offline(dest_cpu)))
2086 goto out;
2087
2088 /* force the process onto the specified CPU */
2089 if (migrate_task(p, dest_cpu, &req)) {
2090 /* Need to wait for migration thread (might exit: take ref). */
2091 struct task_struct *mt = rq->migration_thread;
36c8b586 2092
1da177e4
LT
2093 get_task_struct(mt);
2094 task_rq_unlock(rq, &flags);
2095 wake_up_process(mt);
2096 put_task_struct(mt);
2097 wait_for_completion(&req.done);
36c8b586 2098
1da177e4
LT
2099 return;
2100 }
2101out:
2102 task_rq_unlock(rq, &flags);
2103}
2104
2105/*
476d139c
NP
2106 * sched_exec - execve() is a valuable balancing opportunity, because at
2107 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2108 */
2109void sched_exec(void)
2110{
1da177e4 2111 int new_cpu, this_cpu = get_cpu();
476d139c 2112 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2113 put_cpu();
476d139c
NP
2114 if (new_cpu != this_cpu)
2115 sched_migrate_task(current, new_cpu);
1da177e4
LT
2116}
2117
2118/*
2119 * pull_task - move a task from a remote runqueue to the local runqueue.
2120 * Both runqueues must be locked.
2121 */
dd41f596
IM
2122static void pull_task(struct rq *src_rq, struct task_struct *p,
2123 struct rq *this_rq, int this_cpu)
1da177e4 2124{
dd41f596 2125 deactivate_task(src_rq, p, 0);
1da177e4 2126 set_task_cpu(p, this_cpu);
dd41f596 2127 activate_task(this_rq, p, 0);
1da177e4
LT
2128 /*
2129 * Note that idle threads have a prio of MAX_PRIO, for this test
2130 * to be always true for them.
2131 */
dd41f596 2132 check_preempt_curr(this_rq, p);
1da177e4
LT
2133}
2134
2135/*
2136 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2137 */
858119e1 2138static
70b97a7f 2139int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2140 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2141 int *all_pinned)
1da177e4
LT
2142{
2143 /*
2144 * We do not migrate tasks that are:
2145 * 1) running (obviously), or
2146 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2147 * 3) are cache-hot on their current CPU.
2148 */
1da177e4
LT
2149 if (!cpu_isset(this_cpu, p->cpus_allowed))
2150 return 0;
81026794
NP
2151 *all_pinned = 0;
2152
2153 if (task_running(rq, p))
2154 return 0;
1da177e4
LT
2155
2156 /*
dd41f596 2157 * Aggressive migration if too many balance attempts have failed:
1da177e4 2158 */
dd41f596 2159 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2160 return 1;
2161
1da177e4
LT
2162 return 1;
2163}
2164
dd41f596 2165static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2166 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2167 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596
IM
2168 int *all_pinned, unsigned long *load_moved,
2169 int this_best_prio, int best_prio, int best_prio_seen,
2170 struct rq_iterator *iterator)
1da177e4 2171{
dd41f596
IM
2172 int pulled = 0, pinned = 0, skip_for_load;
2173 struct task_struct *p;
2174 long rem_load_move = max_load_move;
1da177e4 2175
2dd73a4f 2176 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2177 goto out;
2178
81026794
NP
2179 pinned = 1;
2180
1da177e4 2181 /*
dd41f596 2182 * Start the load-balancing iterator:
1da177e4 2183 */
dd41f596
IM
2184 p = iterator->start(iterator->arg);
2185next:
2186 if (!p)
1da177e4 2187 goto out;
50ddd969
PW
2188 /*
2189 * To help distribute high priority tasks accross CPUs we don't
2190 * skip a task if it will be the highest priority task (i.e. smallest
2191 * prio value) on its new queue regardless of its load weight
2192 */
dd41f596
IM
2193 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2194 SCHED_LOAD_SCALE_FUZZ;
2195 if (skip_for_load && p->prio < this_best_prio)
2196 skip_for_load = !best_prio_seen && p->prio == best_prio;
615052dc 2197 if (skip_for_load ||
dd41f596 2198 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d 2199
dd41f596
IM
2200 best_prio_seen |= p->prio == best_prio;
2201 p = iterator->next(iterator->arg);
2202 goto next;
1da177e4
LT
2203 }
2204
dd41f596 2205 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2206 pulled++;
dd41f596 2207 rem_load_move -= p->se.load.weight;
1da177e4 2208
2dd73a4f
PW
2209 /*
2210 * We only want to steal up to the prescribed number of tasks
2211 * and the prescribed amount of weighted load.
2212 */
2213 if (pulled < max_nr_move && rem_load_move > 0) {
dd41f596
IM
2214 if (p->prio < this_best_prio)
2215 this_best_prio = p->prio;
2216 p = iterator->next(iterator->arg);
2217 goto next;
1da177e4
LT
2218 }
2219out:
2220 /*
2221 * Right now, this is the only place pull_task() is called,
2222 * so we can safely collect pull_task() stats here rather than
2223 * inside pull_task().
2224 */
2225 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2226
2227 if (all_pinned)
2228 *all_pinned = pinned;
dd41f596 2229 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2230 return pulled;
2231}
2232
dd41f596
IM
2233/*
2234 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2235 * load from busiest to this_rq, as part of a balancing operation within
2236 * "domain". Returns the number of tasks moved.
2237 *
2238 * Called with both runqueues locked.
2239 */
2240static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2241 unsigned long max_nr_move, unsigned long max_load_move,
2242 struct sched_domain *sd, enum cpu_idle_type idle,
2243 int *all_pinned)
2244{
2245 struct sched_class *class = sched_class_highest;
2246 unsigned long load_moved, total_nr_moved = 0, nr_moved;
2247 long rem_load_move = max_load_move;
2248
2249 do {
2250 nr_moved = class->load_balance(this_rq, this_cpu, busiest,
2251 max_nr_move, (unsigned long)rem_load_move,
2252 sd, idle, all_pinned, &load_moved);
2253 total_nr_moved += nr_moved;
2254 max_nr_move -= nr_moved;
2255 rem_load_move -= load_moved;
2256 class = class->next;
2257 } while (class && max_nr_move && rem_load_move > 0);
2258
2259 return total_nr_moved;
2260}
2261
1da177e4
LT
2262/*
2263 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2264 * domain. It calculates and returns the amount of weighted load which
2265 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2266 */
2267static struct sched_group *
2268find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2269 unsigned long *imbalance, enum cpu_idle_type idle,
2270 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2271{
2272 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2273 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2274 unsigned long max_pull;
2dd73a4f
PW
2275 unsigned long busiest_load_per_task, busiest_nr_running;
2276 unsigned long this_load_per_task, this_nr_running;
7897986b 2277 int load_idx;
5c45bf27
SS
2278#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2279 int power_savings_balance = 1;
2280 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2281 unsigned long min_nr_running = ULONG_MAX;
2282 struct sched_group *group_min = NULL, *group_leader = NULL;
2283#endif
1da177e4
LT
2284
2285 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2286 busiest_load_per_task = busiest_nr_running = 0;
2287 this_load_per_task = this_nr_running = 0;
d15bcfdb 2288 if (idle == CPU_NOT_IDLE)
7897986b 2289 load_idx = sd->busy_idx;
d15bcfdb 2290 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2291 load_idx = sd->newidle_idx;
2292 else
2293 load_idx = sd->idle_idx;
1da177e4
LT
2294
2295 do {
5c45bf27 2296 unsigned long load, group_capacity;
1da177e4
LT
2297 int local_group;
2298 int i;
783609c6 2299 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2300 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2301
2302 local_group = cpu_isset(this_cpu, group->cpumask);
2303
783609c6
SS
2304 if (local_group)
2305 balance_cpu = first_cpu(group->cpumask);
2306
1da177e4 2307 /* Tally up the load of all CPUs in the group */
2dd73a4f 2308 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2309
2310 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2311 struct rq *rq;
2312
2313 if (!cpu_isset(i, *cpus))
2314 continue;
2315
2316 rq = cpu_rq(i);
2dd73a4f 2317
9439aab8 2318 if (*sd_idle && rq->nr_running)
5969fe06
NP
2319 *sd_idle = 0;
2320
1da177e4 2321 /* Bias balancing toward cpus of our domain */
783609c6
SS
2322 if (local_group) {
2323 if (idle_cpu(i) && !first_idle_cpu) {
2324 first_idle_cpu = 1;
2325 balance_cpu = i;
2326 }
2327
a2000572 2328 load = target_load(i, load_idx);
783609c6 2329 } else
a2000572 2330 load = source_load(i, load_idx);
1da177e4
LT
2331
2332 avg_load += load;
2dd73a4f 2333 sum_nr_running += rq->nr_running;
dd41f596 2334 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2335 }
2336
783609c6
SS
2337 /*
2338 * First idle cpu or the first cpu(busiest) in this sched group
2339 * is eligible for doing load balancing at this and above
9439aab8
SS
2340 * domains. In the newly idle case, we will allow all the cpu's
2341 * to do the newly idle load balance.
783609c6 2342 */
9439aab8
SS
2343 if (idle != CPU_NEWLY_IDLE && local_group &&
2344 balance_cpu != this_cpu && balance) {
783609c6
SS
2345 *balance = 0;
2346 goto ret;
2347 }
2348
1da177e4 2349 total_load += avg_load;
5517d86b 2350 total_pwr += group->__cpu_power;
1da177e4
LT
2351
2352 /* Adjust by relative CPU power of the group */
5517d86b
ED
2353 avg_load = sg_div_cpu_power(group,
2354 avg_load * SCHED_LOAD_SCALE);
1da177e4 2355
5517d86b 2356 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2357
1da177e4
LT
2358 if (local_group) {
2359 this_load = avg_load;
2360 this = group;
2dd73a4f
PW
2361 this_nr_running = sum_nr_running;
2362 this_load_per_task = sum_weighted_load;
2363 } else if (avg_load > max_load &&
5c45bf27 2364 sum_nr_running > group_capacity) {
1da177e4
LT
2365 max_load = avg_load;
2366 busiest = group;
2dd73a4f
PW
2367 busiest_nr_running = sum_nr_running;
2368 busiest_load_per_task = sum_weighted_load;
1da177e4 2369 }
5c45bf27
SS
2370
2371#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2372 /*
2373 * Busy processors will not participate in power savings
2374 * balance.
2375 */
dd41f596
IM
2376 if (idle == CPU_NOT_IDLE ||
2377 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2378 goto group_next;
5c45bf27
SS
2379
2380 /*
2381 * If the local group is idle or completely loaded
2382 * no need to do power savings balance at this domain
2383 */
2384 if (local_group && (this_nr_running >= group_capacity ||
2385 !this_nr_running))
2386 power_savings_balance = 0;
2387
dd41f596 2388 /*
5c45bf27
SS
2389 * If a group is already running at full capacity or idle,
2390 * don't include that group in power savings calculations
dd41f596
IM
2391 */
2392 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2393 || !sum_nr_running)
dd41f596 2394 goto group_next;
5c45bf27 2395
dd41f596 2396 /*
5c45bf27 2397 * Calculate the group which has the least non-idle load.
dd41f596
IM
2398 * This is the group from where we need to pick up the load
2399 * for saving power
2400 */
2401 if ((sum_nr_running < min_nr_running) ||
2402 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2403 first_cpu(group->cpumask) <
2404 first_cpu(group_min->cpumask))) {
dd41f596
IM
2405 group_min = group;
2406 min_nr_running = sum_nr_running;
5c45bf27
SS
2407 min_load_per_task = sum_weighted_load /
2408 sum_nr_running;
dd41f596 2409 }
5c45bf27 2410
dd41f596 2411 /*
5c45bf27 2412 * Calculate the group which is almost near its
dd41f596
IM
2413 * capacity but still has some space to pick up some load
2414 * from other group and save more power
2415 */
2416 if (sum_nr_running <= group_capacity - 1) {
2417 if (sum_nr_running > leader_nr_running ||
2418 (sum_nr_running == leader_nr_running &&
2419 first_cpu(group->cpumask) >
2420 first_cpu(group_leader->cpumask))) {
2421 group_leader = group;
2422 leader_nr_running = sum_nr_running;
2423 }
48f24c4d 2424 }
5c45bf27
SS
2425group_next:
2426#endif
1da177e4
LT
2427 group = group->next;
2428 } while (group != sd->groups);
2429
2dd73a4f 2430 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2431 goto out_balanced;
2432
2433 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2434
2435 if (this_load >= avg_load ||
2436 100*max_load <= sd->imbalance_pct*this_load)
2437 goto out_balanced;
2438
2dd73a4f 2439 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2440 /*
2441 * We're trying to get all the cpus to the average_load, so we don't
2442 * want to push ourselves above the average load, nor do we wish to
2443 * reduce the max loaded cpu below the average load, as either of these
2444 * actions would just result in more rebalancing later, and ping-pong
2445 * tasks around. Thus we look for the minimum possible imbalance.
2446 * Negative imbalances (*we* are more loaded than anyone else) will
2447 * be counted as no imbalance for these purposes -- we can't fix that
2448 * by pulling tasks to us. Be careful of negative numbers as they'll
2449 * appear as very large values with unsigned longs.
2450 */
2dd73a4f
PW
2451 if (max_load <= busiest_load_per_task)
2452 goto out_balanced;
2453
2454 /*
2455 * In the presence of smp nice balancing, certain scenarios can have
2456 * max load less than avg load(as we skip the groups at or below
2457 * its cpu_power, while calculating max_load..)
2458 */
2459 if (max_load < avg_load) {
2460 *imbalance = 0;
2461 goto small_imbalance;
2462 }
0c117f1b
SS
2463
2464 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2465 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2466
1da177e4 2467 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2468 *imbalance = min(max_pull * busiest->__cpu_power,
2469 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2470 / SCHED_LOAD_SCALE;
2471
2dd73a4f
PW
2472 /*
2473 * if *imbalance is less than the average load per runnable task
2474 * there is no gaurantee that any tasks will be moved so we'll have
2475 * a think about bumping its value to force at least one task to be
2476 * moved
2477 */
dd41f596 2478 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
48f24c4d 2479 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2480 unsigned int imbn;
2481
2482small_imbalance:
2483 pwr_move = pwr_now = 0;
2484 imbn = 2;
2485 if (this_nr_running) {
2486 this_load_per_task /= this_nr_running;
2487 if (busiest_load_per_task > this_load_per_task)
2488 imbn = 1;
2489 } else
2490 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2491
dd41f596
IM
2492 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2493 busiest_load_per_task * imbn) {
2dd73a4f 2494 *imbalance = busiest_load_per_task;
1da177e4
LT
2495 return busiest;
2496 }
2497
2498 /*
2499 * OK, we don't have enough imbalance to justify moving tasks,
2500 * however we may be able to increase total CPU power used by
2501 * moving them.
2502 */
2503
5517d86b
ED
2504 pwr_now += busiest->__cpu_power *
2505 min(busiest_load_per_task, max_load);
2506 pwr_now += this->__cpu_power *
2507 min(this_load_per_task, this_load);
1da177e4
LT
2508 pwr_now /= SCHED_LOAD_SCALE;
2509
2510 /* Amount of load we'd subtract */
5517d86b
ED
2511 tmp = sg_div_cpu_power(busiest,
2512 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2513 if (max_load > tmp)
5517d86b 2514 pwr_move += busiest->__cpu_power *
2dd73a4f 2515 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2516
2517 /* Amount of load we'd add */
5517d86b 2518 if (max_load * busiest->__cpu_power <
33859f7f 2519 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2520 tmp = sg_div_cpu_power(this,
2521 max_load * busiest->__cpu_power);
1da177e4 2522 else
5517d86b
ED
2523 tmp = sg_div_cpu_power(this,
2524 busiest_load_per_task * SCHED_LOAD_SCALE);
2525 pwr_move += this->__cpu_power *
2526 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2527 pwr_move /= SCHED_LOAD_SCALE;
2528
2529 /* Move if we gain throughput */
2530 if (pwr_move <= pwr_now)
2531 goto out_balanced;
2532
2dd73a4f 2533 *imbalance = busiest_load_per_task;
1da177e4
LT
2534 }
2535
1da177e4
LT
2536 return busiest;
2537
2538out_balanced:
5c45bf27 2539#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2540 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2541 goto ret;
1da177e4 2542
5c45bf27
SS
2543 if (this == group_leader && group_leader != group_min) {
2544 *imbalance = min_load_per_task;
2545 return group_min;
2546 }
5c45bf27 2547#endif
783609c6 2548ret:
1da177e4
LT
2549 *imbalance = 0;
2550 return NULL;
2551}
2552
2553/*
2554 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2555 */
70b97a7f 2556static struct rq *
d15bcfdb 2557find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2558 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2559{
70b97a7f 2560 struct rq *busiest = NULL, *rq;
2dd73a4f 2561 unsigned long max_load = 0;
1da177e4
LT
2562 int i;
2563
2564 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2565 unsigned long wl;
0a2966b4
CL
2566
2567 if (!cpu_isset(i, *cpus))
2568 continue;
2569
48f24c4d 2570 rq = cpu_rq(i);
dd41f596 2571 wl = weighted_cpuload(i);
2dd73a4f 2572
dd41f596 2573 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2574 continue;
1da177e4 2575
dd41f596
IM
2576 if (wl > max_load) {
2577 max_load = wl;
48f24c4d 2578 busiest = rq;
1da177e4
LT
2579 }
2580 }
2581
2582 return busiest;
2583}
2584
77391d71
NP
2585/*
2586 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2587 * so long as it is large enough.
2588 */
2589#define MAX_PINNED_INTERVAL 512
2590
48f24c4d
IM
2591static inline unsigned long minus_1_or_zero(unsigned long n)
2592{
2593 return n > 0 ? n - 1 : 0;
2594}
2595
1da177e4
LT
2596/*
2597 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2598 * tasks if there is an imbalance.
1da177e4 2599 */
70b97a7f 2600static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2601 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2602 int *balance)
1da177e4 2603{
48f24c4d 2604 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2605 struct sched_group *group;
1da177e4 2606 unsigned long imbalance;
70b97a7f 2607 struct rq *busiest;
0a2966b4 2608 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2609 unsigned long flags;
5969fe06 2610
89c4710e
SS
2611 /*
2612 * When power savings policy is enabled for the parent domain, idle
2613 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2614 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2615 * portraying it as CPU_NOT_IDLE.
89c4710e 2616 */
d15bcfdb 2617 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2618 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2619 sd_idle = 1;
1da177e4 2620
1da177e4
LT
2621 schedstat_inc(sd, lb_cnt[idle]);
2622
0a2966b4
CL
2623redo:
2624 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2625 &cpus, balance);
2626
06066714 2627 if (*balance == 0)
783609c6 2628 goto out_balanced;
783609c6 2629
1da177e4
LT
2630 if (!group) {
2631 schedstat_inc(sd, lb_nobusyg[idle]);
2632 goto out_balanced;
2633 }
2634
0a2966b4 2635 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2636 if (!busiest) {
2637 schedstat_inc(sd, lb_nobusyq[idle]);
2638 goto out_balanced;
2639 }
2640
db935dbd 2641 BUG_ON(busiest == this_rq);
1da177e4
LT
2642
2643 schedstat_add(sd, lb_imbalance[idle], imbalance);
2644
2645 nr_moved = 0;
2646 if (busiest->nr_running > 1) {
2647 /*
2648 * Attempt to move tasks. If find_busiest_group has found
2649 * an imbalance but busiest->nr_running <= 1, the group is
2650 * still unbalanced. nr_moved simply stays zero, so it is
2651 * correctly treated as an imbalance.
