]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: make !hrtick faster
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4
LT
76
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
d7876a08 96 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 97 */
d6322faf 98#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 99
6aa645ea
IM
100#define NICE_0_LOAD SCHED_LOAD_SCALE
101#define NICE_0_SHIFT SCHED_LOAD_SHIFT
102
1da177e4
LT
103/*
104 * These are the 'tuning knobs' of the scheduler:
105 *
a4ec24b4 106 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
107 * Timeslices get refilled after they expire.
108 */
1da177e4 109#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 110
d0b27fa7
PZ
111/*
112 * single value that denotes runtime == period, ie unlimited time.
113 */
114#define RUNTIME_INF ((u64)~0ULL)
115
5517d86b
ED
116#ifdef CONFIG_SMP
117/*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122{
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124}
125
126/*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131{
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134}
135#endif
136
e05606d3
IM
137static inline int rt_policy(int policy)
138{
3f33a7ce 139 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
140 return 1;
141 return 0;
142}
143
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
1da177e4 149/*
6aa645ea 150 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 151 */
6aa645ea
IM
152struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
45c01e82
GH
154 struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */
155 struct list_head squeue[MAX_RT_PRIO]; /* shared queue */
6aa645ea
IM
156};
157
d0b27fa7 158struct rt_bandwidth {
ea736ed5
IM
159 /* nests inside the rq lock: */
160 spinlock_t rt_runtime_lock;
161 ktime_t rt_period;
162 u64 rt_runtime;
163 struct hrtimer rt_period_timer;
d0b27fa7
PZ
164};
165
166static struct rt_bandwidth def_rt_bandwidth;
167
168static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
169
170static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
171{
172 struct rt_bandwidth *rt_b =
173 container_of(timer, struct rt_bandwidth, rt_period_timer);
174 ktime_t now;
175 int overrun;
176 int idle = 0;
177
178 for (;;) {
179 now = hrtimer_cb_get_time(timer);
180 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
181
182 if (!overrun)
183 break;
184
185 idle = do_sched_rt_period_timer(rt_b, overrun);
186 }
187
188 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
189}
190
191static
192void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
193{
194 rt_b->rt_period = ns_to_ktime(period);
195 rt_b->rt_runtime = runtime;
196
ac086bc2
PZ
197 spin_lock_init(&rt_b->rt_runtime_lock);
198
d0b27fa7
PZ
199 hrtimer_init(&rt_b->rt_period_timer,
200 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
201 rt_b->rt_period_timer.function = sched_rt_period_timer;
202 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
203}
204
205static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
206{
207 ktime_t now;
208
209 if (rt_b->rt_runtime == RUNTIME_INF)
210 return;
211
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 return;
214
215 spin_lock(&rt_b->rt_runtime_lock);
216 for (;;) {
217 if (hrtimer_active(&rt_b->rt_period_timer))
218 break;
219
220 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
221 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
222 hrtimer_start(&rt_b->rt_period_timer,
223 rt_b->rt_period_timer.expires,
224 HRTIMER_MODE_ABS);
225 }
226 spin_unlock(&rt_b->rt_runtime_lock);
227}
228
229#ifdef CONFIG_RT_GROUP_SCHED
230static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
231{
232 hrtimer_cancel(&rt_b->rt_period_timer);
233}
234#endif
235
712555ee
HC
236/*
237 * sched_domains_mutex serializes calls to arch_init_sched_domains,
238 * detach_destroy_domains and partition_sched_domains.
239 */
240static DEFINE_MUTEX(sched_domains_mutex);
241
052f1dc7 242#ifdef CONFIG_GROUP_SCHED
29f59db3 243
68318b8e
SV
244#include <linux/cgroup.h>
245
29f59db3
SV
246struct cfs_rq;
247
6f505b16
PZ
248static LIST_HEAD(task_groups);
249
29f59db3 250/* task group related information */
4cf86d77 251struct task_group {
052f1dc7 252#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
253 struct cgroup_subsys_state css;
254#endif
052f1dc7
PZ
255
256#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
f473aa5e
PZ
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
29f59db3
SV
277};
278
354d60c2 279#ifdef CONFIG_USER_SCHED
eff766a6
PZ
280
281/*
282 * Root task group.
283 * Every UID task group (including init_task_group aka UID-0) will
284 * be a child to this group.
285 */
286struct task_group root_task_group;
287
052f1dc7 288#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
289/* Default task group's sched entity on each cpu */
290static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
291/* Default task group's cfs_rq on each cpu */
292static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
293#endif
294
295#ifdef CONFIG_RT_GROUP_SCHED
296static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
297static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 298#endif
eff766a6
PZ
299#else
300#define root_task_group init_task_group
354d60c2 301#endif
6f505b16 302
8ed36996 303/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
304 * a task group's cpu shares.
305 */
8ed36996 306static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 307
052f1dc7 308#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
309#ifdef CONFIG_USER_SCHED
310# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
311#else
312# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
313#endif
314
cb4ad1ff
MX
315/*
316 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
317 * (The default weight is 1024 - so there's no practical
318 * limitation from this.)
319 */
18d95a28 320#define MIN_SHARES 2
cb4ad1ff 321#define MAX_SHARES (ULONG_MAX - 1)
18d95a28 322
052f1dc7
PZ
323static int init_task_group_load = INIT_TASK_GROUP_LOAD;
324#endif
325
29f59db3 326/* Default task group.
3a252015 327 * Every task in system belong to this group at bootup.
29f59db3 328 */
434d53b0 329struct task_group init_task_group;
29f59db3
SV
330
331/* return group to which a task belongs */
4cf86d77 332static inline struct task_group *task_group(struct task_struct *p)
29f59db3 333{
4cf86d77 334 struct task_group *tg;
9b5b7751 335
052f1dc7 336#ifdef CONFIG_USER_SCHED
24e377a8 337 tg = p->user->tg;
052f1dc7 338#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
339 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
340 struct task_group, css);
24e377a8 341#else
41a2d6cf 342 tg = &init_task_group;
24e377a8 343#endif
9b5b7751 344 return tg;
29f59db3
SV
345}
346
347/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 348static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 349{
052f1dc7 350#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
351 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
352 p->se.parent = task_group(p)->se[cpu];
052f1dc7 353#endif
6f505b16 354
052f1dc7 355#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
356 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
357 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 358#endif
29f59db3
SV
359}
360
361#else
362
6f505b16 363static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 364
052f1dc7 365#endif /* CONFIG_GROUP_SCHED */
29f59db3 366
6aa645ea
IM
367/* CFS-related fields in a runqueue */
368struct cfs_rq {
369 struct load_weight load;
370 unsigned long nr_running;
371
6aa645ea 372 u64 exec_clock;
e9acbff6 373 u64 min_vruntime;
6aa645ea
IM
374
375 struct rb_root tasks_timeline;
376 struct rb_node *rb_leftmost;
4a55bd5e
PZ
377
378 struct list_head tasks;
379 struct list_head *balance_iterator;
380
381 /*
382 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
383 * It is set to NULL otherwise (i.e when none are currently running).
384 */
aa2ac252 385 struct sched_entity *curr, *next;
ddc97297
PZ
386
387 unsigned long nr_spread_over;
388
62160e3f 389#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
390 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
391
41a2d6cf
IM
392 /*
393 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
394 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
395 * (like users, containers etc.)
396 *
397 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
398 * list is used during load balance.
399 */
41a2d6cf
IM
400 struct list_head leaf_cfs_rq_list;
401 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
402#endif
403};
1da177e4 404
6aa645ea
IM
405/* Real-Time classes' related field in a runqueue: */
406struct rt_rq {
407 struct rt_prio_array active;
63489e45 408 unsigned long rt_nr_running;
052f1dc7 409#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
410 int highest_prio; /* highest queued rt task prio */
411#endif
fa85ae24 412#ifdef CONFIG_SMP
73fe6aae 413 unsigned long rt_nr_migratory;
a22d7fc1 414 int overloaded;
fa85ae24 415#endif
6f505b16 416 int rt_throttled;
fa85ae24 417 u64 rt_time;
ac086bc2 418 u64 rt_runtime;
ea736ed5 419 /* Nests inside the rq lock: */
ac086bc2 420 spinlock_t rt_runtime_lock;
6f505b16 421
052f1dc7 422#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
423 unsigned long rt_nr_boosted;
424
6f505b16
PZ
425 struct rq *rq;
426 struct list_head leaf_rt_rq_list;
427 struct task_group *tg;
428 struct sched_rt_entity *rt_se;
429#endif
6aa645ea
IM
430};
431
57d885fe
GH
432#ifdef CONFIG_SMP
433
434/*
435 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
436 * variables. Each exclusive cpuset essentially defines an island domain by
437 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
438 * exclusive cpuset is created, we also create and attach a new root-domain
439 * object.
440 *
57d885fe
GH
441 */
442struct root_domain {
443 atomic_t refcount;
444 cpumask_t span;
445 cpumask_t online;
637f5085 446
0eab9146 447 /*
637f5085
GH
448 * The "RT overload" flag: it gets set if a CPU has more than
449 * one runnable RT task.
450 */
451 cpumask_t rto_mask;
0eab9146 452 atomic_t rto_count;
57d885fe
GH
453};
454
dc938520
GH
455/*
456 * By default the system creates a single root-domain with all cpus as
457 * members (mimicking the global state we have today).
458 */
57d885fe
GH
459static struct root_domain def_root_domain;
460
461#endif
462
1da177e4
LT
463/*
464 * This is the main, per-CPU runqueue data structure.
465 *
466 * Locking rule: those places that want to lock multiple runqueues
467 * (such as the load balancing or the thread migration code), lock
468 * acquire operations must be ordered by ascending &runqueue.
469 */
70b97a7f 470struct rq {
d8016491
IM
471 /* runqueue lock: */
472 spinlock_t lock;
1da177e4
LT
473
474 /*
475 * nr_running and cpu_load should be in the same cacheline because
476 * remote CPUs use both these fields when doing load calculation.
477 */
478 unsigned long nr_running;
6aa645ea
IM
479 #define CPU_LOAD_IDX_MAX 5
480 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 481 unsigned char idle_at_tick;
46cb4b7c 482#ifdef CONFIG_NO_HZ
15934a37 483 unsigned long last_tick_seen;
46cb4b7c
SS
484 unsigned char in_nohz_recently;
485#endif
d8016491
IM
486 /* capture load from *all* tasks on this cpu: */
487 struct load_weight load;
6aa645ea
IM
488 unsigned long nr_load_updates;
489 u64 nr_switches;
490
491 struct cfs_rq cfs;
6f505b16 492 struct rt_rq rt;
6f505b16 493
6aa645ea 494#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
495 /* list of leaf cfs_rq on this cpu: */
496 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
497#endif
498#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 499 struct list_head leaf_rt_rq_list;
1da177e4 500#endif
1da177e4
LT
501
502 /*
503 * This is part of a global counter where only the total sum
504 * over all CPUs matters. A task can increase this counter on
505 * one CPU and if it got migrated afterwards it may decrease
506 * it on another CPU. Always updated under the runqueue lock:
507 */
508 unsigned long nr_uninterruptible;
509
36c8b586 510 struct task_struct *curr, *idle;
c9819f45 511 unsigned long next_balance;
1da177e4 512 struct mm_struct *prev_mm;
6aa645ea 513
3e51f33f 514 u64 clock;
6aa645ea 515
1da177e4
LT
516 atomic_t nr_iowait;
517
518#ifdef CONFIG_SMP
0eab9146 519 struct root_domain *rd;
1da177e4
LT
520 struct sched_domain *sd;
521
522 /* For active balancing */
523 int active_balance;
524 int push_cpu;
d8016491
IM
525 /* cpu of this runqueue: */
526 int cpu;
1da177e4 527
36c8b586 528 struct task_struct *migration_thread;
1da177e4
LT
529 struct list_head migration_queue;
530#endif
531
8f4d37ec
PZ
532#ifdef CONFIG_SCHED_HRTICK
533 unsigned long hrtick_flags;
534 ktime_t hrtick_expire;
535 struct hrtimer hrtick_timer;
536#endif
537
1da177e4
LT
538#ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
541
542 /* sys_sched_yield() stats */
480b9434
KC
543 unsigned int yld_exp_empty;
544 unsigned int yld_act_empty;
545 unsigned int yld_both_empty;
546 unsigned int yld_count;
1da177e4
LT
547
548 /* schedule() stats */
480b9434
KC
549 unsigned int sched_switch;
550 unsigned int sched_count;
551 unsigned int sched_goidle;
1da177e4
LT
552
553 /* try_to_wake_up() stats */
480b9434
KC
554 unsigned int ttwu_count;
555 unsigned int ttwu_local;
b8efb561
IM
556
557 /* BKL stats */
480b9434 558 unsigned int bkl_count;
1da177e4 559#endif
fcb99371 560 struct lock_class_key rq_lock_key;
1da177e4
LT
561};
562
f34e3b61 563static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 564
dd41f596
IM
565static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
566{
567 rq->curr->sched_class->check_preempt_curr(rq, p);
568}
569
0a2966b4
CL
570static inline int cpu_of(struct rq *rq)
571{
572#ifdef CONFIG_SMP
573 return rq->cpu;
574#else
575 return 0;
576#endif
577}
578
674311d5
NP
579/*
580 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 581 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
582 *
583 * The domain tree of any CPU may only be accessed from within
584 * preempt-disabled sections.
585 */
48f24c4d
IM
586#define for_each_domain(cpu, __sd) \
587 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
588
589#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
590#define this_rq() (&__get_cpu_var(runqueues))
591#define task_rq(p) cpu_rq(task_cpu(p))
592#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
593
3e51f33f
PZ
594static inline void update_rq_clock(struct rq *rq)
595{
596 rq->clock = sched_clock_cpu(cpu_of(rq));
597}
598
bf5c91ba
IM
599/*
600 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
601 */
602#ifdef CONFIG_SCHED_DEBUG
603# define const_debug __read_mostly
604#else
605# define const_debug static const
606#endif
607
608/*
609 * Debugging: various feature bits
610 */
f00b45c1
PZ
611
612#define SCHED_FEAT(name, enabled) \
613 __SCHED_FEAT_##name ,
614
bf5c91ba 615enum {
f00b45c1 616#include "sched_features.h"
bf5c91ba
IM
617};
618
f00b45c1
PZ
619#undef SCHED_FEAT
620
621#define SCHED_FEAT(name, enabled) \
622 (1UL << __SCHED_FEAT_##name) * enabled |
623
bf5c91ba 624const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
625#include "sched_features.h"
626 0;
627
628#undef SCHED_FEAT
629
630#ifdef CONFIG_SCHED_DEBUG
631#define SCHED_FEAT(name, enabled) \
632 #name ,
633
983ed7a6 634static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
635#include "sched_features.h"
636 NULL
637};
638
639#undef SCHED_FEAT
640
983ed7a6 641static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
642{
643 filp->private_data = inode->i_private;
644 return 0;
645}
646
647static ssize_t
648sched_feat_read(struct file *filp, char __user *ubuf,
649 size_t cnt, loff_t *ppos)
650{
651 char *buf;
652 int r = 0;
653 int len = 0;
654 int i;
655
656 for (i = 0; sched_feat_names[i]; i++) {
657 len += strlen(sched_feat_names[i]);
658 len += 4;
659 }
660
661 buf = kmalloc(len + 2, GFP_KERNEL);
662 if (!buf)
663 return -ENOMEM;
664
665 for (i = 0; sched_feat_names[i]; i++) {
666 if (sysctl_sched_features & (1UL << i))
667 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
668 else
c24b7c52 669 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
670 }
671
672 r += sprintf(buf + r, "\n");
673 WARN_ON(r >= len + 2);
674
675 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
676
677 kfree(buf);
678
679 return r;
680}
681
682static ssize_t
683sched_feat_write(struct file *filp, const char __user *ubuf,
684 size_t cnt, loff_t *ppos)
685{
686 char buf[64];
687 char *cmp = buf;
688 int neg = 0;
689 int i;
690
691 if (cnt > 63)
692 cnt = 63;
693
694 if (copy_from_user(&buf, ubuf, cnt))
695 return -EFAULT;
696
697 buf[cnt] = 0;
698
c24b7c52 699 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
700 neg = 1;
701 cmp += 3;
702 }
703
704 for (i = 0; sched_feat_names[i]; i++) {
705 int len = strlen(sched_feat_names[i]);
706
707 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
708 if (neg)
709 sysctl_sched_features &= ~(1UL << i);
710 else
711 sysctl_sched_features |= (1UL << i);
712 break;
713 }
714 }
715
716 if (!sched_feat_names[i])
717 return -EINVAL;
718
719 filp->f_pos += cnt;
720
721 return cnt;
722}
723
724static struct file_operations sched_feat_fops = {
725 .open = sched_feat_open,
726 .read = sched_feat_read,
727 .write = sched_feat_write,
728};
729
730static __init int sched_init_debug(void)
731{
f00b45c1
PZ
732 debugfs_create_file("sched_features", 0644, NULL, NULL,
733 &sched_feat_fops);
734
735 return 0;
736}
737late_initcall(sched_init_debug);
738
739#endif
740
741#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 742
b82d9fdd
PZ
743/*
744 * Number of tasks to iterate in a single balance run.
745 * Limited because this is done with IRQs disabled.
746 */
747const_debug unsigned int sysctl_sched_nr_migrate = 32;
748
fa85ae24 749/*
9f0c1e56 750 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
751 * default: 1s
752 */
9f0c1e56 753unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 754
6892b75e
IM
755static __read_mostly int scheduler_running;
756
9f0c1e56
PZ
757/*
758 * part of the period that we allow rt tasks to run in us.
759 * default: 0.95s
760 */
761int sysctl_sched_rt_runtime = 950000;
fa85ae24 762
d0b27fa7
PZ
763static inline u64 global_rt_period(void)
764{
765 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
766}
767
768static inline u64 global_rt_runtime(void)
769{
770 if (sysctl_sched_rt_period < 0)
771 return RUNTIME_INF;
772
773 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
774}
fa85ae24 775
690229a0 776unsigned long long time_sync_thresh = 100000;
27ec4407
IM
777
778static DEFINE_PER_CPU(unsigned long long, time_offset);
779static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
780
e436d800 781/*
27ec4407
IM
782 * Global lock which we take every now and then to synchronize
783 * the CPUs time. This method is not warp-safe, but it's good
784 * enough to synchronize slowly diverging time sources and thus
785 * it's good enough for tracing:
e436d800 786 */
27ec4407
IM
787static DEFINE_SPINLOCK(time_sync_lock);
788static unsigned long long prev_global_time;
789
dfbf4a1b 790static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
27ec4407 791{
dfbf4a1b
IM
792 /*
793 * We want this inlined, to not get tracer function calls
794 * in this critical section:
795 */
796 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
797 __raw_spin_lock(&time_sync_lock.raw_lock);
27ec4407
IM
798
799 if (time < prev_global_time) {
800 per_cpu(time_offset, cpu) += prev_global_time - time;
801 time = prev_global_time;
802 } else {
803 prev_global_time = time;
804 }
805
dfbf4a1b
IM
806 __raw_spin_unlock(&time_sync_lock.raw_lock);
807 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
27ec4407
IM
808
809 return time;
810}
811
812static unsigned long long __cpu_clock(int cpu)
e436d800 813{
e436d800 814 unsigned long long now;
e436d800 815
8ced5f69
IM
816 /*
817 * Only call sched_clock() if the scheduler has already been
818 * initialized (some code might call cpu_clock() very early):
819 */
6892b75e
IM
820 if (unlikely(!scheduler_running))
821 return 0;
822
3e51f33f 823 now = sched_clock_cpu(cpu);
e436d800
IM
824
825 return now;
826}
27ec4407
IM
827
828/*
829 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
830 * clock constructed from sched_clock():
831 */
832unsigned long long cpu_clock(int cpu)
833{
834 unsigned long long prev_cpu_time, time, delta_time;
dfbf4a1b 835 unsigned long flags;
27ec4407 836
dfbf4a1b 837 local_irq_save(flags);
27ec4407
IM
838 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
839 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
840 delta_time = time-prev_cpu_time;
841
dfbf4a1b 842 if (unlikely(delta_time > time_sync_thresh)) {
27ec4407 843 time = __sync_cpu_clock(time, cpu);
dfbf4a1b
IM
844 per_cpu(prev_cpu_time, cpu) = time;
845 }
846 local_irq_restore(flags);
27ec4407
IM
847
848 return time;
849}
a58f6f25 850EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 851
1da177e4 852#ifndef prepare_arch_switch
4866cde0
NP
853# define prepare_arch_switch(next) do { } while (0)
854#endif
855#ifndef finish_arch_switch
856# define finish_arch_switch(prev) do { } while (0)
857#endif
858
051a1d1a
DA
859static inline int task_current(struct rq *rq, struct task_struct *p)
860{
861 return rq->curr == p;
862}
863
4866cde0 864#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 865static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 866{
051a1d1a 867 return task_current(rq, p);
4866cde0
NP
868}
869
70b97a7f 870static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
871{
872}
873
70b97a7f 874static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 875{
da04c035
IM
876#ifdef CONFIG_DEBUG_SPINLOCK
877 /* this is a valid case when another task releases the spinlock */
878 rq->lock.owner = current;
879#endif
8a25d5de
IM
880 /*
881 * If we are tracking spinlock dependencies then we have to
882 * fix up the runqueue lock - which gets 'carried over' from
883 * prev into current:
884 */
885 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
886
4866cde0
NP
887 spin_unlock_irq(&rq->lock);
888}
889
890#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 891static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
892{
893#ifdef CONFIG_SMP
894 return p->oncpu;
895#else
051a1d1a 896 return task_current(rq, p);
4866cde0
NP
897#endif
898}
899
70b97a7f 900static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 /*
904 * We can optimise this out completely for !SMP, because the
905 * SMP rebalancing from interrupt is the only thing that cares
906 * here.
907 */
908 next->oncpu = 1;
909#endif
910#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 spin_unlock_irq(&rq->lock);
912#else
913 spin_unlock(&rq->lock);
914#endif
915}
916
70b97a7f 917static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
918{
919#ifdef CONFIG_SMP
920 /*
921 * After ->oncpu is cleared, the task can be moved to a different CPU.
922 * We must ensure this doesn't happen until the switch is completely
923 * finished.
924 */
925 smp_wmb();
926 prev->oncpu = 0;
927#endif
928#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
929 local_irq_enable();
1da177e4 930#endif
4866cde0
NP
931}
932#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 933
b29739f9
IM
934/*
935 * __task_rq_lock - lock the runqueue a given task resides on.
936 * Must be called interrupts disabled.
937 */
70b97a7f 938static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
939 __acquires(rq->lock)
940{
3a5c359a
AK
941 for (;;) {
942 struct rq *rq = task_rq(p);
943 spin_lock(&rq->lock);
944 if (likely(rq == task_rq(p)))
945 return rq;
b29739f9 946 spin_unlock(&rq->lock);
b29739f9 947 }
b29739f9
IM
948}
949
1da177e4
LT
950/*
951 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 952 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
953 * explicitly disabling preemption.
954 */
70b97a7f 955static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
956 __acquires(rq->lock)
957{
70b97a7f 958 struct rq *rq;
1da177e4 959
3a5c359a
AK
960 for (;;) {
961 local_irq_save(*flags);
962 rq = task_rq(p);
963 spin_lock(&rq->lock);
964 if (likely(rq == task_rq(p)))
965 return rq;
1da177e4 966 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 967 }
1da177e4
LT
968}
969
a9957449 970static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
971 __releases(rq->lock)
972{
973 spin_unlock(&rq->lock);
974}
975
70b97a7f 976static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
977 __releases(rq->lock)
978{
979 spin_unlock_irqrestore(&rq->lock, *flags);
980}
981
1da177e4 982/*
cc2a73b5 983 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 984 */
a9957449 985static struct rq *this_rq_lock(void)
1da177e4
LT
986 __acquires(rq->lock)
987{
70b97a7f 988 struct rq *rq;
1da177e4
LT
989
990 local_irq_disable();
991 rq = this_rq();
992 spin_lock(&rq->lock);
993
994 return rq;
995}
996
8f4d37ec
PZ
997static void __resched_task(struct task_struct *p, int tif_bit);
998
999static inline void resched_task(struct task_struct *p)
1000{
1001 __resched_task(p, TIF_NEED_RESCHED);
1002}
1003
1004#ifdef CONFIG_SCHED_HRTICK
1005/*
1006 * Use HR-timers to deliver accurate preemption points.
1007 *
1008 * Its all a bit involved since we cannot program an hrt while holding the
1009 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1010 * reschedule event.
1011 *
1012 * When we get rescheduled we reprogram the hrtick_timer outside of the
1013 * rq->lock.
1014 */
1015static inline void resched_hrt(struct task_struct *p)
1016{
1017 __resched_task(p, TIF_HRTICK_RESCHED);
1018}
1019
1020static inline void resched_rq(struct rq *rq)
1021{
1022 unsigned long flags;
1023
1024 spin_lock_irqsave(&rq->lock, flags);
1025 resched_task(rq->curr);
1026 spin_unlock_irqrestore(&rq->lock, flags);
1027}
1028
1029enum {
1030 HRTICK_SET, /* re-programm hrtick_timer */
1031 HRTICK_RESET, /* not a new slice */
b328ca18 1032 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1033};
1034
1035/*
1036 * Use hrtick when:
1037 * - enabled by features
1038 * - hrtimer is actually high res
1039 */
1040static inline int hrtick_enabled(struct rq *rq)
1041{
1042 if (!sched_feat(HRTICK))
1043 return 0;
b328ca18
PZ
1044 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1045 return 0;
8f4d37ec
PZ
1046 return hrtimer_is_hres_active(&rq->hrtick_timer);
1047}
1048
1049/*
1050 * Called to set the hrtick timer state.
1051 *
1052 * called with rq->lock held and irqs disabled
1053 */
1054static void hrtick_start(struct rq *rq, u64 delay, int reset)
1055{
1056 assert_spin_locked(&rq->lock);
1057
1058 /*
1059 * preempt at: now + delay
1060 */
1061 rq->hrtick_expire =
1062 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1063 /*
1064 * indicate we need to program the timer
1065 */
1066 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1067 if (reset)
1068 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1069
1070 /*
1071 * New slices are called from the schedule path and don't need a
1072 * forced reschedule.
1073 */
1074 if (reset)
1075 resched_hrt(rq->curr);
1076}
1077
1078static void hrtick_clear(struct rq *rq)
1079{
1080 if (hrtimer_active(&rq->hrtick_timer))
1081 hrtimer_cancel(&rq->hrtick_timer);
1082}
1083
1084/*
1085 * Update the timer from the possible pending state.
1086 */
1087static void hrtick_set(struct rq *rq)
1088{
1089 ktime_t time;
1090 int set, reset;
1091 unsigned long flags;
1092
1093 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1094
1095 spin_lock_irqsave(&rq->lock, flags);
1096 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1097 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1098 time = rq->hrtick_expire;
1099 clear_thread_flag(TIF_HRTICK_RESCHED);
1100 spin_unlock_irqrestore(&rq->lock, flags);
1101
1102 if (set) {
1103 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1104 if (reset && !hrtimer_active(&rq->hrtick_timer))
1105 resched_rq(rq);
1106 } else
1107 hrtick_clear(rq);
1108}
1109
1110/*
1111 * High-resolution timer tick.
1112 * Runs from hardirq context with interrupts disabled.
1113 */
1114static enum hrtimer_restart hrtick(struct hrtimer *timer)
1115{
1116 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1117
1118 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1119
1120 spin_lock(&rq->lock);
3e51f33f 1121 update_rq_clock(rq);
8f4d37ec
PZ
1122 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1123 spin_unlock(&rq->lock);
1124
1125 return HRTIMER_NORESTART;
1126}
1127
b328ca18
PZ
1128static void hotplug_hrtick_disable(int cpu)
1129{
1130 struct rq *rq = cpu_rq(cpu);
1131 unsigned long flags;
1132
1133 spin_lock_irqsave(&rq->lock, flags);
1134 rq->hrtick_flags = 0;
1135 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1136 spin_unlock_irqrestore(&rq->lock, flags);
1137
1138 hrtick_clear(rq);
1139}
1140
1141static void hotplug_hrtick_enable(int cpu)
1142{
1143 struct rq *rq = cpu_rq(cpu);
1144 unsigned long flags;
1145
1146 spin_lock_irqsave(&rq->lock, flags);
1147 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1148 spin_unlock_irqrestore(&rq->lock, flags);
1149}
1150
1151static int
1152hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1153{
1154 int cpu = (int)(long)hcpu;
1155
1156 switch (action) {
1157 case CPU_UP_CANCELED:
1158 case CPU_UP_CANCELED_FROZEN:
1159 case CPU_DOWN_PREPARE:
1160 case CPU_DOWN_PREPARE_FROZEN:
1161 case CPU_DEAD:
1162 case CPU_DEAD_FROZEN:
1163 hotplug_hrtick_disable(cpu);
1164 return NOTIFY_OK;
1165
1166 case CPU_UP_PREPARE:
1167 case CPU_UP_PREPARE_FROZEN:
1168 case CPU_DOWN_FAILED:
1169 case CPU_DOWN_FAILED_FROZEN:
1170 case CPU_ONLINE:
1171 case CPU_ONLINE_FROZEN:
1172 hotplug_hrtick_enable(cpu);
1173 return NOTIFY_OK;
1174 }
1175
1176 return NOTIFY_DONE;
1177}
1178
1179static void init_hrtick(void)
1180{
1181 hotcpu_notifier(hotplug_hrtick, 0);
1182}
1183
1184static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1185{
1186 rq->hrtick_flags = 0;
1187 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1188 rq->hrtick_timer.function = hrtick;
1189 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1190}
1191
1192void hrtick_resched(void)
1193{
1194 struct rq *rq;
1195 unsigned long flags;
1196
1197 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1198 return;
1199
1200 local_irq_save(flags);
1201 rq = cpu_rq(smp_processor_id());
1202 hrtick_set(rq);
1203 local_irq_restore(flags);
1204}
1205#else
1206static inline void hrtick_clear(struct rq *rq)
1207{
1208}
1209
1210static inline void hrtick_set(struct rq *rq)
1211{
1212}
1213
1214static inline void init_rq_hrtick(struct rq *rq)
1215{
1216}
1217
1218void hrtick_resched(void)
1219{
1220}
b328ca18
PZ
1221
1222static inline void init_hrtick(void)
1223{
1224}
8f4d37ec
PZ
1225#endif
1226
c24d20db
IM
1227/*
1228 * resched_task - mark a task 'to be rescheduled now'.
1229 *
1230 * On UP this means the setting of the need_resched flag, on SMP it
1231 * might also involve a cross-CPU call to trigger the scheduler on
1232 * the target CPU.
1233 */
1234#ifdef CONFIG_SMP
1235
1236#ifndef tsk_is_polling
1237#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1238#endif
1239
8f4d37ec 1240static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1241{
1242 int cpu;
1243
1244 assert_spin_locked(&task_rq(p)->lock);
1245
8f4d37ec 1246 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1247 return;
1248
8f4d37ec 1249 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1250
1251 cpu = task_cpu(p);
1252 if (cpu == smp_processor_id())
1253 return;
1254
1255 /* NEED_RESCHED must be visible before we test polling */
1256 smp_mb();
1257 if (!tsk_is_polling(p))
1258 smp_send_reschedule(cpu);
1259}
1260
1261static void resched_cpu(int cpu)
1262{
1263 struct rq *rq = cpu_rq(cpu);
1264 unsigned long flags;
1265
1266 if (!spin_trylock_irqsave(&rq->lock, flags))
1267 return;
1268 resched_task(cpu_curr(cpu));
1269 spin_unlock_irqrestore(&rq->lock, flags);
1270}
06d8308c
TG
1271
1272#ifdef CONFIG_NO_HZ
1273/*
1274 * When add_timer_on() enqueues a timer into the timer wheel of an
1275 * idle CPU then this timer might expire before the next timer event
1276 * which is scheduled to wake up that CPU. In case of a completely
1277 * idle system the next event might even be infinite time into the
1278 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1279 * leaves the inner idle loop so the newly added timer is taken into
1280 * account when the CPU goes back to idle and evaluates the timer
1281 * wheel for the next timer event.
1282 */
1283void wake_up_idle_cpu(int cpu)
1284{
1285 struct rq *rq = cpu_rq(cpu);
1286
1287 if (cpu == smp_processor_id())
1288 return;
1289
1290 /*
1291 * This is safe, as this function is called with the timer
1292 * wheel base lock of (cpu) held. When the CPU is on the way
1293 * to idle and has not yet set rq->curr to idle then it will
1294 * be serialized on the timer wheel base lock and take the new
1295 * timer into account automatically.
1296 */
1297 if (rq->curr != rq->idle)
1298 return;
1299
1300 /*
1301 * We can set TIF_RESCHED on the idle task of the other CPU
1302 * lockless. The worst case is that the other CPU runs the
1303 * idle task through an additional NOOP schedule()
1304 */
1305 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1306
1307 /* NEED_RESCHED must be visible before we test polling */
1308 smp_mb();
1309 if (!tsk_is_polling(rq->idle))
1310 smp_send_reschedule(cpu);
1311}
1312#endif
1313
c24d20db 1314#else
8f4d37ec 1315static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1316{
1317 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1318 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1319}
1320#endif
1321
45bf76df
IM
1322#if BITS_PER_LONG == 32
1323# define WMULT_CONST (~0UL)
1324#else
1325# define WMULT_CONST (1UL << 32)
1326#endif
1327
1328#define WMULT_SHIFT 32
1329
194081eb
IM
1330/*
1331 * Shift right and round:
1332 */
cf2ab469 1333#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1334
cb1c4fc9 1335static unsigned long
45bf76df
IM
1336calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1337 struct load_weight *lw)
1338{
1339 u64 tmp;
1340
e05510d0
PZ
1341 if (!lw->inv_weight)
1342 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
45bf76df
IM
1343
1344 tmp = (u64)delta_exec * weight;
1345 /*
1346 * Check whether we'd overflow the 64-bit multiplication:
1347 */
194081eb 1348 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1349 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1350 WMULT_SHIFT/2);
1351 else
cf2ab469 1352 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1353
ecf691da 1354 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1355}
1356
f9305d4a
IM
1357static inline unsigned long
1358calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1359{
1360 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1361}
1362
1091985b 1363static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1364{
1365 lw->weight += inc;
e89996ae 1366 lw->inv_weight = 0;
45bf76df
IM
1367}
1368
1091985b 1369static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1370{
1371 lw->weight -= dec;
e89996ae 1372 lw->inv_weight = 0;
45bf76df
IM
1373}
1374
2dd73a4f
PW
1375/*
1376 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1377 * of tasks with abnormal "nice" values across CPUs the contribution that
1378 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1379 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1380 * scaled version of the new time slice allocation that they receive on time
1381 * slice expiry etc.
