]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/sched.c
[PATCH] sched: disable interrupts for locking in load_balance()
[mirror_ubuntu-eoan-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
9a11b49a 33#include <linux/debug_locks.h>
1da177e4
LT
34#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
7dfb7103 37#include <linux/freezer.h>
198e2f18 38#include <linux/vmalloc.h>
1da177e4
LT
39#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
8f0ab514 52#include <linux/tsacct_kern.h>
c6fd91f0 53#include <linux/kprobes.h>
0ff92245 54#include <linux/delayacct.h>
1da177e4
LT
55#include <asm/tlb.h>
56
57#include <asm/unistd.h>
58
59/*
60 * Convert user-nice values [ -20 ... 0 ... 19 ]
61 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 * and back.
63 */
64#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
65#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
66#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67
68/*
69 * 'User priority' is the nice value converted to something we
70 * can work with better when scaling various scheduler parameters,
71 * it's a [ 0 ... 39 ] range.
72 */
73#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
74#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
75#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76
77/*
78 * Some helpers for converting nanosecond timing to jiffy resolution
79 */
80#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
81#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82
83/*
84 * These are the 'tuning knobs' of the scheduler:
85 *
86 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
87 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
88 * Timeslices get refilled after they expire.
89 */
90#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
91#define DEF_TIMESLICE (100 * HZ / 1000)
92#define ON_RUNQUEUE_WEIGHT 30
93#define CHILD_PENALTY 95
94#define PARENT_PENALTY 100
95#define EXIT_WEIGHT 3
96#define PRIO_BONUS_RATIO 25
97#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
98#define INTERACTIVE_DELTA 2
99#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
100#define STARVATION_LIMIT (MAX_SLEEP_AVG)
101#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102
103/*
104 * If a task is 'interactive' then we reinsert it in the active
105 * array after it has expired its current timeslice. (it will not
106 * continue to run immediately, it will still roundrobin with
107 * other interactive tasks.)
108 *
109 * This part scales the interactivity limit depending on niceness.
110 *
111 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
112 * Here are a few examples of different nice levels:
113 *
114 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
115 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
116 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
118 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
119 *
120 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
121 * priority range a task can explore, a value of '1' means the
122 * task is rated interactive.)
123 *
124 * Ie. nice +19 tasks can never get 'interactive' enough to be
125 * reinserted into the active array. And only heavily CPU-hog nice -20
126 * tasks will be expired. Default nice 0 tasks are somewhere between,
127 * it takes some effort for them to get interactive, but it's not
128 * too hard.
129 */
130
131#define CURRENT_BONUS(p) \
132 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 MAX_SLEEP_AVG)
134
135#define GRANULARITY (10 * HZ / 1000 ? : 1)
136
137#ifdef CONFIG_SMP
138#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 num_online_cpus())
141#else
142#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
143 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144#endif
145
146#define SCALE(v1,v1_max,v2_max) \
147 (v1) * (v2_max) / (v1_max)
148
149#define DELTA(p) \
013d3868
MA
150 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 INTERACTIVE_DELTA)
1da177e4
LT
152
153#define TASK_INTERACTIVE(p) \
154 ((p)->prio <= (p)->static_prio - DELTA(p))
155
156#define INTERACTIVE_SLEEP(p) \
157 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
158 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
159
160#define TASK_PREEMPTS_CURR(p, rq) \
161 ((p)->prio < (rq)->curr->prio)
162
1da177e4 163#define SCALE_PRIO(x, prio) \
2dd73a4f 164 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
1da177e4 165
2dd73a4f 166static unsigned int static_prio_timeslice(int static_prio)
1da177e4 167{
2dd73a4f
PW
168 if (static_prio < NICE_TO_PRIO(0))
169 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
1da177e4 170 else
2dd73a4f 171 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
1da177e4 172}
2dd73a4f 173
91fcdd4e
BP
174/*
175 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
176 * to time slice values: [800ms ... 100ms ... 5ms]
177 *
178 * The higher a thread's priority, the bigger timeslices
179 * it gets during one round of execution. But even the lowest
180 * priority thread gets MIN_TIMESLICE worth of execution time.
181 */
182
36c8b586 183static inline unsigned int task_timeslice(struct task_struct *p)
2dd73a4f
PW
184{
185 return static_prio_timeslice(p->static_prio);
186}
187
1da177e4
LT
188/*
189 * These are the runqueue data structures:
190 */
191
1da177e4
LT
192struct prio_array {
193 unsigned int nr_active;
d444886e 194 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
1da177e4
LT
195 struct list_head queue[MAX_PRIO];
196};
197
198/*
199 * This is the main, per-CPU runqueue data structure.
200 *
201 * Locking rule: those places that want to lock multiple runqueues
202 * (such as the load balancing or the thread migration code), lock
203 * acquire operations must be ordered by ascending &runqueue.
204 */
70b97a7f 205struct rq {
1da177e4
LT
206 spinlock_t lock;
207
208 /*
209 * nr_running and cpu_load should be in the same cacheline because
210 * remote CPUs use both these fields when doing load calculation.
211 */
212 unsigned long nr_running;
2dd73a4f 213 unsigned long raw_weighted_load;
1da177e4 214#ifdef CONFIG_SMP
7897986b 215 unsigned long cpu_load[3];
1da177e4
LT
216#endif
217 unsigned long long nr_switches;
218
219 /*
220 * This is part of a global counter where only the total sum
221 * over all CPUs matters. A task can increase this counter on
222 * one CPU and if it got migrated afterwards it may decrease
223 * it on another CPU. Always updated under the runqueue lock:
224 */
225 unsigned long nr_uninterruptible;
226
227 unsigned long expired_timestamp;
228 unsigned long long timestamp_last_tick;
36c8b586 229 struct task_struct *curr, *idle;
1da177e4 230 struct mm_struct *prev_mm;
70b97a7f 231 struct prio_array *active, *expired, arrays[2];
1da177e4
LT
232 int best_expired_prio;
233 atomic_t nr_iowait;
234
235#ifdef CONFIG_SMP
236 struct sched_domain *sd;
237
238 /* For active balancing */
239 int active_balance;
240 int push_cpu;
0a2966b4 241 int cpu; /* cpu of this runqueue */
1da177e4 242
36c8b586 243 struct task_struct *migration_thread;
1da177e4
LT
244 struct list_head migration_queue;
245#endif
246
247#ifdef CONFIG_SCHEDSTATS
248 /* latency stats */
249 struct sched_info rq_sched_info;
250
251 /* sys_sched_yield() stats */
252 unsigned long yld_exp_empty;
253 unsigned long yld_act_empty;
254 unsigned long yld_both_empty;
255 unsigned long yld_cnt;
256
257 /* schedule() stats */
258 unsigned long sched_switch;
259 unsigned long sched_cnt;
260 unsigned long sched_goidle;
261
262 /* try_to_wake_up() stats */
263 unsigned long ttwu_cnt;
264 unsigned long ttwu_local;
265#endif
fcb99371 266 struct lock_class_key rq_lock_key;
1da177e4
LT
267};
268
70b97a7f 269static DEFINE_PER_CPU(struct rq, runqueues);
1da177e4 270
0a2966b4
CL
271static inline int cpu_of(struct rq *rq)
272{
273#ifdef CONFIG_SMP
274 return rq->cpu;
275#else
276 return 0;
277#endif
278}
279
674311d5
NP
280/*
281 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 282 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
283 *
284 * The domain tree of any CPU may only be accessed from within
285 * preempt-disabled sections.
286 */
48f24c4d
IM
287#define for_each_domain(cpu, __sd) \
288 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
289
290#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
291#define this_rq() (&__get_cpu_var(runqueues))
292#define task_rq(p) cpu_rq(task_cpu(p))
293#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
294
1da177e4 295#ifndef prepare_arch_switch
4866cde0
NP
296# define prepare_arch_switch(next) do { } while (0)
297#endif
298#ifndef finish_arch_switch
299# define finish_arch_switch(prev) do { } while (0)
300#endif
301
302#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 303static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
304{
305 return rq->curr == p;
306}
307
70b97a7f 308static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
309{
310}
311
70b97a7f 312static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 313{
da04c035
IM
314#ifdef CONFIG_DEBUG_SPINLOCK
315 /* this is a valid case when another task releases the spinlock */
316 rq->lock.owner = current;
317#endif
8a25d5de
IM
318 /*
319 * If we are tracking spinlock dependencies then we have to
320 * fix up the runqueue lock - which gets 'carried over' from
321 * prev into current:
322 */
323 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
324
4866cde0
NP
325 spin_unlock_irq(&rq->lock);
326}
327
328#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 329static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
330{
331#ifdef CONFIG_SMP
332 return p->oncpu;
333#else
334 return rq->curr == p;
335#endif
336}
337
70b97a7f 338static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
339{
340#ifdef CONFIG_SMP
341 /*
342 * We can optimise this out completely for !SMP, because the
343 * SMP rebalancing from interrupt is the only thing that cares
344 * here.
345 */
346 next->oncpu = 1;
347#endif
348#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
349 spin_unlock_irq(&rq->lock);
350#else
351 spin_unlock(&rq->lock);
352#endif
353}
354
70b97a7f 355static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
356{
357#ifdef CONFIG_SMP
358 /*
359 * After ->oncpu is cleared, the task can be moved to a different CPU.
360 * We must ensure this doesn't happen until the switch is completely
361 * finished.
362 */
363 smp_wmb();
364 prev->oncpu = 0;
365#endif
366#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
367 local_irq_enable();
1da177e4 368#endif
4866cde0
NP
369}
370#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 371
b29739f9
IM
372/*
373 * __task_rq_lock - lock the runqueue a given task resides on.
374 * Must be called interrupts disabled.
375 */
70b97a7f 376static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
377 __acquires(rq->lock)
378{
70b97a7f 379 struct rq *rq;
b29739f9
IM
380
381repeat_lock_task:
382 rq = task_rq(p);
383 spin_lock(&rq->lock);
384 if (unlikely(rq != task_rq(p))) {
385 spin_unlock(&rq->lock);
386 goto repeat_lock_task;
387 }
388 return rq;
389}
390
1da177e4
LT
391/*
392 * task_rq_lock - lock the runqueue a given task resides on and disable
393 * interrupts. Note the ordering: we can safely lookup the task_rq without
394 * explicitly disabling preemption.
395 */
70b97a7f 396static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
397 __acquires(rq->lock)
398{
70b97a7f 399 struct rq *rq;
1da177e4
LT
400
401repeat_lock_task:
402 local_irq_save(*flags);
403 rq = task_rq(p);
404 spin_lock(&rq->lock);
405 if (unlikely(rq != task_rq(p))) {
406 spin_unlock_irqrestore(&rq->lock, *flags);
407 goto repeat_lock_task;
408 }
409 return rq;
410}
411
70b97a7f 412static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
413 __releases(rq->lock)
414{
415 spin_unlock(&rq->lock);
416}
417
70b97a7f 418static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
419 __releases(rq->lock)
420{
421 spin_unlock_irqrestore(&rq->lock, *flags);
422}
423
424#ifdef CONFIG_SCHEDSTATS
425/*
426 * bump this up when changing the output format or the meaning of an existing
427 * format, so that tools can adapt (or abort)
428 */
68767a0a 429#define SCHEDSTAT_VERSION 12
1da177e4
LT
430
431static int show_schedstat(struct seq_file *seq, void *v)
432{
433 int cpu;
434
435 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
436 seq_printf(seq, "timestamp %lu\n", jiffies);
437 for_each_online_cpu(cpu) {
70b97a7f 438 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
439#ifdef CONFIG_SMP
440 struct sched_domain *sd;
441 int dcnt = 0;
442#endif
443
444 /* runqueue-specific stats */
445 seq_printf(seq,
446 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
447 cpu, rq->yld_both_empty,
448 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
449 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
450 rq->ttwu_cnt, rq->ttwu_local,
451 rq->rq_sched_info.cpu_time,
452 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
453
454 seq_printf(seq, "\n");
455
456#ifdef CONFIG_SMP
457 /* domain-specific stats */
674311d5 458 preempt_disable();
1da177e4
LT
459 for_each_domain(cpu, sd) {
460 enum idle_type itype;
461 char mask_str[NR_CPUS];
462
463 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
464 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
465 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
466 itype++) {
467 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
468 sd->lb_cnt[itype],
469 sd->lb_balanced[itype],
470 sd->lb_failed[itype],
471 sd->lb_imbalance[itype],
472 sd->lb_gained[itype],
473 sd->lb_hot_gained[itype],
474 sd->lb_nobusyq[itype],
475 sd->lb_nobusyg[itype]);
476 }
68767a0a 477 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 478 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
479 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
480 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
481 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
482 }
674311d5 483 preempt_enable();
1da177e4
LT
484#endif
485 }
486 return 0;
487}
488
489static int schedstat_open(struct inode *inode, struct file *file)
490{
491 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
492 char *buf = kmalloc(size, GFP_KERNEL);
493 struct seq_file *m;
494 int res;
495
496 if (!buf)
497 return -ENOMEM;
498 res = single_open(file, show_schedstat, NULL);
499 if (!res) {
500 m = file->private_data;
501 m->buf = buf;
502 m->size = size;
503 } else
504 kfree(buf);
505 return res;
506}
507
15ad7cdc 508const struct file_operations proc_schedstat_operations = {
1da177e4
LT
509 .open = schedstat_open,
510 .read = seq_read,
511 .llseek = seq_lseek,
512 .release = single_release,
513};
514
52f17b6c
CS
515/*
516 * Expects runqueue lock to be held for atomicity of update
517 */
518static inline void
519rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
520{
521 if (rq) {
522 rq->rq_sched_info.run_delay += delta_jiffies;
523 rq->rq_sched_info.pcnt++;
524 }
525}
526
527/*
528 * Expects runqueue lock to be held for atomicity of update
529 */
530static inline void
531rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
532{
533 if (rq)
534 rq->rq_sched_info.cpu_time += delta_jiffies;
535}
1da177e4
LT
536# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
537# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
538#else /* !CONFIG_SCHEDSTATS */
52f17b6c
CS
539static inline void
540rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
541{}
542static inline void
543rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
544{}
1da177e4
LT
545# define schedstat_inc(rq, field) do { } while (0)
546# define schedstat_add(rq, field, amt) do { } while (0)
547#endif
548
549/*
cc2a73b5 550 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 551 */
70b97a7f 552static inline struct rq *this_rq_lock(void)
1da177e4
LT
553 __acquires(rq->lock)
554{
70b97a7f 555 struct rq *rq;
1da177e4
LT
556
557 local_irq_disable();
558 rq = this_rq();
559 spin_lock(&rq->lock);
560
561 return rq;
562}
563
52f17b6c 564#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
565/*
566 * Called when a process is dequeued from the active array and given
567 * the cpu. We should note that with the exception of interactive
568 * tasks, the expired queue will become the active queue after the active
569 * queue is empty, without explicitly dequeuing and requeuing tasks in the
570 * expired queue. (Interactive tasks may be requeued directly to the
571 * active queue, thus delaying tasks in the expired queue from running;
572 * see scheduler_tick()).
573 *
574 * This function is only called from sched_info_arrive(), rather than
575 * dequeue_task(). Even though a task may be queued and dequeued multiple
576 * times as it is shuffled about, we're really interested in knowing how
577 * long it was from the *first* time it was queued to the time that it
578 * finally hit a cpu.
579 */
36c8b586 580static inline void sched_info_dequeued(struct task_struct *t)
1da177e4
LT
581{
582 t->sched_info.last_queued = 0;
583}
584
585/*
586 * Called when a task finally hits the cpu. We can now calculate how
587 * long it was waiting to run. We also note when it began so that we
588 * can keep stats on how long its timeslice is.
589 */
36c8b586 590static void sched_info_arrive(struct task_struct *t)
1da177e4 591{
52f17b6c 592 unsigned long now = jiffies, delta_jiffies = 0;
1da177e4
LT
593
594 if (t->sched_info.last_queued)
52f17b6c 595 delta_jiffies = now - t->sched_info.last_queued;
1da177e4 596 sched_info_dequeued(t);
52f17b6c 597 t->sched_info.run_delay += delta_jiffies;
1da177e4
LT
598 t->sched_info.last_arrival = now;
599 t->sched_info.pcnt++;
600
52f17b6c 601 rq_sched_info_arrive(task_rq(t), delta_jiffies);
1da177e4
LT
602}
603
604/*
605 * Called when a process is queued into either the active or expired
606 * array. The time is noted and later used to determine how long we
607 * had to wait for us to reach the cpu. Since the expired queue will
608 * become the active queue after active queue is empty, without dequeuing
609 * and requeuing any tasks, we are interested in queuing to either. It
610 * is unusual but not impossible for tasks to be dequeued and immediately
611 * requeued in the same or another array: this can happen in sched_yield(),
612 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
613 * to runqueue.
614 *
615 * This function is only called from enqueue_task(), but also only updates
616 * the timestamp if it is already not set. It's assumed that
617 * sched_info_dequeued() will clear that stamp when appropriate.
618 */
36c8b586 619static inline void sched_info_queued(struct task_struct *t)
1da177e4 620{
52f17b6c
CS
621 if (unlikely(sched_info_on()))
622 if (!t->sched_info.last_queued)
623 t->sched_info.last_queued = jiffies;
1da177e4
LT
624}
625
626/*
627 * Called when a process ceases being the active-running process, either
628 * voluntarily or involuntarily. Now we can calculate how long we ran.
629 */
36c8b586 630static inline void sched_info_depart(struct task_struct *t)
1da177e4 631{
52f17b6c 632 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
1da177e4 633
52f17b6c
CS
634 t->sched_info.cpu_time += delta_jiffies;
635 rq_sched_info_depart(task_rq(t), delta_jiffies);
1da177e4
LT
636}
637
638/*
639 * Called when tasks are switched involuntarily due, typically, to expiring
640 * their time slice. (This may also be called when switching to or from
641 * the idle task.) We are only called when prev != next.
642 */
36c8b586 643static inline void
52f17b6c 644__sched_info_switch(struct task_struct *prev, struct task_struct *next)
1da177e4 645{
70b97a7f 646 struct rq *rq = task_rq(prev);
1da177e4
LT
647
648 /*
649 * prev now departs the cpu. It's not interesting to record
650 * stats about how efficient we were at scheduling the idle
651 * process, however.
652 */
653 if (prev != rq->idle)
654 sched_info_depart(prev);
655
656 if (next != rq->idle)
657 sched_info_arrive(next);
658}
52f17b6c
CS
659static inline void
660sched_info_switch(struct task_struct *prev, struct task_struct *next)
661{
662 if (unlikely(sched_info_on()))
663 __sched_info_switch(prev, next);
664}
1da177e4
LT
665#else
666#define sched_info_queued(t) do { } while (0)
667#define sched_info_switch(t, next) do { } while (0)
52f17b6c 668#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
1da177e4
LT
669
670/*
671 * Adding/removing a task to/from a priority array:
672 */
70b97a7f 673static void dequeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
674{
675 array->nr_active--;
676 list_del(&p->run_list);
677 if (list_empty(array->queue + p->prio))
678 __clear_bit(p->prio, array->bitmap);
679}
680
70b97a7f 681static void enqueue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
682{
683 sched_info_queued(p);
684 list_add_tail(&p->run_list, array->queue + p->prio);
685 __set_bit(p->prio, array->bitmap);
686 array->nr_active++;
687 p->array = array;
688}
689
690/*
691 * Put task to the end of the run list without the overhead of dequeue
692 * followed by enqueue.
693 */
70b97a7f 694static void requeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
695{
696 list_move_tail(&p->run_list, array->queue + p->prio);
697}
698
70b97a7f
IM
699static inline void
700enqueue_task_head(struct task_struct *p, struct prio_array *array)
1da177e4
LT
701{
702 list_add(&p->run_list, array->queue + p->prio);
703 __set_bit(p->prio, array->bitmap);
704 array->nr_active++;
705 p->array = array;
706}
707
708/*
b29739f9 709 * __normal_prio - return the priority that is based on the static
1da177e4
LT
710 * priority but is modified by bonuses/penalties.