2652 */
fe2eea3f 2653 local_irq_save(flags);
e17224bf 2654 double_rq_lock(this_rq, busiest);
1da177e4 2655 nr_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d
IM
2656 minus_1_or_zero(busiest->nr_running),
2657 imbalance, sd, idle, &all_pinned);
e17224bf 2658 double_rq_unlock(this_rq, busiest);
fe2eea3f 2659 local_irq_restore(flags);
81026794 2660
46cb4b7c
SS
2661 /*
2662 * some other cpu did the load balance for us.
2663 */
2664 if (nr_moved && this_cpu != smp_processor_id())
2665 resched_cpu(this_cpu);
2666
81026794 2667 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2668 if (unlikely(all_pinned)) {
2669 cpu_clear(cpu_of(busiest), cpus);
2670 if (!cpus_empty(cpus))
2671 goto redo;
81026794 2672 goto out_balanced;
0a2966b4 2673 }
1da177e4 2674 }
81026794 2675
1da177e4
LT
2676 if (!nr_moved) {
2677 schedstat_inc(sd, lb_failed[idle]);
2678 sd->nr_balance_failed++;
2679
2680 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2681
fe2eea3f 2682 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2683
2684 /* don't kick the migration_thread, if the curr
2685 * task on busiest cpu can't be moved to this_cpu
2686 */
2687 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2688 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2689 all_pinned = 1;
2690 goto out_one_pinned;
2691 }
2692
1da177e4
LT
2693 if (!busiest->active_balance) {
2694 busiest->active_balance = 1;
2695 busiest->push_cpu = this_cpu;
81026794 2696 active_balance = 1;
1da177e4 2697 }
fe2eea3f 2698 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2699 if (active_balance)
1da177e4
LT
2700 wake_up_process(busiest->migration_thread);
2701
2702 /*
2703 * We've kicked active balancing, reset the failure
2704 * counter.
2705 */
39507451 2706 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2707 }
81026794 2708 } else
1da177e4
LT
2709 sd->nr_balance_failed = 0;
2710
81026794 2711 if (likely(!active_balance)) {
1da177e4
LT
2712 /* We were unbalanced, so reset the balancing interval */
2713 sd->balance_interval = sd->min_interval;
81026794
NP
2714 } else {
2715 /*
2716 * If we've begun active balancing, start to back off. This
2717 * case may not be covered by the all_pinned logic if there
2718 * is only 1 task on the busy runqueue (because we don't call
2719 * move_tasks).
2720 */
2721 if (sd->balance_interval < sd->max_interval)
2722 sd->balance_interval *= 2;
1da177e4
LT
2723 }
2724
5c45bf27 2725 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2726 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2727 return -1;
1da177e4
LT
2728 return nr_moved;
2729
2730out_balanced:
1da177e4
LT
2731 schedstat_inc(sd, lb_balanced[idle]);
2732
16cfb1c0 2733 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2734
2735out_one_pinned:
1da177e4 2736 /* tune up the balancing interval */
77391d71
NP
2737 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2738 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2739 sd->balance_interval *= 2;
2740
48f24c4d 2741 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2742 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2743 return -1;
1da177e4
LT
2744 return 0;
2745}
2746
2747/*
2748 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2749 * tasks if there is an imbalance.
2750 *
d15bcfdb 2751 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2752 * this_rq is locked.
2753 */
48f24c4d 2754static int
70b97a7f 2755load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2756{
2757 struct sched_group *group;
70b97a7f 2758 struct rq *busiest = NULL;
1da177e4
LT
2759 unsigned long imbalance;
2760 int nr_moved = 0;
5969fe06 2761 int sd_idle = 0;
969bb4e4 2762 int all_pinned = 0;
0a2966b4 2763 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2764
89c4710e
SS
2765 /*
2766 * When power savings policy is enabled for the parent domain, idle
2767 * sibling can pick up load irrespective of busy siblings. In this case,
2768 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2769 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2770 */
2771 if (sd->flags & SD_SHARE_CPUPOWER &&
2772 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2773 sd_idle = 1;
1da177e4 2774
d15bcfdb 2775 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2776redo:
d15bcfdb 2777 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2778 &sd_idle, &cpus, NULL);
1da177e4 2779 if (!group) {
d15bcfdb 2780 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2781 goto out_balanced;
1da177e4
LT
2782 }
2783
d15bcfdb 2784 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2785 &cpus);
db935dbd 2786 if (!busiest) {
d15bcfdb 2787 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2788 goto out_balanced;
1da177e4
LT
2789 }
2790
db935dbd
NP
2791 BUG_ON(busiest == this_rq);
2792
d15bcfdb 2793 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2794
2795 nr_moved = 0;
2796 if (busiest->nr_running > 1) {
2797 /* Attempt to move tasks */
2798 double_lock_balance(this_rq, busiest);
2799 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2800 minus_1_or_zero(busiest->nr_running),
969bb4e4
SS
2801 imbalance, sd, CPU_NEWLY_IDLE,
2802 &all_pinned);
d6d5cfaf 2803 spin_unlock(&busiest->lock);
0a2966b4 2804
969bb4e4 2805 if (unlikely(all_pinned)) {
0a2966b4
CL
2806 cpu_clear(cpu_of(busiest), cpus);
2807 if (!cpus_empty(cpus))
2808 goto redo;
2809 }
d6d5cfaf
NP
2810 }
2811
5969fe06 2812 if (!nr_moved) {
d15bcfdb 2813 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2814 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2815 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2816 return -1;
2817 } else
16cfb1c0 2818 sd->nr_balance_failed = 0;
1da177e4 2819
1da177e4 2820 return nr_moved;
16cfb1c0
NP
2821
2822out_balanced:
d15bcfdb 2823 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2824 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2825 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2826 return -1;
16cfb1c0 2827 sd->nr_balance_failed = 0;
48f24c4d 2828
16cfb1c0 2829 return 0;
1da177e4
LT
2830}
2831
2832/*
2833 * idle_balance is called by schedule() if this_cpu is about to become
2834 * idle. Attempts to pull tasks from other CPUs.
2835 */
70b97a7f 2836static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2837{
2838 struct sched_domain *sd;
dd41f596
IM
2839 int pulled_task = -1;
2840 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2841
2842 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2843 unsigned long interval;
2844
2845 if (!(sd->flags & SD_LOAD_BALANCE))
2846 continue;
2847
2848 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2849 /* If we've pulled tasks over stop searching: */
1bd77f2d 2850 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2851 this_rq, sd);
2852
2853 interval = msecs_to_jiffies(sd->balance_interval);
2854 if (time_after(next_balance, sd->last_balance + interval))
2855 next_balance = sd->last_balance + interval;
2856 if (pulled_task)
2857 break;
1da177e4 2858 }
dd41f596 2859 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2860 /*
2861 * We are going idle. next_balance may be set based on
2862 * a busy processor. So reset next_balance.
2863 */
2864 this_rq->next_balance = next_balance;
dd41f596 2865 }
1da177e4
LT
2866}
2867
2868/*
2869 * active_load_balance is run by migration threads. It pushes running tasks
2870 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2871 * running on each physical CPU where possible, and avoids physical /
2872 * logical imbalances.
2873 *
2874 * Called with busiest_rq locked.
2875 */
70b97a7f 2876static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2877{
39507451 2878 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2879 struct sched_domain *sd;
2880 struct rq *target_rq;
39507451 2881
48f24c4d 2882 /* Is there any task to move? */
39507451 2883 if (busiest_rq->nr_running <= 1)
39507451
NP
2884 return;
2885
2886 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2887
2888 /*
39507451
NP
2889 * This condition is "impossible", if it occurs
2890 * we need to fix it. Originally reported by
2891 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2892 */
39507451 2893 BUG_ON(busiest_rq == target_rq);
1da177e4 2894
39507451
NP
2895 /* move a task from busiest_rq to target_rq */
2896 double_lock_balance(busiest_rq, target_rq);
2897
2898 /* Search for an sd spanning us and the target CPU. */
c96d145e 2899 for_each_domain(target_cpu, sd) {
39507451 2900 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2901 cpu_isset(busiest_cpu, sd->span))
39507451 2902 break;
c96d145e 2903 }
39507451 2904
48f24c4d
IM
2905 if (likely(sd)) {
2906 schedstat_inc(sd, alb_cnt);
39507451 2907
48f24c4d 2908 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
5a4f3ea7 2909 ULONG_MAX, sd, CPU_IDLE, NULL))
48f24c4d
IM
2910 schedstat_inc(sd, alb_pushed);
2911 else
2912 schedstat_inc(sd, alb_failed);
2913 }
39507451 2914 spin_unlock(&target_rq->lock);
1da177e4
LT
2915}
2916
46cb4b7c
SS
2917#ifdef CONFIG_NO_HZ
2918static struct {
2919 atomic_t load_balancer;
2920 cpumask_t cpu_mask;
2921} nohz ____cacheline_aligned = {
2922 .load_balancer = ATOMIC_INIT(-1),
2923 .cpu_mask = CPU_MASK_NONE,
2924};
2925
7835b98b 2926/*
46cb4b7c
SS
2927 * This routine will try to nominate the ilb (idle load balancing)
2928 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2929 * load balancing on behalf of all those cpus. If all the cpus in the system
2930 * go into this tickless mode, then there will be no ilb owner (as there is
2931 * no need for one) and all the cpus will sleep till the next wakeup event
2932 * arrives...
2933 *
2934 * For the ilb owner, tick is not stopped. And this tick will be used
2935 * for idle load balancing. ilb owner will still be part of
2936 * nohz.cpu_mask..
7835b98b 2937 *
46cb4b7c
SS
2938 * While stopping the tick, this cpu will become the ilb owner if there
2939 * is no other owner. And will be the owner till that cpu becomes busy
2940 * or if all cpus in the system stop their ticks at which point
2941 * there is no need for ilb owner.
2942 *
2943 * When the ilb owner becomes busy, it nominates another owner, during the
2944 * next busy scheduler_tick()
2945 */
2946int select_nohz_load_balancer(int stop_tick)
2947{
2948 int cpu = smp_processor_id();
2949
2950 if (stop_tick) {
2951 cpu_set(cpu, nohz.cpu_mask);
2952 cpu_rq(cpu)->in_nohz_recently = 1;
2953
2954 /*
2955 * If we are going offline and still the leader, give up!
2956 */
2957 if (cpu_is_offline(cpu) &&
2958 atomic_read(&nohz.load_balancer) == cpu) {
2959 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2960 BUG();
2961 return 0;
2962 }
2963
2964 /* time for ilb owner also to sleep */
2965 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2966 if (atomic_read(&nohz.load_balancer) == cpu)
2967 atomic_set(&nohz.load_balancer, -1);
2968 return 0;
2969 }
2970
2971 if (atomic_read(&nohz.load_balancer) == -1) {
2972 /* make me the ilb owner */
2973 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2974 return 1;
2975 } else if (atomic_read(&nohz.load_balancer) == cpu)
2976 return 1;
2977 } else {
2978 if (!cpu_isset(cpu, nohz.cpu_mask))
2979 return 0;
2980
2981 cpu_clear(cpu, nohz.cpu_mask);
2982
2983 if (atomic_read(&nohz.load_balancer) == cpu)
2984 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2985 BUG();
2986 }
2987 return 0;
2988}
2989#endif
2990
2991static DEFINE_SPINLOCK(balancing);
2992
2993/*
7835b98b
CL
2994 * It checks each scheduling domain to see if it is due to be balanced,
2995 * and initiates a balancing operation if so.
2996 *
2997 * Balancing parameters are set up in arch_init_sched_domains.
2998 */
d15bcfdb 2999static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3000{
46cb4b7c
SS
3001 int balance = 1;
3002 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3003 unsigned long interval;
3004 struct sched_domain *sd;
46cb4b7c 3005 /* Earliest time when we have to do rebalance again */
c9819f45 3006 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 3007
46cb4b7c 3008 for_each_domain(cpu, sd) {
1da177e4
LT
3009 if (!(sd->flags & SD_LOAD_BALANCE))
3010 continue;
3011
3012 interval = sd->balance_interval;
d15bcfdb 3013 if (idle != CPU_IDLE)
1da177e4
LT
3014 interval *= sd->busy_factor;
3015
3016 /* scale ms to jiffies */
3017 interval = msecs_to_jiffies(interval);
3018 if (unlikely(!interval))
3019 interval = 1;
dd41f596
IM
3020 if (interval > HZ*NR_CPUS/10)
3021 interval = HZ*NR_CPUS/10;
3022
1da177e4 3023
08c183f3
CL
3024 if (sd->flags & SD_SERIALIZE) {
3025 if (!spin_trylock(&balancing))
3026 goto out;
3027 }
3028
c9819f45 3029 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3030 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3031 /*
3032 * We've pulled tasks over so either we're no
5969fe06
NP
3033 * longer idle, or one of our SMT siblings is
3034 * not idle.
3035 */
d15bcfdb 3036 idle = CPU_NOT_IDLE;
1da177e4 3037 }
1bd77f2d 3038 sd->last_balance = jiffies;
1da177e4 3039 }
08c183f3
CL
3040 if (sd->flags & SD_SERIALIZE)
3041 spin_unlock(&balancing);
3042out:
c9819f45
CL
3043 if (time_after(next_balance, sd->last_balance + interval))
3044 next_balance = sd->last_balance + interval;
783609c6
SS
3045
3046 /*
3047 * Stop the load balance at this level. There is another
3048 * CPU in our sched group which is doing load balancing more
3049 * actively.
3050 */
3051 if (!balance)
3052 break;
1da177e4 3053 }
46cb4b7c
SS
3054 rq->next_balance = next_balance;
3055}
3056
3057/*
3058 * run_rebalance_domains is triggered when needed from the scheduler tick.
3059 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3060 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3061 */
3062static void run_rebalance_domains(struct softirq_action *h)
3063{
dd41f596
IM
3064 int this_cpu = smp_processor_id();
3065 struct rq *this_rq = cpu_rq(this_cpu);
3066 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3067 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3068
dd41f596 3069 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3070
3071#ifdef CONFIG_NO_HZ
3072 /*
3073 * If this cpu is the owner for idle load balancing, then do the
3074 * balancing on behalf of the other idle cpus whose ticks are
3075 * stopped.
3076 */
dd41f596
IM
3077 if (this_rq->idle_at_tick &&
3078 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3079 cpumask_t cpus = nohz.cpu_mask;
3080 struct rq *rq;
3081 int balance_cpu;
3082
dd41f596 3083 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3084 for_each_cpu_mask(balance_cpu, cpus) {
3085 /*
3086 * If this cpu gets work to do, stop the load balancing
3087 * work being done for other cpus. Next load
3088 * balancing owner will pick it up.
3089 */
3090 if (need_resched())
3091 break;
3092
dd41f596 3093 rebalance_domains(balance_cpu, SCHED_IDLE);
46cb4b7c
SS
3094
3095 rq = cpu_rq(balance_cpu);
dd41f596
IM
3096 if (time_after(this_rq->next_balance, rq->next_balance))
3097 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3098 }
3099 }
3100#endif
3101}
3102
3103/*
3104 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3105 *
3106 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3107 * idle load balancing owner or decide to stop the periodic load balancing,
3108 * if the whole system is idle.
3109 */
dd41f596 3110static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3111{
46cb4b7c
SS
3112#ifdef CONFIG_NO_HZ
3113 /*
3114 * If we were in the nohz mode recently and busy at the current
3115 * scheduler tick, then check if we need to nominate new idle
3116 * load balancer.
3117 */
3118 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3119 rq->in_nohz_recently = 0;
3120
3121 if (atomic_read(&nohz.load_balancer) == cpu) {
3122 cpu_clear(cpu, nohz.cpu_mask);
3123 atomic_set(&nohz.load_balancer, -1);
3124 }
3125
3126 if (atomic_read(&nohz.load_balancer) == -1) {
3127 /*
3128 * simple selection for now: Nominate the
3129 * first cpu in the nohz list to be the next
3130 * ilb owner.
3131 *
3132 * TBD: Traverse the sched domains and nominate
3133 * the nearest cpu in the nohz.cpu_mask.
3134 */
3135 int ilb = first_cpu(nohz.cpu_mask);
3136
3137 if (ilb != NR_CPUS)
3138 resched_cpu(ilb);
3139 }
3140 }
3141
3142 /*
3143 * If this cpu is idle and doing idle load balancing for all the
3144 * cpus with ticks stopped, is it time for that to stop?
3145 */
3146 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3147 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3148 resched_cpu(cpu);
3149 return;
3150 }
3151
3152 /*
3153 * If this cpu is idle and the idle load balancing is done by
3154 * someone else, then no need raise the SCHED_SOFTIRQ
3155 */
3156 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3157 cpu_isset(cpu, nohz.cpu_mask))
3158 return;
3159#endif
3160 if (time_after_eq(jiffies, rq->next_balance))
3161 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3162}
dd41f596
IM
3163
3164#else /* CONFIG_SMP */
3165
1da177e4
LT
3166/*
3167 * on UP we do not need to balance between CPUs:
3168 */
70b97a7f 3169static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3170{
3171}
dd41f596
IM
3172
3173/* Avoid "used but not defined" warning on UP */
3174static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3175 unsigned long max_nr_move, unsigned long max_load_move,
3176 struct sched_domain *sd, enum cpu_idle_type idle,
3177 int *all_pinned, unsigned long *load_moved,
3178 int this_best_prio, int best_prio, int best_prio_seen,
3179 struct rq_iterator *iterator)
3180{
3181 *load_moved = 0;
3182
3183 return 0;
3184}
3185
1da177e4
LT
3186#endif
3187
1da177e4
LT
3188DEFINE_PER_CPU(struct kernel_stat, kstat);
3189
3190EXPORT_PER_CPU_SYMBOL(kstat);
3191
3192/*
41b86e9c
IM
3193 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3194 * that have not yet been banked in case the task is currently running.
1da177e4 3195 */
41b86e9c 3196unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3197{
1da177e4 3198 unsigned long flags;
41b86e9c
IM
3199 u64 ns, delta_exec;
3200 struct rq *rq;
48f24c4d 3201
41b86e9c
IM
3202 rq = task_rq_lock(p, &flags);
3203 ns = p->se.sum_exec_runtime;
3204 if (rq->curr == p) {
3205 delta_exec = rq_clock(rq) - p->se.exec_start;
3206 if ((s64)delta_exec > 0)
3207 ns += delta_exec;
3208 }
3209 task_rq_unlock(rq, &flags);
48f24c4d 3210
1da177e4
LT
3211 return ns;
3212}
3213
1da177e4
LT
3214/*
3215 * Account user cpu time to a process.