1382 */
1383
dd41f596
IM
1384#define WEIGHT_IDLEPRIO 2
1385#define WMULT_IDLEPRIO (1 << 31)
1386
1387/*
1388 * Nice levels are multiplicative, with a gentle 10% change for every
1389 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1390 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1391 * that remained on nice 0.
1392 *
1393 * The "10% effect" is relative and cumulative: from _any_ nice level,
1394 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1395 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1396 * If a task goes up by ~10% and another task goes down by ~10% then
1397 * the relative distance between them is ~25%.)
dd41f596
IM
1398 */
1399static const int prio_to_weight[40] = {
254753dc
IM
1400 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1401 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1402 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1403 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1404 /* 0 */ 1024, 820, 655, 526, 423,
1405 /* 5 */ 335, 272, 215, 172, 137,
1406 /* 10 */ 110, 87, 70, 56, 45,
1407 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1408};
1409
5714d2de
IM
1410/*
1411 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1412 *
1413 * In cases where the weight does not change often, we can use the
1414 * precalculated inverse to speed up arithmetics by turning divisions
1415 * into multiplications:
1416 */
dd41f596 1417static const u32 prio_to_wmult[40] = {
254753dc
IM
1418 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1419 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1420 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1421 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1422 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1423 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1424 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1425 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1426};
2dd73a4f 1427
dd41f596
IM
1428static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1429
1430/*
1431 * runqueue iterator, to support SMP load-balancing between different
1432 * scheduling classes, without having to expose their internal data
1433 * structures to the load-balancing proper:
1434 */
1435struct rq_iterator {
1436 void *arg;
1437 struct task_struct *(*start)(void *);
1438 struct task_struct *(*next)(void *);
1439};
1440
e1d1484f
PW
1441#ifdef CONFIG_SMP
1442static unsigned long
1443balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1444 unsigned long max_load_move, struct sched_domain *sd,
1445 enum cpu_idle_type idle, int *all_pinned,
1446 int *this_best_prio, struct rq_iterator *iterator);
1447
1448static int
1449iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1450 struct sched_domain *sd, enum cpu_idle_type idle,
1451 struct rq_iterator *iterator);
e1d1484f 1452#endif
dd41f596 1453
d842de87
SV
1454#ifdef CONFIG_CGROUP_CPUACCT
1455static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1456#else
1457static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1458#endif
1459
18d95a28
PZ
1460static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1461{
1462 update_load_add(&rq->load, load);
1463}
1464
1465static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1466{
1467 update_load_sub(&rq->load, load);
1468}
1469
e7693a36
GH
1470#ifdef CONFIG_SMP
1471static unsigned long source_load(int cpu, int type);
1472static unsigned long target_load(int cpu, int type);
1473static unsigned long cpu_avg_load_per_task(int cpu);
1474static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1475#else /* CONFIG_SMP */
1476
1477#ifdef CONFIG_FAIR_GROUP_SCHED
1478static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1479{
1480}
1481#endif
1482
e7693a36
GH
1483#endif /* CONFIG_SMP */
1484
dd41f596 1485#include "sched_stats.h"
dd41f596 1486#include "sched_idletask.c"
5522d5d5
IM
1487#include "sched_fair.c"
1488#include "sched_rt.c"
dd41f596
IM
1489#ifdef CONFIG_SCHED_DEBUG
1490# include "sched_debug.c"
1491#endif
1492
1493#define sched_class_highest (&rt_sched_class)
1494
6363ca57
IM
1495static inline void inc_load(struct rq *rq, const struct task_struct *p)
1496{
1497 update_load_add(&rq->load, p->se.load.weight);
1498}
1499
1500static inline void dec_load(struct rq *rq, const struct task_struct *p)
1501{
1502 update_load_sub(&rq->load, p->se.load.weight);
1503}
1504
1505static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1506{
1507 rq->nr_running++;
6363ca57 1508 inc_load(rq, p);
9c217245
IM
1509}
1510
6363ca57 1511static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1512{
1513 rq->nr_running--;
6363ca57 1514 dec_load(rq, p);
9c217245
IM
1515}
1516
45bf76df
IM
1517static void set_load_weight(struct task_struct *p)
1518{
1519 if (task_has_rt_policy(p)) {
dd41f596
IM
1520 p->se.load.weight = prio_to_weight[0] * 2;
1521 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1522 return;
1523 }
45bf76df 1524
dd41f596
IM
1525 /*
1526 * SCHED_IDLE tasks get minimal weight:
1527 */
1528 if (p->policy == SCHED_IDLE) {
1529 p->se.load.weight = WEIGHT_IDLEPRIO;
1530 p->se.load.inv_weight = WMULT_IDLEPRIO;
1531 return;
1532 }
71f8bd46 1533
dd41f596
IM
1534 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1535 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1536}
1537
8159f87e 1538static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1539{
dd41f596 1540 sched_info_queued(p);
fd390f6a 1541 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1542 p->se.on_rq = 1;
71f8bd46
IM
1543}
1544
69be72c1 1545static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1546{
f02231e5 1547 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1548 p->se.on_rq = 0;
71f8bd46
IM
1549}
1550
14531189 1551/*
dd41f596 1552 * __normal_prio - return the priority that is based on the static prio
14531189 1553 */
14531189
IM
1554static inline int __normal_prio(struct task_struct *p)
1555{
dd41f596 1556 return p->static_prio;
14531189
IM
1557}
1558
b29739f9
IM
1559/*
1560 * Calculate the expected normal priority: i.e. priority
1561 * without taking RT-inheritance into account. Might be
1562 * boosted by interactivity modifiers. Changes upon fork,
1563 * setprio syscalls, and whenever the interactivity
1564 * estimator recalculates.
1565 */
36c8b586 1566static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1567{
1568 int prio;
1569
e05606d3 1570 if (task_has_rt_policy(p))
b29739f9
IM
1571 prio = MAX_RT_PRIO-1 - p->rt_priority;
1572 else
1573 prio = __normal_prio(p);
1574 return prio;
1575}
1576
1577/*
1578 * Calculate the current priority, i.e. the priority
1579 * taken into account by the scheduler. This value might
1580 * be boosted by RT tasks, or might be boosted by
1581 * interactivity modifiers. Will be RT if the task got
1582 * RT-boosted. If not then it returns p->normal_prio.
1583 */
36c8b586 1584static int effective_prio(struct task_struct *p)
b29739f9
IM
1585{
1586 p->normal_prio = normal_prio(p);
1587 /*
1588 * If we are RT tasks or we were boosted to RT priority,
1589 * keep the priority unchanged. Otherwise, update priority
1590 * to the normal priority:
1591 */
1592 if (!rt_prio(p->prio))
1593 return p->normal_prio;
1594 return p->prio;
1595}
1596
1da177e4 1597/*
dd41f596 1598 * activate_task - move a task to the runqueue.
1da177e4 1599 */
dd41f596 1600static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1601{
d9514f6c 1602 if (task_contributes_to_load(p))
dd41f596 1603 rq->nr_uninterruptible--;
1da177e4 1604
8159f87e 1605 enqueue_task(rq, p, wakeup);
6363ca57 1606 inc_nr_running(p, rq);
1da177e4
LT
1607}
1608
1da177e4
LT
1609/*
1610 * deactivate_task - remove a task from the runqueue.
1611 */
2e1cb74a 1612static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1613{
d9514f6c 1614 if (task_contributes_to_load(p))
dd41f596
IM
1615 rq->nr_uninterruptible++;
1616
69be72c1 1617 dequeue_task(rq, p, sleep);
6363ca57 1618 dec_nr_running(p, rq);
1da177e4
LT
1619}
1620
1da177e4
LT
1621/**
1622 * task_curr - is this task currently executing on a CPU?
1623 * @p: the task in question.
1624 */
36c8b586 1625inline int task_curr(const struct task_struct *p)
1da177e4
LT
1626{
1627 return cpu_curr(task_cpu(p)) == p;
1628}
1629
2dd73a4f
PW
1630/* Used instead of source_load when we know the type == 0 */
1631unsigned long weighted_cpuload(const int cpu)
1632{
495eca49 1633 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1634}
1635
1636static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1637{
6f505b16 1638 set_task_rq(p, cpu);
dd41f596 1639#ifdef CONFIG_SMP
ce96b5ac
DA
1640 /*
1641 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1642 * successfuly executed on another CPU. We must ensure that updates of
1643 * per-task data have been completed by this moment.
1644 */
1645 smp_wmb();
dd41f596 1646 task_thread_info(p)->cpu = cpu;
dd41f596 1647#endif
2dd73a4f
PW
1648}
1649
cb469845
SR
1650static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1651 const struct sched_class *prev_class,
1652 int oldprio, int running)
1653{
1654 if (prev_class != p->sched_class) {
1655 if (prev_class->switched_from)
1656 prev_class->switched_from(rq, p, running);
1657 p->sched_class->switched_to(rq, p, running);
1658 } else
1659 p->sched_class->prio_changed(rq, p, oldprio, running);
1660}
1661
1da177e4 1662#ifdef CONFIG_SMP
c65cc870 1663
cc367732
IM
1664/*
1665 * Is this task likely cache-hot:
1666 */
e7693a36 1667static int
cc367732
IM
1668task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1669{
1670 s64 delta;
1671
f540a608
IM
1672 /*
1673 * Buddy candidates are cache hot:
1674 */
d25ce4cd 1675 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1676 return 1;
1677
cc367732
IM
1678 if (p->sched_class != &fair_sched_class)
1679 return 0;
1680
6bc1665b
IM
1681 if (sysctl_sched_migration_cost == -1)
1682 return 1;
1683 if (sysctl_sched_migration_cost == 0)
1684 return 0;
1685
cc367732
IM
1686 delta = now - p->se.exec_start;
1687
1688 return delta < (s64)sysctl_sched_migration_cost;
1689}
1690
1691
dd41f596 1692void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1693{
dd41f596
IM
1694 int old_cpu = task_cpu(p);
1695 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1696 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1697 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1698 u64 clock_offset;
dd41f596
IM
1699
1700 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1701
1702#ifdef CONFIG_SCHEDSTATS
1703 if (p->se.wait_start)
1704 p->se.wait_start -= clock_offset;
dd41f596
IM
1705 if (p->se.sleep_start)
1706 p->se.sleep_start -= clock_offset;
1707 if (p->se.block_start)
1708 p->se.block_start -= clock_offset;
cc367732
IM
1709 if (old_cpu != new_cpu) {
1710 schedstat_inc(p, se.nr_migrations);
1711 if (task_hot(p, old_rq->clock, NULL))
1712 schedstat_inc(p, se.nr_forced2_migrations);
1713 }
6cfb0d5d 1714#endif
2830cf8c
SV
1715 p->se.vruntime -= old_cfsrq->min_vruntime -
1716 new_cfsrq->min_vruntime;
dd41f596
IM
1717
1718 __set_task_cpu(p, new_cpu);
c65cc870
IM
1719}
1720
70b97a7f 1721struct migration_req {
1da177e4 1722 struct list_head list;
1da177e4 1723
36c8b586 1724 struct task_struct *task;
1da177e4
LT
1725 int dest_cpu;
1726
1da177e4 1727 struct completion done;
70b97a7f 1728};
1da177e4
LT
1729
1730/*
1731 * The task's runqueue lock must be held.
1732 * Returns true if you have to wait for migration thread.
1733 */
36c8b586 1734static int
70b97a7f 1735migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1736{
70b97a7f 1737 struct rq *rq = task_rq(p);
1da177e4
LT
1738
1739 /*
1740 * If the task is not on a runqueue (and not running), then
1741 * it is sufficient to simply update the task's cpu field.
1742 */
dd41f596 1743 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1744 set_task_cpu(p, dest_cpu);
1745 return 0;
1746 }
1747
1748 init_completion(&req->done);
1da177e4
LT
1749 req->task = p;
1750 req->dest_cpu = dest_cpu;
1751 list_add(&req->list, &rq->migration_queue);
48f24c4d 1752
1da177e4
LT
1753 return 1;
1754}
1755
1756/*
1757 * wait_task_inactive - wait for a thread to unschedule.
1758 *
1759 * The caller must ensure that the task *will* unschedule sometime soon,
1760 * else this function might spin for a *long* time. This function can't
1761 * be called with interrupts off, or it may introduce deadlock with
1762 * smp_call_function() if an IPI is sent by the same process we are
1763 * waiting to become inactive.
1764 */
36c8b586 1765void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1766{
1767 unsigned long flags;
dd41f596 1768 int running, on_rq;
70b97a7f 1769 struct rq *rq;
1da177e4 1770
3a5c359a
AK
1771 for (;;) {
1772 /*
1773 * We do the initial early heuristics without holding
1774 * any task-queue locks at all. We'll only try to get
1775 * the runqueue lock when things look like they will
1776 * work out!
1777 */
1778 rq = task_rq(p);
fa490cfd 1779
3a5c359a
AK
1780 /*
1781 * If the task is actively running on another CPU
1782 * still, just relax and busy-wait without holding
1783 * any locks.
1784 *
1785 * NOTE! Since we don't hold any locks, it's not
1786 * even sure that "rq" stays as the right runqueue!
1787 * But we don't care, since "task_running()" will
1788 * return false if the runqueue has changed and p
1789 * is actually now running somewhere else!
1790 */
1791 while (task_running(rq, p))
1792 cpu_relax();
fa490cfd 1793
3a5c359a
AK
1794 /*
1795 * Ok, time to look more closely! We need the rq
1796 * lock now, to be *sure*. If we're wrong, we'll
1797 * just go back and repeat.
1798 */
1799 rq = task_rq_lock(p, &flags);
1800 running = task_running(rq, p);
1801 on_rq = p->se.on_rq;
1802 task_rq_unlock(rq, &flags);
fa490cfd 1803
3a5c359a
AK
1804 /*
1805 * Was it really running after all now that we
1806 * checked with the proper locks actually held?
1807 *
1808 * Oops. Go back and try again..
1809 */
1810 if (unlikely(running)) {
1811 cpu_relax();
1812 continue;
1813 }
fa490cfd 1814
3a5c359a
AK
1815 /*
1816 * It's not enough that it's not actively running,
1817 * it must be off the runqueue _entirely_, and not
1818 * preempted!
1819 *
1820 * So if it wa still runnable (but just not actively
1821 * running right now), it's preempted, and we should
1822 * yield - it could be a while.
1823 */
1824 if (unlikely(on_rq)) {
1825 schedule_timeout_uninterruptible(1);
1826 continue;
1827 }
fa490cfd 1828
3a5c359a
AK
1829 /*
1830 * Ahh, all good. It wasn't running, and it wasn't
1831 * runnable, which means that it will never become
1832 * running in the future either. We're all done!
1833 */
1834 break;
1835 }
1da177e4
LT
1836}
1837
1838/***
1839 * kick_process - kick a running thread to enter/exit the kernel
1840 * @p: the to-be-kicked thread
1841 *
1842 * Cause a process which is running on another CPU to enter
1843 * kernel-mode, without any delay. (to get signals handled.)
1844 *
1845 * NOTE: this function doesnt have to take the runqueue lock,
1846 * because all it wants to ensure is that the remote task enters
1847 * the kernel. If the IPI races and the task has been migrated
1848 * to another CPU then no harm is done and the purpose has been
1849 * achieved as well.
1850 */
36c8b586 1851void kick_process(struct task_struct *p)
1da177e4
LT
1852{
1853 int cpu;
1854
1855 preempt_disable();
1856 cpu = task_cpu(p);
1857 if ((cpu != smp_processor_id()) && task_curr(p))
1858 smp_send_reschedule(cpu);
1859 preempt_enable();
1860}
1861
1862/*
2dd73a4f
PW
1863 * Return a low guess at the load of a migration-source cpu weighted
1864 * according to the scheduling class and "nice" value.
1da177e4
LT
1865 *
1866 * We want to under-estimate the load of migration sources, to
1867 * balance conservatively.
1868 */
a9957449 1869static unsigned long source_load(int cpu, int type)
1da177e4 1870{
70b97a7f 1871 struct rq *rq = cpu_rq(cpu);
dd41f596 1872 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1873
3b0bd9bc 1874 if (type == 0)
dd41f596 1875 return total;
b910472d 1876
dd41f596 1877 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1878}
1879
1880/*
2dd73a4f
PW
1881 * Return a high guess at the load of a migration-target cpu weighted
1882 * according to the scheduling class and "nice" value.
1da177e4 1883 */
a9957449 1884static unsigned long target_load(int cpu, int type)
1da177e4 1885{
70b97a7f 1886 struct rq *rq = cpu_rq(cpu);
dd41f596 1887 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1888
7897986b 1889 if (type == 0)
dd41f596 1890 return total;
3b0bd9bc 1891
dd41f596 1892 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1893}
1894
1895/*
1896 * Return the average load per task on the cpu's run queue
1897 */
e7693a36 1898static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1899{
70b97a7f 1900 struct rq *rq = cpu_rq(cpu);
dd41f596 1901 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1902 unsigned long n = rq->nr_running;
1903
dd41f596 1904 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1905}
1906
147cbb4b
NP
1907/*
1908 * find_idlest_group finds and returns the least busy CPU group within the
1909 * domain.
1910 */
1911static struct sched_group *
1912find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1913{
1914 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1915 unsigned long min_load = ULONG_MAX, this_load = 0;
1916 int load_idx = sd->forkexec_idx;
1917 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1918
1919 do {
1920 unsigned long load, avg_load;
1921 int local_group;
1922 int i;
1923
da5a5522
BD
1924 /* Skip over this group if it has no CPUs allowed */
1925 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1926 continue;
da5a5522 1927
147cbb4b 1928 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1929
1930 /* Tally up the load of all CPUs in the group */
1931 avg_load = 0;
1932
1933 for_each_cpu_mask(i, group->cpumask) {
1934 /* Bias balancing toward cpus of our domain */
1935 if (local_group)
1936 load = source_load(i, load_idx);
1937 else
1938 load = target_load(i, load_idx);
1939
1940 avg_load += load;
1941 }
1942
1943 /* Adjust by relative CPU power of the group */
5517d86b
ED
1944 avg_load = sg_div_cpu_power(group,
1945 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1946
1947 if (local_group) {
1948 this_load = avg_load;
1949 this = group;
1950 } else if (avg_load < min_load) {
1951 min_load = avg_load;
1952 idlest = group;
1953 }
3a5c359a 1954 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1955
1956 if (!idlest || 100*this_load < imbalance*min_load)
1957 return NULL;
1958 return idlest;
1959}
1960
1961/*
0feaece9 1962 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1963 */
95cdf3b7 1964static int
7c16ec58
MT
1965find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1966 cpumask_t *tmp)
147cbb4b
NP
1967{
1968 unsigned long load, min_load = ULONG_MAX;
1969 int idlest = -1;
1970 int i;
1971
da5a5522 1972 /* Traverse only the allowed CPUs */
7c16ec58 1973 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 1974
7c16ec58 1975 for_each_cpu_mask(i, *tmp) {
2dd73a4f 1976 load = weighted_cpuload(i);
147cbb4b
NP
1977
1978 if (load < min_load || (load == min_load && i == this_cpu)) {
1979 min_load = load;
1980 idlest = i;
1981 }
1982 }
1983
1984 return idlest;
1985}
1986
476d139c
NP
1987/*
1988 * sched_balance_self: balance the current task (running on cpu) in domains
1989 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1990 * SD_BALANCE_EXEC.
1991 *
1992 * Balance, ie. select the least loaded group.
1993 *
1994 * Returns the target CPU number, or the same CPU if no balancing is needed.
1995 *
1996 * preempt must be disabled.
1997 */
1998static int sched_balance_self(int cpu, int flag)
1999{
2000 struct task_struct *t = current;
2001 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2002
c96d145e 2003 for_each_domain(cpu, tmp) {
9761eea8
IM
2004 /*
2005 * If power savings logic is enabled for a domain, stop there.
2006 */
5c45bf27
SS
2007 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2008 break;
476d139c
NP
2009 if (tmp->flags & flag)
2010 sd = tmp;
c96d145e 2011 }
476d139c
NP
2012
2013 while (sd) {
7c16ec58 2014 cpumask_t span, tmpmask;
476d139c 2015 struct sched_group *group;
1a848870
SS
2016 int new_cpu, weight;
2017
2018 if (!(sd->flags & flag)) {
2019 sd = sd->child;
2020 continue;
2021 }
476d139c
NP
2022
2023 span = sd->span;
2024 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2025 if (!group) {
2026 sd = sd->child;
2027 continue;
2028 }
476d139c 2029
7c16ec58 2030 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2031 if (new_cpu == -1 || new_cpu == cpu) {
2032 /* Now try balancing at a lower domain level of cpu */
2033 sd = sd->child;
2034 continue;
2035 }
476d139c 2036
1a848870 2037 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2038 cpu = new_cpu;
476d139c
NP
2039 sd = NULL;
2040 weight = cpus_weight(span);
2041 for_each_domain(cpu, tmp) {
2042 if (weight <= cpus_weight(tmp->span))
2043 break;
2044 if (tmp->flags & flag)
2045 sd = tmp;
2046 }
2047 /* while loop will break here if sd == NULL */
2048 }
2049
2050 return cpu;
2051}
2052
2053#endif /* CONFIG_SMP */
1da177e4 2054
1da177e4
LT
2055/***
2056 * try_to_wake_up - wake up a thread
2057 * @p: the to-be-woken-up thread
2058 * @state: the mask of task states that can be woken
2059 * @sync: do a synchronous wakeup?
2060 *
2061 * Put it on the run-queue if it's not already there. The "current"
2062 * thread is always on the run-queue (except when the actual
2063 * re-schedule is in progress), and as such you're allowed to do
2064 * the simpler "current->state = TASK_RUNNING" to mark yourself
2065 * runnable without the overhead of this.
2066 *
2067 * returns failure only if the task is already active.
2068 */
36c8b586 2069static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2070{
cc367732 2071 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2072 unsigned long flags;
2073 long old_state;
70b97a7f 2074 struct rq *rq;
1da177e4 2075
b85d0667
IM
2076 if (!sched_feat(SYNC_WAKEUPS))
2077 sync = 0;
2078
04e2f174 2079 smp_wmb();
1da177e4
LT
2080 rq = task_rq_lock(p, &flags);
2081 old_state = p->state;
2082 if (!(old_state & state))
2083 goto out;
2084
dd41f596 2085 if (p->se.on_rq)
1da177e4
LT
2086 goto out_running;
2087
2088 cpu = task_cpu(p);
cc367732 2089 orig_cpu = cpu;
1da177e4
LT
2090 this_cpu = smp_processor_id();
2091
2092#ifdef CONFIG_SMP
2093 if (unlikely(task_running(rq, p)))
2094 goto out_activate;
2095
5d2f5a61
DA
2096 cpu = p->sched_class->select_task_rq(p, sync);
2097 if (cpu != orig_cpu) {
2098 set_task_cpu(p, cpu);
1da177e4
LT
2099 task_rq_unlock(rq, &flags);
2100 /* might preempt at this point */
2101 rq = task_rq_lock(p, &flags);
2102 old_state = p->state;
2103 if (!(old_state & state))
2104 goto out;
dd41f596 2105 if (p->se.on_rq)
1da177e4
LT
2106 goto out_running;
2107
2108 this_cpu = smp_processor_id();
2109 cpu = task_cpu(p);
2110 }
2111
e7693a36
GH
2112#ifdef CONFIG_SCHEDSTATS
2113 schedstat_inc(rq, ttwu_count);
2114 if (cpu == this_cpu)
2115 schedstat_inc(rq, ttwu_local);
2116 else {
2117 struct sched_domain *sd;
2118 for_each_domain(this_cpu, sd) {
2119 if (cpu_isset(cpu, sd->span)) {
2120 schedstat_inc(sd, ttwu_wake_remote);
2121 break;
2122 }
2123 }
2124 }
e7693a36
GH
2125#endif
2126
1da177e4
LT
2127out_activate:
2128#endif /* CONFIG_SMP */
cc367732
IM
2129 schedstat_inc(p, se.nr_wakeups);
2130 if (sync)
2131 schedstat_inc(p, se.nr_wakeups_sync);
2132 if (orig_cpu != cpu)
2133 schedstat_inc(p, se.nr_wakeups_migrate);
2134 if (cpu == this_cpu)
2135 schedstat_inc(p, se.nr_wakeups_local);
2136 else
2137 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2138 update_rq_clock(rq);
dd41f596 2139 activate_task(rq, p, 1);
1da177e4
LT
2140 success = 1;
2141
2142out_running:
4ae7d5ce
IM
2143 check_preempt_curr(rq, p);
2144
1da177e4 2145 p->state = TASK_RUNNING;
9a897c5a
SR
2146#ifdef CONFIG_SMP
2147 if (p->sched_class->task_wake_up)
2148 p->sched_class->task_wake_up(rq, p);
2149#endif
1da177e4
LT
2150out:
2151 task_rq_unlock(rq, &flags);
2152
2153 return success;
2154}
2155
7ad5b3a5 2156int wake_up_process(struct task_struct *p)
1da177e4 2157{
d9514f6c 2158 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2159}
1da177e4
LT
2160EXPORT_SYMBOL(wake_up_process);
2161
7ad5b3a5 2162int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2163{
2164 return try_to_wake_up(p, state, 0);
2165}
2166
1da177e4
LT
2167/*
2168 * Perform scheduler related setup for a newly forked process p.
2169 * p is forked by current.
dd41f596
IM
2170 *
2171 * __sched_fork() is basic setup used by init_idle() too:
2172 */
2173static void __sched_fork(struct task_struct *p)
2174{
dd41f596
IM
2175 p->se.exec_start = 0;
2176 p->se.sum_exec_runtime = 0;
f6cf891c 2177 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2178 p->se.last_wakeup = 0;
2179 p->se.avg_overlap = 0;
6cfb0d5d
IM
2180
2181#ifdef CONFIG_SCHEDSTATS
2182 p->se.wait_start = 0;
dd41f596
IM
2183 p->se.sum_sleep_runtime = 0;
2184 p->se.sleep_start = 0;
dd41f596
IM
2185 p->se.block_start = 0;
2186 p->se.sleep_max = 0;
2187 p->se.block_max = 0;
2188 p->se.exec_max = 0;
eba1ed4b 2189 p->se.slice_max = 0;
dd41f596 2190 p->se.wait_max = 0;
6cfb0d5d 2191#endif
476d139c 2192
fa717060 2193 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2194 p->se.on_rq = 0;
4a55bd5e 2195 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2196
e107be36
AK
2197#ifdef CONFIG_PREEMPT_NOTIFIERS
2198 INIT_HLIST_HEAD(&p->preempt_notifiers);
2199#endif
2200
1da177e4
LT
2201 /*
2202 * We mark the process as running here, but have not actually
2203 * inserted it onto the runqueue yet. This guarantees that
2204 * nobody will actually run it, and a signal or other external
2205 * event cannot wake it up and insert it on the runqueue either.
2206 */
2207 p->state = TASK_RUNNING;
dd41f596
IM
2208}
2209
2210/*
2211 * fork()/clone()-time setup:
2212 */
2213void sched_fork(struct task_struct *p, int clone_flags)
2214{
2215 int cpu = get_cpu();
2216
2217 __sched_fork(p);
2218
2219#ifdef CONFIG_SMP
2220 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2221#endif
02e4bac2 2222 set_task_cpu(p, cpu);
b29739f9
IM
2223
2224 /*
2225 * Make sure we do not leak PI boosting priority to the child:
2226 */
2227 p->prio = current->normal_prio;
2ddbf952
HS
2228 if (!rt_prio(p->prio))
2229 p->sched_class = &fair_sched_class;
b29739f9 2230
52f17b6c 2231#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2232 if (likely(sched_info_on()))
52f17b6c 2233 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2234#endif
d6077cb8 2235#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2236 p->oncpu = 0;
2237#endif
1da177e4 2238#ifdef CONFIG_PREEMPT
4866cde0 2239 /* Want to start with kernel preemption disabled. */
a1261f54 2240 task_thread_info(p)->preempt_count = 1;
1da177e4 2241#endif
476d139c 2242 put_cpu();
1da177e4
LT
2243}
2244
2245/*
2246 * wake_up_new_task - wake up a newly created task for the first time.
2247 *
2248 * This function will do some initial scheduler statistics housekeeping
2249 * that must be done for every newly created context, then puts the task
2250 * on the runqueue and wakes it.
2251 */
7ad5b3a5 2252void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2253{
2254 unsigned long flags;
dd41f596 2255 struct rq *rq;
1da177e4
LT
2256
2257 rq = task_rq_lock(p, &flags);
147cbb4b 2258 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2259 update_rq_clock(rq);
1da177e4
LT
2260
2261 p->prio = effective_prio(p);
2262
b9dca1e0 2263 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2264 activate_task(rq, p, 0);
1da177e4 2265 } else {
1da177e4 2266 /*
dd41f596
IM
2267 * Let the scheduling class do new task startup
2268 * management (if any):
1da177e4 2269 */
ee0827d8 2270 p->sched_class->task_new(rq, p);
6363ca57 2271 inc_nr_running(p, rq);
1da177e4 2272 }
dd41f596 2273 check_preempt_curr(rq, p);
9a897c5a
SR
2274#ifdef CONFIG_SMP
2275 if (p->sched_class->task_wake_up)
2276 p->sched_class->task_wake_up(rq, p);
2277#endif
dd41f596 2278 task_rq_unlock(rq, &flags);
1da177e4
LT
2279}
2280
e107be36
AK
2281#ifdef CONFIG_PREEMPT_NOTIFIERS
2282
2283/**
421cee29
RD
2284 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2285 * @notifier: notifier struct to register
e107be36
AK
2286 */
2287void preempt_notifier_register(struct preempt_notifier *notifier)
2288{
2289 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2290}
2291EXPORT_SYMBOL_GPL(preempt_notifier_register);
2292
2293/**
2294 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2295 * @notifier: notifier struct to unregister
e107be36
AK
2296 *
2297 * This is safe to call from within a preemption notifier.
2298 */
2299void preempt_notifier_unregister(struct preempt_notifier *notifier)
2300{
2301 hlist_del(&notifier->link);
2302}
2303EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2304
2305static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2306{
2307 struct preempt_notifier *notifier;
2308 struct hlist_node *node;
2309
2310 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2311 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2312}
2313
2314static void
2315fire_sched_out_preempt_notifiers(struct task_struct *curr,
2316 struct task_struct *next)
2317{
2318 struct preempt_notifier *notifier;
2319 struct hlist_node *node;
2320
2321 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2322 notifier->ops->sched_out(notifier, next);
2323}
2324
2325#else
2326
2327static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2328{
2329}
2330
2331static void
2332fire_sched_out_preempt_notifiers(struct task_struct *curr,
2333 struct task_struct *next)
2334{
2335}
2336
2337#endif
2338
4866cde0
NP
2339/**
2340 * prepare_task_switch - prepare to switch tasks
2341 * @rq: the runqueue preparing to switch
421cee29 2342 * @prev: the current task that is being switched out
4866cde0
NP
2343 * @next: the task we are going to switch to.
2344 *
2345 * This is called with the rq lock held and interrupts off. It must
2346 * be paired with a subsequent finish_task_switch after the context
2347 * switch.
2348 *
2349 * prepare_task_switch sets up locking and calls architecture specific
2350 * hooks.
2351 */
e107be36
AK
2352static inline void
2353prepare_task_switch(struct rq *rq, struct task_struct *prev,
2354 struct task_struct *next)
4866cde0 2355{
e107be36 2356 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2357 prepare_lock_switch(rq, next);
2358 prepare_arch_switch(next);
2359}
2360
1da177e4
LT
2361/**
2362 * finish_task_switch - clean up after a task-switch
344babaa 2363 * @rq: runqueue associated with task-switch
1da177e4
LT
2364 * @prev: the thread we just switched away from.
2365 *
4866cde0
NP
2366 * finish_task_switch must be called after the context switch, paired
2367 * with a prepare_task_switch call before the context switch.
2368 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2369 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2370 *
2371 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2372 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2373 * with the lock held can cause deadlocks; see schedule() for
2374 * details.)
2375 */
a9957449 2376static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2377 __releases(rq->lock)
2378{
1da177e4 2379 struct mm_struct *mm = rq->prev_mm;
55a101f8 2380 long prev_state;
1da177e4
LT
2381
2382 rq->prev_mm = NULL;
2383
2384 /*
2385 * A task struct has one reference for the use as "current".
c394cc9f 2386 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2387 * schedule one last time. The schedule call will never return, and
2388 * the scheduled task must drop that reference.
c394cc9f 2389 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2390 * still held, otherwise prev could be scheduled on another cpu, die
2391 * there before we look at prev->state, and then the reference would
2392 * be dropped twice.
2393 * Manfred Spraul <manfred@colorfullife.com>
2394 */
55a101f8 2395 prev_state = prev->state;
4866cde0
NP
2396 finish_arch_switch(prev);
2397 finish_lock_switch(rq, prev);
9a897c5a
SR
2398#ifdef CONFIG_SMP
2399 if (current->sched_class->post_schedule)
2400 current->sched_class->post_schedule(rq);
2401#endif
e8fa1362 2402
e107be36 2403 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2404 if (mm)
2405 mmdrop(mm);
c394cc9f 2406 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2407 /*
2408 * Remove function-return probe instances associated with this
2409 * task and put them back on the free list.