711 *
712 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
713 * into the -5 ... 0 ... +5 bonus/penalty range.
714 *
715 * We use 25% of the full 0...39 priority range so that:
716 *
717 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
718 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
719 *
720 * Both properties are important to certain workloads.
721 */
b29739f9 722
36c8b586 723static inline int __normal_prio(struct task_struct *p)
1da177e4
LT
724{
725 int bonus, prio;
726
1da177e4
LT
727 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
728
729 prio = p->static_prio - bonus;
730 if (prio < MAX_RT_PRIO)
731 prio = MAX_RT_PRIO;
732 if (prio > MAX_PRIO-1)
733 prio = MAX_PRIO-1;
734 return prio;
735}
736
2dd73a4f
PW
737/*
738 * To aid in avoiding the subversion of "niceness" due to uneven distribution
739 * of tasks with abnormal "nice" values across CPUs the contribution that
740 * each task makes to its run queue's load is weighted according to its
741 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
742 * scaled version of the new time slice allocation that they receive on time
743 * slice expiry etc.
744 */
745
746/*
747 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
748 * If static_prio_timeslice() is ever changed to break this assumption then
749 * this code will need modification
750 */
751#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
752#define LOAD_WEIGHT(lp) \
753 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
754#define PRIO_TO_LOAD_WEIGHT(prio) \
755 LOAD_WEIGHT(static_prio_timeslice(prio))
756#define RTPRIO_TO_LOAD_WEIGHT(rp) \
757 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
758
36c8b586 759static void set_load_weight(struct task_struct *p)
2dd73a4f 760{
b29739f9 761 if (has_rt_policy(p)) {
2dd73a4f
PW
762#ifdef CONFIG_SMP
763 if (p == task_rq(p)->migration_thread)
764 /*
765 * The migration thread does the actual balancing.
766 * Giving its load any weight will skew balancing
767 * adversely.
768 */
769 p->load_weight = 0;
770 else
771#endif
772 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
773 } else
774 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
775}
776
36c8b586 777static inline void
70b97a7f 778inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
779{
780 rq->raw_weighted_load += p->load_weight;
781}
782
36c8b586 783static inline void
70b97a7f 784dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
785{
786 rq->raw_weighted_load -= p->load_weight;
787}
788
70b97a7f 789static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
790{
791 rq->nr_running++;
792 inc_raw_weighted_load(rq, p);
793}
794
70b97a7f 795static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
796{
797 rq->nr_running--;
798 dec_raw_weighted_load(rq, p);
799}
800
b29739f9
IM
801/*
802 * Calculate the expected normal priority: i.e. priority
803 * without taking RT-inheritance into account. Might be
804 * boosted by interactivity modifiers. Changes upon fork,
805 * setprio syscalls, and whenever the interactivity
806 * estimator recalculates.
807 */
36c8b586 808static inline int normal_prio(struct task_struct *p)
b29739f9
IM
809{
810 int prio;
811
812 if (has_rt_policy(p))
813 prio = MAX_RT_PRIO-1 - p->rt_priority;
814 else
815 prio = __normal_prio(p);
816 return prio;
817}
818
819/*
820 * Calculate the current priority, i.e. the priority
821 * taken into account by the scheduler. This value might
822 * be boosted by RT tasks, or might be boosted by
823 * interactivity modifiers. Will be RT if the task got
824 * RT-boosted. If not then it returns p->normal_prio.
825 */
36c8b586 826static int effective_prio(struct task_struct *p)
b29739f9
IM
827{
828 p->normal_prio = normal_prio(p);
829 /*
830 * If we are RT tasks or we were boosted to RT priority,
831 * keep the priority unchanged. Otherwise, update priority
832 * to the normal priority:
833 */
834 if (!rt_prio(p->prio))
835 return p->normal_prio;
836 return p->prio;
837}
838
1da177e4
LT
839/*
840 * __activate_task - move a task to the runqueue.
841 */
70b97a7f 842static void __activate_task(struct task_struct *p, struct rq *rq)
1da177e4 843{
70b97a7f 844 struct prio_array *target = rq->active;
d425b274 845
f1adad78 846 if (batch_task(p))
d425b274
CK
847 target = rq->expired;
848 enqueue_task(p, target);
2dd73a4f 849 inc_nr_running(p, rq);
1da177e4
LT
850}
851
852/*
853 * __activate_idle_task - move idle task to the _front_ of runqueue.
854 */
70b97a7f 855static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4
LT
856{
857 enqueue_task_head(p, rq->active);
2dd73a4f 858 inc_nr_running(p, rq);
1da177e4
LT
859}
860
b29739f9
IM
861/*
862 * Recalculate p->normal_prio and p->prio after having slept,
863 * updating the sleep-average too:
864 */
36c8b586 865static int recalc_task_prio(struct task_struct *p, unsigned long long now)
1da177e4
LT
866{
867 /* Caller must always ensure 'now >= p->timestamp' */
72d2854d 868 unsigned long sleep_time = now - p->timestamp;
1da177e4 869
d425b274 870 if (batch_task(p))
b0a9499c 871 sleep_time = 0;
1da177e4
LT
872
873 if (likely(sleep_time > 0)) {
874 /*
72d2854d
CK
875 * This ceiling is set to the lowest priority that would allow
876 * a task to be reinserted into the active array on timeslice
877 * completion.
1da177e4 878 */
72d2854d 879 unsigned long ceiling = INTERACTIVE_SLEEP(p);
e72ff0bb 880
72d2854d
CK
881 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
882 /*
883 * Prevents user tasks from achieving best priority
884 * with one single large enough sleep.
885 */
886 p->sleep_avg = ceiling;
887 /*
888 * Using INTERACTIVE_SLEEP() as a ceiling places a
889 * nice(0) task 1ms sleep away from promotion, and
890 * gives it 700ms to round-robin with no chance of
891 * being demoted. This is more than generous, so
892 * mark this sleep as non-interactive to prevent the
893 * on-runqueue bonus logic from intervening should
894 * this task not receive cpu immediately.
895 */
896 p->sleep_type = SLEEP_NONINTERACTIVE;
1da177e4 897 } else {
1da177e4
LT
898 /*
899 * Tasks waking from uninterruptible sleep are
900 * limited in their sleep_avg rise as they
901 * are likely to be waiting on I/O
902 */
3dee386e 903 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
72d2854d 904 if (p->sleep_avg >= ceiling)
1da177e4
LT
905 sleep_time = 0;
906 else if (p->sleep_avg + sleep_time >=
72d2854d
CK
907 ceiling) {
908 p->sleep_avg = ceiling;
909 sleep_time = 0;
1da177e4
LT
910 }
911 }
912
913 /*
914 * This code gives a bonus to interactive tasks.
915 *
916 * The boost works by updating the 'average sleep time'
917 * value here, based on ->timestamp. The more time a
918 * task spends sleeping, the higher the average gets -
919 * and the higher the priority boost gets as well.
920 */
921 p->sleep_avg += sleep_time;
922
1da177e4 923 }
72d2854d
CK
924 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
925 p->sleep_avg = NS_MAX_SLEEP_AVG;
1da177e4
LT
926 }
927
a3464a10 928 return effective_prio(p);
1da177e4
LT
929}
930
931/*
932 * activate_task - move a task to the runqueue and do priority recalculation
933 *
934 * Update all the scheduling statistics stuff. (sleep average
935 * calculation, priority modifiers, etc.)
936 */
70b97a7f 937static void activate_task(struct task_struct *p, struct rq *rq, int local)
1da177e4
LT
938{
939 unsigned long long now;
940
941 now = sched_clock();
942#ifdef CONFIG_SMP
943 if (!local) {
944 /* Compensate for drifting sched_clock */
70b97a7f 945 struct rq *this_rq = this_rq();
1da177e4
LT
946 now = (now - this_rq->timestamp_last_tick)
947 + rq->timestamp_last_tick;
948 }
949#endif
950
ece8a684
IM
951 /*
952 * Sleep time is in units of nanosecs, so shift by 20 to get a
953 * milliseconds-range estimation of the amount of time that the task
954 * spent sleeping:
955 */
956 if (unlikely(prof_on == SLEEP_PROFILING)) {
957 if (p->state == TASK_UNINTERRUPTIBLE)
958 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
959 (now - p->timestamp) >> 20);
960 }
961
a47ab937
KC
962 if (!rt_task(p))
963 p->prio = recalc_task_prio(p, now);
1da177e4
LT
964
965 /*
966 * This checks to make sure it's not an uninterruptible task
967 * that is now waking up.
968 */
3dee386e 969 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
970 /*
971 * Tasks which were woken up by interrupts (ie. hw events)
972 * are most likely of interactive nature. So we give them
973 * the credit of extending their sleep time to the period
974 * of time they spend on the runqueue, waiting for execution
975 * on a CPU, first time around:
976 */
977 if (in_interrupt())
3dee386e 978 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
979 else {
980 /*
981 * Normal first-time wakeups get a credit too for
982 * on-runqueue time, but it will be weighted down:
983 */
3dee386e 984 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
985 }
986 }
987 p->timestamp = now;
988
989 __activate_task(p, rq);
990}
991
992/*
993 * deactivate_task - remove a task from the runqueue.
994 */
70b97a7f 995static void deactivate_task(struct task_struct *p, struct rq *rq)
1da177e4 996{
2dd73a4f 997 dec_nr_running(p, rq);
1da177e4
LT
998 dequeue_task(p, p->array);
999 p->array = NULL;
1000}
1001
1002/*
1003 * resched_task - mark a task 'to be rescheduled now'.
1004 *
1005 * On UP this means the setting of the need_resched flag, on SMP it
1006 * might also involve a cross-CPU call to trigger the scheduler on
1007 * the target CPU.
1008 */
1009#ifdef CONFIG_SMP
495ab9c0
AK
1010
1011#ifndef tsk_is_polling
1012#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1013#endif
1014
36c8b586 1015static void resched_task(struct task_struct *p)
1da177e4 1016{
64c7c8f8 1017 int cpu;
1da177e4
LT
1018
1019 assert_spin_locked(&task_rq(p)->lock);
1020
64c7c8f8
NP
1021 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1022 return;
1023
1024 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 1025
64c7c8f8
NP
1026 cpu = task_cpu(p);
1027 if (cpu == smp_processor_id())
1028 return;
1029
495ab9c0 1030 /* NEED_RESCHED must be visible before we test polling */
64c7c8f8 1031 smp_mb();
495ab9c0 1032 if (!tsk_is_polling(p))
64c7c8f8 1033 smp_send_reschedule(cpu);
1da177e4
LT
1034}
1035#else
36c8b586 1036static inline void resched_task(struct task_struct *p)
1da177e4 1037{
64c7c8f8 1038 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
1039 set_tsk_need_resched(p);
1040}
1041#endif
1042
1043/**
1044 * task_curr - is this task currently executing on a CPU?
1045 * @p: the task in question.
1046 */
36c8b586 1047inline int task_curr(const struct task_struct *p)
1da177e4
LT
1048{
1049 return cpu_curr(task_cpu(p)) == p;
1050}
1051
2dd73a4f
PW
1052/* Used instead of source_load when we know the type == 0 */
1053unsigned long weighted_cpuload(const int cpu)
1054{
1055 return cpu_rq(cpu)->raw_weighted_load;
1056}
1057
1da177e4 1058#ifdef CONFIG_SMP
70b97a7f 1059struct migration_req {
1da177e4 1060 struct list_head list;
1da177e4 1061
36c8b586 1062 struct task_struct *task;
1da177e4
LT
1063 int dest_cpu;
1064
1da177e4 1065 struct completion done;
70b97a7f 1066};
1da177e4
LT
1067
1068/*
1069 * The task's runqueue lock must be held.
1070 * Returns true if you have to wait for migration thread.
1071 */
36c8b586 1072static int
70b97a7f 1073migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1074{
70b97a7f 1075 struct rq *rq = task_rq(p);
1da177e4
LT
1076
1077 /*
1078 * If the task is not on a runqueue (and not running), then
1079 * it is sufficient to simply update the task's cpu field.
1080 */
1081 if (!p->array && !task_running(rq, p)) {
1082 set_task_cpu(p, dest_cpu);
1083 return 0;
1084 }
1085
1086 init_completion(&req->done);
1da177e4
LT
1087 req->task = p;
1088 req->dest_cpu = dest_cpu;
1089 list_add(&req->list, &rq->migration_queue);
48f24c4d 1090
1da177e4
LT
1091 return 1;
1092}
1093
1094/*
1095 * wait_task_inactive - wait for a thread to unschedule.
1096 *
1097 * The caller must ensure that the task *will* unschedule sometime soon,
1098 * else this function might spin for a *long* time. This function can't
1099 * be called with interrupts off, or it may introduce deadlock with
1100 * smp_call_function() if an IPI is sent by the same process we are
1101 * waiting to become inactive.
1102 */
36c8b586 1103void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1104{
1105 unsigned long flags;
70b97a7f 1106 struct rq *rq;
1da177e4
LT
1107 int preempted;
1108
1109repeat:
1110 rq = task_rq_lock(p, &flags);
1111 /* Must be off runqueue entirely, not preempted. */
1112 if (unlikely(p->array || task_running(rq, p))) {
1113 /* If it's preempted, we yield. It could be a while. */
1114 preempted = !task_running(rq, p);
1115 task_rq_unlock(rq, &flags);
1116 cpu_relax();
1117 if (preempted)
1118 yield();
1119 goto repeat;
1120 }
1121 task_rq_unlock(rq, &flags);
1122}
1123
1124/***
1125 * kick_process - kick a running thread to enter/exit the kernel
1126 * @p: the to-be-kicked thread
1127 *
1128 * Cause a process which is running on another CPU to enter
1129 * kernel-mode, without any delay. (to get signals handled.)
1130 *
1131 * NOTE: this function doesnt have to take the runqueue lock,
1132 * because all it wants to ensure is that the remote task enters
1133 * the kernel. If the IPI races and the task has been migrated
1134 * to another CPU then no harm is done and the purpose has been
1135 * achieved as well.
1136 */
36c8b586 1137void kick_process(struct task_struct *p)
1da177e4
LT
1138{
1139 int cpu;
1140
1141 preempt_disable();
1142 cpu = task_cpu(p);
1143 if ((cpu != smp_processor_id()) && task_curr(p))
1144 smp_send_reschedule(cpu);
1145 preempt_enable();
1146}
1147
1148/*
2dd73a4f
PW
1149 * Return a low guess at the load of a migration-source cpu weighted
1150 * according to the scheduling class and "nice" value.
1da177e4
LT
1151 *
1152 * We want to under-estimate the load of migration sources, to
1153 * balance conservatively.
1154 */
a2000572 1155static inline unsigned long source_load(int cpu, int type)
1da177e4 1156{
70b97a7f 1157 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1158
3b0bd9bc 1159 if (type == 0)
2dd73a4f 1160 return rq->raw_weighted_load;
b910472d 1161
2dd73a4f 1162 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1da177e4
LT
1163}
1164
1165/*
2dd73a4f
PW
1166 * Return a high guess at the load of a migration-target cpu weighted
1167 * according to the scheduling class and "nice" value.
1da177e4 1168 */
a2000572 1169static inline unsigned long target_load(int cpu, int type)
1da177e4 1170{
70b97a7f 1171 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1172
7897986b 1173 if (type == 0)
2dd73a4f 1174 return rq->raw_weighted_load;
3b0bd9bc 1175
2dd73a4f
PW
1176 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1177}
1178
1179/*
1180 * Return the average load per task on the cpu's run queue
1181 */
1182static inline unsigned long cpu_avg_load_per_task(int cpu)
1183{
70b97a7f 1184 struct rq *rq = cpu_rq(cpu);
2dd73a4f
PW
1185 unsigned long n = rq->nr_running;
1186
48f24c4d 1187 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1da177e4
LT
1188}
1189
147cbb4b
NP
1190/*
1191 * find_idlest_group finds and returns the least busy CPU group within the
1192 * domain.
1193 */
1194static struct sched_group *
1195find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1196{
1197 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1198 unsigned long min_load = ULONG_MAX, this_load = 0;
1199 int load_idx = sd->forkexec_idx;
1200 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1201
1202 do {
1203 unsigned long load, avg_load;
1204 int local_group;
1205 int i;
1206
da5a5522
BD
1207 /* Skip over this group if it has no CPUs allowed */
1208 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1209 goto nextgroup;
1210
147cbb4b 1211 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1212
1213 /* Tally up the load of all CPUs in the group */
1214 avg_load = 0;
1215
1216 for_each_cpu_mask(i, group->cpumask) {
1217 /* Bias balancing toward cpus of our domain */
1218 if (local_group)
1219 load = source_load(i, load_idx);
1220 else
1221 load = target_load(i, load_idx);
1222
1223 avg_load += load;
1224 }
1225
1226 /* Adjust by relative CPU power of the group */
1227 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1228
1229 if (local_group) {
1230 this_load = avg_load;
1231 this = group;
1232 } else if (avg_load < min_load) {
1233 min_load = avg_load;
1234 idlest = group;
1235 }
da5a5522 1236nextgroup:
147cbb4b
NP
1237 group = group->next;
1238 } while (group != sd->groups);
1239
1240 if (!idlest || 100*this_load < imbalance*min_load)
1241 return NULL;
1242 return idlest;
1243}
1244
1245/*
0feaece9 1246 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1247 */
95cdf3b7
IM
1248static int
1249find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1250{
da5a5522 1251 cpumask_t tmp;
147cbb4b
NP
1252 unsigned long load, min_load = ULONG_MAX;
1253 int idlest = -1;
1254 int i;
1255
da5a5522
BD
1256 /* Traverse only the allowed CPUs */
1257 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1258
1259 for_each_cpu_mask(i, tmp) {
2dd73a4f 1260 load = weighted_cpuload(i);
147cbb4b
NP
1261
1262 if (load < min_load || (load == min_load && i == this_cpu)) {
1263 min_load = load;
1264 idlest = i;
1265 }
1266 }
1267
1268 return idlest;
1269}
1270
476d139c
NP
1271/*
1272 * sched_balance_self: balance the current task (running on cpu) in domains
1273 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1274 * SD_BALANCE_EXEC.
1275 *
1276 * Balance, ie. select the least loaded group.
1277 *
1278 * Returns the target CPU number, or the same CPU if no balancing is needed.
1279 *
1280 * preempt must be disabled.
1281 */
1282static int sched_balance_self(int cpu, int flag)
1283{
1284 struct task_struct *t = current;
1285 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1286
c96d145e 1287 for_each_domain(cpu, tmp) {
5c45bf27
SS
1288 /*
1289 * If power savings logic is enabled for a domain, stop there.
1290 */
1291 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1292 break;
476d139c
NP
1293 if (tmp->flags & flag)
1294 sd = tmp;
c96d145e 1295 }
476d139c
NP
1296
1297 while (sd) {
1298 cpumask_t span;
1299 struct sched_group *group;
1a848870
SS
1300 int new_cpu, weight;
1301
1302 if (!(sd->flags & flag)) {
1303 sd = sd->child;
1304 continue;
1305 }
476d139c
NP
1306
1307 span = sd->span;
1308 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1309 if (!group) {
1310 sd = sd->child;
1311 continue;
1312 }
476d139c 1313
da5a5522 1314 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1315 if (new_cpu == -1 || new_cpu == cpu) {
1316 /* Now try balancing at a lower domain level of cpu */
1317 sd = sd->child;
1318 continue;
1319 }
476d139c 1320
1a848870 1321 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1322 cpu = new_cpu;
476d139c
NP
1323 sd = NULL;
1324 weight = cpus_weight(span);
1325 for_each_domain(cpu, tmp) {
1326 if (weight <= cpus_weight(tmp->span))
1327 break;
1328 if (tmp->flags & flag)
1329 sd = tmp;
1330 }
1331 /* while loop will break here if sd == NULL */
1332 }
1333
1334 return cpu;
1335}
1336
1337#endif /* CONFIG_SMP */
1da177e4
LT
1338
1339/*
1340 * wake_idle() will wake a task on an idle cpu if task->cpu is
1341 * not idle and an idle cpu is available. The span of cpus to
1342 * search starts with cpus closest then further out as needed,
1343 * so we always favor a closer, idle cpu.