3216 * @p: the process that the cpu time gets accounted to
3217 * @hardirq_offset: the offset to subtract from hardirq_count()
3218 * @cputime: the cpu time spent in user space since the last update
3219 */
3220void account_user_time(struct task_struct *p, cputime_t cputime)
3221{
3222 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3223 cputime64_t tmp;
3224
3225 p->utime = cputime_add(p->utime, cputime);
3226
3227 /* Add user time to cpustat. */
3228 tmp = cputime_to_cputime64(cputime);
3229 if (TASK_NICE(p) > 0)
3230 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3231 else
3232 cpustat->user = cputime64_add(cpustat->user, tmp);
3233}
3234
3235/*
3236 * Account system cpu time to a process.
3237 * @p: the process that the cpu time gets accounted to
3238 * @hardirq_offset: the offset to subtract from hardirq_count()
3239 * @cputime: the cpu time spent in kernel space since the last update
3240 */
3241void account_system_time(struct task_struct *p, int hardirq_offset,
3242 cputime_t cputime)
3243{
3244 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3245 struct rq *rq = this_rq();
1da177e4
LT
3246 cputime64_t tmp;
3247
3248 p->stime = cputime_add(p->stime, cputime);
3249
3250 /* Add system time to cpustat. */
3251 tmp = cputime_to_cputime64(cputime);
3252 if (hardirq_count() - hardirq_offset)
3253 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3254 else if (softirq_count())
3255 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3256 else if (p != rq->idle)
3257 cpustat->system = cputime64_add(cpustat->system, tmp);
3258 else if (atomic_read(&rq->nr_iowait) > 0)
3259 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3260 else
3261 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3262 /* Account for system time used */
3263 acct_update_integrals(p);
1da177e4
LT
3264}
3265
3266/*
3267 * Account for involuntary wait time.
3268 * @p: the process from which the cpu time has been stolen
3269 * @steal: the cpu time spent in involuntary wait
3270 */
3271void account_steal_time(struct task_struct *p, cputime_t steal)
3272{
3273 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3274 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3275 struct rq *rq = this_rq();
1da177e4
LT
3276
3277 if (p == rq->idle) {
3278 p->stime = cputime_add(p->stime, steal);
3279 if (atomic_read(&rq->nr_iowait) > 0)
3280 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3281 else
3282 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3283 } else
3284 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3285}
3286
7835b98b
CL
3287/*
3288 * This function gets called by the timer code, with HZ frequency.
3289 * We call it with interrupts disabled.
3290 *
3291 * It also gets called by the fork code, when changing the parent's
3292 * timeslices.
3293 */
3294void scheduler_tick(void)
3295{
7835b98b
CL
3296 int cpu = smp_processor_id();
3297 struct rq *rq = cpu_rq(cpu);
dd41f596
IM
3298 struct task_struct *curr = rq->curr;
3299
3300 spin_lock(&rq->lock);
f1a438d8 3301 update_cpu_load(rq);
dd41f596
IM
3302 if (curr != rq->idle) /* FIXME: needed? */
3303 curr->sched_class->task_tick(rq, curr);
dd41f596 3304 spin_unlock(&rq->lock);
7835b98b 3305
e418e1c2 3306#ifdef CONFIG_SMP
dd41f596
IM
3307 rq->idle_at_tick = idle_cpu(cpu);
3308 trigger_load_balance(rq, cpu);
e418e1c2 3309#endif
1da177e4
LT
3310}
3311
1da177e4
LT
3312#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3313
3314void fastcall add_preempt_count(int val)
3315{
3316 /*
3317 * Underflow?
3318 */
9a11b49a
IM
3319 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3320 return;
1da177e4
LT
3321 preempt_count() += val;
3322 /*
3323 * Spinlock count overflowing soon?
3324 */
33859f7f
MOS
3325 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3326 PREEMPT_MASK - 10);
1da177e4
LT
3327}
3328EXPORT_SYMBOL(add_preempt_count);
3329
3330void fastcall sub_preempt_count(int val)
3331{
3332 /*
3333 * Underflow?
3334 */
9a11b49a
IM
3335 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3336 return;
1da177e4
LT
3337 /*
3338 * Is the spinlock portion underflowing?
3339 */
9a11b49a
IM
3340 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3341 !(preempt_count() & PREEMPT_MASK)))
3342 return;
3343
1da177e4
LT
3344 preempt_count() -= val;
3345}
3346EXPORT_SYMBOL(sub_preempt_count);
3347
3348#endif
3349
3350/*
dd41f596 3351 * Print scheduling while atomic bug:
1da177e4 3352 */
dd41f596 3353static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3354{
dd41f596
IM
3355 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3356 prev->comm, preempt_count(), prev->pid);
3357 debug_show_held_locks(prev);
3358 if (irqs_disabled())
3359 print_irqtrace_events(prev);
3360 dump_stack();
3361}
1da177e4 3362
dd41f596
IM
3363/*
3364 * Various schedule()-time debugging checks and statistics:
3365 */
3366static inline void schedule_debug(struct task_struct *prev)
3367{
1da177e4
LT
3368 /*
3369 * Test if we are atomic. Since do_exit() needs to call into
3370 * schedule() atomically, we ignore that path for now.
3371 * Otherwise, whine if we are scheduling when we should not be.
3372 */
dd41f596
IM
3373 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3374 __schedule_bug(prev);
3375
1da177e4
LT
3376 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3377
dd41f596
IM
3378 schedstat_inc(this_rq(), sched_cnt);
3379}
3380
3381/*
3382 * Pick up the highest-prio task:
3383 */
3384static inline struct task_struct *
3385pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3386{
3387 struct sched_class *class;
3388 struct task_struct *p;
1da177e4
LT
3389
3390 /*
dd41f596
IM
3391 * Optimization: we know that if all tasks are in
3392 * the fair class we can call that function directly:
1da177e4 3393 */
dd41f596
IM
3394 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3395 p = fair_sched_class.pick_next_task(rq, now);
3396 if (likely(p))
3397 return p;
1da177e4
LT
3398 }
3399
dd41f596
IM
3400 class = sched_class_highest;
3401 for ( ; ; ) {
3402 p = class->pick_next_task(rq, now);
3403 if (p)
3404 return p;
3405 /*
3406 * Will never be NULL as the idle class always
3407 * returns a non-NULL p:
3408 */
3409 class = class->next;
3410 }
3411}
1da177e4 3412
dd41f596
IM
3413/*
3414 * schedule() is the main scheduler function.
3415 */
3416asmlinkage void __sched schedule(void)
3417{
3418 struct task_struct *prev, *next;
3419 long *switch_count;
3420 struct rq *rq;
3421 u64 now;
3422 int cpu;
3423
3424need_resched:
3425 preempt_disable();
3426 cpu = smp_processor_id();
3427 rq = cpu_rq(cpu);
3428 rcu_qsctr_inc(cpu);
3429 prev = rq->curr;
3430 switch_count = &prev->nivcsw;
3431
3432 release_kernel_lock(prev);
3433need_resched_nonpreemptible:
3434
3435 schedule_debug(prev);
1da177e4
LT
3436
3437 spin_lock_irq(&rq->lock);
dd41f596 3438 clear_tsk_need_resched(prev);
1da177e4 3439
1da177e4 3440 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3441 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3442 unlikely(signal_pending(prev)))) {
1da177e4 3443 prev->state = TASK_RUNNING;
dd41f596
IM
3444 } else {
3445 deactivate_task(rq, prev, 1);
1da177e4 3446 }
dd41f596 3447 switch_count = &prev->nvcsw;
1da177e4
LT
3448 }
3449
dd41f596 3450 if (unlikely(!rq->nr_running))
1da177e4 3451 idle_balance(cpu, rq);
1da177e4 3452
dd41f596
IM
3453 now = __rq_clock(rq);
3454 prev->sched_class->put_prev_task(rq, prev, now);
3455 next = pick_next_task(rq, prev, now);
1da177e4
LT
3456
3457 sched_info_switch(prev, next);
dd41f596 3458
1da177e4 3459 if (likely(prev != next)) {
1da177e4
LT
3460 rq->nr_switches++;
3461 rq->curr = next;
3462 ++*switch_count;
3463
dd41f596 3464 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3465 } else
3466 spin_unlock_irq(&rq->lock);
3467
dd41f596
IM
3468 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3469 cpu = smp_processor_id();
3470 rq = cpu_rq(cpu);
1da177e4 3471 goto need_resched_nonpreemptible;
dd41f596 3472 }
1da177e4
LT
3473 preempt_enable_no_resched();
3474 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3475 goto need_resched;
3476}
1da177e4
LT
3477EXPORT_SYMBOL(schedule);
3478
3479#ifdef CONFIG_PREEMPT
3480/*
2ed6e34f 3481 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3482 * off of preempt_enable. Kernel preemptions off return from interrupt
3483 * occur there and call schedule directly.
3484 */
3485asmlinkage void __sched preempt_schedule(void)
3486{
3487 struct thread_info *ti = current_thread_info();
3488#ifdef CONFIG_PREEMPT_BKL
3489 struct task_struct *task = current;
3490 int saved_lock_depth;
3491#endif
3492 /*
3493 * If there is a non-zero preempt_count or interrupts are disabled,
3494 * we do not want to preempt the current task. Just return..
3495 */
beed33a8 3496 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3497 return;
3498
3499need_resched:
3500 add_preempt_count(PREEMPT_ACTIVE);
3501 /*
3502 * We keep the big kernel semaphore locked, but we
3503 * clear ->lock_depth so that schedule() doesnt
3504 * auto-release the semaphore:
3505 */
3506#ifdef CONFIG_PREEMPT_BKL
3507 saved_lock_depth = task->lock_depth;
3508 task->lock_depth = -1;
3509#endif
3510 schedule();
3511#ifdef CONFIG_PREEMPT_BKL
3512 task->lock_depth = saved_lock_depth;
3513#endif
3514 sub_preempt_count(PREEMPT_ACTIVE);
3515
3516 /* we could miss a preemption opportunity between schedule and now */
3517 barrier();
3518 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3519 goto need_resched;
3520}
1da177e4
LT
3521EXPORT_SYMBOL(preempt_schedule);
3522
3523/*
2ed6e34f 3524 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3525 * off of irq context.
3526 * Note, that this is called and return with irqs disabled. This will
3527 * protect us against recursive calling from irq.
3528 */
3529asmlinkage void __sched preempt_schedule_irq(void)
3530{
3531 struct thread_info *ti = current_thread_info();
3532#ifdef CONFIG_PREEMPT_BKL
3533 struct task_struct *task = current;
3534 int saved_lock_depth;
3535#endif
2ed6e34f 3536 /* Catch callers which need to be fixed */
1da177e4
LT
3537 BUG_ON(ti->preempt_count || !irqs_disabled());
3538
3539need_resched:
3540 add_preempt_count(PREEMPT_ACTIVE);
3541 /*
3542 * We keep the big kernel semaphore locked, but we
3543 * clear ->lock_depth so that schedule() doesnt
3544 * auto-release the semaphore:
3545 */
3546#ifdef CONFIG_PREEMPT_BKL
3547 saved_lock_depth = task->lock_depth;
3548 task->lock_depth = -1;
3549#endif
3550 local_irq_enable();
3551 schedule();
3552 local_irq_disable();
3553#ifdef CONFIG_PREEMPT_BKL
3554 task->lock_depth = saved_lock_depth;
3555#endif
3556 sub_preempt_count(PREEMPT_ACTIVE);
3557
3558 /* we could miss a preemption opportunity between schedule and now */
3559 barrier();
3560 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3561 goto need_resched;
3562}
3563
3564#endif /* CONFIG_PREEMPT */
3565
95cdf3b7
IM
3566int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3567 void *key)
1da177e4 3568{
48f24c4d 3569 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3570}
1da177e4
LT
3571EXPORT_SYMBOL(default_wake_function);
3572
3573/*
3574 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3575 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3576 * number) then we wake all the non-exclusive tasks and one exclusive task.
3577 *
3578 * There are circumstances in which we can try to wake a task which has already
3579 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3580 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3581 */
3582static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3583 int nr_exclusive, int sync, void *key)
3584{
3585 struct list_head *tmp, *next;
3586
3587 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3588 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3589 unsigned flags = curr->flags;
3590
1da177e4 3591 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3592 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3593 break;
3594 }
3595}
3596
3597/**
3598 * __wake_up - wake up threads blocked on a waitqueue.
3599 * @q: the waitqueue
3600 * @mode: which threads
3601 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3602 * @key: is directly passed to the wakeup function
1da177e4
LT
3603 */
3604void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3605 int nr_exclusive, void *key)
1da177e4
LT
3606{
3607 unsigned long flags;
3608
3609 spin_lock_irqsave(&q->lock, flags);
3610 __wake_up_common(q, mode, nr_exclusive, 0, key);
3611 spin_unlock_irqrestore(&q->lock, flags);
3612}
1da177e4
LT
3613EXPORT_SYMBOL(__wake_up);
3614
3615/*
3616 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3617 */
3618void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3619{
3620 __wake_up_common(q, mode, 1, 0, NULL);
3621}
3622
3623/**
67be2dd1 3624 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3625 * @q: the waitqueue
3626 * @mode: which threads
3627 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3628 *
3629 * The sync wakeup differs that the waker knows that it will schedule
3630 * away soon, so while the target thread will be woken up, it will not
3631 * be migrated to another CPU - ie. the two threads are 'synchronized'
3632 * with each other. This can prevent needless bouncing between CPUs.
3633 *
3634 * On UP it can prevent extra preemption.
3635 */
95cdf3b7
IM
3636void fastcall
3637__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3638{
3639 unsigned long flags;
3640 int sync = 1;
3641
3642 if (unlikely(!q))
3643 return;
3644
3645 if (unlikely(!nr_exclusive))
3646 sync = 0;
3647
3648 spin_lock_irqsave(&q->lock, flags);
3649 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3650 spin_unlock_irqrestore(&q->lock, flags);
3651}
3652EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3653
3654void fastcall complete(struct completion *x)
3655{
3656 unsigned long flags;
3657
3658 spin_lock_irqsave(&x->wait.lock, flags);
3659 x->done++;
3660 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3661 1, 0, NULL);
3662 spin_unlock_irqrestore(&x->wait.lock, flags);
3663}
3664EXPORT_SYMBOL(complete);
3665
3666void fastcall complete_all(struct completion *x)
3667{
3668 unsigned long flags;
3669
3670 spin_lock_irqsave(&x->wait.lock, flags);
3671 x->done += UINT_MAX/2;
3672 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3673 0, 0, NULL);
3674 spin_unlock_irqrestore(&x->wait.lock, flags);
3675}
3676EXPORT_SYMBOL(complete_all);
3677
3678void fastcall __sched wait_for_completion(struct completion *x)
3679{
3680 might_sleep();
48f24c4d 3681
1da177e4
LT
3682 spin_lock_irq(&x->wait.lock);
3683 if (!x->done) {
3684 DECLARE_WAITQUEUE(wait, current);
3685
3686 wait.flags |= WQ_FLAG_EXCLUSIVE;
3687 __add_wait_queue_tail(&x->wait, &wait);
3688 do {
3689 __set_current_state(TASK_UNINTERRUPTIBLE);
3690 spin_unlock_irq(&x->wait.lock);
3691 schedule();
3692 spin_lock_irq(&x->wait.lock);
3693 } while (!x->done);
3694 __remove_wait_queue(&x->wait, &wait);
3695 }
3696 x->done--;
3697 spin_unlock_irq(&x->wait.lock);
3698}
3699EXPORT_SYMBOL(wait_for_completion);
3700
3701unsigned long fastcall __sched
3702wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3703{
3704 might_sleep();
3705
3706 spin_lock_irq(&x->wait.lock);
3707 if (!x->done) {
3708 DECLARE_WAITQUEUE(wait, current);
3709
3710 wait.flags |= WQ_FLAG_EXCLUSIVE;
3711 __add_wait_queue_tail(&x->wait, &wait);
3712 do {
3713 __set_current_state(TASK_UNINTERRUPTIBLE);
3714 spin_unlock_irq(&x->wait.lock);
3715 timeout = schedule_timeout(timeout);
3716 spin_lock_irq(&x->wait.lock);
3717 if (!timeout) {
3718 __remove_wait_queue(&x->wait, &wait);
3719 goto out;
3720 }
3721 } while (!x->done);
3722 __remove_wait_queue(&x->wait, &wait);
3723 }
3724 x->done--;
3725out:
3726 spin_unlock_irq(&x->wait.lock);
3727 return timeout;
3728}
3729EXPORT_SYMBOL(wait_for_completion_timeout);
3730
3731int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3732{
3733 int ret = 0;
3734
3735 might_sleep();
3736
3737 spin_lock_irq(&x->wait.lock);
3738 if (!x->done) {
3739 DECLARE_WAITQUEUE(wait, current);
3740
3741 wait.flags |= WQ_FLAG_EXCLUSIVE;
3742 __add_wait_queue_tail(&x->wait, &wait);
3743 do {
3744 if (signal_pending(current)) {
3745 ret = -ERESTARTSYS;
3746 __remove_wait_queue(&x->wait, &wait);
3747 goto out;
3748 }
3749 __set_current_state(TASK_INTERRUPTIBLE);
3750 spin_unlock_irq(&x->wait.lock);
3751 schedule();
3752 spin_lock_irq(&x->wait.lock);
3753 } while (!x->done);
3754 __remove_wait_queue(&x->wait, &wait);
3755 }
3756 x->done--;
3757out:
3758 spin_unlock_irq(&x->wait.lock);
3759
3760 return ret;
3761}
3762EXPORT_SYMBOL(wait_for_completion_interruptible);
3763
3764unsigned long fastcall __sched
3765wait_for_completion_interruptible_timeout(struct completion *x,
3766 unsigned long timeout)
3767{
3768 might_sleep();
3769
3770 spin_lock_irq(&x->wait.lock);
3771 if (!x->done) {
3772 DECLARE_WAITQUEUE(wait, current);
3773
3774 wait.flags |= WQ_FLAG_EXCLUSIVE;
3775 __add_wait_queue_tail(&x->wait, &wait);
3776 do {
3777 if (signal_pending(current)) {
3778 timeout = -ERESTARTSYS;
3779 __remove_wait_queue(&x->wait, &wait);
3780 goto out;
3781 }
3782 __set_current_state(TASK_INTERRUPTIBLE);
3783 spin_unlock_irq(&x->wait.lock);
3784 timeout = schedule_timeout(timeout);
3785 spin_lock_irq(&x->wait.lock);
3786 if (!timeout) {
3787 __remove_wait_queue(&x->wait, &wait);
3788 goto out;
3789 }
3790 } while (!x->done);
3791 __remove_wait_queue(&x->wait, &wait);
3792 }
3793 x->done--;
3794out:
3795 spin_unlock_irq(&x->wait.lock);
3796 return timeout;
3797}
3798EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3799
0fec171c
IM
3800static inline void
3801sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3802{
3803 spin_lock_irqsave(&q->lock, *flags);
3804 __add_wait_queue(q, wait);
1da177e4 3805 spin_unlock(&q->lock);
0fec171c 3806}
1da177e4 3807
0fec171c
IM
3808static inline void
3809sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3810{
3811 spin_lock_irq(&q->lock);
3812 __remove_wait_queue(q, wait);
3813 spin_unlock_irqrestore(&q->lock, *flags);
3814}
1da177e4 3815
0fec171c 3816void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3817{
0fec171c
IM
3818 unsigned long flags;
3819 wait_queue_t wait;
3820
3821 init_waitqueue_entry(&wait, current);
1da177e4
LT
3822
3823 current->state = TASK_INTERRUPTIBLE;
3824
0fec171c 3825 sleep_on_head(q, &wait, &flags);
1da177e4 3826 schedule();
0fec171c 3827 sleep_on_tail(q, &wait, &flags);
1da177e4 3828}
1da177e4
LT
3829EXPORT_SYMBOL(interruptible_sleep_on);
3830
0fec171c 3831long __sched
95cdf3b7 3832interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3833{
0fec171c
IM
3834 unsigned long flags;
3835 wait_queue_t wait;
3836
3837 init_waitqueue_entry(&wait, current);
1da177e4
LT
3838
3839 current->state = TASK_INTERRUPTIBLE;
3840
0fec171c 3841 sleep_on_head(q, &wait, &flags);
1da177e4 3842 timeout = schedule_timeout(timeout);
0fec171c 3843 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3844
3845 return timeout;
3846}
1da177e4
LT
3847EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3848
0fec171c 3849void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3850{
0fec171c
IM
3851 unsigned long flags;
3852 wait_queue_t wait;
3853
3854 init_waitqueue_entry(&wait, current);
1da177e4
LT
3855
3856 current->state = TASK_UNINTERRUPTIBLE;
3857
0fec171c 3858 sleep_on_head(q, &wait, &flags);
1da177e4 3859 schedule();
0fec171c 3860 sleep_on_tail(q, &wait, &flags);
1da177e4 3861}
1da177e4
LT
3862EXPORT_SYMBOL(sleep_on);
3863
0fec171c 3864long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3865{
0fec171c
IM
3866 unsigned long flags;
3867 wait_queue_t wait;
3868
3869 init_waitqueue_entry(&wait, current);
1da177e4
LT
3870
3871 current->state = TASK_UNINTERRUPTIBLE;
3872
0fec171c 3873 sleep_on_head(q, &wait, &flags);
1da177e4 3874 timeout = schedule_timeout(timeout);
0fec171c 3875 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3876
3877 return timeout;
3878}
1da177e4
LT
3879EXPORT_SYMBOL(sleep_on_timeout);
3880
b29739f9
IM
3881#ifdef CONFIG_RT_MUTEXES
3882
3883/*
3884 * rt_mutex_setprio - set the current priority of a task
3885 * @p: task
3886 * @prio: prio value (kernel-internal form)
3887 *
3888 * This function changes the 'effective' priority of a task. It does
3889 * not touch ->normal_prio like __setscheduler().
