]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: Merge cpu_to_core_group functions
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
052f1dc7
PZ
256#endif
257
258#ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
d0b27fa7 262 struct rt_bandwidth rt_bandwidth;
052f1dc7 263#endif
6b2d7700 264
ae8393e5 265 struct rcu_head rcu;
6f505b16 266 struct list_head list;
f473aa5e
PZ
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
29f59db3
SV
271};
272
eff766a6 273#define root_task_group init_task_group
6f505b16 274
8ed36996 275/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
276 * a task group's cpu shares.
277 */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
57310a98
PZ
282#ifdef CONFIG_SMP
283static int root_task_group_empty(void)
284{
285 return list_empty(&root_task_group.children);
286}
287#endif
288
052f1dc7 289# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 290
cb4ad1ff 291/*
2e084786
LJ
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
cb4ad1ff
MX
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
18d95a28 299#define MIN_SHARES 2
2e084786 300#define MAX_SHARES (1UL << 18)
18d95a28 301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3 309
7c941438 310#endif /* CONFIG_CGROUP_SCHED */
29f59db3 311
6aa645ea
IM
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
6aa645ea 317 u64 exec_clock;
e9acbff6 318 u64 min_vruntime;
6aa645ea
IM
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
4a55bd5e
PZ
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
4793241b 330 struct sched_entity *curr, *next, *last;
ddc97297 331
5ac5c4d6 332 unsigned int nr_spread_over;
ddc97297 333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857
PZ
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
f1d239f7
PZ
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2 429 struct cpupri cpupri;
57d885fe
GH
430};
431
dc938520
GH
432/*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
57d885fe
GH
436static struct root_domain def_root_domain;
437
ed2d372c 438#endif /* CONFIG_SMP */
57d885fe 439
1da177e4
LT
440/*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
70b97a7f 447struct rq {
d8016491 448 /* runqueue lock: */
05fa785c 449 raw_spinlock_t lock;
1da177e4
LT
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
6aa645ea
IM
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 458 unsigned long last_load_update_tick;
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
83cd4fe2 461 unsigned char nohz_balance_kick;
46cb4b7c 462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
36c8b586 489 struct task_struct *curr, *idle;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
6aa645ea 494
1da177e4
LT
495 atomic_t nr_iowait;
496
497#ifdef CONFIG_SMP
0eab9146 498 struct root_domain *rd;
1da177e4
LT
499 struct sched_domain *sd;
500
e51fd5e2
PZ
501 unsigned long cpu_power;
502
a0a522ce 503 unsigned char idle_at_tick;
1da177e4 504 /* For active balancing */
3f029d3c 505 int post_schedule;
1da177e4
LT
506 int active_balance;
507 int push_cpu;
969c7921 508 struct cpu_stop_work active_balance_work;
d8016491
IM
509 /* cpu of this runqueue: */
510 int cpu;
1f11eb6a 511 int online;
1da177e4 512
a8a51d5e 513 unsigned long avg_load_per_task;
1da177e4 514
e9e9250b
PZ
515 u64 rt_avg;
516 u64 age_stamp;
1b9508f6
MG
517 u64 idle_stamp;
518 u64 avg_idle;
1da177e4
LT
519#endif
520
dce48a84
TG
521 /* calc_load related fields */
522 unsigned long calc_load_update;
523 long calc_load_active;
524
8f4d37ec 525#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
526#ifdef CONFIG_SMP
527 int hrtick_csd_pending;
528 struct call_single_data hrtick_csd;
529#endif
8f4d37ec
PZ
530 struct hrtimer hrtick_timer;
531#endif
532
1da177e4
LT
533#ifdef CONFIG_SCHEDSTATS
534 /* latency stats */
535 struct sched_info rq_sched_info;
9c2c4802
KC
536 unsigned long long rq_cpu_time;
537 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
538
539 /* sys_sched_yield() stats */
480b9434 540 unsigned int yld_count;
1da177e4
LT
541
542 /* schedule() stats */
480b9434
KC
543 unsigned int sched_switch;
544 unsigned int sched_count;
545 unsigned int sched_goidle;
1da177e4
LT
546
547 /* try_to_wake_up() stats */
480b9434
KC
548 unsigned int ttwu_count;
549 unsigned int ttwu_local;
b8efb561
IM
550
551 /* BKL stats */
480b9434 552 unsigned int bkl_count;
1da177e4
LT
553#endif
554};
555
f34e3b61 556static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 557
7d478721
PZ
558static inline
559void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 560{
7d478721 561 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
562
563 /*
564 * A queue event has occurred, and we're going to schedule. In
565 * this case, we can save a useless back to back clock update.
566 */
567 if (test_tsk_need_resched(p))
568 rq->skip_clock_update = 1;
dd41f596
IM
569}
570
0a2966b4
CL
571static inline int cpu_of(struct rq *rq)
572{
573#ifdef CONFIG_SMP
574 return rq->cpu;
575#else
576 return 0;
577#endif
578}
579
497f0ab3 580#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
581 rcu_dereference_check((p), \
582 rcu_read_lock_sched_held() || \
583 lockdep_is_held(&sched_domains_mutex))
584
674311d5
NP
585/*
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 587 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
588 *
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
591 */
48f24c4d 592#define for_each_domain(cpu, __sd) \
497f0ab3 593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
594
595#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596#define this_rq() (&__get_cpu_var(runqueues))
597#define task_rq(p) cpu_rq(task_cpu(p))
598#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 599#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 600
dc61b1d6
PZ
601#ifdef CONFIG_CGROUP_SCHED
602
603/*
604 * Return the group to which this tasks belongs.
605 *
606 * We use task_subsys_state_check() and extend the RCU verification
607 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
610 */
611static inline struct task_group *task_group(struct task_struct *p)
612{
613 struct cgroup_subsys_state *css;
614
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
616 lockdep_is_held(&task_rq(p)->lock));
617 return container_of(css, struct task_group, css);
618}
619
620/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
621static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
622{
623#ifdef CONFIG_FAIR_GROUP_SCHED
624 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
625 p->se.parent = task_group(p)->se[cpu];
626#endif
627
628#ifdef CONFIG_RT_GROUP_SCHED
629 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
630 p->rt.parent = task_group(p)->rt_se[cpu];
631#endif
632}
633
634#else /* CONFIG_CGROUP_SCHED */
635
636static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
637static inline struct task_group *task_group(struct task_struct *p)
638{
639 return NULL;
640}
641
642#endif /* CONFIG_CGROUP_SCHED */
643
aa9c4c0f 644inline void update_rq_clock(struct rq *rq)
3e51f33f 645{
a64692a3
MG
646 if (!rq->skip_clock_update)
647 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
648}
649
bf5c91ba
IM
650/*
651 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
652 */
653#ifdef CONFIG_SCHED_DEBUG
654# define const_debug __read_mostly
655#else
656# define const_debug static const
657#endif
658
017730c1
IM
659/**
660 * runqueue_is_locked
e17b38bf 661 * @cpu: the processor in question.
017730c1
IM
662 *
663 * Returns true if the current cpu runqueue is locked.
664 * This interface allows printk to be called with the runqueue lock
665 * held and know whether or not it is OK to wake up the klogd.
666 */
89f19f04 667int runqueue_is_locked(int cpu)
017730c1 668{
05fa785c 669 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
670}
671
bf5c91ba
IM
672/*
673 * Debugging: various feature bits
674 */
f00b45c1
PZ
675
676#define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
678
bf5c91ba 679enum {
f00b45c1 680#include "sched_features.h"
bf5c91ba
IM
681};
682
f00b45c1
PZ
683#undef SCHED_FEAT
684
685#define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
687
bf5c91ba 688const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
689#include "sched_features.h"
690 0;
691
692#undef SCHED_FEAT
693
694#ifdef CONFIG_SCHED_DEBUG
695#define SCHED_FEAT(name, enabled) \
696 #name ,
697
983ed7a6 698static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
699#include "sched_features.h"
700 NULL
701};
702
703#undef SCHED_FEAT
704
34f3a814 705static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 706{
f00b45c1
PZ
707 int i;
708
709 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
710 if (!(sysctl_sched_features & (1UL << i)))
711 seq_puts(m, "NO_");
712 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 713 }
34f3a814 714 seq_puts(m, "\n");
f00b45c1 715
34f3a814 716 return 0;
f00b45c1
PZ
717}
718
719static ssize_t
720sched_feat_write(struct file *filp, const char __user *ubuf,
721 size_t cnt, loff_t *ppos)
722{
723 char buf[64];
724 char *cmp = buf;
725 int neg = 0;
726 int i;
727
728 if (cnt > 63)
729 cnt = 63;
730
731 if (copy_from_user(&buf, ubuf, cnt))
732 return -EFAULT;
733
734 buf[cnt] = 0;
735
c24b7c52 736 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
737 neg = 1;
738 cmp += 3;
739 }
740
741 for (i = 0; sched_feat_names[i]; i++) {
742 int len = strlen(sched_feat_names[i]);
743
744 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
745 if (neg)
746 sysctl_sched_features &= ~(1UL << i);
747 else
748 sysctl_sched_features |= (1UL << i);
749 break;
750 }
751 }
752
753 if (!sched_feat_names[i])
754 return -EINVAL;
755
42994724 756 *ppos += cnt;
f00b45c1
PZ
757
758 return cnt;
759}
760
34f3a814
LZ
761static int sched_feat_open(struct inode *inode, struct file *filp)
762{
763 return single_open(filp, sched_feat_show, NULL);
764}
765
828c0950 766static const struct file_operations sched_feat_fops = {
34f3a814
LZ
767 .open = sched_feat_open,
768 .write = sched_feat_write,
769 .read = seq_read,
770 .llseek = seq_lseek,
771 .release = single_release,
f00b45c1
PZ
772};
773
774static __init int sched_init_debug(void)
775{
f00b45c1
PZ
776 debugfs_create_file("sched_features", 0644, NULL, NULL,
777 &sched_feat_fops);
778
779 return 0;
780}
781late_initcall(sched_init_debug);
782
783#endif
784
785#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 786
b82d9fdd
PZ
787/*
788 * Number of tasks to iterate in a single balance run.
789 * Limited because this is done with IRQs disabled.
790 */
791const_debug unsigned int sysctl_sched_nr_migrate = 32;
792
2398f2c6
PZ
793/*
794 * ratelimit for updating the group shares.
55cd5340 795 * default: 0.25ms
2398f2c6 796 */
55cd5340 797unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 798unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 799
ffda12a1
PZ
800/*
801 * Inject some fuzzyness into changing the per-cpu group shares
802 * this avoids remote rq-locks at the expense of fairness.
803 * default: 4
804 */
805unsigned int sysctl_sched_shares_thresh = 4;
806
e9e9250b
PZ
807/*
808 * period over which we average the RT time consumption, measured
809 * in ms.
810 *
811 * default: 1s
812 */
813const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
814
fa85ae24 815/*
9f0c1e56 816 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
817 * default: 1s
818 */
9f0c1e56 819unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 820
6892b75e
IM
821static __read_mostly int scheduler_running;
822
9f0c1e56
PZ
823/*
824 * part of the period that we allow rt tasks to run in us.
825 * default: 0.95s
826 */
827int sysctl_sched_rt_runtime = 950000;
fa85ae24 828
d0b27fa7
PZ
829static inline u64 global_rt_period(void)
830{
831 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
832}
833
834static inline u64 global_rt_runtime(void)
835{
e26873bb 836 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
837 return RUNTIME_INF;
838
839 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
840}
fa85ae24 841
1da177e4 842#ifndef prepare_arch_switch
4866cde0
NP
843# define prepare_arch_switch(next) do { } while (0)
844#endif
845#ifndef finish_arch_switch
846# define finish_arch_switch(prev) do { } while (0)
847#endif
848
051a1d1a
DA
849static inline int task_current(struct rq *rq, struct task_struct *p)
850{
851 return rq->curr == p;
852}
853
4866cde0 854#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 855static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 856{
051a1d1a 857 return task_current(rq, p);
4866cde0
NP
858}
859
70b97a7f 860static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
861{
862}
863
70b97a7f 864static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 865{
da04c035
IM
866#ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
869#endif
8a25d5de
IM
870 /*
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
873 * prev into current:
874 */
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
876
05fa785c 877 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
878}
879
880#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 881static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
882{
883#ifdef CONFIG_SMP
884 return p->oncpu;
885#else
051a1d1a 886 return task_current(rq, p);
4866cde0
NP
887#endif
888}
889
70b97a7f 890static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
891{
892#ifdef CONFIG_SMP
893 /*
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
896 * here.
897 */
898 next->oncpu = 1;
899#endif
900#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 901 raw_spin_unlock_irq(&rq->lock);
4866cde0 902#else
05fa785c 903 raw_spin_unlock(&rq->lock);
4866cde0
NP
904#endif
905}
906
70b97a7f 907static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
908{
909#ifdef CONFIG_SMP
910 /*
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
913 * finished.
914 */
915 smp_wmb();
916 prev->oncpu = 0;
917#endif
918#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 local_irq_enable();
1da177e4 920#endif
4866cde0
NP
921}
922#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 923
0970d299 924/*
65cc8e48
PZ
925 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
926 * against ttwu().
0970d299
PZ
927 */
928static inline int task_is_waking(struct task_struct *p)
929{
0017d735 930 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
931}
932
b29739f9
IM
933/*
934 * __task_rq_lock - lock the runqueue a given task resides on.
935 * Must be called interrupts disabled.
936 */
70b97a7f 937static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
938 __acquires(rq->lock)
939{
0970d299
PZ
940 struct rq *rq;
941
3a5c359a 942 for (;;) {
0970d299 943 rq = task_rq(p);
05fa785c 944 raw_spin_lock(&rq->lock);
65cc8e48 945 if (likely(rq == task_rq(p)))
3a5c359a 946 return rq;
05fa785c 947 raw_spin_unlock(&rq->lock);
b29739f9 948 }
b29739f9
IM
949}
950
1da177e4
LT
951/*
952 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 953 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
954 * explicitly disabling preemption.
955 */
70b97a7f 956static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
957 __acquires(rq->lock)
958{
70b97a7f 959 struct rq *rq;
1da177e4 960
3a5c359a
AK
961 for (;;) {
962 local_irq_save(*flags);
963 rq = task_rq(p);
05fa785c 964 raw_spin_lock(&rq->lock);
65cc8e48 965 if (likely(rq == task_rq(p)))
3a5c359a 966 return rq;
05fa785c 967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 968 }
1da177e4
LT
969}
970
a9957449 971static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
972 __releases(rq->lock)
973{
05fa785c 974 raw_spin_unlock(&rq->lock);
b29739f9
IM
975}
976
70b97a7f 977static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
978 __releases(rq->lock)
979{
05fa785c 980 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
981}
982
1da177e4 983/*
cc2a73b5 984 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 985 */
a9957449 986static struct rq *this_rq_lock(void)
1da177e4
LT
987 __acquires(rq->lock)
988{
70b97a7f 989 struct rq *rq;
1da177e4
LT
990
991 local_irq_disable();
992 rq = this_rq();
05fa785c 993 raw_spin_lock(&rq->lock);
1da177e4
LT
994
995 return rq;
996}
997
8f4d37ec
PZ
998#ifdef CONFIG_SCHED_HRTICK
999/*
1000 * Use HR-timers to deliver accurate preemption points.
1001 *
1002 * Its all a bit involved since we cannot program an hrt while holding the
1003 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1004 * reschedule event.
1005 *
1006 * When we get rescheduled we reprogram the hrtick_timer outside of the
1007 * rq->lock.
1008 */
8f4d37ec
PZ
1009
1010/*
1011 * Use hrtick when:
1012 * - enabled by features
1013 * - hrtimer is actually high res
1014 */
1015static inline int hrtick_enabled(struct rq *rq)
1016{
1017 if (!sched_feat(HRTICK))
1018 return 0;
ba42059f 1019 if (!cpu_active(cpu_of(rq)))
b328ca18 1020 return 0;
8f4d37ec
PZ
1021 return hrtimer_is_hres_active(&rq->hrtick_timer);
1022}
1023
8f4d37ec
PZ
1024static void hrtick_clear(struct rq *rq)
1025{
1026 if (hrtimer_active(&rq->hrtick_timer))
1027 hrtimer_cancel(&rq->hrtick_timer);
1028}
1029
8f4d37ec
PZ
1030/*
1031 * High-resolution timer tick.
1032 * Runs from hardirq context with interrupts disabled.
1033 */
1034static enum hrtimer_restart hrtick(struct hrtimer *timer)
1035{
1036 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1037
1038 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1039
05fa785c 1040 raw_spin_lock(&rq->lock);
3e51f33f 1041 update_rq_clock(rq);
8f4d37ec 1042 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1043 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1044
1045 return HRTIMER_NORESTART;
1046}
1047
95e904c7 1048#ifdef CONFIG_SMP
31656519
PZ
1049/*
1050 * called from hardirq (IPI) context
1051 */
1052static void __hrtick_start(void *arg)
b328ca18 1053{
31656519 1054 struct rq *rq = arg;
b328ca18 1055
05fa785c 1056 raw_spin_lock(&rq->lock);
31656519
PZ
1057 hrtimer_restart(&rq->hrtick_timer);
1058 rq->hrtick_csd_pending = 0;
05fa785c 1059 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1060}
1061
31656519
PZ
1062/*
1063 * Called to set the hrtick timer state.
1064 *
1065 * called with rq->lock held and irqs disabled
1066 */
1067static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1068{
31656519
PZ
1069 struct hrtimer *timer = &rq->hrtick_timer;
1070 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1071
cc584b21 1072 hrtimer_set_expires(timer, time);
31656519
PZ
1073
1074 if (rq == this_rq()) {
1075 hrtimer_restart(timer);
1076 } else if (!rq->hrtick_csd_pending) {
6e275637 1077 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1078 rq->hrtick_csd_pending = 1;
1079 }
b328ca18
PZ
1080}
1081
1082static int
1083hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1084{
1085 int cpu = (int)(long)hcpu;
1086
1087 switch (action) {
1088 case CPU_UP_CANCELED:
1089 case CPU_UP_CANCELED_FROZEN:
1090 case CPU_DOWN_PREPARE:
1091 case CPU_DOWN_PREPARE_FROZEN:
1092 case CPU_DEAD:
1093 case CPU_DEAD_FROZEN:
31656519 1094 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1095 return NOTIFY_OK;
1096 }
1097
1098 return NOTIFY_DONE;
1099}
1100
fa748203 1101static __init void init_hrtick(void)
b328ca18
PZ
1102{
1103 hotcpu_notifier(hotplug_hrtick, 0);
1104}
31656519
PZ
1105#else
1106/*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111static void hrtick_start(struct rq *rq, u64 delay)
1112{
7f1e2ca9 1113 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1114 HRTIMER_MODE_REL_PINNED, 0);
31656519 1115}
b328ca18 1116
006c75f1 1117static inline void init_hrtick(void)
8f4d37ec 1118{
8f4d37ec 1119}
31656519 1120#endif /* CONFIG_SMP */
8f4d37ec 1121
31656519 1122static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1123{
31656519
PZ
1124#ifdef CONFIG_SMP
1125 rq->hrtick_csd_pending = 0;
8f4d37ec 1126
31656519
PZ
1127 rq->hrtick_csd.flags = 0;
1128 rq->hrtick_csd.func = __hrtick_start;
1129 rq->hrtick_csd.info = rq;
1130#endif
8f4d37ec 1131
31656519
PZ
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
8f4d37ec 1134}
006c75f1 1135#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1136static inline void hrtick_clear(struct rq *rq)
1137{
1138}
1139
8f4d37ec
PZ
1140static inline void init_rq_hrtick(struct rq *rq)
1141{
1142}
1143
b328ca18
PZ
1144static inline void init_hrtick(void)
1145{
1146}
006c75f1 1147#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1148
c24d20db
IM
1149/*
1150 * resched_task - mark a task 'to be rescheduled now'.
1151 *
1152 * On UP this means the setting of the need_resched flag, on SMP it
1153 * might also involve a cross-CPU call to trigger the scheduler on
1154 * the target CPU.
1155 */
1156#ifdef CONFIG_SMP
1157
1158#ifndef tsk_is_polling
1159#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1160#endif
1161
31656519 1162static void resched_task(struct task_struct *p)
c24d20db
IM
1163{
1164 int cpu;
1165
05fa785c 1166 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1167
5ed0cec0 1168 if (test_tsk_need_resched(p))
c24d20db
IM
1169 return;
1170
5ed0cec0 1171 set_tsk_need_resched(p);
c24d20db
IM
1172
1173 cpu = task_cpu(p);
1174 if (cpu == smp_processor_id())
1175 return;
1176
1177 /* NEED_RESCHED must be visible before we test polling */
1178 smp_mb();
1179 if (!tsk_is_polling(p))
1180 smp_send_reschedule(cpu);
1181}
1182
1183static void resched_cpu(int cpu)
1184{
1185 struct rq *rq = cpu_rq(cpu);
1186 unsigned long flags;
1187
05fa785c 1188 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1189 return;
1190 resched_task(cpu_curr(cpu));
05fa785c 1191 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1192}
06d8308c
TG
1193
1194#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1195/*
1196 * In the semi idle case, use the nearest busy cpu for migrating timers
1197 * from an idle cpu. This is good for power-savings.
1198 *
1199 * We don't do similar optimization for completely idle system, as
1200 * selecting an idle cpu will add more delays to the timers than intended
1201 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1202 */
1203int get_nohz_timer_target(void)
1204{
1205 int cpu = smp_processor_id();
1206 int i;
1207 struct sched_domain *sd;
1208
1209 for_each_domain(cpu, sd) {
1210 for_each_cpu(i, sched_domain_span(sd))
1211 if (!idle_cpu(i))
1212 return i;
1213 }
1214 return cpu;
1215}
06d8308c
TG
1216/*
1217 * When add_timer_on() enqueues a timer into the timer wheel of an
1218 * idle CPU then this timer might expire before the next timer event
1219 * which is scheduled to wake up that CPU. In case of a completely
1220 * idle system the next event might even be infinite time into the
1221 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1222 * leaves the inner idle loop so the newly added timer is taken into
1223 * account when the CPU goes back to idle and evaluates the timer
1224 * wheel for the next timer event.
1225 */
1226void wake_up_idle_cpu(int cpu)
1227{
1228 struct rq *rq = cpu_rq(cpu);
1229
1230 if (cpu == smp_processor_id())
1231 return;
1232
1233 /*
1234 * This is safe, as this function is called with the timer
1235 * wheel base lock of (cpu) held. When the CPU is on the way
1236 * to idle and has not yet set rq->curr to idle then it will
1237 * be serialized on the timer wheel base lock and take the new
1238 * timer into account automatically.
1239 */
1240 if (rq->curr != rq->idle)
1241 return;
1242
1243 /*
1244 * We can set TIF_RESCHED on the idle task of the other CPU
1245 * lockless. The worst case is that the other CPU runs the
1246 * idle task through an additional NOOP schedule()
1247 */
5ed0cec0 1248 set_tsk_need_resched(rq->idle);
06d8308c
TG
1249
1250 /* NEED_RESCHED must be visible before we test polling */
1251 smp_mb();
1252 if (!tsk_is_polling(rq->idle))
1253 smp_send_reschedule(cpu);
1254}
39c0cbe2 1255
6d6bc0ad 1256#endif /* CONFIG_NO_HZ */
06d8308c 1257
e9e9250b
PZ
1258static u64 sched_avg_period(void)
1259{
1260 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1261}
1262
1263static void sched_avg_update(struct rq *rq)
1264{
1265 s64 period = sched_avg_period();
1266
1267 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1268 /*
1269 * Inline assembly required to prevent the compiler
1270 * optimising this loop into a divmod call.
1271 * See __iter_div_u64_rem() for another example of this.
1272 */
1273 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1274 rq->age_stamp += period;
1275 rq->rt_avg /= 2;
1276 }
1277}
1278
1279static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280{
1281 rq->rt_avg += rt_delta;
1282 sched_avg_update(rq);
1283}
1284
6d6bc0ad 1285#else /* !CONFIG_SMP */
31656519 1286static void resched_task(struct task_struct *p)
c24d20db 1287{
05fa785c 1288 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1289 set_tsk_need_resched(p);
c24d20db 1290}
e9e9250b
PZ
1291
1292static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1293{
1294}
6d6bc0ad 1295#endif /* CONFIG_SMP */
c24d20db 1296
45bf76df
IM
1297#if BITS_PER_LONG == 32
1298# define WMULT_CONST (~0UL)
1299#else
1300# define WMULT_CONST (1UL << 32)
1301#endif
1302
1303#define WMULT_SHIFT 32
1304
194081eb
IM
1305/*
1306 * Shift right and round:
1307 */
cf2ab469 1308#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1309
a7be37ac
PZ
1310/*
1311 * delta *= weight / lw
1312 */
cb1c4fc9 1313static unsigned long
45bf76df
IM
1314calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1315 struct load_weight *lw)
1316{
1317 u64 tmp;
1318
7a232e03
LJ
1319 if (!lw->inv_weight) {
1320 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1321 lw->inv_weight = 1;
1322 else
1323 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1324 / (lw->weight+1);
1325 }
45bf76df
IM
1326
1327 tmp = (u64)delta_exec * weight;
1328 /*
1329 * Check whether we'd overflow the 64-bit multiplication:
1330 */
194081eb 1331 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1332 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1333 WMULT_SHIFT/2);
1334 else
cf2ab469 1335 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1336
ecf691da 1337 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1338}
1339
1091985b 1340static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1341{
1342 lw->weight += inc;
e89996ae 1343 lw->inv_weight = 0;
45bf76df
IM
1344}
1345
1091985b 1346static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1347{
1348 lw->weight -= dec;
e89996ae 1349 lw->inv_weight = 0;
45bf76df
IM
1350}
1351
2dd73a4f
PW
1352/*
1353 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1354 * of tasks with abnormal "nice" values across CPUs the contribution that
1355 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1356 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1357 * scaled version of the new time slice allocation that they receive on time
1358 * slice expiry etc.
1359 */
1360
cce7ade8
PZ
1361#define WEIGHT_IDLEPRIO 3
1362#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1363
1364/*
1365 * Nice levels are multiplicative, with a gentle 10% change for every
1366 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1367 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1368 * that remained on nice 0.
1369 *
1370 * The "10% effect" is relative and cumulative: from _any_ nice level,
1371 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1372 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1373 * If a task goes up by ~10% and another task goes down by ~10% then
1374 * the relative distance between them is ~25%.)
dd41f596
IM
1375 */
1376static const int prio_to_weight[40] = {
254753dc
IM
1377 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1378 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1379 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1380 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1381 /* 0 */ 1024, 820, 655, 526, 423,
1382 /* 5 */ 335, 272, 215, 172, 137,
1383 /* 10 */ 110, 87, 70, 56, 45,
1384 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1385};
1386
5714d2de
IM
1387/*
1388 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1389 *
1390 * In cases where the weight does not change often, we can use the
1391 * precalculated inverse to speed up arithmetics by turning divisions
1392 * into multiplications:
1393 */
dd41f596 1394static const u32 prio_to_wmult[40] = {
254753dc
IM
1395 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1396 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1397 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1398 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1399 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1400 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1401 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1402 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1403};
2dd73a4f 1404
ef12fefa
BR
1405/* Time spent by the tasks of the cpu accounting group executing in ... */
1406enum cpuacct_stat_index {
1407 CPUACCT_STAT_USER, /* ... user mode */
1408 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1409
1410 CPUACCT_STAT_NSTATS,
1411};
1412
d842de87
SV
1413#ifdef CONFIG_CGROUP_CPUACCT
1414static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1415static void cpuacct_update_stats(struct task_struct *tsk,
1416 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1417#else
1418static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1419static inline void cpuacct_update_stats(struct task_struct *tsk,
1420 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1421#endif
1422
18d95a28
PZ
1423static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1424{
1425 update_load_add(&rq->load, load);
1426}
1427
1428static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1429{
1430 update_load_sub(&rq->load, load);
1431}
1432
7940ca36 1433#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1434typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1435
1436/*
1437 * Iterate the full tree, calling @down when first entering a node and @up when
1438 * leaving it for the final time.
1439 */
eb755805 1440static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1441{
1442 struct task_group *parent, *child;
eb755805 1443 int ret;
c09595f6
PZ
1444
1445 rcu_read_lock();
1446 parent = &root_task_group;
1447down:
eb755805
PZ
1448 ret = (*down)(parent, data);
1449 if (ret)
1450 goto out_unlock;
c09595f6
PZ
1451 list_for_each_entry_rcu(child, &parent->children, siblings) {
1452 parent = child;
1453 goto down;
1454
1455up:
1456 continue;
1457 }
eb755805
PZ
1458 ret = (*up)(parent, data);
1459 if (ret)
1460 goto out_unlock;
c09595f6
PZ
1461
1462 child = parent;
1463 parent = parent->parent;
1464 if (parent)
1465 goto up;
eb755805 1466out_unlock:
c09595f6 1467 rcu_read_unlock();
eb755805
PZ
1468
1469 return ret;
c09595f6
PZ
1470}
1471
eb755805
PZ
1472static int tg_nop(struct task_group *tg, void *data)
1473{
1474 return 0;
c09595f6 1475}
eb755805
PZ
1476#endif
1477
1478#ifdef CONFIG_SMP
f5f08f39
PZ
1479/* Used instead of source_load when we know the type == 0 */
1480static unsigned long weighted_cpuload(const int cpu)
1481{
1482 return cpu_rq(cpu)->load.weight;
1483}
1484
1485/*
1486 * Return a low guess at the load of a migration-source cpu weighted
1487 * according to the scheduling class and "nice" value.
1488 *
1489 * We want to under-estimate the load of migration sources, to
1490 * balance conservatively.
1491 */
1492static unsigned long source_load(int cpu, int type)
1493{
1494 struct rq *rq = cpu_rq(cpu);
1495 unsigned long total = weighted_cpuload(cpu);
1496
1497 if (type == 0 || !sched_feat(LB_BIAS))
1498 return total;
1499
1500 return min(rq->cpu_load[type-1], total);
1501}
1502
1503/*
1504 * Return a high guess at the load of a migration-target cpu weighted
1505 * according to the scheduling class and "nice" value.
1506 */
1507static unsigned long target_load(int cpu, int type)
1508{
1509 struct rq *rq = cpu_rq(cpu);
1510 unsigned long total = weighted_cpuload(cpu);
1511
1512 if (type == 0 || !sched_feat(LB_BIAS))
1513 return total;
1514
1515 return max(rq->cpu_load[type-1], total);
1516}
1517
ae154be1
PZ
1518static unsigned long power_of(int cpu)
1519{
e51fd5e2 1520 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1521}
1522
eb755805
PZ
1523static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1524
1525static unsigned long cpu_avg_load_per_task(int cpu)
1526{
1527 struct rq *rq = cpu_rq(cpu);
af6d596f 1528 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1529
4cd42620
SR
1530 if (nr_running)
1531 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1532 else
1533 rq->avg_load_per_task = 0;
eb755805
PZ
1534
1535 return rq->avg_load_per_task;
1536}
1537
1538#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1539
43cf38eb 1540static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1541
c09595f6
PZ
1542static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1543
1544/*
1545 * Calculate and set the cpu's group shares.
1546 */
34d76c41
PZ
1547static void update_group_shares_cpu(struct task_group *tg, int cpu,
1548 unsigned long sd_shares,
1549 unsigned long sd_rq_weight,
4a6cc4bd 1550 unsigned long *usd_rq_weight)
18d95a28 1551{
34d76c41 1552 unsigned long shares, rq_weight;
a5004278 1553 int boost = 0;
c09595f6 1554
4a6cc4bd 1555 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1556 if (!rq_weight) {
1557 boost = 1;
1558 rq_weight = NICE_0_LOAD;
1559 }
c8cba857 1560
c09595f6 1561 /*
a8af7246
PZ
1562 * \Sum_j shares_j * rq_weight_i
1563 * shares_i = -----------------------------
1564 * \Sum_j rq_weight_j
c09595f6 1565 */
ec4e0e2f 1566 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1567 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1568
ffda12a1
PZ
1569 if (abs(shares - tg->se[cpu]->load.weight) >
1570 sysctl_sched_shares_thresh) {
1571 struct rq *rq = cpu_rq(cpu);
1572 unsigned long flags;
c09595f6 1573
05fa785c 1574 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1575 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1576 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1577 __set_se_shares(tg->se[cpu], shares);
05fa785c 1578 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1579 }
18d95a28 1580}
c09595f6
PZ
1581
1582/*
c8cba857
PZ
1583 * Re-compute the task group their per cpu shares over the given domain.
1584 * This needs to be done in a bottom-up fashion because the rq weight of a
1585 * parent group depends on the shares of its child groups.
c09595f6 1586 */
eb755805 1587static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1588{
cd8ad40d 1589 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1590 unsigned long *usd_rq_weight;
eb755805 1591 struct sched_domain *sd = data;
34d76c41 1592 unsigned long flags;
c8cba857 1593 int i;
c09595f6 1594
34d76c41
PZ
1595 if (!tg->se[0])
1596 return 0;
1597
1598 local_irq_save(flags);
4a6cc4bd 1599 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1600
758b2cdc 1601 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1602 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1603 usd_rq_weight[i] = weight;
34d76c41 1604
cd8ad40d 1605 rq_weight += weight;
ec4e0e2f
KC
1606 /*
1607 * If there are currently no tasks on the cpu pretend there
1608 * is one of average load so that when a new task gets to
1609 * run here it will not get delayed by group starvation.