1344 *
1345 * Returns the CPU we should wake onto.
1346 */
1347#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1348static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1349{
1350 cpumask_t tmp;
1351 struct sched_domain *sd;
1352 int i;
1353
1354 if (idle_cpu(cpu))
1355 return cpu;
1356
1357 for_each_domain(cpu, sd) {
1358 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1359 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1360 for_each_cpu_mask(i, tmp) {
1361 if (idle_cpu(i))
1362 return i;
1363 }
1364 }
e0f364f4
NP
1365 else
1366 break;
1da177e4
LT
1367 }
1368 return cpu;
1369}
1370#else
36c8b586 1371static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1372{
1373 return cpu;
1374}
1375#endif
1376
1377/***
1378 * try_to_wake_up - wake up a thread
1379 * @p: the to-be-woken-up thread
1380 * @state: the mask of task states that can be woken
1381 * @sync: do a synchronous wakeup?
1382 *
1383 * Put it on the run-queue if it's not already there. The "current"
1384 * thread is always on the run-queue (except when the actual
1385 * re-schedule is in progress), and as such you're allowed to do
1386 * the simpler "current->state = TASK_RUNNING" to mark yourself
1387 * runnable without the overhead of this.
1388 *
1389 * returns failure only if the task is already active.
1390 */
36c8b586 1391static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1392{
1393 int cpu, this_cpu, success = 0;
1394 unsigned long flags;
1395 long old_state;
70b97a7f 1396 struct rq *rq;
1da177e4 1397#ifdef CONFIG_SMP
7897986b 1398 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1399 unsigned long load, this_load;
1da177e4
LT
1400 int new_cpu;
1401#endif
1402
1403 rq = task_rq_lock(p, &flags);
1404 old_state = p->state;
1405 if (!(old_state & state))
1406 goto out;
1407
1408 if (p->array)
1409 goto out_running;
1410
1411 cpu = task_cpu(p);
1412 this_cpu = smp_processor_id();
1413
1414#ifdef CONFIG_SMP
1415 if (unlikely(task_running(rq, p)))
1416 goto out_activate;
1417
7897986b
NP
1418 new_cpu = cpu;
1419
1da177e4
LT
1420 schedstat_inc(rq, ttwu_cnt);
1421 if (cpu == this_cpu) {
1422 schedstat_inc(rq, ttwu_local);
7897986b
NP
1423 goto out_set_cpu;
1424 }
1425
1426 for_each_domain(this_cpu, sd) {
1427 if (cpu_isset(cpu, sd->span)) {
1428 schedstat_inc(sd, ttwu_wake_remote);
1429 this_sd = sd;
1430 break;
1da177e4
LT
1431 }
1432 }
1da177e4 1433
7897986b 1434 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1435 goto out_set_cpu;
1436
1da177e4 1437 /*
7897986b 1438 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1439 */
7897986b
NP
1440 if (this_sd) {
1441 int idx = this_sd->wake_idx;
1442 unsigned int imbalance;
1da177e4 1443
a3f21bce
NP
1444 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1445
7897986b
NP
1446 load = source_load(cpu, idx);
1447 this_load = target_load(this_cpu, idx);
1da177e4 1448
7897986b
NP
1449 new_cpu = this_cpu; /* Wake to this CPU if we can */
1450
a3f21bce
NP
1451 if (this_sd->flags & SD_WAKE_AFFINE) {
1452 unsigned long tl = this_load;
2dd73a4f
PW
1453 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1454
1da177e4 1455 /*
a3f21bce
NP
1456 * If sync wakeup then subtract the (maximum possible)
1457 * effect of the currently running task from the load
1458 * of the current CPU:
1da177e4 1459 */
a3f21bce 1460 if (sync)
2dd73a4f 1461 tl -= current->load_weight;
a3f21bce
NP
1462
1463 if ((tl <= load &&
2dd73a4f
PW
1464 tl + target_load(cpu, idx) <= tl_per_task) ||
1465 100*(tl + p->load_weight) <= imbalance*load) {
a3f21bce
NP
1466 /*
1467 * This domain has SD_WAKE_AFFINE and
1468 * p is cache cold in this domain, and
1469 * there is no bad imbalance.
1470 */
1471 schedstat_inc(this_sd, ttwu_move_affine);
1472 goto out_set_cpu;
1473 }
1474 }
1475
1476 /*
1477 * Start passive balancing when half the imbalance_pct
1478 * limit is reached.
1479 */
1480 if (this_sd->flags & SD_WAKE_BALANCE) {
1481 if (imbalance*this_load <= 100*load) {
1482 schedstat_inc(this_sd, ttwu_move_balance);
1483 goto out_set_cpu;
1484 }
1da177e4
LT
1485 }
1486 }
1487
1488 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1489out_set_cpu:
1490 new_cpu = wake_idle(new_cpu, p);
1491 if (new_cpu != cpu) {
1492 set_task_cpu(p, new_cpu);
1493 task_rq_unlock(rq, &flags);
1494 /* might preempt at this point */
1495 rq = task_rq_lock(p, &flags);
1496 old_state = p->state;
1497 if (!(old_state & state))
1498 goto out;
1499 if (p->array)
1500 goto out_running;
1501
1502 this_cpu = smp_processor_id();
1503 cpu = task_cpu(p);
1504 }
1505
1506out_activate:
1507#endif /* CONFIG_SMP */
1508 if (old_state == TASK_UNINTERRUPTIBLE) {
1509 rq->nr_uninterruptible--;
1510 /*
1511 * Tasks on involuntary sleep don't earn
1512 * sleep_avg beyond just interactive state.
1513 */
3dee386e 1514 p->sleep_type = SLEEP_NONINTERACTIVE;
e7c38cb4 1515 } else
1da177e4 1516
d79fc0fc
IM
1517 /*
1518 * Tasks that have marked their sleep as noninteractive get
e7c38cb4
CK
1519 * woken up with their sleep average not weighted in an
1520 * interactive way.
d79fc0fc 1521 */
e7c38cb4
CK
1522 if (old_state & TASK_NONINTERACTIVE)
1523 p->sleep_type = SLEEP_NONINTERACTIVE;
1524
1525
1526 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1527 /*
1528 * Sync wakeups (i.e. those types of wakeups where the waker
1529 * has indicated that it will leave the CPU in short order)
1530 * don't trigger a preemption, if the woken up task will run on
1531 * this cpu. (in this case the 'I will reschedule' promise of
1532 * the waker guarantees that the freshly woken up task is going
1533 * to be considered on this CPU.)
1534 */
1da177e4
LT
1535 if (!sync || cpu != this_cpu) {
1536 if (TASK_PREEMPTS_CURR(p, rq))
1537 resched_task(rq->curr);
1538 }
1539 success = 1;
1540
1541out_running:
1542 p->state = TASK_RUNNING;
1543out:
1544 task_rq_unlock(rq, &flags);
1545
1546 return success;
1547}
1548
36c8b586 1549int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1550{
1551 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1552 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1553}
1da177e4
LT
1554EXPORT_SYMBOL(wake_up_process);
1555
36c8b586 1556int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1557{
1558 return try_to_wake_up(p, state, 0);
1559}
1560
1da177e4
LT
1561/*
1562 * Perform scheduler related setup for a newly forked process p.
1563 * p is forked by current.
1564 */
36c8b586 1565void fastcall sched_fork(struct task_struct *p, int clone_flags)
1da177e4 1566{
476d139c
NP
1567 int cpu = get_cpu();
1568
1569#ifdef CONFIG_SMP
1570 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1571#endif
1572 set_task_cpu(p, cpu);
1573
1da177e4
LT
1574 /*
1575 * We mark the process as running here, but have not actually
1576 * inserted it onto the runqueue yet. This guarantees that
1577 * nobody will actually run it, and a signal or other external
1578 * event cannot wake it up and insert it on the runqueue either.
1579 */
1580 p->state = TASK_RUNNING;
b29739f9
IM
1581
1582 /*
1583 * Make sure we do not leak PI boosting priority to the child:
1584 */
1585 p->prio = current->normal_prio;
1586
1da177e4
LT
1587 INIT_LIST_HEAD(&p->run_list);
1588 p->array = NULL;
52f17b6c
CS
1589#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1590 if (unlikely(sched_info_on()))
1591 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1592#endif
d6077cb8 1593#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1594 p->oncpu = 0;
1595#endif
1da177e4 1596#ifdef CONFIG_PREEMPT
4866cde0 1597 /* Want to start with kernel preemption disabled. */
a1261f54 1598 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1599#endif
1600 /*
1601 * Share the timeslice between parent and child, thus the
1602 * total amount of pending timeslices in the system doesn't change,
1603 * resulting in more scheduling fairness.
1604 */
1605 local_irq_disable();
1606 p->time_slice = (current->time_slice + 1) >> 1;
1607 /*
1608 * The remainder of the first timeslice might be recovered by
1609 * the parent if the child exits early enough.
1610 */
1611 p->first_time_slice = 1;
1612 current->time_slice >>= 1;
1613 p->timestamp = sched_clock();
1614 if (unlikely(!current->time_slice)) {
1615 /*
1616 * This case is rare, it happens when the parent has only
1617 * a single jiffy left from its timeslice. Taking the
1618 * runqueue lock is not a problem.
1619 */
1620 current->time_slice = 1;
1da177e4 1621 scheduler_tick();
476d139c
NP
1622 }
1623 local_irq_enable();
1624 put_cpu();
1da177e4
LT
1625}
1626
1627/*
1628 * wake_up_new_task - wake up a newly created task for the first time.
1629 *
1630 * This function will do some initial scheduler statistics housekeeping
1631 * that must be done for every newly created context, then puts the task
1632 * on the runqueue and wakes it.
1633 */
36c8b586 1634void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4 1635{
70b97a7f 1636 struct rq *rq, *this_rq;
1da177e4
LT
1637 unsigned long flags;
1638 int this_cpu, cpu;
1da177e4
LT
1639
1640 rq = task_rq_lock(p, &flags);
147cbb4b 1641 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1642 this_cpu = smp_processor_id();
147cbb4b 1643 cpu = task_cpu(p);
1da177e4 1644
1da177e4
LT
1645 /*
1646 * We decrease the sleep average of forking parents
1647 * and children as well, to keep max-interactive tasks
1648 * from forking tasks that are max-interactive. The parent
1649 * (current) is done further down, under its lock.
1650 */
1651 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1652 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1653
1654 p->prio = effective_prio(p);
1655
1656 if (likely(cpu == this_cpu)) {
1657 if (!(clone_flags & CLONE_VM)) {
1658 /*
1659 * The VM isn't cloned, so we're in a good position to
1660 * do child-runs-first in anticipation of an exec. This
1661 * usually avoids a lot of COW overhead.
1662 */
1663 if (unlikely(!current->array))
1664 __activate_task(p, rq);
1665 else {
1666 p->prio = current->prio;
b29739f9 1667 p->normal_prio = current->normal_prio;
1da177e4
LT
1668 list_add_tail(&p->run_list, &current->run_list);
1669 p->array = current->array;
1670 p->array->nr_active++;
2dd73a4f 1671 inc_nr_running(p, rq);
1da177e4
LT
1672 }
1673 set_need_resched();
1674 } else
1675 /* Run child last */
1676 __activate_task(p, rq);
1677 /*
1678 * We skip the following code due to cpu == this_cpu
1679 *
1680 * task_rq_unlock(rq, &flags);
1681 * this_rq = task_rq_lock(current, &flags);
1682 */
1683 this_rq = rq;
1684 } else {
1685 this_rq = cpu_rq(this_cpu);
1686
1687 /*
1688 * Not the local CPU - must adjust timestamp. This should
1689 * get optimised away in the !CONFIG_SMP case.
1690 */
1691 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1692 + rq->timestamp_last_tick;
1693 __activate_task(p, rq);
1694 if (TASK_PREEMPTS_CURR(p, rq))
1695 resched_task(rq->curr);
1696
1697 /*
1698 * Parent and child are on different CPUs, now get the
1699 * parent runqueue to update the parent's ->sleep_avg:
1700 */
1701 task_rq_unlock(rq, &flags);
1702 this_rq = task_rq_lock(current, &flags);
1703 }
1704 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1705 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1706 task_rq_unlock(this_rq, &flags);
1707}
1708
1709/*
1710 * Potentially available exiting-child timeslices are
1711 * retrieved here - this way the parent does not get
1712 * penalized for creating too many threads.
1713 *
1714 * (this cannot be used to 'generate' timeslices
1715 * artificially, because any timeslice recovered here
1716 * was given away by the parent in the first place.)
1717 */
36c8b586 1718void fastcall sched_exit(struct task_struct *p)
1da177e4
LT
1719{
1720 unsigned long flags;
70b97a7f 1721 struct rq *rq;
1da177e4
LT
1722
1723 /*
1724 * If the child was a (relative-) CPU hog then decrease
1725 * the sleep_avg of the parent as well.
1726 */
1727 rq = task_rq_lock(p->parent, &flags);
889dfafe 1728 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1729 p->parent->time_slice += p->time_slice;
1730 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1731 p->parent->time_slice = task_timeslice(p);
1732 }
1733 if (p->sleep_avg < p->parent->sleep_avg)
1734 p->parent->sleep_avg = p->parent->sleep_avg /
1735 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1736 (EXIT_WEIGHT + 1);
1737 task_rq_unlock(rq, &flags);
1738}
1739
4866cde0
NP
1740/**
1741 * prepare_task_switch - prepare to switch tasks
1742 * @rq: the runqueue preparing to switch
1743 * @next: the task we are going to switch to.
1744 *
1745 * This is called with the rq lock held and interrupts off. It must
1746 * be paired with a subsequent finish_task_switch after the context
1747 * switch.
1748 *
1749 * prepare_task_switch sets up locking and calls architecture specific
1750 * hooks.
1751 */
70b97a7f 1752static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1753{
1754 prepare_lock_switch(rq, next);
1755 prepare_arch_switch(next);
1756}
1757
1da177e4
LT
1758/**
1759 * finish_task_switch - clean up after a task-switch
344babaa 1760 * @rq: runqueue associated with task-switch
1da177e4
LT
1761 * @prev: the thread we just switched away from.
1762 *
4866cde0
NP
1763 * finish_task_switch must be called after the context switch, paired
1764 * with a prepare_task_switch call before the context switch.
1765 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1766 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1767 *
1768 * Note that we may have delayed dropping an mm in context_switch(). If
1769 * so, we finish that here outside of the runqueue lock. (Doing it
1770 * with the lock held can cause deadlocks; see schedule() for
1771 * details.)
1772 */
70b97a7f 1773static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1774 __releases(rq->lock)
1775{
1da177e4 1776 struct mm_struct *mm = rq->prev_mm;
55a101f8 1777 long prev_state;
1da177e4
LT
1778
1779 rq->prev_mm = NULL;
1780
1781 /*
1782 * A task struct has one reference for the use as "current".
c394cc9f 1783 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1784 * schedule one last time. The schedule call will never return, and
1785 * the scheduled task must drop that reference.
c394cc9f 1786 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1787 * still held, otherwise prev could be scheduled on another cpu, die
1788 * there before we look at prev->state, and then the reference would
1789 * be dropped twice.
1790 * Manfred Spraul <manfred@colorfullife.com>
1791 */
55a101f8 1792 prev_state = prev->state;
4866cde0
NP
1793 finish_arch_switch(prev);
1794 finish_lock_switch(rq, prev);
1da177e4
LT
1795 if (mm)
1796 mmdrop(mm);
c394cc9f 1797 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1798 /*
1799 * Remove function-return probe instances associated with this
1800 * task and put them back on the free list.
1801 */
1802 kprobe_flush_task(prev);
1da177e4 1803 put_task_struct(prev);
c6fd91f0 1804 }
1da177e4
LT
1805}
1806
1807/**
1808 * schedule_tail - first thing a freshly forked thread must call.
1809 * @prev: the thread we just switched away from.
1810 */
36c8b586 1811asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1812 __releases(rq->lock)
1813{
70b97a7f
IM
1814 struct rq *rq = this_rq();
1815
4866cde0
NP
1816 finish_task_switch(rq, prev);
1817#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1818 /* In this case, finish_task_switch does not reenable preemption */
1819 preempt_enable();
1820#endif
1da177e4
LT
1821 if (current->set_child_tid)
1822 put_user(current->pid, current->set_child_tid);
1823}
1824
1825/*
1826 * context_switch - switch to the new MM and the new
1827 * thread's register state.
1828 */
36c8b586 1829static inline struct task_struct *
70b97a7f 1830context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1831 struct task_struct *next)
1da177e4
LT
1832{
1833 struct mm_struct *mm = next->mm;
1834 struct mm_struct *oldmm = prev->active_mm;
1835
beed33a8 1836 if (!mm) {
1da177e4
LT
1837 next->active_mm = oldmm;
1838 atomic_inc(&oldmm->mm_count);
1839 enter_lazy_tlb(oldmm, next);
1840 } else
1841 switch_mm(oldmm, mm, next);
1842
beed33a8 1843 if (!prev->mm) {
1da177e4
LT
1844 prev->active_mm = NULL;
1845 WARN_ON(rq->prev_mm);
1846 rq->prev_mm = oldmm;
1847 }
3a5f5e48
IM
1848 /*
1849 * Since the runqueue lock will be released by the next
1850 * task (which is an invalid locking op but in the case
1851 * of the scheduler it's an obvious special-case), so we
1852 * do an early lockdep release here:
1853 */
1854#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1855 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1856#endif
1da177e4
LT
1857
1858 /* Here we just switch the register state and the stack. */
1859 switch_to(prev, next, prev);
1860
1861 return prev;
1862}
1863
1864/*
1865 * nr_running, nr_uninterruptible and nr_context_switches:
1866 *
1867 * externally visible scheduler statistics: current number of runnable
1868 * threads, current number of uninterruptible-sleeping threads, total
1869 * number of context switches performed since bootup.
1870 */
1871unsigned long nr_running(void)
1872{
1873 unsigned long i, sum = 0;
1874
1875 for_each_online_cpu(i)
1876 sum += cpu_rq(i)->nr_running;
1877
1878 return sum;
1879}
1880
1881unsigned long nr_uninterruptible(void)
1882{
1883 unsigned long i, sum = 0;
1884
0a945022 1885 for_each_possible_cpu(i)
1da177e4
LT
1886 sum += cpu_rq(i)->nr_uninterruptible;
1887
1888 /*
1889 * Since we read the counters lockless, it might be slightly
1890 * inaccurate. Do not allow it to go below zero though:
1891 */
1892 if (unlikely((long)sum < 0))
1893 sum = 0;
1894
1895 return sum;
1896}
1897
1898unsigned long long nr_context_switches(void)
1899{
cc94abfc
SR
1900 int i;
1901 unsigned long long sum = 0;
1da177e4 1902
0a945022 1903 for_each_possible_cpu(i)
1da177e4
LT
1904 sum += cpu_rq(i)->nr_switches;
1905
1906 return sum;
1907}
1908
1909unsigned long nr_iowait(void)
1910{
1911 unsigned long i, sum = 0;
1912
0a945022 1913 for_each_possible_cpu(i)
1da177e4
LT
1914 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1915
1916 return sum;
1917}
1918
db1b1fef
JS
1919unsigned long nr_active(void)
1920{
1921 unsigned long i, running = 0, uninterruptible = 0;
1922
1923 for_each_online_cpu(i) {
1924 running += cpu_rq(i)->nr_running;
1925 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1926 }
1927
1928 if (unlikely((long)uninterruptible < 0))
1929 uninterruptible = 0;
1930
1931 return running + uninterruptible;
1932}
1933
1da177e4
LT
1934#ifdef CONFIG_SMP
1935
48f24c4d
IM
1936/*
1937 * Is this task likely cache-hot:
1938 */
1939static inline int
1940task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1941{
1942 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1943}
1944
1da177e4
LT
1945/*
1946 * double_rq_lock - safely lock two runqueues
1947 *
1948 * Note this does not disable interrupts like task_rq_lock,
1949 * you need to do so manually before calling.