9761eea8 2410 */
c6fd91f0 2411 kprobe_flush_task(prev);
1da177e4 2412 put_task_struct(prev);
c6fd91f0 2413 }
1da177e4
LT
2414}
2415
2416/**
2417 * schedule_tail - first thing a freshly forked thread must call.
2418 * @prev: the thread we just switched away from.
2419 */
36c8b586 2420asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2421 __releases(rq->lock)
2422{
70b97a7f
IM
2423 struct rq *rq = this_rq();
2424
4866cde0
NP
2425 finish_task_switch(rq, prev);
2426#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2427 /* In this case, finish_task_switch does not reenable preemption */
2428 preempt_enable();
2429#endif
1da177e4 2430 if (current->set_child_tid)
b488893a 2431 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2432}
2433
2434/*
2435 * context_switch - switch to the new MM and the new
2436 * thread's register state.
2437 */
dd41f596 2438static inline void
70b97a7f 2439context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2440 struct task_struct *next)
1da177e4 2441{
dd41f596 2442 struct mm_struct *mm, *oldmm;
1da177e4 2443
e107be36 2444 prepare_task_switch(rq, prev, next);
dd41f596
IM
2445 mm = next->mm;
2446 oldmm = prev->active_mm;
9226d125
ZA
2447 /*
2448 * For paravirt, this is coupled with an exit in switch_to to
2449 * combine the page table reload and the switch backend into
2450 * one hypercall.
2451 */
2452 arch_enter_lazy_cpu_mode();
2453
dd41f596 2454 if (unlikely(!mm)) {
1da177e4
LT
2455 next->active_mm = oldmm;
2456 atomic_inc(&oldmm->mm_count);
2457 enter_lazy_tlb(oldmm, next);
2458 } else
2459 switch_mm(oldmm, mm, next);
2460
dd41f596 2461 if (unlikely(!prev->mm)) {
1da177e4 2462 prev->active_mm = NULL;
1da177e4
LT
2463 rq->prev_mm = oldmm;
2464 }
3a5f5e48
IM
2465 /*
2466 * Since the runqueue lock will be released by the next
2467 * task (which is an invalid locking op but in the case
2468 * of the scheduler it's an obvious special-case), so we
2469 * do an early lockdep release here:
2470 */
2471#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2472 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2473#endif
1da177e4
LT
2474
2475 /* Here we just switch the register state and the stack. */
2476 switch_to(prev, next, prev);
2477
dd41f596
IM
2478 barrier();
2479 /*
2480 * this_rq must be evaluated again because prev may have moved
2481 * CPUs since it called schedule(), thus the 'rq' on its stack
2482 * frame will be invalid.
2483 */
2484 finish_task_switch(this_rq(), prev);
1da177e4
LT
2485}
2486
2487/*
2488 * nr_running, nr_uninterruptible and nr_context_switches:
2489 *
2490 * externally visible scheduler statistics: current number of runnable
2491 * threads, current number of uninterruptible-sleeping threads, total
2492 * number of context switches performed since bootup.
2493 */
2494unsigned long nr_running(void)
2495{
2496 unsigned long i, sum = 0;
2497
2498 for_each_online_cpu(i)
2499 sum += cpu_rq(i)->nr_running;
2500
2501 return sum;
2502}
2503
2504unsigned long nr_uninterruptible(void)
2505{
2506 unsigned long i, sum = 0;
2507
0a945022 2508 for_each_possible_cpu(i)
1da177e4
LT
2509 sum += cpu_rq(i)->nr_uninterruptible;
2510
2511 /*
2512 * Since we read the counters lockless, it might be slightly
2513 * inaccurate. Do not allow it to go below zero though:
2514 */
2515 if (unlikely((long)sum < 0))
2516 sum = 0;
2517
2518 return sum;
2519}
2520
2521unsigned long long nr_context_switches(void)
2522{
cc94abfc
SR
2523 int i;
2524 unsigned long long sum = 0;
1da177e4 2525
0a945022 2526 for_each_possible_cpu(i)
1da177e4
LT
2527 sum += cpu_rq(i)->nr_switches;
2528
2529 return sum;
2530}
2531
2532unsigned long nr_iowait(void)
2533{
2534 unsigned long i, sum = 0;
2535
0a945022 2536 for_each_possible_cpu(i)
1da177e4
LT
2537 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2538
2539 return sum;
2540}
2541
db1b1fef
JS
2542unsigned long nr_active(void)
2543{
2544 unsigned long i, running = 0, uninterruptible = 0;
2545
2546 for_each_online_cpu(i) {
2547 running += cpu_rq(i)->nr_running;
2548 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2549 }
2550
2551 if (unlikely((long)uninterruptible < 0))
2552 uninterruptible = 0;
2553
2554 return running + uninterruptible;
2555}
2556
48f24c4d 2557/*
dd41f596
IM
2558 * Update rq->cpu_load[] statistics. This function is usually called every
2559 * scheduler tick (TICK_NSEC).
48f24c4d 2560 */
dd41f596 2561static void update_cpu_load(struct rq *this_rq)
48f24c4d 2562{
495eca49 2563 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2564 int i, scale;
2565
2566 this_rq->nr_load_updates++;
dd41f596
IM
2567
2568 /* Update our load: */
2569 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2570 unsigned long old_load, new_load;
2571
2572 /* scale is effectively 1 << i now, and >> i divides by scale */
2573
2574 old_load = this_rq->cpu_load[i];
2575 new_load = this_load;
a25707f3
IM
2576 /*
2577 * Round up the averaging division if load is increasing. This
2578 * prevents us from getting stuck on 9 if the load is 10, for
2579 * example.
2580 */
2581 if (new_load > old_load)
2582 new_load += scale-1;
dd41f596
IM
2583 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2584 }
48f24c4d
IM
2585}
2586
dd41f596
IM
2587#ifdef CONFIG_SMP
2588
1da177e4
LT
2589/*
2590 * double_rq_lock - safely lock two runqueues
2591 *
2592 * Note this does not disable interrupts like task_rq_lock,
2593 * you need to do so manually before calling.
2594 */
70b97a7f 2595static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2596 __acquires(rq1->lock)
2597 __acquires(rq2->lock)
2598{
054b9108 2599 BUG_ON(!irqs_disabled());
1da177e4
LT
2600 if (rq1 == rq2) {
2601 spin_lock(&rq1->lock);
2602 __acquire(rq2->lock); /* Fake it out ;) */
2603 } else {
c96d145e 2604 if (rq1 < rq2) {
1da177e4
LT
2605 spin_lock(&rq1->lock);
2606 spin_lock(&rq2->lock);
2607 } else {
2608 spin_lock(&rq2->lock);
2609 spin_lock(&rq1->lock);
2610 }
2611 }
6e82a3be
IM
2612 update_rq_clock(rq1);
2613 update_rq_clock(rq2);
1da177e4
LT
2614}
2615
2616/*
2617 * double_rq_unlock - safely unlock two runqueues
2618 *
2619 * Note this does not restore interrupts like task_rq_unlock,
2620 * you need to do so manually after calling.
2621 */
70b97a7f 2622static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2623 __releases(rq1->lock)
2624 __releases(rq2->lock)
2625{
2626 spin_unlock(&rq1->lock);
2627 if (rq1 != rq2)
2628 spin_unlock(&rq2->lock);
2629 else
2630 __release(rq2->lock);
2631}
2632
2633/*
2634 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2635 */
e8fa1362 2636static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2637 __releases(this_rq->lock)
2638 __acquires(busiest->lock)
2639 __acquires(this_rq->lock)
2640{
e8fa1362
SR
2641 int ret = 0;
2642
054b9108
KK
2643 if (unlikely(!irqs_disabled())) {
2644 /* printk() doesn't work good under rq->lock */
2645 spin_unlock(&this_rq->lock);
2646 BUG_ON(1);
2647 }
1da177e4 2648 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2649 if (busiest < this_rq) {
1da177e4
LT
2650 spin_unlock(&this_rq->lock);
2651 spin_lock(&busiest->lock);
2652 spin_lock(&this_rq->lock);
e8fa1362 2653 ret = 1;
1da177e4
LT
2654 } else
2655 spin_lock(&busiest->lock);
2656 }
e8fa1362 2657 return ret;
1da177e4
LT
2658}
2659
1da177e4
LT
2660/*
2661 * If dest_cpu is allowed for this process, migrate the task to it.
2662 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2663 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2664 * the cpu_allowed mask is restored.
2665 */
36c8b586 2666static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2667{
70b97a7f 2668 struct migration_req req;
1da177e4 2669 unsigned long flags;
70b97a7f 2670 struct rq *rq;
1da177e4
LT
2671
2672 rq = task_rq_lock(p, &flags);
2673 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2674 || unlikely(cpu_is_offline(dest_cpu)))
2675 goto out;
2676
2677 /* force the process onto the specified CPU */
2678 if (migrate_task(p, dest_cpu, &req)) {
2679 /* Need to wait for migration thread (might exit: take ref). */
2680 struct task_struct *mt = rq->migration_thread;
36c8b586 2681
1da177e4
LT
2682 get_task_struct(mt);
2683 task_rq_unlock(rq, &flags);
2684 wake_up_process(mt);
2685 put_task_struct(mt);
2686 wait_for_completion(&req.done);
36c8b586 2687
1da177e4
LT
2688 return;
2689 }
2690out:
2691 task_rq_unlock(rq, &flags);
2692}
2693
2694/*
476d139c
NP
2695 * sched_exec - execve() is a valuable balancing opportunity, because at
2696 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2697 */
2698void sched_exec(void)
2699{
1da177e4 2700 int new_cpu, this_cpu = get_cpu();
476d139c 2701 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2702 put_cpu();
476d139c
NP
2703 if (new_cpu != this_cpu)
2704 sched_migrate_task(current, new_cpu);
1da177e4
LT
2705}
2706
2707/*
2708 * pull_task - move a task from a remote runqueue to the local runqueue.
2709 * Both runqueues must be locked.
2710 */
dd41f596
IM
2711static void pull_task(struct rq *src_rq, struct task_struct *p,
2712 struct rq *this_rq, int this_cpu)
1da177e4 2713{
2e1cb74a 2714 deactivate_task(src_rq, p, 0);
1da177e4 2715 set_task_cpu(p, this_cpu);
dd41f596 2716 activate_task(this_rq, p, 0);
1da177e4
LT
2717 /*
2718 * Note that idle threads have a prio of MAX_PRIO, for this test
2719 * to be always true for them.
2720 */
dd41f596 2721 check_preempt_curr(this_rq, p);
1da177e4
LT
2722}
2723
2724/*
2725 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2726 */
858119e1 2727static
70b97a7f 2728int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2729 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2730 int *all_pinned)
1da177e4
LT
2731{
2732 /*
2733 * We do not migrate tasks that are:
2734 * 1) running (obviously), or
2735 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2736 * 3) are cache-hot on their current CPU.
2737 */
cc367732
IM
2738 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2739 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2740 return 0;
cc367732 2741 }
81026794
NP
2742 *all_pinned = 0;
2743
cc367732
IM
2744 if (task_running(rq, p)) {
2745 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2746 return 0;
cc367732 2747 }
1da177e4 2748
da84d961
IM
2749 /*
2750 * Aggressive migration if:
2751 * 1) task is cache cold, or
2752 * 2) too many balance attempts have failed.
2753 */
2754
6bc1665b
IM
2755 if (!task_hot(p, rq->clock, sd) ||
2756 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2757#ifdef CONFIG_SCHEDSTATS
cc367732 2758 if (task_hot(p, rq->clock, sd)) {
da84d961 2759 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2760 schedstat_inc(p, se.nr_forced_migrations);
2761 }
da84d961
IM
2762#endif
2763 return 1;
2764 }
2765
cc367732
IM
2766 if (task_hot(p, rq->clock, sd)) {
2767 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2768 return 0;
cc367732 2769 }
1da177e4
LT
2770 return 1;
2771}
2772
e1d1484f
PW
2773static unsigned long
2774balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2775 unsigned long max_load_move, struct sched_domain *sd,
2776 enum cpu_idle_type idle, int *all_pinned,
2777 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2778{
b82d9fdd 2779 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2780 struct task_struct *p;
2781 long rem_load_move = max_load_move;
1da177e4 2782
e1d1484f 2783 if (max_load_move == 0)
1da177e4
LT
2784 goto out;
2785
81026794
NP
2786 pinned = 1;
2787
1da177e4 2788 /*
dd41f596 2789 * Start the load-balancing iterator:
1da177e4 2790 */
dd41f596
IM
2791 p = iterator->start(iterator->arg);
2792next:
b82d9fdd 2793 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2794 goto out;
50ddd969 2795 /*
b82d9fdd 2796 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2797 * skip a task if it will be the highest priority task (i.e. smallest
2798 * prio value) on its new queue regardless of its load weight
2799 */
dd41f596
IM
2800 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2801 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2802 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2803 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2804 p = iterator->next(iterator->arg);
2805 goto next;
1da177e4
LT
2806 }
2807
dd41f596 2808 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2809 pulled++;
dd41f596 2810 rem_load_move -= p->se.load.weight;
1da177e4 2811
2dd73a4f 2812 /*
b82d9fdd 2813 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2814 */
e1d1484f 2815 if (rem_load_move > 0) {
a4ac01c3
PW
2816 if (p->prio < *this_best_prio)
2817 *this_best_prio = p->prio;
dd41f596
IM
2818 p = iterator->next(iterator->arg);
2819 goto next;
1da177e4
LT
2820 }
2821out:
2822 /*
e1d1484f 2823 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2824 * so we can safely collect pull_task() stats here rather than
2825 * inside pull_task().
2826 */
2827 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2828
2829 if (all_pinned)
2830 *all_pinned = pinned;
e1d1484f
PW
2831
2832 return max_load_move - rem_load_move;
1da177e4
LT
2833}
2834
dd41f596 2835/*
43010659
PW
2836 * move_tasks tries to move up to max_load_move weighted load from busiest to
2837 * this_rq, as part of a balancing operation within domain "sd".
2838 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2839 *
2840 * Called with both runqueues locked.
2841 */
2842static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2843 unsigned long max_load_move,
dd41f596
IM
2844 struct sched_domain *sd, enum cpu_idle_type idle,
2845 int *all_pinned)
2846{
5522d5d5 2847 const struct sched_class *class = sched_class_highest;
43010659 2848 unsigned long total_load_moved = 0;
a4ac01c3 2849 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2850
2851 do {
43010659
PW
2852 total_load_moved +=
2853 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2854 max_load_move - total_load_moved,
a4ac01c3 2855 sd, idle, all_pinned, &this_best_prio);
dd41f596 2856 class = class->next;
43010659 2857 } while (class && max_load_move > total_load_moved);
dd41f596 2858
43010659
PW
2859 return total_load_moved > 0;
2860}
2861
e1d1484f
PW
2862static int
2863iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2864 struct sched_domain *sd, enum cpu_idle_type idle,
2865 struct rq_iterator *iterator)
2866{
2867 struct task_struct *p = iterator->start(iterator->arg);
2868 int pinned = 0;
2869
2870 while (p) {
2871 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2872 pull_task(busiest, p, this_rq, this_cpu);
2873 /*
2874 * Right now, this is only the second place pull_task()
2875 * is called, so we can safely collect pull_task()
2876 * stats here rather than inside pull_task().
2877 */
2878 schedstat_inc(sd, lb_gained[idle]);
2879
2880 return 1;
2881 }
2882 p = iterator->next(iterator->arg);
2883 }
2884
2885 return 0;
2886}
2887
43010659
PW
2888/*
2889 * move_one_task tries to move exactly one task from busiest to this_rq, as
2890 * part of active balancing operations within "domain".
2891 * Returns 1 if successful and 0 otherwise.
2892 *
2893 * Called with both runqueues locked.
2894 */
2895static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2896 struct sched_domain *sd, enum cpu_idle_type idle)
2897{
5522d5d5 2898 const struct sched_class *class;
43010659
PW
2899
2900 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2901 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2902 return 1;
2903
2904 return 0;
dd41f596
IM
2905}
2906
1da177e4
LT
2907/*
2908 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2909 * domain. It calculates and returns the amount of weighted load which
2910 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2911 */
2912static struct sched_group *
2913find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 2914 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 2915 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
2916{
2917 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2918 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2919 unsigned long max_pull;
2dd73a4f
PW
2920 unsigned long busiest_load_per_task, busiest_nr_running;
2921 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2922 int load_idx, group_imb = 0;
5c45bf27
SS
2923#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2924 int power_savings_balance = 1;
2925 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2926 unsigned long min_nr_running = ULONG_MAX;
2927 struct sched_group *group_min = NULL, *group_leader = NULL;
2928#endif
1da177e4
LT
2929
2930 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2931 busiest_load_per_task = busiest_nr_running = 0;
2932 this_load_per_task = this_nr_running = 0;
d15bcfdb 2933 if (idle == CPU_NOT_IDLE)
7897986b 2934 load_idx = sd->busy_idx;
d15bcfdb 2935 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2936 load_idx = sd->newidle_idx;
2937 else
2938 load_idx = sd->idle_idx;
1da177e4
LT
2939
2940 do {
908a7c1b 2941 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2942 int local_group;
2943 int i;
908a7c1b 2944 int __group_imb = 0;
783609c6 2945 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2946 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2947
2948 local_group = cpu_isset(this_cpu, group->cpumask);
2949
783609c6
SS
2950 if (local_group)
2951 balance_cpu = first_cpu(group->cpumask);
2952
1da177e4 2953 /* Tally up the load of all CPUs in the group */
2dd73a4f 2954 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2955 max_cpu_load = 0;
2956 min_cpu_load = ~0UL;
1da177e4
LT
2957
2958 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2959 struct rq *rq;
2960
2961 if (!cpu_isset(i, *cpus))
2962 continue;
2963
2964 rq = cpu_rq(i);
2dd73a4f 2965
9439aab8 2966 if (*sd_idle && rq->nr_running)
5969fe06
NP
2967 *sd_idle = 0;
2968
1da177e4 2969 /* Bias balancing toward cpus of our domain */
783609c6
SS
2970 if (local_group) {
2971 if (idle_cpu(i) && !first_idle_cpu) {
2972 first_idle_cpu = 1;
2973 balance_cpu = i;
2974 }
2975
a2000572 2976 load = target_load(i, load_idx);
908a7c1b 2977 } else {
a2000572 2978 load = source_load(i, load_idx);
908a7c1b
KC
2979 if (load > max_cpu_load)
2980 max_cpu_load = load;
2981 if (min_cpu_load > load)
2982 min_cpu_load = load;
2983 }
1da177e4
LT
2984
2985 avg_load += load;
2dd73a4f 2986 sum_nr_running += rq->nr_running;
dd41f596 2987 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2988 }
2989
783609c6
SS
2990 /*
2991 * First idle cpu or the first cpu(busiest) in this sched group
2992 * is eligible for doing load balancing at this and above
9439aab8
SS
2993 * domains. In the newly idle case, we will allow all the cpu's
2994 * to do the newly idle load balance.
783609c6 2995 */
9439aab8
SS
2996 if (idle != CPU_NEWLY_IDLE && local_group &&
2997 balance_cpu != this_cpu && balance) {
783609c6
SS
2998 *balance = 0;
2999 goto ret;
3000 }
3001
1da177e4 3002 total_load += avg_load;
5517d86b 3003 total_pwr += group->__cpu_power;
1da177e4
LT
3004
3005 /* Adjust by relative CPU power of the group */
5517d86b
ED
3006 avg_load = sg_div_cpu_power(group,
3007 avg_load * SCHED_LOAD_SCALE);
1da177e4 3008
908a7c1b
KC
3009 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3010 __group_imb = 1;
3011
5517d86b 3012 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3013
1da177e4
LT
3014 if (local_group) {
3015 this_load = avg_load;
3016 this = group;
2dd73a4f
PW
3017 this_nr_running = sum_nr_running;
3018 this_load_per_task = sum_weighted_load;
3019 } else if (avg_load > max_load &&
908a7c1b 3020 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3021 max_load = avg_load;
3022 busiest = group;
2dd73a4f
PW
3023 busiest_nr_running = sum_nr_running;
3024 busiest_load_per_task = sum_weighted_load;
908a7c1b 3025 group_imb = __group_imb;
1da177e4 3026 }
5c45bf27
SS
3027
3028#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3029 /*
3030 * Busy processors will not participate in power savings
3031 * balance.
3032 */
dd41f596
IM
3033 if (idle == CPU_NOT_IDLE ||
3034 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3035 goto group_next;
5c45bf27
SS
3036
3037 /*
3038 * If the local group is idle or completely loaded
3039 * no need to do power savings balance at this domain
3040 */
3041 if (local_group && (this_nr_running >= group_capacity ||
3042 !this_nr_running))
3043 power_savings_balance = 0;
3044
dd41f596 3045 /*
5c45bf27
SS
3046 * If a group is already running at full capacity or idle,
3047 * don't include that group in power savings calculations
dd41f596
IM
3048 */
3049 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3050 || !sum_nr_running)
dd41f596 3051 goto group_next;
5c45bf27 3052
dd41f596 3053 /*
5c45bf27 3054 * Calculate the group which has the least non-idle load.
dd41f596
IM
3055 * This is the group from where we need to pick up the load
3056 * for saving power
3057 */
3058 if ((sum_nr_running < min_nr_running) ||
3059 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3060 first_cpu(group->cpumask) <
3061 first_cpu(group_min->cpumask))) {
dd41f596
IM
3062 group_min = group;
3063 min_nr_running = sum_nr_running;
5c45bf27
SS
3064 min_load_per_task = sum_weighted_load /
3065 sum_nr_running;
dd41f596 3066 }
5c45bf27 3067
dd41f596 3068 /*
5c45bf27 3069 * Calculate the group which is almost near its
dd41f596
IM
3070 * capacity but still has some space to pick up some load
3071 * from other group and save more power
3072 */
3073 if (sum_nr_running <= group_capacity - 1) {
3074 if (sum_nr_running > leader_nr_running ||
3075 (sum_nr_running == leader_nr_running &&
3076 first_cpu(group->cpumask) >
3077 first_cpu(group_leader->cpumask))) {
3078 group_leader = group;
3079 leader_nr_running = sum_nr_running;
3080 }
48f24c4d 3081 }
5c45bf27
SS
3082group_next:
3083#endif
1da177e4
LT
3084 group = group->next;
3085 } while (group != sd->groups);
3086
2dd73a4f 3087 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3088 goto out_balanced;
3089
3090 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3091
3092 if (this_load >= avg_load ||
3093 100*max_load <= sd->imbalance_pct*this_load)
3094 goto out_balanced;
3095
2dd73a4f 3096 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3097 if (group_imb)
3098 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3099
1da177e4
LT
3100 /*
3101 * We're trying to get all the cpus to the average_load, so we don't
3102 * want to push ourselves above the average load, nor do we wish to
3103 * reduce the max loaded cpu below the average load, as either of these
3104 * actions would just result in more rebalancing later, and ping-pong
3105 * tasks around. Thus we look for the minimum possible imbalance.
3106 * Negative imbalances (*we* are more loaded than anyone else) will
3107 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3108 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3109 * appear as very large values with unsigned longs.
3110 */
2dd73a4f
PW
3111 if (max_load <= busiest_load_per_task)
3112 goto out_balanced;
3113
3114 /*
3115 * In the presence of smp nice balancing, certain scenarios can have
3116 * max load less than avg load(as we skip the groups at or below
3117 * its cpu_power, while calculating max_load..)
3118 */
3119 if (max_load < avg_load) {
3120 *imbalance = 0;
3121 goto small_imbalance;
3122 }
0c117f1b
SS
3123
3124 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3125 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3126
1da177e4 3127 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3128 *imbalance = min(max_pull * busiest->__cpu_power,
3129 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3130 / SCHED_LOAD_SCALE;
3131
2dd73a4f
PW
3132 /*
3133 * if *imbalance is less than the average load per runnable task
3134 * there is no gaurantee that any tasks will be moved so we'll have
3135 * a think about bumping its value to force at least one task to be
3136 * moved
3137 */
7fd0d2dd 3138 if (*imbalance < busiest_load_per_task) {
48f24c4d 3139 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3140 unsigned int imbn;
3141
3142small_imbalance:
3143 pwr_move = pwr_now = 0;
3144 imbn = 2;
3145 if (this_nr_running) {
3146 this_load_per_task /= this_nr_running;
3147 if (busiest_load_per_task > this_load_per_task)
3148 imbn = 1;
3149 } else
3150 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3151
dd41f596
IM
3152 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3153 busiest_load_per_task * imbn) {
2dd73a4f 3154 *imbalance = busiest_load_per_task;
1da177e4
LT
3155 return busiest;
3156 }
3157
3158 /*
3159 * OK, we don't have enough imbalance to justify moving tasks,
3160 * however we may be able to increase total CPU power used by
3161 * moving them.
3162 */
3163
5517d86b
ED
3164 pwr_now += busiest->__cpu_power *
3165 min(busiest_load_per_task, max_load);
3166 pwr_now += this->__cpu_power *
3167 min(this_load_per_task, this_load);
1da177e4
LT
3168 pwr_now /= SCHED_LOAD_SCALE;
3169
3170 /* Amount of load we'd subtract */
5517d86b
ED
3171 tmp = sg_div_cpu_power(busiest,
3172 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3173 if (max_load > tmp)
5517d86b 3174 pwr_move += busiest->__cpu_power *
2dd73a4f 3175 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3176
3177 /* Amount of load we'd add */
5517d86b 3178 if (max_load * busiest->__cpu_power <
33859f7f 3179 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3180 tmp = sg_div_cpu_power(this,
3181 max_load * busiest->__cpu_power);
1da177e4 3182 else
5517d86b
ED
3183 tmp = sg_div_cpu_power(this,
3184 busiest_load_per_task * SCHED_LOAD_SCALE);
3185 pwr_move += this->__cpu_power *
3186 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3187 pwr_move /= SCHED_LOAD_SCALE;
3188
3189 /* Move if we gain throughput */
7fd0d2dd
SS
3190 if (pwr_move > pwr_now)
3191 *imbalance = busiest_load_per_task;
1da177e4
LT
3192 }
3193
1da177e4
LT
3194 return busiest;
3195
3196out_balanced:
5c45bf27 3197#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3198 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3199 goto ret;
1da177e4 3200
5c45bf27
SS
3201 if (this == group_leader && group_leader != group_min) {
3202 *imbalance = min_load_per_task;
3203 return group_min;
3204 }
5c45bf27 3205#endif
783609c6 3206ret:
1da177e4
LT
3207 *imbalance = 0;
3208 return NULL;
3209}
3210
3211/*
3212 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3213 */
70b97a7f 3214static struct rq *
d15bcfdb 3215find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3216 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3217{
70b97a7f 3218 struct rq *busiest = NULL, *rq;
2dd73a4f 3219 unsigned long max_load = 0;
1da177e4
LT
3220 int i;
3221
3222 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3223 unsigned long wl;
0a2966b4
CL
3224
3225 if (!cpu_isset(i, *cpus))
3226 continue;
3227
48f24c4d 3228 rq = cpu_rq(i);
dd41f596 3229 wl = weighted_cpuload(i);
2dd73a4f 3230
dd41f596 3231 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3232 continue;
1da177e4 3233
dd41f596
IM
3234 if (wl > max_load) {
3235 max_load = wl;
48f24c4d 3236 busiest = rq;
1da177e4
LT
3237 }
3238 }
3239
3240 return busiest;
3241}
3242
77391d71
NP
3243/*
3244 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3245 * so long as it is large enough.
3246 */
3247#define MAX_PINNED_INTERVAL 512
3248
1da177e4
LT
3249/*
3250 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3251 * tasks if there is an imbalance.
1da177e4 3252 */
70b97a7f 3253static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3254 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3255 int *balance, cpumask_t *cpus)
1da177e4 3256{
43010659 3257 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3258 struct sched_group *group;
1da177e4 3259 unsigned long imbalance;
70b97a7f 3260 struct rq *busiest;
fe2eea3f 3261 unsigned long flags;
5969fe06 3262
7c16ec58
MT
3263 cpus_setall(*cpus);
3264
89c4710e
SS
3265 /*
3266 * When power savings policy is enabled for the parent domain, idle
3267 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3268 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3269 * portraying it as CPU_NOT_IDLE.
89c4710e 3270 */
d15bcfdb 3271 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3272 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3273 sd_idle = 1;
1da177e4 3274
2d72376b 3275 schedstat_inc(sd, lb_count[idle]);
1da177e4 3276
0a2966b4
CL
3277redo:
3278 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3279 cpus, balance);
783609c6 3280
06066714 3281 if (*balance == 0)
783609c6 3282 goto out_balanced;
783609c6 3283
1da177e4
LT
3284 if (!group) {
3285 schedstat_inc(sd, lb_nobusyg[idle]);
3286 goto out_balanced;
3287 }
3288
7c16ec58 3289 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3290 if (!busiest) {
3291 schedstat_inc(sd, lb_nobusyq[idle]);
3292 goto out_balanced;
3293 }
3294
db935dbd 3295 BUG_ON(busiest == this_rq);
1da177e4
LT
3296
3297 schedstat_add(sd, lb_imbalance[idle], imbalance);
3298
43010659 3299 ld_moved = 0;
1da177e4
LT
3300 if (busiest->nr_running > 1) {
3301 /*
3302 * Attempt to move tasks. If find_busiest_group has found
3303 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3304 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3305 * correctly treated as an imbalance.
3306 */
fe2eea3f 3307 local_irq_save(flags);
e17224bf 3308 double_rq_lock(this_rq, busiest);
43010659 3309 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3310 imbalance, sd, idle, &all_pinned);
e17224bf 3311 double_rq_unlock(this_rq, busiest);
fe2eea3f 3312 local_irq_restore(flags);
81026794 3313
46cb4b7c
SS
3314 /*
3315 * some other cpu did the load balance for us.
3316 */
43010659 3317 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3318 resched_cpu(this_cpu);
3319
81026794 3320 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3321 if (unlikely(all_pinned)) {
7c16ec58
MT
3322 cpu_clear(cpu_of(busiest), *cpus);
3323 if (!cpus_empty(*cpus))
0a2966b4 3324 goto redo;
81026794 3325 goto out_balanced;
0a2966b4 3326 }
1da177e4 3327 }
81026794 3328
43010659 3329 if (!ld_moved) {
1da177e4
LT
3330 schedstat_inc(sd, lb_failed[idle]);
3331 sd->nr_balance_failed++;
3332
3333 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3334
fe2eea3f 3335 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3336
3337 /* don't kick the migration_thread, if the curr
3338 * task on busiest cpu can't be moved to this_cpu
3339 */
3340 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3341 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3342 all_pinned = 1;
3343 goto out_one_pinned;
3344 }
3345
1da177e4
LT
3346 if (!busiest->active_balance) {
3347 busiest->active_balance = 1;
3348 busiest->push_cpu = this_cpu;
81026794 3349 active_balance = 1;
1da177e4 3350 }
fe2eea3f 3351 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3352 if (active_balance)
1da177e4
LT
3353 wake_up_process(busiest->migration_thread);
3354
3355 /*
3356 * We've kicked active balancing, reset the failure
3357 * counter.
3358 */
39507451 3359 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3360 }
81026794 3361 } else
1da177e4
LT
3362 sd->nr_balance_failed = 0;
3363
81026794 3364 if (likely(!active_balance)) {
1da177e4
LT
3365 /* We were unbalanced, so reset the balancing interval */
3366 sd->balance_interval = sd->min_interval;
81026794
NP
3367 } else {
3368 /*
3369 * If we've begun active balancing, start to back off. This
3370 * case may not be covered by the all_pinned logic if there
3371 * is only 1 task on the busy runqueue (because we don't call
3372 * move_tasks).
3373 */
3374 if (sd->balance_interval < sd->max_interval)
3375 sd->balance_interval *= 2;
1da177e4
LT
3376 }
3377
43010659 3378 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3379 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3380 return -1;
3381 return ld_moved;
1da177e4
LT
3382
3383out_balanced:
1da177e4
LT
3384 schedstat_inc(sd, lb_balanced[idle]);
3385
16cfb1c0 3386 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3387
3388out_one_pinned:
1da177e4 3389 /* tune up the balancing interval */
77391d71
NP
3390 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3391 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3392 sd->balance_interval *= 2;
3393
48f24c4d 3394 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3395 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3396 return -1;
3397 return 0;
1da177e4
LT
3398}
3399
3400/*
3401 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3402 * tasks if there is an imbalance.
3403 *
d15bcfdb 3404 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3405 * this_rq is locked.