1610 */
ec4e0e2f
KC
1611 if (!weight)
1612 weight = NICE_0_LOAD;
1613
cd8ad40d 1614 sum_weight += weight;
c8cba857 1615 shares += tg->cfs_rq[i]->shares;
c09595f6 1616 }
c09595f6 1617
cd8ad40d
PZ
1618 if (!rq_weight)
1619 rq_weight = sum_weight;
1620
c8cba857
PZ
1621 if ((!shares && rq_weight) || shares > tg->shares)
1622 shares = tg->shares;
1623
1624 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1625 shares = tg->shares;
c09595f6 1626
758b2cdc 1627 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1628 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1629
1630 local_irq_restore(flags);
eb755805
PZ
1631
1632 return 0;
c09595f6
PZ
1633}
1634
1635/*
c8cba857
PZ
1636 * Compute the cpu's hierarchical load factor for each task group.
1637 * This needs to be done in a top-down fashion because the load of a child
1638 * group is a fraction of its parents load.
c09595f6 1639 */
eb755805 1640static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1641{
c8cba857 1642 unsigned long load;
eb755805 1643 long cpu = (long)data;
c09595f6 1644
c8cba857
PZ
1645 if (!tg->parent) {
1646 load = cpu_rq(cpu)->load.weight;
1647 } else {
1648 load = tg->parent->cfs_rq[cpu]->h_load;
1649 load *= tg->cfs_rq[cpu]->shares;
1650 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1651 }
c09595f6 1652
c8cba857 1653 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1654
eb755805 1655 return 0;
c09595f6
PZ
1656}
1657
c8cba857 1658static void update_shares(struct sched_domain *sd)
4d8d595d 1659{
e7097159
PZ
1660 s64 elapsed;
1661 u64 now;
1662
1663 if (root_task_group_empty())
1664 return;
1665
c676329a 1666 now = local_clock();
e7097159 1667 elapsed = now - sd->last_update;
2398f2c6
PZ
1668
1669 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1670 sd->last_update = now;
eb755805 1671 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1672 }
4d8d595d
PZ
1673}
1674
eb755805 1675static void update_h_load(long cpu)
c09595f6 1676{
eb755805 1677 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1678}
1679
c09595f6
PZ
1680#else
1681
c8cba857 1682static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1683{
1684}
1685
18d95a28
PZ
1686#endif
1687
8f45e2b5
GH
1688#ifdef CONFIG_PREEMPT
1689
b78bb868
PZ
1690static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1691
70574a99 1692/*
8f45e2b5
GH
1693 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1694 * way at the expense of forcing extra atomic operations in all
1695 * invocations. This assures that the double_lock is acquired using the
1696 * same underlying policy as the spinlock_t on this architecture, which
1697 * reduces latency compared to the unfair variant below. However, it
1698 * also adds more overhead and therefore may reduce throughput.
70574a99 1699 */
8f45e2b5
GH
1700static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1701 __releases(this_rq->lock)
1702 __acquires(busiest->lock)
1703 __acquires(this_rq->lock)
1704{
05fa785c 1705 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1706 double_rq_lock(this_rq, busiest);
1707
1708 return 1;
1709}
1710
1711#else
1712/*
1713 * Unfair double_lock_balance: Optimizes throughput at the expense of
1714 * latency by eliminating extra atomic operations when the locks are
1715 * already in proper order on entry. This favors lower cpu-ids and will
1716 * grant the double lock to lower cpus over higher ids under contention,
1717 * regardless of entry order into the function.
1718 */
1719static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1720 __releases(this_rq->lock)
1721 __acquires(busiest->lock)
1722 __acquires(this_rq->lock)
1723{
1724 int ret = 0;
1725
05fa785c 1726 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1727 if (busiest < this_rq) {
05fa785c
TG
1728 raw_spin_unlock(&this_rq->lock);
1729 raw_spin_lock(&busiest->lock);
1730 raw_spin_lock_nested(&this_rq->lock,
1731 SINGLE_DEPTH_NESTING);
70574a99
AD
1732 ret = 1;
1733 } else
05fa785c
TG
1734 raw_spin_lock_nested(&busiest->lock,
1735 SINGLE_DEPTH_NESTING);
70574a99
AD
1736 }
1737 return ret;
1738}
1739
8f45e2b5
GH
1740#endif /* CONFIG_PREEMPT */
1741
1742/*
1743 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1744 */
1745static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1746{
1747 if (unlikely(!irqs_disabled())) {
1748 /* printk() doesn't work good under rq->lock */
05fa785c 1749 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1750 BUG_ON(1);
1751 }
1752
1753 return _double_lock_balance(this_rq, busiest);
1754}
1755
70574a99
AD
1756static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1757 __releases(busiest->lock)
1758{
05fa785c 1759 raw_spin_unlock(&busiest->lock);
70574a99
AD
1760 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1761}
1e3c88bd
PZ
1762
1763/*
1764 * double_rq_lock - safely lock two runqueues
1765 *
1766 * Note this does not disable interrupts like task_rq_lock,
1767 * you need to do so manually before calling.
1768 */
1769static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1770 __acquires(rq1->lock)
1771 __acquires(rq2->lock)
1772{
1773 BUG_ON(!irqs_disabled());
1774 if (rq1 == rq2) {
1775 raw_spin_lock(&rq1->lock);
1776 __acquire(rq2->lock); /* Fake it out ;) */
1777 } else {
1778 if (rq1 < rq2) {
1779 raw_spin_lock(&rq1->lock);
1780 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1781 } else {
1782 raw_spin_lock(&rq2->lock);
1783 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1784 }
1785 }
1e3c88bd
PZ
1786}
1787
1788/*
1789 * double_rq_unlock - safely unlock two runqueues
1790 *
1791 * Note this does not restore interrupts like task_rq_unlock,
1792 * you need to do so manually after calling.
1793 */
1794static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1795 __releases(rq1->lock)
1796 __releases(rq2->lock)
1797{
1798 raw_spin_unlock(&rq1->lock);
1799 if (rq1 != rq2)
1800 raw_spin_unlock(&rq2->lock);
1801 else
1802 __release(rq2->lock);
1803}
1804
18d95a28
PZ
1805#endif
1806
30432094 1807#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1808static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1809{
30432094 1810#ifdef CONFIG_SMP
34e83e85
IM
1811 cfs_rq->shares = shares;
1812#endif
1813}
30432094 1814#endif
e7693a36 1815
74f5187a 1816static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1817static void update_sysctl(void);
acb4a848 1818static int get_update_sysctl_factor(void);
fdf3e95d 1819static void update_cpu_load(struct rq *this_rq);
dce48a84 1820
cd29fe6f
PZ
1821static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1822{
1823 set_task_rq(p, cpu);
1824#ifdef CONFIG_SMP
1825 /*
1826 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1827 * successfuly executed on another CPU. We must ensure that updates of
1828 * per-task data have been completed by this moment.
1829 */
1830 smp_wmb();
1831 task_thread_info(p)->cpu = cpu;
1832#endif
1833}
dce48a84 1834
1e3c88bd 1835static const struct sched_class rt_sched_class;
dd41f596
IM
1836
1837#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1838#define for_each_class(class) \
1839 for (class = sched_class_highest; class; class = class->next)
dd41f596 1840
1e3c88bd
PZ
1841#include "sched_stats.h"
1842
c09595f6 1843static void inc_nr_running(struct rq *rq)
9c217245
IM
1844{
1845 rq->nr_running++;
9c217245
IM
1846}
1847
c09595f6 1848static void dec_nr_running(struct rq *rq)
9c217245
IM
1849{
1850 rq->nr_running--;
9c217245
IM
1851}
1852
45bf76df
IM
1853static void set_load_weight(struct task_struct *p)
1854{
1855 if (task_has_rt_policy(p)) {
e51fd5e2
PZ
1856 p->se.load.weight = 0;
1857 p->se.load.inv_weight = WMULT_CONST;
dd41f596
IM
1858 return;
1859 }
45bf76df 1860
dd41f596
IM
1861 /*
1862 * SCHED_IDLE tasks get minimal weight:
1863 */
1864 if (p->policy == SCHED_IDLE) {
1865 p->se.load.weight = WEIGHT_IDLEPRIO;
1866 p->se.load.inv_weight = WMULT_IDLEPRIO;
1867 return;
1868 }
71f8bd46 1869
dd41f596
IM
1870 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1871 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1872}
1873
371fd7e7 1874static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1875{
a64692a3 1876 update_rq_clock(rq);
dd41f596 1877 sched_info_queued(p);
371fd7e7 1878 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1879 p->se.on_rq = 1;
71f8bd46
IM
1880}
1881
371fd7e7 1882static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1883{
a64692a3 1884 update_rq_clock(rq);
46ac22ba 1885 sched_info_dequeued(p);
371fd7e7 1886 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1887 p->se.on_rq = 0;
71f8bd46
IM
1888}
1889
1e3c88bd
PZ
1890/*
1891 * activate_task - move a task to the runqueue.
1892 */
371fd7e7 1893static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1894{
1895 if (task_contributes_to_load(p))
1896 rq->nr_uninterruptible--;
1897
371fd7e7 1898 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1899 inc_nr_running(rq);
1900}
1901
1902/*
1903 * deactivate_task - remove a task from the runqueue.
1904 */
371fd7e7 1905static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1906{
1907 if (task_contributes_to_load(p))
1908 rq->nr_uninterruptible++;
1909
371fd7e7 1910 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1911 dec_nr_running(rq);
1912}
1913
1914#include "sched_idletask.c"
1915#include "sched_fair.c"
1916#include "sched_rt.c"
1917#ifdef CONFIG_SCHED_DEBUG
1918# include "sched_debug.c"
1919#endif
1920
14531189 1921/*
dd41f596 1922 * __normal_prio - return the priority that is based on the static prio
14531189 1923 */
14531189
IM
1924static inline int __normal_prio(struct task_struct *p)
1925{
dd41f596 1926 return p->static_prio;
14531189
IM
1927}
1928
b29739f9
IM
1929/*
1930 * Calculate the expected normal priority: i.e. priority
1931 * without taking RT-inheritance into account. Might be
1932 * boosted by interactivity modifiers. Changes upon fork,
1933 * setprio syscalls, and whenever the interactivity
1934 * estimator recalculates.
1935 */
36c8b586 1936static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1937{
1938 int prio;
1939
e05606d3 1940 if (task_has_rt_policy(p))
b29739f9
IM
1941 prio = MAX_RT_PRIO-1 - p->rt_priority;
1942 else
1943 prio = __normal_prio(p);
1944 return prio;
1945}
1946
1947/*
1948 * Calculate the current priority, i.e. the priority
1949 * taken into account by the scheduler. This value might
1950 * be boosted by RT tasks, or might be boosted by
1951 * interactivity modifiers. Will be RT if the task got
1952 * RT-boosted. If not then it returns p->normal_prio.
1953 */
36c8b586 1954static int effective_prio(struct task_struct *p)
b29739f9
IM
1955{
1956 p->normal_prio = normal_prio(p);
1957 /*
1958 * If we are RT tasks or we were boosted to RT priority,
1959 * keep the priority unchanged. Otherwise, update priority
1960 * to the normal priority:
1961 */
1962 if (!rt_prio(p->prio))
1963 return p->normal_prio;
1964 return p->prio;
1965}
1966
1da177e4
LT
1967/**
1968 * task_curr - is this task currently executing on a CPU?
1969 * @p: the task in question.
1970 */
36c8b586 1971inline int task_curr(const struct task_struct *p)
1da177e4
LT
1972{
1973 return cpu_curr(task_cpu(p)) == p;
1974}
1975
cb469845
SR
1976static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1977 const struct sched_class *prev_class,
1978 int oldprio, int running)
1979{
1980 if (prev_class != p->sched_class) {
1981 if (prev_class->switched_from)
1982 prev_class->switched_from(rq, p, running);
1983 p->sched_class->switched_to(rq, p, running);
1984 } else
1985 p->sched_class->prio_changed(rq, p, oldprio, running);
1986}
1987
1da177e4 1988#ifdef CONFIG_SMP
cc367732
IM
1989/*
1990 * Is this task likely cache-hot:
1991 */
e7693a36 1992static int
cc367732
IM
1993task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1994{
1995 s64 delta;
1996
e6c8fba7
PZ
1997 if (p->sched_class != &fair_sched_class)
1998 return 0;
1999
f540a608
IM
2000 /*
2001 * Buddy candidates are cache hot:
2002 */
f685ceac 2003 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2004 (&p->se == cfs_rq_of(&p->se)->next ||
2005 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2006 return 1;
2007
6bc1665b
IM
2008 if (sysctl_sched_migration_cost == -1)
2009 return 1;
2010 if (sysctl_sched_migration_cost == 0)
2011 return 0;
2012
cc367732
IM
2013 delta = now - p->se.exec_start;
2014
2015 return delta < (s64)sysctl_sched_migration_cost;
2016}
2017
dd41f596 2018void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2019{
e2912009
PZ
2020#ifdef CONFIG_SCHED_DEBUG
2021 /*
2022 * We should never call set_task_cpu() on a blocked task,
2023 * ttwu() will sort out the placement.
2024 */
077614ee
PZ
2025 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2026 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2027#endif
2028
de1d7286 2029 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2030
0c69774e
PZ
2031 if (task_cpu(p) != new_cpu) {
2032 p->se.nr_migrations++;
2033 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2034 }
dd41f596
IM
2035
2036 __set_task_cpu(p, new_cpu);
c65cc870
IM
2037}
2038
969c7921 2039struct migration_arg {
36c8b586 2040 struct task_struct *task;
1da177e4 2041 int dest_cpu;
70b97a7f 2042};
1da177e4 2043
969c7921
TH
2044static int migration_cpu_stop(void *data);
2045
1da177e4
LT
2046/*
2047 * The task's runqueue lock must be held.
2048 * Returns true if you have to wait for migration thread.
2049 */
969c7921 2050static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2051{
70b97a7f 2052 struct rq *rq = task_rq(p);
1da177e4
LT
2053
2054 /*
2055 * If the task is not on a runqueue (and not running), then
e2912009 2056 * the next wake-up will properly place the task.
1da177e4 2057 */
969c7921 2058 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2059}
2060
2061/*
2062 * wait_task_inactive - wait for a thread to unschedule.
2063 *
85ba2d86
RM
2064 * If @match_state is nonzero, it's the @p->state value just checked and
2065 * not expected to change. If it changes, i.e. @p might have woken up,
2066 * then return zero. When we succeed in waiting for @p to be off its CPU,
2067 * we return a positive number (its total switch count). If a second call
2068 * a short while later returns the same number, the caller can be sure that
2069 * @p has remained unscheduled the whole time.
2070 *
1da177e4
LT
2071 * The caller must ensure that the task *will* unschedule sometime soon,
2072 * else this function might spin for a *long* time. This function can't
2073 * be called with interrupts off, or it may introduce deadlock with
2074 * smp_call_function() if an IPI is sent by the same process we are
2075 * waiting to become inactive.
2076 */
85ba2d86 2077unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2078{
2079 unsigned long flags;
dd41f596 2080 int running, on_rq;
85ba2d86 2081 unsigned long ncsw;
70b97a7f 2082 struct rq *rq;
1da177e4 2083
3a5c359a
AK
2084 for (;;) {
2085 /*
2086 * We do the initial early heuristics without holding
2087 * any task-queue locks at all. We'll only try to get
2088 * the runqueue lock when things look like they will
2089 * work out!
2090 */
2091 rq = task_rq(p);
fa490cfd 2092
3a5c359a
AK
2093 /*
2094 * If the task is actively running on another CPU
2095 * still, just relax and busy-wait without holding
2096 * any locks.
2097 *
2098 * NOTE! Since we don't hold any locks, it's not
2099 * even sure that "rq" stays as the right runqueue!
2100 * But we don't care, since "task_running()" will
2101 * return false if the runqueue has changed and p
2102 * is actually now running somewhere else!
2103 */
85ba2d86
RM
2104 while (task_running(rq, p)) {
2105 if (match_state && unlikely(p->state != match_state))
2106 return 0;
3a5c359a 2107 cpu_relax();
85ba2d86 2108 }
fa490cfd 2109
3a5c359a
AK
2110 /*
2111 * Ok, time to look more closely! We need the rq
2112 * lock now, to be *sure*. If we're wrong, we'll
2113 * just go back and repeat.
2114 */
2115 rq = task_rq_lock(p, &flags);
27a9da65 2116 trace_sched_wait_task(p);
3a5c359a
AK
2117 running = task_running(rq, p);
2118 on_rq = p->se.on_rq;
85ba2d86 2119 ncsw = 0;
f31e11d8 2120 if (!match_state || p->state == match_state)
93dcf55f 2121 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2122 task_rq_unlock(rq, &flags);
fa490cfd 2123
85ba2d86
RM
2124 /*
2125 * If it changed from the expected state, bail out now.
2126 */
2127 if (unlikely(!ncsw))
2128 break;
2129
3a5c359a
AK
2130 /*
2131 * Was it really running after all now that we
2132 * checked with the proper locks actually held?
2133 *
2134 * Oops. Go back and try again..
2135 */
2136 if (unlikely(running)) {
2137 cpu_relax();
2138 continue;
2139 }
fa490cfd 2140
3a5c359a
AK
2141 /*
2142 * It's not enough that it's not actively running,
2143 * it must be off the runqueue _entirely_, and not
2144 * preempted!
2145 *
80dd99b3 2146 * So if it was still runnable (but just not actively
3a5c359a
AK
2147 * running right now), it's preempted, and we should
2148 * yield - it could be a while.
2149 */
2150 if (unlikely(on_rq)) {
2151 schedule_timeout_uninterruptible(1);
2152 continue;
2153 }
fa490cfd 2154
3a5c359a
AK
2155 /*
2156 * Ahh, all good. It wasn't running, and it wasn't
2157 * runnable, which means that it will never become
2158 * running in the future either. We're all done!
2159 */
2160 break;
2161 }
85ba2d86
RM
2162
2163 return ncsw;
1da177e4
LT
2164}
2165
2166/***
2167 * kick_process - kick a running thread to enter/exit the kernel
2168 * @p: the to-be-kicked thread
2169 *
2170 * Cause a process which is running on another CPU to enter
2171 * kernel-mode, without any delay. (to get signals handled.)
2172 *
2173 * NOTE: this function doesnt have to take the runqueue lock,
2174 * because all it wants to ensure is that the remote task enters
2175 * the kernel. If the IPI races and the task has been migrated
2176 * to another CPU then no harm is done and the purpose has been
2177 * achieved as well.
2178 */
36c8b586 2179void kick_process(struct task_struct *p)
1da177e4
LT
2180{
2181 int cpu;
2182
2183 preempt_disable();
2184 cpu = task_cpu(p);
2185 if ((cpu != smp_processor_id()) && task_curr(p))
2186 smp_send_reschedule(cpu);
2187 preempt_enable();
2188}
b43e3521 2189EXPORT_SYMBOL_GPL(kick_process);
476d139c 2190#endif /* CONFIG_SMP */
1da177e4 2191
0793a61d
TG
2192/**
2193 * task_oncpu_function_call - call a function on the cpu on which a task runs
2194 * @p: the task to evaluate
2195 * @func: the function to be called
2196 * @info: the function call argument
2197 *
2198 * Calls the function @func when the task is currently running. This might
2199 * be on the current CPU, which just calls the function directly
2200 */
2201void task_oncpu_function_call(struct task_struct *p,
2202 void (*func) (void *info), void *info)
2203{
2204 int cpu;
2205
2206 preempt_disable();
2207 cpu = task_cpu(p);
2208 if (task_curr(p))
2209 smp_call_function_single(cpu, func, info, 1);
2210 preempt_enable();
2211}
2212
970b13ba 2213#ifdef CONFIG_SMP
30da688e
ON
2214/*
2215 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2216 */
5da9a0fb
PZ
2217static int select_fallback_rq(int cpu, struct task_struct *p)
2218{
2219 int dest_cpu;
2220 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2221
2222 /* Look for allowed, online CPU in same node. */
2223 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2224 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2225 return dest_cpu;
2226
2227 /* Any allowed, online CPU? */
2228 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2229 if (dest_cpu < nr_cpu_ids)
2230 return dest_cpu;
2231
2232 /* No more Mr. Nice Guy. */
897f0b3c 2233 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2234 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2235 /*
2236 * Don't tell them about moving exiting tasks or
2237 * kernel threads (both mm NULL), since they never
2238 * leave kernel.
2239 */
2240 if (p->mm && printk_ratelimit()) {
2241 printk(KERN_INFO "process %d (%s) no "
2242 "longer affine to cpu%d\n",
2243 task_pid_nr(p), p->comm, cpu);
2244 }
2245 }
2246
2247 return dest_cpu;
2248}
2249
e2912009 2250/*
30da688e 2251 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2252 */
970b13ba 2253static inline
0017d735 2254int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2255{
0017d735 2256 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2257
2258 /*
2259 * In order not to call set_task_cpu() on a blocking task we need
2260 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2261 * cpu.
2262 *
2263 * Since this is common to all placement strategies, this lives here.
2264 *
2265 * [ this allows ->select_task() to simply return task_cpu(p) and
2266 * not worry about this generic constraint ]
2267 */
2268 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2269 !cpu_online(cpu)))
5da9a0fb 2270 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2271
2272 return cpu;
970b13ba 2273}
09a40af5
MG
2274
2275static void update_avg(u64 *avg, u64 sample)
2276{
2277 s64 diff = sample - *avg;
2278 *avg += diff >> 3;
2279}
970b13ba
PZ
2280#endif
2281
9ed3811a
TH
2282static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2283 bool is_sync, bool is_migrate, bool is_local,
2284 unsigned long en_flags)
2285{
2286 schedstat_inc(p, se.statistics.nr_wakeups);
2287 if (is_sync)
2288 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2289 if (is_migrate)
2290 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2291 if (is_local)
2292 schedstat_inc(p, se.statistics.nr_wakeups_local);
2293 else
2294 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2295
2296 activate_task(rq, p, en_flags);
2297}
2298
2299static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2300 int wake_flags, bool success)
2301{
2302 trace_sched_wakeup(p, success);
2303 check_preempt_curr(rq, p, wake_flags);
2304
2305 p->state = TASK_RUNNING;
2306#ifdef CONFIG_SMP
2307 if (p->sched_class->task_woken)
2308 p->sched_class->task_woken(rq, p);
2309
2310 if (unlikely(rq->idle_stamp)) {
2311 u64 delta = rq->clock - rq->idle_stamp;
2312 u64 max = 2*sysctl_sched_migration_cost;
2313
2314 if (delta > max)
2315 rq->avg_idle = max;
2316 else
2317 update_avg(&rq->avg_idle, delta);
2318 rq->idle_stamp = 0;
2319 }
2320#endif
21aa9af0
TH
2321 /* if a worker is waking up, notify workqueue */
2322 if ((p->flags & PF_WQ_WORKER) && success)
2323 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2324}
2325
2326/**
1da177e4 2327 * try_to_wake_up - wake up a thread
9ed3811a 2328 * @p: the thread to be awakened
1da177e4 2329 * @state: the mask of task states that can be woken
9ed3811a 2330 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2331 *
2332 * Put it on the run-queue if it's not already there. The "current"
2333 * thread is always on the run-queue (except when the actual
2334 * re-schedule is in progress), and as such you're allowed to do
2335 * the simpler "current->state = TASK_RUNNING" to mark yourself
2336 * runnable without the overhead of this.
2337 *
9ed3811a
TH
2338 * Returns %true if @p was woken up, %false if it was already running
2339 * or @state didn't match @p's state.
1da177e4 2340 */
7d478721
PZ
2341static int try_to_wake_up(struct task_struct *p, unsigned int state,
2342 int wake_flags)
1da177e4 2343{
cc367732 2344 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2345 unsigned long flags;
371fd7e7 2346 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2347 struct rq *rq;
1da177e4 2348
e9c84311 2349 this_cpu = get_cpu();
2398f2c6 2350
04e2f174 2351 smp_wmb();
ab3b3aa5 2352 rq = task_rq_lock(p, &flags);
e9c84311 2353 if (!(p->state & state))
1da177e4
LT
2354 goto out;
2355
dd41f596 2356 if (p->se.on_rq)
1da177e4
LT
2357 goto out_running;
2358
2359 cpu = task_cpu(p);
cc367732 2360 orig_cpu = cpu;
1da177e4
LT
2361
2362#ifdef CONFIG_SMP
2363 if (unlikely(task_running(rq, p)))
2364 goto out_activate;
2365
e9c84311
PZ
2366 /*
2367 * In order to handle concurrent wakeups and release the rq->lock
2368 * we put the task in TASK_WAKING state.
eb24073b
IM
2369 *
2370 * First fix up the nr_uninterruptible count:
e9c84311 2371 */
cc87f76a
PZ
2372 if (task_contributes_to_load(p)) {
2373 if (likely(cpu_online(orig_cpu)))
2374 rq->nr_uninterruptible--;
2375 else
2376 this_rq()->nr_uninterruptible--;
2377 }
e9c84311 2378 p->state = TASK_WAKING;
efbbd05a 2379
371fd7e7 2380 if (p->sched_class->task_waking) {
efbbd05a 2381 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2382 en_flags |= ENQUEUE_WAKING;
2383 }
efbbd05a 2384
0017d735
PZ
2385 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2386 if (cpu != orig_cpu)
5d2f5a61 2387 set_task_cpu(p, cpu);
0017d735 2388 __task_rq_unlock(rq);
ab19cb23 2389
0970d299
PZ
2390 rq = cpu_rq(cpu);
2391 raw_spin_lock(&rq->lock);
f5dc3753 2392
0970d299
PZ
2393 /*
2394 * We migrated the task without holding either rq->lock, however
2395 * since the task is not on the task list itself, nobody else
2396 * will try and migrate the task, hence the rq should match the
2397 * cpu we just moved it to.
2398 */
2399 WARN_ON(task_cpu(p) != cpu);
e9c84311 2400 WARN_ON(p->state != TASK_WAKING);
1da177e4 2401
e7693a36
GH
2402#ifdef CONFIG_SCHEDSTATS
2403 schedstat_inc(rq, ttwu_count);
2404 if (cpu == this_cpu)
2405 schedstat_inc(rq, ttwu_local);
2406 else {
2407 struct sched_domain *sd;
2408 for_each_domain(this_cpu, sd) {
758b2cdc 2409 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2410 schedstat_inc(sd, ttwu_wake_remote);
2411 break;
2412 }
2413 }
2414 }
6d6bc0ad 2415#endif /* CONFIG_SCHEDSTATS */
e7693a36 2416
1da177e4
LT
2417out_activate:
2418#endif /* CONFIG_SMP */
9ed3811a
TH
2419 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2420 cpu == this_cpu, en_flags);
1da177e4 2421 success = 1;
1da177e4 2422out_running:
9ed3811a 2423 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2424out:
2425 task_rq_unlock(rq, &flags);
e9c84311 2426 put_cpu();
1da177e4
LT
2427
2428 return success;
2429}
2430
21aa9af0
TH
2431/**
2432 * try_to_wake_up_local - try to wake up a local task with rq lock held
2433 * @p: the thread to be awakened
2434 *
2435 * Put @p on the run-queue if it's not alredy there. The caller must
2436 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2437 * the current task. this_rq() stays locked over invocation.
2438 */
2439static void try_to_wake_up_local(struct task_struct *p)
2440{
2441 struct rq *rq = task_rq(p);
2442 bool success = false;
2443
2444 BUG_ON(rq != this_rq());
2445 BUG_ON(p == current);
2446 lockdep_assert_held(&rq->lock);
2447
2448 if (!(p->state & TASK_NORMAL))
2449 return;
2450
2451 if (!p->se.on_rq) {
2452 if (likely(!task_running(rq, p))) {
2453 schedstat_inc(rq, ttwu_count);
2454 schedstat_inc(rq, ttwu_local);
2455 }
2456 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2457 success = true;
2458 }
2459 ttwu_post_activation(p, rq, 0, success);
2460}
2461
50fa610a
DH
2462/**
2463 * wake_up_process - Wake up a specific process
2464 * @p: The process to be woken up.
2465 *
2466 * Attempt to wake up the nominated process and move it to the set of runnable
2467 * processes. Returns 1 if the process was woken up, 0 if it was already
2468 * running.
2469 *
2470 * It may be assumed that this function implies a write memory barrier before
2471 * changing the task state if and only if any tasks are woken up.
2472 */
7ad5b3a5 2473int wake_up_process(struct task_struct *p)
1da177e4 2474{
d9514f6c 2475 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2476}
1da177e4
LT
2477EXPORT_SYMBOL(wake_up_process);
2478
7ad5b3a5 2479int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2480{
2481 return try_to_wake_up(p, state, 0);
2482}
2483
1da177e4
LT
2484/*
2485 * Perform scheduler related setup for a newly forked process p.
2486 * p is forked by current.
dd41f596
IM
2487 *
2488 * __sched_fork() is basic setup used by init_idle() too:
2489 */
2490static void __sched_fork(struct task_struct *p)
2491{
dd41f596
IM
2492 p->se.exec_start = 0;
2493 p->se.sum_exec_runtime = 0;
f6cf891c 2494 p->se.prev_sum_exec_runtime = 0;
6c594c21 2495 p->se.nr_migrations = 0;
6cfb0d5d
IM
2496
2497#ifdef CONFIG_SCHEDSTATS
41acab88 2498 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2499#endif
476d139c 2500
fa717060 2501 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2502 p->se.on_rq = 0;
4a55bd5e 2503 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2504
e107be36
AK
2505#ifdef CONFIG_PREEMPT_NOTIFIERS
2506 INIT_HLIST_HEAD(&p->preempt_notifiers);
2507#endif
dd41f596
IM
2508}
2509
2510/*
2511 * fork()/clone()-time setup:
2512 */
2513void sched_fork(struct task_struct *p, int clone_flags)
2514{
2515 int cpu = get_cpu();
2516
2517 __sched_fork(p);
06b83b5f 2518 /*
0017d735 2519 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2520 * nobody will actually run it, and a signal or other external
2521 * event cannot wake it up and insert it on the runqueue either.
2522 */
0017d735 2523 p->state = TASK_RUNNING;
dd41f596 2524
b9dc29e7
MG
2525 /*
2526 * Revert to default priority/policy on fork if requested.
2527 */
2528 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2529 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2530 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2531 p->normal_prio = p->static_prio;
2532 }
b9dc29e7 2533
6c697bdf
MG
2534 if (PRIO_TO_NICE(p->static_prio) < 0) {
2535 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2536 p->normal_prio = p->static_prio;
6c697bdf
MG
2537 set_load_weight(p);
2538 }
2539
b9dc29e7
MG
2540 /*
2541 * We don't need the reset flag anymore after the fork. It has
2542 * fulfilled its duty:
2543 */
2544 p->sched_reset_on_fork = 0;
2545 }
ca94c442 2546
f83f9ac2
PW
2547 /*
2548 * Make sure we do not leak PI boosting priority to the child.
2549 */
2550 p->prio = current->normal_prio;
2551
2ddbf952
HS
2552 if (!rt_prio(p->prio))
2553 p->sched_class = &fair_sched_class;
b29739f9 2554
cd29fe6f
PZ
2555 if (p->sched_class->task_fork)
2556 p->sched_class->task_fork(p);
2557
86951599
PZ
2558 /*
2559 * The child is not yet in the pid-hash so no cgroup attach races,
2560 * and the cgroup is pinned to this child due to cgroup_fork()
2561 * is ran before sched_fork().
2562 *
2563 * Silence PROVE_RCU.
2564 */
2565 rcu_read_lock();
5f3edc1b 2566 set_task_cpu(p, cpu);
86951599 2567 rcu_read_unlock();
5f3edc1b 2568
52f17b6c 2569#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2570 if (likely(sched_info_on()))
52f17b6c 2571 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2572#endif
d6077cb8 2573#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2574 p->oncpu = 0;
2575#endif
1da177e4 2576#ifdef CONFIG_PREEMPT
4866cde0 2577 /* Want to start with kernel preemption disabled. */
a1261f54 2578 task_thread_info(p)->preempt_count = 1;
1da177e4 2579#endif
917b627d
GH
2580 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2581
476d139c 2582 put_cpu();
1da177e4
LT
2583}
2584
2585/*
2586 * wake_up_new_task - wake up a newly created task for the first time.
2587 *
2588 * This function will do some initial scheduler statistics housekeeping
2589 * that must be done for every newly created context, then puts the task
2590 * on the runqueue and wakes it.
2591 */
7ad5b3a5 2592void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2593{
2594 unsigned long flags;
dd41f596 2595 struct rq *rq;
c890692b 2596 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2597
2598#ifdef CONFIG_SMP
0017d735
PZ
2599 rq = task_rq_lock(p, &flags);
2600 p->state = TASK_WAKING;
2601
fabf318e
PZ
2602 /*
2603 * Fork balancing, do it here and not earlier because:
2604 * - cpus_allowed can change in the fork path
2605 * - any previously selected cpu might disappear through hotplug
2606 *
0017d735
PZ
2607 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2608 * without people poking at ->cpus_allowed.
fabf318e 2609 */
0017d735 2610 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2611 set_task_cpu(p, cpu);
1da177e4 2612
06b83b5f 2613 p->state = TASK_RUNNING;
0017d735
PZ
2614 task_rq_unlock(rq, &flags);
2615#endif
2616
2617 rq = task_rq_lock(p, &flags);
cd29fe6f 2618 activate_task(rq, p, 0);
27a9da65 2619 trace_sched_wakeup_new(p, 1);
a7558e01 2620 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2621#ifdef CONFIG_SMP
efbbd05a
PZ
2622 if (p->sched_class->task_woken)
2623 p->sched_class->task_woken(rq, p);
9a897c5a 2624#endif
dd41f596 2625 task_rq_unlock(rq, &flags);
fabf318e 2626 put_cpu();
1da177e4
LT
2627}
2628
e107be36
AK
2629#ifdef CONFIG_PREEMPT_NOTIFIERS
2630
2631/**
80dd99b3 2632 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2633 * @notifier: notifier struct to register
e107be36
AK
2634 */
2635void preempt_notifier_register(struct preempt_notifier *notifier)
2636{
2637 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2638}
2639EXPORT_SYMBOL_GPL(preempt_notifier_register);
2640
2641/**
2642 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2643 * @notifier: notifier struct to unregister
e107be36
AK
2644 *
2645 * This is safe to call from within a preemption notifier.