1950 */
70b97a7f 1951static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1952 __acquires(rq1->lock)
1953 __acquires(rq2->lock)
1954{
054b9108 1955 BUG_ON(!irqs_disabled());
1da177e4
LT
1956 if (rq1 == rq2) {
1957 spin_lock(&rq1->lock);
1958 __acquire(rq2->lock); /* Fake it out ;) */
1959 } else {
c96d145e 1960 if (rq1 < rq2) {
1da177e4
LT
1961 spin_lock(&rq1->lock);
1962 spin_lock(&rq2->lock);
1963 } else {
1964 spin_lock(&rq2->lock);
1965 spin_lock(&rq1->lock);
1966 }
1967 }
1968}
1969
1970/*
1971 * double_rq_unlock - safely unlock two runqueues
1972 *
1973 * Note this does not restore interrupts like task_rq_unlock,
1974 * you need to do so manually after calling.
1975 */
70b97a7f 1976static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1977 __releases(rq1->lock)
1978 __releases(rq2->lock)
1979{
1980 spin_unlock(&rq1->lock);
1981 if (rq1 != rq2)
1982 spin_unlock(&rq2->lock);
1983 else
1984 __release(rq2->lock);
1985}
1986
1987/*
1988 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1989 */
70b97a7f 1990static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
1991 __releases(this_rq->lock)
1992 __acquires(busiest->lock)
1993 __acquires(this_rq->lock)
1994{
054b9108
KK
1995 if (unlikely(!irqs_disabled())) {
1996 /* printk() doesn't work good under rq->lock */
1997 spin_unlock(&this_rq->lock);
1998 BUG_ON(1);
1999 }
1da177e4 2000 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2001 if (busiest < this_rq) {
1da177e4
LT
2002 spin_unlock(&this_rq->lock);
2003 spin_lock(&busiest->lock);
2004 spin_lock(&this_rq->lock);
2005 } else
2006 spin_lock(&busiest->lock);
2007 }
2008}
2009
1da177e4
LT
2010/*
2011 * If dest_cpu is allowed for this process, migrate the task to it.
2012 * This is accomplished by forcing the cpu_allowed mask to only
2013 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2014 * the cpu_allowed mask is restored.
2015 */
36c8b586 2016static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2017{
70b97a7f 2018 struct migration_req req;
1da177e4 2019 unsigned long flags;
70b97a7f 2020 struct rq *rq;
1da177e4
LT
2021
2022 rq = task_rq_lock(p, &flags);
2023 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2024 || unlikely(cpu_is_offline(dest_cpu)))
2025 goto out;
2026
2027 /* force the process onto the specified CPU */
2028 if (migrate_task(p, dest_cpu, &req)) {
2029 /* Need to wait for migration thread (might exit: take ref). */
2030 struct task_struct *mt = rq->migration_thread;
36c8b586 2031
1da177e4
LT
2032 get_task_struct(mt);
2033 task_rq_unlock(rq, &flags);
2034 wake_up_process(mt);
2035 put_task_struct(mt);
2036 wait_for_completion(&req.done);
36c8b586 2037
1da177e4
LT
2038 return;
2039 }
2040out:
2041 task_rq_unlock(rq, &flags);
2042}
2043
2044/*
476d139c
NP
2045 * sched_exec - execve() is a valuable balancing opportunity, because at
2046 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2047 */
2048void sched_exec(void)
2049{
1da177e4 2050 int new_cpu, this_cpu = get_cpu();
476d139c 2051 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2052 put_cpu();
476d139c
NP
2053 if (new_cpu != this_cpu)
2054 sched_migrate_task(current, new_cpu);
1da177e4
LT
2055}
2056
2057/*
2058 * pull_task - move a task from a remote runqueue to the local runqueue.
2059 * Both runqueues must be locked.
2060 */
70b97a7f
IM
2061static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2062 struct task_struct *p, struct rq *this_rq,
2063 struct prio_array *this_array, int this_cpu)
1da177e4
LT
2064{
2065 dequeue_task(p, src_array);
2dd73a4f 2066 dec_nr_running(p, src_rq);
1da177e4 2067 set_task_cpu(p, this_cpu);
2dd73a4f 2068 inc_nr_running(p, this_rq);
1da177e4
LT
2069 enqueue_task(p, this_array);
2070 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
2071 + this_rq->timestamp_last_tick;
2072 /*
2073 * Note that idle threads have a prio of MAX_PRIO, for this test
2074 * to be always true for them.
2075 */
2076 if (TASK_PREEMPTS_CURR(p, this_rq))
2077 resched_task(this_rq->curr);
2078}
2079
2080/*
2081 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2082 */
858119e1 2083static
70b97a7f 2084int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
95cdf3b7
IM
2085 struct sched_domain *sd, enum idle_type idle,
2086 int *all_pinned)
1da177e4
LT
2087{
2088 /*
2089 * We do not migrate tasks that are:
2090 * 1) running (obviously), or
2091 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2092 * 3) are cache-hot on their current CPU.
2093 */
1da177e4
LT
2094 if (!cpu_isset(this_cpu, p->cpus_allowed))
2095 return 0;
81026794
NP
2096 *all_pinned = 0;
2097
2098 if (task_running(rq, p))
2099 return 0;
1da177e4
LT
2100
2101 /*
2102 * Aggressive migration if:
cafb20c1 2103 * 1) task is cache cold, or
1da177e4
LT
2104 * 2) too many balance attempts have failed.
2105 */
2106
cafb20c1 2107 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2108 return 1;
2109
2110 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 2111 return 0;
1da177e4
LT
2112 return 1;
2113}
2114
615052dc 2115#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
48f24c4d 2116
1da177e4 2117/*
2dd73a4f
PW
2118 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2119 * load from busiest to this_rq, as part of a balancing operation within
2120 * "domain". Returns the number of tasks moved.
1da177e4
LT
2121 *
2122 * Called with both runqueues locked.
2123 */
70b97a7f 2124static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f
PW
2125 unsigned long max_nr_move, unsigned long max_load_move,
2126 struct sched_domain *sd, enum idle_type idle,
2127 int *all_pinned)
1da177e4 2128{
48f24c4d
IM
2129 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2130 best_prio_seen, skip_for_load;
70b97a7f 2131 struct prio_array *array, *dst_array;
1da177e4 2132 struct list_head *head, *curr;
36c8b586 2133 struct task_struct *tmp;
2dd73a4f 2134 long rem_load_move;
1da177e4 2135
2dd73a4f 2136 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2137 goto out;
2138
2dd73a4f 2139 rem_load_move = max_load_move;
81026794 2140 pinned = 1;
615052dc 2141 this_best_prio = rq_best_prio(this_rq);
48f24c4d 2142 best_prio = rq_best_prio(busiest);
615052dc
PW
2143 /*
2144 * Enable handling of the case where there is more than one task
2145 * with the best priority. If the current running task is one
48f24c4d 2146 * of those with prio==best_prio we know it won't be moved
615052dc
PW
2147 * and therefore it's safe to override the skip (based on load) of
2148 * any task we find with that prio.
2149 */
48f24c4d 2150 best_prio_seen = best_prio == busiest->curr->prio;
81026794 2151
1da177e4
LT
2152 /*
2153 * We first consider expired tasks. Those will likely not be
2154 * executed in the near future, and they are most likely to
2155 * be cache-cold, thus switching CPUs has the least effect
2156 * on them.
2157 */
2158 if (busiest->expired->nr_active) {
2159 array = busiest->expired;
2160 dst_array = this_rq->expired;
2161 } else {
2162 array = busiest->active;
2163 dst_array = this_rq->active;
2164 }
2165
2166new_array:
2167 /* Start searching at priority 0: */
2168 idx = 0;
2169skip_bitmap:
2170 if (!idx)
2171 idx = sched_find_first_bit(array->bitmap);
2172 else
2173 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2174 if (idx >= MAX_PRIO) {
2175 if (array == busiest->expired && busiest->active->nr_active) {
2176 array = busiest->active;
2177 dst_array = this_rq->active;
2178 goto new_array;
2179 }
2180 goto out;
2181 }
2182
2183 head = array->queue + idx;
2184 curr = head->prev;
2185skip_queue:
36c8b586 2186 tmp = list_entry(curr, struct task_struct, run_list);
1da177e4
LT
2187
2188 curr = curr->prev;
2189
50ddd969
PW
2190 /*
2191 * To help distribute high priority tasks accross CPUs we don't
2192 * skip a task if it will be the highest priority task (i.e. smallest
2193 * prio value) on its new queue regardless of its load weight
2194 */
615052dc
PW
2195 skip_for_load = tmp->load_weight > rem_load_move;
2196 if (skip_for_load && idx < this_best_prio)
48f24c4d 2197 skip_for_load = !best_prio_seen && idx == best_prio;
615052dc 2198 if (skip_for_load ||
2dd73a4f 2199 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d
IM
2200
2201 best_prio_seen |= idx == best_prio;
1da177e4
LT
2202 if (curr != head)
2203 goto skip_queue;
2204 idx++;
2205 goto skip_bitmap;
2206 }
2207
2208#ifdef CONFIG_SCHEDSTATS
2209 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2210 schedstat_inc(sd, lb_hot_gained[idle]);
2211#endif
2212
2213 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2214 pulled++;
2dd73a4f 2215 rem_load_move -= tmp->load_weight;
1da177e4 2216
2dd73a4f
PW
2217 /*
2218 * We only want to steal up to the prescribed number of tasks
2219 * and the prescribed amount of weighted load.
2220 */
2221 if (pulled < max_nr_move && rem_load_move > 0) {
615052dc
PW
2222 if (idx < this_best_prio)
2223 this_best_prio = idx;
1da177e4
LT
2224 if (curr != head)
2225 goto skip_queue;
2226 idx++;
2227 goto skip_bitmap;
2228 }
2229out:
2230 /*
2231 * Right now, this is the only place pull_task() is called,
2232 * so we can safely collect pull_task() stats here rather than
2233 * inside pull_task().
2234 */
2235 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2236
2237 if (all_pinned)
2238 *all_pinned = pinned;
1da177e4
LT
2239 return pulled;
2240}
2241
2242/*
2243 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2244 * domain. It calculates and returns the amount of weighted load which
2245 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2246 */
2247static struct sched_group *
2248find_busiest_group(struct sched_domain *sd, int this_cpu,
0a2966b4
CL
2249 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2250 cpumask_t *cpus)
1da177e4
LT
2251{
2252 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2253 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2254 unsigned long max_pull;
2dd73a4f
PW
2255 unsigned long busiest_load_per_task, busiest_nr_running;
2256 unsigned long this_load_per_task, this_nr_running;
7897986b 2257 int load_idx;
5c45bf27
SS
2258#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2259 int power_savings_balance = 1;
2260 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2261 unsigned long min_nr_running = ULONG_MAX;
2262 struct sched_group *group_min = NULL, *group_leader = NULL;
2263#endif
1da177e4
LT
2264
2265 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2266 busiest_load_per_task = busiest_nr_running = 0;
2267 this_load_per_task = this_nr_running = 0;
7897986b
NP
2268 if (idle == NOT_IDLE)
2269 load_idx = sd->busy_idx;
2270 else if (idle == NEWLY_IDLE)
2271 load_idx = sd->newidle_idx;
2272 else
2273 load_idx = sd->idle_idx;
1da177e4
LT
2274
2275 do {
5c45bf27 2276 unsigned long load, group_capacity;
1da177e4
LT
2277 int local_group;
2278 int i;
2dd73a4f 2279 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2280
2281 local_group = cpu_isset(this_cpu, group->cpumask);
2282
2283 /* Tally up the load of all CPUs in the group */
2dd73a4f 2284 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2285
2286 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2287 struct rq *rq;
2288
2289 if (!cpu_isset(i, *cpus))
2290 continue;
2291
2292 rq = cpu_rq(i);
2dd73a4f 2293
5969fe06
NP
2294 if (*sd_idle && !idle_cpu(i))
2295 *sd_idle = 0;
2296
1da177e4
LT
2297 /* Bias balancing toward cpus of our domain */
2298 if (local_group)
a2000572 2299 load = target_load(i, load_idx);
1da177e4 2300 else
a2000572 2301 load = source_load(i, load_idx);
1da177e4
LT
2302
2303 avg_load += load;
2dd73a4f
PW
2304 sum_nr_running += rq->nr_running;
2305 sum_weighted_load += rq->raw_weighted_load;
1da177e4
LT
2306 }
2307
2308 total_load += avg_load;
2309 total_pwr += group->cpu_power;
2310
2311 /* Adjust by relative CPU power of the group */
2312 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2313
5c45bf27
SS
2314 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2315
1da177e4
LT
2316 if (local_group) {
2317 this_load = avg_load;
2318 this = group;
2dd73a4f
PW
2319 this_nr_running = sum_nr_running;
2320 this_load_per_task = sum_weighted_load;
2321 } else if (avg_load > max_load &&
5c45bf27 2322 sum_nr_running > group_capacity) {
1da177e4
LT
2323 max_load = avg_load;
2324 busiest = group;
2dd73a4f
PW
2325 busiest_nr_running = sum_nr_running;
2326 busiest_load_per_task = sum_weighted_load;
1da177e4 2327 }
5c45bf27
SS
2328
2329#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2330 /*
2331 * Busy processors will not participate in power savings
2332 * balance.
2333 */
2334 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2335 goto group_next;
2336
2337 /*
2338 * If the local group is idle or completely loaded
2339 * no need to do power savings balance at this domain
2340 */
2341 if (local_group && (this_nr_running >= group_capacity ||
2342 !this_nr_running))
2343 power_savings_balance = 0;
2344
2345 /*
2346 * If a group is already running at full capacity or idle,
2347 * don't include that group in power savings calculations
2348 */
2349 if (!power_savings_balance || sum_nr_running >= group_capacity
2350 || !sum_nr_running)
2351 goto group_next;
2352
2353 /*
2354 * Calculate the group which has the least non-idle load.
2355 * This is the group from where we need to pick up the load
2356 * for saving power
2357 */
2358 if ((sum_nr_running < min_nr_running) ||
2359 (sum_nr_running == min_nr_running &&
2360 first_cpu(group->cpumask) <
2361 first_cpu(group_min->cpumask))) {
2362 group_min = group;
2363 min_nr_running = sum_nr_running;
2364 min_load_per_task = sum_weighted_load /
2365 sum_nr_running;
2366 }
2367
2368 /*
2369 * Calculate the group which is almost near its
2370 * capacity but still has some space to pick up some load
2371 * from other group and save more power
2372 */
48f24c4d 2373 if (sum_nr_running <= group_capacity - 1) {
5c45bf27
SS
2374 if (sum_nr_running > leader_nr_running ||
2375 (sum_nr_running == leader_nr_running &&
2376 first_cpu(group->cpumask) >
2377 first_cpu(group_leader->cpumask))) {
2378 group_leader = group;
2379 leader_nr_running = sum_nr_running;
2380 }
48f24c4d 2381 }
5c45bf27
SS
2382group_next:
2383#endif
1da177e4
LT
2384 group = group->next;
2385 } while (group != sd->groups);
2386
2dd73a4f 2387 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2388 goto out_balanced;
2389
2390 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2391
2392 if (this_load >= avg_load ||
2393 100*max_load <= sd->imbalance_pct*this_load)
2394 goto out_balanced;
2395
2dd73a4f 2396 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2397 /*
2398 * We're trying to get all the cpus to the average_load, so we don't
2399 * want to push ourselves above the average load, nor do we wish to
2400 * reduce the max loaded cpu below the average load, as either of these
2401 * actions would just result in more rebalancing later, and ping-pong
2402 * tasks around. Thus we look for the minimum possible imbalance.
2403 * Negative imbalances (*we* are more loaded than anyone else) will
2404 * be counted as no imbalance for these purposes -- we can't fix that
2405 * by pulling tasks to us. Be careful of negative numbers as they'll
2406 * appear as very large values with unsigned longs.
2407 */
2dd73a4f
PW
2408 if (max_load <= busiest_load_per_task)
2409 goto out_balanced;
2410
2411 /*
2412 * In the presence of smp nice balancing, certain scenarios can have
2413 * max load less than avg load(as we skip the groups at or below
2414 * its cpu_power, while calculating max_load..)
2415 */
2416 if (max_load < avg_load) {
2417 *imbalance = 0;
2418 goto small_imbalance;
2419 }
0c117f1b
SS
2420
2421 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2422 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2423
1da177e4 2424 /* How much load to actually move to equalise the imbalance */
0c117f1b 2425 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2426 (avg_load - this_load) * this->cpu_power)
2427 / SCHED_LOAD_SCALE;
2428
2dd73a4f
PW
2429 /*
2430 * if *imbalance is less than the average load per runnable task
2431 * there is no gaurantee that any tasks will be moved so we'll have
2432 * a think about bumping its value to force at least one task to be
2433 * moved
2434 */
2435 if (*imbalance < busiest_load_per_task) {
48f24c4d 2436 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2437 unsigned int imbn;
2438
2439small_imbalance:
2440 pwr_move = pwr_now = 0;
2441 imbn = 2;
2442 if (this_nr_running) {
2443 this_load_per_task /= this_nr_running;
2444 if (busiest_load_per_task > this_load_per_task)
2445 imbn = 1;
2446 } else
2447 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2448
2dd73a4f
PW
2449 if (max_load - this_load >= busiest_load_per_task * imbn) {
2450 *imbalance = busiest_load_per_task;
1da177e4
LT
2451 return busiest;
2452 }
2453
2454 /*
2455 * OK, we don't have enough imbalance to justify moving tasks,
2456 * however we may be able to increase total CPU power used by
2457 * moving them.
2458 */
2459
2dd73a4f
PW
2460 pwr_now += busiest->cpu_power *
2461 min(busiest_load_per_task, max_load);
2462 pwr_now += this->cpu_power *
2463 min(this_load_per_task, this_load);
1da177e4
LT
2464 pwr_now /= SCHED_LOAD_SCALE;
2465
2466 /* Amount of load we'd subtract */
2dd73a4f 2467 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
1da177e4 2468 if (max_load > tmp)
2dd73a4f
PW
2469 pwr_move += busiest->cpu_power *
2470 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2471
2472 /* Amount of load we'd add */
2473 if (max_load*busiest->cpu_power <
2dd73a4f 2474 busiest_load_per_task*SCHED_LOAD_SCALE)
1da177e4
LT
2475 tmp = max_load*busiest->cpu_power/this->cpu_power;
2476 else
2dd73a4f
PW
2477 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2478 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
1da177e4
LT
2479 pwr_move /= SCHED_LOAD_SCALE;
2480
2481 /* Move if we gain throughput */
2482 if (pwr_move <= pwr_now)
2483 goto out_balanced;
2484
2dd73a4f 2485 *imbalance = busiest_load_per_task;
1da177e4
LT
2486 }
2487
1da177e4
LT
2488 return busiest;
2489
2490out_balanced:
5c45bf27
SS
2491#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2492 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2493 goto ret;
1da177e4 2494
5c45bf27
SS
2495 if (this == group_leader && group_leader != group_min) {
2496 *imbalance = min_load_per_task;
2497 return group_min;
2498 }
2499ret:
2500#endif
1da177e4
LT
2501 *imbalance = 0;
2502 return NULL;
2503}
2504
2505/*
2506 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2507 */
70b97a7f 2508static struct rq *
48f24c4d 2509find_busiest_queue(struct sched_group *group, enum idle_type idle,
0a2966b4 2510 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2511{
70b97a7f 2512 struct rq *busiest = NULL, *rq;
2dd73a4f 2513 unsigned long max_load = 0;
1da177e4
LT
2514 int i;
2515
2516 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2517
2518 if (!cpu_isset(i, *cpus))
2519 continue;
2520
48f24c4d 2521 rq = cpu_rq(i);
2dd73a4f 2522
48f24c4d 2523 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2dd73a4f 2524 continue;
1da177e4 2525
48f24c4d
IM
2526 if (rq->raw_weighted_load > max_load) {
2527 max_load = rq->raw_weighted_load;
2528 busiest = rq;
1da177e4
LT
2529 }
2530 }
2531
2532 return busiest;
2533}
2534
77391d71
NP
2535/*
2536 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2537 * so long as it is large enough.