3890 *
3891 * Used by the rt_mutex code to implement priority inheritance logic.
3892 */
36c8b586 3893void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3894{
3895 unsigned long flags;
dd41f596 3896 int oldprio, on_rq;
70b97a7f 3897 struct rq *rq;
dd41f596 3898 u64 now;
b29739f9
IM
3899
3900 BUG_ON(prio < 0 || prio > MAX_PRIO);
3901
3902 rq = task_rq_lock(p, &flags);
dd41f596 3903 now = rq_clock(rq);
b29739f9 3904
d5f9f942 3905 oldprio = p->prio;
dd41f596
IM
3906 on_rq = p->se.on_rq;
3907 if (on_rq)
3908 dequeue_task(rq, p, 0, now);
3909
3910 if (rt_prio(prio))
3911 p->sched_class = &rt_sched_class;
3912 else
3913 p->sched_class = &fair_sched_class;
3914
b29739f9
IM
3915 p->prio = prio;
3916
dd41f596
IM
3917 if (on_rq) {
3918 enqueue_task(rq, p, 0, now);
b29739f9
IM
3919 /*
3920 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3921 * our priority decreased, or if we are not currently running on
3922 * this runqueue and our priority is higher than the current's
b29739f9 3923 */
d5f9f942
AM
3924 if (task_running(rq, p)) {
3925 if (p->prio > oldprio)
3926 resched_task(rq->curr);
dd41f596
IM
3927 } else {
3928 check_preempt_curr(rq, p);
3929 }
b29739f9
IM
3930 }
3931 task_rq_unlock(rq, &flags);
3932}
3933
3934#endif
3935
36c8b586 3936void set_user_nice(struct task_struct *p, long nice)
1da177e4 3937{
dd41f596 3938 int old_prio, delta, on_rq;
1da177e4 3939 unsigned long flags;
70b97a7f 3940 struct rq *rq;
dd41f596 3941 u64 now;
1da177e4
LT
3942
3943 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3944 return;
3945 /*
3946 * We have to be careful, if called from sys_setpriority(),
3947 * the task might be in the middle of scheduling on another CPU.
3948 */
3949 rq = task_rq_lock(p, &flags);
dd41f596 3950 now = rq_clock(rq);
1da177e4
LT
3951 /*
3952 * The RT priorities are set via sched_setscheduler(), but we still
3953 * allow the 'normal' nice value to be set - but as expected
3954 * it wont have any effect on scheduling until the task is
dd41f596 3955 * SCHED_FIFO/SCHED_RR:
1da177e4 3956 */
e05606d3 3957 if (task_has_rt_policy(p)) {
1da177e4
LT
3958 p->static_prio = NICE_TO_PRIO(nice);
3959 goto out_unlock;
3960 }
dd41f596
IM
3961 on_rq = p->se.on_rq;
3962 if (on_rq) {
3963 dequeue_task(rq, p, 0, now);
3964 dec_load(rq, p, now);
2dd73a4f 3965 }
1da177e4 3966
1da177e4 3967 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3968 set_load_weight(p);
b29739f9
IM
3969 old_prio = p->prio;
3970 p->prio = effective_prio(p);
3971 delta = p->prio - old_prio;
1da177e4 3972
dd41f596
IM
3973 if (on_rq) {
3974 enqueue_task(rq, p, 0, now);
3975 inc_load(rq, p, now);
1da177e4 3976 /*
d5f9f942
AM
3977 * If the task increased its priority or is running and
3978 * lowered its priority, then reschedule its CPU:
1da177e4 3979 */
d5f9f942 3980 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3981 resched_task(rq->curr);
3982 }
3983out_unlock:
3984 task_rq_unlock(rq, &flags);
3985}
1da177e4
LT
3986EXPORT_SYMBOL(set_user_nice);
3987
e43379f1
MM
3988/*
3989 * can_nice - check if a task can reduce its nice value
3990 * @p: task
3991 * @nice: nice value
3992 */
36c8b586 3993int can_nice(const struct task_struct *p, const int nice)
e43379f1 3994{
024f4747
MM
3995 /* convert nice value [19,-20] to rlimit style value [1,40] */
3996 int nice_rlim = 20 - nice;
48f24c4d 3997
e43379f1
MM
3998 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3999 capable(CAP_SYS_NICE));
4000}
4001
1da177e4
LT
4002#ifdef __ARCH_WANT_SYS_NICE
4003
4004/*
4005 * sys_nice - change the priority of the current process.
4006 * @increment: priority increment
4007 *
4008 * sys_setpriority is a more generic, but much slower function that
4009 * does similar things.
4010 */
4011asmlinkage long sys_nice(int increment)
4012{
48f24c4d 4013 long nice, retval;
1da177e4
LT
4014
4015 /*
4016 * Setpriority might change our priority at the same moment.
4017 * We don't have to worry. Conceptually one call occurs first
4018 * and we have a single winner.
4019 */
e43379f1
MM
4020 if (increment < -40)
4021 increment = -40;
1da177e4
LT
4022 if (increment > 40)
4023 increment = 40;
4024
4025 nice = PRIO_TO_NICE(current->static_prio) + increment;
4026 if (nice < -20)
4027 nice = -20;
4028 if (nice > 19)
4029 nice = 19;
4030
e43379f1
MM
4031 if (increment < 0 && !can_nice(current, nice))
4032 return -EPERM;
4033
1da177e4
LT
4034 retval = security_task_setnice(current, nice);
4035 if (retval)
4036 return retval;
4037
4038 set_user_nice(current, nice);
4039 return 0;
4040}
4041
4042#endif
4043
4044/**
4045 * task_prio - return the priority value of a given task.
4046 * @p: the task in question.
4047 *
4048 * This is the priority value as seen by users in /proc.
4049 * RT tasks are offset by -200. Normal tasks are centered
4050 * around 0, value goes from -16 to +15.
4051 */
36c8b586 4052int task_prio(const struct task_struct *p)
1da177e4
LT
4053{
4054 return p->prio - MAX_RT_PRIO;
4055}
4056
4057/**
4058 * task_nice - return the nice value of a given task.
4059 * @p: the task in question.
4060 */
36c8b586 4061int task_nice(const struct task_struct *p)
1da177e4
LT
4062{
4063 return TASK_NICE(p);
4064}
1da177e4 4065EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4066
4067/**
4068 * idle_cpu - is a given cpu idle currently?
4069 * @cpu: the processor in question.
4070 */
4071int idle_cpu(int cpu)
4072{
4073 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4074}
4075
1da177e4
LT
4076/**
4077 * idle_task - return the idle task for a given cpu.
4078 * @cpu: the processor in question.
4079 */
36c8b586 4080struct task_struct *idle_task(int cpu)
1da177e4
LT
4081{
4082 return cpu_rq(cpu)->idle;
4083}
4084
4085/**
4086 * find_process_by_pid - find a process with a matching PID value.
4087 * @pid: the pid in question.
4088 */
36c8b586 4089static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4090{
4091 return pid ? find_task_by_pid(pid) : current;
4092}
4093
4094/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4095static void
4096__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4097{
dd41f596 4098 BUG_ON(p->se.on_rq);
48f24c4d 4099
1da177e4 4100 p->policy = policy;
dd41f596
IM
4101 switch (p->policy) {
4102 case SCHED_NORMAL:
4103 case SCHED_BATCH:
4104 case SCHED_IDLE:
4105 p->sched_class = &fair_sched_class;
4106 break;
4107 case SCHED_FIFO:
4108 case SCHED_RR:
4109 p->sched_class = &rt_sched_class;
4110 break;
4111 }
4112
1da177e4 4113 p->rt_priority = prio;
b29739f9
IM
4114 p->normal_prio = normal_prio(p);
4115 /* we are holding p->pi_lock already */
4116 p->prio = rt_mutex_getprio(p);
2dd73a4f 4117 set_load_weight(p);
1da177e4
LT
4118}
4119
4120/**
72fd4a35 4121 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4122 * @p: the task in question.
4123 * @policy: new policy.
4124 * @param: structure containing the new RT priority.
5fe1d75f 4125 *
72fd4a35 4126 * NOTE that the task may be already dead.
1da177e4 4127 */
95cdf3b7
IM
4128int sched_setscheduler(struct task_struct *p, int policy,
4129 struct sched_param *param)
1da177e4 4130{
dd41f596 4131 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4132 unsigned long flags;
70b97a7f 4133 struct rq *rq;
1da177e4 4134
66e5393a
SR
4135 /* may grab non-irq protected spin_locks */
4136 BUG_ON(in_interrupt());
1da177e4
LT
4137recheck:
4138 /* double check policy once rq lock held */
4139 if (policy < 0)
4140 policy = oldpolicy = p->policy;
4141 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4142 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4143 policy != SCHED_IDLE)
b0a9499c 4144 return -EINVAL;
1da177e4
LT
4145 /*
4146 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4147 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4148 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4149 */
4150 if (param->sched_priority < 0 ||
95cdf3b7 4151 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4152 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4153 return -EINVAL;
e05606d3 4154 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4155 return -EINVAL;
4156
37e4ab3f
OC
4157 /*
4158 * Allow unprivileged RT tasks to decrease priority:
4159 */
4160 if (!capable(CAP_SYS_NICE)) {
e05606d3 4161 if (rt_policy(policy)) {
8dc3e909 4162 unsigned long rlim_rtprio;
8dc3e909
ON
4163
4164 if (!lock_task_sighand(p, &flags))
4165 return -ESRCH;
4166 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4167 unlock_task_sighand(p, &flags);
4168
4169 /* can't set/change the rt policy */
4170 if (policy != p->policy && !rlim_rtprio)
4171 return -EPERM;
4172
4173 /* can't increase priority */
4174 if (param->sched_priority > p->rt_priority &&
4175 param->sched_priority > rlim_rtprio)
4176 return -EPERM;
4177 }
dd41f596
IM
4178 /*
4179 * Like positive nice levels, dont allow tasks to
4180 * move out of SCHED_IDLE either:
4181 */
4182 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4183 return -EPERM;
5fe1d75f 4184
37e4ab3f
OC
4185 /* can't change other user's priorities */
4186 if ((current->euid != p->euid) &&
4187 (current->euid != p->uid))
4188 return -EPERM;
4189 }
1da177e4
LT
4190
4191 retval = security_task_setscheduler(p, policy, param);
4192 if (retval)
4193 return retval;
b29739f9
IM
4194 /*
4195 * make sure no PI-waiters arrive (or leave) while we are
4196 * changing the priority of the task:
4197 */
4198 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4199 /*
4200 * To be able to change p->policy safely, the apropriate
4201 * runqueue lock must be held.
4202 */
b29739f9 4203 rq = __task_rq_lock(p);
1da177e4
LT
4204 /* recheck policy now with rq lock held */
4205 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4206 policy = oldpolicy = -1;
b29739f9
IM
4207 __task_rq_unlock(rq);
4208 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4209 goto recheck;
4210 }
dd41f596
IM
4211 on_rq = p->se.on_rq;
4212 if (on_rq)
4213 deactivate_task(rq, p, 0);
1da177e4 4214 oldprio = p->prio;
dd41f596
IM
4215 __setscheduler(rq, p, policy, param->sched_priority);
4216 if (on_rq) {
4217 activate_task(rq, p, 0);
1da177e4
LT
4218 /*
4219 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4220 * our priority decreased, or if we are not currently running on
4221 * this runqueue and our priority is higher than the current's
1da177e4 4222 */
d5f9f942
AM
4223 if (task_running(rq, p)) {
4224 if (p->prio > oldprio)
4225 resched_task(rq->curr);
dd41f596
IM
4226 } else {
4227 check_preempt_curr(rq, p);
4228 }
1da177e4 4229 }
b29739f9
IM
4230 __task_rq_unlock(rq);
4231 spin_unlock_irqrestore(&p->pi_lock, flags);
4232
95e02ca9
TG
4233 rt_mutex_adjust_pi(p);
4234
1da177e4
LT
4235 return 0;
4236}
4237EXPORT_SYMBOL_GPL(sched_setscheduler);
4238
95cdf3b7
IM
4239static int
4240do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4241{
1da177e4
LT
4242 struct sched_param lparam;
4243 struct task_struct *p;
36c8b586 4244 int retval;
1da177e4
LT
4245
4246 if (!param || pid < 0)
4247 return -EINVAL;
4248 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4249 return -EFAULT;
5fe1d75f
ON
4250
4251 rcu_read_lock();
4252 retval = -ESRCH;
1da177e4 4253 p = find_process_by_pid(pid);
5fe1d75f
ON
4254 if (p != NULL)
4255 retval = sched_setscheduler(p, policy, &lparam);
4256 rcu_read_unlock();
36c8b586 4257
1da177e4
LT
4258 return retval;
4259}
4260
4261/**
4262 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4263 * @pid: the pid in question.
4264 * @policy: new policy.
4265 * @param: structure containing the new RT priority.
4266 */
4267asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4268 struct sched_param __user *param)
4269{
c21761f1
JB
4270 /* negative values for policy are not valid */
4271 if (policy < 0)
4272 return -EINVAL;
4273
1da177e4
LT
4274 return do_sched_setscheduler(pid, policy, param);
4275}
4276
4277/**
4278 * sys_sched_setparam - set/change the RT priority of a thread
4279 * @pid: the pid in question.
4280 * @param: structure containing the new RT priority.
4281 */
4282asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4283{
4284 return do_sched_setscheduler(pid, -1, param);
4285}
4286
4287/**
4288 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4289 * @pid: the pid in question.
4290 */
4291asmlinkage long sys_sched_getscheduler(pid_t pid)
4292{
36c8b586 4293 struct task_struct *p;
1da177e4 4294 int retval = -EINVAL;
1da177e4
LT
4295
4296 if (pid < 0)
4297 goto out_nounlock;
4298
4299 retval = -ESRCH;
4300 read_lock(&tasklist_lock);
4301 p = find_process_by_pid(pid);
4302 if (p) {
4303 retval = security_task_getscheduler(p);
4304 if (!retval)
4305 retval = p->policy;
4306 }
4307 read_unlock(&tasklist_lock);
4308
4309out_nounlock:
4310 return retval;
4311}
4312
4313/**
4314 * sys_sched_getscheduler - get the RT priority of a thread
4315 * @pid: the pid in question.
4316 * @param: structure containing the RT priority.
4317 */
4318asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4319{
4320 struct sched_param lp;
36c8b586 4321 struct task_struct *p;
1da177e4 4322 int retval = -EINVAL;
1da177e4
LT
4323
4324 if (!param || pid < 0)
4325 goto out_nounlock;
4326
4327 read_lock(&tasklist_lock);
4328 p = find_process_by_pid(pid);
4329 retval = -ESRCH;
4330 if (!p)
4331 goto out_unlock;
4332
4333 retval = security_task_getscheduler(p);
4334 if (retval)
4335 goto out_unlock;
4336
4337 lp.sched_priority = p->rt_priority;
4338 read_unlock(&tasklist_lock);
4339
4340 /*
4341 * This one might sleep, we cannot do it with a spinlock held ...
4342 */
4343 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4344
4345out_nounlock:
4346 return retval;
4347
4348out_unlock:
4349 read_unlock(&tasklist_lock);
4350 return retval;
4351}
4352
4353long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4354{
1da177e4 4355 cpumask_t cpus_allowed;
36c8b586
IM
4356 struct task_struct *p;
4357 int retval;
1da177e4 4358
5be9361c 4359 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4360 read_lock(&tasklist_lock);
4361
4362 p = find_process_by_pid(pid);
4363 if (!p) {
4364 read_unlock(&tasklist_lock);
5be9361c 4365 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4366 return -ESRCH;
4367 }
4368
4369 /*
4370 * It is not safe to call set_cpus_allowed with the
4371 * tasklist_lock held. We will bump the task_struct's
4372 * usage count and then drop tasklist_lock.