2646 */
2647void preempt_notifier_unregister(struct preempt_notifier *notifier)
2648{
2649 hlist_del(&notifier->link);
2650}
2651EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2652
2653static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2654{
2655 struct preempt_notifier *notifier;
2656 struct hlist_node *node;
2657
2658 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2659 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2660}
2661
2662static void
2663fire_sched_out_preempt_notifiers(struct task_struct *curr,
2664 struct task_struct *next)
2665{
2666 struct preempt_notifier *notifier;
2667 struct hlist_node *node;
2668
2669 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2670 notifier->ops->sched_out(notifier, next);
2671}
2672
6d6bc0ad 2673#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2674
2675static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2676{
2677}
2678
2679static void
2680fire_sched_out_preempt_notifiers(struct task_struct *curr,
2681 struct task_struct *next)
2682{
2683}
2684
6d6bc0ad 2685#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2686
4866cde0
NP
2687/**
2688 * prepare_task_switch - prepare to switch tasks
2689 * @rq: the runqueue preparing to switch
421cee29 2690 * @prev: the current task that is being switched out
4866cde0
NP
2691 * @next: the task we are going to switch to.
2692 *
2693 * This is called with the rq lock held and interrupts off. It must
2694 * be paired with a subsequent finish_task_switch after the context
2695 * switch.
2696 *
2697 * prepare_task_switch sets up locking and calls architecture specific
2698 * hooks.
2699 */
e107be36
AK
2700static inline void
2701prepare_task_switch(struct rq *rq, struct task_struct *prev,
2702 struct task_struct *next)
4866cde0 2703{
e107be36 2704 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2705 prepare_lock_switch(rq, next);
2706 prepare_arch_switch(next);
2707}
2708
1da177e4
LT
2709/**
2710 * finish_task_switch - clean up after a task-switch
344babaa 2711 * @rq: runqueue associated with task-switch
1da177e4
LT
2712 * @prev: the thread we just switched away from.
2713 *
4866cde0
NP
2714 * finish_task_switch must be called after the context switch, paired
2715 * with a prepare_task_switch call before the context switch.
2716 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2717 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2718 *
2719 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2720 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2721 * with the lock held can cause deadlocks; see schedule() for
2722 * details.)
2723 */
a9957449 2724static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2725 __releases(rq->lock)
2726{
1da177e4 2727 struct mm_struct *mm = rq->prev_mm;
55a101f8 2728 long prev_state;
1da177e4
LT
2729
2730 rq->prev_mm = NULL;
2731
2732 /*
2733 * A task struct has one reference for the use as "current".
c394cc9f 2734 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2735 * schedule one last time. The schedule call will never return, and
2736 * the scheduled task must drop that reference.
c394cc9f 2737 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2738 * still held, otherwise prev could be scheduled on another cpu, die
2739 * there before we look at prev->state, and then the reference would
2740 * be dropped twice.
2741 * Manfred Spraul <manfred@colorfullife.com>
2742 */
55a101f8 2743 prev_state = prev->state;
4866cde0 2744 finish_arch_switch(prev);
8381f65d
JI
2745#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2746 local_irq_disable();
2747#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2748 perf_event_task_sched_in(current);
8381f65d
JI
2749#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2750 local_irq_enable();
2751#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2752 finish_lock_switch(rq, prev);
e8fa1362 2753
e107be36 2754 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2755 if (mm)
2756 mmdrop(mm);
c394cc9f 2757 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2758 /*
2759 * Remove function-return probe instances associated with this
2760 * task and put them back on the free list.
9761eea8 2761 */
c6fd91f0 2762 kprobe_flush_task(prev);
1da177e4 2763 put_task_struct(prev);
c6fd91f0 2764 }
1da177e4
LT
2765}
2766
3f029d3c
GH
2767#ifdef CONFIG_SMP
2768
2769/* assumes rq->lock is held */
2770static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2771{
2772 if (prev->sched_class->pre_schedule)
2773 prev->sched_class->pre_schedule(rq, prev);
2774}
2775
2776/* rq->lock is NOT held, but preemption is disabled */
2777static inline void post_schedule(struct rq *rq)
2778{
2779 if (rq->post_schedule) {
2780 unsigned long flags;
2781
05fa785c 2782 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2783 if (rq->curr->sched_class->post_schedule)
2784 rq->curr->sched_class->post_schedule(rq);
05fa785c 2785 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2786
2787 rq->post_schedule = 0;
2788 }
2789}
2790
2791#else
da19ab51 2792
3f029d3c
GH
2793static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2794{
2795}
2796
2797static inline void post_schedule(struct rq *rq)
2798{
1da177e4
LT
2799}
2800
3f029d3c
GH
2801#endif
2802
1da177e4
LT
2803/**
2804 * schedule_tail - first thing a freshly forked thread must call.
2805 * @prev: the thread we just switched away from.
2806 */
36c8b586 2807asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2808 __releases(rq->lock)
2809{
70b97a7f
IM
2810 struct rq *rq = this_rq();
2811
4866cde0 2812 finish_task_switch(rq, prev);
da19ab51 2813
3f029d3c
GH
2814 /*
2815 * FIXME: do we need to worry about rq being invalidated by the
2816 * task_switch?
2817 */
2818 post_schedule(rq);
70b97a7f 2819
4866cde0
NP
2820#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2821 /* In this case, finish_task_switch does not reenable preemption */
2822 preempt_enable();
2823#endif
1da177e4 2824 if (current->set_child_tid)
b488893a 2825 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2826}
2827
2828/*
2829 * context_switch - switch to the new MM and the new
2830 * thread's register state.
2831 */
dd41f596 2832static inline void
70b97a7f 2833context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2834 struct task_struct *next)
1da177e4 2835{
dd41f596 2836 struct mm_struct *mm, *oldmm;
1da177e4 2837
e107be36 2838 prepare_task_switch(rq, prev, next);
27a9da65 2839 trace_sched_switch(prev, next);
dd41f596
IM
2840 mm = next->mm;
2841 oldmm = prev->active_mm;
9226d125
ZA
2842 /*
2843 * For paravirt, this is coupled with an exit in switch_to to
2844 * combine the page table reload and the switch backend into
2845 * one hypercall.
2846 */
224101ed 2847 arch_start_context_switch(prev);
9226d125 2848
710390d9 2849 if (likely(!mm)) {
1da177e4
LT
2850 next->active_mm = oldmm;
2851 atomic_inc(&oldmm->mm_count);
2852 enter_lazy_tlb(oldmm, next);
2853 } else
2854 switch_mm(oldmm, mm, next);
2855
710390d9 2856 if (likely(!prev->mm)) {
1da177e4 2857 prev->active_mm = NULL;
1da177e4
LT
2858 rq->prev_mm = oldmm;
2859 }
3a5f5e48
IM
2860 /*
2861 * Since the runqueue lock will be released by the next
2862 * task (which is an invalid locking op but in the case
2863 * of the scheduler it's an obvious special-case), so we
2864 * do an early lockdep release here:
2865 */
2866#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2867 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2868#endif
1da177e4
LT
2869
2870 /* Here we just switch the register state and the stack. */
2871 switch_to(prev, next, prev);
2872
dd41f596
IM
2873 barrier();
2874 /*
2875 * this_rq must be evaluated again because prev may have moved
2876 * CPUs since it called schedule(), thus the 'rq' on its stack
2877 * frame will be invalid.
2878 */
2879 finish_task_switch(this_rq(), prev);
1da177e4
LT
2880}
2881
2882/*
2883 * nr_running, nr_uninterruptible and nr_context_switches:
2884 *
2885 * externally visible scheduler statistics: current number of runnable
2886 * threads, current number of uninterruptible-sleeping threads, total
2887 * number of context switches performed since bootup.
2888 */
2889unsigned long nr_running(void)
2890{
2891 unsigned long i, sum = 0;
2892
2893 for_each_online_cpu(i)
2894 sum += cpu_rq(i)->nr_running;
2895
2896 return sum;
f711f609 2897}
1da177e4
LT
2898
2899unsigned long nr_uninterruptible(void)
f711f609 2900{
1da177e4 2901 unsigned long i, sum = 0;
f711f609 2902
0a945022 2903 for_each_possible_cpu(i)
1da177e4 2904 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2905
2906 /*
1da177e4
LT
2907 * Since we read the counters lockless, it might be slightly
2908 * inaccurate. Do not allow it to go below zero though:
f711f609 2909 */
1da177e4
LT
2910 if (unlikely((long)sum < 0))
2911 sum = 0;
f711f609 2912
1da177e4 2913 return sum;
f711f609 2914}
f711f609 2915
1da177e4 2916unsigned long long nr_context_switches(void)
46cb4b7c 2917{
cc94abfc
SR
2918 int i;
2919 unsigned long long sum = 0;
46cb4b7c 2920
0a945022 2921 for_each_possible_cpu(i)
1da177e4 2922 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2923
1da177e4
LT
2924 return sum;
2925}
483b4ee6 2926
1da177e4
LT
2927unsigned long nr_iowait(void)
2928{
2929 unsigned long i, sum = 0;
483b4ee6 2930
0a945022 2931 for_each_possible_cpu(i)
1da177e4 2932 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2933
1da177e4
LT
2934 return sum;
2935}
483b4ee6 2936
8c215bd3 2937unsigned long nr_iowait_cpu(int cpu)
69d25870 2938{
8c215bd3 2939 struct rq *this = cpu_rq(cpu);
69d25870
AV
2940 return atomic_read(&this->nr_iowait);
2941}
46cb4b7c 2942
69d25870
AV
2943unsigned long this_cpu_load(void)
2944{
2945 struct rq *this = this_rq();
2946 return this->cpu_load[0];
2947}
e790fb0b 2948
46cb4b7c 2949
dce48a84
TG
2950/* Variables and functions for calc_load */
2951static atomic_long_t calc_load_tasks;
2952static unsigned long calc_load_update;
2953unsigned long avenrun[3];
2954EXPORT_SYMBOL(avenrun);
46cb4b7c 2955
74f5187a
PZ
2956static long calc_load_fold_active(struct rq *this_rq)
2957{
2958 long nr_active, delta = 0;
2959
2960 nr_active = this_rq->nr_running;
2961 nr_active += (long) this_rq->nr_uninterruptible;
2962
2963 if (nr_active != this_rq->calc_load_active) {
2964 delta = nr_active - this_rq->calc_load_active;
2965 this_rq->calc_load_active = nr_active;
2966 }
2967
2968 return delta;
2969}
2970
2971#ifdef CONFIG_NO_HZ
2972/*
2973 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2974 *
2975 * When making the ILB scale, we should try to pull this in as well.
2976 */
2977static atomic_long_t calc_load_tasks_idle;
2978
2979static void calc_load_account_idle(struct rq *this_rq)
2980{
2981 long delta;
2982
2983 delta = calc_load_fold_active(this_rq);
2984 if (delta)
2985 atomic_long_add(delta, &calc_load_tasks_idle);
2986}
2987
2988static long calc_load_fold_idle(void)
2989{
2990 long delta = 0;
2991
2992 /*
2993 * Its got a race, we don't care...
2994 */
2995 if (atomic_long_read(&calc_load_tasks_idle))
2996 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2997
2998 return delta;
2999}
3000#else
3001static void calc_load_account_idle(struct rq *this_rq)
3002{
3003}
3004
3005static inline long calc_load_fold_idle(void)
3006{
3007 return 0;
3008}
3009#endif
3010
2d02494f
TG
3011/**
3012 * get_avenrun - get the load average array
3013 * @loads: pointer to dest load array
3014 * @offset: offset to add
3015 * @shift: shift count to shift the result left
3016 *
3017 * These values are estimates at best, so no need for locking.
3018 */
3019void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3020{
3021 loads[0] = (avenrun[0] + offset) << shift;
3022 loads[1] = (avenrun[1] + offset) << shift;
3023 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3024}
46cb4b7c 3025
dce48a84
TG
3026static unsigned long
3027calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3028{
dce48a84
TG
3029 load *= exp;
3030 load += active * (FIXED_1 - exp);
3031 return load >> FSHIFT;
3032}
46cb4b7c
SS
3033
3034/*
dce48a84
TG
3035 * calc_load - update the avenrun load estimates 10 ticks after the
3036 * CPUs have updated calc_load_tasks.
7835b98b 3037 */
dce48a84 3038void calc_global_load(void)
7835b98b 3039{
dce48a84
TG
3040 unsigned long upd = calc_load_update + 10;
3041 long active;
1da177e4 3042
dce48a84
TG
3043 if (time_before(jiffies, upd))
3044 return;
1da177e4 3045
dce48a84
TG
3046 active = atomic_long_read(&calc_load_tasks);
3047 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3048
dce48a84
TG
3049 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3050 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3051 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3052
dce48a84
TG
3053 calc_load_update += LOAD_FREQ;
3054}
1da177e4 3055
dce48a84 3056/*
74f5187a
PZ
3057 * Called from update_cpu_load() to periodically update this CPU's
3058 * active count.
dce48a84
TG
3059 */
3060static void calc_load_account_active(struct rq *this_rq)
3061{
74f5187a 3062 long delta;
08c183f3 3063
74f5187a
PZ
3064 if (time_before(jiffies, this_rq->calc_load_update))
3065 return;
783609c6 3066
74f5187a
PZ
3067 delta = calc_load_fold_active(this_rq);
3068 delta += calc_load_fold_idle();
3069 if (delta)
dce48a84 3070 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3071
3072 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3073}
3074
fdf3e95d
VP
3075/*
3076 * The exact cpuload at various idx values, calculated at every tick would be
3077 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3078 *
3079 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3080 * on nth tick when cpu may be busy, then we have:
3081 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3082 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3083 *
3084 * decay_load_missed() below does efficient calculation of
3085 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3086 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3087 *
3088 * The calculation is approximated on a 128 point scale.
3089 * degrade_zero_ticks is the number of ticks after which load at any
3090 * particular idx is approximated to be zero.
3091 * degrade_factor is a precomputed table, a row for each load idx.
3092 * Each column corresponds to degradation factor for a power of two ticks,
3093 * based on 128 point scale.
3094 * Example:
3095 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3096 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3097 *
3098 * With this power of 2 load factors, we can degrade the load n times
3099 * by looking at 1 bits in n and doing as many mult/shift instead of
3100 * n mult/shifts needed by the exact degradation.
3101 */
3102#define DEGRADE_SHIFT 7
3103static const unsigned char
3104 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3105static const unsigned char
3106 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3107 {0, 0, 0, 0, 0, 0, 0, 0},
3108 {64, 32, 8, 0, 0, 0, 0, 0},
3109 {96, 72, 40, 12, 1, 0, 0},
3110 {112, 98, 75, 43, 15, 1, 0},
3111 {120, 112, 98, 76, 45, 16, 2} };
3112
3113/*
3114 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3115 * would be when CPU is idle and so we just decay the old load without
3116 * adding any new load.
3117 */
3118static unsigned long
3119decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3120{
3121 int j = 0;
3122
3123 if (!missed_updates)
3124 return load;
3125
3126 if (missed_updates >= degrade_zero_ticks[idx])
3127 return 0;
3128
3129 if (idx == 1)
3130 return load >> missed_updates;
3131
3132 while (missed_updates) {
3133 if (missed_updates % 2)
3134 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3135
3136 missed_updates >>= 1;
3137 j++;
3138 }
3139 return load;
3140}
3141
46cb4b7c 3142/*
dd41f596 3143 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3144 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3145 * every tick. We fix it up based on jiffies.
46cb4b7c 3146 */
dd41f596 3147static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3148{
495eca49 3149 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3150 unsigned long curr_jiffies = jiffies;
3151 unsigned long pending_updates;
dd41f596 3152 int i, scale;
46cb4b7c 3153
dd41f596 3154 this_rq->nr_load_updates++;
46cb4b7c 3155
fdf3e95d
VP
3156 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3157 if (curr_jiffies == this_rq->last_load_update_tick)
3158 return;
3159
3160 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3161 this_rq->last_load_update_tick = curr_jiffies;
3162
dd41f596 3163 /* Update our load: */
fdf3e95d
VP
3164 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3165 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3166 unsigned long old_load, new_load;
7d1e6a9b 3167
dd41f596 3168 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3169
dd41f596 3170 old_load = this_rq->cpu_load[i];
fdf3e95d 3171 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3172 new_load = this_load;
a25707f3
IM
3173 /*
3174 * Round up the averaging division if load is increasing. This
3175 * prevents us from getting stuck on 9 if the load is 10, for
3176 * example.
3177 */
3178 if (new_load > old_load)
fdf3e95d
VP
3179 new_load += scale - 1;
3180
3181 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3182 }
fdf3e95d
VP
3183}
3184
3185static void update_cpu_load_active(struct rq *this_rq)
3186{
3187 update_cpu_load(this_rq);
46cb4b7c 3188
74f5187a 3189 calc_load_account_active(this_rq);
46cb4b7c
SS
3190}
3191
dd41f596 3192#ifdef CONFIG_SMP
8a0be9ef 3193
46cb4b7c 3194/*
38022906
PZ
3195 * sched_exec - execve() is a valuable balancing opportunity, because at
3196 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3197 */
38022906 3198void sched_exec(void)
46cb4b7c 3199{
38022906 3200 struct task_struct *p = current;
1da177e4 3201 unsigned long flags;
70b97a7f 3202 struct rq *rq;
0017d735 3203 int dest_cpu;
46cb4b7c 3204
1da177e4 3205 rq = task_rq_lock(p, &flags);
0017d735
PZ
3206 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3207 if (dest_cpu == smp_processor_id())
3208 goto unlock;
38022906 3209
46cb4b7c 3210 /*
38022906 3211 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3212 */
30da688e 3213 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3214 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3215 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3216
1da177e4 3217 task_rq_unlock(rq, &flags);
969c7921 3218 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3219 return;
3220 }
0017d735 3221unlock:
1da177e4 3222 task_rq_unlock(rq, &flags);
1da177e4 3223}
dd41f596 3224
1da177e4
LT
3225#endif
3226
1da177e4
LT
3227DEFINE_PER_CPU(struct kernel_stat, kstat);
3228
3229EXPORT_PER_CPU_SYMBOL(kstat);
3230
3231/*
c5f8d995 3232 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3233 * @p in case that task is currently running.
c5f8d995
HS
3234 *
3235 * Called with task_rq_lock() held on @rq.
1da177e4 3236 */
c5f8d995
HS
3237static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3238{
3239 u64 ns = 0;
3240
3241 if (task_current(rq, p)) {
3242 update_rq_clock(rq);
3243 ns = rq->clock - p->se.exec_start;
3244 if ((s64)ns < 0)
3245 ns = 0;
3246 }
3247
3248 return ns;
3249}
3250
bb34d92f 3251unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3252{
1da177e4 3253 unsigned long flags;
41b86e9c 3254 struct rq *rq;
bb34d92f 3255 u64 ns = 0;
48f24c4d 3256
41b86e9c 3257 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3258 ns = do_task_delta_exec(p, rq);
3259 task_rq_unlock(rq, &flags);
1508487e 3260
c5f8d995
HS
3261 return ns;
3262}
f06febc9 3263
c5f8d995
HS
3264/*
3265 * Return accounted runtime for the task.
3266 * In case the task is currently running, return the runtime plus current's
3267 * pending runtime that have not been accounted yet.
3268 */
3269unsigned long long task_sched_runtime(struct task_struct *p)
3270{
3271 unsigned long flags;
3272 struct rq *rq;
3273 u64 ns = 0;
3274
3275 rq = task_rq_lock(p, &flags);
3276 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3277 task_rq_unlock(rq, &flags);
3278
3279 return ns;
3280}
48f24c4d 3281
c5f8d995
HS
3282/*
3283 * Return sum_exec_runtime for the thread group.
3284 * In case the task is currently running, return the sum plus current's
3285 * pending runtime that have not been accounted yet.
3286 *
3287 * Note that the thread group might have other running tasks as well,
3288 * so the return value not includes other pending runtime that other
3289 * running tasks might have.
3290 */
3291unsigned long long thread_group_sched_runtime(struct task_struct *p)
3292{
3293 struct task_cputime totals;
3294 unsigned long flags;
3295 struct rq *rq;
3296 u64 ns;
3297
3298 rq = task_rq_lock(p, &flags);
3299 thread_group_cputime(p, &totals);
3300 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3301 task_rq_unlock(rq, &flags);
48f24c4d 3302
1da177e4
LT
3303 return ns;
3304}
3305
1da177e4
LT
3306/*
3307 * Account user cpu time to a process.
3308 * @p: the process that the cpu time gets accounted to
1da177e4 3309 * @cputime: the cpu time spent in user space since the last update
457533a7 3310 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3311 */
457533a7
MS
3312void account_user_time(struct task_struct *p, cputime_t cputime,
3313 cputime_t cputime_scaled)
1da177e4
LT
3314{
3315 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3316 cputime64_t tmp;
3317
457533a7 3318 /* Add user time to process. */
1da177e4 3319 p->utime = cputime_add(p->utime, cputime);
457533a7 3320 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3321 account_group_user_time(p, cputime);
1da177e4
LT
3322
3323 /* Add user time to cpustat. */
3324 tmp = cputime_to_cputime64(cputime);
3325 if (TASK_NICE(p) > 0)
3326 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3327 else
3328 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3329
3330 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3331 /* Account for user time used */
3332 acct_update_integrals(p);
1da177e4
LT
3333}
3334
94886b84
LV
3335/*
3336 * Account guest cpu time to a process.
3337 * @p: the process that the cpu time gets accounted to
3338 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3339 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3340 */
457533a7
MS
3341static void account_guest_time(struct task_struct *p, cputime_t cputime,
3342 cputime_t cputime_scaled)
94886b84
LV
3343{
3344 cputime64_t tmp;
3345 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3346
3347 tmp = cputime_to_cputime64(cputime);
3348
457533a7 3349 /* Add guest time to process. */
94886b84 3350 p->utime = cputime_add(p->utime, cputime);
457533a7 3351 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3352 account_group_user_time(p, cputime);
94886b84
LV
3353 p->gtime = cputime_add(p->gtime, cputime);
3354
457533a7 3355 /* Add guest time to cpustat. */
ce0e7b28
RO
3356 if (TASK_NICE(p) > 0) {
3357 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3358 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3359 } else {
3360 cpustat->user = cputime64_add(cpustat->user, tmp);
3361 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3362 }
94886b84
LV
3363}
3364
1da177e4
LT
3365/*
3366 * Account system cpu time to a process.
3367 * @p: the process that the cpu time gets accounted to
3368 * @hardirq_offset: the offset to subtract from hardirq_count()
3369 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3370 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3371 */
3372void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3373 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3374{
3375 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3376 cputime64_t tmp;
3377
983ed7a6 3378 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3379 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3380 return;
3381 }
94886b84 3382
457533a7 3383 /* Add system time to process. */
1da177e4 3384 p->stime = cputime_add(p->stime, cputime);
457533a7 3385 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3386 account_group_system_time(p, cputime);
1da177e4
LT
3387
3388 /* Add system time to cpustat. */
3389 tmp = cputime_to_cputime64(cputime);
3390 if (hardirq_count() - hardirq_offset)
3391 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3392 else if (softirq_count())
3393 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3394 else
79741dd3
MS
3395 cpustat->system = cputime64_add(cpustat->system, tmp);
3396
ef12fefa
BR
3397 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3398
1da177e4
LT
3399 /* Account for system time used */
3400 acct_update_integrals(p);
1da177e4
LT
3401}
3402
c66f08be 3403/*
1da177e4 3404 * Account for involuntary wait time.
1da177e4 3405 * @steal: the cpu time spent in involuntary wait
c66f08be 3406 */
79741dd3 3407void account_steal_time(cputime_t cputime)
c66f08be 3408{
79741dd3
MS
3409 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3410 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3411
3412 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3413}
3414
1da177e4 3415/*
79741dd3
MS
3416 * Account for idle time.
3417 * @cputime: the cpu time spent in idle wait
1da177e4 3418 */
79741dd3 3419void account_idle_time(cputime_t cputime)
1da177e4
LT
3420{
3421 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3422 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3423 struct rq *rq = this_rq();
1da177e4 3424
79741dd3
MS
3425 if (atomic_read(&rq->nr_iowait) > 0)
3426 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3427 else
3428 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3429}
3430
79741dd3
MS
3431#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3432
3433/*
3434 * Account a single tick of cpu time.
3435 * @p: the process that the cpu time gets accounted to
3436 * @user_tick: indicates if the tick is a user or a system tick
3437 */
3438void account_process_tick(struct task_struct *p, int user_tick)
3439{
a42548a1 3440 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3441 struct rq *rq = this_rq();
3442
3443 if (user_tick)
a42548a1 3444 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3445 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3446 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3447 one_jiffy_scaled);
3448 else
a42548a1 3449 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3450}
3451
3452/*
3453 * Account multiple ticks of steal time.
3454 * @p: the process from which the cpu time has been stolen
3455 * @ticks: number of stolen ticks
3456 */
3457void account_steal_ticks(unsigned long ticks)
3458{
3459 account_steal_time(jiffies_to_cputime(ticks));
3460}
3461
3462/*
3463 * Account multiple ticks of idle time.
3464 * @ticks: number of stolen ticks
3465 */
3466void account_idle_ticks(unsigned long ticks)
3467{
3468 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3469}
3470
79741dd3
MS
3471#endif
3472
49048622
BS
3473/*
3474 * Use precise platform statistics if available:
3475 */
3476#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3477void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3478{
d99ca3b9
HS
3479 *ut = p->utime;
3480 *st = p->stime;
49048622
BS
3481}
3482
0cf55e1e 3483void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3484{
0cf55e1e
HS
3485 struct task_cputime cputime;
3486
3487 thread_group_cputime(p, &cputime);
3488
3489 *ut = cputime.utime;
3490 *st = cputime.stime;
49048622
BS
3491}
3492#else
761b1d26
HS
3493
3494#ifndef nsecs_to_cputime
b7b20df9 3495# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3496#endif
3497
d180c5bc 3498void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3499{
d99ca3b9 3500 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3501
3502 /*
3503 * Use CFS's precise accounting:
3504 */
d180c5bc 3505 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3506
3507 if (total) {
d180c5bc
HS
3508 u64 temp;
3509
3510 temp = (u64)(rtime * utime);
49048622 3511 do_div(temp, total);
d180c5bc
HS
3512 utime = (cputime_t)temp;
3513 } else
3514 utime = rtime;
49048622 3515
d180c5bc
HS
3516 /*
3517 * Compare with previous values, to keep monotonicity:
3518 */
761b1d26 3519 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3520 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3521
d99ca3b9
HS
3522 *ut = p->prev_utime;
3523 *st = p->prev_stime;
49048622
BS
3524}
3525
0cf55e1e
HS
3526/*
3527 * Must be called with siglock held.
3528 */
3529void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3530{
0cf55e1e
HS
3531 struct signal_struct *sig = p->signal;
3532 struct task_cputime cputime;
3533 cputime_t rtime, utime, total;
49048622 3534
0cf55e1e 3535 thread_group_cputime(p, &cputime);
49048622 3536
0cf55e1e
HS
3537 total = cputime_add(cputime.utime, cputime.stime);
3538 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3539
0cf55e1e
HS
3540 if (total) {
3541 u64 temp;
49048622 3542
0cf55e1e
HS
3543 temp = (u64)(rtime * cputime.utime);
3544 do_div(temp, total);
3545 utime = (cputime_t)temp;
3546 } else
3547 utime = rtime;
3548
3549 sig->prev_utime = max(sig->prev_utime, utime);
3550 sig->prev_stime = max(sig->prev_stime,
3551 cputime_sub(rtime, sig->prev_utime));
3552
3553 *ut = sig->prev_utime;
3554 *st = sig->prev_stime;
49048622 3555}
49048622 3556#endif
49048622 3557
7835b98b
CL
3558/*
3559 * This function gets called by the timer code, with HZ frequency.
3560 * We call it with interrupts disabled.
3561 *
3562 * It also gets called by the fork code, when changing the parent's
3563 * timeslices.
3564 */
3565void scheduler_tick(void)
3566{
7835b98b
CL
3567 int cpu = smp_processor_id();
3568 struct rq *rq = cpu_rq(cpu);
dd41f596 3569 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3570
3571 sched_clock_tick();
dd41f596 3572
05fa785c 3573 raw_spin_lock(&rq->lock);
3e51f33f 3574 update_rq_clock(rq);
fdf3e95d 3575 update_cpu_load_active(rq);
fa85ae24 3576 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3577 raw_spin_unlock(&rq->lock);
7835b98b 3578
49f47433 3579 perf_event_task_tick(curr);
e220d2dc 3580
e418e1c2 3581#ifdef CONFIG_SMP
dd41f596
IM
3582 rq->idle_at_tick = idle_cpu(cpu);
3583 trigger_load_balance(rq, cpu);
e418e1c2 3584#endif
1da177e4
LT
3585}
3586
132380a0 3587notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3588{
3589 if (in_lock_functions(addr)) {
3590 addr = CALLER_ADDR2;
3591 if (in_lock_functions(addr))
3592 addr = CALLER_ADDR3;
3593 }
3594 return addr;
3595}
1da177e4 3596
7e49fcce
SR
3597#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3598 defined(CONFIG_PREEMPT_TRACER))
3599
43627582 3600void __kprobes add_preempt_count(int val)
1da177e4 3601{
6cd8a4bb 3602#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3603 /*
3604 * Underflow?
3605 */
9a11b49a
IM
3606 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3607 return;
6cd8a4bb 3608#endif
1da177e4 3609 preempt_count() += val;
6cd8a4bb 3610#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3611 /*
3612 * Spinlock count overflowing soon?
3613 */
33859f7f
MOS
3614 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3615 PREEMPT_MASK - 10);
6cd8a4bb
SR
3616#endif
3617 if (preempt_count() == val)
3618 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3619}
3620EXPORT_SYMBOL(add_preempt_count);
3621
43627582 3622void __kprobes sub_preempt_count(int val)
1da177e4 3623{
6cd8a4bb 3624#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3625 /*
3626 * Underflow?
3627 */
01e3eb82 3628 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3629 return;
1da177e4
LT
3630 /*
3631 * Is the spinlock portion underflowing?
3632 */
9a11b49a
IM
3633 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3634 !(preempt_count() & PREEMPT_MASK)))
3635 return;
6cd8a4bb 3636#endif
9a11b49a 3637
6cd8a4bb
SR
3638 if (preempt_count() == val)
3639 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3640 preempt_count() -= val;
3641}
3642EXPORT_SYMBOL(sub_preempt_count);
3643
3644#endif
3645
3646/*
dd41f596 3647 * Print scheduling while atomic bug:
1da177e4 3648 */
dd41f596 3649static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3650{
838225b4
SS
3651 struct pt_regs *regs = get_irq_regs();
3652
3df0fc5b
PZ
3653 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3654 prev->comm, prev->pid, preempt_count());
838225b4 3655
dd41f596 3656 debug_show_held_locks(prev);
e21f5b15 3657 print_modules();
dd41f596
IM
3658 if (irqs_disabled())
3659 print_irqtrace_events(prev);
838225b4
SS
3660
3661 if (regs)
3662 show_regs(regs);
3663 else
3664 dump_stack();
dd41f596 3665}
1da177e4 3666
dd41f596
IM
3667/*
3668 * Various schedule()-time debugging checks and statistics:
3669 */
3670static inline void schedule_debug(struct task_struct *prev)
3671{
1da177e4 3672 /*
41a2d6cf 3673 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3674 * schedule() atomically, we ignore that path for now.
3675 * Otherwise, whine if we are scheduling when we should not be.
3676 */
3f33a7ce 3677 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3678 __schedule_bug(prev);
3679
1da177e4
LT
3680 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3681
2d72376b 3682 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3683#ifdef CONFIG_SCHEDSTATS
3684 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3685 schedstat_inc(this_rq(), bkl_count);
3686 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3687 }
3688#endif
dd41f596
IM
3689}
3690
6cecd084 3691static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3692{
a64692a3
MG
3693 if (prev->se.on_rq)
3694 update_rq_clock(rq);
3695 rq->skip_clock_update = 0;
6cecd084 3696 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3697}
3698
dd41f596
IM
3699/*
3700 * Pick up the highest-prio task:
3701 */
3702static inline struct task_struct *
b67802ea 3703pick_next_task(struct rq *rq)
dd41f596 3704{
5522d5d5 3705 const struct sched_class *class;
dd41f596 3706 struct task_struct *p;
1da177e4
LT
3707
3708 /*
dd41f596
IM
3709 * Optimization: we know that if all tasks are in
3710 * the fair class we can call that function directly:
1da177e4 3711 */
dd41f596 3712 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3713 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3714 if (likely(p))
3715 return p;
1da177e4
LT
3716 }
3717
dd41f596
IM
3718 class = sched_class_highest;
3719 for ( ; ; ) {
fb8d4724 3720 p = class->pick_next_task(rq);
dd41f596
IM
3721 if (p)
3722 return p;
3723 /*
3724 * Will never be NULL as the idle class always
3725 * returns a non-NULL p:
3726 */
3727 class = class->next;
3728 }
3729}
1da177e4 3730
dd41f596
IM
3731/*
3732 * schedule() is the main scheduler function.