2538 */
2539#define MAX_PINNED_INTERVAL 512
2540
48f24c4d
IM
2541static inline unsigned long minus_1_or_zero(unsigned long n)
2542{
2543 return n > 0 ? n - 1 : 0;
2544}
2545
1da177e4
LT
2546/*
2547 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2548 * tasks if there is an imbalance.
1da177e4 2549 */
70b97a7f 2550static int load_balance(int this_cpu, struct rq *this_rq,
1da177e4
LT
2551 struct sched_domain *sd, enum idle_type idle)
2552{
48f24c4d 2553 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2554 struct sched_group *group;
1da177e4 2555 unsigned long imbalance;
70b97a7f 2556 struct rq *busiest;
0a2966b4 2557 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2558 unsigned long flags;
5969fe06 2559
89c4710e
SS
2560 /*
2561 * When power savings policy is enabled for the parent domain, idle
2562 * sibling can pick up load irrespective of busy siblings. In this case,
2563 * let the state of idle sibling percolate up as IDLE, instead of
2564 * portraying it as NOT_IDLE.
2565 */
5c45bf27 2566 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2567 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2568 sd_idle = 1;
1da177e4 2569
1da177e4
LT
2570 schedstat_inc(sd, lb_cnt[idle]);
2571
0a2966b4
CL
2572redo:
2573 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2574 &cpus);
1da177e4
LT
2575 if (!group) {
2576 schedstat_inc(sd, lb_nobusyg[idle]);
2577 goto out_balanced;
2578 }
2579
0a2966b4 2580 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2581 if (!busiest) {
2582 schedstat_inc(sd, lb_nobusyq[idle]);
2583 goto out_balanced;
2584 }
2585
db935dbd 2586 BUG_ON(busiest == this_rq);
1da177e4
LT
2587
2588 schedstat_add(sd, lb_imbalance[idle], imbalance);
2589
2590 nr_moved = 0;
2591 if (busiest->nr_running > 1) {
2592 /*
2593 * Attempt to move tasks. If find_busiest_group has found
2594 * an imbalance but busiest->nr_running <= 1, the group is
2595 * still unbalanced. nr_moved simply stays zero, so it is
2596 * correctly treated as an imbalance.
2597 */
fe2eea3f 2598 local_irq_save(flags);
e17224bf 2599 double_rq_lock(this_rq, busiest);
1da177e4 2600 nr_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d
IM
2601 minus_1_or_zero(busiest->nr_running),
2602 imbalance, sd, idle, &all_pinned);
e17224bf 2603 double_rq_unlock(this_rq, busiest);
fe2eea3f 2604 local_irq_restore(flags);
81026794
NP
2605
2606 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2607 if (unlikely(all_pinned)) {
2608 cpu_clear(cpu_of(busiest), cpus);
2609 if (!cpus_empty(cpus))
2610 goto redo;
81026794 2611 goto out_balanced;
0a2966b4 2612 }
1da177e4 2613 }
81026794 2614
1da177e4
LT
2615 if (!nr_moved) {
2616 schedstat_inc(sd, lb_failed[idle]);
2617 sd->nr_balance_failed++;
2618
2619 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2620
fe2eea3f 2621 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2622
2623 /* don't kick the migration_thread, if the curr
2624 * task on busiest cpu can't be moved to this_cpu
2625 */
2626 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2627 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2628 all_pinned = 1;
2629 goto out_one_pinned;
2630 }
2631
1da177e4
LT
2632 if (!busiest->active_balance) {
2633 busiest->active_balance = 1;
2634 busiest->push_cpu = this_cpu;
81026794 2635 active_balance = 1;
1da177e4 2636 }
fe2eea3f 2637 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2638 if (active_balance)
1da177e4
LT
2639 wake_up_process(busiest->migration_thread);
2640
2641 /*
2642 * We've kicked active balancing, reset the failure
2643 * counter.
2644 */
39507451 2645 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2646 }
81026794 2647 } else
1da177e4
LT
2648 sd->nr_balance_failed = 0;
2649
81026794 2650 if (likely(!active_balance)) {
1da177e4
LT
2651 /* We were unbalanced, so reset the balancing interval */
2652 sd->balance_interval = sd->min_interval;
81026794
NP
2653 } else {
2654 /*
2655 * If we've begun active balancing, start to back off. This
2656 * case may not be covered by the all_pinned logic if there
2657 * is only 1 task on the busy runqueue (because we don't call
2658 * move_tasks).
2659 */
2660 if (sd->balance_interval < sd->max_interval)
2661 sd->balance_interval *= 2;
1da177e4
LT
2662 }
2663
5c45bf27 2664 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2665 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2666 return -1;
1da177e4
LT
2667 return nr_moved;
2668
2669out_balanced:
1da177e4
LT
2670 schedstat_inc(sd, lb_balanced[idle]);
2671
16cfb1c0 2672 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2673
2674out_one_pinned:
1da177e4 2675 /* tune up the balancing interval */
77391d71
NP
2676 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2677 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2678 sd->balance_interval *= 2;
2679
48f24c4d 2680 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2681 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2682 return -1;
1da177e4
LT
2683 return 0;
2684}
2685
2686/*
2687 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2688 * tasks if there is an imbalance.
2689 *
2690 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2691 * this_rq is locked.
2692 */
48f24c4d 2693static int
70b97a7f 2694load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2695{
2696 struct sched_group *group;
70b97a7f 2697 struct rq *busiest = NULL;
1da177e4
LT
2698 unsigned long imbalance;
2699 int nr_moved = 0;
5969fe06 2700 int sd_idle = 0;
0a2966b4 2701 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2702
89c4710e
SS
2703 /*
2704 * When power savings policy is enabled for the parent domain, idle
2705 * sibling can pick up load irrespective of busy siblings. In this case,
2706 * let the state of idle sibling percolate up as IDLE, instead of
2707 * portraying it as NOT_IDLE.
2708 */
2709 if (sd->flags & SD_SHARE_CPUPOWER &&
2710 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2711 sd_idle = 1;
1da177e4
LT
2712
2713 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
0a2966b4
CL
2714redo:
2715 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2716 &sd_idle, &cpus);
1da177e4 2717 if (!group) {
1da177e4 2718 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2719 goto out_balanced;
1da177e4
LT
2720 }
2721
0a2966b4
CL
2722 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2723 &cpus);
db935dbd 2724 if (!busiest) {
1da177e4 2725 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2726 goto out_balanced;
1da177e4
LT
2727 }
2728
db935dbd
NP
2729 BUG_ON(busiest == this_rq);
2730
1da177e4 2731 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2732
2733 nr_moved = 0;
2734 if (busiest->nr_running > 1) {
2735 /* Attempt to move tasks */
2736 double_lock_balance(this_rq, busiest);
2737 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2738 minus_1_or_zero(busiest->nr_running),
81026794 2739 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf 2740 spin_unlock(&busiest->lock);
0a2966b4
CL
2741
2742 if (!nr_moved) {
2743 cpu_clear(cpu_of(busiest), cpus);
2744 if (!cpus_empty(cpus))
2745 goto redo;
2746 }
d6d5cfaf
NP
2747 }
2748
5969fe06 2749 if (!nr_moved) {
1da177e4 2750 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
89c4710e
SS
2751 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2752 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2753 return -1;
2754 } else
16cfb1c0 2755 sd->nr_balance_failed = 0;
1da177e4 2756
1da177e4 2757 return nr_moved;
16cfb1c0
NP
2758
2759out_balanced:
2760 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
48f24c4d 2761 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2762 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2763 return -1;
16cfb1c0 2764 sd->nr_balance_failed = 0;
48f24c4d 2765
16cfb1c0 2766 return 0;
1da177e4
LT
2767}
2768
2769/*
2770 * idle_balance is called by schedule() if this_cpu is about to become
2771 * idle. Attempts to pull tasks from other CPUs.
2772 */
70b97a7f 2773static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2774{
2775 struct sched_domain *sd;
2776
2777 for_each_domain(this_cpu, sd) {
2778 if (sd->flags & SD_BALANCE_NEWIDLE) {
48f24c4d
IM
2779 /* If we've pulled tasks over stop searching: */
2780 if (load_balance_newidle(this_cpu, this_rq, sd))
1da177e4 2781 break;
1da177e4
LT
2782 }
2783 }
2784}
2785
2786/*
2787 * active_load_balance is run by migration threads. It pushes running tasks
2788 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2789 * running on each physical CPU where possible, and avoids physical /
2790 * logical imbalances.
2791 *
2792 * Called with busiest_rq locked.
2793 */
70b97a7f 2794static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2795{
39507451 2796 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2797 struct sched_domain *sd;
2798 struct rq *target_rq;
39507451 2799
48f24c4d 2800 /* Is there any task to move? */
39507451 2801 if (busiest_rq->nr_running <= 1)
39507451
NP
2802 return;
2803
2804 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2805
2806 /*
39507451
NP
2807 * This condition is "impossible", if it occurs
2808 * we need to fix it. Originally reported by
2809 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2810 */
39507451 2811 BUG_ON(busiest_rq == target_rq);
1da177e4 2812
39507451
NP
2813 /* move a task from busiest_rq to target_rq */
2814 double_lock_balance(busiest_rq, target_rq);
2815
2816 /* Search for an sd spanning us and the target CPU. */
c96d145e 2817 for_each_domain(target_cpu, sd) {
39507451 2818 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2819 cpu_isset(busiest_cpu, sd->span))
39507451 2820 break;
c96d145e 2821 }
39507451 2822
48f24c4d
IM
2823 if (likely(sd)) {
2824 schedstat_inc(sd, alb_cnt);
39507451 2825
48f24c4d
IM
2826 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2827 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2828 NULL))
2829 schedstat_inc(sd, alb_pushed);
2830 else
2831 schedstat_inc(sd, alb_failed);
2832 }
39507451 2833 spin_unlock(&target_rq->lock);
1da177e4
LT
2834}
2835
2836/*
2837 * rebalance_tick will get called every timer tick, on every CPU.
2838 *
2839 * It checks each scheduling domain to see if it is due to be balanced,
2840 * and initiates a balancing operation if so.
2841 *
2842 * Balancing parameters are set up in arch_init_sched_domains.
2843 */
2844
48f24c4d 2845static void
70b97a7f 2846rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle)
1da177e4 2847{
4211a9a2 2848 unsigned long this_load, interval;
1da177e4 2849 struct sched_domain *sd;
48f24c4d 2850 int i, scale;
1da177e4 2851
2dd73a4f 2852 this_load = this_rq->raw_weighted_load;
48f24c4d
IM
2853
2854 /* Update our load: */
2855 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2856 unsigned long old_load, new_load;
2857
7897986b 2858 old_load = this_rq->cpu_load[i];
48f24c4d 2859 new_load = this_load;
7897986b
NP
2860 /*
2861 * Round up the averaging division if load is increasing. This
2862 * prevents us from getting stuck on 9 if the load is 10, for
2863 * example.
2864 */
2865 if (new_load > old_load)
2866 new_load += scale-1;
2867 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2868 }
1da177e4
LT
2869
2870 for_each_domain(this_cpu, sd) {
1da177e4
LT
2871 if (!(sd->flags & SD_LOAD_BALANCE))
2872 continue;
2873
2874 interval = sd->balance_interval;
2875 if (idle != SCHED_IDLE)
2876 interval *= sd->busy_factor;
2877
2878 /* scale ms to jiffies */
2879 interval = msecs_to_jiffies(interval);
2880 if (unlikely(!interval))
2881 interval = 1;
2882
4211a9a2 2883 if (jiffies - sd->last_balance >= interval) {
1da177e4 2884 if (load_balance(this_cpu, this_rq, sd, idle)) {
fa3b6ddc
SS
2885 /*
2886 * We've pulled tasks over so either we're no
5969fe06
NP
2887 * longer idle, or one of our SMT siblings is
2888 * not idle.
2889 */
1da177e4
LT
2890 idle = NOT_IDLE;
2891 }
2892 sd->last_balance += interval;
2893 }
2894 }
2895}
2896#else
2897/*
2898 * on UP we do not need to balance between CPUs:
2899 */
70b97a7f 2900static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle)
1da177e4
LT
2901{
2902}
70b97a7f 2903static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
2904{
2905}
2906#endif
2907
70b97a7f 2908static inline int wake_priority_sleeper(struct rq *rq)
1da177e4
LT
2909{
2910 int ret = 0;
48f24c4d 2911
1da177e4 2912#ifdef CONFIG_SCHED_SMT
571f6d2f
CL
2913 if (!rq->nr_running)
2914 return 0;
2915
1da177e4
LT
2916 spin_lock(&rq->lock);
2917 /*
2918 * If an SMT sibling task has been put to sleep for priority
2919 * reasons reschedule the idle task to see if it can now run.
2920 */
2921 if (rq->nr_running) {
2922 resched_task(rq->idle);
2923 ret = 1;
2924 }
2925 spin_unlock(&rq->lock);
2926#endif
2927 return ret;
2928}
2929
2930DEFINE_PER_CPU(struct kernel_stat, kstat);
2931
2932EXPORT_PER_CPU_SYMBOL(kstat);
2933
2934/*
2935 * This is called on clock ticks and on context switches.
2936 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2937 */
48f24c4d 2938static inline void
70b97a7f 2939update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
1da177e4 2940{
48f24c4d 2941 p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
1da177e4
LT
2942}
2943
2944/*
2945 * Return current->sched_time plus any more ns on the sched_clock
2946 * that have not yet been banked.
2947 */
36c8b586 2948unsigned long long current_sched_time(const struct task_struct *p)
1da177e4
LT
2949{
2950 unsigned long long ns;
2951 unsigned long flags;
48f24c4d 2952
1da177e4 2953 local_irq_save(flags);
48f24c4d
IM
2954 ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
2955 ns = p->sched_time + sched_clock() - ns;
1da177e4 2956 local_irq_restore(flags);
48f24c4d 2957
1da177e4
LT
2958 return ns;
2959}
2960
f1adad78
LT
2961/*
2962 * We place interactive tasks back into the active array, if possible.
2963 *
2964 * To guarantee that this does not starve expired tasks we ignore the
2965 * interactivity of a task if the first expired task had to wait more
2966 * than a 'reasonable' amount of time. This deadline timeout is
2967 * load-dependent, as the frequency of array switched decreases with
2968 * increasing number of running tasks. We also ignore the interactivity
2969 * if a better static_prio task has expired:
2970 */
70b97a7f 2971static inline int expired_starving(struct rq *rq)
48f24c4d
IM
2972{
2973 if (rq->curr->static_prio > rq->best_expired_prio)
2974 return 1;
2975 if (!STARVATION_LIMIT || !rq->expired_timestamp)
2976 return 0;
2977 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
2978 return 1;
2979 return 0;
2980}
f1adad78 2981
1da177e4
LT
2982/*
2983 * Account user cpu time to a process.
2984 * @p: the process that the cpu time gets accounted to
2985 * @hardirq_offset: the offset to subtract from hardirq_count()
2986 * @cputime: the cpu time spent in user space since the last update
2987 */
2988void account_user_time(struct task_struct *p, cputime_t cputime)
2989{
2990 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2991 cputime64_t tmp;
2992
2993 p->utime = cputime_add(p->utime, cputime);
2994
2995 /* Add user time to cpustat. */
2996 tmp = cputime_to_cputime64(cputime);
2997 if (TASK_NICE(p) > 0)
2998 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2999 else
3000 cpustat->user = cputime64_add(cpustat->user, tmp);
3001}
3002
3003/*
3004 * Account system cpu time to a process.
3005 * @p: the process that the cpu time gets accounted to
3006 * @hardirq_offset: the offset to subtract from hardirq_count()
3007 * @cputime: the cpu time spent in kernel space since the last update
3008 */
3009void account_system_time(struct task_struct *p, int hardirq_offset,
3010 cputime_t cputime)
3011{
3012 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3013 struct rq *rq = this_rq();
1da177e4
LT
3014 cputime64_t tmp;
3015
3016 p->stime = cputime_add(p->stime, cputime);
3017
3018 /* Add system time to cpustat. */
3019 tmp = cputime_to_cputime64(cputime);
3020 if (hardirq_count() - hardirq_offset)
3021 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3022 else if (softirq_count())
3023 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3024 else if (p != rq->idle)
3025 cpustat->system = cputime64_add(cpustat->system, tmp);
3026 else if (atomic_read(&rq->nr_iowait) > 0)
3027 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3028 else
3029 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3030 /* Account for system time used */
3031 acct_update_integrals(p);
1da177e4
LT
3032}
3033
3034/*
3035 * Account for involuntary wait time.
3036 * @p: the process from which the cpu time has been stolen
3037 * @steal: the cpu time spent in involuntary wait
3038 */
3039void account_steal_time(struct task_struct *p, cputime_t steal)
3040{
3041 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3042 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3043 struct rq *rq = this_rq();
1da177e4
LT
3044
3045 if (p == rq->idle) {
3046 p->stime = cputime_add(p->stime, steal);
3047 if (atomic_read(&rq->nr_iowait) > 0)
3048 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3049 else
3050 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3051 } else
3052 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3053}
3054
3055/*
3056 * This function gets called by the timer code, with HZ frequency.
3057 * We call it with interrupts disabled.
3058 *
3059 * It also gets called by the fork code, when changing the parent's
3060 * timeslices.
3061 */
3062void scheduler_tick(void)
3063{
48f24c4d 3064 unsigned long long now = sched_clock();
36c8b586 3065 struct task_struct *p = current;
1da177e4 3066 int cpu = smp_processor_id();
70b97a7f 3067 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
3068
3069 update_cpu_clock(p, rq, now);
3070
3071 rq->timestamp_last_tick = now;
3072
3073 if (p == rq->idle) {
3074 if (wake_priority_sleeper(rq))
3075 goto out;
3076 rebalance_tick(cpu, rq, SCHED_IDLE);
3077 return;
3078 }
3079
3080 /* Task might have expired already, but not scheduled off yet */
3081 if (p->array != rq->active) {
3082 set_tsk_need_resched(p);
3083 goto out;
3084 }
3085 spin_lock(&rq->lock);
3086 /*
3087 * The task was running during this tick - update the
3088 * time slice counter. Note: we do not update a thread's
3089 * priority until it either goes to sleep or uses up its
3090 * timeslice. This makes it possible for interactive tasks
3091 * to use up their timeslices at their highest priority levels.
3092 */
3093 if (rt_task(p)) {
3094 /*
3095 * RR tasks need a special form of timeslice management.
3096 * FIFO tasks have no timeslices.
3097 */
3098 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3099 p->time_slice = task_timeslice(p);
3100 p->first_time_slice = 0;
3101 set_tsk_need_resched(p);
3102
3103 /* put it at the end of the queue: */
3104 requeue_task(p, rq->active);
3105 }
3106 goto out_unlock;
3107 }
3108 if (!--p->time_slice) {
3109 dequeue_task(p, rq->active);
3110 set_tsk_need_resched(p);
3111 p->prio = effective_prio(p);
3112 p->time_slice = task_timeslice(p);
3113 p->first_time_slice = 0;
3114
3115 if (!rq->expired_timestamp)
3116 rq->expired_timestamp = jiffies;
48f24c4d 3117 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
1da177e4
LT
3118 enqueue_task(p, rq->expired);
3119 if (p->static_prio < rq->best_expired_prio)
3120 rq->best_expired_prio = p->static_prio;
3121 } else
3122 enqueue_task(p, rq->active);
3123 } else {
3124 /*
3125 * Prevent a too long timeslice allowing a task to monopolize
3126 * the CPU. We do this by splitting up the timeslice into
3127 * smaller pieces.