4373 */
4374 get_task_struct(p);
4375 read_unlock(&tasklist_lock);
4376
4377 retval = -EPERM;
4378 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4379 !capable(CAP_SYS_NICE))
4380 goto out_unlock;
4381
e7834f8f
DQ
4382 retval = security_task_setscheduler(p, 0, NULL);
4383 if (retval)
4384 goto out_unlock;
4385
1da177e4
LT
4386 cpus_allowed = cpuset_cpus_allowed(p);
4387 cpus_and(new_mask, new_mask, cpus_allowed);
4388 retval = set_cpus_allowed(p, new_mask);
4389
4390out_unlock:
4391 put_task_struct(p);
5be9361c 4392 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4393 return retval;
4394}
4395
4396static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4397 cpumask_t *new_mask)
4398{
4399 if (len < sizeof(cpumask_t)) {
4400 memset(new_mask, 0, sizeof(cpumask_t));
4401 } else if (len > sizeof(cpumask_t)) {
4402 len = sizeof(cpumask_t);
4403 }
4404 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4405}
4406
4407/**
4408 * sys_sched_setaffinity - set the cpu affinity of a process
4409 * @pid: pid of the process
4410 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4411 * @user_mask_ptr: user-space pointer to the new cpu mask
4412 */
4413asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4414 unsigned long __user *user_mask_ptr)
4415{
4416 cpumask_t new_mask;
4417 int retval;
4418
4419 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4420 if (retval)
4421 return retval;
4422
4423 return sched_setaffinity(pid, new_mask);
4424}
4425
4426/*
4427 * Represents all cpu's present in the system
4428 * In systems capable of hotplug, this map could dynamically grow
4429 * as new cpu's are detected in the system via any platform specific
4430 * method, such as ACPI for e.g.
4431 */
4432
4cef0c61 4433cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4434EXPORT_SYMBOL(cpu_present_map);
4435
4436#ifndef CONFIG_SMP
4cef0c61 4437cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4438EXPORT_SYMBOL(cpu_online_map);
4439
4cef0c61 4440cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4441EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4442#endif
4443
4444long sched_getaffinity(pid_t pid, cpumask_t *mask)
4445{
36c8b586 4446 struct task_struct *p;
1da177e4 4447 int retval;
1da177e4 4448
5be9361c 4449 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4450 read_lock(&tasklist_lock);
4451
4452 retval = -ESRCH;
4453 p = find_process_by_pid(pid);
4454 if (!p)
4455 goto out_unlock;
4456
e7834f8f
DQ
4457 retval = security_task_getscheduler(p);
4458 if (retval)
4459 goto out_unlock;
4460
2f7016d9 4461 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4462
4463out_unlock:
4464 read_unlock(&tasklist_lock);
5be9361c 4465 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4466 if (retval)
4467 return retval;
4468
4469 return 0;
4470}
4471
4472/**
4473 * sys_sched_getaffinity - get the cpu affinity of a process
4474 * @pid: pid of the process
4475 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4476 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4477 */
4478asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4479 unsigned long __user *user_mask_ptr)
4480{
4481 int ret;
4482 cpumask_t mask;
4483
4484 if (len < sizeof(cpumask_t))
4485 return -EINVAL;
4486
4487 ret = sched_getaffinity(pid, &mask);
4488 if (ret < 0)
4489 return ret;
4490
4491 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4492 return -EFAULT;
4493
4494 return sizeof(cpumask_t);
4495}
4496
4497/**
4498 * sys_sched_yield - yield the current processor to other threads.
4499 *
dd41f596
IM
4500 * This function yields the current CPU to other tasks. If there are no
4501 * other threads running on this CPU then this function will return.
1da177e4
LT
4502 */
4503asmlinkage long sys_sched_yield(void)
4504{
70b97a7f 4505 struct rq *rq = this_rq_lock();
1da177e4
LT
4506
4507 schedstat_inc(rq, yld_cnt);
dd41f596 4508 if (unlikely(rq->nr_running == 1))
1da177e4 4509 schedstat_inc(rq, yld_act_empty);
dd41f596
IM
4510 else
4511 current->sched_class->yield_task(rq, current);
1da177e4
LT
4512
4513 /*
4514 * Since we are going to call schedule() anyway, there's
4515 * no need to preempt or enable interrupts:
4516 */
4517 __release(rq->lock);
8a25d5de 4518 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4519 _raw_spin_unlock(&rq->lock);
4520 preempt_enable_no_resched();
4521
4522 schedule();
4523
4524 return 0;
4525}
4526
e7b38404 4527static void __cond_resched(void)
1da177e4 4528{
8e0a43d8
IM
4529#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4530 __might_sleep(__FILE__, __LINE__);
4531#endif
5bbcfd90
IM
4532 /*
4533 * The BKS might be reacquired before we have dropped
4534 * PREEMPT_ACTIVE, which could trigger a second
4535 * cond_resched() call.
4536 */
1da177e4
LT
4537 do {
4538 add_preempt_count(PREEMPT_ACTIVE);
4539 schedule();
4540 sub_preempt_count(PREEMPT_ACTIVE);
4541 } while (need_resched());
4542}
4543
4544int __sched cond_resched(void)
4545{
9414232f
IM
4546 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4547 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4548 __cond_resched();
4549 return 1;
4550 }
4551 return 0;
4552}
1da177e4
LT
4553EXPORT_SYMBOL(cond_resched);
4554
4555/*
4556 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4557 * call schedule, and on return reacquire the lock.
4558 *
4559 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4560 * operations here to prevent schedule() from being called twice (once via
4561 * spin_unlock(), once by hand).
4562 */
95cdf3b7 4563int cond_resched_lock(spinlock_t *lock)
1da177e4 4564{
6df3cecb
JK
4565 int ret = 0;
4566
1da177e4
LT
4567 if (need_lockbreak(lock)) {
4568 spin_unlock(lock);
4569 cpu_relax();
6df3cecb 4570 ret = 1;
1da177e4
LT
4571 spin_lock(lock);
4572 }
9414232f 4573 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4574 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4575 _raw_spin_unlock(lock);
4576 preempt_enable_no_resched();
4577 __cond_resched();
6df3cecb 4578 ret = 1;
1da177e4 4579 spin_lock(lock);
1da177e4 4580 }
6df3cecb 4581 return ret;
1da177e4 4582}
1da177e4
LT
4583EXPORT_SYMBOL(cond_resched_lock);
4584
4585int __sched cond_resched_softirq(void)
4586{
4587 BUG_ON(!in_softirq());
4588
9414232f 4589 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4590 local_bh_enable();
1da177e4
LT
4591 __cond_resched();
4592 local_bh_disable();
4593 return 1;
4594 }
4595 return 0;
4596}
1da177e4
LT
4597EXPORT_SYMBOL(cond_resched_softirq);
4598
1da177e4
LT
4599/**
4600 * yield - yield the current processor to other threads.
4601 *
72fd4a35 4602 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4603 * thread runnable and calls sys_sched_yield().
4604 */
4605void __sched yield(void)
4606{
4607 set_current_state(TASK_RUNNING);
4608 sys_sched_yield();
4609}
1da177e4
LT
4610EXPORT_SYMBOL(yield);
4611
4612/*
4613 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4614 * that process accounting knows that this is a task in IO wait state.
4615 *
4616 * But don't do that if it is a deliberate, throttling IO wait (this task
4617 * has set its backing_dev_info: the queue against which it should throttle)
4618 */
4619void __sched io_schedule(void)
4620{
70b97a7f 4621 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4622
0ff92245 4623 delayacct_blkio_start();
1da177e4
LT
4624 atomic_inc(&rq->nr_iowait);
4625 schedule();
4626 atomic_dec(&rq->nr_iowait);
0ff92245 4627 delayacct_blkio_end();
1da177e4 4628}
1da177e4
LT
4629EXPORT_SYMBOL(io_schedule);
4630
4631long __sched io_schedule_timeout(long timeout)
4632{
70b97a7f 4633 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4634 long ret;
4635
0ff92245 4636 delayacct_blkio_start();
1da177e4
LT
4637 atomic_inc(&rq->nr_iowait);
4638 ret = schedule_timeout(timeout);
4639 atomic_dec(&rq->nr_iowait);
0ff92245 4640 delayacct_blkio_end();
1da177e4
LT
4641 return ret;
4642}
4643
4644/**
4645 * sys_sched_get_priority_max - return maximum RT priority.
4646 * @policy: scheduling class.
4647 *
4648 * this syscall returns the maximum rt_priority that can be used
4649 * by a given scheduling class.
4650 */
4651asmlinkage long sys_sched_get_priority_max(int policy)
4652{
4653 int ret = -EINVAL;
4654
4655 switch (policy) {
4656 case SCHED_FIFO:
4657 case SCHED_RR:
4658 ret = MAX_USER_RT_PRIO-1;
4659 break;
4660 case SCHED_NORMAL:
b0a9499c 4661 case SCHED_BATCH:
dd41f596 4662 case SCHED_IDLE:
1da177e4
LT
4663 ret = 0;
4664 break;
4665 }
4666 return ret;
4667}
4668
4669/**
4670 * sys_sched_get_priority_min - return minimum RT priority.
4671 * @policy: scheduling class.
4672 *
4673 * this syscall returns the minimum rt_priority that can be used
4674 * by a given scheduling class.
4675 */
4676asmlinkage long sys_sched_get_priority_min(int policy)
4677{
4678 int ret = -EINVAL;
4679
4680 switch (policy) {
4681 case SCHED_FIFO:
4682 case SCHED_RR:
4683 ret = 1;
4684 break;
4685 case SCHED_NORMAL:
b0a9499c 4686 case SCHED_BATCH:
dd41f596 4687 case SCHED_IDLE:
1da177e4
LT
4688 ret = 0;
4689 }
4690 return ret;
4691}
4692
4693/**
4694 * sys_sched_rr_get_interval - return the default timeslice of a process.
4695 * @pid: pid of the process.
4696 * @interval: userspace pointer to the timeslice value.
4697 *
4698 * this syscall writes the default timeslice value of a given process
4699 * into the user-space timespec buffer. A value of '0' means infinity.
4700 */
4701asmlinkage
4702long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4703{
36c8b586 4704 struct task_struct *p;
1da177e4
LT
4705 int retval = -EINVAL;
4706 struct timespec t;
1da177e4
LT
4707
4708 if (pid < 0)
4709 goto out_nounlock;
4710
4711 retval = -ESRCH;
4712 read_lock(&tasklist_lock);
4713 p = find_process_by_pid(pid);
4714 if (!p)
4715 goto out_unlock;
4716
4717 retval = security_task_getscheduler(p);
4718 if (retval)
4719 goto out_unlock;
4720
b78709cf 4721 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4722 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4723 read_unlock(&tasklist_lock);
4724 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4725out_nounlock:
4726 return retval;
4727out_unlock:
4728 read_unlock(&tasklist_lock);
4729 return retval;
4730}
4731
2ed6e34f 4732static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4733
4734static void show_task(struct task_struct *p)
1da177e4 4735{
1da177e4 4736 unsigned long free = 0;
36c8b586 4737 unsigned state;
1da177e4 4738
1da177e4 4739 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4740 printk("%-13.13s %c", p->comm,
4741 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4742#if BITS_PER_LONG == 32
1da177e4 4743 if (state == TASK_RUNNING)
4bd77321 4744 printk(" running ");
1da177e4 4745 else
4bd77321 4746 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4747#else
4748 if (state == TASK_RUNNING)
4bd77321 4749 printk(" running task ");
1da177e4
LT
4750 else
4751 printk(" %016lx ", thread_saved_pc(p));
4752#endif
4753#ifdef CONFIG_DEBUG_STACK_USAGE
4754 {
10ebffde 4755 unsigned long *n = end_of_stack(p);
1da177e4
LT
4756 while (!*n)
4757 n++;
10ebffde 4758 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4759 }
4760#endif
4bd77321 4761 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4762
4763 if (state != TASK_RUNNING)
4764 show_stack(p, NULL);
4765}
4766
e59e2ae2 4767void show_state_filter(unsigned long state_filter)
1da177e4 4768{
36c8b586 4769 struct task_struct *g, *p;
1da177e4 4770
4bd77321
IM
4771#if BITS_PER_LONG == 32
4772 printk(KERN_INFO
4773 " task PC stack pid father\n");
1da177e4 4774#else
4bd77321
IM
4775 printk(KERN_INFO
4776 " task PC stack pid father\n");
1da177e4
LT
4777#endif
4778 read_lock(&tasklist_lock);
4779 do_each_thread(g, p) {
4780 /*
4781 * reset the NMI-timeout, listing all files on a slow
4782 * console might take alot of time:
4783 */
4784 touch_nmi_watchdog();
39bc89fd 4785 if (!state_filter || (p->state & state_filter))
e59e2ae2 4786 show_task(p);
1da177e4
LT
4787 } while_each_thread(g, p);
4788
04c9167f
JF
4789 touch_all_softlockup_watchdogs();
4790
dd41f596
IM
4791#ifdef CONFIG_SCHED_DEBUG
4792 sysrq_sched_debug_show();
4793#endif
1da177e4 4794 read_unlock(&tasklist_lock);
e59e2ae2
IM
4795 /*
4796 * Only show locks if all tasks are dumped:
4797 */
4798 if (state_filter == -1)
4799 debug_show_all_locks();
1da177e4
LT
4800}
4801
1df21055
IM
4802void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4803{
dd41f596 4804 idle->sched_class = &idle_sched_class;
1df21055
IM
4805}
4806
f340c0d1
IM
4807/**
4808 * init_idle - set up an idle thread for a given CPU
4809 * @idle: task in question
4810 * @cpu: cpu the idle task belongs to
4811 *
4812 * NOTE: this function does not set the idle thread's NEED_RESCHED
4813 * flag, to make booting more robust.
4814 */
5c1e1767 4815void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4816{
70b97a7f 4817 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4818 unsigned long flags;
4819
dd41f596
IM
4820 __sched_fork(idle);
4821 idle->se.exec_start = sched_clock();
4822
b29739f9 4823 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4824 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4825 __set_task_cpu(idle, cpu);
1da177e4
LT
4826
4827 spin_lock_irqsave(&rq->lock, flags);
4828 rq->curr = rq->idle = idle;
4866cde0
NP
4829#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4830 idle->oncpu = 1;
4831#endif
1da177e4
LT
4832 spin_unlock_irqrestore(&rq->lock, flags);
4833
4834 /* Set the preempt count _outside_ the spinlocks! */
4835#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4836 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4837#else
a1261f54 4838 task_thread_info(idle)->preempt_count = 0;
1da177e4 4839#endif
dd41f596
IM
4840 /*
4841 * The idle tasks have their own, simple scheduling class:
4842 */
4843 idle->sched_class = &idle_sched_class;
1da177e4
LT
4844}
4845
4846/*
4847 * In a system that switches off the HZ timer nohz_cpu_mask
4848 * indicates which cpus entered this state. This is used
4849 * in the rcu update to wait only for active cpus. For system
4850 * which do not switch off the HZ timer nohz_cpu_mask should
4851 * always be CPU_MASK_NONE.
4852 */
4853cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4854
dd41f596
IM
4855/*
4856 * Increase the granularity value when there are more CPUs,
4857 * because with more CPUs the 'effective latency' as visible
4858 * to users decreases. But the relationship is not linear,
4859 * so pick a second-best guess by going with the log2 of the
4860 * number of CPUs.
4861 *
4862 * This idea comes from the SD scheduler of Con Kolivas:
4863 */
4864static inline void sched_init_granularity(void)
4865{
4866 unsigned int factor = 1 + ilog2(num_online_cpus());
a5968df8 4867 const unsigned long gran_limit = 100000000;
dd41f596
IM
4868
4869 sysctl_sched_granularity *= factor;
4870 if (sysctl_sched_granularity > gran_limit)
4871 sysctl_sched_granularity = gran_limit;
4872
4873 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4874 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4875}
4876
1da177e4
LT
4877#ifdef CONFIG_SMP
4878/*
4879 * This is how migration works:
4880 *
70b97a7f 4881 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4882 * runqueue and wake up that CPU's migration thread.
4883 * 2) we down() the locked semaphore => thread blocks.
4884 * 3) migration thread wakes up (implicitly it forces the migrated
4885 * thread off the CPU)
4886 * 4) it gets the migration request and checks whether the migrated
4887 * task is still in the wrong runqueue.
4888 * 5) if it's in the wrong runqueue then the migration thread removes
4889 * it and puts it into the right queue.
4890 * 6) migration thread up()s the semaphore.
4891 * 7) we wake up and the migration is done.
4892 */
4893
4894/*
4895 * Change a given task's CPU affinity. Migrate the thread to a
4896 * proper CPU and schedule it away if the CPU it's executing on
4897 * is removed from the allowed bitmask.
4898 *
4899 * NOTE: the caller must have a valid reference to the task, the
4900 * task must not exit() & deallocate itself prematurely. The
4901 * call is not atomic; no spinlocks may be held.
4902 */
36c8b586 4903int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4904{
70b97a7f 4905 struct migration_req req;
1da177e4 4906 unsigned long flags;
70b97a7f 4907 struct rq *rq;
48f24c4d 4908 int ret = 0;
1da177e4
LT
4909
4910 rq = task_rq_lock(p, &flags);
4911 if (!cpus_intersects(new_mask, cpu_online_map)) {
4912 ret = -EINVAL;
4913 goto out;
4914 }
4915
4916 p->cpus_allowed = new_mask;
4917 /* Can the task run on the task's current CPU? If so, we're done */
4918 if (cpu_isset(task_cpu(p), new_mask))
4919 goto out;
4920
4921 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4922 /* Need help from migration thread: drop lock and wait. */
4923 task_rq_unlock(rq, &flags);
4924 wake_up_process(rq->migration_thread);
4925 wait_for_completion(&req.done);
4926 tlb_migrate_finish(p->mm);
4927 return 0;
4928 }
4929out:
4930 task_rq_unlock(rq, &flags);
48f24c4d 4931
1da177e4
LT
4932 return ret;
4933}
1da177e4
LT
4934EXPORT_SYMBOL_GPL(set_cpus_allowed);
4935
4936/*
4937 * Move (not current) task off this cpu, onto dest cpu. We're doing
4938 * this because either it can't run here any more (set_cpus_allowed()
4939 * away from this CPU, or CPU going down), or because we're
4940 * attempting to rebalance this task on exec (sched_exec).
4941 *
4942 * So we race with normal scheduler movements, but that's OK, as long
4943 * as the task is no longer on this CPU.
efc30814
KK
4944 *
4945 * Returns non-zero if task was successfully migrated.
1da177e4 4946 */
efc30814 4947static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4948{
70b97a7f 4949 struct rq *rq_dest, *rq_src;
dd41f596 4950 int ret = 0, on_rq;
1da177e4
LT
4951
4952 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4953 return ret;
1da177e4
LT
4954
4955 rq_src = cpu_rq(src_cpu);
4956 rq_dest = cpu_rq(dest_cpu);
4957
4958 double_rq_lock(rq_src, rq_dest);
4959 /* Already moved. */
4960 if (task_cpu(p) != src_cpu)
4961 goto out;
4962 /* Affinity changed (again). */
4963 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4964 goto out;
4965
dd41f596
IM
4966 on_rq = p->se.on_rq;
4967 if (on_rq)
4968 deactivate_task(rq_src, p, 0);
1da177e4 4969 set_task_cpu(p, dest_cpu);
dd41f596
IM
4970 if (on_rq) {
4971 activate_task(rq_dest, p, 0);
4972 check_preempt_curr(rq_dest, p);
1da177e4 4973 }
efc30814 4974 ret = 1;
1da177e4
LT
4975out:
4976 double_rq_unlock(rq_src, rq_dest);
efc30814 4977 return ret;
1da177e4
LT
4978}
4979
4980/*
4981 * migration_thread - this is a highprio system thread that performs
4982 * thread migration by bumping thread off CPU then 'pushing' onto
4983 * another runqueue.