3733 */
ff743345 3734asmlinkage void __sched schedule(void)
dd41f596
IM
3735{
3736 struct task_struct *prev, *next;
67ca7bde 3737 unsigned long *switch_count;
dd41f596 3738 struct rq *rq;
31656519 3739 int cpu;
dd41f596 3740
ff743345
PZ
3741need_resched:
3742 preempt_disable();
dd41f596
IM
3743 cpu = smp_processor_id();
3744 rq = cpu_rq(cpu);
25502a6c 3745 rcu_note_context_switch(cpu);
dd41f596 3746 prev = rq->curr;
dd41f596
IM
3747
3748 release_kernel_lock(prev);
3749need_resched_nonpreemptible:
3750
3751 schedule_debug(prev);
1da177e4 3752
31656519 3753 if (sched_feat(HRTICK))
f333fdc9 3754 hrtick_clear(rq);
8f4d37ec 3755
05fa785c 3756 raw_spin_lock_irq(&rq->lock);
1e819950 3757 clear_tsk_need_resched(prev);
1da177e4 3758
246d86b5 3759 switch_count = &prev->nivcsw;
1da177e4 3760 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3761 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3762 prev->state = TASK_RUNNING;
21aa9af0
TH
3763 } else {
3764 /*
3765 * If a worker is going to sleep, notify and
3766 * ask workqueue whether it wants to wake up a
3767 * task to maintain concurrency. If so, wake
3768 * up the task.
3769 */
3770 if (prev->flags & PF_WQ_WORKER) {
3771 struct task_struct *to_wakeup;
3772
3773 to_wakeup = wq_worker_sleeping(prev, cpu);
3774 if (to_wakeup)
3775 try_to_wake_up_local(to_wakeup);
3776 }
371fd7e7 3777 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3778 }
dd41f596 3779 switch_count = &prev->nvcsw;
1da177e4
LT
3780 }
3781
3f029d3c 3782 pre_schedule(rq, prev);
f65eda4f 3783
dd41f596 3784 if (unlikely(!rq->nr_running))
1da177e4 3785 idle_balance(cpu, rq);
1da177e4 3786
df1c99d4 3787 put_prev_task(rq, prev);
b67802ea 3788 next = pick_next_task(rq);
1da177e4 3789
1da177e4 3790 if (likely(prev != next)) {
673a90a1 3791 sched_info_switch(prev, next);
49f47433 3792 perf_event_task_sched_out(prev, next);
673a90a1 3793
1da177e4
LT
3794 rq->nr_switches++;
3795 rq->curr = next;
3796 ++*switch_count;
3797
dd41f596 3798 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3799 /*
246d86b5
ON
3800 * The context switch have flipped the stack from under us
3801 * and restored the local variables which were saved when
3802 * this task called schedule() in the past. prev == current
3803 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3804 */
3805 cpu = smp_processor_id();
3806 rq = cpu_rq(cpu);
1da177e4 3807 } else
05fa785c 3808 raw_spin_unlock_irq(&rq->lock);
1da177e4 3809
3f029d3c 3810 post_schedule(rq);
1da177e4 3811
246d86b5 3812 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 3813 goto need_resched_nonpreemptible;
8f4d37ec 3814
1da177e4 3815 preempt_enable_no_resched();
ff743345 3816 if (need_resched())
1da177e4
LT
3817 goto need_resched;
3818}
1da177e4
LT
3819EXPORT_SYMBOL(schedule);
3820
c08f7829 3821#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3822/*
3823 * Look out! "owner" is an entirely speculative pointer
3824 * access and not reliable.
3825 */
3826int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3827{
3828 unsigned int cpu;
3829 struct rq *rq;
3830
3831 if (!sched_feat(OWNER_SPIN))
3832 return 0;
3833
3834#ifdef CONFIG_DEBUG_PAGEALLOC
3835 /*
3836 * Need to access the cpu field knowing that
3837 * DEBUG_PAGEALLOC could have unmapped it if
3838 * the mutex owner just released it and exited.
3839 */
3840 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3841 return 0;
0d66bf6d
PZ
3842#else
3843 cpu = owner->cpu;
3844#endif
3845
3846 /*
3847 * Even if the access succeeded (likely case),
3848 * the cpu field may no longer be valid.
3849 */
3850 if (cpu >= nr_cpumask_bits)
4b402210 3851 return 0;
0d66bf6d
PZ
3852
3853 /*
3854 * We need to validate that we can do a
3855 * get_cpu() and that we have the percpu area.
3856 */
3857 if (!cpu_online(cpu))
4b402210 3858 return 0;
0d66bf6d
PZ
3859
3860 rq = cpu_rq(cpu);
3861
3862 for (;;) {
3863 /*
3864 * Owner changed, break to re-assess state.
3865 */
9d0f4dcc
TC
3866 if (lock->owner != owner) {
3867 /*
3868 * If the lock has switched to a different owner,
3869 * we likely have heavy contention. Return 0 to quit
3870 * optimistic spinning and not contend further:
3871 */
3872 if (lock->owner)
3873 return 0;
0d66bf6d 3874 break;
9d0f4dcc 3875 }
0d66bf6d
PZ
3876
3877 /*
3878 * Is that owner really running on that cpu?
3879 */
3880 if (task_thread_info(rq->curr) != owner || need_resched())
3881 return 0;
3882
3883 cpu_relax();
3884 }
4b402210 3885
0d66bf6d
PZ
3886 return 1;
3887}
3888#endif
3889
1da177e4
LT
3890#ifdef CONFIG_PREEMPT
3891/*
2ed6e34f 3892 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3893 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3894 * occur there and call schedule directly.
3895 */
d1f74e20 3896asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3897{
3898 struct thread_info *ti = current_thread_info();
6478d880 3899
1da177e4
LT
3900 /*
3901 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3902 * we do not want to preempt the current task. Just return..
1da177e4 3903 */
beed33a8 3904 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3905 return;
3906
3a5c359a 3907 do {
d1f74e20 3908 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 3909 schedule();
d1f74e20 3910 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3911
3a5c359a
AK
3912 /*
3913 * Check again in case we missed a preemption opportunity
3914 * between schedule and now.
3915 */
3916 barrier();
5ed0cec0 3917 } while (need_resched());
1da177e4 3918}
1da177e4
LT
3919EXPORT_SYMBOL(preempt_schedule);
3920
3921/*
2ed6e34f 3922 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3923 * off of irq context.
3924 * Note, that this is called and return with irqs disabled. This will
3925 * protect us against recursive calling from irq.
3926 */
3927asmlinkage void __sched preempt_schedule_irq(void)
3928{
3929 struct thread_info *ti = current_thread_info();
6478d880 3930
2ed6e34f 3931 /* Catch callers which need to be fixed */
1da177e4
LT
3932 BUG_ON(ti->preempt_count || !irqs_disabled());
3933
3a5c359a
AK
3934 do {
3935 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3936 local_irq_enable();
3937 schedule();
3938 local_irq_disable();
3a5c359a 3939 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3940
3a5c359a
AK
3941 /*
3942 * Check again in case we missed a preemption opportunity
3943 * between schedule and now.
3944 */
3945 barrier();
5ed0cec0 3946 } while (need_resched());
1da177e4
LT
3947}
3948
3949#endif /* CONFIG_PREEMPT */
3950
63859d4f 3951int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3952 void *key)
1da177e4 3953{
63859d4f 3954 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3955}
1da177e4
LT
3956EXPORT_SYMBOL(default_wake_function);
3957
3958/*
41a2d6cf
IM
3959 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3960 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3961 * number) then we wake all the non-exclusive tasks and one exclusive task.
3962 *
3963 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3964 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3965 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3966 */
78ddb08f 3967static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3968 int nr_exclusive, int wake_flags, void *key)
1da177e4 3969{
2e45874c 3970 wait_queue_t *curr, *next;
1da177e4 3971
2e45874c 3972 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3973 unsigned flags = curr->flags;
3974
63859d4f 3975 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3976 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3977 break;
3978 }
3979}
3980
3981/**
3982 * __wake_up - wake up threads blocked on a waitqueue.
3983 * @q: the waitqueue
3984 * @mode: which threads
3985 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3986 * @key: is directly passed to the wakeup function
50fa610a
DH
3987 *
3988 * It may be assumed that this function implies a write memory barrier before
3989 * changing the task state if and only if any tasks are woken up.
1da177e4 3990 */
7ad5b3a5 3991void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3992 int nr_exclusive, void *key)
1da177e4
LT
3993{
3994 unsigned long flags;
3995
3996 spin_lock_irqsave(&q->lock, flags);
3997 __wake_up_common(q, mode, nr_exclusive, 0, key);
3998 spin_unlock_irqrestore(&q->lock, flags);
3999}
1da177e4
LT
4000EXPORT_SYMBOL(__wake_up);
4001
4002/*
4003 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4004 */
7ad5b3a5 4005void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4006{
4007 __wake_up_common(q, mode, 1, 0, NULL);
4008}
22c43c81 4009EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4010
4ede816a
DL
4011void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4012{
4013 __wake_up_common(q, mode, 1, 0, key);
4014}
4015
1da177e4 4016/**
4ede816a 4017 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4018 * @q: the waitqueue
4019 * @mode: which threads
4020 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4021 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4022 *
4023 * The sync wakeup differs that the waker knows that it will schedule
4024 * away soon, so while the target thread will be woken up, it will not
4025 * be migrated to another CPU - ie. the two threads are 'synchronized'
4026 * with each other. This can prevent needless bouncing between CPUs.
4027 *
4028 * On UP it can prevent extra preemption.
50fa610a
DH
4029 *
4030 * It may be assumed that this function implies a write memory barrier before
4031 * changing the task state if and only if any tasks are woken up.
1da177e4 4032 */
4ede816a
DL
4033void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4034 int nr_exclusive, void *key)
1da177e4
LT
4035{
4036 unsigned long flags;
7d478721 4037 int wake_flags = WF_SYNC;
1da177e4
LT
4038
4039 if (unlikely(!q))
4040 return;
4041
4042 if (unlikely(!nr_exclusive))
7d478721 4043 wake_flags = 0;
1da177e4
LT
4044
4045 spin_lock_irqsave(&q->lock, flags);
7d478721 4046 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4047 spin_unlock_irqrestore(&q->lock, flags);
4048}
4ede816a
DL
4049EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4050
4051/*
4052 * __wake_up_sync - see __wake_up_sync_key()
4053 */
4054void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4055{
4056 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4057}
1da177e4
LT
4058EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4059
65eb3dc6
KD
4060/**
4061 * complete: - signals a single thread waiting on this completion
4062 * @x: holds the state of this particular completion
4063 *
4064 * This will wake up a single thread waiting on this completion. Threads will be
4065 * awakened in the same order in which they were queued.
4066 *
4067 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4068 *
4069 * It may be assumed that this function implies a write memory barrier before
4070 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4071 */
b15136e9 4072void complete(struct completion *x)
1da177e4
LT
4073{
4074 unsigned long flags;
4075
4076 spin_lock_irqsave(&x->wait.lock, flags);
4077 x->done++;
d9514f6c 4078 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4079 spin_unlock_irqrestore(&x->wait.lock, flags);
4080}
4081EXPORT_SYMBOL(complete);
4082
65eb3dc6
KD
4083/**
4084 * complete_all: - signals all threads waiting on this completion
4085 * @x: holds the state of this particular completion
4086 *
4087 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4088 *
4089 * It may be assumed that this function implies a write memory barrier before
4090 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4091 */
b15136e9 4092void complete_all(struct completion *x)
1da177e4
LT
4093{
4094 unsigned long flags;
4095
4096 spin_lock_irqsave(&x->wait.lock, flags);
4097 x->done += UINT_MAX/2;
d9514f6c 4098 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4099 spin_unlock_irqrestore(&x->wait.lock, flags);
4100}
4101EXPORT_SYMBOL(complete_all);
4102
8cbbe86d
AK
4103static inline long __sched
4104do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4105{
1da177e4
LT
4106 if (!x->done) {
4107 DECLARE_WAITQUEUE(wait, current);
4108
a93d2f17 4109 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4110 do {
94d3d824 4111 if (signal_pending_state(state, current)) {
ea71a546
ON
4112 timeout = -ERESTARTSYS;
4113 break;
8cbbe86d
AK
4114 }
4115 __set_current_state(state);
1da177e4
LT
4116 spin_unlock_irq(&x->wait.lock);
4117 timeout = schedule_timeout(timeout);
4118 spin_lock_irq(&x->wait.lock);
ea71a546 4119 } while (!x->done && timeout);
1da177e4 4120 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4121 if (!x->done)
4122 return timeout;
1da177e4
LT
4123 }
4124 x->done--;
ea71a546 4125 return timeout ?: 1;
1da177e4 4126}
1da177e4 4127
8cbbe86d
AK
4128static long __sched
4129wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4130{
1da177e4
LT
4131 might_sleep();
4132
4133 spin_lock_irq(&x->wait.lock);
8cbbe86d 4134 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4135 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4136 return timeout;
4137}
1da177e4 4138
65eb3dc6
KD
4139/**
4140 * wait_for_completion: - waits for completion of a task
4141 * @x: holds the state of this particular completion
4142 *
4143 * This waits to be signaled for completion of a specific task. It is NOT
4144 * interruptible and there is no timeout.
4145 *
4146 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4147 * and interrupt capability. Also see complete().
4148 */
b15136e9 4149void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4150{
4151 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4152}
8cbbe86d 4153EXPORT_SYMBOL(wait_for_completion);
1da177e4 4154
65eb3dc6
KD
4155/**
4156 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4157 * @x: holds the state of this particular completion
4158 * @timeout: timeout value in jiffies
4159 *
4160 * This waits for either a completion of a specific task to be signaled or for a
4161 * specified timeout to expire. The timeout is in jiffies. It is not
4162 * interruptible.
4163 */
b15136e9 4164unsigned long __sched
8cbbe86d 4165wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4166{
8cbbe86d 4167 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4168}
8cbbe86d 4169EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4170
65eb3dc6
KD
4171/**
4172 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4173 * @x: holds the state of this particular completion
4174 *
4175 * This waits for completion of a specific task to be signaled. It is
4176 * interruptible.
4177 */
8cbbe86d 4178int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4179{
51e97990
AK
4180 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4181 if (t == -ERESTARTSYS)
4182 return t;
4183 return 0;
0fec171c 4184}
8cbbe86d 4185EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4186
65eb3dc6
KD
4187/**
4188 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4189 * @x: holds the state of this particular completion
4190 * @timeout: timeout value in jiffies
4191 *
4192 * This waits for either a completion of a specific task to be signaled or for a
4193 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4194 */
b15136e9 4195unsigned long __sched
8cbbe86d
AK
4196wait_for_completion_interruptible_timeout(struct completion *x,
4197 unsigned long timeout)
0fec171c 4198{
8cbbe86d 4199 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4200}
8cbbe86d 4201EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4202
65eb3dc6
KD
4203/**
4204 * wait_for_completion_killable: - waits for completion of a task (killable)
4205 * @x: holds the state of this particular completion
4206 *
4207 * This waits to be signaled for completion of a specific task. It can be
4208 * interrupted by a kill signal.
4209 */
009e577e
MW
4210int __sched wait_for_completion_killable(struct completion *x)
4211{
4212 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4213 if (t == -ERESTARTSYS)
4214 return t;
4215 return 0;
4216}
4217EXPORT_SYMBOL(wait_for_completion_killable);
4218
0aa12fb4
SW
4219/**
4220 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4221 * @x: holds the state of this particular completion
4222 * @timeout: timeout value in jiffies
4223 *
4224 * This waits for either a completion of a specific task to be
4225 * signaled or for a specified timeout to expire. It can be
4226 * interrupted by a kill signal. The timeout is in jiffies.
4227 */
4228unsigned long __sched
4229wait_for_completion_killable_timeout(struct completion *x,
4230 unsigned long timeout)
4231{
4232 return wait_for_common(x, timeout, TASK_KILLABLE);
4233}
4234EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4235
be4de352
DC
4236/**
4237 * try_wait_for_completion - try to decrement a completion without blocking
4238 * @x: completion structure
4239 *
4240 * Returns: 0 if a decrement cannot be done without blocking
4241 * 1 if a decrement succeeded.
4242 *
4243 * If a completion is being used as a counting completion,
4244 * attempt to decrement the counter without blocking. This
4245 * enables us to avoid waiting if the resource the completion
4246 * is protecting is not available.
4247 */
4248bool try_wait_for_completion(struct completion *x)
4249{
7539a3b3 4250 unsigned long flags;
be4de352
DC
4251 int ret = 1;
4252
7539a3b3 4253 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4254 if (!x->done)
4255 ret = 0;
4256 else
4257 x->done--;
7539a3b3 4258 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4259 return ret;
4260}
4261EXPORT_SYMBOL(try_wait_for_completion);
4262
4263/**
4264 * completion_done - Test to see if a completion has any waiters
4265 * @x: completion structure
4266 *
4267 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4268 * 1 if there are no waiters.
4269 *
4270 */
4271bool completion_done(struct completion *x)
4272{
7539a3b3 4273 unsigned long flags;
be4de352
DC
4274 int ret = 1;
4275
7539a3b3 4276 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4277 if (!x->done)
4278 ret = 0;
7539a3b3 4279 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4280 return ret;
4281}
4282EXPORT_SYMBOL(completion_done);
4283
8cbbe86d
AK
4284static long __sched
4285sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4286{
0fec171c
IM
4287 unsigned long flags;
4288 wait_queue_t wait;
4289
4290 init_waitqueue_entry(&wait, current);
1da177e4 4291
8cbbe86d 4292 __set_current_state(state);
1da177e4 4293
8cbbe86d
AK
4294 spin_lock_irqsave(&q->lock, flags);
4295 __add_wait_queue(q, &wait);
4296 spin_unlock(&q->lock);
4297 timeout = schedule_timeout(timeout);
4298 spin_lock_irq(&q->lock);
4299 __remove_wait_queue(q, &wait);
4300 spin_unlock_irqrestore(&q->lock, flags);
4301
4302 return timeout;
4303}
4304
4305void __sched interruptible_sleep_on(wait_queue_head_t *q)
4306{
4307 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4308}
1da177e4
LT
4309EXPORT_SYMBOL(interruptible_sleep_on);
4310
0fec171c 4311long __sched
95cdf3b7 4312interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4313{
8cbbe86d 4314 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4315}
1da177e4
LT
4316EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4317
0fec171c 4318void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4319{
8cbbe86d 4320 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4321}
1da177e4
LT
4322EXPORT_SYMBOL(sleep_on);
4323
0fec171c 4324long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4325{
8cbbe86d 4326 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4327}
1da177e4
LT
4328EXPORT_SYMBOL(sleep_on_timeout);
4329
b29739f9
IM
4330#ifdef CONFIG_RT_MUTEXES
4331
4332/*
4333 * rt_mutex_setprio - set the current priority of a task
4334 * @p: task
4335 * @prio: prio value (kernel-internal form)
4336 *
4337 * This function changes the 'effective' priority of a task. It does
4338 * not touch ->normal_prio like __setscheduler().
4339 *
4340 * Used by the rt_mutex code to implement priority inheritance logic.
4341 */
36c8b586 4342void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4343{
4344 unsigned long flags;
83b699ed 4345 int oldprio, on_rq, running;
70b97a7f 4346 struct rq *rq;
83ab0aa0 4347 const struct sched_class *prev_class;
b29739f9
IM
4348
4349 BUG_ON(prio < 0 || prio > MAX_PRIO);
4350
4351 rq = task_rq_lock(p, &flags);
4352
d5f9f942 4353 oldprio = p->prio;
83ab0aa0 4354 prev_class = p->sched_class;
dd41f596 4355 on_rq = p->se.on_rq;
051a1d1a 4356 running = task_current(rq, p);
0e1f3483 4357 if (on_rq)
69be72c1 4358 dequeue_task(rq, p, 0);
0e1f3483
HS
4359 if (running)
4360 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4361
4362 if (rt_prio(prio))
4363 p->sched_class = &rt_sched_class;
4364 else
4365 p->sched_class = &fair_sched_class;
4366
b29739f9
IM
4367 p->prio = prio;
4368
0e1f3483
HS
4369 if (running)
4370 p->sched_class->set_curr_task(rq);
dd41f596 4371 if (on_rq) {
371fd7e7 4372 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4373
4374 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4375 }
4376 task_rq_unlock(rq, &flags);
4377}
4378
4379#endif
4380
36c8b586 4381void set_user_nice(struct task_struct *p, long nice)
1da177e4 4382{
dd41f596 4383 int old_prio, delta, on_rq;
1da177e4 4384 unsigned long flags;
70b97a7f 4385 struct rq *rq;
1da177e4
LT
4386
4387 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4388 return;
4389 /*
4390 * We have to be careful, if called from sys_setpriority(),
4391 * the task might be in the middle of scheduling on another CPU.
4392 */
4393 rq = task_rq_lock(p, &flags);
4394 /*
4395 * The RT priorities are set via sched_setscheduler(), but we still
4396 * allow the 'normal' nice value to be set - but as expected
4397 * it wont have any effect on scheduling until the task is
dd41f596 4398 * SCHED_FIFO/SCHED_RR:
1da177e4 4399 */
e05606d3 4400 if (task_has_rt_policy(p)) {
1da177e4
LT
4401 p->static_prio = NICE_TO_PRIO(nice);
4402 goto out_unlock;
4403 }
dd41f596 4404 on_rq = p->se.on_rq;
c09595f6 4405 if (on_rq)
69be72c1 4406 dequeue_task(rq, p, 0);
1da177e4 4407
1da177e4 4408 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4409 set_load_weight(p);
b29739f9
IM
4410 old_prio = p->prio;
4411 p->prio = effective_prio(p);
4412 delta = p->prio - old_prio;
1da177e4 4413
dd41f596 4414 if (on_rq) {
371fd7e7 4415 enqueue_task(rq, p, 0);
1da177e4 4416 /*
d5f9f942
AM
4417 * If the task increased its priority or is running and
4418 * lowered its priority, then reschedule its CPU:
1da177e4 4419 */
d5f9f942 4420 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4421 resched_task(rq->curr);
4422 }
4423out_unlock:
4424 task_rq_unlock(rq, &flags);
4425}
1da177e4
LT
4426EXPORT_SYMBOL(set_user_nice);
4427
e43379f1
MM
4428/*
4429 * can_nice - check if a task can reduce its nice value
4430 * @p: task
4431 * @nice: nice value
4432 */
36c8b586 4433int can_nice(const struct task_struct *p, const int nice)
e43379f1 4434{
024f4747
MM
4435 /* convert nice value [19,-20] to rlimit style value [1,40] */
4436 int nice_rlim = 20 - nice;
48f24c4d 4437
78d7d407 4438 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4439 capable(CAP_SYS_NICE));
4440}
4441
1da177e4
LT
4442#ifdef __ARCH_WANT_SYS_NICE
4443
4444/*
4445 * sys_nice - change the priority of the current process.
4446 * @increment: priority increment
4447 *
4448 * sys_setpriority is a more generic, but much slower function that
4449 * does similar things.
4450 */
5add95d4 4451SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4452{
48f24c4d 4453 long nice, retval;
1da177e4
LT
4454
4455 /*
4456 * Setpriority might change our priority at the same moment.
4457 * We don't have to worry. Conceptually one call occurs first
4458 * and we have a single winner.
4459 */
e43379f1
MM
4460 if (increment < -40)
4461 increment = -40;
1da177e4
LT
4462 if (increment > 40)
4463 increment = 40;
4464
2b8f836f 4465 nice = TASK_NICE(current) + increment;
1da177e4
LT
4466 if (nice < -20)
4467 nice = -20;
4468 if (nice > 19)
4469 nice = 19;
4470
e43379f1
MM
4471 if (increment < 0 && !can_nice(current, nice))
4472 return -EPERM;
4473
1da177e4
LT
4474 retval = security_task_setnice(current, nice);
4475 if (retval)
4476 return retval;
4477
4478 set_user_nice(current, nice);
4479 return 0;
4480}
4481
4482#endif
4483
4484/**
4485 * task_prio - return the priority value of a given task.
4486 * @p: the task in question.
4487 *
4488 * This is the priority value as seen by users in /proc.
4489 * RT tasks are offset by -200. Normal tasks are centered
4490 * around 0, value goes from -16 to +15.
4491 */
36c8b586 4492int task_prio(const struct task_struct *p)
1da177e4
LT
4493{
4494 return p->prio - MAX_RT_PRIO;
4495}
4496
4497/**
4498 * task_nice - return the nice value of a given task.
4499 * @p: the task in question.
4500 */
36c8b586 4501int task_nice(const struct task_struct *p)
1da177e4
LT
4502{
4503 return TASK_NICE(p);
4504}
150d8bed 4505EXPORT_SYMBOL(task_nice);
1da177e4
LT
4506
4507/**
4508 * idle_cpu - is a given cpu idle currently?
4509 * @cpu: the processor in question.
4510 */
4511int idle_cpu(int cpu)
4512{
4513 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4514}
4515
1da177e4
LT
4516/**
4517 * idle_task - return the idle task for a given cpu.
4518 * @cpu: the processor in question.
4519 */
36c8b586 4520struct task_struct *idle_task(int cpu)
1da177e4
LT
4521{
4522 return cpu_rq(cpu)->idle;
4523}
4524
4525/**
4526 * find_process_by_pid - find a process with a matching PID value.
4527 * @pid: the pid in question.
4528 */
a9957449 4529static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4530{
228ebcbe 4531 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4532}
4533
4534/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4535static void
4536__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4537{
dd41f596 4538 BUG_ON(p->se.on_rq);
48f24c4d 4539
1da177e4
LT
4540 p->policy = policy;
4541 p->rt_priority = prio;
b29739f9
IM
4542 p->normal_prio = normal_prio(p);
4543 /* we are holding p->pi_lock already */
4544 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4545 if (rt_prio(p->prio))
4546 p->sched_class = &rt_sched_class;
4547 else
4548 p->sched_class = &fair_sched_class;
2dd73a4f 4549 set_load_weight(p);
1da177e4
LT
4550}
4551
c69e8d9c
DH
4552/*
4553 * check the target process has a UID that matches the current process's
4554 */
4555static bool check_same_owner(struct task_struct *p)
4556{
4557 const struct cred *cred = current_cred(), *pcred;
4558 bool match;
4559
4560 rcu_read_lock();
4561 pcred = __task_cred(p);
4562 match = (cred->euid == pcred->euid ||
4563 cred->euid == pcred->uid);
4564 rcu_read_unlock();
4565 return match;
4566}
4567
961ccddd
RR
4568static int __sched_setscheduler(struct task_struct *p, int policy,
4569 struct sched_param *param, bool user)
1da177e4 4570{
83b699ed 4571 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4572 unsigned long flags;
83ab0aa0 4573 const struct sched_class *prev_class;
70b97a7f 4574 struct rq *rq;
ca94c442 4575 int reset_on_fork;
1da177e4 4576
66e5393a
SR
4577 /* may grab non-irq protected spin_locks */
4578 BUG_ON(in_interrupt());
1da177e4
LT
4579recheck:
4580 /* double check policy once rq lock held */
ca94c442
LP
4581 if (policy < 0) {
4582 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4583 policy = oldpolicy = p->policy;
ca94c442
LP
4584 } else {
4585 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4586 policy &= ~SCHED_RESET_ON_FORK;
4587
4588 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4589 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4590 policy != SCHED_IDLE)
4591 return -EINVAL;
4592 }
4593
1da177e4
LT
4594 /*
4595 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4596 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4597 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4598 */
4599 if (param->sched_priority < 0 ||
95cdf3b7 4600 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4601 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4602 return -EINVAL;
e05606d3 4603 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4604 return -EINVAL;
4605
37e4ab3f
OC
4606 /*
4607 * Allow unprivileged RT tasks to decrease priority:
4608 */
961ccddd 4609 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4610 if (rt_policy(policy)) {
a44702e8
ON
4611 unsigned long rlim_rtprio =
4612 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4613
4614 /* can't set/change the rt policy */
4615 if (policy != p->policy && !rlim_rtprio)
4616 return -EPERM;
4617
4618 /* can't increase priority */
4619 if (param->sched_priority > p->rt_priority &&
4620 param->sched_priority > rlim_rtprio)
4621 return -EPERM;
4622 }
dd41f596
IM
4623 /*
4624 * Like positive nice levels, dont allow tasks to
4625 * move out of SCHED_IDLE either:
4626 */
4627 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4628 return -EPERM;
5fe1d75f 4629
37e4ab3f 4630 /* can't change other user's priorities */
c69e8d9c 4631 if (!check_same_owner(p))
37e4ab3f 4632 return -EPERM;
ca94c442
LP
4633
4634 /* Normal users shall not reset the sched_reset_on_fork flag */
4635 if (p->sched_reset_on_fork && !reset_on_fork)
4636 return -EPERM;
37e4ab3f 4637 }
1da177e4 4638
725aad24 4639 if (user) {
725aad24
JF
4640 retval = security_task_setscheduler(p, policy, param);
4641 if (retval)
4642 return retval;
4643 }
4644
b29739f9
IM
4645 /*
4646 * make sure no PI-waiters arrive (or leave) while we are
4647 * changing the priority of the task:
4648 */
1d615482 4649 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4650 /*
4651 * To be able to change p->policy safely, the apropriate
4652 * runqueue lock must be held.
4653 */
b29739f9 4654 rq = __task_rq_lock(p);
dc61b1d6
PZ
4655
4656#ifdef CONFIG_RT_GROUP_SCHED
4657 if (user) {
4658 /*
4659 * Do not allow realtime tasks into groups that have no runtime
4660 * assigned.
4661 */
4662 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4663 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4664 __task_rq_unlock(rq);
4665 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4666 return -EPERM;
4667 }
4668 }
4669#endif
4670
1da177e4
LT
4671 /* recheck policy now with rq lock held */
4672 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4673 policy = oldpolicy = -1;
b29739f9 4674 __task_rq_unlock(rq);
1d615482 4675 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4676 goto recheck;
4677 }
dd41f596 4678 on_rq = p->se.on_rq;
051a1d1a 4679 running = task_current(rq, p);
0e1f3483 4680 if (on_rq)
2e1cb74a 4681 deactivate_task(rq, p, 0);
0e1f3483
HS
4682 if (running)
4683 p->sched_class->put_prev_task(rq, p);
f6b53205 4684
ca94c442
LP
4685 p->sched_reset_on_fork = reset_on_fork;
4686
1da177e4 4687 oldprio = p->prio;
83ab0aa0 4688 prev_class = p->sched_class;
dd41f596 4689 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4690
0e1f3483
HS
4691 if (running)
4692 p->sched_class->set_curr_task(rq);
dd41f596
IM
4693 if (on_rq) {
4694 activate_task(rq, p, 0);
cb469845
SR
4695
4696 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4697 }
b29739f9 4698 __task_rq_unlock(rq);
1d615482 4699 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4700
95e02ca9
TG
4701 rt_mutex_adjust_pi(p);
4702
1da177e4
LT
4703 return 0;
4704}
961ccddd
RR
4705
4706/**
4707 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4708 * @p: the task in question.
4709 * @policy: new policy.
4710 * @param: structure containing the new RT priority.
4711 *
4712 * NOTE that the task may be already dead.
4713 */
4714int sched_setscheduler(struct task_struct *p, int policy,
4715 struct sched_param *param)
4716{
4717 return __sched_setscheduler(p, policy, param, true);
4718}
1da177e4
LT
4719EXPORT_SYMBOL_GPL(sched_setscheduler);
4720
961ccddd
RR
4721/**
4722 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4723 * @p: the task in question.
4724 * @policy: new policy.
4725 * @param: structure containing the new RT priority.
4726 *
4727 * Just like sched_setscheduler, only don't bother checking if the
4728 * current context has permission. For example, this is needed in
4729 * stop_machine(): we create temporary high priority worker threads,
4730 * but our caller might not have that capability.
4731 */
4732int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4733 struct sched_param *param)
4734{
4735 return __sched_setscheduler(p, policy, param, false);
4736}
4737
95cdf3b7
IM
4738static int
4739do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4740{
1da177e4
LT
4741 struct sched_param lparam;
4742 struct task_struct *p;
36c8b586 4743 int retval;
1da177e4
LT
4744
4745 if (!param || pid < 0)
4746 return -EINVAL;
4747 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4748 return -EFAULT;
5fe1d75f
ON
4749
4750 rcu_read_lock();
4751 retval = -ESRCH;
1da177e4 4752 p = find_process_by_pid(pid);
5fe1d75f
ON
4753 if (p != NULL)
4754 retval = sched_setscheduler(p, policy, &lparam);
4755 rcu_read_unlock();
36c8b586 4756
1da177e4
LT
4757 return retval;
4758}
4759
4760/**
4761 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4762 * @pid: the pid in question.
4763 * @policy: new policy.
4764 * @param: structure containing the new RT priority.
4765 */
5add95d4
HC
4766SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4767 struct sched_param __user *, param)
1da177e4 4768{
c21761f1
JB
4769 /* negative values for policy are not valid */
4770 if (policy < 0)
4771 return -EINVAL;
4772
1da177e4
LT
4773 return do_sched_setscheduler(pid, policy, param);
4774}
4775
4776/**
4777 * sys_sched_setparam - set/change the RT priority of a thread
4778 * @pid: the pid in question.
4779 * @param: structure containing the new RT priority.
4780 */
5add95d4 4781SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4782{
4783 return do_sched_setscheduler(pid, -1, param);
4784}
4785
4786/**
4787 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4788 * @pid: the pid in question.