3406 */
48f24c4d 3407static int
7c16ec58
MT
3408load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3409 cpumask_t *cpus)
1da177e4
LT
3410{
3411 struct sched_group *group;
70b97a7f 3412 struct rq *busiest = NULL;
1da177e4 3413 unsigned long imbalance;
43010659 3414 int ld_moved = 0;
5969fe06 3415 int sd_idle = 0;
969bb4e4 3416 int all_pinned = 0;
7c16ec58
MT
3417
3418 cpus_setall(*cpus);
5969fe06 3419
89c4710e
SS
3420 /*
3421 * When power savings policy is enabled for the parent domain, idle
3422 * sibling can pick up load irrespective of busy siblings. In this case,
3423 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3424 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3425 */
3426 if (sd->flags & SD_SHARE_CPUPOWER &&
3427 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3428 sd_idle = 1;
1da177e4 3429
2d72376b 3430 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3431redo:
d15bcfdb 3432 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3433 &sd_idle, cpus, NULL);
1da177e4 3434 if (!group) {
d15bcfdb 3435 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3436 goto out_balanced;
1da177e4
LT
3437 }
3438
7c16ec58 3439 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3440 if (!busiest) {
d15bcfdb 3441 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3442 goto out_balanced;
1da177e4
LT
3443 }
3444
db935dbd
NP
3445 BUG_ON(busiest == this_rq);
3446
d15bcfdb 3447 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3448
43010659 3449 ld_moved = 0;
d6d5cfaf
NP
3450 if (busiest->nr_running > 1) {
3451 /* Attempt to move tasks */
3452 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3453 /* this_rq->clock is already updated */
3454 update_rq_clock(busiest);
43010659 3455 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3456 imbalance, sd, CPU_NEWLY_IDLE,
3457 &all_pinned);
d6d5cfaf 3458 spin_unlock(&busiest->lock);
0a2966b4 3459
969bb4e4 3460 if (unlikely(all_pinned)) {
7c16ec58
MT
3461 cpu_clear(cpu_of(busiest), *cpus);
3462 if (!cpus_empty(*cpus))
0a2966b4
CL
3463 goto redo;
3464 }
d6d5cfaf
NP
3465 }
3466
43010659 3467 if (!ld_moved) {
d15bcfdb 3468 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3469 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3470 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3471 return -1;
3472 } else
16cfb1c0 3473 sd->nr_balance_failed = 0;
1da177e4 3474
43010659 3475 return ld_moved;
16cfb1c0
NP
3476
3477out_balanced:
d15bcfdb 3478 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3479 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3480 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3481 return -1;
16cfb1c0 3482 sd->nr_balance_failed = 0;
48f24c4d 3483
16cfb1c0 3484 return 0;
1da177e4
LT
3485}
3486
3487/*
3488 * idle_balance is called by schedule() if this_cpu is about to become
3489 * idle. Attempts to pull tasks from other CPUs.
3490 */
70b97a7f 3491static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3492{
3493 struct sched_domain *sd;
dd41f596
IM
3494 int pulled_task = -1;
3495 unsigned long next_balance = jiffies + HZ;
7c16ec58 3496 cpumask_t tmpmask;
1da177e4
LT
3497
3498 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3499 unsigned long interval;
3500
3501 if (!(sd->flags & SD_LOAD_BALANCE))
3502 continue;
3503
3504 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3505 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3506 pulled_task = load_balance_newidle(this_cpu, this_rq,
3507 sd, &tmpmask);
92c4ca5c
CL
3508
3509 interval = msecs_to_jiffies(sd->balance_interval);
3510 if (time_after(next_balance, sd->last_balance + interval))
3511 next_balance = sd->last_balance + interval;
3512 if (pulled_task)
3513 break;
1da177e4 3514 }
dd41f596 3515 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3516 /*
3517 * We are going idle. next_balance may be set based on
3518 * a busy processor. So reset next_balance.
3519 */
3520 this_rq->next_balance = next_balance;
dd41f596 3521 }
1da177e4
LT
3522}
3523
3524/*
3525 * active_load_balance is run by migration threads. It pushes running tasks
3526 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3527 * running on each physical CPU where possible, and avoids physical /
3528 * logical imbalances.
3529 *
3530 * Called with busiest_rq locked.
3531 */
70b97a7f 3532static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3533{
39507451 3534 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3535 struct sched_domain *sd;
3536 struct rq *target_rq;
39507451 3537
48f24c4d 3538 /* Is there any task to move? */
39507451 3539 if (busiest_rq->nr_running <= 1)
39507451
NP
3540 return;
3541
3542 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3543
3544 /*
39507451 3545 * This condition is "impossible", if it occurs
41a2d6cf 3546 * we need to fix it. Originally reported by
39507451 3547 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3548 */
39507451 3549 BUG_ON(busiest_rq == target_rq);
1da177e4 3550
39507451
NP
3551 /* move a task from busiest_rq to target_rq */
3552 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3553 update_rq_clock(busiest_rq);
3554 update_rq_clock(target_rq);
39507451
NP
3555
3556 /* Search for an sd spanning us and the target CPU. */
c96d145e 3557 for_each_domain(target_cpu, sd) {
39507451 3558 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3559 cpu_isset(busiest_cpu, sd->span))
39507451 3560 break;
c96d145e 3561 }
39507451 3562
48f24c4d 3563 if (likely(sd)) {
2d72376b 3564 schedstat_inc(sd, alb_count);
39507451 3565
43010659
PW
3566 if (move_one_task(target_rq, target_cpu, busiest_rq,
3567 sd, CPU_IDLE))
48f24c4d
IM
3568 schedstat_inc(sd, alb_pushed);
3569 else
3570 schedstat_inc(sd, alb_failed);
3571 }
39507451 3572 spin_unlock(&target_rq->lock);
1da177e4
LT
3573}
3574
46cb4b7c
SS
3575#ifdef CONFIG_NO_HZ
3576static struct {
3577 atomic_t load_balancer;
41a2d6cf 3578 cpumask_t cpu_mask;
46cb4b7c
SS
3579} nohz ____cacheline_aligned = {
3580 .load_balancer = ATOMIC_INIT(-1),
3581 .cpu_mask = CPU_MASK_NONE,
3582};
3583
7835b98b 3584/*
46cb4b7c
SS
3585 * This routine will try to nominate the ilb (idle load balancing)
3586 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3587 * load balancing on behalf of all those cpus. If all the cpus in the system
3588 * go into this tickless mode, then there will be no ilb owner (as there is
3589 * no need for one) and all the cpus will sleep till the next wakeup event
3590 * arrives...
3591 *
3592 * For the ilb owner, tick is not stopped. And this tick will be used
3593 * for idle load balancing. ilb owner will still be part of
3594 * nohz.cpu_mask..
7835b98b 3595 *
46cb4b7c
SS
3596 * While stopping the tick, this cpu will become the ilb owner if there
3597 * is no other owner. And will be the owner till that cpu becomes busy
3598 * or if all cpus in the system stop their ticks at which point
3599 * there is no need for ilb owner.
3600 *
3601 * When the ilb owner becomes busy, it nominates another owner, during the
3602 * next busy scheduler_tick()
3603 */
3604int select_nohz_load_balancer(int stop_tick)
3605{
3606 int cpu = smp_processor_id();
3607
3608 if (stop_tick) {
3609 cpu_set(cpu, nohz.cpu_mask);
3610 cpu_rq(cpu)->in_nohz_recently = 1;
3611
3612 /*
3613 * If we are going offline and still the leader, give up!
3614 */
3615 if (cpu_is_offline(cpu) &&
3616 atomic_read(&nohz.load_balancer) == cpu) {
3617 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3618 BUG();
3619 return 0;
3620 }
3621
3622 /* time for ilb owner also to sleep */
3623 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3624 if (atomic_read(&nohz.load_balancer) == cpu)
3625 atomic_set(&nohz.load_balancer, -1);
3626 return 0;
3627 }
3628
3629 if (atomic_read(&nohz.load_balancer) == -1) {
3630 /* make me the ilb owner */
3631 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3632 return 1;
3633 } else if (atomic_read(&nohz.load_balancer) == cpu)
3634 return 1;
3635 } else {
3636 if (!cpu_isset(cpu, nohz.cpu_mask))
3637 return 0;
3638
3639 cpu_clear(cpu, nohz.cpu_mask);
3640
3641 if (atomic_read(&nohz.load_balancer) == cpu)
3642 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3643 BUG();
3644 }
3645 return 0;
3646}
3647#endif
3648
3649static DEFINE_SPINLOCK(balancing);
3650
3651/*
7835b98b
CL
3652 * It checks each scheduling domain to see if it is due to be balanced,
3653 * and initiates a balancing operation if so.
3654 *
3655 * Balancing parameters are set up in arch_init_sched_domains.
3656 */
a9957449 3657static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3658{
46cb4b7c
SS
3659 int balance = 1;
3660 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3661 unsigned long interval;
3662 struct sched_domain *sd;
46cb4b7c 3663 /* Earliest time when we have to do rebalance again */
c9819f45 3664 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3665 int update_next_balance = 0;
7c16ec58 3666 cpumask_t tmp;
1da177e4 3667
46cb4b7c 3668 for_each_domain(cpu, sd) {
1da177e4
LT
3669 if (!(sd->flags & SD_LOAD_BALANCE))
3670 continue;
3671
3672 interval = sd->balance_interval;
d15bcfdb 3673 if (idle != CPU_IDLE)
1da177e4
LT
3674 interval *= sd->busy_factor;
3675
3676 /* scale ms to jiffies */
3677 interval = msecs_to_jiffies(interval);
3678 if (unlikely(!interval))
3679 interval = 1;
dd41f596
IM
3680 if (interval > HZ*NR_CPUS/10)
3681 interval = HZ*NR_CPUS/10;
3682
1da177e4 3683
08c183f3
CL
3684 if (sd->flags & SD_SERIALIZE) {
3685 if (!spin_trylock(&balancing))
3686 goto out;
3687 }
3688
c9819f45 3689 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3690 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3691 /*
3692 * We've pulled tasks over so either we're no
5969fe06
NP
3693 * longer idle, or one of our SMT siblings is
3694 * not idle.
3695 */
d15bcfdb 3696 idle = CPU_NOT_IDLE;
1da177e4 3697 }
1bd77f2d 3698 sd->last_balance = jiffies;
1da177e4 3699 }
08c183f3
CL
3700 if (sd->flags & SD_SERIALIZE)
3701 spin_unlock(&balancing);
3702out:
f549da84 3703 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3704 next_balance = sd->last_balance + interval;
f549da84
SS
3705 update_next_balance = 1;
3706 }
783609c6
SS
3707
3708 /*
3709 * Stop the load balance at this level. There is another
3710 * CPU in our sched group which is doing load balancing more
3711 * actively.
3712 */
3713 if (!balance)
3714 break;
1da177e4 3715 }
f549da84
SS
3716
3717 /*
3718 * next_balance will be updated only when there is a need.
3719 * When the cpu is attached to null domain for ex, it will not be
3720 * updated.
3721 */
3722 if (likely(update_next_balance))
3723 rq->next_balance = next_balance;
46cb4b7c
SS
3724}
3725
3726/*
3727 * run_rebalance_domains is triggered when needed from the scheduler tick.
3728 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3729 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3730 */
3731static void run_rebalance_domains(struct softirq_action *h)
3732{
dd41f596
IM
3733 int this_cpu = smp_processor_id();
3734 struct rq *this_rq = cpu_rq(this_cpu);
3735 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3736 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3737
dd41f596 3738 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3739
3740#ifdef CONFIG_NO_HZ
3741 /*
3742 * If this cpu is the owner for idle load balancing, then do the
3743 * balancing on behalf of the other idle cpus whose ticks are
3744 * stopped.
3745 */
dd41f596
IM
3746 if (this_rq->idle_at_tick &&
3747 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3748 cpumask_t cpus = nohz.cpu_mask;
3749 struct rq *rq;
3750 int balance_cpu;
3751
dd41f596 3752 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3753 for_each_cpu_mask(balance_cpu, cpus) {
3754 /*
3755 * If this cpu gets work to do, stop the load balancing
3756 * work being done for other cpus. Next load
3757 * balancing owner will pick it up.
3758 */
3759 if (need_resched())
3760 break;
3761
de0cf899 3762 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3763
3764 rq = cpu_rq(balance_cpu);
dd41f596
IM
3765 if (time_after(this_rq->next_balance, rq->next_balance))
3766 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3767 }
3768 }
3769#endif
3770}
3771
3772/*
3773 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3774 *
3775 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3776 * idle load balancing owner or decide to stop the periodic load balancing,
3777 * if the whole system is idle.
3778 */
dd41f596 3779static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3780{
46cb4b7c
SS
3781#ifdef CONFIG_NO_HZ
3782 /*
3783 * If we were in the nohz mode recently and busy at the current
3784 * scheduler tick, then check if we need to nominate new idle
3785 * load balancer.
3786 */
3787 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3788 rq->in_nohz_recently = 0;
3789
3790 if (atomic_read(&nohz.load_balancer) == cpu) {
3791 cpu_clear(cpu, nohz.cpu_mask);
3792 atomic_set(&nohz.load_balancer, -1);
3793 }
3794
3795 if (atomic_read(&nohz.load_balancer) == -1) {
3796 /*
3797 * simple selection for now: Nominate the
3798 * first cpu in the nohz list to be the next
3799 * ilb owner.
3800 *
3801 * TBD: Traverse the sched domains and nominate
3802 * the nearest cpu in the nohz.cpu_mask.
3803 */
3804 int ilb = first_cpu(nohz.cpu_mask);
3805
434d53b0 3806 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3807 resched_cpu(ilb);
3808 }
3809 }
3810
3811 /*
3812 * If this cpu is idle and doing idle load balancing for all the
3813 * cpus with ticks stopped, is it time for that to stop?
3814 */
3815 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3816 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3817 resched_cpu(cpu);
3818 return;
3819 }
3820
3821 /*
3822 * If this cpu is idle and the idle load balancing is done by
3823 * someone else, then no need raise the SCHED_SOFTIRQ
3824 */
3825 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3826 cpu_isset(cpu, nohz.cpu_mask))
3827 return;
3828#endif
3829 if (time_after_eq(jiffies, rq->next_balance))
3830 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3831}
dd41f596
IM
3832
3833#else /* CONFIG_SMP */
3834
1da177e4
LT
3835/*
3836 * on UP we do not need to balance between CPUs:
3837 */
70b97a7f 3838static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3839{
3840}
dd41f596 3841
1da177e4
LT
3842#endif
3843
1da177e4
LT
3844DEFINE_PER_CPU(struct kernel_stat, kstat);
3845
3846EXPORT_PER_CPU_SYMBOL(kstat);
3847
3848/*
41b86e9c
IM
3849 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3850 * that have not yet been banked in case the task is currently running.
1da177e4 3851 */
41b86e9c 3852unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3853{
1da177e4 3854 unsigned long flags;
41b86e9c
IM
3855 u64 ns, delta_exec;
3856 struct rq *rq;
48f24c4d 3857
41b86e9c
IM
3858 rq = task_rq_lock(p, &flags);
3859 ns = p->se.sum_exec_runtime;
051a1d1a 3860 if (task_current(rq, p)) {
a8e504d2
IM
3861 update_rq_clock(rq);
3862 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3863 if ((s64)delta_exec > 0)
3864 ns += delta_exec;
3865 }
3866 task_rq_unlock(rq, &flags);
48f24c4d 3867
1da177e4
LT
3868 return ns;
3869}
3870
1da177e4
LT
3871/*
3872 * Account user cpu time to a process.
3873 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3874 * @cputime: the cpu time spent in user space since the last update
3875 */
3876void account_user_time(struct task_struct *p, cputime_t cputime)
3877{
3878 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3879 cputime64_t tmp;
3880
3881 p->utime = cputime_add(p->utime, cputime);
3882
3883 /* Add user time to cpustat. */
3884 tmp = cputime_to_cputime64(cputime);
3885 if (TASK_NICE(p) > 0)
3886 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3887 else
3888 cpustat->user = cputime64_add(cpustat->user, tmp);
3889}
3890
94886b84
LV
3891/*
3892 * Account guest cpu time to a process.
3893 * @p: the process that the cpu time gets accounted to
3894 * @cputime: the cpu time spent in virtual machine since the last update
3895 */
f7402e03 3896static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3897{
3898 cputime64_t tmp;
3899 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3900
3901 tmp = cputime_to_cputime64(cputime);
3902
3903 p->utime = cputime_add(p->utime, cputime);
3904 p->gtime = cputime_add(p->gtime, cputime);
3905
3906 cpustat->user = cputime64_add(cpustat->user, tmp);
3907 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3908}
3909
c66f08be
MN
3910/*
3911 * Account scaled user cpu time to a process.
3912 * @p: the process that the cpu time gets accounted to
3913 * @cputime: the cpu time spent in user space since the last update
3914 */
3915void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3916{
3917 p->utimescaled = cputime_add(p->utimescaled, cputime);
3918}
3919
1da177e4
LT
3920/*
3921 * Account system cpu time to a process.
3922 * @p: the process that the cpu time gets accounted to
3923 * @hardirq_offset: the offset to subtract from hardirq_count()
3924 * @cputime: the cpu time spent in kernel space since the last update
3925 */
3926void account_system_time(struct task_struct *p, int hardirq_offset,
3927 cputime_t cputime)
3928{
3929 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3930 struct rq *rq = this_rq();
1da177e4
LT
3931 cputime64_t tmp;
3932
983ed7a6
HH
3933 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3934 account_guest_time(p, cputime);
3935 return;
3936 }
94886b84 3937
1da177e4
LT
3938 p->stime = cputime_add(p->stime, cputime);
3939
3940 /* Add system time to cpustat. */
3941 tmp = cputime_to_cputime64(cputime);
3942 if (hardirq_count() - hardirq_offset)
3943 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3944 else if (softirq_count())
3945 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3946 else if (p != rq->idle)
1da177e4 3947 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3948 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3949 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3950 else
3951 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3952 /* Account for system time used */
3953 acct_update_integrals(p);
1da177e4
LT
3954}
3955
c66f08be
MN
3956/*
3957 * Account scaled system cpu time to a process.
3958 * @p: the process that the cpu time gets accounted to
3959 * @hardirq_offset: the offset to subtract from hardirq_count()
3960 * @cputime: the cpu time spent in kernel space since the last update
3961 */
3962void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3963{
3964 p->stimescaled = cputime_add(p->stimescaled, cputime);
3965}
3966
1da177e4
LT
3967/*
3968 * Account for involuntary wait time.
3969 * @p: the process from which the cpu time has been stolen
3970 * @steal: the cpu time spent in involuntary wait
3971 */
3972void account_steal_time(struct task_struct *p, cputime_t steal)
3973{
3974 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3975 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3976 struct rq *rq = this_rq();
1da177e4
LT
3977
3978 if (p == rq->idle) {
3979 p->stime = cputime_add(p->stime, steal);
3980 if (atomic_read(&rq->nr_iowait) > 0)
3981 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3982 else
3983 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3984 } else
1da177e4
LT
3985 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3986}
3987
7835b98b
CL
3988/*
3989 * This function gets called by the timer code, with HZ frequency.
3990 * We call it with interrupts disabled.
3991 *
3992 * It also gets called by the fork code, when changing the parent's
3993 * timeslices.
3994 */
3995void scheduler_tick(void)
3996{
7835b98b
CL
3997 int cpu = smp_processor_id();
3998 struct rq *rq = cpu_rq(cpu);
dd41f596 3999 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4000
4001 sched_clock_tick();
dd41f596
IM
4002
4003 spin_lock(&rq->lock);
3e51f33f 4004 update_rq_clock(rq);
f1a438d8 4005 update_cpu_load(rq);
fa85ae24 4006 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4007 spin_unlock(&rq->lock);
7835b98b 4008
e418e1c2 4009#ifdef CONFIG_SMP
dd41f596
IM
4010 rq->idle_at_tick = idle_cpu(cpu);
4011 trigger_load_balance(rq, cpu);
e418e1c2 4012#endif
1da177e4
LT
4013}
4014
1da177e4
LT
4015#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4016
43627582 4017void __kprobes add_preempt_count(int val)
1da177e4
LT
4018{
4019 /*
4020 * Underflow?
4021 */
9a11b49a
IM
4022 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4023 return;
1da177e4
LT
4024 preempt_count() += val;
4025 /*
4026 * Spinlock count overflowing soon?
4027 */
33859f7f
MOS
4028 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4029 PREEMPT_MASK - 10);
1da177e4
LT
4030}
4031EXPORT_SYMBOL(add_preempt_count);
4032
43627582 4033void __kprobes sub_preempt_count(int val)
1da177e4
LT
4034{
4035 /*
4036 * Underflow?
4037 */
9a11b49a
IM
4038 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4039 return;
1da177e4
LT
4040 /*
4041 * Is the spinlock portion underflowing?
4042 */
9a11b49a
IM
4043 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4044 !(preempt_count() & PREEMPT_MASK)))
4045 return;
4046
1da177e4
LT
4047 preempt_count() -= val;
4048}
4049EXPORT_SYMBOL(sub_preempt_count);
4050
4051#endif
4052
4053/*
dd41f596 4054 * Print scheduling while atomic bug:
1da177e4 4055 */
dd41f596 4056static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4057{
838225b4
SS
4058 struct pt_regs *regs = get_irq_regs();
4059
4060 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4061 prev->comm, prev->pid, preempt_count());
4062
dd41f596
IM
4063 debug_show_held_locks(prev);
4064 if (irqs_disabled())
4065 print_irqtrace_events(prev);
838225b4
SS
4066
4067 if (regs)
4068 show_regs(regs);
4069 else
4070 dump_stack();
dd41f596 4071}
1da177e4 4072
dd41f596
IM
4073/*
4074 * Various schedule()-time debugging checks and statistics:
4075 */
4076static inline void schedule_debug(struct task_struct *prev)
4077{
1da177e4 4078 /*
41a2d6cf 4079 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4080 * schedule() atomically, we ignore that path for now.
4081 * Otherwise, whine if we are scheduling when we should not be.
4082 */
3f33a7ce 4083 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4084 __schedule_bug(prev);
4085
1da177e4
LT
4086 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4087
2d72376b 4088 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4089#ifdef CONFIG_SCHEDSTATS
4090 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4091 schedstat_inc(this_rq(), bkl_count);
4092 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4093 }
4094#endif
dd41f596
IM
4095}
4096
4097/*
4098 * Pick up the highest-prio task:
4099 */
4100static inline struct task_struct *
ff95f3df 4101pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4102{
5522d5d5 4103 const struct sched_class *class;
dd41f596 4104 struct task_struct *p;
1da177e4
LT
4105
4106 /*
dd41f596
IM
4107 * Optimization: we know that if all tasks are in
4108 * the fair class we can call that function directly:
1da177e4 4109 */
dd41f596 4110 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4111 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4112 if (likely(p))
4113 return p;
1da177e4
LT
4114 }
4115
dd41f596
IM
4116 class = sched_class_highest;
4117 for ( ; ; ) {
fb8d4724 4118 p = class->pick_next_task(rq);
dd41f596
IM
4119 if (p)
4120 return p;
4121 /*
4122 * Will never be NULL as the idle class always
4123 * returns a non-NULL p:
4124 */
4125 class = class->next;
4126 }
4127}
1da177e4 4128
dd41f596
IM
4129/*
4130 * schedule() is the main scheduler function.
4131 */
4132asmlinkage void __sched schedule(void)
4133{
4134 struct task_struct *prev, *next;
67ca7bde 4135 unsigned long *switch_count;
dd41f596 4136 struct rq *rq;
f333fdc9 4137 int cpu, hrtick = sched_feat(HRTICK);
dd41f596
IM
4138
4139need_resched:
4140 preempt_disable();
4141 cpu = smp_processor_id();
4142 rq = cpu_rq(cpu);
4143 rcu_qsctr_inc(cpu);
4144 prev = rq->curr;
4145 switch_count = &prev->nivcsw;
4146
4147 release_kernel_lock(prev);
4148need_resched_nonpreemptible:
4149
4150 schedule_debug(prev);
1da177e4 4151
f333fdc9
MG
4152 if (hrtick)
4153 hrtick_clear(rq);
8f4d37ec 4154
1e819950
IM
4155 /*
4156 * Do the rq-clock update outside the rq lock:
4157 */
4158 local_irq_disable();
3e51f33f 4159 update_rq_clock(rq);
1e819950
IM
4160 spin_lock(&rq->lock);
4161 clear_tsk_need_resched(prev);
1da177e4 4162
1da177e4 4163 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4164 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4165 signal_pending(prev))) {
1da177e4 4166 prev->state = TASK_RUNNING;
dd41f596 4167 } else {
2e1cb74a 4168 deactivate_task(rq, prev, 1);
1da177e4 4169 }
dd41f596 4170 switch_count = &prev->nvcsw;
1da177e4
LT
4171 }
4172
9a897c5a
SR
4173#ifdef CONFIG_SMP
4174 if (prev->sched_class->pre_schedule)
4175 prev->sched_class->pre_schedule(rq, prev);
4176#endif
f65eda4f 4177
dd41f596 4178 if (unlikely(!rq->nr_running))
1da177e4 4179 idle_balance(cpu, rq);
1da177e4 4180
31ee529c 4181 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4182 next = pick_next_task(rq, prev);
1da177e4 4183
1da177e4 4184 if (likely(prev != next)) {
673a90a1
DS
4185 sched_info_switch(prev, next);
4186
1da177e4
LT
4187 rq->nr_switches++;
4188 rq->curr = next;
4189 ++*switch_count;
4190
dd41f596 4191 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4192 /*
4193 * the context switch might have flipped the stack from under
4194 * us, hence refresh the local variables.
4195 */
4196 cpu = smp_processor_id();
4197 rq = cpu_rq(cpu);
1da177e4
LT
4198 } else
4199 spin_unlock_irq(&rq->lock);
4200
f333fdc9
MG
4201 if (hrtick)
4202 hrtick_set(rq);
8f4d37ec
PZ
4203
4204 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4205 goto need_resched_nonpreemptible;
8f4d37ec 4206
1da177e4
LT
4207 preempt_enable_no_resched();
4208 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4209 goto need_resched;
4210}
1da177e4
LT
4211EXPORT_SYMBOL(schedule);
4212
4213#ifdef CONFIG_PREEMPT
4214/*
2ed6e34f 4215 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4216 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4217 * occur there and call schedule directly.
4218 */
4219asmlinkage void __sched preempt_schedule(void)
4220{
4221 struct thread_info *ti = current_thread_info();
6478d880 4222
1da177e4
LT
4223 /*
4224 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4225 * we do not want to preempt the current task. Just return..
1da177e4 4226 */
beed33a8 4227 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4228 return;
4229
3a5c359a
AK
4230 do {
4231 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4232 schedule();
3a5c359a 4233 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4234
3a5c359a
AK
4235 /*
4236 * Check again in case we missed a preemption opportunity
4237 * between schedule and now.
4238 */
4239 barrier();
4240 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4241}
1da177e4
LT
4242EXPORT_SYMBOL(preempt_schedule);
4243
4244/*
2ed6e34f 4245 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4246 * off of irq context.
4247 * Note, that this is called and return with irqs disabled. This will
4248 * protect us against recursive calling from irq.
4249 */
4250asmlinkage void __sched preempt_schedule_irq(void)
4251{
4252 struct thread_info *ti = current_thread_info();
6478d880 4253
2ed6e34f 4254 /* Catch callers which need to be fixed */
1da177e4
LT
4255 BUG_ON(ti->preempt_count || !irqs_disabled());
4256
3a5c359a
AK
4257 do {
4258 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4259 local_irq_enable();
4260 schedule();
4261 local_irq_disable();
3a5c359a 4262 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4263
3a5c359a
AK
4264 /*
4265 * Check again in case we missed a preemption opportunity
4266 * between schedule and now.
4267 */
4268 barrier();
4269 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4270}
4271
4272#endif /* CONFIG_PREEMPT */
4273
95cdf3b7
IM
4274int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4275 void *key)
1da177e4 4276{
48f24c4d 4277 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4278}
1da177e4
LT
4279EXPORT_SYMBOL(default_wake_function);
4280
4281/*
41a2d6cf
IM
4282 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4283 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4284 * number) then we wake all the non-exclusive tasks and one exclusive task.
4285 *
4286 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4287 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4288 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4289 */
4290static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4291 int nr_exclusive, int sync, void *key)
4292{
2e45874c 4293 wait_queue_t *curr, *next;
1da177e4 4294
2e45874c 4295 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4296 unsigned flags = curr->flags;
4297
1da177e4 4298 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4299 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4300 break;
4301 }
4302}
4303
4304/**
4305 * __wake_up - wake up threads blocked on a waitqueue.
4306 * @q: the waitqueue
4307 * @mode: which threads
4308 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4309 * @key: is directly passed to the wakeup function
1da177e4 4310 */
7ad5b3a5 4311void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4312 int nr_exclusive, void *key)
1da177e4
LT
4313{
4314 unsigned long flags;
4315
4316 spin_lock_irqsave(&q->lock, flags);
4317 __wake_up_common(q, mode, nr_exclusive, 0, key);
4318 spin_unlock_irqrestore(&q->lock, flags);
4319}
1da177e4
LT
4320EXPORT_SYMBOL(__wake_up);
4321
4322/*
4323 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4324 */
7ad5b3a5 4325void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4326{
4327 __wake_up_common(q, mode, 1, 0, NULL);
4328}
4329
4330/**
67be2dd1 4331 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4332 * @q: the waitqueue
4333 * @mode: which threads
4334 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4335 *
4336 * The sync wakeup differs that the waker knows that it will schedule
4337 * away soon, so while the target thread will be woken up, it will not
4338 * be migrated to another CPU - ie. the two threads are 'synchronized'
4339 * with each other. This can prevent needless bouncing between CPUs.
4340 *
4341 * On UP it can prevent extra preemption.
4342 */
7ad5b3a5 4343void
95cdf3b7 4344__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4345{
4346 unsigned long flags;
4347 int sync = 1;
4348
4349 if (unlikely(!q))
4350 return;
4351
4352 if (unlikely(!nr_exclusive))
4353 sync = 0;
4354
4355 spin_lock_irqsave(&q->lock, flags);
4356 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4357 spin_unlock_irqrestore(&q->lock, flags);
4358}
4359EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4360
b15136e9 4361void complete(struct completion *x)
1da177e4
LT
4362{
4363 unsigned long flags;
4364
4365 spin_lock_irqsave(&x->wait.lock, flags);
4366 x->done++;
d9514f6c 4367 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4368 spin_unlock_irqrestore(&x->wait.lock, flags);
4369}
4370EXPORT_SYMBOL(complete);
4371
b15136e9 4372void complete_all(struct completion *x)
1da177e4
LT
4373{
4374 unsigned long flags;
4375
4376 spin_lock_irqsave(&x->wait.lock, flags);
4377 x->done += UINT_MAX/2;
d9514f6c 4378 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4379 spin_unlock_irqrestore(&x->wait.lock, flags);
4380}
4381EXPORT_SYMBOL(complete_all);
4382
8cbbe86d
AK
4383static inline long __sched
4384do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4385{
1da177e4
LT
4386 if (!x->done) {
4387 DECLARE_WAITQUEUE(wait, current);
4388
4389 wait.flags |= WQ_FLAG_EXCLUSIVE;
4390 __add_wait_queue_tail(&x->wait, &wait);
4391 do {
009e577e
MW
4392 if ((state == TASK_INTERRUPTIBLE &&
4393 signal_pending(current)) ||
4394 (state == TASK_KILLABLE &&
4395 fatal_signal_pending(current))) {
8cbbe86d
AK
4396 __remove_wait_queue(&x->wait, &wait);
4397 return -ERESTARTSYS;
4398 }
4399 __set_current_state(state);
1da177e4
LT
4400 spin_unlock_irq(&x->wait.lock);
4401 timeout = schedule_timeout(timeout);
4402 spin_lock_irq(&x->wait.lock);
4403 if (!timeout) {
4404 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4405 return timeout;
1da177e4
LT
4406 }
4407 } while (!x->done);
4408 __remove_wait_queue(&x->wait, &wait);
4409 }
4410 x->done--;
1da177e4
LT
4411 return timeout;
4412}
1da177e4 4413
8cbbe86d
AK
4414static long __sched
4415wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4416{
1da177e4
LT
4417 might_sleep();
4418
4419 spin_lock_irq(&x->wait.lock);
8cbbe86d 4420 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4421 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4422 return timeout;
4423}
1da177e4 4424
b15136e9 4425void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4426{
4427 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4428}
8cbbe86d 4429EXPORT_SYMBOL(wait_for_completion);
1da177e4 4430
b15136e9 4431unsigned long __sched
8cbbe86d 4432wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4433{
8cbbe86d 4434 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4435}
8cbbe86d 4436EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4437
8cbbe86d 4438int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4439{
51e97990
AK
4440 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4441 if (t == -ERESTARTSYS)
4442 return t;
4443 return 0;
0fec171c 4444}
8cbbe86d 4445EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4446
b15136e9 4447unsigned long __sched
8cbbe86d
AK
4448wait_for_completion_interruptible_timeout(struct completion *x,
4449 unsigned long timeout)
0fec171c 4450{
8cbbe86d 4451 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4452}
8cbbe86d 4453EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4454
009e577e
MW
4455int __sched wait_for_completion_killable(struct completion *x)
4456{
4457 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4458 if (t == -ERESTARTSYS)
4459 return t;
4460 return 0;
4461}
4462EXPORT_SYMBOL(wait_for_completion_killable);
4463
8cbbe86d
AK
4464static long __sched
4465sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4466{
0fec171c
IM
4467 unsigned long flags;
4468 wait_queue_t wait;
4469
4470 init_waitqueue_entry(&wait, current);
1da177e4 4471
8cbbe86d 4472 __set_current_state(state);
1da177e4 4473
8cbbe86d
AK
4474 spin_lock_irqsave(&q->lock, flags);
4475 __add_wait_queue(q, &wait);
4476 spin_unlock(&q->lock);
4477 timeout = schedule_timeout(timeout);
4478 spin_lock_irq(&q->lock);
4479 __remove_wait_queue(q, &wait);
4480 spin_unlock_irqrestore(&q->lock, flags);
4481
4482 return timeout;
4483}
4484
4485void __sched interruptible_sleep_on(wait_queue_head_t *q)
4486{
4487 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4488}
1da177e4
LT
4489EXPORT_SYMBOL(interruptible_sleep_on);
4490
0fec171c 4491long __sched
95cdf3b7 4492interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4493{
8cbbe86d 4494 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4495}
1da177e4
LT
4496EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4497
0fec171c 4498void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4499{
8cbbe86d 4500 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4501}
1da177e4
LT
4502EXPORT_SYMBOL(sleep_on);
4503
0fec171c 4504long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4505{
8cbbe86d 4506 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4507}
1da177e4
LT
4508EXPORT_SYMBOL(sleep_on_timeout);
4509
b29739f9
IM
4510#ifdef CONFIG_RT_MUTEXES
4511
4512/*
4513 * rt_mutex_setprio - set the current priority of a task
4514 * @p: task
4515 * @prio: prio value (kernel-internal form)
4516 *
4517 * This function changes the 'effective' priority of a task. It does
4518 * not touch ->normal_prio like __setscheduler().