4984 */
95cdf3b7 4985static int migration_thread(void *data)
1da177e4 4986{
1da177e4 4987 int cpu = (long)data;
70b97a7f 4988 struct rq *rq;
1da177e4
LT
4989
4990 rq = cpu_rq(cpu);
4991 BUG_ON(rq->migration_thread != current);
4992
4993 set_current_state(TASK_INTERRUPTIBLE);
4994 while (!kthread_should_stop()) {
70b97a7f 4995 struct migration_req *req;
1da177e4 4996 struct list_head *head;
1da177e4 4997
1da177e4
LT
4998 spin_lock_irq(&rq->lock);
4999
5000 if (cpu_is_offline(cpu)) {
5001 spin_unlock_irq(&rq->lock);
5002 goto wait_to_die;
5003 }
5004
5005 if (rq->active_balance) {
5006 active_load_balance(rq, cpu);
5007 rq->active_balance = 0;
5008 }
5009
5010 head = &rq->migration_queue;
5011
5012 if (list_empty(head)) {
5013 spin_unlock_irq(&rq->lock);
5014 schedule();
5015 set_current_state(TASK_INTERRUPTIBLE);
5016 continue;
5017 }
70b97a7f 5018 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5019 list_del_init(head->next);
5020
674311d5
NP
5021 spin_unlock(&rq->lock);
5022 __migrate_task(req->task, cpu, req->dest_cpu);
5023 local_irq_enable();
1da177e4
LT
5024
5025 complete(&req->done);
5026 }
5027 __set_current_state(TASK_RUNNING);
5028 return 0;
5029
5030wait_to_die:
5031 /* Wait for kthread_stop */
5032 set_current_state(TASK_INTERRUPTIBLE);
5033 while (!kthread_should_stop()) {
5034 schedule();
5035 set_current_state(TASK_INTERRUPTIBLE);
5036 }
5037 __set_current_state(TASK_RUNNING);
5038 return 0;
5039}
5040
5041#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5042/*
5043 * Figure out where task on dead CPU should go, use force if neccessary.
5044 * NOTE: interrupts should be disabled by the caller
5045 */
48f24c4d 5046static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5047{
efc30814 5048 unsigned long flags;
1da177e4 5049 cpumask_t mask;
70b97a7f
IM
5050 struct rq *rq;
5051 int dest_cpu;
1da177e4 5052
efc30814 5053restart:
1da177e4
LT
5054 /* On same node? */
5055 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5056 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5057 dest_cpu = any_online_cpu(mask);
5058
5059 /* On any allowed CPU? */
5060 if (dest_cpu == NR_CPUS)
48f24c4d 5061 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5062
5063 /* No more Mr. Nice Guy. */
5064 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5065 rq = task_rq_lock(p, &flags);
5066 cpus_setall(p->cpus_allowed);
5067 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5068 task_rq_unlock(rq, &flags);
1da177e4
LT
5069
5070 /*
5071 * Don't tell them about moving exiting tasks or
5072 * kernel threads (both mm NULL), since they never
5073 * leave kernel.
5074 */
48f24c4d 5075 if (p->mm && printk_ratelimit())
1da177e4
LT
5076 printk(KERN_INFO "process %d (%s) no "
5077 "longer affine to cpu%d\n",
48f24c4d 5078 p->pid, p->comm, dead_cpu);
1da177e4 5079 }
48f24c4d 5080 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5081 goto restart;
1da177e4
LT
5082}
5083
5084/*
5085 * While a dead CPU has no uninterruptible tasks queued at this point,
5086 * it might still have a nonzero ->nr_uninterruptible counter, because
5087 * for performance reasons the counter is not stricly tracking tasks to
5088 * their home CPUs. So we just add the counter to another CPU's counter,
5089 * to keep the global sum constant after CPU-down:
5090 */
70b97a7f 5091static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5092{
70b97a7f 5093 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5094 unsigned long flags;
5095
5096 local_irq_save(flags);
5097 double_rq_lock(rq_src, rq_dest);
5098 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5099 rq_src->nr_uninterruptible = 0;
5100 double_rq_unlock(rq_src, rq_dest);
5101 local_irq_restore(flags);
5102}
5103
5104/* Run through task list and migrate tasks from the dead cpu. */
5105static void migrate_live_tasks(int src_cpu)
5106{
48f24c4d 5107 struct task_struct *p, *t;
1da177e4
LT
5108
5109 write_lock_irq(&tasklist_lock);
5110
48f24c4d
IM
5111 do_each_thread(t, p) {
5112 if (p == current)
1da177e4
LT
5113 continue;
5114
48f24c4d
IM
5115 if (task_cpu(p) == src_cpu)
5116 move_task_off_dead_cpu(src_cpu, p);
5117 } while_each_thread(t, p);
1da177e4
LT
5118
5119 write_unlock_irq(&tasklist_lock);
5120}
5121
dd41f596
IM
5122/*
5123 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5124 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5125 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5126 */
5127void sched_idle_next(void)
5128{
48f24c4d 5129 int this_cpu = smp_processor_id();
70b97a7f 5130 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5131 struct task_struct *p = rq->idle;
5132 unsigned long flags;
5133
5134 /* cpu has to be offline */
48f24c4d 5135 BUG_ON(cpu_online(this_cpu));
1da177e4 5136
48f24c4d
IM
5137 /*
5138 * Strictly not necessary since rest of the CPUs are stopped by now
5139 * and interrupts disabled on the current cpu.
1da177e4
LT
5140 */
5141 spin_lock_irqsave(&rq->lock, flags);
5142
dd41f596 5143 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5144
5145 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5146 activate_idle_task(p, rq);
1da177e4
LT
5147
5148 spin_unlock_irqrestore(&rq->lock, flags);
5149}
5150
48f24c4d
IM
5151/*
5152 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5153 * offline.
5154 */
5155void idle_task_exit(void)
5156{
5157 struct mm_struct *mm = current->active_mm;
5158
5159 BUG_ON(cpu_online(smp_processor_id()));
5160
5161 if (mm != &init_mm)
5162 switch_mm(mm, &init_mm, current);
5163 mmdrop(mm);
5164}
5165
054b9108 5166/* called under rq->lock with disabled interrupts */
36c8b586 5167static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5168{
70b97a7f 5169 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5170
5171 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5172 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5173
5174 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5175 BUG_ON(p->state == TASK_DEAD);
1da177e4 5176
48f24c4d 5177 get_task_struct(p);
1da177e4
LT
5178
5179 /*
5180 * Drop lock around migration; if someone else moves it,
5181 * that's OK. No task can be added to this CPU, so iteration is
5182 * fine.
054b9108 5183 * NOTE: interrupts should be left disabled --dev@
1da177e4 5184 */
054b9108 5185 spin_unlock(&rq->lock);
48f24c4d 5186 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5187 spin_lock(&rq->lock);
1da177e4 5188
48f24c4d 5189 put_task_struct(p);
1da177e4
LT
5190}
5191
5192/* release_task() removes task from tasklist, so we won't find dead tasks. */
5193static void migrate_dead_tasks(unsigned int dead_cpu)
5194{
70b97a7f 5195 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5196 struct task_struct *next;
48f24c4d 5197
dd41f596
IM
5198 for ( ; ; ) {
5199 if (!rq->nr_running)
5200 break;
5201 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5202 if (!next)
5203 break;
5204 migrate_dead(dead_cpu, next);
e692ab53 5205
1da177e4
LT
5206 }
5207}
5208#endif /* CONFIG_HOTPLUG_CPU */
5209
e692ab53
NP
5210#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5211
5212static struct ctl_table sd_ctl_dir[] = {
5213 {CTL_UNNUMBERED, "sched_domain", NULL, 0, 0755, NULL, },
5214 {0,},
5215};
5216
5217static struct ctl_table sd_ctl_root[] = {
5218 {CTL_UNNUMBERED, "kernel", NULL, 0, 0755, sd_ctl_dir, },
5219 {0,},
5220};
5221
5222static struct ctl_table *sd_alloc_ctl_entry(int n)
5223{
5224 struct ctl_table *entry =
5225 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5226
5227 BUG_ON(!entry);
5228 memset(entry, 0, n * sizeof(struct ctl_table));
5229
5230 return entry;
5231}
5232
5233static void
5234set_table_entry(struct ctl_table *entry, int ctl_name,
5235 const char *procname, void *data, int maxlen,
5236 mode_t mode, proc_handler *proc_handler)
5237{
5238 entry->ctl_name = ctl_name;
5239 entry->procname = procname;
5240 entry->data = data;
5241 entry->maxlen = maxlen;
5242 entry->mode = mode;
5243 entry->proc_handler = proc_handler;
5244}
5245
5246static struct ctl_table *
5247sd_alloc_ctl_domain_table(struct sched_domain *sd)
5248{
5249 struct ctl_table *table = sd_alloc_ctl_entry(14);
5250
5251 set_table_entry(&table[0], 1, "min_interval", &sd->min_interval,
5252 sizeof(long), 0644, proc_doulongvec_minmax);
5253 set_table_entry(&table[1], 2, "max_interval", &sd->max_interval,
5254 sizeof(long), 0644, proc_doulongvec_minmax);
5255 set_table_entry(&table[2], 3, "busy_idx", &sd->busy_idx,
5256 sizeof(int), 0644, proc_dointvec_minmax);
5257 set_table_entry(&table[3], 4, "idle_idx", &sd->idle_idx,
5258 sizeof(int), 0644, proc_dointvec_minmax);
5259 set_table_entry(&table[4], 5, "newidle_idx", &sd->newidle_idx,
5260 sizeof(int), 0644, proc_dointvec_minmax);
5261 set_table_entry(&table[5], 6, "wake_idx", &sd->wake_idx,
5262 sizeof(int), 0644, proc_dointvec_minmax);
5263 set_table_entry(&table[6], 7, "forkexec_idx", &sd->forkexec_idx,
5264 sizeof(int), 0644, proc_dointvec_minmax);
5265 set_table_entry(&table[7], 8, "busy_factor", &sd->busy_factor,
5266 sizeof(int), 0644, proc_dointvec_minmax);
5267 set_table_entry(&table[8], 9, "imbalance_pct", &sd->imbalance_pct,
5268 sizeof(int), 0644, proc_dointvec_minmax);
e692ab53
NP
5269 set_table_entry(&table[10], 11, "cache_nice_tries",
5270 &sd->cache_nice_tries,
5271 sizeof(int), 0644, proc_dointvec_minmax);
5272 set_table_entry(&table[12], 13, "flags", &sd->flags,
5273 sizeof(int), 0644, proc_dointvec_minmax);
5274
5275 return table;
5276}
5277
5278static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5279{
5280 struct ctl_table *entry, *table;
5281 struct sched_domain *sd;
5282 int domain_num = 0, i;
5283 char buf[32];
5284
5285 for_each_domain(cpu, sd)
5286 domain_num++;
5287 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5288
5289 i = 0;
5290 for_each_domain(cpu, sd) {
5291 snprintf(buf, 32, "domain%d", i);
5292 entry->ctl_name = i + 1;
5293 entry->procname = kstrdup(buf, GFP_KERNEL);
5294 entry->mode = 0755;
5295 entry->child = sd_alloc_ctl_domain_table(sd);
5296 entry++;
5297 i++;
5298 }
5299 return table;
5300}
5301
5302static struct ctl_table_header *sd_sysctl_header;
5303static void init_sched_domain_sysctl(void)
5304{
5305 int i, cpu_num = num_online_cpus();
5306 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5307 char buf[32];
5308
5309 sd_ctl_dir[0].child = entry;
5310
5311 for (i = 0; i < cpu_num; i++, entry++) {
5312 snprintf(buf, 32, "cpu%d", i);
5313 entry->ctl_name = i + 1;
5314 entry->procname = kstrdup(buf, GFP_KERNEL);
5315 entry->mode = 0755;
5316 entry->child = sd_alloc_ctl_cpu_table(i);
5317 }
5318 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5319}
5320#else
5321static void init_sched_domain_sysctl(void)
5322{
5323}
5324#endif
5325
1da177e4
LT
5326/*
5327 * migration_call - callback that gets triggered when a CPU is added.
5328 * Here we can start up the necessary migration thread for the new CPU.
5329 */
48f24c4d
IM
5330static int __cpuinit
5331migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5332{
1da177e4 5333 struct task_struct *p;
48f24c4d 5334 int cpu = (long)hcpu;
1da177e4 5335 unsigned long flags;
70b97a7f 5336 struct rq *rq;
1da177e4
LT
5337
5338 switch (action) {
5be9361c
GS
5339 case CPU_LOCK_ACQUIRE:
5340 mutex_lock(&sched_hotcpu_mutex);
5341 break;
5342
1da177e4 5343 case CPU_UP_PREPARE:
8bb78442 5344 case CPU_UP_PREPARE_FROZEN:
dd41f596 5345 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5346 if (IS_ERR(p))
5347 return NOTIFY_BAD;
1da177e4
LT
5348 kthread_bind(p, cpu);
5349 /* Must be high prio: stop_machine expects to yield to it. */
5350 rq = task_rq_lock(p, &flags);
dd41f596 5351 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5352 task_rq_unlock(rq, &flags);
5353 cpu_rq(cpu)->migration_thread = p;
5354 break;
48f24c4d 5355
1da177e4 5356 case CPU_ONLINE:
8bb78442 5357 case CPU_ONLINE_FROZEN:
1da177e4
LT
5358 /* Strictly unneccessary, as first user will wake it. */
5359 wake_up_process(cpu_rq(cpu)->migration_thread);
5360 break;
48f24c4d 5361
1da177e4
LT
5362#ifdef CONFIG_HOTPLUG_CPU
5363 case CPU_UP_CANCELED:
8bb78442 5364 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5365 if (!cpu_rq(cpu)->migration_thread)
5366 break;
1da177e4 5367 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5368 kthread_bind(cpu_rq(cpu)->migration_thread,
5369 any_online_cpu(cpu_online_map));
1da177e4
LT
5370 kthread_stop(cpu_rq(cpu)->migration_thread);
5371 cpu_rq(cpu)->migration_thread = NULL;
5372 break;
48f24c4d 5373
1da177e4 5374 case CPU_DEAD:
8bb78442 5375 case CPU_DEAD_FROZEN:
1da177e4
LT
5376 migrate_live_tasks(cpu);
5377 rq = cpu_rq(cpu);
5378 kthread_stop(rq->migration_thread);
5379 rq->migration_thread = NULL;
5380 /* Idle task back to normal (off runqueue, low prio) */
5381 rq = task_rq_lock(rq->idle, &flags);
dd41f596 5382 deactivate_task(rq, rq->idle, 0);
1da177e4 5383 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5384 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5385 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5386 migrate_dead_tasks(cpu);
5387 task_rq_unlock(rq, &flags);
5388 migrate_nr_uninterruptible(rq);
5389 BUG_ON(rq->nr_running != 0);
5390
5391 /* No need to migrate the tasks: it was best-effort if
5be9361c 5392 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5393 * the requestors. */
5394 spin_lock_irq(&rq->lock);
5395 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5396 struct migration_req *req;
5397
1da177e4 5398 req = list_entry(rq->migration_queue.next,
70b97a7f 5399 struct migration_req, list);
1da177e4
LT
5400 list_del_init(&req->list);
5401 complete(&req->done);
5402 }
5403 spin_unlock_irq(&rq->lock);
5404 break;
5405#endif
5be9361c
GS
5406 case CPU_LOCK_RELEASE:
5407 mutex_unlock(&sched_hotcpu_mutex);
5408 break;
1da177e4
LT
5409 }
5410 return NOTIFY_OK;
5411}
5412
5413/* Register at highest priority so that task migration (migrate_all_tasks)
5414 * happens before everything else.
5415 */
26c2143b 5416static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5417 .notifier_call = migration_call,
5418 .priority = 10
5419};
5420
5421int __init migration_init(void)
5422{
5423 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5424 int err;
48f24c4d
IM
5425
5426 /* Start one for the boot CPU: */
07dccf33
AM
5427 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5428 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5429 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5430 register_cpu_notifier(&migration_notifier);
48f24c4d 5431
1da177e4
LT
5432 return 0;
5433}
5434#endif
5435
5436#ifdef CONFIG_SMP
476f3534
CL
5437
5438/* Number of possible processor ids */
5439int nr_cpu_ids __read_mostly = NR_CPUS;
5440EXPORT_SYMBOL(nr_cpu_ids);
5441
1a20ff27 5442#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5443#ifdef SCHED_DOMAIN_DEBUG
5444static void sched_domain_debug(struct sched_domain *sd, int cpu)
5445{
5446 int level = 0;
5447
41c7ce9a
NP
5448 if (!sd) {
5449 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5450 return;
5451 }
5452
1da177e4
LT
5453 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5454
5455 do {
5456 int i;
5457 char str[NR_CPUS];
5458 struct sched_group *group = sd->groups;
5459 cpumask_t groupmask;
5460
5461 cpumask_scnprintf(str, NR_CPUS, sd->span);
5462 cpus_clear(groupmask);
5463
5464 printk(KERN_DEBUG);
5465 for (i = 0; i < level + 1; i++)
5466 printk(" ");
5467 printk("domain %d: ", level);
5468
5469 if (!(sd->flags & SD_LOAD_BALANCE)) {
5470 printk("does not load-balance\n");
5471 if (sd->parent)
33859f7f
MOS
5472 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5473 " has parent");
1da177e4
LT
5474 break;
5475 }
5476
5477 printk("span %s\n", str);
5478
5479 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5480 printk(KERN_ERR "ERROR: domain->span does not contain "
5481 "CPU%d\n", cpu);
1da177e4 5482 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5483 printk(KERN_ERR "ERROR: domain->groups does not contain"
5484 " CPU%d\n", cpu);
1da177e4
LT
5485
5486 printk(KERN_DEBUG);
5487 for (i = 0; i < level + 2; i++)
5488 printk(" ");
5489 printk("groups:");
5490 do {
5491 if (!group) {
5492 printk("\n");
5493 printk(KERN_ERR "ERROR: group is NULL\n");
5494 break;
5495 }
5496
5517d86b 5497 if (!group->__cpu_power) {
1da177e4 5498 printk("\n");
33859f7f
MOS
5499 printk(KERN_ERR "ERROR: domain->cpu_power not "
5500 "set\n");
1da177e4
LT
5501 }
5502
5503 if (!cpus_weight(group->cpumask)) {
5504 printk("\n");
5505 printk(KERN_ERR "ERROR: empty group\n");
5506 }
5507
5508 if (cpus_intersects(groupmask, group->cpumask)) {
5509 printk("\n");
5510 printk(KERN_ERR "ERROR: repeated CPUs\n");
5511 }
5512
5513 cpus_or(groupmask, groupmask, group->cpumask);
5514
5515 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5516 printk(" %s", str);
5517
5518 group = group->next;
5519 } while (group != sd->groups);
5520 printk("\n");
5521
5522 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5523 printk(KERN_ERR "ERROR: groups don't span "
5524 "domain->span\n");
1da177e4
LT
5525
5526 level++;
5527 sd = sd->parent;
33859f7f
MOS
5528 if (!sd)
5529 continue;
1da177e4 5530
33859f7f
MOS
5531 if (!cpus_subset(groupmask, sd->span))
5532 printk(KERN_ERR "ERROR: parent span is not a superset "
5533 "of domain->span\n");
1da177e4
LT
5534
5535 } while (sd);
5536}
5537#else
48f24c4d 5538# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5539#endif
5540
1a20ff27 5541static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5542{
5543 if (cpus_weight(sd->span) == 1)
5544 return 1;
5545
5546 /* Following flags need at least 2 groups */
5547 if (sd->flags & (SD_LOAD_BALANCE |
5548 SD_BALANCE_NEWIDLE |
5549 SD_BALANCE_FORK |
89c4710e
SS
5550 SD_BALANCE_EXEC |
5551 SD_SHARE_CPUPOWER |
5552 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5553 if (sd->groups != sd->groups->next)
5554 return 0;
5555 }
5556
5557 /* Following flags don't use groups */
5558 if (sd->flags & (SD_WAKE_IDLE |
5559 SD_WAKE_AFFINE |
5560 SD_WAKE_BALANCE))
5561 return 0;
5562
5563 return 1;
5564}
5565
48f24c4d
IM
5566static int
5567sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5568{
5569 unsigned long cflags = sd->flags, pflags = parent->flags;
5570
5571 if (sd_degenerate(parent))
5572 return 1;
5573
5574 if (!cpus_equal(sd->span, parent->span))
5575 return 0;
5576
5577 /* Does parent contain flags not in child? */
5578 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5579 if (cflags & SD_WAKE_AFFINE)
5580 pflags &= ~SD_WAKE_BALANCE;
5581 /* Flags needing groups don't count if only 1 group in parent */
5582 if (parent->groups == parent->groups->next) {
5583 pflags &= ~(SD_LOAD_BALANCE |
5584 SD_BALANCE_NEWIDLE |
5585 SD_BALANCE_FORK |
89c4710e
SS
5586 SD_BALANCE_EXEC |
5587 SD_SHARE_CPUPOWER |
5588 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5589 }
5590 if (~cflags & pflags)
5591 return 0;
5592
5593 return 1;
5594}
5595
1da177e4
LT
5596/*
5597 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5598 * hold the hotplug lock.