3128 *
3129 * Note: this does not mean the task's timeslices expire or
3130 * get lost in any way, they just might be preempted by
3131 * another task of equal priority. (one with higher
3132 * priority would have preempted this task already.) We
3133 * requeue this task to the end of the list on this priority
3134 * level, which is in essence a round-robin of tasks with
3135 * equal priority.
3136 *
3137 * This only applies to tasks in the interactive
3138 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3139 */
3140 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3141 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3142 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3143 (p->array == rq->active)) {
3144
3145 requeue_task(p, rq->active);
3146 set_tsk_need_resched(p);
3147 }
3148 }
3149out_unlock:
3150 spin_unlock(&rq->lock);
3151out:
3152 rebalance_tick(cpu, rq, NOT_IDLE);
3153}
3154
3155#ifdef CONFIG_SCHED_SMT
70b97a7f 3156static inline void wakeup_busy_runqueue(struct rq *rq)
fc38ed75
CK
3157{
3158 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3159 if (rq->curr == rq->idle && rq->nr_running)
3160 resched_task(rq->idle);
3161}
3162
c96d145e
KC
3163/*
3164 * Called with interrupt disabled and this_rq's runqueue locked.
3165 */
3166static void wake_sleeping_dependent(int this_cpu)
1da177e4 3167{
41c7ce9a 3168 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
3169 int i;
3170
c96d145e
KC
3171 for_each_domain(this_cpu, tmp) {
3172 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3173 sd = tmp;
c96d145e
KC
3174 break;
3175 }
3176 }
41c7ce9a
NP
3177
3178 if (!sd)
1da177e4
LT
3179 return;
3180
c96d145e 3181 for_each_cpu_mask(i, sd->span) {
70b97a7f 3182 struct rq *smt_rq = cpu_rq(i);
1da177e4 3183
c96d145e
KC
3184 if (i == this_cpu)
3185 continue;
3186 if (unlikely(!spin_trylock(&smt_rq->lock)))
3187 continue;
3188
fc38ed75 3189 wakeup_busy_runqueue(smt_rq);
c96d145e 3190 spin_unlock(&smt_rq->lock);
1da177e4 3191 }
1da177e4
LT
3192}
3193
67f9a619
IM
3194/*
3195 * number of 'lost' timeslices this task wont be able to fully
3196 * utilize, if another task runs on a sibling. This models the
3197 * slowdown effect of other tasks running on siblings:
3198 */
36c8b586
IM
3199static inline unsigned long
3200smt_slice(struct task_struct *p, struct sched_domain *sd)
67f9a619
IM
3201{
3202 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3203}
3204
c96d145e
KC
3205/*
3206 * To minimise lock contention and not have to drop this_rq's runlock we only
3207 * trylock the sibling runqueues and bypass those runqueues if we fail to
3208 * acquire their lock. As we only trylock the normal locking order does not
3209 * need to be obeyed.
3210 */
36c8b586 3211static int
70b97a7f 3212dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
1da177e4 3213{
41c7ce9a 3214 struct sched_domain *tmp, *sd = NULL;
1da177e4 3215 int ret = 0, i;
1da177e4 3216
c96d145e
KC
3217 /* kernel/rt threads do not participate in dependent sleeping */
3218 if (!p->mm || rt_task(p))
3219 return 0;
3220
3221 for_each_domain(this_cpu, tmp) {
3222 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3223 sd = tmp;
c96d145e
KC
3224 break;
3225 }
3226 }
41c7ce9a
NP
3227
3228 if (!sd)
1da177e4
LT
3229 return 0;
3230
c96d145e 3231 for_each_cpu_mask(i, sd->span) {
36c8b586 3232 struct task_struct *smt_curr;
70b97a7f 3233 struct rq *smt_rq;
1da177e4 3234
c96d145e
KC
3235 if (i == this_cpu)
3236 continue;
1da177e4 3237
c96d145e
KC
3238 smt_rq = cpu_rq(i);
3239 if (unlikely(!spin_trylock(&smt_rq->lock)))
3240 continue;
1da177e4 3241
c96d145e 3242 smt_curr = smt_rq->curr;
1da177e4 3243
c96d145e
KC
3244 if (!smt_curr->mm)
3245 goto unlock;
fc38ed75 3246
1da177e4
LT
3247 /*
3248 * If a user task with lower static priority than the
3249 * running task on the SMT sibling is trying to schedule,
3250 * delay it till there is proportionately less timeslice
3251 * left of the sibling task to prevent a lower priority
3252 * task from using an unfair proportion of the
3253 * physical cpu's resources. -ck
3254 */
fc38ed75
CK
3255 if (rt_task(smt_curr)) {
3256 /*
3257 * With real time tasks we run non-rt tasks only
3258 * per_cpu_gain% of the time.
3259 */
3260 if ((jiffies % DEF_TIMESLICE) >
3261 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3262 ret = 1;
c96d145e 3263 } else {
67f9a619
IM
3264 if (smt_curr->static_prio < p->static_prio &&
3265 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3266 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75 3267 ret = 1;
fc38ed75 3268 }
c96d145e
KC
3269unlock:
3270 spin_unlock(&smt_rq->lock);
1da177e4 3271 }
1da177e4
LT
3272 return ret;
3273}
3274#else
c96d145e 3275static inline void wake_sleeping_dependent(int this_cpu)
1da177e4
LT
3276{
3277}
48f24c4d 3278static inline int
70b97a7f 3279dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
1da177e4
LT
3280{
3281 return 0;
3282}
3283#endif
3284
3285#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3286
3287void fastcall add_preempt_count(int val)
3288{
3289 /*
3290 * Underflow?
3291 */
9a11b49a
IM
3292 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3293 return;
1da177e4
LT
3294 preempt_count() += val;
3295 /*
3296 * Spinlock count overflowing soon?
3297 */
9a11b49a 3298 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
1da177e4
LT
3299}
3300EXPORT_SYMBOL(add_preempt_count);
3301
3302void fastcall sub_preempt_count(int val)
3303{
3304 /*
3305 * Underflow?
3306 */
9a11b49a
IM
3307 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3308 return;
1da177e4
LT
3309 /*
3310 * Is the spinlock portion underflowing?
3311 */
9a11b49a
IM
3312 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3313 !(preempt_count() & PREEMPT_MASK)))
3314 return;
3315
1da177e4
LT
3316 preempt_count() -= val;
3317}
3318EXPORT_SYMBOL(sub_preempt_count);
3319
3320#endif
3321
3dee386e
CK
3322static inline int interactive_sleep(enum sleep_type sleep_type)
3323{
3324 return (sleep_type == SLEEP_INTERACTIVE ||
3325 sleep_type == SLEEP_INTERRUPTED);
3326}
3327
1da177e4
LT
3328/*
3329 * schedule() is the main scheduler function.
3330 */
3331asmlinkage void __sched schedule(void)
3332{
36c8b586 3333 struct task_struct *prev, *next;
70b97a7f 3334 struct prio_array *array;
1da177e4
LT
3335 struct list_head *queue;
3336 unsigned long long now;
3337 unsigned long run_time;
a3464a10 3338 int cpu, idx, new_prio;
48f24c4d 3339 long *switch_count;
70b97a7f 3340 struct rq *rq;
1da177e4
LT
3341
3342 /*
3343 * Test if we are atomic. Since do_exit() needs to call into
3344 * schedule() atomically, we ignore that path for now.
3345 * Otherwise, whine if we are scheduling when we should not be.
3346 */
77e4bfbc
AM
3347 if (unlikely(in_atomic() && !current->exit_state)) {
3348 printk(KERN_ERR "BUG: scheduling while atomic: "
3349 "%s/0x%08x/%d\n",
3350 current->comm, preempt_count(), current->pid);
a4c410f0 3351 debug_show_held_locks(current);
77e4bfbc 3352 dump_stack();
1da177e4
LT
3353 }
3354 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3355
3356need_resched:
3357 preempt_disable();
3358 prev = current;
3359 release_kernel_lock(prev);
3360need_resched_nonpreemptible:
3361 rq = this_rq();
3362
3363 /*
3364 * The idle thread is not allowed to schedule!
3365 * Remove this check after it has been exercised a bit.
3366 */
3367 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3368 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3369 dump_stack();
3370 }
3371
3372 schedstat_inc(rq, sched_cnt);
3373 now = sched_clock();
238628ed 3374 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 3375 run_time = now - prev->timestamp;
238628ed 3376 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
3377 run_time = 0;
3378 } else
3379 run_time = NS_MAX_SLEEP_AVG;
3380
3381 /*
3382 * Tasks charged proportionately less run_time at high sleep_avg to
3383 * delay them losing their interactive status
3384 */
3385 run_time /= (CURRENT_BONUS(prev) ? : 1);
3386
3387 spin_lock_irq(&rq->lock);
3388
1da177e4
LT
3389 switch_count = &prev->nivcsw;
3390 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3391 switch_count = &prev->nvcsw;
3392 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3393 unlikely(signal_pending(prev))))
3394 prev->state = TASK_RUNNING;
3395 else {
3396 if (prev->state == TASK_UNINTERRUPTIBLE)
3397 rq->nr_uninterruptible++;
3398 deactivate_task(prev, rq);
3399 }
3400 }
3401
3402 cpu = smp_processor_id();
3403 if (unlikely(!rq->nr_running)) {
1da177e4
LT
3404 idle_balance(cpu, rq);
3405 if (!rq->nr_running) {
3406 next = rq->idle;
3407 rq->expired_timestamp = 0;
c96d145e 3408 wake_sleeping_dependent(cpu);
1da177e4
LT
3409 goto switch_tasks;
3410 }
1da177e4
LT
3411 }
3412
3413 array = rq->active;
3414 if (unlikely(!array->nr_active)) {
3415 /*
3416 * Switch the active and expired arrays.
3417 */
3418 schedstat_inc(rq, sched_switch);
3419 rq->active = rq->expired;
3420 rq->expired = array;
3421 array = rq->active;
3422 rq->expired_timestamp = 0;
3423 rq->best_expired_prio = MAX_PRIO;
3424 }
3425
3426 idx = sched_find_first_bit(array->bitmap);
3427 queue = array->queue + idx;
36c8b586 3428 next = list_entry(queue->next, struct task_struct, run_list);
1da177e4 3429
3dee386e 3430 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3431 unsigned long long delta = now - next->timestamp;
238628ed 3432 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3433 delta = 0;
3434
3dee386e 3435 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3436 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3437
3438 array = next->array;
a3464a10
CS
3439 new_prio = recalc_task_prio(next, next->timestamp + delta);
3440
3441 if (unlikely(next->prio != new_prio)) {
3442 dequeue_task(next, array);
3443 next->prio = new_prio;
3444 enqueue_task(next, array);
7c4bb1f9 3445 }
1da177e4 3446 }
3dee386e 3447 next->sleep_type = SLEEP_NORMAL;
c96d145e
KC
3448 if (dependent_sleeper(cpu, rq, next))
3449 next = rq->idle;
1da177e4
LT
3450switch_tasks:
3451 if (next == rq->idle)
3452 schedstat_inc(rq, sched_goidle);
3453 prefetch(next);
383f2835 3454 prefetch_stack(next);
1da177e4
LT
3455 clear_tsk_need_resched(prev);
3456 rcu_qsctr_inc(task_cpu(prev));
3457
3458 update_cpu_clock(prev, rq, now);
3459
3460 prev->sleep_avg -= run_time;
3461 if ((long)prev->sleep_avg <= 0)
3462 prev->sleep_avg = 0;
3463 prev->timestamp = prev->last_ran = now;
3464
3465 sched_info_switch(prev, next);
3466 if (likely(prev != next)) {
3467 next->timestamp = now;
3468 rq->nr_switches++;
3469 rq->curr = next;
3470 ++*switch_count;
3471
4866cde0 3472 prepare_task_switch(rq, next);
1da177e4
LT
3473 prev = context_switch(rq, prev, next);
3474 barrier();
4866cde0
NP
3475 /*
3476 * this_rq must be evaluated again because prev may have moved
3477 * CPUs since it called schedule(), thus the 'rq' on its stack
3478 * frame will be invalid.
3479 */
3480 finish_task_switch(this_rq(), prev);
1da177e4
LT
3481 } else
3482 spin_unlock_irq(&rq->lock);
3483
3484 prev = current;
3485 if (unlikely(reacquire_kernel_lock(prev) < 0))
3486 goto need_resched_nonpreemptible;
3487 preempt_enable_no_resched();
3488 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3489 goto need_resched;
3490}
1da177e4
LT
3491EXPORT_SYMBOL(schedule);
3492
3493#ifdef CONFIG_PREEMPT
3494/*
2ed6e34f 3495 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3496 * off of preempt_enable. Kernel preemptions off return from interrupt
3497 * occur there and call schedule directly.
3498 */
3499asmlinkage void __sched preempt_schedule(void)
3500{
3501 struct thread_info *ti = current_thread_info();
3502#ifdef CONFIG_PREEMPT_BKL
3503 struct task_struct *task = current;
3504 int saved_lock_depth;
3505#endif
3506 /*
3507 * If there is a non-zero preempt_count or interrupts are disabled,
3508 * we do not want to preempt the current task. Just return..
3509 */
beed33a8 3510 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3511 return;
3512
3513need_resched:
3514 add_preempt_count(PREEMPT_ACTIVE);
3515 /*
3516 * We keep the big kernel semaphore locked, but we
3517 * clear ->lock_depth so that schedule() doesnt
3518 * auto-release the semaphore:
3519 */
3520#ifdef CONFIG_PREEMPT_BKL
3521 saved_lock_depth = task->lock_depth;
3522 task->lock_depth = -1;
3523#endif
3524 schedule();
3525#ifdef CONFIG_PREEMPT_BKL
3526 task->lock_depth = saved_lock_depth;
3527#endif
3528 sub_preempt_count(PREEMPT_ACTIVE);
3529
3530 /* we could miss a preemption opportunity between schedule and now */
3531 barrier();
3532 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3533 goto need_resched;
3534}
1da177e4
LT
3535EXPORT_SYMBOL(preempt_schedule);
3536
3537/*
2ed6e34f 3538 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3539 * off of irq context.
3540 * Note, that this is called and return with irqs disabled. This will
3541 * protect us against recursive calling from irq.
3542 */
3543asmlinkage void __sched preempt_schedule_irq(void)
3544{
3545 struct thread_info *ti = current_thread_info();
3546#ifdef CONFIG_PREEMPT_BKL
3547 struct task_struct *task = current;
3548 int saved_lock_depth;
3549#endif
2ed6e34f 3550 /* Catch callers which need to be fixed */
1da177e4
LT
3551 BUG_ON(ti->preempt_count || !irqs_disabled());
3552
3553need_resched:
3554 add_preempt_count(PREEMPT_ACTIVE);
3555 /*
3556 * We keep the big kernel semaphore locked, but we
3557 * clear ->lock_depth so that schedule() doesnt
3558 * auto-release the semaphore:
3559 */
3560#ifdef CONFIG_PREEMPT_BKL
3561 saved_lock_depth = task->lock_depth;
3562 task->lock_depth = -1;
3563#endif
3564 local_irq_enable();
3565 schedule();
3566 local_irq_disable();
3567#ifdef CONFIG_PREEMPT_BKL
3568 task->lock_depth = saved_lock_depth;
3569#endif
3570 sub_preempt_count(PREEMPT_ACTIVE);
3571
3572 /* we could miss a preemption opportunity between schedule and now */
3573 barrier();
3574 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3575 goto need_resched;
3576}
3577
3578#endif /* CONFIG_PREEMPT */
3579
95cdf3b7
IM
3580int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3581 void *key)
1da177e4 3582{
48f24c4d 3583 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3584}
1da177e4
LT
3585EXPORT_SYMBOL(default_wake_function);
3586
3587/*
3588 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3589 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3590 * number) then we wake all the non-exclusive tasks and one exclusive task.
3591 *
3592 * There are circumstances in which we can try to wake a task which has already
3593 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3594 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3595 */
3596static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3597 int nr_exclusive, int sync, void *key)
3598{
3599 struct list_head *tmp, *next;
3600
3601 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3602 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3603 unsigned flags = curr->flags;
3604
1da177e4 3605 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3606 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3607 break;
3608 }
3609}
3610
3611/**
3612 * __wake_up - wake up threads blocked on a waitqueue.
3613 * @q: the waitqueue
3614 * @mode: which threads
3615 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3616 * @key: is directly passed to the wakeup function
1da177e4
LT
3617 */
3618void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3619 int nr_exclusive, void *key)
1da177e4
LT
3620{
3621 unsigned long flags;
3622
3623 spin_lock_irqsave(&q->lock, flags);
3624 __wake_up_common(q, mode, nr_exclusive, 0, key);
3625 spin_unlock_irqrestore(&q->lock, flags);
3626}
1da177e4
LT
3627EXPORT_SYMBOL(__wake_up);
3628
3629/*
3630 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3631 */
3632void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3633{
3634 __wake_up_common(q, mode, 1, 0, NULL);
3635}
3636
3637/**
67be2dd1 3638 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3639 * @q: the waitqueue
3640 * @mode: which threads
3641 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3642 *
3643 * The sync wakeup differs that the waker knows that it will schedule
3644 * away soon, so while the target thread will be woken up, it will not
3645 * be migrated to another CPU - ie. the two threads are 'synchronized'
3646 * with each other. This can prevent needless bouncing between CPUs.
3647 *
3648 * On UP it can prevent extra preemption.