4519 *
4520 * Used by the rt_mutex code to implement priority inheritance logic.
4521 */
36c8b586 4522void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4523{
4524 unsigned long flags;
83b699ed 4525 int oldprio, on_rq, running;
70b97a7f 4526 struct rq *rq;
cb469845 4527 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4528
4529 BUG_ON(prio < 0 || prio > MAX_PRIO);
4530
4531 rq = task_rq_lock(p, &flags);
a8e504d2 4532 update_rq_clock(rq);
b29739f9 4533
d5f9f942 4534 oldprio = p->prio;
dd41f596 4535 on_rq = p->se.on_rq;
051a1d1a 4536 running = task_current(rq, p);
0e1f3483 4537 if (on_rq)
69be72c1 4538 dequeue_task(rq, p, 0);
0e1f3483
HS
4539 if (running)
4540 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4541
4542 if (rt_prio(prio))
4543 p->sched_class = &rt_sched_class;
4544 else
4545 p->sched_class = &fair_sched_class;
4546
b29739f9
IM
4547 p->prio = prio;
4548
0e1f3483
HS
4549 if (running)
4550 p->sched_class->set_curr_task(rq);
dd41f596 4551 if (on_rq) {
8159f87e 4552 enqueue_task(rq, p, 0);
cb469845
SR
4553
4554 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4555 }
4556 task_rq_unlock(rq, &flags);
4557}
4558
4559#endif
4560
36c8b586 4561void set_user_nice(struct task_struct *p, long nice)
1da177e4 4562{
dd41f596 4563 int old_prio, delta, on_rq;
1da177e4 4564 unsigned long flags;
70b97a7f 4565 struct rq *rq;
1da177e4
LT
4566
4567 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4568 return;
4569 /*
4570 * We have to be careful, if called from sys_setpriority(),
4571 * the task might be in the middle of scheduling on another CPU.
4572 */
4573 rq = task_rq_lock(p, &flags);
a8e504d2 4574 update_rq_clock(rq);
1da177e4
LT
4575 /*
4576 * The RT priorities are set via sched_setscheduler(), but we still
4577 * allow the 'normal' nice value to be set - but as expected
4578 * it wont have any effect on scheduling until the task is
dd41f596 4579 * SCHED_FIFO/SCHED_RR:
1da177e4 4580 */
e05606d3 4581 if (task_has_rt_policy(p)) {
1da177e4
LT
4582 p->static_prio = NICE_TO_PRIO(nice);
4583 goto out_unlock;
4584 }
dd41f596 4585 on_rq = p->se.on_rq;
6363ca57 4586 if (on_rq) {
69be72c1 4587 dequeue_task(rq, p, 0);
6363ca57
IM
4588 dec_load(rq, p);
4589 }
1da177e4 4590
1da177e4 4591 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4592 set_load_weight(p);
b29739f9
IM
4593 old_prio = p->prio;
4594 p->prio = effective_prio(p);
4595 delta = p->prio - old_prio;
1da177e4 4596
dd41f596 4597 if (on_rq) {
8159f87e 4598 enqueue_task(rq, p, 0);
6363ca57 4599 inc_load(rq, p);
1da177e4 4600 /*
d5f9f942
AM
4601 * If the task increased its priority or is running and
4602 * lowered its priority, then reschedule its CPU:
1da177e4 4603 */
d5f9f942 4604 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4605 resched_task(rq->curr);
4606 }
4607out_unlock:
4608 task_rq_unlock(rq, &flags);
4609}
1da177e4
LT
4610EXPORT_SYMBOL(set_user_nice);
4611
e43379f1
MM
4612/*
4613 * can_nice - check if a task can reduce its nice value
4614 * @p: task
4615 * @nice: nice value
4616 */
36c8b586 4617int can_nice(const struct task_struct *p, const int nice)
e43379f1 4618{
024f4747
MM
4619 /* convert nice value [19,-20] to rlimit style value [1,40] */
4620 int nice_rlim = 20 - nice;
48f24c4d 4621
e43379f1
MM
4622 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4623 capable(CAP_SYS_NICE));
4624}
4625
1da177e4
LT
4626#ifdef __ARCH_WANT_SYS_NICE
4627
4628/*
4629 * sys_nice - change the priority of the current process.
4630 * @increment: priority increment
4631 *
4632 * sys_setpriority is a more generic, but much slower function that
4633 * does similar things.
4634 */
4635asmlinkage long sys_nice(int increment)
4636{
48f24c4d 4637 long nice, retval;
1da177e4
LT
4638
4639 /*
4640 * Setpriority might change our priority at the same moment.
4641 * We don't have to worry. Conceptually one call occurs first
4642 * and we have a single winner.
4643 */
e43379f1
MM
4644 if (increment < -40)
4645 increment = -40;
1da177e4
LT
4646 if (increment > 40)
4647 increment = 40;
4648
4649 nice = PRIO_TO_NICE(current->static_prio) + increment;
4650 if (nice < -20)
4651 nice = -20;
4652 if (nice > 19)
4653 nice = 19;
4654
e43379f1
MM
4655 if (increment < 0 && !can_nice(current, nice))
4656 return -EPERM;
4657
1da177e4
LT
4658 retval = security_task_setnice(current, nice);
4659 if (retval)
4660 return retval;
4661
4662 set_user_nice(current, nice);
4663 return 0;
4664}
4665
4666#endif
4667
4668/**
4669 * task_prio - return the priority value of a given task.
4670 * @p: the task in question.
4671 *
4672 * This is the priority value as seen by users in /proc.
4673 * RT tasks are offset by -200. Normal tasks are centered
4674 * around 0, value goes from -16 to +15.
4675 */
36c8b586 4676int task_prio(const struct task_struct *p)
1da177e4
LT
4677{
4678 return p->prio - MAX_RT_PRIO;
4679}
4680
4681/**
4682 * task_nice - return the nice value of a given task.
4683 * @p: the task in question.
4684 */
36c8b586 4685int task_nice(const struct task_struct *p)
1da177e4
LT
4686{
4687 return TASK_NICE(p);
4688}
150d8bed 4689EXPORT_SYMBOL(task_nice);
1da177e4
LT
4690
4691/**
4692 * idle_cpu - is a given cpu idle currently?
4693 * @cpu: the processor in question.
4694 */
4695int idle_cpu(int cpu)
4696{
4697 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4698}
4699
1da177e4
LT
4700/**
4701 * idle_task - return the idle task for a given cpu.
4702 * @cpu: the processor in question.
4703 */
36c8b586 4704struct task_struct *idle_task(int cpu)
1da177e4
LT
4705{
4706 return cpu_rq(cpu)->idle;
4707}
4708
4709/**
4710 * find_process_by_pid - find a process with a matching PID value.
4711 * @pid: the pid in question.
4712 */
a9957449 4713static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4714{
228ebcbe 4715 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4716}
4717
4718/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4719static void
4720__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4721{
dd41f596 4722 BUG_ON(p->se.on_rq);
48f24c4d 4723
1da177e4 4724 p->policy = policy;
dd41f596
IM
4725 switch (p->policy) {
4726 case SCHED_NORMAL:
4727 case SCHED_BATCH:
4728 case SCHED_IDLE:
4729 p->sched_class = &fair_sched_class;
4730 break;
4731 case SCHED_FIFO:
4732 case SCHED_RR:
4733 p->sched_class = &rt_sched_class;
4734 break;
4735 }
4736
1da177e4 4737 p->rt_priority = prio;
b29739f9
IM
4738 p->normal_prio = normal_prio(p);
4739 /* we are holding p->pi_lock already */
4740 p->prio = rt_mutex_getprio(p);
2dd73a4f 4741 set_load_weight(p);
1da177e4
LT
4742}
4743
4744/**
72fd4a35 4745 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4746 * @p: the task in question.
4747 * @policy: new policy.
4748 * @param: structure containing the new RT priority.
5fe1d75f 4749 *
72fd4a35 4750 * NOTE that the task may be already dead.
1da177e4 4751 */
95cdf3b7
IM
4752int sched_setscheduler(struct task_struct *p, int policy,
4753 struct sched_param *param)
1da177e4 4754{
83b699ed 4755 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4756 unsigned long flags;
cb469845 4757 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4758 struct rq *rq;
1da177e4 4759
66e5393a
SR
4760 /* may grab non-irq protected spin_locks */
4761 BUG_ON(in_interrupt());
1da177e4
LT
4762recheck:
4763 /* double check policy once rq lock held */
4764 if (policy < 0)
4765 policy = oldpolicy = p->policy;
4766 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4767 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4768 policy != SCHED_IDLE)
b0a9499c 4769 return -EINVAL;
1da177e4
LT
4770 /*
4771 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4772 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4773 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4774 */
4775 if (param->sched_priority < 0 ||
95cdf3b7 4776 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4777 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4778 return -EINVAL;
e05606d3 4779 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4780 return -EINVAL;
4781
37e4ab3f
OC
4782 /*
4783 * Allow unprivileged RT tasks to decrease priority:
4784 */
4785 if (!capable(CAP_SYS_NICE)) {
e05606d3 4786 if (rt_policy(policy)) {
8dc3e909 4787 unsigned long rlim_rtprio;
8dc3e909
ON
4788
4789 if (!lock_task_sighand(p, &flags))
4790 return -ESRCH;
4791 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4792 unlock_task_sighand(p, &flags);
4793
4794 /* can't set/change the rt policy */
4795 if (policy != p->policy && !rlim_rtprio)
4796 return -EPERM;
4797
4798 /* can't increase priority */
4799 if (param->sched_priority > p->rt_priority &&
4800 param->sched_priority > rlim_rtprio)
4801 return -EPERM;
4802 }
dd41f596
IM
4803 /*
4804 * Like positive nice levels, dont allow tasks to
4805 * move out of SCHED_IDLE either:
4806 */
4807 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4808 return -EPERM;
5fe1d75f 4809
37e4ab3f
OC
4810 /* can't change other user's priorities */
4811 if ((current->euid != p->euid) &&
4812 (current->euid != p->uid))
4813 return -EPERM;
4814 }
1da177e4 4815
b68aa230
PZ
4816#ifdef CONFIG_RT_GROUP_SCHED
4817 /*
4818 * Do not allow realtime tasks into groups that have no runtime
4819 * assigned.
4820 */
d0b27fa7 4821 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4822 return -EPERM;
4823#endif
4824
1da177e4
LT
4825 retval = security_task_setscheduler(p, policy, param);
4826 if (retval)
4827 return retval;
b29739f9
IM
4828 /*
4829 * make sure no PI-waiters arrive (or leave) while we are
4830 * changing the priority of the task:
4831 */
4832 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4833 /*
4834 * To be able to change p->policy safely, the apropriate
4835 * runqueue lock must be held.
4836 */
b29739f9 4837 rq = __task_rq_lock(p);
1da177e4
LT
4838 /* recheck policy now with rq lock held */
4839 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4840 policy = oldpolicy = -1;
b29739f9
IM
4841 __task_rq_unlock(rq);
4842 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4843 goto recheck;
4844 }
2daa3577 4845 update_rq_clock(rq);
dd41f596 4846 on_rq = p->se.on_rq;
051a1d1a 4847 running = task_current(rq, p);
0e1f3483 4848 if (on_rq)
2e1cb74a 4849 deactivate_task(rq, p, 0);
0e1f3483
HS
4850 if (running)
4851 p->sched_class->put_prev_task(rq, p);
f6b53205 4852
1da177e4 4853 oldprio = p->prio;
dd41f596 4854 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4855
0e1f3483
HS
4856 if (running)
4857 p->sched_class->set_curr_task(rq);
dd41f596
IM
4858 if (on_rq) {
4859 activate_task(rq, p, 0);
cb469845
SR
4860
4861 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4862 }
b29739f9
IM
4863 __task_rq_unlock(rq);
4864 spin_unlock_irqrestore(&p->pi_lock, flags);
4865
95e02ca9
TG
4866 rt_mutex_adjust_pi(p);
4867
1da177e4
LT
4868 return 0;
4869}
4870EXPORT_SYMBOL_GPL(sched_setscheduler);
4871
95cdf3b7
IM
4872static int
4873do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4874{
1da177e4
LT
4875 struct sched_param lparam;
4876 struct task_struct *p;
36c8b586 4877 int retval;
1da177e4
LT
4878
4879 if (!param || pid < 0)
4880 return -EINVAL;
4881 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4882 return -EFAULT;
5fe1d75f
ON
4883
4884 rcu_read_lock();
4885 retval = -ESRCH;
1da177e4 4886 p = find_process_by_pid(pid);
5fe1d75f
ON
4887 if (p != NULL)
4888 retval = sched_setscheduler(p, policy, &lparam);
4889 rcu_read_unlock();
36c8b586 4890
1da177e4
LT
4891 return retval;
4892}
4893
4894/**
4895 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4896 * @pid: the pid in question.
4897 * @policy: new policy.
4898 * @param: structure containing the new RT priority.
4899 */
41a2d6cf
IM
4900asmlinkage long
4901sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4902{
c21761f1
JB
4903 /* negative values for policy are not valid */
4904 if (policy < 0)
4905 return -EINVAL;
4906
1da177e4
LT
4907 return do_sched_setscheduler(pid, policy, param);
4908}
4909
4910/**
4911 * sys_sched_setparam - set/change the RT priority of a thread
4912 * @pid: the pid in question.
4913 * @param: structure containing the new RT priority.
4914 */
4915asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4916{
4917 return do_sched_setscheduler(pid, -1, param);
4918}
4919
4920/**
4921 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4922 * @pid: the pid in question.
4923 */
4924asmlinkage long sys_sched_getscheduler(pid_t pid)
4925{
36c8b586 4926 struct task_struct *p;
3a5c359a 4927 int retval;
1da177e4
LT
4928
4929 if (pid < 0)
3a5c359a 4930 return -EINVAL;
1da177e4
LT
4931
4932 retval = -ESRCH;
4933 read_lock(&tasklist_lock);
4934 p = find_process_by_pid(pid);
4935 if (p) {
4936 retval = security_task_getscheduler(p);
4937 if (!retval)
4938 retval = p->policy;
4939 }
4940 read_unlock(&tasklist_lock);
1da177e4
LT
4941 return retval;
4942}
4943
4944/**
4945 * sys_sched_getscheduler - get the RT priority of a thread
4946 * @pid: the pid in question.
4947 * @param: structure containing the RT priority.
4948 */
4949asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4950{
4951 struct sched_param lp;
36c8b586 4952 struct task_struct *p;
3a5c359a 4953 int retval;
1da177e4
LT
4954
4955 if (!param || pid < 0)
3a5c359a 4956 return -EINVAL;
1da177e4
LT
4957
4958 read_lock(&tasklist_lock);
4959 p = find_process_by_pid(pid);
4960 retval = -ESRCH;
4961 if (!p)
4962 goto out_unlock;
4963
4964 retval = security_task_getscheduler(p);
4965 if (retval)
4966 goto out_unlock;
4967
4968 lp.sched_priority = p->rt_priority;
4969 read_unlock(&tasklist_lock);
4970
4971 /*
4972 * This one might sleep, we cannot do it with a spinlock held ...
4973 */
4974 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4975
1da177e4
LT
4976 return retval;
4977
4978out_unlock:
4979 read_unlock(&tasklist_lock);
4980 return retval;
4981}
4982
b53e921b 4983long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 4984{
1da177e4 4985 cpumask_t cpus_allowed;
b53e921b 4986 cpumask_t new_mask = *in_mask;
36c8b586
IM
4987 struct task_struct *p;
4988 int retval;
1da177e4 4989
95402b38 4990 get_online_cpus();
1da177e4
LT
4991 read_lock(&tasklist_lock);
4992
4993 p = find_process_by_pid(pid);
4994 if (!p) {
4995 read_unlock(&tasklist_lock);
95402b38 4996 put_online_cpus();
1da177e4
LT
4997 return -ESRCH;
4998 }
4999
5000 /*
5001 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5002 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5003 * usage count and then drop tasklist_lock.
5004 */
5005 get_task_struct(p);
5006 read_unlock(&tasklist_lock);
5007
5008 retval = -EPERM;
5009 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5010 !capable(CAP_SYS_NICE))
5011 goto out_unlock;
5012
e7834f8f
DQ
5013 retval = security_task_setscheduler(p, 0, NULL);
5014 if (retval)
5015 goto out_unlock;
5016
f9a86fcb 5017 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5018 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5019 again:
7c16ec58 5020 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5021
8707d8b8 5022 if (!retval) {
f9a86fcb 5023 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5024 if (!cpus_subset(new_mask, cpus_allowed)) {
5025 /*
5026 * We must have raced with a concurrent cpuset
5027 * update. Just reset the cpus_allowed to the
5028 * cpuset's cpus_allowed
5029 */
5030 new_mask = cpus_allowed;
5031 goto again;
5032 }
5033 }
1da177e4
LT
5034out_unlock:
5035 put_task_struct(p);
95402b38 5036 put_online_cpus();
1da177e4
LT
5037 return retval;
5038}
5039
5040static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5041 cpumask_t *new_mask)
5042{
5043 if (len < sizeof(cpumask_t)) {
5044 memset(new_mask, 0, sizeof(cpumask_t));
5045 } else if (len > sizeof(cpumask_t)) {
5046 len = sizeof(cpumask_t);
5047 }
5048 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5049}
5050
5051/**
5052 * sys_sched_setaffinity - set the cpu affinity of a process
5053 * @pid: pid of the process
5054 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5055 * @user_mask_ptr: user-space pointer to the new cpu mask
5056 */
5057asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5058 unsigned long __user *user_mask_ptr)
5059{
5060 cpumask_t new_mask;
5061 int retval;
5062
5063 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5064 if (retval)
5065 return retval;
5066
b53e921b 5067 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5068}
5069
5070/*
5071 * Represents all cpu's present in the system
5072 * In systems capable of hotplug, this map could dynamically grow
5073 * as new cpu's are detected in the system via any platform specific
5074 * method, such as ACPI for e.g.
5075 */
5076
4cef0c61 5077cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5078EXPORT_SYMBOL(cpu_present_map);
5079
5080#ifndef CONFIG_SMP
4cef0c61 5081cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5082EXPORT_SYMBOL(cpu_online_map);
5083
4cef0c61 5084cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5085EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5086#endif
5087
5088long sched_getaffinity(pid_t pid, cpumask_t *mask)
5089{
36c8b586 5090 struct task_struct *p;
1da177e4 5091 int retval;
1da177e4 5092
95402b38 5093 get_online_cpus();
1da177e4
LT
5094 read_lock(&tasklist_lock);
5095
5096 retval = -ESRCH;
5097 p = find_process_by_pid(pid);
5098 if (!p)
5099 goto out_unlock;
5100
e7834f8f
DQ
5101 retval = security_task_getscheduler(p);
5102 if (retval)
5103 goto out_unlock;
5104
2f7016d9 5105 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5106
5107out_unlock:
5108 read_unlock(&tasklist_lock);
95402b38 5109 put_online_cpus();
1da177e4 5110
9531b62f 5111 return retval;
1da177e4
LT
5112}
5113
5114/**
5115 * sys_sched_getaffinity - get the cpu affinity of a process
5116 * @pid: pid of the process
5117 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5118 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5119 */
5120asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5121 unsigned long __user *user_mask_ptr)
5122{
5123 int ret;
5124 cpumask_t mask;
5125
5126 if (len < sizeof(cpumask_t))
5127 return -EINVAL;
5128
5129 ret = sched_getaffinity(pid, &mask);
5130 if (ret < 0)
5131 return ret;
5132
5133 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5134 return -EFAULT;
5135
5136 return sizeof(cpumask_t);
5137}
5138
5139/**
5140 * sys_sched_yield - yield the current processor to other threads.
5141 *
dd41f596
IM
5142 * This function yields the current CPU to other tasks. If there are no
5143 * other threads running on this CPU then this function will return.
1da177e4
LT
5144 */
5145asmlinkage long sys_sched_yield(void)
5146{
70b97a7f 5147 struct rq *rq = this_rq_lock();
1da177e4 5148
2d72376b 5149 schedstat_inc(rq, yld_count);
4530d7ab 5150 current->sched_class->yield_task(rq);
1da177e4
LT
5151
5152 /*
5153 * Since we are going to call schedule() anyway, there's
5154 * no need to preempt or enable interrupts:
5155 */
5156 __release(rq->lock);
8a25d5de 5157 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5158 _raw_spin_unlock(&rq->lock);
5159 preempt_enable_no_resched();
5160
5161 schedule();
5162
5163 return 0;
5164}
5165
e7b38404 5166static void __cond_resched(void)
1da177e4 5167{
8e0a43d8
IM
5168#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5169 __might_sleep(__FILE__, __LINE__);
5170#endif
5bbcfd90
IM
5171 /*
5172 * The BKS might be reacquired before we have dropped
5173 * PREEMPT_ACTIVE, which could trigger a second
5174 * cond_resched() call.
5175 */
1da177e4
LT
5176 do {
5177 add_preempt_count(PREEMPT_ACTIVE);
5178 schedule();
5179 sub_preempt_count(PREEMPT_ACTIVE);
5180 } while (need_resched());
5181}
5182
02b67cc3 5183int __sched _cond_resched(void)
1da177e4 5184{
9414232f
IM
5185 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5186 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5187 __cond_resched();
5188 return 1;
5189 }
5190 return 0;
5191}
02b67cc3 5192EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5193
5194/*
5195 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5196 * call schedule, and on return reacquire the lock.
5197 *
41a2d6cf 5198 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5199 * operations here to prevent schedule() from being called twice (once via
5200 * spin_unlock(), once by hand).
5201 */
95cdf3b7 5202int cond_resched_lock(spinlock_t *lock)
1da177e4 5203{
95c354fe 5204 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5205 int ret = 0;
5206
95c354fe 5207 if (spin_needbreak(lock) || resched) {
1da177e4 5208 spin_unlock(lock);
95c354fe
NP
5209 if (resched && need_resched())
5210 __cond_resched();
5211 else
5212 cpu_relax();
6df3cecb 5213 ret = 1;
1da177e4 5214 spin_lock(lock);
1da177e4 5215 }
6df3cecb 5216 return ret;
1da177e4 5217}
1da177e4
LT
5218EXPORT_SYMBOL(cond_resched_lock);
5219
5220int __sched cond_resched_softirq(void)
5221{
5222 BUG_ON(!in_softirq());
5223
9414232f 5224 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5225 local_bh_enable();
1da177e4
LT
5226 __cond_resched();
5227 local_bh_disable();
5228 return 1;
5229 }
5230 return 0;
5231}
1da177e4
LT
5232EXPORT_SYMBOL(cond_resched_softirq);
5233
1da177e4
LT
5234/**
5235 * yield - yield the current processor to other threads.
5236 *
72fd4a35 5237 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5238 * thread runnable and calls sys_sched_yield().
5239 */
5240void __sched yield(void)
5241{
5242 set_current_state(TASK_RUNNING);
5243 sys_sched_yield();
5244}
1da177e4
LT
5245EXPORT_SYMBOL(yield);
5246
5247/*
41a2d6cf 5248 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5249 * that process accounting knows that this is a task in IO wait state.
5250 *
5251 * But don't do that if it is a deliberate, throttling IO wait (this task
5252 * has set its backing_dev_info: the queue against which it should throttle)
5253 */
5254void __sched io_schedule(void)
5255{
70b97a7f 5256 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5257
0ff92245 5258 delayacct_blkio_start();
1da177e4
LT
5259 atomic_inc(&rq->nr_iowait);
5260 schedule();
5261 atomic_dec(&rq->nr_iowait);
0ff92245 5262 delayacct_blkio_end();
1da177e4 5263}
1da177e4
LT
5264EXPORT_SYMBOL(io_schedule);
5265
5266long __sched io_schedule_timeout(long timeout)
5267{
70b97a7f 5268 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5269 long ret;
5270
0ff92245 5271 delayacct_blkio_start();
1da177e4
LT
5272 atomic_inc(&rq->nr_iowait);
5273 ret = schedule_timeout(timeout);
5274 atomic_dec(&rq->nr_iowait);
0ff92245 5275 delayacct_blkio_end();
1da177e4
LT
5276 return ret;
5277}
5278
5279/**
5280 * sys_sched_get_priority_max - return maximum RT priority.
5281 * @policy: scheduling class.
5282 *
5283 * this syscall returns the maximum rt_priority that can be used
5284 * by a given scheduling class.
5285 */
5286asmlinkage long sys_sched_get_priority_max(int policy)
5287{
5288 int ret = -EINVAL;
5289
5290 switch (policy) {
5291 case SCHED_FIFO:
5292 case SCHED_RR:
5293 ret = MAX_USER_RT_PRIO-1;
5294 break;
5295 case SCHED_NORMAL:
b0a9499c 5296 case SCHED_BATCH:
dd41f596 5297 case SCHED_IDLE:
1da177e4
LT
5298 ret = 0;
5299 break;
5300 }
5301 return ret;
5302}
5303
5304/**
5305 * sys_sched_get_priority_min - return minimum RT priority.
5306 * @policy: scheduling class.
5307 *
5308 * this syscall returns the minimum rt_priority that can be used
5309 * by a given scheduling class.
5310 */
5311asmlinkage long sys_sched_get_priority_min(int policy)
5312{
5313 int ret = -EINVAL;
5314
5315 switch (policy) {
5316 case SCHED_FIFO:
5317 case SCHED_RR:
5318 ret = 1;
5319 break;
5320 case SCHED_NORMAL:
b0a9499c 5321 case SCHED_BATCH:
dd41f596 5322 case SCHED_IDLE:
1da177e4
LT
5323 ret = 0;
5324 }
5325 return ret;
5326}
5327
5328/**
5329 * sys_sched_rr_get_interval - return the default timeslice of a process.
5330 * @pid: pid of the process.
5331 * @interval: userspace pointer to the timeslice value.
5332 *
5333 * this syscall writes the default timeslice value of a given process
5334 * into the user-space timespec buffer. A value of '0' means infinity.
5335 */
5336asmlinkage
5337long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5338{
36c8b586 5339 struct task_struct *p;
a4ec24b4 5340 unsigned int time_slice;
3a5c359a 5341 int retval;
1da177e4 5342 struct timespec t;
1da177e4
LT
5343
5344 if (pid < 0)
3a5c359a 5345 return -EINVAL;
1da177e4
LT
5346
5347 retval = -ESRCH;
5348 read_lock(&tasklist_lock);
5349 p = find_process_by_pid(pid);
5350 if (!p)
5351 goto out_unlock;
5352
5353 retval = security_task_getscheduler(p);
5354 if (retval)
5355 goto out_unlock;
5356
77034937
IM
5357 /*
5358 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5359 * tasks that are on an otherwise idle runqueue:
5360 */
5361 time_slice = 0;
5362 if (p->policy == SCHED_RR) {
a4ec24b4 5363 time_slice = DEF_TIMESLICE;
1868f958 5364 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5365 struct sched_entity *se = &p->se;
5366 unsigned long flags;
5367 struct rq *rq;
5368
5369 rq = task_rq_lock(p, &flags);
77034937
IM
5370 if (rq->cfs.load.weight)
5371 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5372 task_rq_unlock(rq, &flags);
5373 }
1da177e4 5374 read_unlock(&tasklist_lock);
a4ec24b4 5375 jiffies_to_timespec(time_slice, &t);
1da177e4 5376 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5377 return retval;
3a5c359a 5378
1da177e4
LT
5379out_unlock:
5380 read_unlock(&tasklist_lock);
5381 return retval;
5382}
5383
2ed6e34f 5384static const char stat_nam[] = "RSDTtZX";
36c8b586 5385
82a1fcb9 5386void sched_show_task(struct task_struct *p)
1da177e4 5387{
1da177e4 5388 unsigned long free = 0;
36c8b586 5389 unsigned state;
1da177e4 5390
1da177e4 5391 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5392 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5393 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5394#if BITS_PER_LONG == 32
1da177e4 5395 if (state == TASK_RUNNING)
cc4ea795 5396 printk(KERN_CONT " running ");
1da177e4 5397 else
cc4ea795 5398 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5399#else
5400 if (state == TASK_RUNNING)
cc4ea795 5401 printk(KERN_CONT " running task ");
1da177e4 5402 else
cc4ea795 5403 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5404#endif
5405#ifdef CONFIG_DEBUG_STACK_USAGE
5406 {
10ebffde 5407 unsigned long *n = end_of_stack(p);
1da177e4
LT
5408 while (!*n)
5409 n++;
10ebffde 5410 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5411 }
5412#endif
ba25f9dc 5413 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5414 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5415
5fb5e6de 5416 show_stack(p, NULL);
1da177e4
LT
5417}
5418
e59e2ae2 5419void show_state_filter(unsigned long state_filter)
1da177e4 5420{
36c8b586 5421 struct task_struct *g, *p;
1da177e4 5422
4bd77321
IM
5423#if BITS_PER_LONG == 32
5424 printk(KERN_INFO
5425 " task PC stack pid father\n");
1da177e4 5426#else
4bd77321
IM
5427 printk(KERN_INFO
5428 " task PC stack pid father\n");
1da177e4
LT
5429#endif
5430 read_lock(&tasklist_lock);
5431 do_each_thread(g, p) {
5432 /*
5433 * reset the NMI-timeout, listing all files on a slow
5434 * console might take alot of time:
5435 */
5436 touch_nmi_watchdog();
39bc89fd 5437 if (!state_filter || (p->state & state_filter))
82a1fcb9 5438 sched_show_task(p);
1da177e4
LT
5439 } while_each_thread(g, p);
5440
04c9167f
JF
5441 touch_all_softlockup_watchdogs();
5442
dd41f596
IM
5443#ifdef CONFIG_SCHED_DEBUG
5444 sysrq_sched_debug_show();
5445#endif
1da177e4 5446 read_unlock(&tasklist_lock);
e59e2ae2
IM
5447 /*
5448 * Only show locks if all tasks are dumped:
5449 */
5450 if (state_filter == -1)
5451 debug_show_all_locks();
1da177e4
LT
5452}
5453
1df21055
IM
5454void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5455{
dd41f596 5456 idle->sched_class = &idle_sched_class;
1df21055
IM
5457}
5458
f340c0d1
IM
5459/**
5460 * init_idle - set up an idle thread for a given CPU
5461 * @idle: task in question
5462 * @cpu: cpu the idle task belongs to
5463 *
5464 * NOTE: this function does not set the idle thread's NEED_RESCHED
5465 * flag, to make booting more robust.
5466 */
5c1e1767 5467void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5468{
70b97a7f 5469 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5470 unsigned long flags;
5471
dd41f596
IM
5472 __sched_fork(idle);
5473 idle->se.exec_start = sched_clock();
5474
b29739f9 5475 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5476 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5477 __set_task_cpu(idle, cpu);
1da177e4
LT
5478
5479 spin_lock_irqsave(&rq->lock, flags);
5480 rq->curr = rq->idle = idle;
4866cde0
NP
5481#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5482 idle->oncpu = 1;
5483#endif
1da177e4
LT
5484 spin_unlock_irqrestore(&rq->lock, flags);
5485
5486 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5487#if defined(CONFIG_PREEMPT)
5488 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5489#else
a1261f54 5490 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5491#endif
dd41f596
IM
5492 /*
5493 * The idle tasks have their own, simple scheduling class:
5494 */
5495 idle->sched_class = &idle_sched_class;
1da177e4
LT
5496}
5497
5498/*
5499 * In a system that switches off the HZ timer nohz_cpu_mask
5500 * indicates which cpus entered this state. This is used
5501 * in the rcu update to wait only for active cpus. For system
5502 * which do not switch off the HZ timer nohz_cpu_mask should
5503 * always be CPU_MASK_NONE.
5504 */
5505cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5506
19978ca6
IM
5507/*
5508 * Increase the granularity value when there are more CPUs,
5509 * because with more CPUs the 'effective latency' as visible
5510 * to users decreases. But the relationship is not linear,
5511 * so pick a second-best guess by going with the log2 of the
5512 * number of CPUs.
5513 *
5514 * This idea comes from the SD scheduler of Con Kolivas:
5515 */
5516static inline void sched_init_granularity(void)
5517{
5518 unsigned int factor = 1 + ilog2(num_online_cpus());
5519 const unsigned long limit = 200000000;
5520
5521 sysctl_sched_min_granularity *= factor;
5522 if (sysctl_sched_min_granularity > limit)
5523 sysctl_sched_min_granularity = limit;
5524
5525 sysctl_sched_latency *= factor;
5526 if (sysctl_sched_latency > limit)
5527 sysctl_sched_latency = limit;
5528
5529 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5530}
5531
1da177e4
LT
5532#ifdef CONFIG_SMP
5533/*
5534 * This is how migration works:
5535 *
70b97a7f 5536 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5537 * runqueue and wake up that CPU's migration thread.
5538 * 2) we down() the locked semaphore => thread blocks.
5539 * 3) migration thread wakes up (implicitly it forces the migrated
5540 * thread off the CPU)
5541 * 4) it gets the migration request and checks whether the migrated
5542 * task is still in the wrong runqueue.
5543 * 5) if it's in the wrong runqueue then the migration thread removes
5544 * it and puts it into the right queue.
5545 * 6) migration thread up()s the semaphore.
5546 * 7) we wake up and the migration is done.
5547 */
5548
5549/*
5550 * Change a given task's CPU affinity. Migrate the thread to a
5551 * proper CPU and schedule it away if the CPU it's executing on
5552 * is removed from the allowed bitmask.
5553 *
5554 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5555 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5556 * call is not atomic; no spinlocks may be held.