5599 */
9c1cfda2 5600static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5601{
70b97a7f 5602 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5603 struct sched_domain *tmp;
5604
5605 /* Remove the sched domains which do not contribute to scheduling. */
5606 for (tmp = sd; tmp; tmp = tmp->parent) {
5607 struct sched_domain *parent = tmp->parent;
5608 if (!parent)
5609 break;
1a848870 5610 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5611 tmp->parent = parent->parent;
1a848870
SS
5612 if (parent->parent)
5613 parent->parent->child = tmp;
5614 }
245af2c7
SS
5615 }
5616
1a848870 5617 if (sd && sd_degenerate(sd)) {
245af2c7 5618 sd = sd->parent;
1a848870
SS
5619 if (sd)
5620 sd->child = NULL;
5621 }
1da177e4
LT
5622
5623 sched_domain_debug(sd, cpu);
5624
674311d5 5625 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5626}
5627
5628/* cpus with isolated domains */
67af63a6 5629static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5630
5631/* Setup the mask of cpus configured for isolated domains */
5632static int __init isolated_cpu_setup(char *str)
5633{
5634 int ints[NR_CPUS], i;
5635
5636 str = get_options(str, ARRAY_SIZE(ints), ints);
5637 cpus_clear(cpu_isolated_map);
5638 for (i = 1; i <= ints[0]; i++)
5639 if (ints[i] < NR_CPUS)
5640 cpu_set(ints[i], cpu_isolated_map);
5641 return 1;
5642}
5643
5644__setup ("isolcpus=", isolated_cpu_setup);
5645
5646/*
6711cab4
SS
5647 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5648 * to a function which identifies what group(along with sched group) a CPU
5649 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5650 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5651 *
5652 * init_sched_build_groups will build a circular linked list of the groups
5653 * covered by the given span, and will set each group's ->cpumask correctly,
5654 * and ->cpu_power to 0.
5655 */
a616058b 5656static void
6711cab4
SS
5657init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5658 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5659 struct sched_group **sg))
1da177e4
LT
5660{
5661 struct sched_group *first = NULL, *last = NULL;
5662 cpumask_t covered = CPU_MASK_NONE;
5663 int i;
5664
5665 for_each_cpu_mask(i, span) {
6711cab4
SS
5666 struct sched_group *sg;
5667 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5668 int j;
5669
5670 if (cpu_isset(i, covered))
5671 continue;
5672
5673 sg->cpumask = CPU_MASK_NONE;
5517d86b 5674 sg->__cpu_power = 0;
1da177e4
LT
5675
5676 for_each_cpu_mask(j, span) {
6711cab4 5677 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5678 continue;
5679
5680 cpu_set(j, covered);
5681 cpu_set(j, sg->cpumask);
5682 }
5683 if (!first)
5684 first = sg;
5685 if (last)
5686 last->next = sg;
5687 last = sg;
5688 }
5689 last->next = first;
5690}
5691
9c1cfda2 5692#define SD_NODES_PER_DOMAIN 16
1da177e4 5693
9c1cfda2 5694#ifdef CONFIG_NUMA
198e2f18 5695
9c1cfda2
JH
5696/**
5697 * find_next_best_node - find the next node to include in a sched_domain
5698 * @node: node whose sched_domain we're building
5699 * @used_nodes: nodes already in the sched_domain
5700 *
5701 * Find the next node to include in a given scheduling domain. Simply
5702 * finds the closest node not already in the @used_nodes map.
5703 *
5704 * Should use nodemask_t.
5705 */
5706static int find_next_best_node(int node, unsigned long *used_nodes)
5707{
5708 int i, n, val, min_val, best_node = 0;
5709
5710 min_val = INT_MAX;
5711
5712 for (i = 0; i < MAX_NUMNODES; i++) {
5713 /* Start at @node */
5714 n = (node + i) % MAX_NUMNODES;
5715
5716 if (!nr_cpus_node(n))
5717 continue;
5718
5719 /* Skip already used nodes */
5720 if (test_bit(n, used_nodes))
5721 continue;
5722
5723 /* Simple min distance search */
5724 val = node_distance(node, n);
5725
5726 if (val < min_val) {
5727 min_val = val;
5728 best_node = n;
5729 }
5730 }
5731
5732 set_bit(best_node, used_nodes);
5733 return best_node;
5734}
5735
5736/**
5737 * sched_domain_node_span - get a cpumask for a node's sched_domain
5738 * @node: node whose cpumask we're constructing
5739 * @size: number of nodes to include in this span
5740 *
5741 * Given a node, construct a good cpumask for its sched_domain to span. It
5742 * should be one that prevents unnecessary balancing, but also spreads tasks
5743 * out optimally.
5744 */
5745static cpumask_t sched_domain_node_span(int node)
5746{
9c1cfda2 5747 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5748 cpumask_t span, nodemask;
5749 int i;
9c1cfda2
JH
5750
5751 cpus_clear(span);
5752 bitmap_zero(used_nodes, MAX_NUMNODES);
5753
5754 nodemask = node_to_cpumask(node);
5755 cpus_or(span, span, nodemask);
5756 set_bit(node, used_nodes);
5757
5758 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5759 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5760
9c1cfda2
JH
5761 nodemask = node_to_cpumask(next_node);
5762 cpus_or(span, span, nodemask);
5763 }
5764
5765 return span;
5766}
5767#endif
5768
5c45bf27 5769int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5770
9c1cfda2 5771/*
48f24c4d 5772 * SMT sched-domains:
9c1cfda2 5773 */
1da177e4
LT
5774#ifdef CONFIG_SCHED_SMT
5775static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5776static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5777
6711cab4
SS
5778static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5779 struct sched_group **sg)
1da177e4 5780{
6711cab4
SS
5781 if (sg)
5782 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5783 return cpu;
5784}
5785#endif
5786
48f24c4d
IM
5787/*
5788 * multi-core sched-domains:
5789 */
1e9f28fa
SS
5790#ifdef CONFIG_SCHED_MC
5791static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5792static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5793#endif
5794
5795#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5796static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5797 struct sched_group **sg)
1e9f28fa 5798{
6711cab4 5799 int group;
a616058b
SS
5800 cpumask_t mask = cpu_sibling_map[cpu];
5801 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5802 group = first_cpu(mask);
5803 if (sg)
5804 *sg = &per_cpu(sched_group_core, group);
5805 return group;
1e9f28fa
SS
5806}
5807#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5808static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5809 struct sched_group **sg)
1e9f28fa 5810{
6711cab4
SS
5811 if (sg)
5812 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5813 return cpu;
5814}
5815#endif
5816
1da177e4 5817static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5818static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5819
6711cab4
SS
5820static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5821 struct sched_group **sg)
1da177e4 5822{
6711cab4 5823 int group;
48f24c4d 5824#ifdef CONFIG_SCHED_MC
1e9f28fa 5825 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5826 cpus_and(mask, mask, *cpu_map);
6711cab4 5827 group = first_cpu(mask);
1e9f28fa 5828#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5829 cpumask_t mask = cpu_sibling_map[cpu];
5830 cpus_and(mask, mask, *cpu_map);
6711cab4 5831 group = first_cpu(mask);
1da177e4 5832#else
6711cab4 5833 group = cpu;
1da177e4 5834#endif
6711cab4
SS
5835 if (sg)
5836 *sg = &per_cpu(sched_group_phys, group);
5837 return group;
1da177e4
LT
5838}
5839
5840#ifdef CONFIG_NUMA
1da177e4 5841/*
9c1cfda2
JH
5842 * The init_sched_build_groups can't handle what we want to do with node
5843 * groups, so roll our own. Now each node has its own list of groups which
5844 * gets dynamically allocated.
1da177e4 5845 */
9c1cfda2 5846static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5847static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5848
9c1cfda2 5849static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5850static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5851
6711cab4
SS
5852static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5853 struct sched_group **sg)
9c1cfda2 5854{
6711cab4
SS
5855 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5856 int group;
5857
5858 cpus_and(nodemask, nodemask, *cpu_map);
5859 group = first_cpu(nodemask);
5860
5861 if (sg)
5862 *sg = &per_cpu(sched_group_allnodes, group);
5863 return group;
1da177e4 5864}
6711cab4 5865
08069033
SS
5866static void init_numa_sched_groups_power(struct sched_group *group_head)
5867{
5868 struct sched_group *sg = group_head;
5869 int j;
5870
5871 if (!sg)
5872 return;
5873next_sg:
5874 for_each_cpu_mask(j, sg->cpumask) {
5875 struct sched_domain *sd;
5876
5877 sd = &per_cpu(phys_domains, j);
5878 if (j != first_cpu(sd->groups->cpumask)) {
5879 /*
5880 * Only add "power" once for each
5881 * physical package.
5882 */
5883 continue;
5884 }
5885
5517d86b 5886 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5887 }
5888 sg = sg->next;
5889 if (sg != group_head)
5890 goto next_sg;
5891}
1da177e4
LT
5892#endif
5893
a616058b 5894#ifdef CONFIG_NUMA
51888ca2
SV
5895/* Free memory allocated for various sched_group structures */
5896static void free_sched_groups(const cpumask_t *cpu_map)
5897{
a616058b 5898 int cpu, i;
51888ca2
SV
5899
5900 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5901 struct sched_group **sched_group_nodes
5902 = sched_group_nodes_bycpu[cpu];
5903
51888ca2
SV
5904 if (!sched_group_nodes)
5905 continue;
5906
5907 for (i = 0; i < MAX_NUMNODES; i++) {
5908 cpumask_t nodemask = node_to_cpumask(i);
5909 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5910
5911 cpus_and(nodemask, nodemask, *cpu_map);
5912 if (cpus_empty(nodemask))
5913 continue;
5914
5915 if (sg == NULL)
5916 continue;
5917 sg = sg->next;
5918next_sg:
5919 oldsg = sg;
5920 sg = sg->next;
5921 kfree(oldsg);
5922 if (oldsg != sched_group_nodes[i])
5923 goto next_sg;
5924 }
5925 kfree(sched_group_nodes);
5926 sched_group_nodes_bycpu[cpu] = NULL;
5927 }
51888ca2 5928}
a616058b
SS
5929#else
5930static void free_sched_groups(const cpumask_t *cpu_map)
5931{
5932}
5933#endif
51888ca2 5934
89c4710e
SS
5935/*
5936 * Initialize sched groups cpu_power.
5937 *
5938 * cpu_power indicates the capacity of sched group, which is used while
5939 * distributing the load between different sched groups in a sched domain.
5940 * Typically cpu_power for all the groups in a sched domain will be same unless
5941 * there are asymmetries in the topology. If there are asymmetries, group
5942 * having more cpu_power will pickup more load compared to the group having
5943 * less cpu_power.
5944 *
5945 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5946 * the maximum number of tasks a group can handle in the presence of other idle
5947 * or lightly loaded groups in the same sched domain.
5948 */
5949static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5950{
5951 struct sched_domain *child;
5952 struct sched_group *group;
5953
5954 WARN_ON(!sd || !sd->groups);
5955
5956 if (cpu != first_cpu(sd->groups->cpumask))
5957 return;
5958
5959 child = sd->child;
5960
5517d86b
ED
5961 sd->groups->__cpu_power = 0;
5962
89c4710e
SS
5963 /*
5964 * For perf policy, if the groups in child domain share resources
5965 * (for example cores sharing some portions of the cache hierarchy
5966 * or SMT), then set this domain groups cpu_power such that each group
5967 * can handle only one task, when there are other idle groups in the
5968 * same sched domain.
5969 */
5970 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5971 (child->flags &
5972 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5973 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5974 return;
5975 }
5976
89c4710e
SS
5977 /*
5978 * add cpu_power of each child group to this groups cpu_power
5979 */
5980 group = child->groups;
5981 do {
5517d86b 5982 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5983 group = group->next;
5984 } while (group != child->groups);
5985}
5986
1da177e4 5987/*
1a20ff27
DG
5988 * Build sched domains for a given set of cpus and attach the sched domains
5989 * to the individual cpus
1da177e4 5990 */
51888ca2 5991static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5992{
5993 int i;
d1b55138
JH
5994#ifdef CONFIG_NUMA
5995 struct sched_group **sched_group_nodes = NULL;
6711cab4 5996 int sd_allnodes = 0;
d1b55138
JH
5997
5998 /*
5999 * Allocate the per-node list of sched groups
6000 */
dd41f596 6001 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6002 GFP_KERNEL);
d1b55138
JH
6003 if (!sched_group_nodes) {
6004 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6005 return -ENOMEM;
d1b55138
JH
6006 }
6007 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6008#endif
1da177e4
LT
6009
6010 /*
1a20ff27 6011 * Set up domains for cpus specified by the cpu_map.