4789 */
5add95d4 4790SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4791{
36c8b586 4792 struct task_struct *p;
3a5c359a 4793 int retval;
1da177e4
LT
4794
4795 if (pid < 0)
3a5c359a 4796 return -EINVAL;
1da177e4
LT
4797
4798 retval = -ESRCH;
5fe85be0 4799 rcu_read_lock();
1da177e4
LT
4800 p = find_process_by_pid(pid);
4801 if (p) {
4802 retval = security_task_getscheduler(p);
4803 if (!retval)
ca94c442
LP
4804 retval = p->policy
4805 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4806 }
5fe85be0 4807 rcu_read_unlock();
1da177e4
LT
4808 return retval;
4809}
4810
4811/**
ca94c442 4812 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4813 * @pid: the pid in question.
4814 * @param: structure containing the RT priority.
4815 */
5add95d4 4816SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4817{
4818 struct sched_param lp;
36c8b586 4819 struct task_struct *p;
3a5c359a 4820 int retval;
1da177e4
LT
4821
4822 if (!param || pid < 0)
3a5c359a 4823 return -EINVAL;
1da177e4 4824
5fe85be0 4825 rcu_read_lock();
1da177e4
LT
4826 p = find_process_by_pid(pid);
4827 retval = -ESRCH;
4828 if (!p)
4829 goto out_unlock;
4830
4831 retval = security_task_getscheduler(p);
4832 if (retval)
4833 goto out_unlock;
4834
4835 lp.sched_priority = p->rt_priority;
5fe85be0 4836 rcu_read_unlock();
1da177e4
LT
4837
4838 /*
4839 * This one might sleep, we cannot do it with a spinlock held ...
4840 */
4841 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4842
1da177e4
LT
4843 return retval;
4844
4845out_unlock:
5fe85be0 4846 rcu_read_unlock();
1da177e4
LT
4847 return retval;
4848}
4849
96f874e2 4850long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4851{
5a16f3d3 4852 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4853 struct task_struct *p;
4854 int retval;
1da177e4 4855
95402b38 4856 get_online_cpus();
23f5d142 4857 rcu_read_lock();
1da177e4
LT
4858
4859 p = find_process_by_pid(pid);
4860 if (!p) {
23f5d142 4861 rcu_read_unlock();
95402b38 4862 put_online_cpus();
1da177e4
LT
4863 return -ESRCH;
4864 }
4865
23f5d142 4866 /* Prevent p going away */
1da177e4 4867 get_task_struct(p);
23f5d142 4868 rcu_read_unlock();
1da177e4 4869
5a16f3d3
RR
4870 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4871 retval = -ENOMEM;
4872 goto out_put_task;
4873 }
4874 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4875 retval = -ENOMEM;
4876 goto out_free_cpus_allowed;
4877 }
1da177e4 4878 retval = -EPERM;
c69e8d9c 4879 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4880 goto out_unlock;
4881
e7834f8f
DQ
4882 retval = security_task_setscheduler(p, 0, NULL);
4883 if (retval)
4884 goto out_unlock;
4885
5a16f3d3
RR
4886 cpuset_cpus_allowed(p, cpus_allowed);
4887 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4888 again:
5a16f3d3 4889 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4890
8707d8b8 4891 if (!retval) {
5a16f3d3
RR
4892 cpuset_cpus_allowed(p, cpus_allowed);
4893 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4894 /*
4895 * We must have raced with a concurrent cpuset
4896 * update. Just reset the cpus_allowed to the
4897 * cpuset's cpus_allowed
4898 */
5a16f3d3 4899 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4900 goto again;
4901 }
4902 }
1da177e4 4903out_unlock:
5a16f3d3
RR
4904 free_cpumask_var(new_mask);
4905out_free_cpus_allowed:
4906 free_cpumask_var(cpus_allowed);
4907out_put_task:
1da177e4 4908 put_task_struct(p);
95402b38 4909 put_online_cpus();
1da177e4
LT
4910 return retval;
4911}
4912
4913static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4914 struct cpumask *new_mask)
1da177e4 4915{
96f874e2
RR
4916 if (len < cpumask_size())
4917 cpumask_clear(new_mask);
4918 else if (len > cpumask_size())
4919 len = cpumask_size();
4920
1da177e4
LT
4921 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4922}
4923
4924/**
4925 * sys_sched_setaffinity - set the cpu affinity of a process
4926 * @pid: pid of the process
4927 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4928 * @user_mask_ptr: user-space pointer to the new cpu mask
4929 */
5add95d4
HC
4930SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4931 unsigned long __user *, user_mask_ptr)
1da177e4 4932{
5a16f3d3 4933 cpumask_var_t new_mask;
1da177e4
LT
4934 int retval;
4935
5a16f3d3
RR
4936 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4937 return -ENOMEM;
1da177e4 4938
5a16f3d3
RR
4939 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4940 if (retval == 0)
4941 retval = sched_setaffinity(pid, new_mask);
4942 free_cpumask_var(new_mask);
4943 return retval;
1da177e4
LT
4944}
4945
96f874e2 4946long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4947{
36c8b586 4948 struct task_struct *p;
31605683
TG
4949 unsigned long flags;
4950 struct rq *rq;
1da177e4 4951 int retval;
1da177e4 4952
95402b38 4953 get_online_cpus();
23f5d142 4954 rcu_read_lock();
1da177e4
LT
4955
4956 retval = -ESRCH;
4957 p = find_process_by_pid(pid);
4958 if (!p)
4959 goto out_unlock;
4960
e7834f8f
DQ
4961 retval = security_task_getscheduler(p);
4962 if (retval)
4963 goto out_unlock;
4964
31605683 4965 rq = task_rq_lock(p, &flags);
96f874e2 4966 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4967 task_rq_unlock(rq, &flags);
1da177e4
LT
4968
4969out_unlock:
23f5d142 4970 rcu_read_unlock();
95402b38 4971 put_online_cpus();
1da177e4 4972
9531b62f 4973 return retval;
1da177e4
LT
4974}
4975
4976/**
4977 * sys_sched_getaffinity - get the cpu affinity of a process
4978 * @pid: pid of the process
4979 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4980 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4981 */
5add95d4
HC
4982SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4983 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4984{
4985 int ret;
f17c8607 4986 cpumask_var_t mask;
1da177e4 4987
84fba5ec 4988 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4989 return -EINVAL;
4990 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4991 return -EINVAL;
4992
f17c8607
RR
4993 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4994 return -ENOMEM;
1da177e4 4995
f17c8607
RR
4996 ret = sched_getaffinity(pid, mask);
4997 if (ret == 0) {
8bc037fb 4998 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4999
5000 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5001 ret = -EFAULT;
5002 else
cd3d8031 5003 ret = retlen;
f17c8607
RR
5004 }
5005 free_cpumask_var(mask);
1da177e4 5006
f17c8607 5007 return ret;
1da177e4
LT
5008}
5009
5010/**
5011 * sys_sched_yield - yield the current processor to other threads.
5012 *
dd41f596
IM
5013 * This function yields the current CPU to other tasks. If there are no
5014 * other threads running on this CPU then this function will return.
1da177e4 5015 */
5add95d4 5016SYSCALL_DEFINE0(sched_yield)
1da177e4 5017{
70b97a7f 5018 struct rq *rq = this_rq_lock();
1da177e4 5019
2d72376b 5020 schedstat_inc(rq, yld_count);
4530d7ab 5021 current->sched_class->yield_task(rq);
1da177e4
LT
5022
5023 /*
5024 * Since we are going to call schedule() anyway, there's
5025 * no need to preempt or enable interrupts:
5026 */
5027 __release(rq->lock);
8a25d5de 5028 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5029 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5030 preempt_enable_no_resched();
5031
5032 schedule();
5033
5034 return 0;
5035}
5036
d86ee480
PZ
5037static inline int should_resched(void)
5038{
5039 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5040}
5041
e7b38404 5042static void __cond_resched(void)
1da177e4 5043{
e7aaaa69
FW
5044 add_preempt_count(PREEMPT_ACTIVE);
5045 schedule();
5046 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5047}
5048
02b67cc3 5049int __sched _cond_resched(void)
1da177e4 5050{
d86ee480 5051 if (should_resched()) {
1da177e4
LT
5052 __cond_resched();
5053 return 1;
5054 }
5055 return 0;
5056}
02b67cc3 5057EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5058
5059/*
613afbf8 5060 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5061 * call schedule, and on return reacquire the lock.
5062 *
41a2d6cf 5063 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5064 * operations here to prevent schedule() from being called twice (once via
5065 * spin_unlock(), once by hand).
5066 */
613afbf8 5067int __cond_resched_lock(spinlock_t *lock)
1da177e4 5068{
d86ee480 5069 int resched = should_resched();
6df3cecb
JK
5070 int ret = 0;
5071
f607c668
PZ
5072 lockdep_assert_held(lock);
5073
95c354fe 5074 if (spin_needbreak(lock) || resched) {
1da177e4 5075 spin_unlock(lock);
d86ee480 5076 if (resched)
95c354fe
NP
5077 __cond_resched();
5078 else
5079 cpu_relax();
6df3cecb 5080 ret = 1;
1da177e4 5081 spin_lock(lock);
1da177e4 5082 }
6df3cecb 5083 return ret;
1da177e4 5084}
613afbf8 5085EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5086
613afbf8 5087int __sched __cond_resched_softirq(void)
1da177e4
LT
5088{
5089 BUG_ON(!in_softirq());
5090
d86ee480 5091 if (should_resched()) {
98d82567 5092 local_bh_enable();
1da177e4
LT
5093 __cond_resched();
5094 local_bh_disable();
5095 return 1;
5096 }
5097 return 0;
5098}
613afbf8 5099EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5100
1da177e4
LT
5101/**
5102 * yield - yield the current processor to other threads.
5103 *
72fd4a35 5104 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5105 * thread runnable and calls sys_sched_yield().
5106 */
5107void __sched yield(void)
5108{
5109 set_current_state(TASK_RUNNING);
5110 sys_sched_yield();
5111}
1da177e4
LT
5112EXPORT_SYMBOL(yield);
5113
5114/*
41a2d6cf 5115 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5116 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5117 */
5118void __sched io_schedule(void)
5119{
54d35f29 5120 struct rq *rq = raw_rq();
1da177e4 5121
0ff92245 5122 delayacct_blkio_start();
1da177e4 5123 atomic_inc(&rq->nr_iowait);
8f0dfc34 5124 current->in_iowait = 1;
1da177e4 5125 schedule();
8f0dfc34 5126 current->in_iowait = 0;
1da177e4 5127 atomic_dec(&rq->nr_iowait);
0ff92245 5128 delayacct_blkio_end();
1da177e4 5129}
1da177e4
LT
5130EXPORT_SYMBOL(io_schedule);
5131
5132long __sched io_schedule_timeout(long timeout)
5133{
54d35f29 5134 struct rq *rq = raw_rq();
1da177e4
LT
5135 long ret;
5136
0ff92245 5137 delayacct_blkio_start();
1da177e4 5138 atomic_inc(&rq->nr_iowait);
8f0dfc34 5139 current->in_iowait = 1;
1da177e4 5140 ret = schedule_timeout(timeout);
8f0dfc34 5141 current->in_iowait = 0;
1da177e4 5142 atomic_dec(&rq->nr_iowait);
0ff92245 5143 delayacct_blkio_end();
1da177e4
LT
5144 return ret;
5145}
5146
5147/**
5148 * sys_sched_get_priority_max - return maximum RT priority.
5149 * @policy: scheduling class.
5150 *
5151 * this syscall returns the maximum rt_priority that can be used
5152 * by a given scheduling class.
5153 */
5add95d4 5154SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5155{
5156 int ret = -EINVAL;
5157
5158 switch (policy) {
5159 case SCHED_FIFO:
5160 case SCHED_RR:
5161 ret = MAX_USER_RT_PRIO-1;
5162 break;
5163 case SCHED_NORMAL:
b0a9499c 5164 case SCHED_BATCH:
dd41f596 5165 case SCHED_IDLE:
1da177e4
LT
5166 ret = 0;
5167 break;
5168 }
5169 return ret;
5170}
5171
5172/**
5173 * sys_sched_get_priority_min - return minimum RT priority.
5174 * @policy: scheduling class.
5175 *
5176 * this syscall returns the minimum rt_priority that can be used
5177 * by a given scheduling class.
5178 */
5add95d4 5179SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5180{
5181 int ret = -EINVAL;
5182
5183 switch (policy) {
5184 case SCHED_FIFO:
5185 case SCHED_RR:
5186 ret = 1;
5187 break;
5188 case SCHED_NORMAL:
b0a9499c 5189 case SCHED_BATCH:
dd41f596 5190 case SCHED_IDLE:
1da177e4
LT
5191 ret = 0;
5192 }
5193 return ret;
5194}
5195
5196/**
5197 * sys_sched_rr_get_interval - return the default timeslice of a process.
5198 * @pid: pid of the process.
5199 * @interval: userspace pointer to the timeslice value.
5200 *
5201 * this syscall writes the default timeslice value of a given process
5202 * into the user-space timespec buffer. A value of '0' means infinity.
5203 */
17da2bd9 5204SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5205 struct timespec __user *, interval)
1da177e4 5206{
36c8b586 5207 struct task_struct *p;
a4ec24b4 5208 unsigned int time_slice;
dba091b9
TG
5209 unsigned long flags;
5210 struct rq *rq;
3a5c359a 5211 int retval;
1da177e4 5212 struct timespec t;
1da177e4
LT
5213
5214 if (pid < 0)
3a5c359a 5215 return -EINVAL;
1da177e4
LT
5216
5217 retval = -ESRCH;
1a551ae7 5218 rcu_read_lock();
1da177e4
LT
5219 p = find_process_by_pid(pid);
5220 if (!p)
5221 goto out_unlock;
5222
5223 retval = security_task_getscheduler(p);
5224 if (retval)
5225 goto out_unlock;
5226
dba091b9
TG
5227 rq = task_rq_lock(p, &flags);
5228 time_slice = p->sched_class->get_rr_interval(rq, p);
5229 task_rq_unlock(rq, &flags);
a4ec24b4 5230
1a551ae7 5231 rcu_read_unlock();
a4ec24b4 5232 jiffies_to_timespec(time_slice, &t);
1da177e4 5233 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5234 return retval;
3a5c359a 5235
1da177e4 5236out_unlock:
1a551ae7 5237 rcu_read_unlock();
1da177e4
LT
5238 return retval;
5239}
5240
7c731e0a 5241static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5242
82a1fcb9 5243void sched_show_task(struct task_struct *p)
1da177e4 5244{
1da177e4 5245 unsigned long free = 0;
36c8b586 5246 unsigned state;
1da177e4 5247
1da177e4 5248 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5249 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5250 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5251#if BITS_PER_LONG == 32
1da177e4 5252 if (state == TASK_RUNNING)
3df0fc5b 5253 printk(KERN_CONT " running ");
1da177e4 5254 else
3df0fc5b 5255 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5256#else
5257 if (state == TASK_RUNNING)
3df0fc5b 5258 printk(KERN_CONT " running task ");
1da177e4 5259 else
3df0fc5b 5260 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5261#endif
5262#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5263 free = stack_not_used(p);
1da177e4 5264#endif
3df0fc5b 5265 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5266 task_pid_nr(p), task_pid_nr(p->real_parent),
5267 (unsigned long)task_thread_info(p)->flags);
1da177e4 5268
5fb5e6de 5269 show_stack(p, NULL);
1da177e4
LT
5270}
5271
e59e2ae2 5272void show_state_filter(unsigned long state_filter)
1da177e4 5273{
36c8b586 5274 struct task_struct *g, *p;
1da177e4 5275
4bd77321 5276#if BITS_PER_LONG == 32
3df0fc5b
PZ
5277 printk(KERN_INFO
5278 " task PC stack pid father\n");
1da177e4 5279#else
3df0fc5b
PZ
5280 printk(KERN_INFO
5281 " task PC stack pid father\n");
1da177e4
LT
5282#endif
5283 read_lock(&tasklist_lock);
5284 do_each_thread(g, p) {
5285 /*
5286 * reset the NMI-timeout, listing all files on a slow
5287 * console might take alot of time:
5288 */
5289 touch_nmi_watchdog();
39bc89fd 5290 if (!state_filter || (p->state & state_filter))
82a1fcb9 5291 sched_show_task(p);
1da177e4
LT
5292 } while_each_thread(g, p);
5293
04c9167f
JF
5294 touch_all_softlockup_watchdogs();
5295
dd41f596
IM
5296#ifdef CONFIG_SCHED_DEBUG
5297 sysrq_sched_debug_show();
5298#endif
1da177e4 5299 read_unlock(&tasklist_lock);
e59e2ae2
IM
5300 /*
5301 * Only show locks if all tasks are dumped:
5302 */
93335a21 5303 if (!state_filter)
e59e2ae2 5304 debug_show_all_locks();
1da177e4
LT
5305}
5306
1df21055
IM
5307void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5308{
dd41f596 5309 idle->sched_class = &idle_sched_class;
1df21055
IM
5310}
5311
f340c0d1
IM
5312/**
5313 * init_idle - set up an idle thread for a given CPU
5314 * @idle: task in question
5315 * @cpu: cpu the idle task belongs to
5316 *
5317 * NOTE: this function does not set the idle thread's NEED_RESCHED
5318 * flag, to make booting more robust.
5319 */
5c1e1767 5320void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5321{
70b97a7f 5322 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5323 unsigned long flags;
5324
05fa785c 5325 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5326
dd41f596 5327 __sched_fork(idle);
06b83b5f 5328 idle->state = TASK_RUNNING;
dd41f596
IM
5329 idle->se.exec_start = sched_clock();
5330
96f874e2 5331 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5332 __set_task_cpu(idle, cpu);
1da177e4 5333
1da177e4 5334 rq->curr = rq->idle = idle;
4866cde0
NP
5335#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5336 idle->oncpu = 1;
5337#endif
05fa785c 5338 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5339
5340 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5341#if defined(CONFIG_PREEMPT)
5342 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5343#else
a1261f54 5344 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5345#endif
dd41f596
IM
5346 /*
5347 * The idle tasks have their own, simple scheduling class:
5348 */
5349 idle->sched_class = &idle_sched_class;
fb52607a 5350 ftrace_graph_init_task(idle);
1da177e4
LT
5351}
5352
5353/*
5354 * In a system that switches off the HZ timer nohz_cpu_mask
5355 * indicates which cpus entered this state. This is used
5356 * in the rcu update to wait only for active cpus. For system
5357 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5358 * always be CPU_BITS_NONE.
1da177e4 5359 */
6a7b3dc3 5360cpumask_var_t nohz_cpu_mask;
1da177e4 5361
19978ca6
IM
5362/*
5363 * Increase the granularity value when there are more CPUs,
5364 * because with more CPUs the 'effective latency' as visible
5365 * to users decreases. But the relationship is not linear,
5366 * so pick a second-best guess by going with the log2 of the
5367 * number of CPUs.
5368 *
5369 * This idea comes from the SD scheduler of Con Kolivas:
5370 */
acb4a848 5371static int get_update_sysctl_factor(void)
19978ca6 5372{
4ca3ef71 5373 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5374 unsigned int factor;
5375
5376 switch (sysctl_sched_tunable_scaling) {
5377 case SCHED_TUNABLESCALING_NONE:
5378 factor = 1;
5379 break;
5380 case SCHED_TUNABLESCALING_LINEAR:
5381 factor = cpus;
5382 break;
5383 case SCHED_TUNABLESCALING_LOG:
5384 default:
5385 factor = 1 + ilog2(cpus);
5386 break;
5387 }
19978ca6 5388
acb4a848
CE
5389 return factor;
5390}
19978ca6 5391
acb4a848
CE
5392static void update_sysctl(void)
5393{
5394 unsigned int factor = get_update_sysctl_factor();
19978ca6 5395
0bcdcf28
CE
5396#define SET_SYSCTL(name) \
5397 (sysctl_##name = (factor) * normalized_sysctl_##name)
5398 SET_SYSCTL(sched_min_granularity);
5399 SET_SYSCTL(sched_latency);
5400 SET_SYSCTL(sched_wakeup_granularity);
5401 SET_SYSCTL(sched_shares_ratelimit);
5402#undef SET_SYSCTL
5403}
55cd5340 5404
0bcdcf28
CE
5405static inline void sched_init_granularity(void)
5406{
5407 update_sysctl();
19978ca6
IM
5408}
5409
1da177e4
LT
5410#ifdef CONFIG_SMP
5411/*
5412 * This is how migration works:
5413 *
969c7921
TH
5414 * 1) we invoke migration_cpu_stop() on the target CPU using
5415 * stop_one_cpu().
5416 * 2) stopper starts to run (implicitly forcing the migrated thread
5417 * off the CPU)
5418 * 3) it checks whether the migrated task is still in the wrong runqueue.
5419 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5420 * it and puts it into the right queue.
969c7921
TH
5421 * 5) stopper completes and stop_one_cpu() returns and the migration
5422 * is done.
1da177e4
LT
5423 */
5424
5425/*
5426 * Change a given task's CPU affinity. Migrate the thread to a
5427 * proper CPU and schedule it away if the CPU it's executing on
5428 * is removed from the allowed bitmask.
5429 *
5430 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5431 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5432 * call is not atomic; no spinlocks may be held.
5433 */
96f874e2 5434int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5435{
5436 unsigned long flags;
70b97a7f 5437 struct rq *rq;
969c7921 5438 unsigned int dest_cpu;
48f24c4d 5439 int ret = 0;
1da177e4 5440
65cc8e48
PZ
5441 /*
5442 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5443 * drop the rq->lock and still rely on ->cpus_allowed.
5444 */
5445again:
5446 while (task_is_waking(p))
5447 cpu_relax();
1da177e4 5448 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5449 if (task_is_waking(p)) {
5450 task_rq_unlock(rq, &flags);
5451 goto again;
5452 }
e2912009 5453
6ad4c188 5454 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5455 ret = -EINVAL;
5456 goto out;
5457 }
5458
9985b0ba 5459 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5460 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5461 ret = -EINVAL;
5462 goto out;
5463 }
5464
73fe6aae 5465 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5466 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5467 else {
96f874e2
RR
5468 cpumask_copy(&p->cpus_allowed, new_mask);
5469 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5470 }
5471
1da177e4 5472 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5473 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5474 goto out;
5475
969c7921
TH
5476 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5477 if (migrate_task(p, dest_cpu)) {
5478 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5479 /* Need help from migration thread: drop lock and wait. */
5480 task_rq_unlock(rq, &flags);
969c7921 5481 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5482 tlb_migrate_finish(p->mm);
5483 return 0;
5484 }
5485out:
5486 task_rq_unlock(rq, &flags);
48f24c4d 5487
1da177e4
LT
5488 return ret;
5489}
cd8ba7cd 5490EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5491
5492/*
41a2d6cf 5493 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5494 * this because either it can't run here any more (set_cpus_allowed()
5495 * away from this CPU, or CPU going down), or because we're
5496 * attempting to rebalance this task on exec (sched_exec).
5497 *
5498 * So we race with normal scheduler movements, but that's OK, as long
5499 * as the task is no longer on this CPU.
efc30814
KK
5500 *
5501 * Returns non-zero if task was successfully migrated.
1da177e4 5502 */
efc30814 5503static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5504{
70b97a7f 5505 struct rq *rq_dest, *rq_src;
e2912009 5506 int ret = 0;
1da177e4 5507
e761b772 5508 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5509 return ret;
1da177e4
LT
5510
5511 rq_src = cpu_rq(src_cpu);
5512 rq_dest = cpu_rq(dest_cpu);
5513
5514 double_rq_lock(rq_src, rq_dest);
5515 /* Already moved. */
5516 if (task_cpu(p) != src_cpu)
b1e38734 5517 goto done;
1da177e4 5518 /* Affinity changed (again). */
96f874e2 5519 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5520 goto fail;
1da177e4 5521
e2912009
PZ
5522 /*
5523 * If we're not on a rq, the next wake-up will ensure we're
5524 * placed properly.
5525 */
5526 if (p->se.on_rq) {
2e1cb74a 5527 deactivate_task(rq_src, p, 0);
e2912009 5528 set_task_cpu(p, dest_cpu);
dd41f596 5529 activate_task(rq_dest, p, 0);
15afe09b 5530 check_preempt_curr(rq_dest, p, 0);
1da177e4 5531 }
b1e38734 5532done:
efc30814 5533 ret = 1;
b1e38734 5534fail:
1da177e4 5535 double_rq_unlock(rq_src, rq_dest);
efc30814 5536 return ret;
1da177e4
LT
5537}
5538
5539/*
969c7921
TH
5540 * migration_cpu_stop - this will be executed by a highprio stopper thread
5541 * and performs thread migration by bumping thread off CPU then
5542 * 'pushing' onto another runqueue.
1da177e4 5543 */
969c7921 5544static int migration_cpu_stop(void *data)
1da177e4 5545{
969c7921 5546 struct migration_arg *arg = data;
f7b4cddc 5547
969c7921
TH
5548 /*
5549 * The original target cpu might have gone down and we might
5550 * be on another cpu but it doesn't matter.
5551 */
f7b4cddc 5552 local_irq_disable();
969c7921 5553 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5554 local_irq_enable();
1da177e4 5555 return 0;
f7b4cddc
ON
5556}
5557
1da177e4 5558#ifdef CONFIG_HOTPLUG_CPU
054b9108 5559/*
3a4fa0a2 5560 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5561 */
6a1bdc1b 5562void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5563{
1445c08d
ON
5564 struct rq *rq = cpu_rq(dead_cpu);
5565 int needs_cpu, uninitialized_var(dest_cpu);
5566 unsigned long flags;
e76bd8d9 5567
1445c08d 5568 local_irq_save(flags);
e76bd8d9 5569
1445c08d
ON
5570 raw_spin_lock(&rq->lock);
5571 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5572 if (needs_cpu)
5573 dest_cpu = select_fallback_rq(dead_cpu, p);
5574 raw_spin_unlock(&rq->lock);
c1804d54
ON
5575 /*
5576 * It can only fail if we race with set_cpus_allowed(),
5577 * in the racer should migrate the task anyway.
5578 */
1445c08d 5579 if (needs_cpu)
c1804d54 5580 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5581 local_irq_restore(flags);
1da177e4
LT
5582}
5583
5584/*
5585 * While a dead CPU has no uninterruptible tasks queued at this point,
5586 * it might still have a nonzero ->nr_uninterruptible counter, because
5587 * for performance reasons the counter is not stricly tracking tasks to
5588 * their home CPUs. So we just add the counter to another CPU's counter,
5589 * to keep the global sum constant after CPU-down:
5590 */
70b97a7f 5591static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5592{
6ad4c188 5593 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5594 unsigned long flags;
5595
5596 local_irq_save(flags);
5597 double_rq_lock(rq_src, rq_dest);
5598 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5599 rq_src->nr_uninterruptible = 0;
5600 double_rq_unlock(rq_src, rq_dest);
5601 local_irq_restore(flags);
5602}
5603
5604/* Run through task list and migrate tasks from the dead cpu. */
5605static void migrate_live_tasks(int src_cpu)
5606{
48f24c4d 5607 struct task_struct *p, *t;
1da177e4 5608
f7b4cddc 5609 read_lock(&tasklist_lock);
1da177e4 5610
48f24c4d
IM
5611 do_each_thread(t, p) {
5612 if (p == current)
1da177e4
LT
5613 continue;
5614
48f24c4d
IM
5615 if (task_cpu(p) == src_cpu)
5616 move_task_off_dead_cpu(src_cpu, p);
5617 } while_each_thread(t, p);
1da177e4 5618
f7b4cddc 5619 read_unlock(&tasklist_lock);
1da177e4
LT
5620}
5621
dd41f596
IM
5622/*
5623 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5624 * It does so by boosting its priority to highest possible.
5625 * Used by CPU offline code.
1da177e4
LT
5626 */
5627void sched_idle_next(void)
5628{
48f24c4d 5629 int this_cpu = smp_processor_id();
70b97a7f 5630 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5631 struct task_struct *p = rq->idle;
5632 unsigned long flags;
5633
5634 /* cpu has to be offline */
48f24c4d 5635 BUG_ON(cpu_online(this_cpu));
1da177e4 5636
48f24c4d
IM
5637 /*
5638 * Strictly not necessary since rest of the CPUs are stopped by now
5639 * and interrupts disabled on the current cpu.
1da177e4 5640 */
05fa785c 5641 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5642
dd41f596 5643 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5644
94bc9a7b 5645 activate_task(rq, p, 0);
1da177e4 5646
05fa785c 5647 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5648}
5649
48f24c4d
IM
5650/*
5651 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5652 * offline.
5653 */
5654void idle_task_exit(void)
5655{
5656 struct mm_struct *mm = current->active_mm;
5657
5658 BUG_ON(cpu_online(smp_processor_id()));
5659
5660 if (mm != &init_mm)
5661 switch_mm(mm, &init_mm, current);
5662 mmdrop(mm);
5663}
5664
054b9108 5665/* called under rq->lock with disabled interrupts */
36c8b586 5666static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5667{
70b97a7f 5668 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5669
5670 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5671 BUG_ON(!p->exit_state);
1da177e4
LT
5672
5673 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5674 BUG_ON(p->state == TASK_DEAD);
1da177e4 5675
48f24c4d 5676 get_task_struct(p);
1da177e4
LT
5677
5678 /*
5679 * Drop lock around migration; if someone else moves it,
41a2d6cf 5680 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5681 * fine.
5682 */
05fa785c 5683 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5684 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5685 raw_spin_lock_irq(&rq->lock);
1da177e4 5686
48f24c4d 5687 put_task_struct(p);
1da177e4
LT
5688}
5689
5690/* release_task() removes task from tasklist, so we won't find dead tasks. */
5691static void migrate_dead_tasks(unsigned int dead_cpu)
5692{
70b97a7f 5693 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5694 struct task_struct *next;
48f24c4d 5695
dd41f596
IM
5696 for ( ; ; ) {
5697 if (!rq->nr_running)
5698 break;
b67802ea 5699 next = pick_next_task(rq);
dd41f596
IM
5700 if (!next)
5701 break;
79c53799 5702 next->sched_class->put_prev_task(rq, next);
dd41f596 5703 migrate_dead(dead_cpu, next);
e692ab53 5704
1da177e4
LT
5705 }
5706}
dce48a84
TG
5707
5708/*
5709 * remove the tasks which were accounted by rq from calc_load_tasks.
5710 */
5711static void calc_global_load_remove(struct rq *rq)
5712{
5713 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5714 rq->calc_load_active = 0;
dce48a84 5715}
1da177e4
LT
5716#endif /* CONFIG_HOTPLUG_CPU */
5717
e692ab53
NP
5718#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5719
5720static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5721 {
5722 .procname = "sched_domain",
c57baf1e 5723 .mode = 0555,
e0361851 5724 },
56992309 5725 {}
e692ab53
NP
5726};
5727
5728static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5729 {
5730 .procname = "kernel",
c57baf1e 5731 .mode = 0555,
e0361851
AD
5732 .child = sd_ctl_dir,
5733 },
56992309 5734 {}
e692ab53
NP
5735};
5736
5737static struct ctl_table *sd_alloc_ctl_entry(int n)
5738{
5739 struct ctl_table *entry =
5cf9f062 5740 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5741
e692ab53
NP
5742 return entry;
5743}
5744
6382bc90
MM
5745static void sd_free_ctl_entry(struct ctl_table **tablep)
5746{
cd790076 5747 struct ctl_table *entry;
6382bc90 5748
cd790076
MM
5749 /*
5750 * In the intermediate directories, both the child directory and
5751 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5752 * will always be set. In the lowest directory the names are
cd790076
MM
5753 * static strings and all have proc handlers.
5754 */
5755 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5756 if (entry->child)
5757 sd_free_ctl_entry(&entry->child);
cd790076
MM
5758 if (entry->proc_handler == NULL)
5759 kfree(entry->procname);
5760 }
6382bc90
MM
5761
5762 kfree(*tablep);
5763 *tablep = NULL;
5764}
5765
e692ab53 5766static void
e0361851 5767set_table_entry(struct ctl_table *entry,
e692ab53
NP
5768 const char *procname, void *data, int maxlen,
5769 mode_t mode, proc_handler *proc_handler)
5770{
e692ab53
NP
5771 entry->procname = procname;
5772 entry->data = data;
5773 entry->maxlen = maxlen;
5774 entry->mode = mode;
5775 entry->proc_handler = proc_handler;
5776}
5777
5778static struct ctl_table *
5779sd_alloc_ctl_domain_table(struct sched_domain *sd)
5780{
a5d8c348 5781 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5782
ad1cdc1d
MM
5783 if (table == NULL)
5784 return NULL;
5785
e0361851 5786 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5787 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5788 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5789 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5790 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5791 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5792 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5793 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5794 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5795 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5796 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5797 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5798 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5799 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5800 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5801 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5802 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5803 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5804 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5805 &sd->cache_nice_tries,
5806 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5807 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5808 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5809 set_table_entry(&table[11], "name", sd->name,
5810 CORENAME_MAX_SIZE, 0444, proc_dostring);
5811 /* &table[12] is terminator */
e692ab53
NP
5812
5813 return table;
5814}
5815
9a4e7159 5816static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5817{
5818 struct ctl_table *entry, *table;
5819 struct sched_domain *sd;
5820 int domain_num = 0, i;
5821 char buf[32];
5822
5823 for_each_domain(cpu, sd)
5824 domain_num++;
5825 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5826 if (table == NULL)
5827 return NULL;
e692ab53
NP
5828
5829 i = 0;
5830 for_each_domain(cpu, sd) {
5831 snprintf(buf, 32, "domain%d", i);
e692ab53 5832 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5833 entry->mode = 0555;
e692ab53
NP
5834 entry->child = sd_alloc_ctl_domain_table(sd);
5835 entry++;
5836 i++;
5837 }
5838 return table;
5839}
5840
5841static struct ctl_table_header *sd_sysctl_header;
6382bc90 5842static void register_sched_domain_sysctl(void)
e692ab53 5843{
6ad4c188 5844 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5845 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5846 char buf[32];
5847
7378547f
MM
5848 WARN_ON(sd_ctl_dir[0].child);
5849 sd_ctl_dir[0].child = entry;
5850
ad1cdc1d
MM
5851 if (entry == NULL)
5852 return;
5853
6ad4c188 5854 for_each_possible_cpu(i) {
e692ab53 5855 snprintf(buf, 32, "cpu%d", i);
e692ab53 5856 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5857 entry->mode = 0555;
e692ab53 5858 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5859 entry++;
e692ab53 5860 }
7378547f
MM
5861
5862 WARN_ON(sd_sysctl_header);
e692ab53
NP
5863 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5864}
6382bc90 5865
7378547f 5866/* may be called multiple times per register */
6382bc90
MM
5867static void unregister_sched_domain_sysctl(void)
5868{
7378547f
MM
5869 if (sd_sysctl_header)
5870 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5871 sd_sysctl_header = NULL;
7378547f
MM
5872 if (sd_ctl_dir[0].child)
5873 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5874}
e692ab53 5875#else
6382bc90
MM
5876static void register_sched_domain_sysctl(void)
5877{
5878}
5879static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5880{
5881}
5882#endif
5883
1f11eb6a
GH
5884static void set_rq_online(struct rq *rq)
5885{
5886 if (!rq->online) {
5887 const struct sched_class *class;
5888
c6c4927b 5889 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5890 rq->online = 1;
5891
5892 for_each_class(class) {
5893 if (class->rq_online)
5894 class->rq_online(rq);
5895 }
5896 }
5897}
5898
5899static void set_rq_offline(struct rq *rq)
5900{
5901 if (rq->online) {
5902 const struct sched_class *class;
5903
5904 for_each_class(class) {
5905 if (class->rq_offline)
5906 class->rq_offline(rq);
5907 }
5908
c6c4927b 5909 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5910 rq->online = 0;
5911 }
5912}
5913
1da177e4
LT
5914/*
5915 * migration_call - callback that gets triggered when a CPU is added.