3649 */
95cdf3b7
IM
3650void fastcall
3651__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3652{
3653 unsigned long flags;
3654 int sync = 1;
3655
3656 if (unlikely(!q))
3657 return;
3658
3659 if (unlikely(!nr_exclusive))
3660 sync = 0;
3661
3662 spin_lock_irqsave(&q->lock, flags);
3663 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3664 spin_unlock_irqrestore(&q->lock, flags);
3665}
3666EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3667
3668void fastcall complete(struct completion *x)
3669{
3670 unsigned long flags;
3671
3672 spin_lock_irqsave(&x->wait.lock, flags);
3673 x->done++;
3674 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3675 1, 0, NULL);
3676 spin_unlock_irqrestore(&x->wait.lock, flags);
3677}
3678EXPORT_SYMBOL(complete);
3679
3680void fastcall complete_all(struct completion *x)
3681{
3682 unsigned long flags;
3683
3684 spin_lock_irqsave(&x->wait.lock, flags);
3685 x->done += UINT_MAX/2;
3686 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3687 0, 0, NULL);
3688 spin_unlock_irqrestore(&x->wait.lock, flags);
3689}
3690EXPORT_SYMBOL(complete_all);
3691
3692void fastcall __sched wait_for_completion(struct completion *x)
3693{
3694 might_sleep();
48f24c4d 3695
1da177e4
LT
3696 spin_lock_irq(&x->wait.lock);
3697 if (!x->done) {
3698 DECLARE_WAITQUEUE(wait, current);
3699
3700 wait.flags |= WQ_FLAG_EXCLUSIVE;
3701 __add_wait_queue_tail(&x->wait, &wait);
3702 do {
3703 __set_current_state(TASK_UNINTERRUPTIBLE);
3704 spin_unlock_irq(&x->wait.lock);
3705 schedule();
3706 spin_lock_irq(&x->wait.lock);
3707 } while (!x->done);
3708 __remove_wait_queue(&x->wait, &wait);
3709 }
3710 x->done--;
3711 spin_unlock_irq(&x->wait.lock);
3712}
3713EXPORT_SYMBOL(wait_for_completion);
3714
3715unsigned long fastcall __sched
3716wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3717{
3718 might_sleep();
3719
3720 spin_lock_irq(&x->wait.lock);
3721 if (!x->done) {
3722 DECLARE_WAITQUEUE(wait, current);
3723
3724 wait.flags |= WQ_FLAG_EXCLUSIVE;
3725 __add_wait_queue_tail(&x->wait, &wait);
3726 do {
3727 __set_current_state(TASK_UNINTERRUPTIBLE);
3728 spin_unlock_irq(&x->wait.lock);
3729 timeout = schedule_timeout(timeout);
3730 spin_lock_irq(&x->wait.lock);
3731 if (!timeout) {
3732 __remove_wait_queue(&x->wait, &wait);
3733 goto out;
3734 }
3735 } while (!x->done);
3736 __remove_wait_queue(&x->wait, &wait);
3737 }
3738 x->done--;
3739out:
3740 spin_unlock_irq(&x->wait.lock);
3741 return timeout;
3742}
3743EXPORT_SYMBOL(wait_for_completion_timeout);
3744
3745int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3746{
3747 int ret = 0;
3748
3749 might_sleep();
3750
3751 spin_lock_irq(&x->wait.lock);
3752 if (!x->done) {
3753 DECLARE_WAITQUEUE(wait, current);
3754
3755 wait.flags |= WQ_FLAG_EXCLUSIVE;
3756 __add_wait_queue_tail(&x->wait, &wait);
3757 do {
3758 if (signal_pending(current)) {
3759 ret = -ERESTARTSYS;
3760 __remove_wait_queue(&x->wait, &wait);
3761 goto out;
3762 }
3763 __set_current_state(TASK_INTERRUPTIBLE);
3764 spin_unlock_irq(&x->wait.lock);
3765 schedule();
3766 spin_lock_irq(&x->wait.lock);
3767 } while (!x->done);
3768 __remove_wait_queue(&x->wait, &wait);
3769 }
3770 x->done--;
3771out:
3772 spin_unlock_irq(&x->wait.lock);
3773
3774 return ret;
3775}
3776EXPORT_SYMBOL(wait_for_completion_interruptible);
3777
3778unsigned long fastcall __sched
3779wait_for_completion_interruptible_timeout(struct completion *x,
3780 unsigned long timeout)
3781{
3782 might_sleep();
3783
3784 spin_lock_irq(&x->wait.lock);
3785 if (!x->done) {
3786 DECLARE_WAITQUEUE(wait, current);
3787
3788 wait.flags |= WQ_FLAG_EXCLUSIVE;
3789 __add_wait_queue_tail(&x->wait, &wait);
3790 do {
3791 if (signal_pending(current)) {
3792 timeout = -ERESTARTSYS;
3793 __remove_wait_queue(&x->wait, &wait);
3794 goto out;
3795 }
3796 __set_current_state(TASK_INTERRUPTIBLE);
3797 spin_unlock_irq(&x->wait.lock);
3798 timeout = schedule_timeout(timeout);
3799 spin_lock_irq(&x->wait.lock);
3800 if (!timeout) {
3801 __remove_wait_queue(&x->wait, &wait);
3802 goto out;
3803 }
3804 } while (!x->done);
3805 __remove_wait_queue(&x->wait, &wait);
3806 }
3807 x->done--;
3808out:
3809 spin_unlock_irq(&x->wait.lock);
3810 return timeout;
3811}
3812EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3813
3814
3815#define SLEEP_ON_VAR \
3816 unsigned long flags; \
3817 wait_queue_t wait; \
3818 init_waitqueue_entry(&wait, current);
3819
3820#define SLEEP_ON_HEAD \
3821 spin_lock_irqsave(&q->lock,flags); \
3822 __add_wait_queue(q, &wait); \
3823 spin_unlock(&q->lock);
3824
3825#define SLEEP_ON_TAIL \
3826 spin_lock_irq(&q->lock); \
3827 __remove_wait_queue(q, &wait); \
3828 spin_unlock_irqrestore(&q->lock, flags);
3829
3830void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3831{
3832 SLEEP_ON_VAR
3833
3834 current->state = TASK_INTERRUPTIBLE;
3835
3836 SLEEP_ON_HEAD
3837 schedule();
3838 SLEEP_ON_TAIL
3839}
1da177e4
LT
3840EXPORT_SYMBOL(interruptible_sleep_on);
3841
95cdf3b7
IM
3842long fastcall __sched
3843interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3844{
3845 SLEEP_ON_VAR
3846
3847 current->state = TASK_INTERRUPTIBLE;
3848
3849 SLEEP_ON_HEAD
3850 timeout = schedule_timeout(timeout);
3851 SLEEP_ON_TAIL
3852
3853 return timeout;
3854}
1da177e4
LT
3855EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3856
3857void fastcall __sched sleep_on(wait_queue_head_t *q)
3858{
3859 SLEEP_ON_VAR
3860
3861 current->state = TASK_UNINTERRUPTIBLE;
3862
3863 SLEEP_ON_HEAD
3864 schedule();
3865 SLEEP_ON_TAIL
3866}
1da177e4
LT
3867EXPORT_SYMBOL(sleep_on);
3868
3869long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3870{
3871 SLEEP_ON_VAR
3872
3873 current->state = TASK_UNINTERRUPTIBLE;
3874
3875 SLEEP_ON_HEAD
3876 timeout = schedule_timeout(timeout);
3877 SLEEP_ON_TAIL
3878
3879 return timeout;
3880}
3881
3882EXPORT_SYMBOL(sleep_on_timeout);
3883
b29739f9
IM
3884#ifdef CONFIG_RT_MUTEXES
3885
3886/*
3887 * rt_mutex_setprio - set the current priority of a task
3888 * @p: task
3889 * @prio: prio value (kernel-internal form)
3890 *
3891 * This function changes the 'effective' priority of a task. It does
3892 * not touch ->normal_prio like __setscheduler().
3893 *
3894 * Used by the rt_mutex code to implement priority inheritance logic.
3895 */
36c8b586 3896void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3897{
70b97a7f 3898 struct prio_array *array;
b29739f9 3899 unsigned long flags;
70b97a7f 3900 struct rq *rq;
b29739f9
IM
3901 int oldprio;
3902
3903 BUG_ON(prio < 0 || prio > MAX_PRIO);
3904
3905 rq = task_rq_lock(p, &flags);
3906
3907 oldprio = p->prio;
3908 array = p->array;
3909 if (array)
3910 dequeue_task(p, array);
3911 p->prio = prio;
3912
3913 if (array) {
3914 /*
3915 * If changing to an RT priority then queue it
3916 * in the active array!
3917 */
3918 if (rt_task(p))
3919 array = rq->active;
3920 enqueue_task(p, array);
3921 /*
3922 * Reschedule if we are currently running on this runqueue and
3923 * our priority decreased, or if we are not currently running on
3924 * this runqueue and our priority is higher than the current's
3925 */
3926 if (task_running(rq, p)) {
3927 if (p->prio > oldprio)
3928 resched_task(rq->curr);
3929 } else if (TASK_PREEMPTS_CURR(p, rq))
3930 resched_task(rq->curr);
3931 }
3932 task_rq_unlock(rq, &flags);
3933}
3934
3935#endif
3936
36c8b586 3937void set_user_nice(struct task_struct *p, long nice)
1da177e4 3938{
70b97a7f 3939 struct prio_array *array;
48f24c4d 3940 int old_prio, delta;
1da177e4 3941 unsigned long flags;
70b97a7f 3942 struct rq *rq;
1da177e4
LT
3943
3944 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3945 return;
3946 /*
3947 * We have to be careful, if called from sys_setpriority(),
3948 * the task might be in the middle of scheduling on another CPU.
3949 */
3950 rq = task_rq_lock(p, &flags);
3951 /*
3952 * The RT priorities are set via sched_setscheduler(), but we still
3953 * allow the 'normal' nice value to be set - but as expected
3954 * it wont have any effect on scheduling until the task is
b0a9499c 3955 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4 3956 */
b29739f9 3957 if (has_rt_policy(p)) {
1da177e4
LT
3958 p->static_prio = NICE_TO_PRIO(nice);
3959 goto out_unlock;
3960 }
3961 array = p->array;
2dd73a4f 3962 if (array) {
1da177e4 3963 dequeue_task(p, array);
2dd73a4f
PW
3964 dec_raw_weighted_load(rq, p);
3965 }
1da177e4 3966
1da177e4 3967 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3968 set_load_weight(p);
b29739f9
IM
3969 old_prio = p->prio;
3970 p->prio = effective_prio(p);
3971 delta = p->prio - old_prio;
1da177e4
LT
3972
3973 if (array) {
3974 enqueue_task(p, array);
2dd73a4f 3975 inc_raw_weighted_load(rq, p);
1da177e4
LT
3976 /*
3977 * If the task increased its priority or is running and
3978 * lowered its priority, then reschedule its CPU:
3979 */
3980 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3981 resched_task(rq->curr);
3982 }
3983out_unlock:
3984 task_rq_unlock(rq, &flags);
3985}
1da177e4
LT
3986EXPORT_SYMBOL(set_user_nice);
3987
e43379f1
MM
3988/*
3989 * can_nice - check if a task can reduce its nice value
3990 * @p: task
3991 * @nice: nice value
3992 */
36c8b586 3993int can_nice(const struct task_struct *p, const int nice)
e43379f1 3994{
024f4747
MM
3995 /* convert nice value [19,-20] to rlimit style value [1,40] */
3996 int nice_rlim = 20 - nice;
48f24c4d 3997
e43379f1
MM
3998 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3999 capable(CAP_SYS_NICE));
4000}
4001
1da177e4
LT
4002#ifdef __ARCH_WANT_SYS_NICE
4003
4004/*
4005 * sys_nice - change the priority of the current process.
4006 * @increment: priority increment
4007 *
4008 * sys_setpriority is a more generic, but much slower function that
4009 * does similar things.
4010 */
4011asmlinkage long sys_nice(int increment)
4012{
48f24c4d 4013 long nice, retval;
1da177e4
LT
4014
4015 /*
4016 * Setpriority might change our priority at the same moment.
4017 * We don't have to worry. Conceptually one call occurs first
4018 * and we have a single winner.
4019 */
e43379f1
MM
4020 if (increment < -40)
4021 increment = -40;
1da177e4
LT
4022 if (increment > 40)
4023 increment = 40;
4024
4025 nice = PRIO_TO_NICE(current->static_prio) + increment;
4026 if (nice < -20)
4027 nice = -20;
4028 if (nice > 19)
4029 nice = 19;
4030
e43379f1
MM
4031 if (increment < 0 && !can_nice(current, nice))
4032 return -EPERM;
4033
1da177e4
LT
4034 retval = security_task_setnice(current, nice);
4035 if (retval)
4036 return retval;
4037
4038 set_user_nice(current, nice);
4039 return 0;
4040}
4041
4042#endif
4043
4044/**
4045 * task_prio - return the priority value of a given task.
4046 * @p: the task in question.
4047 *
4048 * This is the priority value as seen by users in /proc.
4049 * RT tasks are offset by -200. Normal tasks are centered
4050 * around 0, value goes from -16 to +15.
4051 */
36c8b586 4052int task_prio(const struct task_struct *p)
1da177e4
LT
4053{
4054 return p->prio - MAX_RT_PRIO;
4055}
4056
4057/**
4058 * task_nice - return the nice value of a given task.
4059 * @p: the task in question.
4060 */
36c8b586 4061int task_nice(const struct task_struct *p)
1da177e4
LT
4062{
4063 return TASK_NICE(p);
4064}
1da177e4 4065EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4066
4067/**
4068 * idle_cpu - is a given cpu idle currently?
4069 * @cpu: the processor in question.
4070 */
4071int idle_cpu(int cpu)
4072{
4073 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4074}
4075
1da177e4
LT
4076/**
4077 * idle_task - return the idle task for a given cpu.
4078 * @cpu: the processor in question.
4079 */
36c8b586 4080struct task_struct *idle_task(int cpu)
1da177e4
LT
4081{
4082 return cpu_rq(cpu)->idle;
4083}
4084
4085/**
4086 * find_process_by_pid - find a process with a matching PID value.
4087 * @pid: the pid in question.
4088 */
36c8b586 4089static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4090{
4091 return pid ? find_task_by_pid(pid) : current;
4092}
4093
4094/* Actually do priority change: must hold rq lock. */
4095static void __setscheduler(struct task_struct *p, int policy, int prio)
4096{
4097 BUG_ON(p->array);
48f24c4d 4098
1da177e4
LT
4099 p->policy = policy;
4100 p->rt_priority = prio;
b29739f9
IM
4101 p->normal_prio = normal_prio(p);
4102 /* we are holding p->pi_lock already */
4103 p->prio = rt_mutex_getprio(p);
4104 /*
4105 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4106 */
4107 if (policy == SCHED_BATCH)
4108 p->sleep_avg = 0;
2dd73a4f 4109 set_load_weight(p);
1da177e4
LT
4110}
4111
4112/**
4113 * sched_setscheduler - change the scheduling policy and/or RT priority of
4114 * a thread.
4115 * @p: the task in question.
4116 * @policy: new policy.
4117 * @param: structure containing the new RT priority.
5fe1d75f
ON
4118 *
4119 * NOTE: the task may be already dead
1da177e4 4120 */
95cdf3b7
IM
4121int sched_setscheduler(struct task_struct *p, int policy,
4122 struct sched_param *param)
1da177e4 4123{
48f24c4d 4124 int retval, oldprio, oldpolicy = -1;
70b97a7f 4125 struct prio_array *array;
1da177e4 4126 unsigned long flags;
70b97a7f 4127 struct rq *rq;
1da177e4 4128
66e5393a
SR
4129 /* may grab non-irq protected spin_locks */
4130 BUG_ON(in_interrupt());
1da177e4
LT
4131recheck:
4132 /* double check policy once rq lock held */
4133 if (policy < 0)
4134 policy = oldpolicy = p->policy;
4135 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
4136 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4137 return -EINVAL;
1da177e4
LT
4138 /*
4139 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
4140 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4141 * SCHED_BATCH is 0.
1da177e4
LT
4142 */
4143 if (param->sched_priority < 0 ||
95cdf3b7 4144 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4145 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4146 return -EINVAL;
57a6f51c 4147 if (is_rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4148 return -EINVAL;
4149
37e4ab3f
OC
4150 /*
4151 * Allow unprivileged RT tasks to decrease priority:
4152 */
4153 if (!capable(CAP_SYS_NICE)) {
8dc3e909
ON
4154 if (is_rt_policy(policy)) {
4155 unsigned long rlim_rtprio;
4156 unsigned long flags;
4157
4158 if (!lock_task_sighand(p, &flags))
4159 return -ESRCH;
4160 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4161 unlock_task_sighand(p, &flags);
4162
4163 /* can't set/change the rt policy */
4164 if (policy != p->policy && !rlim_rtprio)
4165 return -EPERM;
4166
4167 /* can't increase priority */
4168 if (param->sched_priority > p->rt_priority &&
4169 param->sched_priority > rlim_rtprio)
4170 return -EPERM;
4171 }
5fe1d75f 4172
37e4ab3f
OC
4173 /* can't change other user's priorities */
4174 if ((current->euid != p->euid) &&
4175 (current->euid != p->uid))
4176 return -EPERM;
4177 }
1da177e4
LT
4178
4179 retval = security_task_setscheduler(p, policy, param);
4180 if (retval)
4181 return retval;
b29739f9
IM
4182 /*
4183 * make sure no PI-waiters arrive (or leave) while we are
4184 * changing the priority of the task:
4185 */
4186 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4187 /*
4188 * To be able to change p->policy safely, the apropriate
4189 * runqueue lock must be held.
4190 */
b29739f9 4191 rq = __task_rq_lock(p);
1da177e4
LT
4192 /* recheck policy now with rq lock held */
4193 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4194 policy = oldpolicy = -1;
b29739f9
IM
4195 __task_rq_unlock(rq);
4196 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4197 goto recheck;
4198 }
4199 array = p->array;
4200 if (array)
4201 deactivate_task(p, rq);
4202 oldprio = p->prio;
4203 __setscheduler(p, policy, param->sched_priority);
4204 if (array) {
4205 __activate_task(p, rq);
4206 /*
4207 * Reschedule if we are currently running on this runqueue and
4208 * our priority decreased, or if we are not currently running on
4209 * this runqueue and our priority is higher than the current's
4210 */
4211 if (task_running(rq, p)) {
4212 if (p->prio > oldprio)
4213 resched_task(rq->curr);
4214 } else if (TASK_PREEMPTS_CURR(p, rq))
4215 resched_task(rq->curr);
4216 }
b29739f9
IM
4217 __task_rq_unlock(rq);
4218 spin_unlock_irqrestore(&p->pi_lock, flags);
4219
95e02ca9
TG
4220 rt_mutex_adjust_pi(p);
4221
1da177e4
LT
4222 return 0;
4223}
4224EXPORT_SYMBOL_GPL(sched_setscheduler);
4225
95cdf3b7
IM
4226static int
4227do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4228{
1da177e4
LT
4229 struct sched_param lparam;
4230 struct task_struct *p;
36c8b586 4231 int retval;
1da177e4
LT
4232
4233 if (!param || pid < 0)
4234 return -EINVAL;
4235 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4236 return -EFAULT;
5fe1d75f
ON
4237
4238 rcu_read_lock();
4239 retval = -ESRCH;
1da177e4 4240 p = find_process_by_pid(pid);
5fe1d75f
ON
4241 if (p != NULL)
4242 retval = sched_setscheduler(p, policy, &lparam);
4243 rcu_read_unlock();
36c8b586 4244
1da177e4
LT
4245 return retval;
4246}
4247
4248/**
4249 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4250 * @pid: the pid in question.
4251 * @policy: new policy.
4252 * @param: structure containing the new RT priority.
4253 */
4254asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4255 struct sched_param __user *param)
4256{
c21761f1
JB
4257 /* negative values for policy are not valid */
4258 if (policy < 0)
4259 return -EINVAL;
4260
1da177e4
LT
4261 return do_sched_setscheduler(pid, policy, param);
4262}
4263
4264/**
4265 * sys_sched_setparam - set/change the RT priority of a thread
4266 * @pid: the pid in question.
4267 * @param: structure containing the new RT priority.
4268 */
4269asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4270{
4271 return do_sched_setscheduler(pid, -1, param);
4272}
4273
4274/**
4275 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4276 * @pid: the pid in question.
4277 */
4278asmlinkage long sys_sched_getscheduler(pid_t pid)
4279{
36c8b586 4280 struct task_struct *p;
1da177e4 4281 int retval = -EINVAL;
1da177e4
LT
4282
4283 if (pid < 0)
4284 goto out_nounlock;
4285
4286 retval = -ESRCH;
4287 read_lock(&tasklist_lock);
4288 p = find_process_by_pid(pid);
4289 if (p) {
4290 retval = security_task_getscheduler(p);
4291 if (!retval)
4292 retval = p->policy;
4293 }
4294 read_unlock(&tasklist_lock);
4295
4296out_nounlock:
4297 return retval;
4298}
4299
4300/**
4301 * sys_sched_getscheduler - get the RT priority of a thread
4302 * @pid: the pid in question.
4303 * @param: structure containing the RT priority.
4304 */
4305asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4306{
4307 struct sched_param lp;
36c8b586 4308 struct task_struct *p;
1da177e4 4309 int retval = -EINVAL;
1da177e4
LT
4310
4311 if (!param || pid < 0)
4312 goto out_nounlock;
4313
4314 read_lock(&tasklist_lock);
4315 p = find_process_by_pid(pid);
4316 retval = -ESRCH;
4317 if (!p)
4318 goto out_unlock;
4319
4320 retval = security_task_getscheduler(p);
4321 if (retval)
4322 goto out_unlock;
4323
4324 lp.sched_priority = p->rt_priority;
4325 read_unlock(&tasklist_lock);
4326
4327 /*
4328 * This one might sleep, we cannot do it with a spinlock held ...