5557 */
cd8ba7cd 5558int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5559{
70b97a7f 5560 struct migration_req req;
1da177e4 5561 unsigned long flags;
70b97a7f 5562 struct rq *rq;
48f24c4d 5563 int ret = 0;
1da177e4
LT
5564
5565 rq = task_rq_lock(p, &flags);
cd8ba7cd 5566 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5567 ret = -EINVAL;
5568 goto out;
5569 }
5570
73fe6aae 5571 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5572 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5573 else {
cd8ba7cd
MT
5574 p->cpus_allowed = *new_mask;
5575 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5576 }
5577
1da177e4 5578 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5579 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5580 goto out;
5581
cd8ba7cd 5582 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5583 /* Need help from migration thread: drop lock and wait. */
5584 task_rq_unlock(rq, &flags);
5585 wake_up_process(rq->migration_thread);
5586 wait_for_completion(&req.done);
5587 tlb_migrate_finish(p->mm);
5588 return 0;
5589 }
5590out:
5591 task_rq_unlock(rq, &flags);
48f24c4d 5592
1da177e4
LT
5593 return ret;
5594}
cd8ba7cd 5595EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5596
5597/*
41a2d6cf 5598 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5599 * this because either it can't run here any more (set_cpus_allowed()
5600 * away from this CPU, or CPU going down), or because we're
5601 * attempting to rebalance this task on exec (sched_exec).
5602 *
5603 * So we race with normal scheduler movements, but that's OK, as long
5604 * as the task is no longer on this CPU.
efc30814
KK
5605 *
5606 * Returns non-zero if task was successfully migrated.
1da177e4 5607 */
efc30814 5608static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5609{
70b97a7f 5610 struct rq *rq_dest, *rq_src;
dd41f596 5611 int ret = 0, on_rq;
1da177e4
LT
5612
5613 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5614 return ret;
1da177e4
LT
5615
5616 rq_src = cpu_rq(src_cpu);
5617 rq_dest = cpu_rq(dest_cpu);
5618
5619 double_rq_lock(rq_src, rq_dest);
5620 /* Already moved. */
5621 if (task_cpu(p) != src_cpu)
5622 goto out;
5623 /* Affinity changed (again). */
5624 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5625 goto out;
5626
dd41f596 5627 on_rq = p->se.on_rq;
6e82a3be 5628 if (on_rq)
2e1cb74a 5629 deactivate_task(rq_src, p, 0);
6e82a3be 5630
1da177e4 5631 set_task_cpu(p, dest_cpu);
dd41f596
IM
5632 if (on_rq) {
5633 activate_task(rq_dest, p, 0);
5634 check_preempt_curr(rq_dest, p);
1da177e4 5635 }
efc30814 5636 ret = 1;
1da177e4
LT
5637out:
5638 double_rq_unlock(rq_src, rq_dest);
efc30814 5639 return ret;
1da177e4
LT
5640}
5641
5642/*
5643 * migration_thread - this is a highprio system thread that performs
5644 * thread migration by bumping thread off CPU then 'pushing' onto
5645 * another runqueue.
5646 */
95cdf3b7 5647static int migration_thread(void *data)
1da177e4 5648{
1da177e4 5649 int cpu = (long)data;
70b97a7f 5650 struct rq *rq;
1da177e4
LT
5651
5652 rq = cpu_rq(cpu);
5653 BUG_ON(rq->migration_thread != current);
5654
5655 set_current_state(TASK_INTERRUPTIBLE);
5656 while (!kthread_should_stop()) {
70b97a7f 5657 struct migration_req *req;
1da177e4 5658 struct list_head *head;
1da177e4 5659
1da177e4
LT
5660 spin_lock_irq(&rq->lock);
5661
5662 if (cpu_is_offline(cpu)) {
5663 spin_unlock_irq(&rq->lock);
5664 goto wait_to_die;
5665 }
5666
5667 if (rq->active_balance) {
5668 active_load_balance(rq, cpu);
5669 rq->active_balance = 0;
5670 }
5671
5672 head = &rq->migration_queue;
5673
5674 if (list_empty(head)) {
5675 spin_unlock_irq(&rq->lock);
5676 schedule();
5677 set_current_state(TASK_INTERRUPTIBLE);
5678 continue;
5679 }
70b97a7f 5680 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5681 list_del_init(head->next);
5682
674311d5
NP
5683 spin_unlock(&rq->lock);
5684 __migrate_task(req->task, cpu, req->dest_cpu);
5685 local_irq_enable();
1da177e4
LT
5686
5687 complete(&req->done);
5688 }
5689 __set_current_state(TASK_RUNNING);
5690 return 0;
5691
5692wait_to_die:
5693 /* Wait for kthread_stop */
5694 set_current_state(TASK_INTERRUPTIBLE);
5695 while (!kthread_should_stop()) {
5696 schedule();
5697 set_current_state(TASK_INTERRUPTIBLE);
5698 }
5699 __set_current_state(TASK_RUNNING);
5700 return 0;
5701}
5702
5703#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5704
5705static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5706{
5707 int ret;
5708
5709 local_irq_disable();
5710 ret = __migrate_task(p, src_cpu, dest_cpu);
5711 local_irq_enable();
5712 return ret;
5713}
5714
054b9108 5715/*
3a4fa0a2 5716 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5717 * NOTE: interrupts should be disabled by the caller
5718 */
48f24c4d 5719static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5720{
efc30814 5721 unsigned long flags;
1da177e4 5722 cpumask_t mask;
70b97a7f
IM
5723 struct rq *rq;
5724 int dest_cpu;
1da177e4 5725
3a5c359a
AK
5726 do {
5727 /* On same node? */
5728 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5729 cpus_and(mask, mask, p->cpus_allowed);
5730 dest_cpu = any_online_cpu(mask);
5731
5732 /* On any allowed CPU? */
434d53b0 5733 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5734 dest_cpu = any_online_cpu(p->cpus_allowed);
5735
5736 /* No more Mr. Nice Guy. */
434d53b0 5737 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5738 cpumask_t cpus_allowed;
5739
5740 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5741 /*
5742 * Try to stay on the same cpuset, where the
5743 * current cpuset may be a subset of all cpus.
5744 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5745 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5746 * called within calls to cpuset_lock/cpuset_unlock.
5747 */
3a5c359a 5748 rq = task_rq_lock(p, &flags);
470fd646 5749 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5750 dest_cpu = any_online_cpu(p->cpus_allowed);
5751 task_rq_unlock(rq, &flags);
1da177e4 5752
3a5c359a
AK
5753 /*
5754 * Don't tell them about moving exiting tasks or
5755 * kernel threads (both mm NULL), since they never
5756 * leave kernel.
5757 */
41a2d6cf 5758 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5759 printk(KERN_INFO "process %d (%s) no "
5760 "longer affine to cpu%d\n",
41a2d6cf
IM
5761 task_pid_nr(p), p->comm, dead_cpu);
5762 }
3a5c359a 5763 }
f7b4cddc 5764 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5765}
5766
5767/*
5768 * While a dead CPU has no uninterruptible tasks queued at this point,
5769 * it might still have a nonzero ->nr_uninterruptible counter, because
5770 * for performance reasons the counter is not stricly tracking tasks to
5771 * their home CPUs. So we just add the counter to another CPU's counter,
5772 * to keep the global sum constant after CPU-down:
5773 */
70b97a7f 5774static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5775{
7c16ec58 5776 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5777 unsigned long flags;
5778
5779 local_irq_save(flags);
5780 double_rq_lock(rq_src, rq_dest);
5781 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5782 rq_src->nr_uninterruptible = 0;
5783 double_rq_unlock(rq_src, rq_dest);
5784 local_irq_restore(flags);
5785}
5786
5787/* Run through task list and migrate tasks from the dead cpu. */
5788static void migrate_live_tasks(int src_cpu)
5789{
48f24c4d 5790 struct task_struct *p, *t;
1da177e4 5791
f7b4cddc 5792 read_lock(&tasklist_lock);
1da177e4 5793
48f24c4d
IM
5794 do_each_thread(t, p) {
5795 if (p == current)
1da177e4
LT
5796 continue;
5797
48f24c4d
IM
5798 if (task_cpu(p) == src_cpu)
5799 move_task_off_dead_cpu(src_cpu, p);
5800 } while_each_thread(t, p);
1da177e4 5801
f7b4cddc 5802 read_unlock(&tasklist_lock);
1da177e4
LT
5803}
5804
dd41f596
IM
5805/*
5806 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5807 * It does so by boosting its priority to highest possible.
5808 * Used by CPU offline code.
1da177e4
LT
5809 */
5810void sched_idle_next(void)
5811{
48f24c4d 5812 int this_cpu = smp_processor_id();
70b97a7f 5813 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5814 struct task_struct *p = rq->idle;
5815 unsigned long flags;
5816
5817 /* cpu has to be offline */
48f24c4d 5818 BUG_ON(cpu_online(this_cpu));
1da177e4 5819
48f24c4d
IM
5820 /*
5821 * Strictly not necessary since rest of the CPUs are stopped by now
5822 * and interrupts disabled on the current cpu.
1da177e4
LT
5823 */
5824 spin_lock_irqsave(&rq->lock, flags);
5825
dd41f596 5826 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5827
94bc9a7b
DA
5828 update_rq_clock(rq);
5829 activate_task(rq, p, 0);
1da177e4
LT
5830
5831 spin_unlock_irqrestore(&rq->lock, flags);
5832}
5833
48f24c4d
IM
5834/*
5835 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5836 * offline.
5837 */
5838void idle_task_exit(void)
5839{
5840 struct mm_struct *mm = current->active_mm;
5841
5842 BUG_ON(cpu_online(smp_processor_id()));
5843
5844 if (mm != &init_mm)
5845 switch_mm(mm, &init_mm, current);
5846 mmdrop(mm);
5847}
5848
054b9108 5849/* called under rq->lock with disabled interrupts */
36c8b586 5850static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5851{
70b97a7f 5852 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5853
5854 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5855 BUG_ON(!p->exit_state);
1da177e4
LT
5856
5857 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5858 BUG_ON(p->state == TASK_DEAD);
1da177e4 5859
48f24c4d 5860 get_task_struct(p);
1da177e4
LT
5861
5862 /*
5863 * Drop lock around migration; if someone else moves it,
41a2d6cf 5864 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5865 * fine.
5866 */
f7b4cddc 5867 spin_unlock_irq(&rq->lock);
48f24c4d 5868 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5869 spin_lock_irq(&rq->lock);
1da177e4 5870
48f24c4d 5871 put_task_struct(p);
1da177e4
LT
5872}
5873
5874/* release_task() removes task from tasklist, so we won't find dead tasks. */
5875static void migrate_dead_tasks(unsigned int dead_cpu)
5876{
70b97a7f 5877 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5878 struct task_struct *next;
48f24c4d 5879
dd41f596
IM
5880 for ( ; ; ) {
5881 if (!rq->nr_running)
5882 break;
a8e504d2 5883 update_rq_clock(rq);
ff95f3df 5884 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5885 if (!next)
5886 break;
5887 migrate_dead(dead_cpu, next);
e692ab53 5888
1da177e4
LT
5889 }
5890}
5891#endif /* CONFIG_HOTPLUG_CPU */
5892
e692ab53
NP
5893#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5894
5895static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5896 {
5897 .procname = "sched_domain",
c57baf1e 5898 .mode = 0555,
e0361851 5899 },
38605cae 5900 {0, },
e692ab53
NP
5901};
5902
5903static struct ctl_table sd_ctl_root[] = {
e0361851 5904 {
c57baf1e 5905 .ctl_name = CTL_KERN,
e0361851 5906 .procname = "kernel",
c57baf1e 5907 .mode = 0555,
e0361851
AD
5908 .child = sd_ctl_dir,
5909 },
38605cae 5910 {0, },
e692ab53
NP
5911};
5912
5913static struct ctl_table *sd_alloc_ctl_entry(int n)
5914{
5915 struct ctl_table *entry =
5cf9f062 5916 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5917
e692ab53
NP
5918 return entry;
5919}
5920
6382bc90
MM
5921static void sd_free_ctl_entry(struct ctl_table **tablep)
5922{
cd790076 5923 struct ctl_table *entry;
6382bc90 5924
cd790076
MM
5925 /*
5926 * In the intermediate directories, both the child directory and
5927 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5928 * will always be set. In the lowest directory the names are
cd790076
MM
5929 * static strings and all have proc handlers.
5930 */
5931 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5932 if (entry->child)
5933 sd_free_ctl_entry(&entry->child);
cd790076
MM
5934 if (entry->proc_handler == NULL)
5935 kfree(entry->procname);
5936 }
6382bc90
MM
5937
5938 kfree(*tablep);
5939 *tablep = NULL;
5940}
5941
e692ab53 5942static void
e0361851 5943set_table_entry(struct ctl_table *entry,
e692ab53
NP
5944 const char *procname, void *data, int maxlen,
5945 mode_t mode, proc_handler *proc_handler)
5946{
e692ab53
NP
5947 entry->procname = procname;
5948 entry->data = data;
5949 entry->maxlen = maxlen;
5950 entry->mode = mode;
5951 entry->proc_handler = proc_handler;
5952}
5953
5954static struct ctl_table *
5955sd_alloc_ctl_domain_table(struct sched_domain *sd)
5956{
ace8b3d6 5957 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5958
ad1cdc1d
MM
5959 if (table == NULL)
5960 return NULL;
5961
e0361851 5962 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5963 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5964 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5965 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5966 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5967 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5968 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5969 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5970 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5971 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5972 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5973 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5974 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5975 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5976 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5977 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5978 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5979 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5980 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5981 &sd->cache_nice_tries,
5982 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5983 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5984 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5985 /* &table[11] is terminator */
e692ab53
NP
5986
5987 return table;
5988}
5989
9a4e7159 5990static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5991{
5992 struct ctl_table *entry, *table;
5993 struct sched_domain *sd;
5994 int domain_num = 0, i;
5995 char buf[32];
5996
5997 for_each_domain(cpu, sd)
5998 domain_num++;
5999 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6000 if (table == NULL)
6001 return NULL;
e692ab53
NP
6002
6003 i = 0;
6004 for_each_domain(cpu, sd) {
6005 snprintf(buf, 32, "domain%d", i);
e692ab53 6006 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6007 entry->mode = 0555;
e692ab53
NP
6008 entry->child = sd_alloc_ctl_domain_table(sd);
6009 entry++;
6010 i++;
6011 }
6012 return table;
6013}
6014
6015static struct ctl_table_header *sd_sysctl_header;
6382bc90 6016static void register_sched_domain_sysctl(void)
e692ab53
NP
6017{
6018 int i, cpu_num = num_online_cpus();
6019 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6020 char buf[32];
6021
7378547f
MM
6022 WARN_ON(sd_ctl_dir[0].child);
6023 sd_ctl_dir[0].child = entry;
6024
ad1cdc1d
MM
6025 if (entry == NULL)
6026 return;
6027
97b6ea7b 6028 for_each_online_cpu(i) {
e692ab53 6029 snprintf(buf, 32, "cpu%d", i);
e692ab53 6030 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6031 entry->mode = 0555;
e692ab53 6032 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6033 entry++;
e692ab53 6034 }
7378547f
MM
6035
6036 WARN_ON(sd_sysctl_header);
e692ab53
NP
6037 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6038}
6382bc90 6039
7378547f 6040/* may be called multiple times per register */
6382bc90
MM
6041static void unregister_sched_domain_sysctl(void)
6042{
7378547f
MM
6043 if (sd_sysctl_header)
6044 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6045 sd_sysctl_header = NULL;
7378547f
MM
6046 if (sd_ctl_dir[0].child)
6047 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6048}
e692ab53 6049#else
6382bc90
MM
6050static void register_sched_domain_sysctl(void)
6051{
6052}
6053static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6054{
6055}
6056#endif
6057
1da177e4
LT
6058/*
6059 * migration_call - callback that gets triggered when a CPU is added.
6060 * Here we can start up the necessary migration thread for the new CPU.
6061 */
48f24c4d
IM
6062static int __cpuinit
6063migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6064{
1da177e4 6065 struct task_struct *p;
48f24c4d 6066 int cpu = (long)hcpu;
1da177e4 6067 unsigned long flags;
70b97a7f 6068 struct rq *rq;
1da177e4
LT
6069
6070 switch (action) {
5be9361c 6071
1da177e4 6072 case CPU_UP_PREPARE:
8bb78442 6073 case CPU_UP_PREPARE_FROZEN:
dd41f596 6074 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6075 if (IS_ERR(p))
6076 return NOTIFY_BAD;
1da177e4
LT
6077 kthread_bind(p, cpu);
6078 /* Must be high prio: stop_machine expects to yield to it. */
6079 rq = task_rq_lock(p, &flags);
dd41f596 6080 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6081 task_rq_unlock(rq, &flags);
6082 cpu_rq(cpu)->migration_thread = p;
6083 break;
48f24c4d 6084
1da177e4 6085 case CPU_ONLINE:
8bb78442 6086 case CPU_ONLINE_FROZEN:
3a4fa0a2 6087 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6088 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6089
6090 /* Update our root-domain */
6091 rq = cpu_rq(cpu);
6092 spin_lock_irqsave(&rq->lock, flags);
6093 if (rq->rd) {
6094 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6095 cpu_set(cpu, rq->rd->online);
6096 }
6097 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6098 break;
48f24c4d 6099
1da177e4
LT
6100#ifdef CONFIG_HOTPLUG_CPU
6101 case CPU_UP_CANCELED:
8bb78442 6102 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6103 if (!cpu_rq(cpu)->migration_thread)
6104 break;
41a2d6cf 6105 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6106 kthread_bind(cpu_rq(cpu)->migration_thread,
6107 any_online_cpu(cpu_online_map));
1da177e4
LT
6108 kthread_stop(cpu_rq(cpu)->migration_thread);
6109 cpu_rq(cpu)->migration_thread = NULL;
6110 break;
48f24c4d 6111
1da177e4 6112 case CPU_DEAD:
8bb78442 6113 case CPU_DEAD_FROZEN:
470fd646 6114 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6115 migrate_live_tasks(cpu);
6116 rq = cpu_rq(cpu);
6117 kthread_stop(rq->migration_thread);
6118 rq->migration_thread = NULL;
6119 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6120 spin_lock_irq(&rq->lock);
a8e504d2 6121 update_rq_clock(rq);
2e1cb74a 6122 deactivate_task(rq, rq->idle, 0);
1da177e4 6123 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6124 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6125 rq->idle->sched_class = &idle_sched_class;
1da177e4 6126 migrate_dead_tasks(cpu);
d2da272a 6127 spin_unlock_irq(&rq->lock);
470fd646 6128 cpuset_unlock();
1da177e4
LT
6129 migrate_nr_uninterruptible(rq);
6130 BUG_ON(rq->nr_running != 0);
6131
41a2d6cf
IM
6132 /*
6133 * No need to migrate the tasks: it was best-effort if
6134 * they didn't take sched_hotcpu_mutex. Just wake up
6135 * the requestors.
6136 */
1da177e4
LT
6137 spin_lock_irq(&rq->lock);
6138 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6139 struct migration_req *req;
6140
1da177e4 6141 req = list_entry(rq->migration_queue.next,
70b97a7f 6142 struct migration_req, list);
1da177e4
LT
6143 list_del_init(&req->list);
6144 complete(&req->done);
6145 }
6146 spin_unlock_irq(&rq->lock);
6147 break;
57d885fe 6148
08f503b0
GH
6149 case CPU_DYING:
6150 case CPU_DYING_FROZEN:
57d885fe
GH
6151 /* Update our root-domain */
6152 rq = cpu_rq(cpu);
6153 spin_lock_irqsave(&rq->lock, flags);
6154 if (rq->rd) {
6155 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6156 cpu_clear(cpu, rq->rd->online);
6157 }
6158 spin_unlock_irqrestore(&rq->lock, flags);
6159 break;
1da177e4
LT
6160#endif
6161 }
6162 return NOTIFY_OK;
6163}
6164
6165/* Register at highest priority so that task migration (migrate_all_tasks)
6166 * happens before everything else.
6167 */
26c2143b 6168static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6169 .notifier_call = migration_call,
6170 .priority = 10
6171};
6172
e6fe6649 6173void __init migration_init(void)
1da177e4
LT
6174{
6175 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6176 int err;
48f24c4d
IM
6177
6178 /* Start one for the boot CPU: */
07dccf33
AM
6179 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6180 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6181 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6182 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6183}
6184#endif
6185
6186#ifdef CONFIG_SMP
476f3534 6187
3e9830dc 6188#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6189
7c16ec58
MT
6190static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6191 cpumask_t *groupmask)
1da177e4 6192{
4dcf6aff 6193 struct sched_group *group = sd->groups;
434d53b0 6194 char str[256];
1da177e4 6195
434d53b0 6196 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6197 cpus_clear(*groupmask);
4dcf6aff
IM
6198
6199 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6200
6201 if (!(sd->flags & SD_LOAD_BALANCE)) {
6202 printk("does not load-balance\n");
6203 if (sd->parent)
6204 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6205 " has parent");
6206 return -1;
41c7ce9a
NP
6207 }
6208
4dcf6aff
IM
6209 printk(KERN_CONT "span %s\n", str);
6210
6211 if (!cpu_isset(cpu, sd->span)) {
6212 printk(KERN_ERR "ERROR: domain->span does not contain "
6213 "CPU%d\n", cpu);
6214 }
6215 if (!cpu_isset(cpu, group->cpumask)) {
6216 printk(KERN_ERR "ERROR: domain->groups does not contain"
6217 " CPU%d\n", cpu);
6218 }
1da177e4 6219
4dcf6aff 6220 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6221 do {
4dcf6aff
IM
6222 if (!group) {
6223 printk("\n");
6224 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6225 break;
6226 }
6227
4dcf6aff
IM
6228 if (!group->__cpu_power) {
6229 printk(KERN_CONT "\n");
6230 printk(KERN_ERR "ERROR: domain->cpu_power not "
6231 "set\n");
6232 break;
6233 }
1da177e4 6234
4dcf6aff
IM
6235 if (!cpus_weight(group->cpumask)) {
6236 printk(KERN_CONT "\n");
6237 printk(KERN_ERR "ERROR: empty group\n");
6238 break;
6239 }
1da177e4 6240
7c16ec58 6241 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6242 printk(KERN_CONT "\n");
6243 printk(KERN_ERR "ERROR: repeated CPUs\n");
6244 break;
6245 }
1da177e4 6246
7c16ec58 6247 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6248
434d53b0 6249 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6250 printk(KERN_CONT " %s", str);
1da177e4 6251
4dcf6aff
IM
6252 group = group->next;
6253 } while (group != sd->groups);
6254 printk(KERN_CONT "\n");
1da177e4 6255
7c16ec58 6256 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6257 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6258
7c16ec58 6259 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6260 printk(KERN_ERR "ERROR: parent span is not a superset "
6261 "of domain->span\n");
6262 return 0;
6263}
1da177e4 6264
4dcf6aff
IM
6265static void sched_domain_debug(struct sched_domain *sd, int cpu)
6266{
7c16ec58 6267 cpumask_t *groupmask;
4dcf6aff 6268 int level = 0;
1da177e4 6269
4dcf6aff
IM
6270 if (!sd) {
6271 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6272 return;
6273 }
1da177e4 6274
4dcf6aff
IM
6275 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6276
7c16ec58
MT
6277 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6278 if (!groupmask) {
6279 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6280 return;
6281 }
6282
4dcf6aff 6283 for (;;) {
7c16ec58 6284 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6285 break;
1da177e4
LT
6286 level++;
6287 sd = sd->parent;
33859f7f 6288 if (!sd)
4dcf6aff
IM
6289 break;
6290 }
7c16ec58 6291 kfree(groupmask);
1da177e4
LT
6292}
6293#else
48f24c4d 6294# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6295#endif
6296
1a20ff27 6297static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6298{
6299 if (cpus_weight(sd->span) == 1)
6300 return 1;
6301
6302 /* Following flags need at least 2 groups */
6303 if (sd->flags & (SD_LOAD_BALANCE |
6304 SD_BALANCE_NEWIDLE |
6305 SD_BALANCE_FORK |
89c4710e
SS
6306 SD_BALANCE_EXEC |
6307 SD_SHARE_CPUPOWER |
6308 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6309 if (sd->groups != sd->groups->next)
6310 return 0;
6311 }
6312
6313 /* Following flags don't use groups */
6314 if (sd->flags & (SD_WAKE_IDLE |
6315 SD_WAKE_AFFINE |
6316 SD_WAKE_BALANCE))
6317 return 0;
6318
6319 return 1;
6320}
6321
48f24c4d
IM
6322static int
6323sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6324{
6325 unsigned long cflags = sd->flags, pflags = parent->flags;
6326
6327 if (sd_degenerate(parent))
6328 return 1;
6329
6330 if (!cpus_equal(sd->span, parent->span))
6331 return 0;
6332
6333 /* Does parent contain flags not in child? */
6334 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6335 if (cflags & SD_WAKE_AFFINE)
6336 pflags &= ~SD_WAKE_BALANCE;
6337 /* Flags needing groups don't count if only 1 group in parent */
6338 if (parent->groups == parent->groups->next) {
6339 pflags &= ~(SD_LOAD_BALANCE |
6340 SD_BALANCE_NEWIDLE |
6341 SD_BALANCE_FORK |
89c4710e
SS
6342 SD_BALANCE_EXEC |
6343 SD_SHARE_CPUPOWER |
6344 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6345 }
6346 if (~cflags & pflags)
6347 return 0;
6348
6349 return 1;
6350}
6351
57d885fe
GH
6352static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6353{
6354 unsigned long flags;
6355 const struct sched_class *class;
6356
6357 spin_lock_irqsave(&rq->lock, flags);
6358
6359 if (rq->rd) {
6360 struct root_domain *old_rd = rq->rd;
6361
0eab9146 6362 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6363 if (class->leave_domain)
6364 class->leave_domain(rq);
0eab9146 6365 }
57d885fe 6366
dc938520
GH
6367 cpu_clear(rq->cpu, old_rd->span);
6368 cpu_clear(rq->cpu, old_rd->online);
6369
57d885fe
GH
6370 if (atomic_dec_and_test(&old_rd->refcount))
6371 kfree(old_rd);
6372 }
6373
6374 atomic_inc(&rd->refcount);
6375 rq->rd = rd;
6376
dc938520 6377 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6378 if (cpu_isset(rq->cpu, cpu_online_map))
6379 cpu_set(rq->cpu, rd->online);
dc938520 6380
0eab9146 6381 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6382 if (class->join_domain)
6383 class->join_domain(rq);
0eab9146 6384 }
57d885fe
GH
6385
6386 spin_unlock_irqrestore(&rq->lock, flags);
6387}
6388
dc938520 6389static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6390{
6391 memset(rd, 0, sizeof(*rd));
6392
dc938520
GH
6393 cpus_clear(rd->span);
6394 cpus_clear(rd->online);
57d885fe
GH
6395}
6396
6397static void init_defrootdomain(void)
6398{
dc938520 6399 init_rootdomain(&def_root_domain);
57d885fe
GH
6400 atomic_set(&def_root_domain.refcount, 1);
6401}
6402
dc938520 6403static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6404{
6405 struct root_domain *rd;
6406
6407 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6408 if (!rd)
6409 return NULL;
6410
dc938520 6411 init_rootdomain(rd);
57d885fe
GH
6412
6413 return rd;
6414}
6415
1da177e4 6416/*
0eab9146 6417 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6418 * hold the hotplug lock.
6419 */
0eab9146
IM
6420static void
6421cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6422{
70b97a7f 6423 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6424 struct sched_domain *tmp;
6425
6426 /* Remove the sched domains which do not contribute to scheduling. */
6427 for (tmp = sd; tmp; tmp = tmp->parent) {
6428 struct sched_domain *parent = tmp->parent;
6429 if (!parent)
6430 break;
1a848870 6431 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6432 tmp->parent = parent->parent;
1a848870
SS
6433 if (parent->parent)
6434 parent->parent->child = tmp;
6435 }
245af2c7
SS
6436 }
6437
1a848870 6438 if (sd && sd_degenerate(sd)) {
245af2c7 6439 sd = sd->parent;
1a848870
SS
6440 if (sd)
6441 sd->child = NULL;
6442 }
1da177e4
LT
6443
6444 sched_domain_debug(sd, cpu);
6445
57d885fe 6446 rq_attach_root(rq, rd);
674311d5 6447 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6448}
6449
6450/* cpus with isolated domains */
67af63a6 6451static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6452
6453/* Setup the mask of cpus configured for isolated domains */
6454static int __init isolated_cpu_setup(char *str)
6455{
6456 int ints[NR_CPUS], i;
6457
6458 str = get_options(str, ARRAY_SIZE(ints), ints);
6459 cpus_clear(cpu_isolated_map);
6460 for (i = 1; i <= ints[0]; i++)
6461 if (ints[i] < NR_CPUS)
6462 cpu_set(ints[i], cpu_isolated_map);
6463 return 1;
6464}
6465
8927f494 6466__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6467
6468/*
6711cab4
SS
6469 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6470 * to a function which identifies what group(along with sched group) a CPU
6471 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6472 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6473 *
6474 * init_sched_build_groups will build a circular linked list of the groups
6475 * covered by the given span, and will set each group's ->cpumask correctly,
6476 * and ->cpu_power to 0.
6477 */
a616058b 6478static void
7c16ec58 6479init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6480 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6481 struct sched_group **sg,
6482 cpumask_t *tmpmask),
6483 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6484{
6485 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6486 int i;
6487
7c16ec58
MT
6488 cpus_clear(*covered);
6489
6490 for_each_cpu_mask(i, *span) {
6711cab4 6491 struct sched_group *sg;
7c16ec58 6492 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6493 int j;
6494
7c16ec58 6495 if (cpu_isset(i, *covered))
1da177e4
LT
6496 continue;
6497
7c16ec58 6498 cpus_clear(sg->cpumask);
5517d86b 6499 sg->__cpu_power = 0;
1da177e4 6500
7c16ec58
MT
6501 for_each_cpu_mask(j, *span) {
6502 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6503 continue;
6504
7c16ec58 6505 cpu_set(j, *covered);
1da177e4
LT
6506 cpu_set(j, sg->cpumask);
6507 }
6508 if (!first)
6509 first = sg;
6510 if (last)
6511 last->next = sg;
6512 last = sg;
6513 }
6514 last->next = first;
6515}
6516
9c1cfda2 6517#define SD_NODES_PER_DOMAIN 16
1da177e4 6518
9c1cfda2 6519#ifdef CONFIG_NUMA
198e2f18 6520
9c1cfda2
JH
6521/**
6522 * find_next_best_node - find the next node to include in a sched_domain
6523 * @node: node whose sched_domain we're building
6524 * @used_nodes: nodes already in the sched_domain
6525 *
41a2d6cf 6526 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6527 * finds the closest node not already in the @used_nodes map.
6528 *
6529 * Should use nodemask_t.
6530 */
c5f59f08 6531static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6532{
6533 int i, n, val, min_val, best_node = 0;
6534
6535 min_val = INT_MAX;
6536
6537 for (i = 0; i < MAX_NUMNODES; i++) {
6538 /* Start at @node */
6539 n = (node + i) % MAX_NUMNODES;
6540
6541 if (!nr_cpus_node(n))
6542 continue;
6543
6544 /* Skip already used nodes */
c5f59f08 6545 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6546 continue;
6547
6548 /* Simple min distance search */
6549 val = node_distance(node, n);
6550
6551 if (val < min_val) {
6552 min_val = val;
6553 best_node = n;
6554 }
6555 }
6556
c5f59f08 6557 node_set(best_node, *used_nodes);
9c1cfda2
JH
6558 return best_node;
6559}
6560
6561/**
6562 * sched_domain_node_span - get a cpumask for a node's sched_domain
6563 * @node: node whose cpumask we're constructing
73486722 6564 * @span: resulting cpumask
9c1cfda2 6565 *
41a2d6cf 6566 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6567 * should be one that prevents unnecessary balancing, but also spreads tasks
6568 * out optimally.
6569 */
4bdbaad3 6570static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6571{
c5f59f08 6572 nodemask_t used_nodes;
c5f59f08 6573 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6574 int i;
9c1cfda2 6575
4bdbaad3 6576 cpus_clear(*span);
c5f59f08 6577 nodes_clear(used_nodes);
9c1cfda2 6578
4bdbaad3 6579 cpus_or(*span, *span, *nodemask);
c5f59f08 6580 node_set(node, used_nodes);
9c1cfda2
JH
6581
6582 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6583 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6584
c5f59f08 6585 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6586 cpus_or(*span, *span, *nodemask);
9c1cfda2 6587 }
9c1cfda2
JH
6588}
6589#endif
6590
5c45bf27 6591int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6592
9c1cfda2 6593/*
48f24c4d 6594 * SMT sched-domains:
9c1cfda2 6595 */
1da177e4
LT
6596#ifdef CONFIG_SCHED_SMT
6597static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6598static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6599
41a2d6cf 6600static int
7c16ec58
MT
6601cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6602 cpumask_t *unused)
1da177e4 6603{
6711cab4
SS
6604 if (sg)
6605 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6606 return cpu;
6607}
6608#endif
6609
48f24c4d
IM
6610/*
6611 * multi-core sched-domains:
6612 */
1e9f28fa
SS
6613#ifdef CONFIG_SCHED_MC
6614static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6615static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6616#endif
6617
6618#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6619static int
7c16ec58
MT
6620cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6621 cpumask_t *mask)
1e9f28fa 6622{
6711cab4 6623 int group;
7c16ec58
MT
6624
6625 *mask = per_cpu(cpu_sibling_map, cpu);
6626 cpus_and(*mask, *mask, *cpu_map);
6627 group = first_cpu(*mask);
6711cab4
SS
6628 if (sg)
6629 *sg = &per_cpu(sched_group_core, group);
6630 return group;
1e9f28fa
SS
6631}
6632#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6633static int
7c16ec58
MT
6634cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6635 cpumask_t *unused)
1e9f28fa 6636{
6711cab4
SS
6637 if (sg)
6638 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6639 return cpu;
6640}
6641#endif
6642
1da177e4 6643static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6644static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6645
41a2d6cf 6646static int
7c16ec58
MT
6647cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6648 cpumask_t *mask)
1da177e4 6649{
6711cab4 6650 int group;
48f24c4d 6651#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6652 *mask = cpu_coregroup_map(cpu);
6653 cpus_and(*mask, *mask, *cpu_map);
6654 group = first_cpu(*mask);
1e9f28fa 6655#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6656 *mask = per_cpu(cpu_sibling_map, cpu);
6657 cpus_and(*mask, *mask, *cpu_map);
6658 group = first_cpu(*mask);
1da177e4 6659#else
6711cab4 6660 group = cpu;
1da177e4 6661#endif
6711cab4
SS
6662 if (sg)
6663 *sg = &per_cpu(sched_group_phys, group);
6664 return group;
1da177e4
LT
6665}
6666
6667#ifdef CONFIG_NUMA
1da177e4 6668/*
9c1cfda2
JH
6669 * The init_sched_build_groups can't handle what we want to do with node
6670 * groups, so roll our own. Now each node has its own list of groups which
6671 * gets dynamically allocated.