5916 * Here we can start up the necessary migration thread for the new CPU.
5917 */
48f24c4d
IM
5918static int __cpuinit
5919migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5920{
48f24c4d 5921 int cpu = (long)hcpu;
1da177e4 5922 unsigned long flags;
969c7921 5923 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5924
5925 switch (action) {
5be9361c 5926
1da177e4 5927 case CPU_UP_PREPARE:
8bb78442 5928 case CPU_UP_PREPARE_FROZEN:
a468d389 5929 rq->calc_load_update = calc_load_update;
1da177e4 5930 break;
48f24c4d 5931
1da177e4 5932 case CPU_ONLINE:
8bb78442 5933 case CPU_ONLINE_FROZEN:
1f94ef59 5934 /* Update our root-domain */
05fa785c 5935 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5936 if (rq->rd) {
c6c4927b 5937 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5938
5939 set_rq_online(rq);
1f94ef59 5940 }
05fa785c 5941 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5942 break;
48f24c4d 5943
1da177e4 5944#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5945 case CPU_DEAD:
8bb78442 5946 case CPU_DEAD_FROZEN:
1da177e4 5947 migrate_live_tasks(cpu);
1da177e4 5948 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5949 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5950 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5951 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5952 rq->idle->sched_class = &idle_sched_class;
1da177e4 5953 migrate_dead_tasks(cpu);
05fa785c 5954 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5955 migrate_nr_uninterruptible(rq);
5956 BUG_ON(rq->nr_running != 0);
dce48a84 5957 calc_global_load_remove(rq);
1da177e4 5958 break;
57d885fe 5959
08f503b0
GH
5960 case CPU_DYING:
5961 case CPU_DYING_FROZEN:
57d885fe 5962 /* Update our root-domain */
05fa785c 5963 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5964 if (rq->rd) {
c6c4927b 5965 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5966 set_rq_offline(rq);
57d885fe 5967 }
05fa785c 5968 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5969 break;
1da177e4
LT
5970#endif
5971 }
5972 return NOTIFY_OK;
5973}
5974
f38b0820
PM
5975/*
5976 * Register at high priority so that task migration (migrate_all_tasks)
5977 * happens before everything else. This has to be lower priority than
cdd6c482 5978 * the notifier in the perf_event subsystem, though.
1da177e4 5979 */
26c2143b 5980static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5981 .notifier_call = migration_call,
50a323b7 5982 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5983};
5984
3a101d05
TH
5985static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5986 unsigned long action, void *hcpu)
5987{
5988 switch (action & ~CPU_TASKS_FROZEN) {
5989 case CPU_ONLINE:
5990 case CPU_DOWN_FAILED:
5991 set_cpu_active((long)hcpu, true);
5992 return NOTIFY_OK;
5993 default:
5994 return NOTIFY_DONE;
5995 }
5996}
5997
5998static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5999 unsigned long action, void *hcpu)
6000{
6001 switch (action & ~CPU_TASKS_FROZEN) {
6002 case CPU_DOWN_PREPARE:
6003 set_cpu_active((long)hcpu, false);
6004 return NOTIFY_OK;
6005 default:
6006 return NOTIFY_DONE;
6007 }
6008}
6009
7babe8db 6010static int __init migration_init(void)
1da177e4
LT
6011{
6012 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6013 int err;
48f24c4d 6014
3a101d05 6015 /* Initialize migration for the boot CPU */
07dccf33
AM
6016 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6017 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6018 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6019 register_cpu_notifier(&migration_notifier);
7babe8db 6020
3a101d05
TH
6021 /* Register cpu active notifiers */
6022 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6023 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6024
a004cd42 6025 return 0;
1da177e4 6026}
7babe8db 6027early_initcall(migration_init);
1da177e4
LT
6028#endif
6029
6030#ifdef CONFIG_SMP
476f3534 6031
3e9830dc 6032#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6033
f6630114
MT
6034static __read_mostly int sched_domain_debug_enabled;
6035
6036static int __init sched_domain_debug_setup(char *str)
6037{
6038 sched_domain_debug_enabled = 1;
6039
6040 return 0;
6041}
6042early_param("sched_debug", sched_domain_debug_setup);
6043
7c16ec58 6044static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6045 struct cpumask *groupmask)
1da177e4 6046{
4dcf6aff 6047 struct sched_group *group = sd->groups;
434d53b0 6048 char str[256];
1da177e4 6049
968ea6d8 6050 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6051 cpumask_clear(groupmask);
4dcf6aff
IM
6052
6053 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6054
6055 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6056 printk("does not load-balance\n");
4dcf6aff 6057 if (sd->parent)
3df0fc5b
PZ
6058 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6059 " has parent");
4dcf6aff 6060 return -1;
41c7ce9a
NP
6061 }
6062
3df0fc5b 6063 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6064
758b2cdc 6065 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6066 printk(KERN_ERR "ERROR: domain->span does not contain "
6067 "CPU%d\n", cpu);
4dcf6aff 6068 }
758b2cdc 6069 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6070 printk(KERN_ERR "ERROR: domain->groups does not contain"
6071 " CPU%d\n", cpu);
4dcf6aff 6072 }
1da177e4 6073
4dcf6aff 6074 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6075 do {
4dcf6aff 6076 if (!group) {
3df0fc5b
PZ
6077 printk("\n");
6078 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6079 break;
6080 }
6081
18a3885f 6082 if (!group->cpu_power) {
3df0fc5b
PZ
6083 printk(KERN_CONT "\n");
6084 printk(KERN_ERR "ERROR: domain->cpu_power not "
6085 "set\n");
4dcf6aff
IM
6086 break;
6087 }
1da177e4 6088
758b2cdc 6089 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6090 printk(KERN_CONT "\n");
6091 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6092 break;
6093 }
1da177e4 6094
758b2cdc 6095 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6096 printk(KERN_CONT "\n");
6097 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6098 break;
6099 }
1da177e4 6100
758b2cdc 6101 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6102
968ea6d8 6103 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6104
3df0fc5b 6105 printk(KERN_CONT " %s", str);
18a3885f 6106 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6107 printk(KERN_CONT " (cpu_power = %d)",
6108 group->cpu_power);
381512cf 6109 }
1da177e4 6110
4dcf6aff
IM
6111 group = group->next;
6112 } while (group != sd->groups);
3df0fc5b 6113 printk(KERN_CONT "\n");
1da177e4 6114
758b2cdc 6115 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6116 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6117
758b2cdc
RR
6118 if (sd->parent &&
6119 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6120 printk(KERN_ERR "ERROR: parent span is not a superset "
6121 "of domain->span\n");
4dcf6aff
IM
6122 return 0;
6123}
1da177e4 6124
4dcf6aff
IM
6125static void sched_domain_debug(struct sched_domain *sd, int cpu)
6126{
d5dd3db1 6127 cpumask_var_t groupmask;
4dcf6aff 6128 int level = 0;
1da177e4 6129
f6630114
MT
6130 if (!sched_domain_debug_enabled)
6131 return;
6132
4dcf6aff
IM
6133 if (!sd) {
6134 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6135 return;
6136 }
1da177e4 6137
4dcf6aff
IM
6138 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6139
d5dd3db1 6140 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6141 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6142 return;
6143 }
6144
4dcf6aff 6145 for (;;) {
7c16ec58 6146 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6147 break;
1da177e4
LT
6148 level++;
6149 sd = sd->parent;
33859f7f 6150 if (!sd)
4dcf6aff
IM
6151 break;
6152 }
d5dd3db1 6153 free_cpumask_var(groupmask);
1da177e4 6154}
6d6bc0ad 6155#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6156# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6157#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6158
1a20ff27 6159static int sd_degenerate(struct sched_domain *sd)
245af2c7 6160{
758b2cdc 6161 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6162 return 1;
6163
6164 /* Following flags need at least 2 groups */
6165 if (sd->flags & (SD_LOAD_BALANCE |
6166 SD_BALANCE_NEWIDLE |
6167 SD_BALANCE_FORK |
89c4710e
SS
6168 SD_BALANCE_EXEC |
6169 SD_SHARE_CPUPOWER |
6170 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6171 if (sd->groups != sd->groups->next)
6172 return 0;
6173 }
6174
6175 /* Following flags don't use groups */
c88d5910 6176 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6177 return 0;
6178
6179 return 1;
6180}
6181
48f24c4d
IM
6182static int
6183sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6184{
6185 unsigned long cflags = sd->flags, pflags = parent->flags;
6186
6187 if (sd_degenerate(parent))
6188 return 1;
6189
758b2cdc 6190 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6191 return 0;
6192
245af2c7
SS
6193 /* Flags needing groups don't count if only 1 group in parent */
6194 if (parent->groups == parent->groups->next) {
6195 pflags &= ~(SD_LOAD_BALANCE |
6196 SD_BALANCE_NEWIDLE |
6197 SD_BALANCE_FORK |
89c4710e
SS
6198 SD_BALANCE_EXEC |
6199 SD_SHARE_CPUPOWER |
6200 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6201 if (nr_node_ids == 1)
6202 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6203 }
6204 if (~cflags & pflags)
6205 return 0;
6206
6207 return 1;
6208}
6209
c6c4927b
RR
6210static void free_rootdomain(struct root_domain *rd)
6211{
047106ad
PZ
6212 synchronize_sched();
6213
68e74568
RR
6214 cpupri_cleanup(&rd->cpupri);
6215
c6c4927b
RR
6216 free_cpumask_var(rd->rto_mask);
6217 free_cpumask_var(rd->online);
6218 free_cpumask_var(rd->span);
6219 kfree(rd);
6220}
6221
57d885fe
GH
6222static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6223{
a0490fa3 6224 struct root_domain *old_rd = NULL;
57d885fe 6225 unsigned long flags;
57d885fe 6226
05fa785c 6227 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6228
6229 if (rq->rd) {
a0490fa3 6230 old_rd = rq->rd;
57d885fe 6231
c6c4927b 6232 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6233 set_rq_offline(rq);
57d885fe 6234
c6c4927b 6235 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6236
a0490fa3
IM
6237 /*
6238 * If we dont want to free the old_rt yet then
6239 * set old_rd to NULL to skip the freeing later
6240 * in this function:
6241 */
6242 if (!atomic_dec_and_test(&old_rd->refcount))
6243 old_rd = NULL;
57d885fe
GH
6244 }
6245
6246 atomic_inc(&rd->refcount);
6247 rq->rd = rd;
6248
c6c4927b 6249 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6250 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6251 set_rq_online(rq);
57d885fe 6252
05fa785c 6253 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6254
6255 if (old_rd)
6256 free_rootdomain(old_rd);
57d885fe
GH
6257}
6258
68c38fc3 6259static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6260{
6261 memset(rd, 0, sizeof(*rd));
6262
68c38fc3 6263 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6264 goto out;
68c38fc3 6265 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6266 goto free_span;
68c38fc3 6267 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6268 goto free_online;
6e0534f2 6269
68c38fc3 6270 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6271 goto free_rto_mask;
c6c4927b 6272 return 0;
6e0534f2 6273
68e74568
RR
6274free_rto_mask:
6275 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6276free_online:
6277 free_cpumask_var(rd->online);
6278free_span:
6279 free_cpumask_var(rd->span);
0c910d28 6280out:
c6c4927b 6281 return -ENOMEM;
57d885fe
GH
6282}
6283
6284static void init_defrootdomain(void)
6285{
68c38fc3 6286 init_rootdomain(&def_root_domain);
c6c4927b 6287
57d885fe
GH
6288 atomic_set(&def_root_domain.refcount, 1);
6289}
6290
dc938520 6291static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6292{
6293 struct root_domain *rd;
6294
6295 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6296 if (!rd)
6297 return NULL;
6298
68c38fc3 6299 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6300 kfree(rd);
6301 return NULL;
6302 }
57d885fe
GH
6303
6304 return rd;
6305}
6306
1da177e4 6307/*
0eab9146 6308 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6309 * hold the hotplug lock.
6310 */
0eab9146
IM
6311static void
6312cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6313{
70b97a7f 6314 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6315 struct sched_domain *tmp;
6316
669c55e9
PZ
6317 for (tmp = sd; tmp; tmp = tmp->parent)
6318 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6319
245af2c7 6320 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6321 for (tmp = sd; tmp; ) {
245af2c7
SS
6322 struct sched_domain *parent = tmp->parent;
6323 if (!parent)
6324 break;
f29c9b1c 6325
1a848870 6326 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6327 tmp->parent = parent->parent;
1a848870
SS
6328 if (parent->parent)
6329 parent->parent->child = tmp;
f29c9b1c
LZ
6330 } else
6331 tmp = tmp->parent;
245af2c7
SS
6332 }
6333
1a848870 6334 if (sd && sd_degenerate(sd)) {
245af2c7 6335 sd = sd->parent;
1a848870
SS
6336 if (sd)
6337 sd->child = NULL;
6338 }
1da177e4
LT
6339
6340 sched_domain_debug(sd, cpu);
6341
57d885fe 6342 rq_attach_root(rq, rd);
674311d5 6343 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6344}
6345
6346/* cpus with isolated domains */
dcc30a35 6347static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6348
6349/* Setup the mask of cpus configured for isolated domains */
6350static int __init isolated_cpu_setup(char *str)
6351{
bdddd296 6352 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6353 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6354 return 1;
6355}
6356
8927f494 6357__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6358
6359/*
6711cab4
SS
6360 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6361 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6362 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6363 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6364 *
6365 * init_sched_build_groups will build a circular linked list of the groups
6366 * covered by the given span, and will set each group's ->cpumask correctly,
6367 * and ->cpu_power to 0.
6368 */
a616058b 6369static void
96f874e2
RR
6370init_sched_build_groups(const struct cpumask *span,
6371 const struct cpumask *cpu_map,
6372 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6373 struct sched_group **sg,
96f874e2
RR
6374 struct cpumask *tmpmask),
6375 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6376{
6377 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6378 int i;
6379
96f874e2 6380 cpumask_clear(covered);
7c16ec58 6381
abcd083a 6382 for_each_cpu(i, span) {
6711cab4 6383 struct sched_group *sg;
7c16ec58 6384 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6385 int j;
6386
758b2cdc 6387 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6388 continue;
6389
758b2cdc 6390 cpumask_clear(sched_group_cpus(sg));
18a3885f 6391 sg->cpu_power = 0;
1da177e4 6392
abcd083a 6393 for_each_cpu(j, span) {
7c16ec58 6394 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6395 continue;
6396
96f874e2 6397 cpumask_set_cpu(j, covered);
758b2cdc 6398 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6399 }
6400 if (!first)
6401 first = sg;
6402 if (last)
6403 last->next = sg;
6404 last = sg;
6405 }
6406 last->next = first;
6407}
6408
9c1cfda2 6409#define SD_NODES_PER_DOMAIN 16
1da177e4 6410
9c1cfda2 6411#ifdef CONFIG_NUMA
198e2f18 6412
9c1cfda2
JH
6413/**
6414 * find_next_best_node - find the next node to include in a sched_domain
6415 * @node: node whose sched_domain we're building
6416 * @used_nodes: nodes already in the sched_domain
6417 *
41a2d6cf 6418 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6419 * finds the closest node not already in the @used_nodes map.
6420 *
6421 * Should use nodemask_t.
6422 */
c5f59f08 6423static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6424{
6425 int i, n, val, min_val, best_node = 0;
6426
6427 min_val = INT_MAX;
6428
076ac2af 6429 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6430 /* Start at @node */
076ac2af 6431 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6432
6433 if (!nr_cpus_node(n))
6434 continue;
6435
6436 /* Skip already used nodes */
c5f59f08 6437 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6438 continue;
6439
6440 /* Simple min distance search */
6441 val = node_distance(node, n);
6442
6443 if (val < min_val) {
6444 min_val = val;
6445 best_node = n;
6446 }
6447 }
6448
c5f59f08 6449 node_set(best_node, *used_nodes);
9c1cfda2
JH
6450 return best_node;
6451}
6452
6453/**
6454 * sched_domain_node_span - get a cpumask for a node's sched_domain
6455 * @node: node whose cpumask we're constructing
73486722 6456 * @span: resulting cpumask
9c1cfda2 6457 *
41a2d6cf 6458 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6459 * should be one that prevents unnecessary balancing, but also spreads tasks
6460 * out optimally.
6461 */
96f874e2 6462static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6463{
c5f59f08 6464 nodemask_t used_nodes;
48f24c4d 6465 int i;
9c1cfda2 6466
6ca09dfc 6467 cpumask_clear(span);
c5f59f08 6468 nodes_clear(used_nodes);
9c1cfda2 6469
6ca09dfc 6470 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6471 node_set(node, used_nodes);
9c1cfda2
JH
6472
6473 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6474 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6475
6ca09dfc 6476 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6477 }
9c1cfda2 6478}
6d6bc0ad 6479#endif /* CONFIG_NUMA */
9c1cfda2 6480
5c45bf27 6481int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6482
6c99e9ad
RR
6483/*
6484 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6485 *
6486 * ( See the the comments in include/linux/sched.h:struct sched_group
6487 * and struct sched_domain. )
6c99e9ad
RR
6488 */
6489struct static_sched_group {
6490 struct sched_group sg;
6491 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6492};
6493
6494struct static_sched_domain {
6495 struct sched_domain sd;
6496 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6497};
6498
49a02c51
AH
6499struct s_data {
6500#ifdef CONFIG_NUMA
6501 int sd_allnodes;
6502 cpumask_var_t domainspan;
6503 cpumask_var_t covered;
6504 cpumask_var_t notcovered;
6505#endif
6506 cpumask_var_t nodemask;
6507 cpumask_var_t this_sibling_map;
6508 cpumask_var_t this_core_map;
6509 cpumask_var_t send_covered;
6510 cpumask_var_t tmpmask;
6511 struct sched_group **sched_group_nodes;
6512 struct root_domain *rd;
6513};
6514
2109b99e
AH
6515enum s_alloc {
6516 sa_sched_groups = 0,
6517 sa_rootdomain,
6518 sa_tmpmask,
6519 sa_send_covered,
6520 sa_this_core_map,
6521 sa_this_sibling_map,
6522 sa_nodemask,
6523 sa_sched_group_nodes,
6524#ifdef CONFIG_NUMA
6525 sa_notcovered,
6526 sa_covered,
6527 sa_domainspan,
6528#endif
6529 sa_none,
6530};
6531
9c1cfda2 6532/*
48f24c4d 6533 * SMT sched-domains:
9c1cfda2 6534 */
1da177e4 6535#ifdef CONFIG_SCHED_SMT
6c99e9ad 6536static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6537static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6538
41a2d6cf 6539static int
96f874e2
RR
6540cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6541 struct sched_group **sg, struct cpumask *unused)
1da177e4 6542{
6711cab4 6543 if (sg)
1871e52c 6544 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6545 return cpu;
6546}
6d6bc0ad 6547#endif /* CONFIG_SCHED_SMT */
1da177e4 6548
48f24c4d
IM
6549/*
6550 * multi-core sched-domains:
6551 */
1e9f28fa 6552#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6553static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6554static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6555
41a2d6cf 6556static int
96f874e2
RR
6557cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6558 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6559{
6711cab4 6560 int group;
f269893c 6561#ifdef CONFIG_SCHED_SMT
c69fc56d 6562 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6563 group = cpumask_first(mask);
f269893c
HC
6564#else
6565 group = cpu;
6566#endif
6711cab4 6567 if (sg)
6c99e9ad 6568 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6569 return group;
1e9f28fa 6570}
f269893c 6571#endif /* CONFIG_SCHED_MC */
1e9f28fa 6572
6c99e9ad
RR
6573static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6574static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6575
41a2d6cf 6576static int
96f874e2
RR
6577cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6578 struct sched_group **sg, struct cpumask *mask)
1da177e4 6579{
6711cab4 6580 int group;
48f24c4d 6581#ifdef CONFIG_SCHED_MC
6ca09dfc 6582 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6583 group = cpumask_first(mask);
1e9f28fa 6584#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6585 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6586 group = cpumask_first(mask);
1da177e4 6587#else
6711cab4 6588 group = cpu;
1da177e4 6589#endif
6711cab4 6590 if (sg)
6c99e9ad 6591 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6592 return group;
1da177e4
LT
6593}
6594
6595#ifdef CONFIG_NUMA
1da177e4 6596/*
9c1cfda2
JH
6597 * The init_sched_build_groups can't handle what we want to do with node
6598 * groups, so roll our own. Now each node has its own list of groups which
6599 * gets dynamically allocated.
1da177e4 6600 */
62ea9ceb 6601static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6602static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6603
62ea9ceb 6604static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6605static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6606
96f874e2
RR
6607static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6608 struct sched_group **sg,
6609 struct cpumask *nodemask)
9c1cfda2 6610{
6711cab4
SS
6611 int group;
6612
6ca09dfc 6613 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6614 group = cpumask_first(nodemask);
6711cab4
SS
6615
6616 if (sg)
6c99e9ad 6617 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6618 return group;
1da177e4 6619}
6711cab4 6620
08069033
SS
6621static void init_numa_sched_groups_power(struct sched_group *group_head)
6622{
6623 struct sched_group *sg = group_head;
6624 int j;
6625
6626 if (!sg)
6627 return;
3a5c359a 6628 do {
758b2cdc 6629 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6630 struct sched_domain *sd;
08069033 6631
6c99e9ad 6632 sd = &per_cpu(phys_domains, j).sd;
13318a71 6633 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6634 /*
6635 * Only add "power" once for each
6636 * physical package.
6637 */
6638 continue;
6639 }
08069033 6640
18a3885f 6641 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6642 }
6643 sg = sg->next;
6644 } while (sg != group_head);
08069033 6645}
0601a88d
AH
6646
6647static int build_numa_sched_groups(struct s_data *d,
6648 const struct cpumask *cpu_map, int num)
6649{
6650 struct sched_domain *sd;
6651 struct sched_group *sg, *prev;
6652 int n, j;
6653
6654 cpumask_clear(d->covered);
6655 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6656 if (cpumask_empty(d->nodemask)) {
6657 d->sched_group_nodes[num] = NULL;
6658 goto out;
6659 }
6660
6661 sched_domain_node_span(num, d->domainspan);
6662 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6663
6664 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6665 GFP_KERNEL, num);
6666 if (!sg) {
3df0fc5b
PZ
6667 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6668 num);
0601a88d
AH
6669 return -ENOMEM;
6670 }
6671 d->sched_group_nodes[num] = sg;
6672
6673 for_each_cpu(j, d->nodemask) {
6674 sd = &per_cpu(node_domains, j).sd;
6675 sd->groups = sg;
6676 }
6677
18a3885f 6678 sg->cpu_power = 0;
0601a88d
AH
6679 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6680 sg->next = sg;
6681 cpumask_or(d->covered, d->covered, d->nodemask);
6682
6683 prev = sg;
6684 for (j = 0; j < nr_node_ids; j++) {
6685 n = (num + j) % nr_node_ids;
6686 cpumask_complement(d->notcovered, d->covered);
6687 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6688 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6689 if (cpumask_empty(d->tmpmask))
6690 break;
6691 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6692 if (cpumask_empty(d->tmpmask))
6693 continue;
6694 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6695 GFP_KERNEL, num);
6696 if (!sg) {
3df0fc5b
PZ
6697 printk(KERN_WARNING
6698 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6699 return -ENOMEM;
6700 }
18a3885f 6701 sg->cpu_power = 0;
0601a88d
AH
6702 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6703 sg->next = prev->next;
6704 cpumask_or(d->covered, d->covered, d->tmpmask);
6705 prev->next = sg;
6706 prev = sg;
6707 }
6708out:
6709 return 0;
6710}
6d6bc0ad 6711#endif /* CONFIG_NUMA */
1da177e4 6712
a616058b 6713#ifdef CONFIG_NUMA
51888ca2 6714/* Free memory allocated for various sched_group structures */
96f874e2
RR
6715static void free_sched_groups(const struct cpumask *cpu_map,
6716 struct cpumask *nodemask)
51888ca2 6717{
a616058b 6718 int cpu, i;
51888ca2 6719
abcd083a 6720 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6721 struct sched_group **sched_group_nodes
6722 = sched_group_nodes_bycpu[cpu];
6723
51888ca2
SV
6724 if (!sched_group_nodes)
6725 continue;
6726
076ac2af 6727 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6728 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6729
6ca09dfc 6730 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6731 if (cpumask_empty(nodemask))
51888ca2
SV
6732 continue;
6733
6734 if (sg == NULL)
6735 continue;
6736 sg = sg->next;
6737next_sg:
6738 oldsg = sg;
6739 sg = sg->next;
6740 kfree(oldsg);
6741 if (oldsg != sched_group_nodes[i])
6742 goto next_sg;
6743 }
6744 kfree(sched_group_nodes);
6745 sched_group_nodes_bycpu[cpu] = NULL;
6746 }
51888ca2 6747}
6d6bc0ad 6748#else /* !CONFIG_NUMA */
96f874e2
RR
6749static void free_sched_groups(const struct cpumask *cpu_map,
6750 struct cpumask *nodemask)
a616058b
SS
6751{
6752}
6d6bc0ad 6753#endif /* CONFIG_NUMA */
51888ca2 6754
89c4710e
SS
6755/*
6756 * Initialize sched groups cpu_power.
6757 *
6758 * cpu_power indicates the capacity of sched group, which is used while
6759 * distributing the load between different sched groups in a sched domain.
6760 * Typically cpu_power for all the groups in a sched domain will be same unless
6761 * there are asymmetries in the topology. If there are asymmetries, group
6762 * having more cpu_power will pickup more load compared to the group having
6763 * less cpu_power.
89c4710e
SS
6764 */
6765static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6766{
6767 struct sched_domain *child;
6768 struct sched_group *group;
f93e65c1
PZ
6769 long power;
6770 int weight;
89c4710e
SS
6771
6772 WARN_ON(!sd || !sd->groups);
6773
13318a71 6774 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6775 return;
6776
6777 child = sd->child;
6778
18a3885f 6779 sd->groups->cpu_power = 0;
5517d86b 6780
f93e65c1
PZ
6781 if (!child) {
6782 power = SCHED_LOAD_SCALE;
6783 weight = cpumask_weight(sched_domain_span(sd));
6784 /*
6785 * SMT siblings share the power of a single core.
a52bfd73
PZ
6786 * Usually multiple threads get a better yield out of
6787 * that one core than a single thread would have,
6788 * reflect that in sd->smt_gain.
f93e65c1 6789 */
a52bfd73
PZ
6790 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6791 power *= sd->smt_gain;
f93e65c1 6792 power /= weight;
a52bfd73
PZ
6793 power >>= SCHED_LOAD_SHIFT;
6794 }
18a3885f 6795 sd->groups->cpu_power += power;
89c4710e
SS
6796 return;
6797 }
6798
89c4710e 6799 /*
f93e65c1 6800 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6801 */
6802 group = child->groups;
6803 do {
18a3885f 6804 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6805 group = group->next;
6806 } while (group != child->groups);
6807}
6808
7c16ec58
MT
6809/*
6810 * Initializers for schedule domains
6811 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6812 */
6813
a5d8c348
IM
6814#ifdef CONFIG_SCHED_DEBUG
6815# define SD_INIT_NAME(sd, type) sd->name = #type
6816#else
6817# define SD_INIT_NAME(sd, type) do { } while (0)
6818#endif
6819
7c16ec58 6820#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6821
7c16ec58
MT
6822#define SD_INIT_FUNC(type) \
6823static noinline void sd_init_##type(struct sched_domain *sd) \
6824{ \
6825 memset(sd, 0, sizeof(*sd)); \
6826 *sd = SD_##type##_INIT; \
1d3504fc 6827 sd->level = SD_LV_##type; \
a5d8c348 6828 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6829}
6830
6831SD_INIT_FUNC(CPU)
6832#ifdef CONFIG_NUMA
6833 SD_INIT_FUNC(ALLNODES)
6834 SD_INIT_FUNC(NODE)
6835#endif
6836#ifdef CONFIG_SCHED_SMT
6837 SD_INIT_FUNC(SIBLING)
6838#endif
6839#ifdef CONFIG_SCHED_MC
6840 SD_INIT_FUNC(MC)
6841#endif
6842
1d3504fc
HS
6843static int default_relax_domain_level = -1;
6844
6845static int __init setup_relax_domain_level(char *str)
6846{
30e0e178
LZ
6847 unsigned long val;
6848
6849 val = simple_strtoul(str, NULL, 0);
6850 if (val < SD_LV_MAX)
6851 default_relax_domain_level = val;
6852
1d3504fc
HS
6853 return 1;
6854}
6855__setup("relax_domain_level=", setup_relax_domain_level);
6856
6857static void set_domain_attribute(struct sched_domain *sd,
6858 struct sched_domain_attr *attr)
6859{
6860 int request;
6861
6862 if (!attr || attr->relax_domain_level < 0) {
6863 if (default_relax_domain_level < 0)
6864 return;
6865 else
6866 request = default_relax_domain_level;
6867 } else
6868 request = attr->relax_domain_level;
6869 if (request < sd->level) {
6870 /* turn off idle balance on this domain */
c88d5910 6871 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6872 } else {
6873 /* turn on idle balance on this domain */
c88d5910 6874 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6875 }
6876}
6877
2109b99e
AH
6878static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6879 const struct cpumask *cpu_map)
6880{
6881 switch (what) {
6882 case sa_sched_groups:
6883 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6884 d->sched_group_nodes = NULL;
6885 case sa_rootdomain:
6886 free_rootdomain(d->rd); /* fall through */
6887 case sa_tmpmask:
6888 free_cpumask_var(d->tmpmask); /* fall through */
6889 case sa_send_covered:
6890 free_cpumask_var(d->send_covered); /* fall through */
6891 case sa_this_core_map:
6892 free_cpumask_var(d->this_core_map); /* fall through */
6893 case sa_this_sibling_map:
6894 free_cpumask_var(d->this_sibling_map); /* fall through */
6895 case sa_nodemask:
6896 free_cpumask_var(d->nodemask); /* fall through */
6897 case sa_sched_group_nodes:
d1b55138 6898#ifdef CONFIG_NUMA
2109b99e
AH
6899 kfree(d->sched_group_nodes); /* fall through */
6900 case sa_notcovered:
6901 free_cpumask_var(d->notcovered); /* fall through */
6902 case sa_covered:
6903 free_cpumask_var(d->covered); /* fall through */
6904 case sa_domainspan:
6905 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6906#endif
2109b99e
AH
6907 case sa_none:
6908 break;
6909 }
6910}
3404c8d9 6911
2109b99e
AH
6912static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6913 const struct cpumask *cpu_map)
6914{
3404c8d9 6915#ifdef CONFIG_NUMA
2109b99e
AH
6916 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6917 return sa_none;
6918 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6919 return sa_domainspan;
6920 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6921 return sa_covered;
6922 /* Allocate the per-node list of sched groups */
6923 d->sched_group_nodes = kcalloc(nr_node_ids,
6924 sizeof(struct sched_group *), GFP_KERNEL);
6925 if (!d->sched_group_nodes) {
3df0fc5b 6926 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6927 return sa_notcovered;
d1b55138 6928 }
2109b99e 6929 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6930#endif
2109b99e
AH
6931 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6932 return sa_sched_group_nodes;
6933 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6934 return sa_nodemask;
6935 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6936 return sa_this_sibling_map;
6937 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6938 return sa_this_core_map;
6939 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6940 return sa_send_covered;
6941 d->rd = alloc_rootdomain();
6942 if (!d->rd) {
3df0fc5b 6943 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6944 return sa_tmpmask;
57d885fe 6945 }
2109b99e
AH
6946 return sa_rootdomain;
6947}
57d885fe 6948
7f4588f3
AH
6949static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6950 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6951{
6952 struct sched_domain *sd = NULL;
7c16ec58 6953#ifdef CONFIG_NUMA
7f4588f3 6954 struct sched_domain *parent;
1da177e4 6955
7f4588f3
AH
6956 d->sd_allnodes = 0;
6957 if (cpumask_weight(cpu_map) >
6958 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6959 sd = &per_cpu(allnodes_domains, i).sd;
6960 SD_INIT(sd, ALLNODES);
1d3504fc 6961 set_domain_attribute(sd, attr);
7f4588f3
AH
6962 cpumask_copy(sched_domain_span(sd), cpu_map);
6963 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6964 d->sd_allnodes = 1;
6965 }
6966 parent = sd;
6967
6968 sd = &per_cpu(node_domains, i).sd;
6969 SD_INIT(sd, NODE);
6970 set_domain_attribute(sd, attr);
6971 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6972 sd->parent = parent;
6973 if (parent)
6974 parent->child = sd;
6975 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6976#endif
7f4588f3
AH
6977 return sd;
6978}
1da177e4 6979
87cce662
AH
6980static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6981 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6982 struct sched_domain *parent, int i)
6983{
6984 struct sched_domain *sd;
6985 sd = &per_cpu(phys_domains, i).sd;
6986 SD_INIT(sd, CPU);
6987 set_domain_attribute(sd, attr);
6988 cpumask_copy(sched_domain_span(sd), d->nodemask);
6989 sd->parent = parent;
6990 if (parent)
6991 parent->child = sd;
6992 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6993 return sd;
6994}
1da177e4 6995
410c4081
AH
6996static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6997 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6998 struct sched_domain *parent, int i)
6999{
7000 struct sched_domain *sd = parent;
1e9f28fa 7001#ifdef CONFIG_SCHED_MC
410c4081
AH
7002 sd = &per_cpu(core_domains, i).sd;
7003 SD_INIT(sd, MC);
7004 set_domain_attribute(sd, attr);
7005 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7006 sd->parent = parent;
7007 parent->child = sd;
7008 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7009#endif
410c4081
AH
7010 return sd;
7011}
1e9f28fa 7012
d8173535
AH
7013static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7014 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7015 struct sched_domain *parent, int i)
7016{
7017 struct sched_domain *sd = parent;
1da177e4 7018#ifdef CONFIG_SCHED_SMT
d8173535
AH
7019 sd = &per_cpu(cpu_domains, i).sd;
7020 SD_INIT(sd, SIBLING);
7021 set_domain_attribute(sd, attr);
7022 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7023 sd->parent = parent;
7024 parent->child = sd;
7025 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7026#endif
d8173535
AH
7027 return sd;
7028}
1da177e4 7029
0e8e85c9
AH
7030static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7031 const struct cpumask *cpu_map, int cpu)
7032{
7033 switch (l) {
1da177e4 7034#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7035 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7036 cpumask_and(d->this_sibling_map, cpu_map,
7037 topology_thread_cpumask(cpu));
7038 if (cpu == cpumask_first(d->this_sibling_map))
7039 init_sched_build_groups(d->this_sibling_map, cpu_map,
7040 &cpu_to_cpu_group,
7041 d->send_covered, d->tmpmask);
7042 break;
1da177e4 7043#endif
1e9f28fa 7044#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7045 case SD_LV_MC: /* set up multi-core groups */
7046 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7047 if (cpu == cpumask_first(d->this_core_map))
7048 init_sched_build_groups(d->this_core_map, cpu_map,
7049 &cpu_to_core_group,
7050 d->send_covered, d->tmpmask);
7051 break;
1e9f28fa 7052#endif
86548096
AH
7053 case SD_LV_CPU: /* set up physical groups */
7054 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7055 if (!cpumask_empty(d->nodemask))
7056 init_sched_build_groups(d->nodemask, cpu_map,
7057 &cpu_to_phys_group,
7058 d->send_covered, d->tmpmask);
7059 break;
1da177e4 7060#ifdef CONFIG_NUMA
de616e36
AH
7061 case SD_LV_ALLNODES:
7062 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7063 d->send_covered, d->tmpmask);
7064 break;
7065#endif
0e8e85c9
AH
7066 default:
7067 break;
7c16ec58 7068 }
0e8e85c9 7069}
9c1cfda2 7070
2109b99e
AH
7071/*
7072 * Build sched domains for a given set of cpus and attach the sched domains
7073 * to the individual cpus
7074 */
7075static int __build_sched_domains(const struct cpumask *cpu_map,
7076 struct sched_domain_attr *attr)
7077{
7078 enum s_alloc alloc_state = sa_none;
7079 struct s_data d;
294b0c96 7080 struct sched_domain *sd;
2109b99e 7081 int i;
7c16ec58 7082#ifdef CONFIG_NUMA
2109b99e 7083 d.sd_allnodes = 0;
7c16ec58 7084#endif
9c1cfda2 7085
2109b99e
AH
7086 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7087 if (alloc_state != sa_rootdomain)
7088 goto error;
7089 alloc_state = sa_sched_groups;
9c1cfda2 7090
1da177e4 7091 /*
1a20ff27 7092 * Set up domains for cpus specified by the cpu_map.