1da177e4 6012 */
1a20ff27 6013 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6014 struct sched_domain *sd = NULL, *p;
6015 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6016
1a20ff27 6017 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6018
6019#ifdef CONFIG_NUMA
dd41f596
IM
6020 if (cpus_weight(*cpu_map) >
6021 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6022 sd = &per_cpu(allnodes_domains, i);
6023 *sd = SD_ALLNODES_INIT;
6024 sd->span = *cpu_map;
6711cab4 6025 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6026 p = sd;
6711cab4 6027 sd_allnodes = 1;
9c1cfda2
JH
6028 } else
6029 p = NULL;
6030
1da177e4 6031 sd = &per_cpu(node_domains, i);
1da177e4 6032 *sd = SD_NODE_INIT;
9c1cfda2
JH
6033 sd->span = sched_domain_node_span(cpu_to_node(i));
6034 sd->parent = p;
1a848870
SS
6035 if (p)
6036 p->child = sd;
9c1cfda2 6037 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6038#endif
6039
6040 p = sd;
6041 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6042 *sd = SD_CPU_INIT;
6043 sd->span = nodemask;
6044 sd->parent = p;
1a848870
SS
6045 if (p)
6046 p->child = sd;
6711cab4 6047 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6048
1e9f28fa
SS
6049#ifdef CONFIG_SCHED_MC
6050 p = sd;
6051 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6052 *sd = SD_MC_INIT;
6053 sd->span = cpu_coregroup_map(i);
6054 cpus_and(sd->span, sd->span, *cpu_map);
6055 sd->parent = p;
1a848870 6056 p->child = sd;
6711cab4 6057 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6058#endif
6059
1da177e4
LT
6060#ifdef CONFIG_SCHED_SMT
6061 p = sd;
6062 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6063 *sd = SD_SIBLING_INIT;
6064 sd->span = cpu_sibling_map[i];
1a20ff27 6065 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6066 sd->parent = p;
1a848870 6067 p->child = sd;
6711cab4 6068 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6069#endif
6070 }
6071
6072#ifdef CONFIG_SCHED_SMT
6073 /* Set up CPU (sibling) groups */
9c1cfda2 6074 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6075 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6076 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6077 if (i != first_cpu(this_sibling_map))
6078 continue;
6079
dd41f596
IM
6080 init_sched_build_groups(this_sibling_map, cpu_map,
6081 &cpu_to_cpu_group);
1da177e4
LT
6082 }
6083#endif
6084
1e9f28fa
SS
6085#ifdef CONFIG_SCHED_MC
6086 /* Set up multi-core groups */
6087 for_each_cpu_mask(i, *cpu_map) {
6088 cpumask_t this_core_map = cpu_coregroup_map(i);
6089 cpus_and(this_core_map, this_core_map, *cpu_map);
6090 if (i != first_cpu(this_core_map))
6091 continue;
dd41f596
IM
6092 init_sched_build_groups(this_core_map, cpu_map,
6093 &cpu_to_core_group);
1e9f28fa
SS
6094 }
6095#endif
6096
1da177e4
LT
6097 /* Set up physical groups */
6098 for (i = 0; i < MAX_NUMNODES; i++) {
6099 cpumask_t nodemask = node_to_cpumask(i);
6100
1a20ff27 6101 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6102 if (cpus_empty(nodemask))
6103 continue;
6104
6711cab4 6105 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6106 }
6107
6108#ifdef CONFIG_NUMA
6109 /* Set up node groups */
6711cab4 6110 if (sd_allnodes)
dd41f596
IM
6111 init_sched_build_groups(*cpu_map, cpu_map,
6112 &cpu_to_allnodes_group);
9c1cfda2
JH
6113
6114 for (i = 0; i < MAX_NUMNODES; i++) {
6115 /* Set up node groups */
6116 struct sched_group *sg, *prev;
6117 cpumask_t nodemask = node_to_cpumask(i);
6118 cpumask_t domainspan;
6119 cpumask_t covered = CPU_MASK_NONE;
6120 int j;
6121
6122 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6123 if (cpus_empty(nodemask)) {
6124 sched_group_nodes[i] = NULL;
9c1cfda2 6125 continue;
d1b55138 6126 }
9c1cfda2
JH
6127
6128 domainspan = sched_domain_node_span(i);
6129 cpus_and(domainspan, domainspan, *cpu_map);
6130
15f0b676 6131 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6132 if (!sg) {
6133 printk(KERN_WARNING "Can not alloc domain group for "
6134 "node %d\n", i);
6135 goto error;
6136 }
9c1cfda2
JH
6137 sched_group_nodes[i] = sg;
6138 for_each_cpu_mask(j, nodemask) {
6139 struct sched_domain *sd;
9761eea8 6140
9c1cfda2
JH
6141 sd = &per_cpu(node_domains, j);
6142 sd->groups = sg;
9c1cfda2 6143 }
5517d86b 6144 sg->__cpu_power = 0;
9c1cfda2 6145 sg->cpumask = nodemask;
51888ca2 6146 sg->next = sg;
9c1cfda2
JH
6147 cpus_or(covered, covered, nodemask);
6148 prev = sg;
6149
6150 for (j = 0; j < MAX_NUMNODES; j++) {
6151 cpumask_t tmp, notcovered;
6152 int n = (i + j) % MAX_NUMNODES;
6153
6154 cpus_complement(notcovered, covered);
6155 cpus_and(tmp, notcovered, *cpu_map);
6156 cpus_and(tmp, tmp, domainspan);
6157 if (cpus_empty(tmp))
6158 break;
6159
6160 nodemask = node_to_cpumask(n);
6161 cpus_and(tmp, tmp, nodemask);
6162 if (cpus_empty(tmp))
6163 continue;
6164
15f0b676
SV
6165 sg = kmalloc_node(sizeof(struct sched_group),
6166 GFP_KERNEL, i);
9c1cfda2
JH
6167 if (!sg) {
6168 printk(KERN_WARNING
6169 "Can not alloc domain group for node %d\n", j);
51888ca2 6170 goto error;
9c1cfda2 6171 }
5517d86b 6172 sg->__cpu_power = 0;
9c1cfda2 6173 sg->cpumask = tmp;
51888ca2 6174 sg->next = prev->next;
9c1cfda2
JH
6175 cpus_or(covered, covered, tmp);
6176 prev->next = sg;
6177 prev = sg;
6178 }
9c1cfda2 6179 }
1da177e4
LT
6180#endif
6181
6182 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6183#ifdef CONFIG_SCHED_SMT
1a20ff27 6184 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6185 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6186
89c4710e 6187 init_sched_groups_power(i, sd);
5c45bf27 6188 }
1da177e4 6189#endif
1e9f28fa 6190#ifdef CONFIG_SCHED_MC
5c45bf27 6191 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6192 struct sched_domain *sd = &per_cpu(core_domains, i);
6193
89c4710e 6194 init_sched_groups_power(i, sd);
5c45bf27
SS
6195 }
6196#endif
1e9f28fa 6197
5c45bf27 6198 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6199 struct sched_domain *sd = &per_cpu(phys_domains, i);
6200
89c4710e 6201 init_sched_groups_power(i, sd);
1da177e4
LT
6202 }
6203
9c1cfda2 6204#ifdef CONFIG_NUMA
08069033
SS
6205 for (i = 0; i < MAX_NUMNODES; i++)
6206 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6207
6711cab4
SS
6208 if (sd_allnodes) {
6209 struct sched_group *sg;
f712c0c7 6210
6711cab4 6211 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6212 init_numa_sched_groups_power(sg);
6213 }
9c1cfda2
JH
6214#endif
6215
1da177e4 6216 /* Attach the domains */
1a20ff27 6217 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6218 struct sched_domain *sd;
6219#ifdef CONFIG_SCHED_SMT
6220 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6221#elif defined(CONFIG_SCHED_MC)
6222 sd = &per_cpu(core_domains, i);
1da177e4
LT
6223#else
6224 sd = &per_cpu(phys_domains, i);
6225#endif
6226 cpu_attach_domain(sd, i);
6227 }
51888ca2
SV
6228
6229 return 0;
6230
a616058b 6231#ifdef CONFIG_NUMA
51888ca2
SV
6232error:
6233 free_sched_groups(cpu_map);
6234 return -ENOMEM;
a616058b 6235#endif
1da177e4 6236}
1a20ff27
DG
6237/*
6238 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6239 */
51888ca2 6240static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6241{
6242 cpumask_t cpu_default_map;
51888ca2 6243 int err;
1da177e4 6244
1a20ff27
DG
6245 /*
6246 * Setup mask for cpus without special case scheduling requirements.
6247 * For now this just excludes isolated cpus, but could be used to
6248 * exclude other special cases in the future.
6249 */
6250 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6251
51888ca2
SV
6252 err = build_sched_domains(&cpu_default_map);
6253
6254 return err;
1a20ff27
DG
6255}
6256
6257static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6258{
51888ca2 6259 free_sched_groups(cpu_map);
9c1cfda2 6260}
1da177e4 6261
1a20ff27
DG
6262/*
6263 * Detach sched domains from a group of cpus specified in cpu_map
6264 * These cpus will now be attached to the NULL domain
6265 */
858119e1 6266static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6267{
6268 int i;
6269
6270 for_each_cpu_mask(i, *cpu_map)
6271 cpu_attach_domain(NULL, i);
6272 synchronize_sched();
6273 arch_destroy_sched_domains(cpu_map);
6274}
6275
6276/*
6277 * Partition sched domains as specified by the cpumasks below.
6278 * This attaches all cpus from the cpumasks to the NULL domain,
6279 * waits for a RCU quiescent period, recalculates sched
6280 * domain information and then attaches them back to the
6281 * correct sched domains
6282 * Call with hotplug lock held
6283 */
51888ca2 6284int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6285{
6286 cpumask_t change_map;
51888ca2 6287 int err = 0;
1a20ff27
DG
6288
6289 cpus_and(*partition1, *partition1, cpu_online_map);
6290 cpus_and(*partition2, *partition2, cpu_online_map);
6291 cpus_or(change_map, *partition1, *partition2);
6292
6293 /* Detach sched domains from all of the affected cpus */
6294 detach_destroy_domains(&change_map);
6295 if (!cpus_empty(*partition1))
51888ca2
SV
6296 err = build_sched_domains(partition1);
6297 if (!err && !cpus_empty(*partition2))
6298 err = build_sched_domains(partition2);
6299
6300 return err;
1a20ff27
DG
6301}
6302
5c45bf27
SS
6303#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6304int arch_reinit_sched_domains(void)
6305{
6306 int err;
6307
5be9361c 6308 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6309 detach_destroy_domains(&cpu_online_map);
6310 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6311 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6312
6313 return err;
6314}
6315
6316static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6317{
6318 int ret;
6319
6320 if (buf[0] != '0' && buf[0] != '1')
6321 return -EINVAL;
6322
6323 if (smt)
6324 sched_smt_power_savings = (buf[0] == '1');
6325 else
6326 sched_mc_power_savings = (buf[0] == '1');
6327
6328 ret = arch_reinit_sched_domains();
6329
6330 return ret ? ret : count;
6331}
6332
6333int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6334{
6335 int err = 0;
48f24c4d 6336
5c45bf27
SS
6337#ifdef CONFIG_SCHED_SMT
6338 if (smt_capable())
6339 err = sysfs_create_file(&cls->kset.kobj,
6340 &attr_sched_smt_power_savings.attr);
6341#endif
6342#ifdef CONFIG_SCHED_MC
6343 if (!err && mc_capable())
6344 err = sysfs_create_file(&cls->kset.kobj,
6345 &attr_sched_mc_power_savings.attr);
6346#endif
6347 return err;
6348}
6349#endif
6350
6351#ifdef CONFIG_SCHED_MC
6352static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6353{
6354 return sprintf(page, "%u\n", sched_mc_power_savings);
6355}
48f24c4d
IM
6356static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6357 const char *buf, size_t count)
5c45bf27
SS
6358{
6359 return sched_power_savings_store(buf, count, 0);
6360}
6361SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6362 sched_mc_power_savings_store);
6363#endif
6364
6365#ifdef CONFIG_SCHED_SMT
6366static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6367{
6368 return sprintf(page, "%u\n", sched_smt_power_savings);
6369}
48f24c4d
IM
6370static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6371 const char *buf, size_t count)
5c45bf27
SS
6372{
6373 return sched_power_savings_store(buf, count, 1);
6374}
6375SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6376 sched_smt_power_savings_store);
6377#endif
6378
1da177e4
LT
6379/*
6380 * Force a reinitialization of the sched domains hierarchy. The domains
6381 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6382 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6383 * which will prevent rebalancing while the sched domains are recalculated.
6384 */
6385static int update_sched_domains(struct notifier_block *nfb,
6386 unsigned long action, void *hcpu)
6387{
1da177e4
LT
6388 switch (action) {
6389 case CPU_UP_PREPARE:
8bb78442 6390 case CPU_UP_PREPARE_FROZEN:
1da177e4 6391 case CPU_DOWN_PREPARE:
8bb78442 6392 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6393 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6394 return NOTIFY_OK;
6395
6396 case CPU_UP_CANCELED:
8bb78442 6397 case CPU_UP_CANCELED_FROZEN:
1da177e4 6398 case CPU_DOWN_FAILED:
8bb78442 6399 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6400 case CPU_ONLINE:
8bb78442 6401 case CPU_ONLINE_FROZEN:
1da177e4 6402 case CPU_DEAD:
8bb78442 6403 case CPU_DEAD_FROZEN:
1da177e4
LT
6404 /*
6405 * Fall through and re-initialise the domains.
6406 */
6407 break;
6408 default:
6409 return NOTIFY_DONE;
6410 }
6411
6412 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6413 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6414
6415 return NOTIFY_OK;
6416}
1da177e4
LT
6417
6418void __init sched_init_smp(void)
6419{
5c1e1767
NP
6420 cpumask_t non_isolated_cpus;
6421
5be9361c 6422 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6423 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6424 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6425 if (cpus_empty(non_isolated_cpus))
6426 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6427 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6428 /* XXX: Theoretical race here - CPU may be hotplugged now */
6429 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6430
e692ab53
NP
6431 init_sched_domain_sysctl();
6432
5c1e1767
NP
6433 /* Move init over to a non-isolated CPU */
6434 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6435 BUG();
dd41f596 6436 sched_init_granularity();
1da177e4
LT
6437}
6438#else
6439void __init sched_init_smp(void)
6440{
dd41f596 6441 sched_init_granularity();
1da177e4
LT
6442}
6443#endif /* CONFIG_SMP */
6444
6445int in_sched_functions(unsigned long addr)
6446{
6447 /* Linker adds these: start and end of __sched functions */
6448 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6449
1da177e4
LT
6450 return in_lock_functions(addr) ||
6451 (addr >= (unsigned long)__sched_text_start
6452 && addr < (unsigned long)__sched_text_end);
6453}
6454
dd41f596
IM
6455static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6456{
6457 cfs_rq->tasks_timeline = RB_ROOT;
6458 cfs_rq->fair_clock = 1;
6459#ifdef CONFIG_FAIR_GROUP_SCHED
6460 cfs_rq->rq = rq;
6461#endif
6462}
6463
1da177e4
LT
6464void __init sched_init(void)
6465{
dd41f596 6466 u64 now = sched_clock();
476f3534 6467 int highest_cpu = 0;
dd41f596
IM
6468 int i, j;
6469
6470 /*
6471 * Link up the scheduling class hierarchy:
6472 */
6473 rt_sched_class.next = &fair_sched_class;
6474 fair_sched_class.next = &idle_sched_class;
6475 idle_sched_class.next = NULL;
1da177e4 6476
0a945022 6477 for_each_possible_cpu(i) {
dd41f596 6478 struct rt_prio_array *array;
70b97a7f 6479 struct rq *rq;
1da177e4
LT
6480
6481 rq = cpu_rq(i);
6482 spin_lock_init(&rq->lock);
fcb99371 6483 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6484 rq->nr_running = 0;
dd41f596
IM
6485 rq->clock = 1;
6486 init_cfs_rq(&rq->cfs, rq);
6487#ifdef CONFIG_FAIR_GROUP_SCHED
6488 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6489 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6490#endif
6491 rq->ls.load_update_last = now;
6492 rq->ls.load_update_start = now;
1da177e4 6493
dd41f596
IM
6494 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6495 rq->cpu_load[j] = 0;
1da177e4 6496#ifdef CONFIG_SMP
41c7ce9a 6497 rq->sd = NULL;
1da177e4 6498 rq->active_balance = 0;
dd41f596 6499 rq->next_balance = jiffies;
1da177e4 6500 rq->push_cpu = 0;
0a2966b4 6501 rq->cpu = i;
1da177e4
LT
6502 rq->migration_thread = NULL;
6503 INIT_LIST_HEAD(&rq->migration_queue);
6504#endif
6505 atomic_set(&rq->nr_iowait, 0);
6506
dd41f596
IM
6507 array = &rq->rt.active;
6508 for (j = 0; j < MAX_RT_PRIO; j++) {
6509 INIT_LIST_HEAD(array->queue + j);
6510 __clear_bit(j, array->bitmap);
1da177e4 6511 }
476f3534 6512 highest_cpu = i;
dd41f596
IM
6513 /* delimiter for bitsearch: */
6514 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6515 }
6516
2dd73a4f 6517 set_load_weight(&init_task);
b50f60ce 6518
e107be36
AK
6519#ifdef CONFIG_PREEMPT_NOTIFIERS
6520 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6521#endif
6522
c9819f45 6523#ifdef CONFIG_SMP
476f3534 6524 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6525 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6526#endif
6527
b50f60ce
HC
6528#ifdef CONFIG_RT_MUTEXES
6529 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6530#endif
6531
1da177e4
LT
6532 /*
6533 * The boot idle thread does lazy MMU switching as well:
6534 */
6535 atomic_inc(&init_mm.mm_count);
6536 enter_lazy_tlb(&init_mm, current);
6537
6538 /*
6539 * Make us the idle thread. Technically, schedule() should not be
6540 * called from this thread, however somewhere below it might be,
6541 * but because we are the idle thread, we just pick up running again
6542 * when this runqueue becomes "idle".
6543 */
6544 init_idle(current, smp_processor_id());
dd41f596
IM
6545 /*
6546 * During early bootup we pretend to be a normal task:
6547 */
6548 current->sched_class = &fair_sched_class;
1da177e4
LT
6549}
6550
6551#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6552void __might_sleep(char *file, int line)
6553{
48f24c4d 6554#ifdef in_atomic
1da177e4
LT
6555 static unsigned long prev_jiffy; /* ratelimiting */
6556
6557 if ((in_atomic() || irqs_disabled()) &&
6558 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6559 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6560 return;
6561 prev_jiffy = jiffies;
91368d73 6562 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6563 " context at %s:%d\n", file, line);
6564 printk("in_atomic():%d, irqs_disabled():%d\n",
6565 in_atomic(), irqs_disabled());
a4c410f0 6566 debug_show_held_locks(current);
3117df04
IM
6567 if (irqs_disabled())
6568 print_irqtrace_events(current);
1da177e4
LT
6569 dump_stack();
6570 }
6571#endif
6572}
6573EXPORT_SYMBOL(__might_sleep);
6574#endif
6575
6576#ifdef CONFIG_MAGIC_SYSRQ
6577void normalize_rt_tasks(void)
6578{
a0f98a1c 6579 struct task_struct *g, *p;
1da177e4 6580 unsigned long flags;
70b97a7f 6581 struct rq *rq;
dd41f596 6582 int on_rq;
1da177e4
LT
6583
6584 read_lock_irq(&tasklist_lock);
a0f98a1c 6585 do_each_thread(g, p) {
dd41f596
IM
6586 p->se.fair_key = 0;
6587 p->se.wait_runtime = 0;
6cfb0d5d 6588 p->se.exec_start = 0;
dd41f596 6589 p->se.wait_start_fair = 0;
6cfb0d5d
IM
6590 p->se.sleep_start_fair = 0;
6591#ifdef CONFIG_SCHEDSTATS
dd41f596 6592 p->se.wait_start = 0;
dd41f596 6593 p->se.sleep_start = 0;
dd41f596 6594 p->se.block_start = 0;
6cfb0d5d 6595#endif
dd41f596
IM
6596 task_rq(p)->cfs.fair_clock = 0;
6597 task_rq(p)->clock = 0;
6598
6599 if (!rt_task(p)) {
6600 /*
6601 * Renice negative nice level userspace
6602 * tasks back to 0:
6603 */
6604 if (TASK_NICE(p) < 0 && p->mm)
6605 set_user_nice(p, 0);
1da177e4 6606 continue;
dd41f596 6607 }
1da177e4 6608
b29739f9
IM
6609 spin_lock_irqsave(&p->pi_lock, flags);
6610 rq = __task_rq_lock(p);
dd41f596
IM
6611#ifdef CONFIG_SMP
6612 /*
6613 * Do not touch the migration thread:
6614 */
6615 if (p == rq->migration_thread)
6616 goto out_unlock;
6617#endif
1da177e4 6618
dd41f596
IM
6619 on_rq = p->se.on_rq;
6620 if (on_rq)
6621 deactivate_task(task_rq(p), p, 0);
6622 __setscheduler(rq, p, SCHED_NORMAL, 0);
6623 if (on_rq) {
6624 activate_task(task_rq(p), p, 0);
1da177e4
LT
6625 resched_task(rq->curr);
6626 }
dd41f596
IM
6627#ifdef CONFIG_SMP
6628 out_unlock:
6629#endif
b29739f9
IM
6630 __task_rq_unlock(rq);
6631 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6632 } while_each_thread(g, p);
6633
1da177e4
LT
6634 read_unlock_irq(&tasklist_lock);
6635}
6636
6637#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6638
6639#ifdef CONFIG_IA64
6640/*
6641 * These functions are only useful for the IA64 MCA handling.
6642 *
6643 * They can only be called when the whole system has been
6644 * stopped - every CPU needs to be quiescent, and no scheduling
6645 * activity can take place. Using them for anything else would
6646 * be a serious bug, and as a result, they aren't even visible
6647 * under any other configuration.
6648 */
6649
6650/**
6651 * curr_task - return the current task for a given cpu.
6652 * @cpu: the processor in question.
6653 *
6654 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6655 */
36c8b586 6656struct task_struct *curr_task(int cpu)
1df5c10a
LT
6657{
6658 return cpu_curr(cpu);
6659}
6660
6661/**
6662 * set_curr_task - set the current task for a given cpu.
6663 * @cpu: the processor in question.
6664 * @p: the task pointer to set.
6665 *
6666 * Description: This function must only be used when non-maskable interrupts
6667 * are serviced on a separate stack. It allows the architecture to switch the
6668 * notion of the current task on a cpu in a non-blocking manner. This function
6669 * must be called with all CPU's synchronized, and interrupts disabled, the
6670 * and caller must save the original value of the current task (see
6671 * curr_task() above) and restore that value before reenabling interrupts and
6672 * re-starting the system.
6673 *
6674 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6675 */
36c8b586 6676void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6677{
6678 cpu_curr(cpu) = p;
6679}
6680
6681#endif