1da177e4 6672 */
9c1cfda2 6673static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6674static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6675
9c1cfda2 6676static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6677static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6678
6711cab4 6679static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6680 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6681{
6711cab4
SS
6682 int group;
6683
7c16ec58
MT
6684 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6685 cpus_and(*nodemask, *nodemask, *cpu_map);
6686 group = first_cpu(*nodemask);
6711cab4
SS
6687
6688 if (sg)
6689 *sg = &per_cpu(sched_group_allnodes, group);
6690 return group;
1da177e4 6691}
6711cab4 6692
08069033
SS
6693static void init_numa_sched_groups_power(struct sched_group *group_head)
6694{
6695 struct sched_group *sg = group_head;
6696 int j;
6697
6698 if (!sg)
6699 return;
3a5c359a
AK
6700 do {
6701 for_each_cpu_mask(j, sg->cpumask) {
6702 struct sched_domain *sd;
08069033 6703
3a5c359a
AK
6704 sd = &per_cpu(phys_domains, j);
6705 if (j != first_cpu(sd->groups->cpumask)) {
6706 /*
6707 * Only add "power" once for each
6708 * physical package.
6709 */
6710 continue;
6711 }
08069033 6712
3a5c359a
AK
6713 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6714 }
6715 sg = sg->next;
6716 } while (sg != group_head);
08069033 6717}
1da177e4
LT
6718#endif
6719
a616058b 6720#ifdef CONFIG_NUMA
51888ca2 6721/* Free memory allocated for various sched_group structures */
7c16ec58 6722static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6723{
a616058b 6724 int cpu, i;
51888ca2
SV
6725
6726 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6727 struct sched_group **sched_group_nodes
6728 = sched_group_nodes_bycpu[cpu];
6729
51888ca2
SV
6730 if (!sched_group_nodes)
6731 continue;
6732
6733 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6734 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6735
7c16ec58
MT
6736 *nodemask = node_to_cpumask(i);
6737 cpus_and(*nodemask, *nodemask, *cpu_map);
6738 if (cpus_empty(*nodemask))
51888ca2
SV
6739 continue;
6740
6741 if (sg == NULL)
6742 continue;
6743 sg = sg->next;
6744next_sg:
6745 oldsg = sg;
6746 sg = sg->next;
6747 kfree(oldsg);
6748 if (oldsg != sched_group_nodes[i])
6749 goto next_sg;
6750 }
6751 kfree(sched_group_nodes);
6752 sched_group_nodes_bycpu[cpu] = NULL;
6753 }
51888ca2 6754}
a616058b 6755#else
7c16ec58 6756static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6757{
6758}
6759#endif
51888ca2 6760
89c4710e
SS
6761/*
6762 * Initialize sched groups cpu_power.
6763 *
6764 * cpu_power indicates the capacity of sched group, which is used while
6765 * distributing the load between different sched groups in a sched domain.
6766 * Typically cpu_power for all the groups in a sched domain will be same unless
6767 * there are asymmetries in the topology. If there are asymmetries, group
6768 * having more cpu_power will pickup more load compared to the group having
6769 * less cpu_power.
6770 *
6771 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6772 * the maximum number of tasks a group can handle in the presence of other idle
6773 * or lightly loaded groups in the same sched domain.
6774 */
6775static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6776{
6777 struct sched_domain *child;
6778 struct sched_group *group;
6779
6780 WARN_ON(!sd || !sd->groups);
6781
6782 if (cpu != first_cpu(sd->groups->cpumask))
6783 return;
6784
6785 child = sd->child;
6786
5517d86b
ED
6787 sd->groups->__cpu_power = 0;
6788
89c4710e
SS
6789 /*
6790 * For perf policy, if the groups in child domain share resources
6791 * (for example cores sharing some portions of the cache hierarchy
6792 * or SMT), then set this domain groups cpu_power such that each group
6793 * can handle only one task, when there are other idle groups in the
6794 * same sched domain.
6795 */
6796 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6797 (child->flags &
6798 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6799 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6800 return;
6801 }
6802
89c4710e
SS
6803 /*
6804 * add cpu_power of each child group to this groups cpu_power
6805 */
6806 group = child->groups;
6807 do {
5517d86b 6808 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6809 group = group->next;
6810 } while (group != child->groups);
6811}
6812
7c16ec58
MT
6813/*
6814 * Initializers for schedule domains
6815 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6816 */
6817
6818#define SD_INIT(sd, type) sd_init_##type(sd)
6819#define SD_INIT_FUNC(type) \
6820static noinline void sd_init_##type(struct sched_domain *sd) \
6821{ \
6822 memset(sd, 0, sizeof(*sd)); \
6823 *sd = SD_##type##_INIT; \
1d3504fc 6824 sd->level = SD_LV_##type; \
7c16ec58
MT
6825}
6826
6827SD_INIT_FUNC(CPU)
6828#ifdef CONFIG_NUMA
6829 SD_INIT_FUNC(ALLNODES)
6830 SD_INIT_FUNC(NODE)
6831#endif
6832#ifdef CONFIG_SCHED_SMT
6833 SD_INIT_FUNC(SIBLING)
6834#endif
6835#ifdef CONFIG_SCHED_MC
6836 SD_INIT_FUNC(MC)
6837#endif
6838
6839/*
6840 * To minimize stack usage kmalloc room for cpumasks and share the
6841 * space as the usage in build_sched_domains() dictates. Used only
6842 * if the amount of space is significant.
6843 */
6844struct allmasks {
6845 cpumask_t tmpmask; /* make this one first */
6846 union {
6847 cpumask_t nodemask;
6848 cpumask_t this_sibling_map;
6849 cpumask_t this_core_map;
6850 };
6851 cpumask_t send_covered;
6852
6853#ifdef CONFIG_NUMA
6854 cpumask_t domainspan;
6855 cpumask_t covered;
6856 cpumask_t notcovered;
6857#endif
6858};
6859
6860#if NR_CPUS > 128
6861#define SCHED_CPUMASK_ALLOC 1
6862#define SCHED_CPUMASK_FREE(v) kfree(v)
6863#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6864#else
6865#define SCHED_CPUMASK_ALLOC 0
6866#define SCHED_CPUMASK_FREE(v)
6867#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6868#endif
6869
6870#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6871 ((unsigned long)(a) + offsetof(struct allmasks, v))
6872
1d3504fc
HS
6873static int default_relax_domain_level = -1;
6874
6875static int __init setup_relax_domain_level(char *str)
6876{
6877 default_relax_domain_level = simple_strtoul(str, NULL, 0);
6878 return 1;
6879}
6880__setup("relax_domain_level=", setup_relax_domain_level);
6881
6882static void set_domain_attribute(struct sched_domain *sd,
6883 struct sched_domain_attr *attr)
6884{
6885 int request;
6886
6887 if (!attr || attr->relax_domain_level < 0) {
6888 if (default_relax_domain_level < 0)
6889 return;
6890 else
6891 request = default_relax_domain_level;
6892 } else
6893 request = attr->relax_domain_level;
6894 if (request < sd->level) {
6895 /* turn off idle balance on this domain */
6896 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6897 } else {
6898 /* turn on idle balance on this domain */
6899 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6900 }
6901}
6902
1da177e4 6903/*
1a20ff27
DG
6904 * Build sched domains for a given set of cpus and attach the sched domains
6905 * to the individual cpus
1da177e4 6906 */
1d3504fc
HS
6907static int __build_sched_domains(const cpumask_t *cpu_map,
6908 struct sched_domain_attr *attr)
1da177e4
LT
6909{
6910 int i;
57d885fe 6911 struct root_domain *rd;
7c16ec58
MT
6912 SCHED_CPUMASK_DECLARE(allmasks);
6913 cpumask_t *tmpmask;
d1b55138
JH
6914#ifdef CONFIG_NUMA
6915 struct sched_group **sched_group_nodes = NULL;
6711cab4 6916 int sd_allnodes = 0;
d1b55138
JH
6917
6918 /*
6919 * Allocate the per-node list of sched groups
6920 */
5cf9f062 6921 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6922 GFP_KERNEL);
d1b55138
JH
6923 if (!sched_group_nodes) {
6924 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6925 return -ENOMEM;
d1b55138 6926 }
d1b55138 6927#endif
1da177e4 6928
dc938520 6929 rd = alloc_rootdomain();
57d885fe
GH
6930 if (!rd) {
6931 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
6932#ifdef CONFIG_NUMA
6933 kfree(sched_group_nodes);
6934#endif
57d885fe
GH
6935 return -ENOMEM;
6936 }
6937
7c16ec58
MT
6938#if SCHED_CPUMASK_ALLOC
6939 /* get space for all scratch cpumask variables */
6940 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6941 if (!allmasks) {
6942 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6943 kfree(rd);
6944#ifdef CONFIG_NUMA
6945 kfree(sched_group_nodes);
6946#endif
6947 return -ENOMEM;
6948 }
6949#endif
6950 tmpmask = (cpumask_t *)allmasks;
6951
6952
6953#ifdef CONFIG_NUMA
6954 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6955#endif
6956
1da177e4 6957 /*
1a20ff27 6958 * Set up domains for cpus specified by the cpu_map.
1da177e4 6959 */
1a20ff27 6960 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6961 struct sched_domain *sd = NULL, *p;
7c16ec58 6962 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 6963
7c16ec58
MT
6964 *nodemask = node_to_cpumask(cpu_to_node(i));
6965 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
6966
6967#ifdef CONFIG_NUMA
dd41f596 6968 if (cpus_weight(*cpu_map) >
7c16ec58 6969 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 6970 sd = &per_cpu(allnodes_domains, i);
7c16ec58 6971 SD_INIT(sd, ALLNODES);
1d3504fc 6972 set_domain_attribute(sd, attr);
9c1cfda2 6973 sd->span = *cpu_map;
7c16ec58 6974 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 6975 p = sd;
6711cab4 6976 sd_allnodes = 1;
9c1cfda2
JH
6977 } else
6978 p = NULL;
6979
1da177e4 6980 sd = &per_cpu(node_domains, i);
7c16ec58 6981 SD_INIT(sd, NODE);
1d3504fc 6982 set_domain_attribute(sd, attr);
4bdbaad3 6983 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 6984 sd->parent = p;
1a848870
SS
6985 if (p)
6986 p->child = sd;
9c1cfda2 6987 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6988#endif
6989
6990 p = sd;
6991 sd = &per_cpu(phys_domains, i);
7c16ec58 6992 SD_INIT(sd, CPU);
1d3504fc 6993 set_domain_attribute(sd, attr);
7c16ec58 6994 sd->span = *nodemask;
1da177e4 6995 sd->parent = p;
1a848870
SS
6996 if (p)
6997 p->child = sd;
7c16ec58 6998 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 6999
1e9f28fa
SS
7000#ifdef CONFIG_SCHED_MC
7001 p = sd;
7002 sd = &per_cpu(core_domains, i);
7c16ec58 7003 SD_INIT(sd, MC);
1d3504fc 7004 set_domain_attribute(sd, attr);
1e9f28fa
SS
7005 sd->span = cpu_coregroup_map(i);
7006 cpus_and(sd->span, sd->span, *cpu_map);
7007 sd->parent = p;
1a848870 7008 p->child = sd;
7c16ec58 7009 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7010#endif
7011
1da177e4
LT
7012#ifdef CONFIG_SCHED_SMT
7013 p = sd;
7014 sd = &per_cpu(cpu_domains, i);
7c16ec58 7015 SD_INIT(sd, SIBLING);
1d3504fc 7016 set_domain_attribute(sd, attr);
d5a7430d 7017 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7018 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7019 sd->parent = p;
1a848870 7020 p->child = sd;
7c16ec58 7021 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7022#endif
7023 }
7024
7025#ifdef CONFIG_SCHED_SMT
7026 /* Set up CPU (sibling) groups */
9c1cfda2 7027 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7028 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7029 SCHED_CPUMASK_VAR(send_covered, allmasks);
7030
7031 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7032 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7033 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7034 continue;
7035
dd41f596 7036 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7037 &cpu_to_cpu_group,
7038 send_covered, tmpmask);
1da177e4
LT
7039 }
7040#endif
7041
1e9f28fa
SS
7042#ifdef CONFIG_SCHED_MC
7043 /* Set up multi-core groups */
7044 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7045 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7046 SCHED_CPUMASK_VAR(send_covered, allmasks);
7047
7048 *this_core_map = cpu_coregroup_map(i);
7049 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7050 if (i != first_cpu(*this_core_map))
1e9f28fa 7051 continue;
7c16ec58 7052
dd41f596 7053 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7054 &cpu_to_core_group,
7055 send_covered, tmpmask);
1e9f28fa
SS
7056 }
7057#endif
7058
1da177e4
LT
7059 /* Set up physical groups */
7060 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7061 SCHED_CPUMASK_VAR(nodemask, allmasks);
7062 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7063
7c16ec58
MT
7064 *nodemask = node_to_cpumask(i);
7065 cpus_and(*nodemask, *nodemask, *cpu_map);
7066 if (cpus_empty(*nodemask))
1da177e4
LT
7067 continue;
7068
7c16ec58
MT
7069 init_sched_build_groups(nodemask, cpu_map,
7070 &cpu_to_phys_group,
7071 send_covered, tmpmask);
1da177e4
LT
7072 }
7073
7074#ifdef CONFIG_NUMA
7075 /* Set up node groups */
7c16ec58
MT
7076 if (sd_allnodes) {
7077 SCHED_CPUMASK_VAR(send_covered, allmasks);
7078
7079 init_sched_build_groups(cpu_map, cpu_map,
7080 &cpu_to_allnodes_group,
7081 send_covered, tmpmask);
7082 }
9c1cfda2
JH
7083
7084 for (i = 0; i < MAX_NUMNODES; i++) {
7085 /* Set up node groups */
7086 struct sched_group *sg, *prev;
7c16ec58
MT
7087 SCHED_CPUMASK_VAR(nodemask, allmasks);
7088 SCHED_CPUMASK_VAR(domainspan, allmasks);
7089 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7090 int j;
7091
7c16ec58
MT
7092 *nodemask = node_to_cpumask(i);
7093 cpus_clear(*covered);
7094
7095 cpus_and(*nodemask, *nodemask, *cpu_map);
7096 if (cpus_empty(*nodemask)) {
d1b55138 7097 sched_group_nodes[i] = NULL;
9c1cfda2 7098 continue;
d1b55138 7099 }
9c1cfda2 7100
4bdbaad3 7101 sched_domain_node_span(i, domainspan);
7c16ec58 7102 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7103
15f0b676 7104 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7105 if (!sg) {
7106 printk(KERN_WARNING "Can not alloc domain group for "
7107 "node %d\n", i);
7108 goto error;
7109 }
9c1cfda2 7110 sched_group_nodes[i] = sg;
7c16ec58 7111 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7112 struct sched_domain *sd;
9761eea8 7113
9c1cfda2
JH
7114 sd = &per_cpu(node_domains, j);
7115 sd->groups = sg;
9c1cfda2 7116 }
5517d86b 7117 sg->__cpu_power = 0;
7c16ec58 7118 sg->cpumask = *nodemask;
51888ca2 7119 sg->next = sg;
7c16ec58 7120 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7121 prev = sg;
7122
7123 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7124 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7125 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7126 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7127
7c16ec58
MT
7128 cpus_complement(*notcovered, *covered);
7129 cpus_and(*tmpmask, *notcovered, *cpu_map);
7130 cpus_and(*tmpmask, *tmpmask, *domainspan);
7131 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7132 break;
7133
7c16ec58
MT
7134 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7135 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7136 continue;
7137
15f0b676
SV
7138 sg = kmalloc_node(sizeof(struct sched_group),
7139 GFP_KERNEL, i);
9c1cfda2
JH
7140 if (!sg) {
7141 printk(KERN_WARNING
7142 "Can not alloc domain group for node %d\n", j);
51888ca2 7143 goto error;
9c1cfda2 7144 }
5517d86b 7145 sg->__cpu_power = 0;
7c16ec58 7146 sg->cpumask = *tmpmask;
51888ca2 7147 sg->next = prev->next;
7c16ec58 7148 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7149 prev->next = sg;
7150 prev = sg;
7151 }
9c1cfda2 7152 }
1da177e4
LT
7153#endif
7154
7155 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7156#ifdef CONFIG_SCHED_SMT
1a20ff27 7157 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7158 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7159
89c4710e 7160 init_sched_groups_power(i, sd);
5c45bf27 7161 }
1da177e4 7162#endif
1e9f28fa 7163#ifdef CONFIG_SCHED_MC
5c45bf27 7164 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7165 struct sched_domain *sd = &per_cpu(core_domains, i);
7166
89c4710e 7167 init_sched_groups_power(i, sd);
5c45bf27
SS
7168 }
7169#endif
1e9f28fa 7170
5c45bf27 7171 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7172 struct sched_domain *sd = &per_cpu(phys_domains, i);
7173
89c4710e 7174 init_sched_groups_power(i, sd);
1da177e4
LT
7175 }
7176
9c1cfda2 7177#ifdef CONFIG_NUMA
08069033
SS
7178 for (i = 0; i < MAX_NUMNODES; i++)
7179 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7180
6711cab4
SS
7181 if (sd_allnodes) {
7182 struct sched_group *sg;
f712c0c7 7183
7c16ec58
MT
7184 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7185 tmpmask);
f712c0c7
SS
7186 init_numa_sched_groups_power(sg);
7187 }
9c1cfda2
JH
7188#endif
7189
1da177e4 7190 /* Attach the domains */
1a20ff27 7191 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7192 struct sched_domain *sd;
7193#ifdef CONFIG_SCHED_SMT
7194 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7195#elif defined(CONFIG_SCHED_MC)
7196 sd = &per_cpu(core_domains, i);
1da177e4
LT
7197#else
7198 sd = &per_cpu(phys_domains, i);
7199#endif
57d885fe 7200 cpu_attach_domain(sd, rd, i);
1da177e4 7201 }
51888ca2 7202
7c16ec58 7203 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7204 return 0;
7205
a616058b 7206#ifdef CONFIG_NUMA
51888ca2 7207error:
7c16ec58
MT
7208 free_sched_groups(cpu_map, tmpmask);
7209 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7210 return -ENOMEM;
a616058b 7211#endif
1da177e4 7212}
029190c5 7213
1d3504fc
HS
7214static int build_sched_domains(const cpumask_t *cpu_map)
7215{
7216 return __build_sched_domains(cpu_map, NULL);
7217}
7218
029190c5
PJ
7219static cpumask_t *doms_cur; /* current sched domains */
7220static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7221static struct sched_domain_attr *dattr_cur;
7222 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7223
7224/*
7225 * Special case: If a kmalloc of a doms_cur partition (array of
7226 * cpumask_t) fails, then fallback to a single sched domain,
7227 * as determined by the single cpumask_t fallback_doms.
7228 */
7229static cpumask_t fallback_doms;
7230
22e52b07
HC
7231void __attribute__((weak)) arch_update_cpu_topology(void)
7232{
7233}
7234
1a20ff27 7235/*
41a2d6cf 7236 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7237 * For now this just excludes isolated cpus, but could be used to
7238 * exclude other special cases in the future.
1a20ff27 7239 */
51888ca2 7240static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7241{
7378547f
MM
7242 int err;
7243
22e52b07 7244 arch_update_cpu_topology();
029190c5
PJ
7245 ndoms_cur = 1;
7246 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7247 if (!doms_cur)
7248 doms_cur = &fallback_doms;
7249 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7250 dattr_cur = NULL;
7378547f 7251 err = build_sched_domains(doms_cur);
6382bc90 7252 register_sched_domain_sysctl();
7378547f
MM
7253
7254 return err;
1a20ff27
DG
7255}
7256
7c16ec58
MT
7257static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7258 cpumask_t *tmpmask)
1da177e4 7259{
7c16ec58 7260 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7261}
1da177e4 7262
1a20ff27
DG
7263/*
7264 * Detach sched domains from a group of cpus specified in cpu_map
7265 * These cpus will now be attached to the NULL domain
7266 */
858119e1 7267static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7268{
7c16ec58 7269 cpumask_t tmpmask;
1a20ff27
DG
7270 int i;
7271
6382bc90
MM
7272 unregister_sched_domain_sysctl();
7273
1a20ff27 7274 for_each_cpu_mask(i, *cpu_map)
57d885fe 7275 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7276 synchronize_sched();
7c16ec58 7277 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7278}
7279
1d3504fc
HS
7280/* handle null as "default" */
7281static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7282 struct sched_domain_attr *new, int idx_new)
7283{
7284 struct sched_domain_attr tmp;
7285
7286 /* fast path */
7287 if (!new && !cur)
7288 return 1;
7289
7290 tmp = SD_ATTR_INIT;
7291 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7292 new ? (new + idx_new) : &tmp,
7293 sizeof(struct sched_domain_attr));
7294}
7295
029190c5
PJ
7296/*
7297 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7298 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7299 * doms_new[] to the current sched domain partitioning, doms_cur[].
7300 * It destroys each deleted domain and builds each new domain.
7301 *
7302 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7303 * The masks don't intersect (don't overlap.) We should setup one
7304 * sched domain for each mask. CPUs not in any of the cpumasks will
7305 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7306 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7307 * it as it is.
7308 *
41a2d6cf
IM
7309 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7310 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7311 * failed the kmalloc call, then it can pass in doms_new == NULL,
7312 * and partition_sched_domains() will fallback to the single partition
7313 * 'fallback_doms'.
7314 *
7315 * Call with hotplug lock held
7316 */
1d3504fc
HS
7317void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7318 struct sched_domain_attr *dattr_new)
029190c5
PJ
7319{
7320 int i, j;
7321
712555ee 7322 mutex_lock(&sched_domains_mutex);
a1835615 7323
7378547f
MM
7324 /* always unregister in case we don't destroy any domains */
7325 unregister_sched_domain_sysctl();
7326
029190c5
PJ
7327 if (doms_new == NULL) {
7328 ndoms_new = 1;
7329 doms_new = &fallback_doms;
7330 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7331 dattr_new = NULL;
029190c5
PJ
7332 }
7333
7334 /* Destroy deleted domains */
7335 for (i = 0; i < ndoms_cur; i++) {
7336 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7337 if (cpus_equal(doms_cur[i], doms_new[j])
7338 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7339 goto match1;
7340 }
7341 /* no match - a current sched domain not in new doms_new[] */
7342 detach_destroy_domains(doms_cur + i);
7343match1:
7344 ;
7345 }
7346
7347 /* Build new domains */
7348 for (i = 0; i < ndoms_new; i++) {
7349 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7350 if (cpus_equal(doms_new[i], doms_cur[j])
7351 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7352 goto match2;
7353 }
7354 /* no match - add a new doms_new */
1d3504fc
HS
7355 __build_sched_domains(doms_new + i,
7356 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7357match2:
7358 ;
7359 }
7360
7361 /* Remember the new sched domains */
7362 if (doms_cur != &fallback_doms)
7363 kfree(doms_cur);
1d3504fc 7364 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7365 doms_cur = doms_new;
1d3504fc 7366 dattr_cur = dattr_new;
029190c5 7367 ndoms_cur = ndoms_new;
7378547f
MM
7368
7369 register_sched_domain_sysctl();
a1835615 7370
712555ee 7371 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7372}
7373
5c45bf27 7374#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7375int arch_reinit_sched_domains(void)
5c45bf27
SS
7376{
7377 int err;
7378
95402b38 7379 get_online_cpus();
712555ee 7380 mutex_lock(&sched_domains_mutex);
5c45bf27
SS
7381 detach_destroy_domains(&cpu_online_map);
7382 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7383 mutex_unlock(&sched_domains_mutex);
95402b38 7384 put_online_cpus();
5c45bf27
SS
7385
7386 return err;
7387}
7388
7389static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7390{
7391 int ret;
7392
7393 if (buf[0] != '0' && buf[0] != '1')
7394 return -EINVAL;
7395
7396 if (smt)
7397 sched_smt_power_savings = (buf[0] == '1');
7398 else
7399 sched_mc_power_savings = (buf[0] == '1');
7400
7401 ret = arch_reinit_sched_domains();
7402
7403 return ret ? ret : count;
7404}
7405
5c45bf27
SS
7406#ifdef CONFIG_SCHED_MC
7407static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7408{
7409 return sprintf(page, "%u\n", sched_mc_power_savings);
7410}
48f24c4d
IM
7411static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7412 const char *buf, size_t count)
5c45bf27
SS
7413{
7414 return sched_power_savings_store(buf, count, 0);
7415}
6707de00
AB
7416static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7417 sched_mc_power_savings_store);
5c45bf27
SS
7418#endif
7419
7420#ifdef CONFIG_SCHED_SMT
7421static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7422{
7423 return sprintf(page, "%u\n", sched_smt_power_savings);
7424}
48f24c4d
IM
7425static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7426 const char *buf, size_t count)
5c45bf27
SS
7427{
7428 return sched_power_savings_store(buf, count, 1);
7429}
6707de00
AB
7430static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7431 sched_smt_power_savings_store);
7432#endif
7433
7434int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7435{
7436 int err = 0;
7437
7438#ifdef CONFIG_SCHED_SMT
7439 if (smt_capable())
7440 err = sysfs_create_file(&cls->kset.kobj,
7441 &attr_sched_smt_power_savings.attr);
7442#endif
7443#ifdef CONFIG_SCHED_MC
7444 if (!err && mc_capable())
7445 err = sysfs_create_file(&cls->kset.kobj,
7446 &attr_sched_mc_power_savings.attr);
7447#endif
7448 return err;
7449}
5c45bf27
SS
7450#endif
7451
1da177e4 7452/*
41a2d6cf 7453 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7454 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7455 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7456 * which will prevent rebalancing while the sched domains are recalculated.
7457 */
7458static int update_sched_domains(struct notifier_block *nfb,
7459 unsigned long action, void *hcpu)
7460{
1da177e4
LT
7461 switch (action) {
7462 case CPU_UP_PREPARE:
8bb78442 7463 case CPU_UP_PREPARE_FROZEN:
1da177e4 7464 case CPU_DOWN_PREPARE:
8bb78442 7465 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7466 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7467 return NOTIFY_OK;
7468
7469 case CPU_UP_CANCELED:
8bb78442 7470 case CPU_UP_CANCELED_FROZEN:
1da177e4 7471 case CPU_DOWN_FAILED:
8bb78442 7472 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7473 case CPU_ONLINE:
8bb78442 7474 case CPU_ONLINE_FROZEN:
1da177e4 7475 case CPU_DEAD:
8bb78442 7476 case CPU_DEAD_FROZEN:
1da177e4
LT
7477 /*
7478 * Fall through and re-initialise the domains.
7479 */
7480 break;
7481 default:
7482 return NOTIFY_DONE;
7483 }
7484
7485 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7486 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7487
7488 return NOTIFY_OK;
7489}
1da177e4
LT
7490
7491void __init sched_init_smp(void)
7492{
5c1e1767
NP
7493 cpumask_t non_isolated_cpus;
7494
434d53b0
MT
7495#if defined(CONFIG_NUMA)
7496 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7497 GFP_KERNEL);
7498 BUG_ON(sched_group_nodes_bycpu == NULL);
7499#endif
95402b38 7500 get_online_cpus();
712555ee 7501 mutex_lock(&sched_domains_mutex);
1a20ff27 7502 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7503 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7504 if (cpus_empty(non_isolated_cpus))
7505 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7506 mutex_unlock(&sched_domains_mutex);
95402b38 7507 put_online_cpus();
1da177e4
LT
7508 /* XXX: Theoretical race here - CPU may be hotplugged now */
7509 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7510 init_hrtick();
5c1e1767
NP
7511
7512 /* Move init over to a non-isolated CPU */
7c16ec58 7513 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7514 BUG();
19978ca6 7515 sched_init_granularity();
1da177e4
LT
7516}
7517#else
7518void __init sched_init_smp(void)
7519{
19978ca6 7520 sched_init_granularity();
1da177e4
LT
7521}
7522#endif /* CONFIG_SMP */
7523
7524int in_sched_functions(unsigned long addr)
7525{
1da177e4
LT
7526 return in_lock_functions(addr) ||
7527 (addr >= (unsigned long)__sched_text_start
7528 && addr < (unsigned long)__sched_text_end);
7529}
7530
a9957449 7531static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7532{
7533 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7534 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7535#ifdef CONFIG_FAIR_GROUP_SCHED
7536 cfs_rq->rq = rq;
7537#endif
67e9fb2a 7538 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7539}
7540
fa85ae24
PZ
7541static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7542{
7543 struct rt_prio_array *array;
7544 int i;
7545
7546 array = &rt_rq->active;
7547 for (i = 0; i < MAX_RT_PRIO; i++) {
45c01e82
GH
7548 INIT_LIST_HEAD(array->xqueue + i);
7549 INIT_LIST_HEAD(array->squeue + i);
fa85ae24
PZ
7550 __clear_bit(i, array->bitmap);
7551 }
7552 /* delimiter for bitsearch: */
7553 __set_bit(MAX_RT_PRIO, array->bitmap);
7554
052f1dc7 7555#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7556 rt_rq->highest_prio = MAX_RT_PRIO;
7557#endif
fa85ae24
PZ
7558#ifdef CONFIG_SMP
7559 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7560 rt_rq->overloaded = 0;
7561#endif
7562
7563 rt_rq->rt_time = 0;
7564 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7565 rt_rq->rt_runtime = 0;
7566 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7567
052f1dc7 7568#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7569 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7570 rt_rq->rq = rq;
7571#endif
fa85ae24
PZ
7572}
7573
6f505b16 7574#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7575static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7576 struct sched_entity *se, int cpu, int add,
7577 struct sched_entity *parent)
6f505b16 7578{
ec7dc8ac 7579 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7580 tg->cfs_rq[cpu] = cfs_rq;
7581 init_cfs_rq(cfs_rq, rq);
7582 cfs_rq->tg = tg;
7583 if (add)
7584 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7585
7586 tg->se[cpu] = se;
354d60c2
DG
7587 /* se could be NULL for init_task_group */
7588 if (!se)
7589 return;
7590
ec7dc8ac
DG
7591 if (!parent)
7592 se->cfs_rq = &rq->cfs;
7593 else
7594 se->cfs_rq = parent->my_q;
7595
6f505b16
PZ
7596 se->my_q = cfs_rq;
7597 se->load.weight = tg->shares;
e05510d0 7598 se->load.inv_weight = 0;
ec7dc8ac 7599 se->parent = parent;
6f505b16 7600}
052f1dc7 7601#endif
6f505b16 7602
052f1dc7 7603#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7604static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7605 struct sched_rt_entity *rt_se, int cpu, int add,
7606 struct sched_rt_entity *parent)
6f505b16 7607{
ec7dc8ac
DG
7608 struct rq *rq = cpu_rq(cpu);
7609
6f505b16
PZ
7610 tg->rt_rq[cpu] = rt_rq;
7611 init_rt_rq(rt_rq, rq);
7612 rt_rq->tg = tg;
7613 rt_rq->rt_se = rt_se;
ac086bc2 7614 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7615 if (add)
7616 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7617
7618 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7619 if (!rt_se)
7620 return;
7621
ec7dc8ac
DG
7622 if (!parent)
7623 rt_se->rt_rq = &rq->rt;
7624 else
7625 rt_se->rt_rq = parent->my_q;
7626
6f505b16
PZ
7627 rt_se->rt_rq = &rq->rt;
7628 rt_se->my_q = rt_rq;
ec7dc8ac 7629 rt_se->parent = parent;
6f505b16
PZ
7630 INIT_LIST_HEAD(&rt_se->run_list);
7631}
7632#endif
7633
1da177e4
LT
7634void __init sched_init(void)
7635{
dd41f596 7636 int i, j;
434d53b0
MT
7637 unsigned long alloc_size = 0, ptr;
7638
7639#ifdef CONFIG_FAIR_GROUP_SCHED
7640 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7641#endif
7642#ifdef CONFIG_RT_GROUP_SCHED
7643 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7644#endif
7645#ifdef CONFIG_USER_SCHED
7646 alloc_size *= 2;
434d53b0
MT
7647#endif
7648 /*
7649 * As sched_init() is called before page_alloc is setup,
7650 * we use alloc_bootmem().