1da177e4 7093 */
abcd083a 7094 for_each_cpu(i, cpu_map) {
49a02c51
AH
7095 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7096 cpu_map);
9761eea8 7097
7f4588f3 7098 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7099 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7100 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7101 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7102 }
9c1cfda2 7103
abcd083a 7104 for_each_cpu(i, cpu_map) {
0e8e85c9 7105 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7106 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7107 }
9c1cfda2 7108
1da177e4 7109 /* Set up physical groups */
86548096
AH
7110 for (i = 0; i < nr_node_ids; i++)
7111 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7112
1da177e4
LT
7113#ifdef CONFIG_NUMA
7114 /* Set up node groups */
de616e36
AH
7115 if (d.sd_allnodes)
7116 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7117
0601a88d
AH
7118 for (i = 0; i < nr_node_ids; i++)
7119 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7120 goto error;
1da177e4
LT
7121#endif
7122
7123 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7124#ifdef CONFIG_SCHED_SMT
abcd083a 7125 for_each_cpu(i, cpu_map) {
294b0c96 7126 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7127 init_sched_groups_power(i, sd);
5c45bf27 7128 }
1da177e4 7129#endif
1e9f28fa 7130#ifdef CONFIG_SCHED_MC
abcd083a 7131 for_each_cpu(i, cpu_map) {
294b0c96 7132 sd = &per_cpu(core_domains, i).sd;
89c4710e 7133 init_sched_groups_power(i, sd);
5c45bf27
SS
7134 }
7135#endif
1e9f28fa 7136
abcd083a 7137 for_each_cpu(i, cpu_map) {
294b0c96 7138 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7139 init_sched_groups_power(i, sd);
1da177e4
LT
7140 }
7141
9c1cfda2 7142#ifdef CONFIG_NUMA
076ac2af 7143 for (i = 0; i < nr_node_ids; i++)
49a02c51 7144 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7145
49a02c51 7146 if (d.sd_allnodes) {
6711cab4 7147 struct sched_group *sg;
f712c0c7 7148
96f874e2 7149 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7150 d.tmpmask);
f712c0c7
SS
7151 init_numa_sched_groups_power(sg);
7152 }
9c1cfda2
JH
7153#endif
7154
1da177e4 7155 /* Attach the domains */
abcd083a 7156 for_each_cpu(i, cpu_map) {
1da177e4 7157#ifdef CONFIG_SCHED_SMT
6c99e9ad 7158 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7159#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7160 sd = &per_cpu(core_domains, i).sd;
1da177e4 7161#else
6c99e9ad 7162 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7163#endif
49a02c51 7164 cpu_attach_domain(sd, d.rd, i);
1da177e4 7165 }
51888ca2 7166
2109b99e
AH
7167 d.sched_group_nodes = NULL; /* don't free this we still need it */
7168 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7169 return 0;
51888ca2 7170
51888ca2 7171error:
2109b99e
AH
7172 __free_domain_allocs(&d, alloc_state, cpu_map);
7173 return -ENOMEM;
1da177e4 7174}
029190c5 7175
96f874e2 7176static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7177{
7178 return __build_sched_domains(cpu_map, NULL);
7179}
7180
acc3f5d7 7181static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7182static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7183static struct sched_domain_attr *dattr_cur;
7184 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7185
7186/*
7187 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7188 * cpumask) fails, then fallback to a single sched domain,
7189 * as determined by the single cpumask fallback_doms.
029190c5 7190 */
4212823f 7191static cpumask_var_t fallback_doms;
029190c5 7192
ee79d1bd
HC
7193/*
7194 * arch_update_cpu_topology lets virtualized architectures update the
7195 * cpu core maps. It is supposed to return 1 if the topology changed
7196 * or 0 if it stayed the same.
7197 */
7198int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7199{
ee79d1bd 7200 return 0;
22e52b07
HC
7201}
7202
acc3f5d7
RR
7203cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7204{
7205 int i;
7206 cpumask_var_t *doms;
7207
7208 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7209 if (!doms)
7210 return NULL;
7211 for (i = 0; i < ndoms; i++) {
7212 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7213 free_sched_domains(doms, i);
7214 return NULL;
7215 }
7216 }
7217 return doms;
7218}
7219
7220void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7221{
7222 unsigned int i;
7223 for (i = 0; i < ndoms; i++)
7224 free_cpumask_var(doms[i]);
7225 kfree(doms);
7226}
7227
1a20ff27 7228/*
41a2d6cf 7229 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7230 * For now this just excludes isolated cpus, but could be used to
7231 * exclude other special cases in the future.
1a20ff27 7232 */
96f874e2 7233static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7234{
7378547f
MM
7235 int err;
7236
22e52b07 7237 arch_update_cpu_topology();
029190c5 7238 ndoms_cur = 1;
acc3f5d7 7239 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7240 if (!doms_cur)
acc3f5d7
RR
7241 doms_cur = &fallback_doms;
7242 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7243 dattr_cur = NULL;
acc3f5d7 7244 err = build_sched_domains(doms_cur[0]);
6382bc90 7245 register_sched_domain_sysctl();
7378547f
MM
7246
7247 return err;
1a20ff27
DG
7248}
7249
96f874e2
RR
7250static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7251 struct cpumask *tmpmask)
1da177e4 7252{
7c16ec58 7253 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7254}
1da177e4 7255
1a20ff27
DG
7256/*
7257 * Detach sched domains from a group of cpus specified in cpu_map
7258 * These cpus will now be attached to the NULL domain
7259 */
96f874e2 7260static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7261{
96f874e2
RR
7262 /* Save because hotplug lock held. */
7263 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7264 int i;
7265
abcd083a 7266 for_each_cpu(i, cpu_map)
57d885fe 7267 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7268 synchronize_sched();
96f874e2 7269 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7270}
7271
1d3504fc
HS
7272/* handle null as "default" */
7273static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7274 struct sched_domain_attr *new, int idx_new)
7275{
7276 struct sched_domain_attr tmp;
7277
7278 /* fast path */
7279 if (!new && !cur)
7280 return 1;
7281
7282 tmp = SD_ATTR_INIT;
7283 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7284 new ? (new + idx_new) : &tmp,
7285 sizeof(struct sched_domain_attr));
7286}
7287
029190c5
PJ
7288/*
7289 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7290 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7291 * doms_new[] to the current sched domain partitioning, doms_cur[].
7292 * It destroys each deleted domain and builds each new domain.
7293 *
acc3f5d7 7294 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7295 * The masks don't intersect (don't overlap.) We should setup one
7296 * sched domain for each mask. CPUs not in any of the cpumasks will
7297 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7298 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7299 * it as it is.
7300 *
acc3f5d7
RR
7301 * The passed in 'doms_new' should be allocated using
7302 * alloc_sched_domains. This routine takes ownership of it and will
7303 * free_sched_domains it when done with it. If the caller failed the
7304 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7305 * and partition_sched_domains() will fallback to the single partition
7306 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7307 *
96f874e2 7308 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7309 * ndoms_new == 0 is a special case for destroying existing domains,
7310 * and it will not create the default domain.
dfb512ec 7311 *
029190c5
PJ
7312 * Call with hotplug lock held
7313 */
acc3f5d7 7314void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7315 struct sched_domain_attr *dattr_new)
029190c5 7316{
dfb512ec 7317 int i, j, n;
d65bd5ec 7318 int new_topology;
029190c5 7319
712555ee 7320 mutex_lock(&sched_domains_mutex);
a1835615 7321
7378547f
MM
7322 /* always unregister in case we don't destroy any domains */
7323 unregister_sched_domain_sysctl();
7324
d65bd5ec
HC
7325 /* Let architecture update cpu core mappings. */
7326 new_topology = arch_update_cpu_topology();
7327
dfb512ec 7328 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7329
7330 /* Destroy deleted domains */
7331 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7332 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7333 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7334 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7335 goto match1;
7336 }
7337 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7338 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7339match1:
7340 ;
7341 }
7342
e761b772
MK
7343 if (doms_new == NULL) {
7344 ndoms_cur = 0;
acc3f5d7 7345 doms_new = &fallback_doms;
6ad4c188 7346 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7347 WARN_ON_ONCE(dattr_new);
e761b772
MK
7348 }
7349
029190c5
PJ
7350 /* Build new domains */
7351 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7352 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7353 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7354 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7355 goto match2;
7356 }
7357 /* no match - add a new doms_new */
acc3f5d7 7358 __build_sched_domains(doms_new[i],
1d3504fc 7359 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7360match2:
7361 ;
7362 }
7363
7364 /* Remember the new sched domains */
acc3f5d7
RR
7365 if (doms_cur != &fallback_doms)
7366 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7367 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7368 doms_cur = doms_new;
1d3504fc 7369 dattr_cur = dattr_new;
029190c5 7370 ndoms_cur = ndoms_new;
7378547f
MM
7371
7372 register_sched_domain_sysctl();
a1835615 7373
712555ee 7374 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7375}
7376
5c45bf27 7377#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7378static void arch_reinit_sched_domains(void)
5c45bf27 7379{
95402b38 7380 get_online_cpus();
dfb512ec
MK
7381
7382 /* Destroy domains first to force the rebuild */
7383 partition_sched_domains(0, NULL, NULL);
7384
e761b772 7385 rebuild_sched_domains();
95402b38 7386 put_online_cpus();
5c45bf27
SS
7387}
7388
7389static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7390{
afb8a9b7 7391 unsigned int level = 0;
5c45bf27 7392
afb8a9b7
GS
7393 if (sscanf(buf, "%u", &level) != 1)
7394 return -EINVAL;
7395
7396 /*
7397 * level is always be positive so don't check for
7398 * level < POWERSAVINGS_BALANCE_NONE which is 0
7399 * What happens on 0 or 1 byte write,
7400 * need to check for count as well?
7401 */
7402
7403 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7404 return -EINVAL;
7405
7406 if (smt)
afb8a9b7 7407 sched_smt_power_savings = level;
5c45bf27 7408 else
afb8a9b7 7409 sched_mc_power_savings = level;
5c45bf27 7410
c70f22d2 7411 arch_reinit_sched_domains();
5c45bf27 7412
c70f22d2 7413 return count;
5c45bf27
SS
7414}
7415
5c45bf27 7416#ifdef CONFIG_SCHED_MC
f718cd4a 7417static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7418 struct sysdev_class_attribute *attr,
f718cd4a 7419 char *page)
5c45bf27
SS
7420{
7421 return sprintf(page, "%u\n", sched_mc_power_savings);
7422}
f718cd4a 7423static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7424 struct sysdev_class_attribute *attr,
48f24c4d 7425 const char *buf, size_t count)
5c45bf27
SS
7426{
7427 return sched_power_savings_store(buf, count, 0);
7428}
f718cd4a
AK
7429static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7430 sched_mc_power_savings_show,
7431 sched_mc_power_savings_store);
5c45bf27
SS
7432#endif
7433
7434#ifdef CONFIG_SCHED_SMT
f718cd4a 7435static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7436 struct sysdev_class_attribute *attr,
f718cd4a 7437 char *page)
5c45bf27
SS
7438{
7439 return sprintf(page, "%u\n", sched_smt_power_savings);
7440}
f718cd4a 7441static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7442 struct sysdev_class_attribute *attr,
48f24c4d 7443 const char *buf, size_t count)
5c45bf27
SS
7444{
7445 return sched_power_savings_store(buf, count, 1);
7446}
f718cd4a
AK
7447static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7448 sched_smt_power_savings_show,
6707de00
AB
7449 sched_smt_power_savings_store);
7450#endif
7451
39aac648 7452int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7453{
7454 int err = 0;
7455
7456#ifdef CONFIG_SCHED_SMT
7457 if (smt_capable())
7458 err = sysfs_create_file(&cls->kset.kobj,
7459 &attr_sched_smt_power_savings.attr);
7460#endif
7461#ifdef CONFIG_SCHED_MC
7462 if (!err && mc_capable())
7463 err = sysfs_create_file(&cls->kset.kobj,
7464 &attr_sched_mc_power_savings.attr);
7465#endif
7466 return err;
7467}
6d6bc0ad 7468#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7469
1da177e4 7470/*
3a101d05
TH
7471 * Update cpusets according to cpu_active mask. If cpusets are
7472 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7473 * around partition_sched_domains().
1da177e4 7474 */
0b2e918a
TH
7475static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7476 void *hcpu)
e761b772 7477{
3a101d05 7478 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7479 case CPU_ONLINE:
6ad4c188 7480 case CPU_DOWN_FAILED:
3a101d05 7481 cpuset_update_active_cpus();
e761b772 7482 return NOTIFY_OK;
3a101d05
TH
7483 default:
7484 return NOTIFY_DONE;
7485 }
7486}
e761b772 7487
0b2e918a
TH
7488static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7489 void *hcpu)
3a101d05
TH
7490{
7491 switch (action & ~CPU_TASKS_FROZEN) {
7492 case CPU_DOWN_PREPARE:
7493 cpuset_update_active_cpus();
7494 return NOTIFY_OK;
e761b772
MK
7495 default:
7496 return NOTIFY_DONE;
7497 }
7498}
e761b772
MK
7499
7500static int update_runtime(struct notifier_block *nfb,
7501 unsigned long action, void *hcpu)
1da177e4 7502{
7def2be1
PZ
7503 int cpu = (int)(long)hcpu;
7504
1da177e4 7505 switch (action) {
1da177e4 7506 case CPU_DOWN_PREPARE:
8bb78442 7507 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7508 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7509 return NOTIFY_OK;
7510
1da177e4 7511 case CPU_DOWN_FAILED:
8bb78442 7512 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7513 case CPU_ONLINE:
8bb78442 7514 case CPU_ONLINE_FROZEN:
7def2be1 7515 enable_runtime(cpu_rq(cpu));
e761b772
MK
7516 return NOTIFY_OK;
7517
1da177e4
LT
7518 default:
7519 return NOTIFY_DONE;
7520 }
1da177e4 7521}
1da177e4
LT
7522
7523void __init sched_init_smp(void)
7524{
dcc30a35
RR
7525 cpumask_var_t non_isolated_cpus;
7526
7527 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7528 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7529
434d53b0
MT
7530#if defined(CONFIG_NUMA)
7531 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7532 GFP_KERNEL);
7533 BUG_ON(sched_group_nodes_bycpu == NULL);
7534#endif
95402b38 7535 get_online_cpus();
712555ee 7536 mutex_lock(&sched_domains_mutex);
6ad4c188 7537 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7538 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7539 if (cpumask_empty(non_isolated_cpus))
7540 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7541 mutex_unlock(&sched_domains_mutex);
95402b38 7542 put_online_cpus();
e761b772 7543
3a101d05
TH
7544 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7545 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7546
7547 /* RT runtime code needs to handle some hotplug events */
7548 hotcpu_notifier(update_runtime, 0);
7549
b328ca18 7550 init_hrtick();
5c1e1767
NP
7551
7552 /* Move init over to a non-isolated CPU */
dcc30a35 7553 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7554 BUG();
19978ca6 7555 sched_init_granularity();
dcc30a35 7556 free_cpumask_var(non_isolated_cpus);
4212823f 7557
0e3900e6 7558 init_sched_rt_class();
1da177e4
LT
7559}
7560#else
7561void __init sched_init_smp(void)
7562{
19978ca6 7563 sched_init_granularity();
1da177e4
LT
7564}
7565#endif /* CONFIG_SMP */
7566
cd1bb94b
AB
7567const_debug unsigned int sysctl_timer_migration = 1;
7568
1da177e4
LT
7569int in_sched_functions(unsigned long addr)
7570{
1da177e4
LT
7571 return in_lock_functions(addr) ||
7572 (addr >= (unsigned long)__sched_text_start
7573 && addr < (unsigned long)__sched_text_end);
7574}
7575
a9957449 7576static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7577{
7578 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7579 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7580#ifdef CONFIG_FAIR_GROUP_SCHED
7581 cfs_rq->rq = rq;
7582#endif
67e9fb2a 7583 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7584}
7585
fa85ae24
PZ
7586static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7587{
7588 struct rt_prio_array *array;
7589 int i;
7590
7591 array = &rt_rq->active;
7592 for (i = 0; i < MAX_RT_PRIO; i++) {
7593 INIT_LIST_HEAD(array->queue + i);
7594 __clear_bit(i, array->bitmap);
7595 }
7596 /* delimiter for bitsearch: */
7597 __set_bit(MAX_RT_PRIO, array->bitmap);
7598
052f1dc7 7599#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7600 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7601#ifdef CONFIG_SMP
e864c499 7602 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7603#endif
48d5e258 7604#endif
fa85ae24
PZ
7605#ifdef CONFIG_SMP
7606 rt_rq->rt_nr_migratory = 0;
fa85ae24 7607 rt_rq->overloaded = 0;
05fa785c 7608 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7609#endif
7610
7611 rt_rq->rt_time = 0;
7612 rt_rq->rt_throttled = 0;
ac086bc2 7613 rt_rq->rt_runtime = 0;
0986b11b 7614 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7615
052f1dc7 7616#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7617 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7618 rt_rq->rq = rq;
7619#endif
fa85ae24
PZ
7620}
7621
6f505b16 7622#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7623static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7624 struct sched_entity *se, int cpu, int add,
7625 struct sched_entity *parent)
6f505b16 7626{
ec7dc8ac 7627 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7628 tg->cfs_rq[cpu] = cfs_rq;
7629 init_cfs_rq(cfs_rq, rq);
7630 cfs_rq->tg = tg;
7631 if (add)
7632 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7633
7634 tg->se[cpu] = se;
354d60c2
DG
7635 /* se could be NULL for init_task_group */
7636 if (!se)
7637 return;
7638
ec7dc8ac
DG
7639 if (!parent)
7640 se->cfs_rq = &rq->cfs;
7641 else
7642 se->cfs_rq = parent->my_q;
7643
6f505b16
PZ
7644 se->my_q = cfs_rq;
7645 se->load.weight = tg->shares;
e05510d0 7646 se->load.inv_weight = 0;
ec7dc8ac 7647 se->parent = parent;
6f505b16 7648}
052f1dc7 7649#endif
6f505b16 7650
052f1dc7 7651#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7652static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7653 struct sched_rt_entity *rt_se, int cpu, int add,
7654 struct sched_rt_entity *parent)
6f505b16 7655{
ec7dc8ac
DG
7656 struct rq *rq = cpu_rq(cpu);
7657
6f505b16
PZ
7658 tg->rt_rq[cpu] = rt_rq;
7659 init_rt_rq(rt_rq, rq);
7660 rt_rq->tg = tg;
ac086bc2 7661 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7662 if (add)
7663 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7664
7665 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7666 if (!rt_se)
7667 return;
7668
ec7dc8ac
DG
7669 if (!parent)
7670 rt_se->rt_rq = &rq->rt;
7671 else
7672 rt_se->rt_rq = parent->my_q;
7673
6f505b16 7674 rt_se->my_q = rt_rq;
ec7dc8ac 7675 rt_se->parent = parent;
6f505b16
PZ
7676 INIT_LIST_HEAD(&rt_se->run_list);
7677}
7678#endif
7679
1da177e4
LT
7680void __init sched_init(void)
7681{
dd41f596 7682 int i, j;
434d53b0
MT
7683 unsigned long alloc_size = 0, ptr;
7684
7685#ifdef CONFIG_FAIR_GROUP_SCHED
7686 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7687#endif
7688#ifdef CONFIG_RT_GROUP_SCHED
7689 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7690#endif
df7c8e84 7691#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7692 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7693#endif
434d53b0 7694 if (alloc_size) {
36b7b6d4 7695 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7696
7697#ifdef CONFIG_FAIR_GROUP_SCHED
7698 init_task_group.se = (struct sched_entity **)ptr;
7699 ptr += nr_cpu_ids * sizeof(void **);
7700
7701 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7702 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7703
6d6bc0ad 7704#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7705#ifdef CONFIG_RT_GROUP_SCHED
7706 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7707 ptr += nr_cpu_ids * sizeof(void **);
7708
7709 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7710 ptr += nr_cpu_ids * sizeof(void **);
7711
6d6bc0ad 7712#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7713#ifdef CONFIG_CPUMASK_OFFSTACK
7714 for_each_possible_cpu(i) {
7715 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7716 ptr += cpumask_size();
7717 }
7718#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7719 }
dd41f596 7720
57d885fe
GH
7721#ifdef CONFIG_SMP
7722 init_defrootdomain();
7723#endif
7724
d0b27fa7
PZ
7725 init_rt_bandwidth(&def_rt_bandwidth,
7726 global_rt_period(), global_rt_runtime());
7727
7728#ifdef CONFIG_RT_GROUP_SCHED
7729 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7730 global_rt_period(), global_rt_runtime());
6d6bc0ad 7731#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7732
7c941438 7733#ifdef CONFIG_CGROUP_SCHED
6f505b16 7734 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7735 INIT_LIST_HEAD(&init_task_group.children);
7736
7c941438 7737#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7738
4a6cc4bd
JK
7739#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7740 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7741 __alignof__(unsigned long));
7742#endif
0a945022 7743 for_each_possible_cpu(i) {
70b97a7f 7744 struct rq *rq;
1da177e4
LT
7745
7746 rq = cpu_rq(i);
05fa785c 7747 raw_spin_lock_init(&rq->lock);
7897986b 7748 rq->nr_running = 0;
dce48a84
TG
7749 rq->calc_load_active = 0;
7750 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7751 init_cfs_rq(&rq->cfs, rq);
6f505b16 7752 init_rt_rq(&rq->rt, rq);
dd41f596 7753#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7754 init_task_group.shares = init_task_group_load;
6f505b16 7755 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7756#ifdef CONFIG_CGROUP_SCHED
7757 /*
7758 * How much cpu bandwidth does init_task_group get?
7759 *
7760 * In case of task-groups formed thr' the cgroup filesystem, it
7761 * gets 100% of the cpu resources in the system. This overall
7762 * system cpu resource is divided among the tasks of
7763 * init_task_group and its child task-groups in a fair manner,
7764 * based on each entity's (task or task-group's) weight
7765 * (se->load.weight).
7766 *
7767 * In other words, if init_task_group has 10 tasks of weight
7768 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7769 * then A0's share of the cpu resource is:
7770 *
0d905bca 7771 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7772 *
7773 * We achieve this by letting init_task_group's tasks sit
7774 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7775 */
ec7dc8ac 7776 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7777#endif
354d60c2
DG
7778#endif /* CONFIG_FAIR_GROUP_SCHED */
7779
7780 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7781#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7782 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7783#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7784 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7785#endif
dd41f596 7786#endif
1da177e4 7787
dd41f596
IM
7788 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7789 rq->cpu_load[j] = 0;
fdf3e95d
VP
7790
7791 rq->last_load_update_tick = jiffies;
7792
1da177e4 7793#ifdef CONFIG_SMP
41c7ce9a 7794 rq->sd = NULL;
57d885fe 7795 rq->rd = NULL;
e51fd5e2 7796 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7797 rq->post_schedule = 0;
1da177e4 7798 rq->active_balance = 0;
dd41f596 7799 rq->next_balance = jiffies;
1da177e4 7800 rq->push_cpu = 0;
0a2966b4 7801 rq->cpu = i;
1f11eb6a 7802 rq->online = 0;
eae0c9df
MG
7803 rq->idle_stamp = 0;
7804 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7805 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7806#ifdef CONFIG_NO_HZ
7807 rq->nohz_balance_kick = 0;
7808 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7809#endif
1da177e4 7810#endif
8f4d37ec 7811 init_rq_hrtick(rq);
1da177e4 7812 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7813 }
7814
2dd73a4f 7815 set_load_weight(&init_task);
b50f60ce 7816
e107be36
AK
7817#ifdef CONFIG_PREEMPT_NOTIFIERS
7818 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7819#endif
7820
c9819f45 7821#ifdef CONFIG_SMP
962cf36c 7822 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7823#endif
7824
b50f60ce 7825#ifdef CONFIG_RT_MUTEXES
1d615482 7826 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7827#endif
7828
1da177e4
LT
7829 /*
7830 * The boot idle thread does lazy MMU switching as well:
7831 */
7832 atomic_inc(&init_mm.mm_count);
7833 enter_lazy_tlb(&init_mm, current);
7834
7835 /*
7836 * Make us the idle thread. Technically, schedule() should not be
7837 * called from this thread, however somewhere below it might be,
7838 * but because we are the idle thread, we just pick up running again
7839 * when this runqueue becomes "idle".
7840 */
7841 init_idle(current, smp_processor_id());
dce48a84
TG
7842
7843 calc_load_update = jiffies + LOAD_FREQ;
7844
dd41f596
IM
7845 /*
7846 * During early bootup we pretend to be a normal task:
7847 */
7848 current->sched_class = &fair_sched_class;
6892b75e 7849
6a7b3dc3 7850 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7851 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7852#ifdef CONFIG_SMP
7d1e6a9b 7853#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7854 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7855 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7856 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7857 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7858 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 7859#endif
bdddd296
RR
7860 /* May be allocated at isolcpus cmdline parse time */
7861 if (cpu_isolated_map == NULL)
7862 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7863#endif /* SMP */
6a7b3dc3 7864
cdd6c482 7865 perf_event_init();
0d905bca 7866
6892b75e 7867 scheduler_running = 1;
1da177e4
LT
7868}
7869
7870#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7871static inline int preempt_count_equals(int preempt_offset)
7872{
234da7bc 7873 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7874
7875 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7876}
7877
d894837f 7878void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7879{
48f24c4d 7880#ifdef in_atomic
1da177e4
LT
7881 static unsigned long prev_jiffy; /* ratelimiting */
7882
e4aafea2
FW
7883 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7884 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7885 return;
7886 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7887 return;
7888 prev_jiffy = jiffies;
7889
3df0fc5b
PZ
7890 printk(KERN_ERR
7891 "BUG: sleeping function called from invalid context at %s:%d\n",
7892 file, line);
7893 printk(KERN_ERR
7894 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7895 in_atomic(), irqs_disabled(),
7896 current->pid, current->comm);
aef745fc
IM
7897
7898 debug_show_held_locks(current);
7899 if (irqs_disabled())
7900 print_irqtrace_events(current);
7901 dump_stack();
1da177e4
LT
7902#endif
7903}
7904EXPORT_SYMBOL(__might_sleep);
7905#endif
7906
7907#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7908static void normalize_task(struct rq *rq, struct task_struct *p)
7909{
7910 int on_rq;
3e51f33f 7911
3a5e4dc1
AK
7912 on_rq = p->se.on_rq;
7913 if (on_rq)
7914 deactivate_task(rq, p, 0);
7915 __setscheduler(rq, p, SCHED_NORMAL, 0);
7916 if (on_rq) {
7917 activate_task(rq, p, 0);
7918 resched_task(rq->curr);
7919 }
7920}
7921
1da177e4
LT
7922void normalize_rt_tasks(void)
7923{
a0f98a1c 7924 struct task_struct *g, *p;
1da177e4 7925 unsigned long flags;
70b97a7f 7926 struct rq *rq;
1da177e4 7927
4cf5d77a 7928 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7929 do_each_thread(g, p) {
178be793
IM
7930 /*
7931 * Only normalize user tasks:
7932 */
7933 if (!p->mm)
7934 continue;
7935
6cfb0d5d 7936 p->se.exec_start = 0;
6cfb0d5d 7937#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7938 p->se.statistics.wait_start = 0;
7939 p->se.statistics.sleep_start = 0;
7940 p->se.statistics.block_start = 0;
6cfb0d5d 7941#endif
dd41f596
IM
7942
7943 if (!rt_task(p)) {
7944 /*
7945 * Renice negative nice level userspace
7946 * tasks back to 0:
7947 */
7948 if (TASK_NICE(p) < 0 && p->mm)
7949 set_user_nice(p, 0);
1da177e4 7950 continue;
dd41f596 7951 }
1da177e4 7952
1d615482 7953 raw_spin_lock(&p->pi_lock);
b29739f9 7954 rq = __task_rq_lock(p);
1da177e4 7955
178be793 7956 normalize_task(rq, p);
3a5e4dc1 7957
b29739f9 7958 __task_rq_unlock(rq);
1d615482 7959 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7960 } while_each_thread(g, p);
7961
4cf5d77a 7962 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7963}
7964
7965#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7966
67fc4e0c 7967#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7968/*
67fc4e0c 7969 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7970 *
7971 * They can only be called when the whole system has been
7972 * stopped - every CPU needs to be quiescent, and no scheduling
7973 * activity can take place. Using them for anything else would
7974 * be a serious bug, and as a result, they aren't even visible
7975 * under any other configuration.
7976 */
7977
7978/**
7979 * curr_task - return the current task for a given cpu.
7980 * @cpu: the processor in question.
7981 *
7982 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7983 */
36c8b586 7984struct task_struct *curr_task(int cpu)
1df5c10a
LT
7985{
7986 return cpu_curr(cpu);
7987}
7988
67fc4e0c
JW
7989#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7990
7991#ifdef CONFIG_IA64
1df5c10a
LT
7992/**
7993 * set_curr_task - set the current task for a given cpu.
7994 * @cpu: the processor in question.
7995 * @p: the task pointer to set.
7996 *
7997 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7998 * are serviced on a separate stack. It allows the architecture to switch the
7999 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8000 * must be called with all CPU's synchronized, and interrupts disabled, the
8001 * and caller must save the original value of the current task (see
8002 * curr_task() above) and restore that value before reenabling interrupts and
8003 * re-starting the system.
8004 *
8005 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8006 */
36c8b586 8007void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8008{
8009 cpu_curr(cpu) = p;
8010}
8011
8012#endif
29f59db3 8013
bccbe08a
PZ
8014#ifdef CONFIG_FAIR_GROUP_SCHED
8015static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8016{
8017 int i;
8018
8019 for_each_possible_cpu(i) {
8020 if (tg->cfs_rq)
8021 kfree(tg->cfs_rq[i]);
8022 if (tg->se)
8023 kfree(tg->se[i]);
6f505b16
PZ
8024 }
8025
8026 kfree(tg->cfs_rq);
8027 kfree(tg->se);
6f505b16
PZ
8028}
8029
ec7dc8ac
DG
8030static
8031int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8032{
29f59db3 8033 struct cfs_rq *cfs_rq;
eab17229 8034 struct sched_entity *se;
9b5b7751 8035 struct rq *rq;
29f59db3
SV
8036 int i;
8037
434d53b0 8038 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8039 if (!tg->cfs_rq)
8040 goto err;
434d53b0 8041 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8042 if (!tg->se)
8043 goto err;
052f1dc7
PZ
8044
8045 tg->shares = NICE_0_LOAD;
29f59db3
SV
8046
8047 for_each_possible_cpu(i) {
9b5b7751 8048 rq = cpu_rq(i);
29f59db3 8049
eab17229
LZ
8050 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8051 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8052 if (!cfs_rq)
8053 goto err;
8054
eab17229
LZ
8055 se = kzalloc_node(sizeof(struct sched_entity),
8056 GFP_KERNEL, cpu_to_node(i));
29f59db3 8057 if (!se)
dfc12eb2 8058 goto err_free_rq;
29f59db3 8059
eab17229 8060 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8061 }
8062
8063 return 1;
8064
dfc12eb2
PC
8065 err_free_rq:
8066 kfree(cfs_rq);
bccbe08a
PZ
8067 err:
8068 return 0;
8069}
8070
8071static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8072{
8073 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8074 &cpu_rq(cpu)->leaf_cfs_rq_list);
8075}
8076
8077static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8078{
8079 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8080}
6d6bc0ad 8081#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8082static inline void free_fair_sched_group(struct task_group *tg)
8083{
8084}
8085
ec7dc8ac
DG
8086static inline
8087int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8088{
8089 return 1;
8090}
8091
8092static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8093{
8094}
8095
8096static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8097{
8098}
6d6bc0ad 8099#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8100
8101#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8102static void free_rt_sched_group(struct task_group *tg)
8103{
8104 int i;
8105
d0b27fa7
PZ
8106 destroy_rt_bandwidth(&tg->rt_bandwidth);
8107
bccbe08a
PZ
8108 for_each_possible_cpu(i) {
8109 if (tg->rt_rq)
8110 kfree(tg->rt_rq[i]);
8111 if (tg->rt_se)
8112 kfree(tg->rt_se[i]);
8113 }
8114
8115 kfree(tg->rt_rq);
8116 kfree(tg->rt_se);
8117}
8118
ec7dc8ac
DG
8119static
8120int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8121{
8122 struct rt_rq *rt_rq;
eab17229 8123 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8124 struct rq *rq;
8125 int i;
8126
434d53b0 8127 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8128 if (!tg->rt_rq)
8129 goto err;
434d53b0 8130 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8131 if (!tg->rt_se)
8132 goto err;
8133
d0b27fa7
PZ
8134 init_rt_bandwidth(&tg->rt_bandwidth,
8135 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8136
8137 for_each_possible_cpu(i) {
8138 rq = cpu_rq(i);
8139
eab17229
LZ
8140 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8141 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8142 if (!rt_rq)
8143 goto err;
29f59db3 8144
eab17229
LZ
8145 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8146 GFP_KERNEL, cpu_to_node(i));
6f505b16 8147 if (!rt_se)
dfc12eb2 8148 goto err_free_rq;
29f59db3 8149
eab17229 8150 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8151 }
8152
bccbe08a
PZ
8153 return 1;
8154
dfc12eb2
PC
8155 err_free_rq:
8156 kfree(rt_rq);
bccbe08a
PZ
8157 err:
8158 return 0;
8159}
8160
8161static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8162{
8163 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8164 &cpu_rq(cpu)->leaf_rt_rq_list);
8165}
8166
8167static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8168{
8169 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8170}
6d6bc0ad 8171#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8172static inline void free_rt_sched_group(struct task_group *tg)
8173{
8174}
8175
ec7dc8ac
DG
8176static inline
8177int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8178{
8179 return 1;
8180}
8181
8182static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8183{
8184}
8185
8186static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8187{
8188}
6d6bc0ad 8189#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8190
7c941438 8191#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8192static void free_sched_group(struct task_group *tg)
8193{
8194 free_fair_sched_group(tg);
8195 free_rt_sched_group(tg);
8196 kfree(tg);
8197}
8198
8199/* allocate runqueue etc for a new task group */
ec7dc8ac 8200struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8201{
8202 struct task_group *tg;
8203 unsigned long flags;
8204 int i;
8205
8206 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8207 if (!tg)
8208 return ERR_PTR(-ENOMEM);
8209
ec7dc8ac 8210 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8211 goto err;
8212
ec7dc8ac 8213 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8214 goto err;
8215
8ed36996 8216 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8217 for_each_possible_cpu(i) {
bccbe08a
PZ
8218 register_fair_sched_group(tg, i);
8219 register_rt_sched_group(tg, i);
9b5b7751 8220 }
6f505b16 8221 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8222
8223 WARN_ON(!parent); /* root should already exist */
8224
8225 tg->parent = parent;
f473aa5e 8226 INIT_LIST_HEAD(&tg->children);
09f2724a 8227 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8228 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8229
9b5b7751 8230 return tg;
29f59db3
SV
8231
8232err:
6f505b16 8233 free_sched_group(tg);
29f59db3
SV
8234 return ERR_PTR(-ENOMEM);
8235}
8236
9b5b7751 8237/* rcu callback to free various structures associated with a task group */
6f505b16 8238static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8239{
29f59db3 8240 /* now it should be safe to free those cfs_rqs */
6f505b16 8241 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8242}
8243
9b5b7751 8244/* Destroy runqueue etc associated with a task group */
4cf86d77 8245void sched_destroy_group(struct task_group *tg)
29f59db3 8246{
8ed36996 8247 unsigned long flags;
9b5b7751 8248 int i;
29f59db3 8249
8ed36996 8250 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8251 for_each_possible_cpu(i) {
bccbe08a
PZ
8252 unregister_fair_sched_group(tg, i);
8253 unregister_rt_sched_group(tg, i);
9b5b7751 8254 }
6f505b16 8255 list_del_rcu(&tg->list);
f473aa5e 8256 list_del_rcu(&tg->siblings);
8ed36996 8257 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8258
9b5b7751 8259 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8260 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8261}
8262
9b5b7751 8263/* change task's runqueue when it moves between groups.
3a252015
IM
8264 * The caller of this function should have put the task in its new group
8265 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8266 * reflect its new group.
9b5b7751
SV
8267 */
8268void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8269{
8270 int on_rq, running;
8271 unsigned long flags;
8272 struct rq *rq;
8273
8274 rq = task_rq_lock(tsk, &flags);
8275
051a1d1a 8276 running = task_current(rq, tsk);
29f59db3
SV
8277 on_rq = tsk->se.on_rq;
8278
0e1f3483 8279 if (on_rq)
29f59db3 8280 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8281 if (unlikely(running))
8282 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8283
6f505b16 8284 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8285
810b3817
PZ
8286#ifdef CONFIG_FAIR_GROUP_SCHED
8287 if (tsk->sched_class->moved_group)
88ec22d3 8288 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8289#endif
8290
0e1f3483
HS
8291 if (unlikely(running))
8292 tsk->sched_class->set_curr_task(rq);
8293 if (on_rq)
371fd7e7 8294 enqueue_task(rq, tsk, 0);
29f59db3 8295
29f59db3
SV
8296 task_rq_unlock(rq, &flags);
8297}
7c941438 8298#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8299
052f1dc7 8300#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8301static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8302{
8303 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8304 int on_rq;
8305
29f59db3 8306 on_rq = se->on_rq;
62fb1851 8307 if (on_rq)
29f59db3
SV
8308 dequeue_entity(cfs_rq, se, 0);
8309
8310 se->load.weight = shares;
e05510d0 8311 se->load.inv_weight = 0;
29f59db3 8312
62fb1851 8313 if (on_rq)
29f59db3 8314 enqueue_entity(cfs_rq, se, 0);
c09595f6 8315}
62fb1851 8316
c09595f6
PZ
8317static void set_se_shares(struct sched_entity *se, unsigned long shares)
8318{
8319 struct cfs_rq *cfs_rq = se->cfs_rq;
8320 struct rq *rq = cfs_rq->rq;
8321 unsigned long flags;
8322
05fa785c 8323 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8324 __set_se_shares(se, shares);
05fa785c 8325 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8326}
8327
8ed36996
PZ
8328static DEFINE_MUTEX(shares_mutex);
8329
4cf86d77 8330int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8331{
8332 int i;
8ed36996 8333 unsigned long flags;
c61935fd 8334
ec7dc8ac
DG
8335 /*
8336 * We can't change the weight of the root cgroup.
8337 */
8338 if (!tg->se[0])
8339 return -EINVAL;
8340
18d95a28
PZ
8341 if (shares < MIN_SHARES)
8342 shares = MIN_SHARES;
cb4ad1ff
MX
8343 else if (shares > MAX_SHARES)
8344 shares = MAX_SHARES;
62fb1851 8345
8ed36996 8346 mutex_lock(&shares_mutex);
9b5b7751 8347 if (tg->shares == shares)
5cb350ba 8348 goto done;
29f59db3 8349
8ed36996 8350 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8351 for_each_possible_cpu(i)
8352 unregister_fair_sched_group(tg, i);
f473aa5e 8353 list_del_rcu(&tg->siblings);
8ed36996 8354 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8355
8356 /* wait for any ongoing reference to this group to finish */
8357 synchronize_sched();
8358
8359 /*
8360 * Now we are free to modify the group's share on each cpu
8361 * w/o tripping rebalance_share or load_balance_fair.
8362 */
9b5b7751 8363 tg->shares = shares;
c09595f6
PZ
8364 for_each_possible_cpu(i) {
8365 /*
8366 * force a rebalance
8367 */
8368 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8369 set_se_shares(tg->se[i], shares);
c09595f6 8370 }
29f59db3 8371
6b2d7700
SV
8372 /*
8373 * Enable load balance activity on this group, by inserting it back on
8374 * each cpu's rq->leaf_cfs_rq_list.
8375 */
8ed36996 8376 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8377 for_each_possible_cpu(i)
8378 register_fair_sched_group(tg, i);
f473aa5e 8379 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8380 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8381done:
8ed36996 8382 mutex_unlock(&shares_mutex);
9b5b7751 8383 return 0;
29f59db3
SV
8384}
8385
5cb350ba
DG
8386unsigned long sched_group_shares(struct task_group *tg)
8387{
8388 return tg->shares;
8389}
052f1dc7 8390#endif
5cb350ba 8391
052f1dc7 8392#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8393/*
9f0c1e56 8394 * Ensure that the real time constraints are schedulable.
6f505b16 8395 */
9f0c1e56
PZ
8396static DEFINE_MUTEX(rt_constraints_mutex);
8397
8398static unsigned long to_ratio(u64 period, u64 runtime)
8399{
8400 if (runtime == RUNTIME_INF)
9a7e0b18 8401 return 1ULL << 20;
9f0c1e56 8402
9a7e0b18 8403 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8404}
8405
9a7e0b18
PZ
8406/* Must be called with tasklist_lock held */
8407static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8408{
9a7e0b18 8409 struct task_struct *g, *p;
b40b2e8e 8410
9a7e0b18
PZ
8411 do_each_thread(g, p) {
8412 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8413 return 1;
8414 } while_each_thread(g, p);
b40b2e8e 8415
9a7e0b18
PZ
8416 return 0;
8417}
b40b2e8e 8418
9a7e0b18
PZ
8419struct rt_schedulable_data {
8420 struct task_group *tg;
8421 u64 rt_period;
8422 u64 rt_runtime;
8423};
b40b2e8e 8424
9a7e0b18
PZ
8425static int tg_schedulable(struct task_group *tg, void *data)
8426{
8427 struct rt_schedulable_data *d = data;
8428 struct task_group *child;
8429 unsigned long total, sum = 0;
8430 u64 period, runtime;
b40b2e8e 8431
9a7e0b18
PZ
8432 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8433 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8434
9a7e0b18
PZ
8435 if (tg == d->tg) {
8436 period = d->rt_period;
8437 runtime = d->rt_runtime;
b40b2e8e 8438 }
b40b2e8e 8439
4653f803
PZ
8440 /*
8441 * Cannot have more runtime than the period.
8442 */
8443 if (runtime > period && runtime != RUNTIME_INF)
8444 return -EINVAL;
6f505b16 8445
4653f803
PZ
8446 /*
8447 * Ensure we don't starve existing RT tasks.
8448 */
9a7e0b18
PZ
8449 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8450 return -EBUSY;
6f505b16 8451
9a7e0b18 8452 total = to_ratio(period, runtime);
6f505b16 8453
4653f803
PZ
8454 /*
8455 * Nobody can have more than the global setting allows.
8456 */
8457 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8458 return -EINVAL;
6f505b16 8459
4653f803
PZ
8460 /*
8461 * The sum of our children's runtime should not exceed our own.
8462 */
9a7e0b18
PZ
8463 list_for_each_entry_rcu(child, &tg->children, siblings) {
8464 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8465 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8466
9a7e0b18
PZ
8467 if (child == d->tg) {
8468 period = d->rt_period;
8469 runtime = d->rt_runtime;
8470 }
6f505b16 8471
9a7e0b18 8472 sum += to_ratio(period, runtime);
9f0c1e56 8473 }
6f505b16 8474
9a7e0b18
PZ
8475 if (sum > total)
8476 return -EINVAL;
8477
8478 return 0;
6f505b16
PZ
8479}
8480
9a7e0b18 8481static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8482{
9a7e0b18
PZ
8483 struct rt_schedulable_data data = {
8484 .tg = tg,
8485 .rt_period = period,
8486 .rt_runtime = runtime,
8487 };
8488
8489 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8490}
8491
d0b27fa7
PZ
8492static int tg_set_bandwidth(struct task_group *tg,
8493 u64 rt_period, u64 rt_runtime)
6f505b16 8494{
ac086bc2 8495 int i, err = 0;
9f0c1e56 8496
9f0c1e56 8497 mutex_lock(&rt_constraints_mutex);
521f1a24 8498 read_lock(&tasklist_lock);
9a7e0b18
PZ
8499 err = __rt_schedulable(tg, rt_period, rt_runtime);
8500 if (err)
9f0c1e56 8501 goto unlock;
ac086bc2 8502
0986b11b 8503 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8504 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8505 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8506
8507 for_each_possible_cpu(i) {
8508 struct rt_rq *rt_rq = tg->rt_rq[i];
8509
0986b11b 8510 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8511 rt_rq->rt_runtime = rt_runtime;
0986b11b 8512 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8513 }
0986b11b 8514 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8515 unlock:
521f1a24 8516 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8517 mutex_unlock(&rt_constraints_mutex);
8518
8519 return err;
6f505b16
PZ
8520}
8521
d0b27fa7
PZ
8522int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8523{
8524 u64 rt_runtime, rt_period;
8525
8526 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8527 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8528 if (rt_runtime_us < 0)
8529 rt_runtime = RUNTIME_INF;
8530
8531 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8532}
8533
9f0c1e56
PZ
8534long sched_group_rt_runtime(struct task_group *tg)
8535{
8536 u64 rt_runtime_us;
8537
d0b27fa7 8538 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8539 return -1;
8540
d0b27fa7 8541 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8542 do_div(rt_runtime_us, NSEC_PER_USEC);
8543 return rt_runtime_us;
8544}
d0b27fa7
PZ
8545
8546int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8547{
8548 u64 rt_runtime, rt_period;
8549
8550 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8551 rt_runtime = tg->rt_bandwidth.rt_runtime;
8552
619b0488
R
8553 if (rt_period == 0)
8554 return -EINVAL;
8555
d0b27fa7
PZ
8556 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8557}
8558
8559long sched_group_rt_period(struct task_group *tg)
8560{
8561 u64 rt_period_us;
8562
8563 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8564 do_div(rt_period_us, NSEC_PER_USEC);
8565 return rt_period_us;
8566}
8567
8568static int sched_rt_global_constraints(void)
8569{
4653f803 8570 u64 runtime, period;
d0b27fa7
PZ
8571 int ret = 0;
8572
ec5d4989
HS
8573 if (sysctl_sched_rt_period <= 0)
8574 return -EINVAL;
8575
4653f803
PZ
8576 runtime = global_rt_runtime();
8577 period = global_rt_period();
8578
8579 /*
8580 * Sanity check on the sysctl variables.
8581 */
8582 if (runtime > period && runtime != RUNTIME_INF)
8583 return -EINVAL;
10b612f4 8584
d0b27fa7 8585 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8586 read_lock(&tasklist_lock);
4653f803 8587 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8588 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8589 mutex_unlock(&rt_constraints_mutex);
8590
8591 return ret;
8592}
54e99124
DG
8593
8594int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8595{
8596 /* Don't accept realtime tasks when there is no way for them to run */
8597 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8598 return 0;
8599
8600 return 1;
8601}
8602
6d6bc0ad 8603#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8604static int sched_rt_global_constraints(void)
8605{
ac086bc2
PZ
8606 unsigned long flags;
8607 int i;
8608
ec5d4989
HS
8609 if (sysctl_sched_rt_period <= 0)
8610 return -EINVAL;
8611
60aa605d
PZ
8612 /*
8613 * There's always some RT tasks in the root group
8614 * -- migration, kstopmachine etc..
8615 */
8616 if (sysctl_sched_rt_runtime == 0)
8617 return -EBUSY;
8618
0986b11b 8619 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8620 for_each_possible_cpu(i) {
8621 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8622
0986b11b 8623 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8624 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8625 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8626 }
0986b11b 8627 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8628
d0b27fa7
PZ
8629 return 0;
8630}
6d6bc0ad 8631#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8632
8633int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8634 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8635 loff_t *ppos)
8636{
8637 int ret;
8638 int old_period, old_runtime;
8639 static DEFINE_MUTEX(mutex);
8640
8641 mutex_lock(&mutex);
8642 old_period = sysctl_sched_rt_period;
8643 old_runtime = sysctl_sched_rt_runtime;
8644
8d65af78 8645 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8646
8647 if (!ret && write) {
8648 ret = sched_rt_global_constraints();
8649 if (ret) {
8650 sysctl_sched_rt_period = old_period;
8651 sysctl_sched_rt_runtime = old_runtime;
8652 } else {
8653 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8654 def_rt_bandwidth.rt_period =
8655 ns_to_ktime(global_rt_period());
8656 }
8657 }
8658 mutex_unlock(&mutex);
8659
8660 return ret;
8661}
68318b8e 8662
052f1dc7 8663#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8664
8665/* return corresponding task_group object of a cgroup */
2b01dfe3 8666static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8667{
2b01dfe3
PM
8668 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8669 struct task_group, css);
68318b8e
SV
8670}
8671
8672static struct cgroup_subsys_state *
2b01dfe3 8673cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8674{
ec7dc8ac 8675 struct task_group *tg, *parent;
68318b8e 8676
2b01dfe3 8677 if (!cgrp->parent) {
68318b8e 8678 /* This is early initialization for the top cgroup */
68318b8e
SV
8679 return &init_task_group.css;
8680 }
8681
ec7dc8ac
DG
8682 parent = cgroup_tg(cgrp->parent);
8683 tg = sched_create_group(parent);
68318b8e
SV
8684 if (IS_ERR(tg))
8685 return ERR_PTR(-ENOMEM);
8686
68318b8e
SV
8687 return &tg->css;
8688}
8689
41a2d6cf
IM
8690static void
8691cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8692{
2b01dfe3 8693 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8694
8695 sched_destroy_group(tg);
8696}
8697
41a2d6cf 8698static int
be367d09 8699cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8700{
b68aa230 8701#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8702 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8703 return -EINVAL;
8704#else
68318b8e
SV
8705 /* We don't support RT-tasks being in separate groups */
8706 if (tsk->sched_class != &fair_sched_class)
8707 return -EINVAL;
b68aa230 8708#endif
be367d09
BB
8709 return 0;
8710}
68318b8e 8711
be367d09
BB
8712static int
8713cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8714 struct task_struct *tsk, bool threadgroup)
8715{
8716 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8717 if (retval)
8718 return retval;
8719 if (threadgroup) {
8720 struct task_struct *c;
8721 rcu_read_lock();
8722 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8723 retval = cpu_cgroup_can_attach_task(cgrp, c);
8724 if (retval) {
8725 rcu_read_unlock();
8726 return retval;
8727 }
8728 }
8729 rcu_read_unlock();
8730 }
68318b8e
SV
8731 return 0;
8732}
8733
8734static void
2b01dfe3 8735cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8736 struct cgroup *old_cont, struct task_struct *tsk,
8737 bool threadgroup)
68318b8e
SV
8738{
8739 sched_move_task(tsk);
be367d09
BB
8740 if (threadgroup) {
8741 struct task_struct *c;
8742 rcu_read_lock();
8743 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8744 sched_move_task(c);
8745 }
8746 rcu_read_unlock();
8747 }
68318b8e
SV
8748}
8749
052f1dc7 8750#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8751static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8752 u64 shareval)
68318b8e 8753{
2b01dfe3 8754 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8755}
8756
f4c753b7 8757static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8758{
2b01dfe3 8759 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8760
8761 return (u64) tg->shares;
8762}
6d6bc0ad 8763#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8764
052f1dc7 8765#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8766static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8767 s64 val)
6f505b16 8768{
06ecb27c 8769 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8770}
8771
06ecb27c 8772static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8773{
06ecb27c 8774 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8775}
d0b27fa7
PZ
8776
8777static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8778 u64 rt_period_us)
8779{
8780 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8781}
8782
8783static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8784{
8785 return sched_group_rt_period(cgroup_tg(cgrp));
8786}
6d6bc0ad 8787#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8788
fe5c7cc2 8789static struct cftype cpu_files[] = {
052f1dc7 8790#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8791 {
8792 .name = "shares",
f4c753b7
PM
8793 .read_u64 = cpu_shares_read_u64,
8794 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8795 },
052f1dc7
PZ
8796#endif
8797#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8798 {
9f0c1e56 8799 .name = "rt_runtime_us",
06ecb27c
PM
8800 .read_s64 = cpu_rt_runtime_read,
8801 .write_s64 = cpu_rt_runtime_write,
6f505b16 8802 },
d0b27fa7
PZ
8803 {
8804 .name = "rt_period_us",
f4c753b7
PM
8805 .read_u64 = cpu_rt_period_read_uint,
8806 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8807 },
052f1dc7 8808#endif
68318b8e
SV
8809};
8810
8811static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8812{
fe5c7cc2 8813 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8814}
8815
8816struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8817 .name = "cpu",
8818 .create = cpu_cgroup_create,
8819 .destroy = cpu_cgroup_destroy,
8820 .can_attach = cpu_cgroup_can_attach,
8821 .attach = cpu_cgroup_attach,
8822 .populate = cpu_cgroup_populate,
8823 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8824 .early_init = 1,
8825};
8826
052f1dc7 8827#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8828
8829#ifdef CONFIG_CGROUP_CPUACCT
8830
8831/*
8832 * CPU accounting code for task groups.
8833 *
8834 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8835 * (balbir@in.ibm.com).
8836 */
8837
934352f2 8838/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8839struct cpuacct {
8840 struct cgroup_subsys_state css;
8841 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8842 u64 __percpu *cpuusage;
ef12fefa 8843 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8844 struct cpuacct *parent;
d842de87
SV
8845};
8846
8847struct cgroup_subsys cpuacct_subsys;
8848
8849/* return cpu accounting group corresponding to this container */
32cd756a 8850static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8851{
32cd756a 8852 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8853 struct cpuacct, css);
8854}
8855
8856/* return cpu accounting group to which this task belongs */
8857static inline struct cpuacct *task_ca(struct task_struct *tsk)
8858{
8859 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8860 struct cpuacct, css);
8861}
8862
8863/* create a new cpu accounting group */
8864static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8865 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8866{
8867 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8868 int i;
d842de87
SV
8869
8870 if (!ca)
ef12fefa 8871 goto out;
d842de87
SV
8872
8873 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8874 if (!ca->cpuusage)
8875 goto out_free_ca;
8876
8877 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8878 if (percpu_counter_init(&ca->cpustat[i], 0))
8879 goto out_free_counters;
d842de87 8880
934352f2
BR
8881 if (cgrp->parent)
8882 ca->parent = cgroup_ca(cgrp->parent);
8883
d842de87 8884 return &ca->css;
ef12fefa
BR
8885
8886out_free_counters:
8887 while (--i >= 0)
8888 percpu_counter_destroy(&ca->cpustat[i]);
8889 free_percpu(ca->cpuusage);
8890out_free_ca:
8891 kfree(ca);
8892out:
8893 return ERR_PTR(-ENOMEM);
d842de87
SV
8894}
8895
8896/* destroy an existing cpu accounting group */
41a2d6cf 8897static void
32cd756a 8898cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8899{
32cd756a 8900 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8901 int i;
d842de87 8902
ef12fefa
BR
8903 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8904 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8905 free_percpu(ca->cpuusage);
8906 kfree(ca);
8907}
8908
720f5498
KC
8909static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8910{
b36128c8 8911 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8912 u64 data;
8913
8914#ifndef CONFIG_64BIT
8915 /*
8916 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8917 */
05fa785c 8918 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8919 data = *cpuusage;
05fa785c 8920 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8921#else
8922 data = *cpuusage;
8923#endif
8924
8925 return data;
8926}
8927
8928static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8929{
b36128c8 8930 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8931
8932#ifndef CONFIG_64BIT
8933 /*
8934 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8935 */
05fa785c 8936 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8937 *cpuusage = val;
05fa785c 8938 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8939#else
8940 *cpuusage = val;
8941#endif
8942}
8943
d842de87 8944/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8945static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8946{
32cd756a 8947 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8948 u64 totalcpuusage = 0;
8949 int i;
8950
720f5498
KC
8951 for_each_present_cpu(i)
8952 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8953
8954 return totalcpuusage;
8955}
8956
0297b803
DG
8957static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8958 u64 reset)
8959{
8960 struct cpuacct *ca = cgroup_ca(cgrp);
8961 int err = 0;
8962 int i;
8963
8964 if (reset) {
8965 err = -EINVAL;
8966 goto out;
8967 }
8968
720f5498
KC
8969 for_each_present_cpu(i)
8970 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8971
0297b803
DG
8972out:
8973 return err;
8974}
8975
e9515c3c
KC
8976static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8977 struct seq_file *m)
8978{
8979 struct cpuacct *ca = cgroup_ca(cgroup);
8980 u64 percpu;
8981 int i;
8982
8983 for_each_present_cpu(i) {
8984 percpu = cpuacct_cpuusage_read(ca, i);
8985 seq_printf(m, "%llu ", (unsigned long long) percpu);
8986 }
8987 seq_printf(m, "\n");
8988 return 0;
8989}
8990
ef12fefa
BR
8991static const char *cpuacct_stat_desc[] = {
8992 [CPUACCT_STAT_USER] = "user",
8993 [CPUACCT_STAT_SYSTEM] = "system",
8994};
8995
8996static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8997 struct cgroup_map_cb *cb)
8998{
8999 struct cpuacct *ca = cgroup_ca(cgrp);
9000 int i;
9001
9002 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9003 s64 val = percpu_counter_read(&ca->cpustat[i]);
9004 val = cputime64_to_clock_t(val);
9005 cb->fill(cb, cpuacct_stat_desc[i], val);
9006 }
9007 return 0;
9008}
9009
d842de87
SV
9010static struct cftype files[] = {
9011 {
9012 .name = "usage",
f4c753b7
PM
9013 .read_u64 = cpuusage_read,
9014 .write_u64 = cpuusage_write,
d842de87 9015 },
e9515c3c
KC
9016 {
9017 .name = "usage_percpu",
9018 .read_seq_string = cpuacct_percpu_seq_read,
9019 },
ef12fefa
BR
9020 {
9021 .name = "stat",
9022 .read_map = cpuacct_stats_show,
9023 },
d842de87
SV
9024};
9025
32cd756a 9026static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9027{
32cd756a 9028 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9029}
9030
9031/*
9032 * charge this task's execution time to its accounting group.
9033 *
9034 * called with rq->lock held.
9035 */
9036static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9037{
9038 struct cpuacct *ca;
934352f2 9039 int cpu;
d842de87 9040
c40c6f85 9041 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9042 return;
9043
934352f2 9044 cpu = task_cpu(tsk);
a18b83b7
BR
9045
9046 rcu_read_lock();
9047
d842de87 9048 ca = task_ca(tsk);
d842de87 9049
934352f2 9050 for (; ca; ca = ca->parent) {
b36128c8 9051 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9052 *cpuusage += cputime;
9053 }
a18b83b7
BR
9054
9055 rcu_read_unlock();
d842de87
SV
9056}
9057
fa535a77
AB
9058/*
9059 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9060 * in cputime_t units. As a result, cpuacct_update_stats calls
9061 * percpu_counter_add with values large enough to always overflow the
9062 * per cpu batch limit causing bad SMP scalability.
9063 *
9064 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9065 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9066 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9067 */
9068#ifdef CONFIG_SMP
9069#define CPUACCT_BATCH \
9070 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9071#else
9072#define CPUACCT_BATCH 0
9073#endif
9074
ef12fefa
BR
9075/*
9076 * Charge the system/user time to the task's accounting group.
9077 */
9078static void cpuacct_update_stats(struct task_struct *tsk,
9079 enum cpuacct_stat_index idx, cputime_t val)
9080{
9081 struct cpuacct *ca;
fa535a77 9082 int batch = CPUACCT_BATCH;
ef12fefa
BR
9083
9084 if (unlikely(!cpuacct_subsys.active))
9085 return;
9086
9087 rcu_read_lock();
9088 ca = task_ca(tsk);
9089
9090 do {
fa535a77 9091 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9092 ca = ca->parent;
9093 } while (ca);
9094 rcu_read_unlock();
9095}
9096
d842de87
SV
9097struct cgroup_subsys cpuacct_subsys = {
9098 .name = "cpuacct",
9099 .create = cpuacct_create,
9100 .destroy = cpuacct_destroy,
9101 .populate = cpuacct_populate,
9102 .subsys_id = cpuacct_subsys_id,
9103};
9104#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9105
9106#ifndef CONFIG_SMP
9107
03b042bf
PM
9108void synchronize_sched_expedited(void)
9109{
fc390cde 9110 barrier();
03b042bf
PM
9111}
9112EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9113
9114#else /* #ifndef CONFIG_SMP */
9115
cc631fb7 9116static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9117
cc631fb7 9118static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9119{
969c7921
TH
9120 /*
9121 * There must be a full memory barrier on each affected CPU
9122 * between the time that try_stop_cpus() is called and the
9123 * time that it returns.
9124 *
9125 * In the current initial implementation of cpu_stop, the
9126 * above condition is already met when the control reaches
9127 * this point and the following smp_mb() is not strictly
9128 * necessary. Do smp_mb() anyway for documentation and
9129 * robustness against future implementation changes.
9130 */
cc631fb7 9131 smp_mb(); /* See above comment block. */
969c7921 9132 return 0;
03b042bf 9133}
03b042bf
PM
9134
9135/*
9136 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9137 * approach to force grace period to end quickly. This consumes
9138 * significant time on all CPUs, and is thus not recommended for
9139 * any sort of common-case code.
9140 *
9141 * Note that it is illegal to call this function while holding any
9142 * lock that is acquired by a CPU-hotplug notifier. Failing to
9143 * observe this restriction will result in deadlock.
9144 */
9145void synchronize_sched_expedited(void)
9146{
969c7921 9147 int snap, trycount = 0;
03b042bf
PM
9148
9149 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9150 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9151 get_online_cpus();
969c7921
TH
9152 while (try_stop_cpus(cpu_online_mask,
9153 synchronize_sched_expedited_cpu_stop,
94458d5e 9154 NULL) == -EAGAIN) {
03b042bf
PM
9155 put_online_cpus();
9156 if (trycount++ < 10)
9157 udelay(trycount * num_online_cpus());
9158 else {
9159 synchronize_sched();
9160 return;
9161 }
969c7921 9162 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9163 smp_mb(); /* ensure test happens before caller kfree */
9164 return;
9165 }
9166 get_online_cpus();
9167 }
969c7921 9168 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9169 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9170 put_online_cpus();
03b042bf
PM
9171}
9172EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9173
9174#endif /* #else #ifndef CONFIG_SMP */