7651 */
7652 if (alloc_size) {
5a9d3225 7653 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7654
7655#ifdef CONFIG_FAIR_GROUP_SCHED
7656 init_task_group.se = (struct sched_entity **)ptr;
7657 ptr += nr_cpu_ids * sizeof(void **);
7658
7659 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7660 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7661
7662#ifdef CONFIG_USER_SCHED
7663 root_task_group.se = (struct sched_entity **)ptr;
7664 ptr += nr_cpu_ids * sizeof(void **);
7665
7666 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7667 ptr += nr_cpu_ids * sizeof(void **);
7668#endif
434d53b0
MT
7669#endif
7670#ifdef CONFIG_RT_GROUP_SCHED
7671 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7672 ptr += nr_cpu_ids * sizeof(void **);
7673
7674 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7675 ptr += nr_cpu_ids * sizeof(void **);
7676
7677#ifdef CONFIG_USER_SCHED
7678 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7679 ptr += nr_cpu_ids * sizeof(void **);
7680
7681 root_task_group.rt_rq = (struct rt_rq **)ptr;
7682 ptr += nr_cpu_ids * sizeof(void **);
7683#endif
434d53b0
MT
7684#endif
7685 }
dd41f596 7686
57d885fe
GH
7687#ifdef CONFIG_SMP
7688 init_defrootdomain();
7689#endif
7690
d0b27fa7
PZ
7691 init_rt_bandwidth(&def_rt_bandwidth,
7692 global_rt_period(), global_rt_runtime());
7693
7694#ifdef CONFIG_RT_GROUP_SCHED
7695 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7696 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7697#ifdef CONFIG_USER_SCHED
7698 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7699 global_rt_period(), RUNTIME_INF);
7700#endif
d0b27fa7
PZ
7701#endif
7702
052f1dc7 7703#ifdef CONFIG_GROUP_SCHED
6f505b16 7704 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7705 INIT_LIST_HEAD(&init_task_group.children);
7706
7707#ifdef CONFIG_USER_SCHED
7708 INIT_LIST_HEAD(&root_task_group.children);
7709 init_task_group.parent = &root_task_group;
7710 list_add(&init_task_group.siblings, &root_task_group.children);
7711#endif
6f505b16
PZ
7712#endif
7713
0a945022 7714 for_each_possible_cpu(i) {
70b97a7f 7715 struct rq *rq;
1da177e4
LT
7716
7717 rq = cpu_rq(i);
7718 spin_lock_init(&rq->lock);
fcb99371 7719 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7720 rq->nr_running = 0;
dd41f596 7721 init_cfs_rq(&rq->cfs, rq);
6f505b16 7722 init_rt_rq(&rq->rt, rq);
dd41f596 7723#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7724 init_task_group.shares = init_task_group_load;
6f505b16 7725 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7726#ifdef CONFIG_CGROUP_SCHED
7727 /*
7728 * How much cpu bandwidth does init_task_group get?
7729 *
7730 * In case of task-groups formed thr' the cgroup filesystem, it
7731 * gets 100% of the cpu resources in the system. This overall
7732 * system cpu resource is divided among the tasks of
7733 * init_task_group and its child task-groups in a fair manner,
7734 * based on each entity's (task or task-group's) weight
7735 * (se->load.weight).
7736 *
7737 * In other words, if init_task_group has 10 tasks of weight
7738 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7739 * then A0's share of the cpu resource is:
7740 *
7741 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7742 *
7743 * We achieve this by letting init_task_group's tasks sit
7744 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7745 */
ec7dc8ac 7746 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7747#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7748 root_task_group.shares = NICE_0_LOAD;
7749 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7750 /*
7751 * In case of task-groups formed thr' the user id of tasks,
7752 * init_task_group represents tasks belonging to root user.
7753 * Hence it forms a sibling of all subsequent groups formed.
7754 * In this case, init_task_group gets only a fraction of overall
7755 * system cpu resource, based on the weight assigned to root
7756 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7757 * by letting tasks of init_task_group sit in a separate cfs_rq
7758 * (init_cfs_rq) and having one entity represent this group of
7759 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7760 */
ec7dc8ac 7761 init_tg_cfs_entry(&init_task_group,
6f505b16 7762 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7763 &per_cpu(init_sched_entity, i), i, 1,
7764 root_task_group.se[i]);
6f505b16 7765
052f1dc7 7766#endif
354d60c2
DG
7767#endif /* CONFIG_FAIR_GROUP_SCHED */
7768
7769 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7770#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7771 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7772#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7773 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7774#elif defined CONFIG_USER_SCHED
eff766a6 7775 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7776 init_tg_rt_entry(&init_task_group,
6f505b16 7777 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7778 &per_cpu(init_sched_rt_entity, i), i, 1,
7779 root_task_group.rt_se[i]);
354d60c2 7780#endif
dd41f596 7781#endif
1da177e4 7782
dd41f596
IM
7783 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7784 rq->cpu_load[j] = 0;
1da177e4 7785#ifdef CONFIG_SMP
41c7ce9a 7786 rq->sd = NULL;
57d885fe 7787 rq->rd = NULL;
1da177e4 7788 rq->active_balance = 0;
dd41f596 7789 rq->next_balance = jiffies;
1da177e4 7790 rq->push_cpu = 0;
0a2966b4 7791 rq->cpu = i;
1da177e4
LT
7792 rq->migration_thread = NULL;
7793 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7794 rq_attach_root(rq, &def_root_domain);
1da177e4 7795#endif
8f4d37ec 7796 init_rq_hrtick(rq);
1da177e4 7797 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7798 }
7799
2dd73a4f 7800 set_load_weight(&init_task);
b50f60ce 7801
e107be36
AK
7802#ifdef CONFIG_PREEMPT_NOTIFIERS
7803 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7804#endif
7805
c9819f45
CL
7806#ifdef CONFIG_SMP
7807 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7808#endif
7809
b50f60ce
HC
7810#ifdef CONFIG_RT_MUTEXES
7811 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7812#endif
7813
1da177e4
LT
7814 /*
7815 * The boot idle thread does lazy MMU switching as well:
7816 */
7817 atomic_inc(&init_mm.mm_count);
7818 enter_lazy_tlb(&init_mm, current);
7819
7820 /*
7821 * Make us the idle thread. Technically, schedule() should not be
7822 * called from this thread, however somewhere below it might be,
7823 * but because we are the idle thread, we just pick up running again
7824 * when this runqueue becomes "idle".
7825 */
7826 init_idle(current, smp_processor_id());
dd41f596
IM
7827 /*
7828 * During early bootup we pretend to be a normal task:
7829 */
7830 current->sched_class = &fair_sched_class;
6892b75e
IM
7831
7832 scheduler_running = 1;
1da177e4
LT
7833}
7834
7835#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7836void __might_sleep(char *file, int line)
7837{
48f24c4d 7838#ifdef in_atomic
1da177e4
LT
7839 static unsigned long prev_jiffy; /* ratelimiting */
7840
7841 if ((in_atomic() || irqs_disabled()) &&
7842 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7843 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7844 return;
7845 prev_jiffy = jiffies;
91368d73 7846 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7847 " context at %s:%d\n", file, line);
7848 printk("in_atomic():%d, irqs_disabled():%d\n",
7849 in_atomic(), irqs_disabled());
a4c410f0 7850 debug_show_held_locks(current);
3117df04
IM
7851 if (irqs_disabled())
7852 print_irqtrace_events(current);
1da177e4
LT
7853 dump_stack();
7854 }
7855#endif
7856}
7857EXPORT_SYMBOL(__might_sleep);
7858#endif
7859
7860#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7861static void normalize_task(struct rq *rq, struct task_struct *p)
7862{
7863 int on_rq;
3e51f33f 7864
3a5e4dc1
AK
7865 update_rq_clock(rq);
7866 on_rq = p->se.on_rq;
7867 if (on_rq)
7868 deactivate_task(rq, p, 0);
7869 __setscheduler(rq, p, SCHED_NORMAL, 0);
7870 if (on_rq) {
7871 activate_task(rq, p, 0);
7872 resched_task(rq->curr);
7873 }
7874}
7875
1da177e4
LT
7876void normalize_rt_tasks(void)
7877{
a0f98a1c 7878 struct task_struct *g, *p;
1da177e4 7879 unsigned long flags;
70b97a7f 7880 struct rq *rq;
1da177e4 7881
4cf5d77a 7882 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7883 do_each_thread(g, p) {
178be793
IM
7884 /*
7885 * Only normalize user tasks:
7886 */
7887 if (!p->mm)
7888 continue;
7889
6cfb0d5d 7890 p->se.exec_start = 0;
6cfb0d5d 7891#ifdef CONFIG_SCHEDSTATS
dd41f596 7892 p->se.wait_start = 0;
dd41f596 7893 p->se.sleep_start = 0;
dd41f596 7894 p->se.block_start = 0;
6cfb0d5d 7895#endif
dd41f596
IM
7896
7897 if (!rt_task(p)) {
7898 /*
7899 * Renice negative nice level userspace
7900 * tasks back to 0:
7901 */
7902 if (TASK_NICE(p) < 0 && p->mm)
7903 set_user_nice(p, 0);
1da177e4 7904 continue;
dd41f596 7905 }
1da177e4 7906
4cf5d77a 7907 spin_lock(&p->pi_lock);
b29739f9 7908 rq = __task_rq_lock(p);
1da177e4 7909
178be793 7910 normalize_task(rq, p);
3a5e4dc1 7911
b29739f9 7912 __task_rq_unlock(rq);
4cf5d77a 7913 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7914 } while_each_thread(g, p);
7915
4cf5d77a 7916 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7917}
7918
7919#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7920
7921#ifdef CONFIG_IA64
7922/*
7923 * These functions are only useful for the IA64 MCA handling.
7924 *
7925 * They can only be called when the whole system has been
7926 * stopped - every CPU needs to be quiescent, and no scheduling
7927 * activity can take place. Using them for anything else would
7928 * be a serious bug, and as a result, they aren't even visible
7929 * under any other configuration.
7930 */
7931
7932/**
7933 * curr_task - return the current task for a given cpu.
7934 * @cpu: the processor in question.
7935 *
7936 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7937 */
36c8b586 7938struct task_struct *curr_task(int cpu)
1df5c10a
LT
7939{
7940 return cpu_curr(cpu);
7941}
7942
7943/**
7944 * set_curr_task - set the current task for a given cpu.
7945 * @cpu: the processor in question.
7946 * @p: the task pointer to set.
7947 *
7948 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7949 * are serviced on a separate stack. It allows the architecture to switch the
7950 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7951 * must be called with all CPU's synchronized, and interrupts disabled, the
7952 * and caller must save the original value of the current task (see
7953 * curr_task() above) and restore that value before reenabling interrupts and
7954 * re-starting the system.
7955 *
7956 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7957 */
36c8b586 7958void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7959{
7960 cpu_curr(cpu) = p;
7961}
7962
7963#endif
29f59db3 7964
bccbe08a
PZ
7965#ifdef CONFIG_FAIR_GROUP_SCHED
7966static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7967{
7968 int i;
7969
7970 for_each_possible_cpu(i) {
7971 if (tg->cfs_rq)
7972 kfree(tg->cfs_rq[i]);
7973 if (tg->se)
7974 kfree(tg->se[i]);
6f505b16
PZ
7975 }
7976
7977 kfree(tg->cfs_rq);
7978 kfree(tg->se);
6f505b16
PZ
7979}
7980
ec7dc8ac
DG
7981static
7982int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7983{
29f59db3 7984 struct cfs_rq *cfs_rq;
ec7dc8ac 7985 struct sched_entity *se, *parent_se;
9b5b7751 7986 struct rq *rq;
29f59db3
SV
7987 int i;
7988
434d53b0 7989 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7990 if (!tg->cfs_rq)
7991 goto err;
434d53b0 7992 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7993 if (!tg->se)
7994 goto err;
052f1dc7
PZ
7995
7996 tg->shares = NICE_0_LOAD;
29f59db3
SV
7997
7998 for_each_possible_cpu(i) {
9b5b7751 7999 rq = cpu_rq(i);
29f59db3 8000
6f505b16
PZ
8001 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8002 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8003 if (!cfs_rq)
8004 goto err;
8005
6f505b16
PZ
8006 se = kmalloc_node(sizeof(struct sched_entity),
8007 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8008 if (!se)
8009 goto err;
8010
ec7dc8ac
DG
8011 parent_se = parent ? parent->se[i] : NULL;
8012 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8013 }
8014
8015 return 1;
8016
8017 err:
8018 return 0;
8019}
8020
8021static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8022{
8023 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8024 &cpu_rq(cpu)->leaf_cfs_rq_list);
8025}
8026
8027static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8028{
8029 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8030}
8031#else
8032static inline void free_fair_sched_group(struct task_group *tg)
8033{
8034}
8035
ec7dc8ac
DG
8036static inline
8037int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8038{
8039 return 1;
8040}
8041
8042static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8043{
8044}
8045
8046static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8047{
8048}
052f1dc7
PZ
8049#endif
8050
8051#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8052static void free_rt_sched_group(struct task_group *tg)
8053{
8054 int i;
8055
d0b27fa7
PZ
8056 destroy_rt_bandwidth(&tg->rt_bandwidth);
8057
bccbe08a
PZ
8058 for_each_possible_cpu(i) {
8059 if (tg->rt_rq)
8060 kfree(tg->rt_rq[i]);
8061 if (tg->rt_se)
8062 kfree(tg->rt_se[i]);
8063 }
8064
8065 kfree(tg->rt_rq);
8066 kfree(tg->rt_se);
8067}
8068
ec7dc8ac
DG
8069static
8070int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8071{
8072 struct rt_rq *rt_rq;
ec7dc8ac 8073 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8074 struct rq *rq;
8075 int i;
8076
434d53b0 8077 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8078 if (!tg->rt_rq)
8079 goto err;
434d53b0 8080 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8081 if (!tg->rt_se)
8082 goto err;
8083
d0b27fa7
PZ
8084 init_rt_bandwidth(&tg->rt_bandwidth,
8085 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8086
8087 for_each_possible_cpu(i) {
8088 rq = cpu_rq(i);
8089
6f505b16
PZ
8090 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8091 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8092 if (!rt_rq)
8093 goto err;
29f59db3 8094
6f505b16
PZ
8095 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8096 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8097 if (!rt_se)
8098 goto err;
29f59db3 8099
ec7dc8ac
DG
8100 parent_se = parent ? parent->rt_se[i] : NULL;
8101 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8102 }
8103
bccbe08a
PZ
8104 return 1;
8105
8106 err:
8107 return 0;
8108}
8109
8110static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8111{
8112 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8113 &cpu_rq(cpu)->leaf_rt_rq_list);
8114}
8115
8116static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8117{
8118 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8119}
8120#else
8121static inline void free_rt_sched_group(struct task_group *tg)
8122{
8123}
8124
ec7dc8ac
DG
8125static inline
8126int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8127{
8128 return 1;
8129}
8130
8131static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8132{
8133}
8134
8135static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8136{
8137}
8138#endif
8139
d0b27fa7 8140#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8141static void free_sched_group(struct task_group *tg)
8142{
8143 free_fair_sched_group(tg);
8144 free_rt_sched_group(tg);
8145 kfree(tg);
8146}
8147
8148/* allocate runqueue etc for a new task group */
ec7dc8ac 8149struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8150{
8151 struct task_group *tg;
8152 unsigned long flags;
8153 int i;
8154
8155 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8156 if (!tg)
8157 return ERR_PTR(-ENOMEM);
8158
ec7dc8ac 8159 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8160 goto err;
8161
ec7dc8ac 8162 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8163 goto err;
8164
8ed36996 8165 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8166 for_each_possible_cpu(i) {
bccbe08a
PZ
8167 register_fair_sched_group(tg, i);
8168 register_rt_sched_group(tg, i);
9b5b7751 8169 }
6f505b16 8170 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8171
8172 WARN_ON(!parent); /* root should already exist */
8173
8174 tg->parent = parent;
8175 list_add_rcu(&tg->siblings, &parent->children);
8176 INIT_LIST_HEAD(&tg->children);
8ed36996 8177 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8178
9b5b7751 8179 return tg;
29f59db3
SV
8180
8181err:
6f505b16 8182 free_sched_group(tg);
29f59db3
SV
8183 return ERR_PTR(-ENOMEM);
8184}
8185
9b5b7751 8186/* rcu callback to free various structures associated with a task group */
6f505b16 8187static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8188{
29f59db3 8189 /* now it should be safe to free those cfs_rqs */
6f505b16 8190 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8191}
8192
9b5b7751 8193/* Destroy runqueue etc associated with a task group */
4cf86d77 8194void sched_destroy_group(struct task_group *tg)
29f59db3 8195{
8ed36996 8196 unsigned long flags;
9b5b7751 8197 int i;
29f59db3 8198
8ed36996 8199 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8200 for_each_possible_cpu(i) {
bccbe08a
PZ
8201 unregister_fair_sched_group(tg, i);
8202 unregister_rt_sched_group(tg, i);
9b5b7751 8203 }
6f505b16 8204 list_del_rcu(&tg->list);
f473aa5e 8205 list_del_rcu(&tg->siblings);
8ed36996 8206 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8207
9b5b7751 8208 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8209 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8210}
8211
9b5b7751 8212/* change task's runqueue when it moves between groups.
3a252015
IM
8213 * The caller of this function should have put the task in its new group
8214 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8215 * reflect its new group.
9b5b7751
SV
8216 */
8217void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8218{
8219 int on_rq, running;
8220 unsigned long flags;
8221 struct rq *rq;
8222
8223 rq = task_rq_lock(tsk, &flags);
8224
29f59db3
SV
8225 update_rq_clock(rq);
8226
051a1d1a 8227 running = task_current(rq, tsk);
29f59db3
SV
8228 on_rq = tsk->se.on_rq;
8229
0e1f3483 8230 if (on_rq)
29f59db3 8231 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8232 if (unlikely(running))
8233 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8234
6f505b16 8235 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8236
810b3817
PZ
8237#ifdef CONFIG_FAIR_GROUP_SCHED
8238 if (tsk->sched_class->moved_group)
8239 tsk->sched_class->moved_group(tsk);
8240#endif
8241
0e1f3483
HS
8242 if (unlikely(running))
8243 tsk->sched_class->set_curr_task(rq);
8244 if (on_rq)
7074badb 8245 enqueue_task(rq, tsk, 0);
29f59db3 8246
29f59db3
SV
8247 task_rq_unlock(rq, &flags);
8248}
d0b27fa7 8249#endif
29f59db3 8250
052f1dc7 8251#ifdef CONFIG_FAIR_GROUP_SCHED
6363ca57 8252static void set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8253{
8254 struct cfs_rq *cfs_rq = se->cfs_rq;
6363ca57 8255 struct rq *rq = cfs_rq->rq;
29f59db3
SV
8256 int on_rq;
8257
6363ca57
IM
8258 spin_lock_irq(&rq->lock);
8259
29f59db3 8260 on_rq = se->on_rq;
62fb1851 8261 if (on_rq)
29f59db3
SV
8262 dequeue_entity(cfs_rq, se, 0);
8263
8264 se->load.weight = shares;
e05510d0 8265 se->load.inv_weight = 0;
29f59db3 8266
62fb1851 8267 if (on_rq)
29f59db3 8268 enqueue_entity(cfs_rq, se, 0);
62fb1851 8269
6363ca57 8270 spin_unlock_irq(&rq->lock);
29f59db3
SV
8271}
8272
8ed36996
PZ
8273static DEFINE_MUTEX(shares_mutex);
8274
4cf86d77 8275int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8276{
8277 int i;
8ed36996 8278 unsigned long flags;
c61935fd 8279
ec7dc8ac
DG
8280 /*
8281 * We can't change the weight of the root cgroup.
8282 */
8283 if (!tg->se[0])
8284 return -EINVAL;
8285
18d95a28
PZ
8286 if (shares < MIN_SHARES)
8287 shares = MIN_SHARES;
cb4ad1ff
MX
8288 else if (shares > MAX_SHARES)
8289 shares = MAX_SHARES;
62fb1851 8290
8ed36996 8291 mutex_lock(&shares_mutex);
9b5b7751 8292 if (tg->shares == shares)
5cb350ba 8293 goto done;
29f59db3 8294
8ed36996 8295 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8296 for_each_possible_cpu(i)
8297 unregister_fair_sched_group(tg, i);
f473aa5e 8298 list_del_rcu(&tg->siblings);
8ed36996 8299 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8300
8301 /* wait for any ongoing reference to this group to finish */
8302 synchronize_sched();
8303
8304 /*
8305 * Now we are free to modify the group's share on each cpu
8306 * w/o tripping rebalance_share or load_balance_fair.
8307 */
9b5b7751 8308 tg->shares = shares;
6363ca57 8309 for_each_possible_cpu(i)
cb4ad1ff 8310 set_se_shares(tg->se[i], shares);
29f59db3 8311
6b2d7700
SV
8312 /*
8313 * Enable load balance activity on this group, by inserting it back on
8314 * each cpu's rq->leaf_cfs_rq_list.
8315 */
8ed36996 8316 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8317 for_each_possible_cpu(i)
8318 register_fair_sched_group(tg, i);
f473aa5e 8319 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8320 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8321done:
8ed36996 8322 mutex_unlock(&shares_mutex);
9b5b7751 8323 return 0;
29f59db3
SV
8324}
8325
5cb350ba
DG
8326unsigned long sched_group_shares(struct task_group *tg)
8327{
8328 return tg->shares;
8329}
052f1dc7 8330#endif
5cb350ba 8331
052f1dc7 8332#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8333/*
9f0c1e56 8334 * Ensure that the real time constraints are schedulable.
6f505b16 8335 */
9f0c1e56
PZ
8336static DEFINE_MUTEX(rt_constraints_mutex);
8337
8338static unsigned long to_ratio(u64 period, u64 runtime)
8339{
8340 if (runtime == RUNTIME_INF)
8341 return 1ULL << 16;
8342
6f6d6a1a 8343 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8344}
8345
b40b2e8e
PZ
8346#ifdef CONFIG_CGROUP_SCHED
8347static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8348{
8349 struct task_group *tgi, *parent = tg->parent;
8350 unsigned long total = 0;
8351
8352 if (!parent) {
8353 if (global_rt_period() < period)
8354 return 0;
8355
8356 return to_ratio(period, runtime) <
8357 to_ratio(global_rt_period(), global_rt_runtime());
8358 }
8359
8360 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8361 return 0;
8362
8363 rcu_read_lock();
8364 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8365 if (tgi == tg)
8366 continue;
8367
8368 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8369 tgi->rt_bandwidth.rt_runtime);
8370 }
8371 rcu_read_unlock();
8372
8373 return total + to_ratio(period, runtime) <
8374 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8375 parent->rt_bandwidth.rt_runtime);
8376}
8377#elif defined CONFIG_USER_SCHED
9f0c1e56 8378static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8379{
8380 struct task_group *tgi;
8381 unsigned long total = 0;
9f0c1e56 8382 unsigned long global_ratio =
d0b27fa7 8383 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8384
8385 rcu_read_lock();
9f0c1e56
PZ
8386 list_for_each_entry_rcu(tgi, &task_groups, list) {
8387 if (tgi == tg)
8388 continue;
6f505b16 8389
d0b27fa7
PZ
8390 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8391 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8392 }
8393 rcu_read_unlock();
6f505b16 8394
9f0c1e56 8395 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8396}
b40b2e8e 8397#endif
6f505b16 8398
521f1a24
DG
8399/* Must be called with tasklist_lock held */
8400static inline int tg_has_rt_tasks(struct task_group *tg)
8401{
8402 struct task_struct *g, *p;
8403 do_each_thread(g, p) {
8404 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8405 return 1;
8406 } while_each_thread(g, p);
8407 return 0;
8408}
8409
d0b27fa7
PZ
8410static int tg_set_bandwidth(struct task_group *tg,
8411 u64 rt_period, u64 rt_runtime)
6f505b16 8412{
ac086bc2 8413 int i, err = 0;
9f0c1e56 8414
9f0c1e56 8415 mutex_lock(&rt_constraints_mutex);
521f1a24 8416 read_lock(&tasklist_lock);
ac086bc2 8417 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8418 err = -EBUSY;
8419 goto unlock;
8420 }
9f0c1e56
PZ
8421 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8422 err = -EINVAL;
8423 goto unlock;
8424 }
ac086bc2
PZ
8425
8426 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8427 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8428 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8429
8430 for_each_possible_cpu(i) {
8431 struct rt_rq *rt_rq = tg->rt_rq[i];
8432
8433 spin_lock(&rt_rq->rt_runtime_lock);
8434 rt_rq->rt_runtime = rt_runtime;
8435 spin_unlock(&rt_rq->rt_runtime_lock);
8436 }
8437 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8438 unlock:
521f1a24 8439 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8440 mutex_unlock(&rt_constraints_mutex);
8441
8442 return err;
6f505b16
PZ
8443}
8444
d0b27fa7
PZ
8445int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8446{
8447 u64 rt_runtime, rt_period;
8448
8449 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8450 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8451 if (rt_runtime_us < 0)
8452 rt_runtime = RUNTIME_INF;
8453
8454 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8455}
8456
9f0c1e56
PZ
8457long sched_group_rt_runtime(struct task_group *tg)
8458{
8459 u64 rt_runtime_us;
8460
d0b27fa7 8461 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8462 return -1;
8463
d0b27fa7 8464 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8465 do_div(rt_runtime_us, NSEC_PER_USEC);
8466 return rt_runtime_us;
8467}
d0b27fa7
PZ
8468
8469int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8470{
8471 u64 rt_runtime, rt_period;
8472
8473 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8474 rt_runtime = tg->rt_bandwidth.rt_runtime;
8475
8476 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8477}
8478
8479long sched_group_rt_period(struct task_group *tg)
8480{
8481 u64 rt_period_us;
8482
8483 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8484 do_div(rt_period_us, NSEC_PER_USEC);
8485 return rt_period_us;
8486}
8487
8488static int sched_rt_global_constraints(void)
8489{
8490 int ret = 0;
8491
8492 mutex_lock(&rt_constraints_mutex);
8493 if (!__rt_schedulable(NULL, 1, 0))
8494 ret = -EINVAL;
8495 mutex_unlock(&rt_constraints_mutex);
8496
8497 return ret;
8498}
8499#else
8500static int sched_rt_global_constraints(void)
8501{
ac086bc2
PZ
8502 unsigned long flags;
8503 int i;
8504
8505 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8506 for_each_possible_cpu(i) {
8507 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8508
8509 spin_lock(&rt_rq->rt_runtime_lock);
8510 rt_rq->rt_runtime = global_rt_runtime();
8511 spin_unlock(&rt_rq->rt_runtime_lock);
8512 }
8513 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8514
d0b27fa7
PZ
8515 return 0;
8516}
052f1dc7 8517#endif
d0b27fa7
PZ
8518
8519int sched_rt_handler(struct ctl_table *table, int write,
8520 struct file *filp, void __user *buffer, size_t *lenp,
8521 loff_t *ppos)
8522{
8523 int ret;
8524 int old_period, old_runtime;
8525 static DEFINE_MUTEX(mutex);
8526
8527 mutex_lock(&mutex);
8528 old_period = sysctl_sched_rt_period;
8529 old_runtime = sysctl_sched_rt_runtime;
8530
8531 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8532
8533 if (!ret && write) {
8534 ret = sched_rt_global_constraints();
8535 if (ret) {
8536 sysctl_sched_rt_period = old_period;
8537 sysctl_sched_rt_runtime = old_runtime;
8538 } else {
8539 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8540 def_rt_bandwidth.rt_period =
8541 ns_to_ktime(global_rt_period());
8542 }
8543 }
8544 mutex_unlock(&mutex);
8545
8546 return ret;
8547}
68318b8e 8548
052f1dc7 8549#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8550
8551/* return corresponding task_group object of a cgroup */
2b01dfe3 8552static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8553{
2b01dfe3
PM
8554 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8555 struct task_group, css);
68318b8e
SV
8556}
8557
8558static struct cgroup_subsys_state *
2b01dfe3 8559cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8560{
ec7dc8ac 8561 struct task_group *tg, *parent;
68318b8e 8562
2b01dfe3 8563 if (!cgrp->parent) {
68318b8e 8564 /* This is early initialization for the top cgroup */
2b01dfe3 8565 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8566 return &init_task_group.css;
8567 }
8568
ec7dc8ac
DG
8569 parent = cgroup_tg(cgrp->parent);
8570 tg = sched_create_group(parent);
68318b8e
SV
8571 if (IS_ERR(tg))
8572 return ERR_PTR(-ENOMEM);
8573
8574 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8575 tg->css.cgroup = cgrp;
68318b8e
SV
8576
8577 return &tg->css;
8578}
8579
41a2d6cf
IM
8580static void
8581cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8582{
2b01dfe3 8583 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8584
8585 sched_destroy_group(tg);
8586}
8587
41a2d6cf
IM
8588static int
8589cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8590 struct task_struct *tsk)
68318b8e 8591{
b68aa230
PZ
8592#ifdef CONFIG_RT_GROUP_SCHED
8593 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8594 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8595 return -EINVAL;
8596#else
68318b8e
SV
8597 /* We don't support RT-tasks being in separate groups */
8598 if (tsk->sched_class != &fair_sched_class)
8599 return -EINVAL;
b68aa230 8600#endif
68318b8e
SV
8601
8602 return 0;
8603}
8604
8605static void
2b01dfe3 8606cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8607 struct cgroup *old_cont, struct task_struct *tsk)
8608{
8609 sched_move_task(tsk);
8610}
8611
052f1dc7 8612#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8613static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8614 u64 shareval)
68318b8e 8615{
2b01dfe3 8616 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8617}
8618
f4c753b7 8619static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8620{
2b01dfe3 8621 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8622
8623 return (u64) tg->shares;
8624}
052f1dc7 8625#endif
68318b8e 8626
052f1dc7 8627#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8628static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8629 s64 val)
6f505b16 8630{
06ecb27c 8631 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8632}
8633
06ecb27c 8634static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8635{
06ecb27c 8636 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8637}
d0b27fa7
PZ
8638
8639static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8640 u64 rt_period_us)
8641{
8642 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8643}
8644
8645static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8646{
8647 return sched_group_rt_period(cgroup_tg(cgrp));
8648}
052f1dc7 8649#endif
6f505b16 8650
fe5c7cc2 8651static struct cftype cpu_files[] = {
052f1dc7 8652#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8653 {
8654 .name = "shares",
f4c753b7
PM
8655 .read_u64 = cpu_shares_read_u64,
8656 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8657 },
052f1dc7
PZ
8658#endif
8659#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8660 {
9f0c1e56 8661 .name = "rt_runtime_us",
06ecb27c
PM
8662 .read_s64 = cpu_rt_runtime_read,
8663 .write_s64 = cpu_rt_runtime_write,
6f505b16 8664 },
d0b27fa7
PZ
8665 {
8666 .name = "rt_period_us",
f4c753b7
PM
8667 .read_u64 = cpu_rt_period_read_uint,
8668 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8669 },
052f1dc7 8670#endif
68318b8e
SV
8671};
8672
8673static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8674{
fe5c7cc2 8675 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8676}
8677
8678struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8679 .name = "cpu",
8680 .create = cpu_cgroup_create,
8681 .destroy = cpu_cgroup_destroy,
8682 .can_attach = cpu_cgroup_can_attach,
8683 .attach = cpu_cgroup_attach,
8684 .populate = cpu_cgroup_populate,
8685 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8686 .early_init = 1,
8687};
8688
052f1dc7 8689#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8690
8691#ifdef CONFIG_CGROUP_CPUACCT
8692
8693/*
8694 * CPU accounting code for task groups.
8695 *
8696 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8697 * (balbir@in.ibm.com).
8698 */
8699
8700/* track cpu usage of a group of tasks */
8701struct cpuacct {
8702 struct cgroup_subsys_state css;
8703 /* cpuusage holds pointer to a u64-type object on every cpu */
8704 u64 *cpuusage;
8705};
8706
8707struct cgroup_subsys cpuacct_subsys;
8708
8709/* return cpu accounting group corresponding to this container */
32cd756a 8710static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8711{
32cd756a 8712 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8713 struct cpuacct, css);
8714}
8715
8716/* return cpu accounting group to which this task belongs */
8717static inline struct cpuacct *task_ca(struct task_struct *tsk)
8718{
8719 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8720 struct cpuacct, css);
8721}
8722
8723/* create a new cpu accounting group */
8724static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8725 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8726{
8727 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8728
8729 if (!ca)
8730 return ERR_PTR(-ENOMEM);
8731
8732 ca->cpuusage = alloc_percpu(u64);
8733 if (!ca->cpuusage) {
8734 kfree(ca);
8735 return ERR_PTR(-ENOMEM);
8736 }
8737
8738 return &ca->css;
8739}
8740
8741/* destroy an existing cpu accounting group */
41a2d6cf 8742static void
32cd756a 8743cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8744{
32cd756a 8745 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8746
8747 free_percpu(ca->cpuusage);
8748 kfree(ca);
8749}
8750
8751/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8752static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8753{
32cd756a 8754 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8755 u64 totalcpuusage = 0;
8756 int i;
8757
8758 for_each_possible_cpu(i) {
8759 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8760
8761 /*
8762 * Take rq->lock to make 64-bit addition safe on 32-bit
8763 * platforms.
8764 */
8765 spin_lock_irq(&cpu_rq(i)->lock);
8766 totalcpuusage += *cpuusage;
8767 spin_unlock_irq(&cpu_rq(i)->lock);
8768 }
8769
8770 return totalcpuusage;
8771}
8772
0297b803
DG
8773static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8774 u64 reset)
8775{
8776 struct cpuacct *ca = cgroup_ca(cgrp);
8777 int err = 0;
8778 int i;
8779
8780 if (reset) {
8781 err = -EINVAL;
8782 goto out;
8783 }
8784
8785 for_each_possible_cpu(i) {
8786 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8787
8788 spin_lock_irq(&cpu_rq(i)->lock);
8789 *cpuusage = 0;
8790 spin_unlock_irq(&cpu_rq(i)->lock);
8791 }
8792out:
8793 return err;
8794}
8795
d842de87
SV
8796static struct cftype files[] = {
8797 {
8798 .name = "usage",
f4c753b7
PM
8799 .read_u64 = cpuusage_read,
8800 .write_u64 = cpuusage_write,
d842de87
SV
8801 },
8802};
8803
32cd756a 8804static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8805{
32cd756a 8806 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8807}
8808
8809/*
8810 * charge this task's execution time to its accounting group.
8811 *
8812 * called with rq->lock held.
8813 */
8814static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8815{
8816 struct cpuacct *ca;
8817
8818 if (!cpuacct_subsys.active)
8819 return;
8820
8821 ca = task_ca(tsk);
8822 if (ca) {
8823 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8824
8825 *cpuusage += cputime;
8826 }
8827}
8828
8829struct cgroup_subsys cpuacct_subsys = {
8830 .name = "cpuacct",
8831 .create = cpuacct_create,
8832 .destroy = cpuacct_destroy,
8833 .populate = cpuacct_populate,
8834 .subsys_id = cpuacct_subsys_id,
8835};
8836#endif /* CONFIG_CGROUP_CPUACCT */