4329 */
4330 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4331
4332out_nounlock:
4333 return retval;
4334
4335out_unlock:
4336 read_unlock(&tasklist_lock);
4337 return retval;
4338}
4339
4340long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4341{
1da177e4 4342 cpumask_t cpus_allowed;
36c8b586
IM
4343 struct task_struct *p;
4344 int retval;
1da177e4
LT
4345
4346 lock_cpu_hotplug();
4347 read_lock(&tasklist_lock);
4348
4349 p = find_process_by_pid(pid);
4350 if (!p) {
4351 read_unlock(&tasklist_lock);
4352 unlock_cpu_hotplug();
4353 return -ESRCH;
4354 }
4355
4356 /*
4357 * It is not safe to call set_cpus_allowed with the
4358 * tasklist_lock held. We will bump the task_struct's
4359 * usage count and then drop tasklist_lock.
4360 */
4361 get_task_struct(p);
4362 read_unlock(&tasklist_lock);
4363
4364 retval = -EPERM;
4365 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4366 !capable(CAP_SYS_NICE))
4367 goto out_unlock;
4368
e7834f8f
DQ
4369 retval = security_task_setscheduler(p, 0, NULL);
4370 if (retval)
4371 goto out_unlock;
4372
1da177e4
LT
4373 cpus_allowed = cpuset_cpus_allowed(p);
4374 cpus_and(new_mask, new_mask, cpus_allowed);
4375 retval = set_cpus_allowed(p, new_mask);
4376
4377out_unlock:
4378 put_task_struct(p);
4379 unlock_cpu_hotplug();
4380 return retval;
4381}
4382
4383static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4384 cpumask_t *new_mask)
4385{
4386 if (len < sizeof(cpumask_t)) {
4387 memset(new_mask, 0, sizeof(cpumask_t));
4388 } else if (len > sizeof(cpumask_t)) {
4389 len = sizeof(cpumask_t);
4390 }
4391 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4392}
4393
4394/**
4395 * sys_sched_setaffinity - set the cpu affinity of a process
4396 * @pid: pid of the process
4397 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4398 * @user_mask_ptr: user-space pointer to the new cpu mask
4399 */
4400asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4401 unsigned long __user *user_mask_ptr)
4402{
4403 cpumask_t new_mask;
4404 int retval;
4405
4406 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4407 if (retval)
4408 return retval;
4409
4410 return sched_setaffinity(pid, new_mask);
4411}
4412
4413/*
4414 * Represents all cpu's present in the system
4415 * In systems capable of hotplug, this map could dynamically grow
4416 * as new cpu's are detected in the system via any platform specific
4417 * method, such as ACPI for e.g.
4418 */
4419
4cef0c61 4420cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4421EXPORT_SYMBOL(cpu_present_map);
4422
4423#ifndef CONFIG_SMP
4cef0c61 4424cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4425EXPORT_SYMBOL(cpu_online_map);
4426
4cef0c61 4427cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4428EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4429#endif
4430
4431long sched_getaffinity(pid_t pid, cpumask_t *mask)
4432{
36c8b586 4433 struct task_struct *p;
1da177e4 4434 int retval;
1da177e4
LT
4435
4436 lock_cpu_hotplug();
4437 read_lock(&tasklist_lock);
4438
4439 retval = -ESRCH;
4440 p = find_process_by_pid(pid);
4441 if (!p)
4442 goto out_unlock;
4443
e7834f8f
DQ
4444 retval = security_task_getscheduler(p);
4445 if (retval)
4446 goto out_unlock;
4447
2f7016d9 4448 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4449
4450out_unlock:
4451 read_unlock(&tasklist_lock);
4452 unlock_cpu_hotplug();
4453 if (retval)
4454 return retval;
4455
4456 return 0;
4457}
4458
4459/**
4460 * sys_sched_getaffinity - get the cpu affinity of a process
4461 * @pid: pid of the process
4462 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4463 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4464 */
4465asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4466 unsigned long __user *user_mask_ptr)
4467{
4468 int ret;
4469 cpumask_t mask;
4470
4471 if (len < sizeof(cpumask_t))
4472 return -EINVAL;
4473
4474 ret = sched_getaffinity(pid, &mask);
4475 if (ret < 0)
4476 return ret;
4477
4478 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4479 return -EFAULT;
4480
4481 return sizeof(cpumask_t);
4482}
4483
4484/**
4485 * sys_sched_yield - yield the current processor to other threads.
4486 *
4487 * this function yields the current CPU by moving the calling thread
4488 * to the expired array. If there are no other threads running on this
4489 * CPU then this function will return.
4490 */
4491asmlinkage long sys_sched_yield(void)
4492{
70b97a7f
IM
4493 struct rq *rq = this_rq_lock();
4494 struct prio_array *array = current->array, *target = rq->expired;
1da177e4
LT
4495
4496 schedstat_inc(rq, yld_cnt);
4497 /*
4498 * We implement yielding by moving the task into the expired
4499 * queue.
4500 *
4501 * (special rule: RT tasks will just roundrobin in the active
4502 * array.)
4503 */
4504 if (rt_task(current))
4505 target = rq->active;
4506
5927ad78 4507 if (array->nr_active == 1) {
1da177e4
LT
4508 schedstat_inc(rq, yld_act_empty);
4509 if (!rq->expired->nr_active)
4510 schedstat_inc(rq, yld_both_empty);
4511 } else if (!rq->expired->nr_active)
4512 schedstat_inc(rq, yld_exp_empty);
4513
4514 if (array != target) {
4515 dequeue_task(current, array);
4516 enqueue_task(current, target);
4517 } else
4518 /*
4519 * requeue_task is cheaper so perform that if possible.
4520 */
4521 requeue_task(current, array);
4522
4523 /*
4524 * Since we are going to call schedule() anyway, there's
4525 * no need to preempt or enable interrupts:
4526 */
4527 __release(rq->lock);
8a25d5de 4528 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4529 _raw_spin_unlock(&rq->lock);
4530 preempt_enable_no_resched();
4531
4532 schedule();
4533
4534 return 0;
4535}
4536
2d7d2535 4537static inline int __resched_legal(int expected_preempt_count)
e7b38404 4538{
2d7d2535 4539 if (unlikely(preempt_count() != expected_preempt_count))
e7b38404
AM
4540 return 0;
4541 if (unlikely(system_state != SYSTEM_RUNNING))
4542 return 0;
4543 return 1;
4544}
4545
4546static void __cond_resched(void)
1da177e4 4547{
8e0a43d8
IM
4548#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4549 __might_sleep(__FILE__, __LINE__);
4550#endif
5bbcfd90
IM
4551 /*
4552 * The BKS might be reacquired before we have dropped
4553 * PREEMPT_ACTIVE, which could trigger a second
4554 * cond_resched() call.
4555 */
1da177e4
LT
4556 do {
4557 add_preempt_count(PREEMPT_ACTIVE);
4558 schedule();
4559 sub_preempt_count(PREEMPT_ACTIVE);
4560 } while (need_resched());
4561}
4562
4563int __sched cond_resched(void)
4564{
2d7d2535 4565 if (need_resched() && __resched_legal(0)) {
1da177e4
LT
4566 __cond_resched();
4567 return 1;
4568 }
4569 return 0;
4570}
1da177e4
LT
4571EXPORT_SYMBOL(cond_resched);
4572
4573/*
4574 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4575 * call schedule, and on return reacquire the lock.
4576 *
4577 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4578 * operations here to prevent schedule() from being called twice (once via
4579 * spin_unlock(), once by hand).
4580 */
95cdf3b7 4581int cond_resched_lock(spinlock_t *lock)
1da177e4 4582{
6df3cecb
JK
4583 int ret = 0;
4584
1da177e4
LT
4585 if (need_lockbreak(lock)) {
4586 spin_unlock(lock);
4587 cpu_relax();
6df3cecb 4588 ret = 1;
1da177e4
LT
4589 spin_lock(lock);
4590 }
2d7d2535 4591 if (need_resched() && __resched_legal(1)) {
8a25d5de 4592 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4593 _raw_spin_unlock(lock);
4594 preempt_enable_no_resched();
4595 __cond_resched();
6df3cecb 4596 ret = 1;
1da177e4 4597 spin_lock(lock);
1da177e4 4598 }
6df3cecb 4599 return ret;
1da177e4 4600}
1da177e4
LT
4601EXPORT_SYMBOL(cond_resched_lock);
4602
4603int __sched cond_resched_softirq(void)
4604{
4605 BUG_ON(!in_softirq());
4606
2d7d2535 4607 if (need_resched() && __resched_legal(0)) {
de30a2b3
IM
4608 raw_local_irq_disable();
4609 _local_bh_enable();
4610 raw_local_irq_enable();
1da177e4
LT
4611 __cond_resched();
4612 local_bh_disable();
4613 return 1;
4614 }
4615 return 0;
4616}
1da177e4
LT
4617EXPORT_SYMBOL(cond_resched_softirq);
4618
1da177e4
LT
4619/**
4620 * yield - yield the current processor to other threads.
4621 *
4622 * this is a shortcut for kernel-space yielding - it marks the
4623 * thread runnable and calls sys_sched_yield().
4624 */
4625void __sched yield(void)
4626{
4627 set_current_state(TASK_RUNNING);
4628 sys_sched_yield();
4629}
1da177e4
LT
4630EXPORT_SYMBOL(yield);
4631
4632/*
4633 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4634 * that process accounting knows that this is a task in IO wait state.
4635 *
4636 * But don't do that if it is a deliberate, throttling IO wait (this task
4637 * has set its backing_dev_info: the queue against which it should throttle)
4638 */
4639void __sched io_schedule(void)
4640{
70b97a7f 4641 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4642
0ff92245 4643 delayacct_blkio_start();
1da177e4
LT
4644 atomic_inc(&rq->nr_iowait);
4645 schedule();
4646 atomic_dec(&rq->nr_iowait);
0ff92245 4647 delayacct_blkio_end();
1da177e4 4648}
1da177e4
LT
4649EXPORT_SYMBOL(io_schedule);
4650
4651long __sched io_schedule_timeout(long timeout)
4652{
70b97a7f 4653 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4654 long ret;
4655
0ff92245 4656 delayacct_blkio_start();
1da177e4
LT
4657 atomic_inc(&rq->nr_iowait);
4658 ret = schedule_timeout(timeout);
4659 atomic_dec(&rq->nr_iowait);
0ff92245 4660 delayacct_blkio_end();
1da177e4
LT
4661 return ret;
4662}
4663
4664/**
4665 * sys_sched_get_priority_max - return maximum RT priority.
4666 * @policy: scheduling class.
4667 *
4668 * this syscall returns the maximum rt_priority that can be used
4669 * by a given scheduling class.
4670 */
4671asmlinkage long sys_sched_get_priority_max(int policy)
4672{
4673 int ret = -EINVAL;
4674
4675 switch (policy) {
4676 case SCHED_FIFO:
4677 case SCHED_RR:
4678 ret = MAX_USER_RT_PRIO-1;
4679 break;
4680 case SCHED_NORMAL:
b0a9499c 4681 case SCHED_BATCH:
1da177e4
LT
4682 ret = 0;
4683 break;
4684 }
4685 return ret;
4686}
4687
4688/**
4689 * sys_sched_get_priority_min - return minimum RT priority.
4690 * @policy: scheduling class.
4691 *
4692 * this syscall returns the minimum rt_priority that can be used
4693 * by a given scheduling class.
4694 */
4695asmlinkage long sys_sched_get_priority_min(int policy)
4696{
4697 int ret = -EINVAL;
4698
4699 switch (policy) {
4700 case SCHED_FIFO:
4701 case SCHED_RR:
4702 ret = 1;
4703 break;
4704 case SCHED_NORMAL:
b0a9499c 4705 case SCHED_BATCH:
1da177e4
LT
4706 ret = 0;
4707 }
4708 return ret;
4709}
4710
4711/**
4712 * sys_sched_rr_get_interval - return the default timeslice of a process.
4713 * @pid: pid of the process.
4714 * @interval: userspace pointer to the timeslice value.
4715 *
4716 * this syscall writes the default timeslice value of a given process
4717 * into the user-space timespec buffer. A value of '0' means infinity.
4718 */
4719asmlinkage
4720long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4721{
36c8b586 4722 struct task_struct *p;
1da177e4
LT
4723 int retval = -EINVAL;
4724 struct timespec t;
1da177e4
LT
4725
4726 if (pid < 0)
4727 goto out_nounlock;
4728
4729 retval = -ESRCH;
4730 read_lock(&tasklist_lock);
4731 p = find_process_by_pid(pid);
4732 if (!p)
4733 goto out_unlock;
4734
4735 retval = security_task_getscheduler(p);
4736 if (retval)
4737 goto out_unlock;
4738
b78709cf 4739 jiffies_to_timespec(p->policy == SCHED_FIFO ?
1da177e4
LT
4740 0 : task_timeslice(p), &t);
4741 read_unlock(&tasklist_lock);
4742 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4743out_nounlock:
4744 return retval;
4745out_unlock:
4746 read_unlock(&tasklist_lock);
4747 return retval;
4748}
4749
4750static inline struct task_struct *eldest_child(struct task_struct *p)
4751{
48f24c4d
IM
4752 if (list_empty(&p->children))
4753 return NULL;
1da177e4
LT
4754 return list_entry(p->children.next,struct task_struct,sibling);
4755}
4756
4757static inline struct task_struct *older_sibling(struct task_struct *p)
4758{
48f24c4d
IM
4759 if (p->sibling.prev==&p->parent->children)
4760 return NULL;
1da177e4
LT
4761 return list_entry(p->sibling.prev,struct task_struct,sibling);
4762}
4763
4764static inline struct task_struct *younger_sibling(struct task_struct *p)
4765{
48f24c4d
IM
4766 if (p->sibling.next==&p->parent->children)
4767 return NULL;
1da177e4
LT
4768 return list_entry(p->sibling.next,struct task_struct,sibling);
4769}
4770
2ed6e34f 4771static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4772
4773static void show_task(struct task_struct *p)
1da177e4 4774{
36c8b586 4775 struct task_struct *relative;
1da177e4 4776 unsigned long free = 0;
36c8b586 4777 unsigned state;
1da177e4 4778
1da177e4 4779 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4780 printk("%-13.13s %c", p->comm,
4781 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4
LT
4782#if (BITS_PER_LONG == 32)
4783 if (state == TASK_RUNNING)
4784 printk(" running ");
4785 else
4786 printk(" %08lX ", thread_saved_pc(p));
4787#else
4788 if (state == TASK_RUNNING)
4789 printk(" running task ");
4790 else
4791 printk(" %016lx ", thread_saved_pc(p));
4792#endif
4793#ifdef CONFIG_DEBUG_STACK_USAGE
4794 {
10ebffde 4795 unsigned long *n = end_of_stack(p);
1da177e4
LT
4796 while (!*n)
4797 n++;
10ebffde 4798 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4799 }
4800#endif
4801 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4802 if ((relative = eldest_child(p)))
4803 printk("%5d ", relative->pid);
4804 else
4805 printk(" ");
4806 if ((relative = younger_sibling(p)))
4807 printk("%7d", relative->pid);
4808 else
4809 printk(" ");
4810 if ((relative = older_sibling(p)))
4811 printk(" %5d", relative->pid);
4812 else
4813 printk(" ");
4814 if (!p->mm)
4815 printk(" (L-TLB)\n");
4816 else
4817 printk(" (NOTLB)\n");
4818
4819 if (state != TASK_RUNNING)
4820 show_stack(p, NULL);
4821}
4822
e59e2ae2 4823void show_state_filter(unsigned long state_filter)
1da177e4 4824{
36c8b586 4825 struct task_struct *g, *p;
1da177e4
LT
4826
4827#if (BITS_PER_LONG == 32)
4828 printk("\n"
301827ac
CC
4829 " free sibling\n");
4830 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4831#else
4832 printk("\n"
301827ac
CC
4833 " free sibling\n");
4834 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4835#endif
4836 read_lock(&tasklist_lock);
4837 do_each_thread(g, p) {
4838 /*
4839 * reset the NMI-timeout, listing all files on a slow
4840 * console might take alot of time:
4841 */
4842 touch_nmi_watchdog();
e59e2ae2
IM
4843 if (p->state & state_filter)
4844 show_task(p);
1da177e4
LT
4845 } while_each_thread(g, p);
4846
4847 read_unlock(&tasklist_lock);
e59e2ae2
IM
4848 /*
4849 * Only show locks if all tasks are dumped:
4850 */
4851 if (state_filter == -1)
4852 debug_show_all_locks();
1da177e4
LT
4853}
4854
f340c0d1
IM
4855/**
4856 * init_idle - set up an idle thread for a given CPU
4857 * @idle: task in question
4858 * @cpu: cpu the idle task belongs to
4859 *
4860 * NOTE: this function does not set the idle thread's NEED_RESCHED
4861 * flag, to make booting more robust.
4862 */
5c1e1767 4863void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4864{
70b97a7f 4865 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4866 unsigned long flags;
4867
81c29a85 4868 idle->timestamp = sched_clock();
1da177e4
LT
4869 idle->sleep_avg = 0;
4870 idle->array = NULL;
b29739f9 4871 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4
LT
4872 idle->state = TASK_RUNNING;
4873 idle->cpus_allowed = cpumask_of_cpu(cpu);
4874 set_task_cpu(idle, cpu);
4875
4876 spin_lock_irqsave(&rq->lock, flags);
4877 rq->curr = rq->idle = idle;
4866cde0
NP
4878#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4879 idle->oncpu = 1;
4880#endif
1da177e4
LT
4881 spin_unlock_irqrestore(&rq->lock, flags);
4882
4883 /* Set the preempt count _outside_ the spinlocks! */
4884#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4885 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4886#else
a1261f54 4887 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4888#endif
4889}
4890
4891/*
4892 * In a system that switches off the HZ timer nohz_cpu_mask
4893 * indicates which cpus entered this state. This is used
4894 * in the rcu update to wait only for active cpus. For system
4895 * which do not switch off the HZ timer nohz_cpu_mask should
4896 * always be CPU_MASK_NONE.
4897 */
4898cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4899
4900#ifdef CONFIG_SMP
4901/*
4902 * This is how migration works:
4903 *
70b97a7f 4904 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4905 * runqueue and wake up that CPU's migration thread.
4906 * 2) we down() the locked semaphore => thread blocks.
4907 * 3) migration thread wakes up (implicitly it forces the migrated
4908 * thread off the CPU)
4909 * 4) it gets the migration request and checks whether the migrated
4910 * task is still in the wrong runqueue.
4911 * 5) if it's in the wrong runqueue then the migration thread removes
4912 * it and puts it into the right queue.
4913 * 6) migration thread up()s the semaphore.
4914 * 7) we wake up and the migration is done.
4915 */
4916
4917/*
4918 * Change a given task's CPU affinity. Migrate the thread to a
4919 * proper CPU and schedule it away if the CPU it's executing on
4920 * is removed from the allowed bitmask.
4921 *
4922 * NOTE: the caller must have a valid reference to the task, the
4923 * task must not exit() & deallocate itself prematurely. The
4924 * call is not atomic; no spinlocks may be held.
4925 */
36c8b586 4926int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4927{
70b97a7f 4928 struct migration_req req;
1da177e4 4929 unsigned long flags;
70b97a7f 4930 struct rq *rq;
48f24c4d 4931 int ret = 0;
1da177e4
LT
4932
4933 rq = task_rq_lock(p, &flags);
4934 if (!cpus_intersects(new_mask, cpu_online_map)) {
4935 ret = -EINVAL;
4936 goto out;
4937 }
4938
4939 p->cpus_allowed = new_mask;
4940 /* Can the task run on the task's current CPU? If so, we're done */
4941 if (cpu_isset(task_cpu(p), new_mask))
4942 goto out;
4943
4944 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4945 /* Need help from migration thread: drop lock and wait. */
4946 task_rq_unlock(rq, &flags);
4947 wake_up_process(rq->migration_thread);
4948 wait_for_completion(&req.done);
4949 tlb_migrate_finish(p->mm);
4950 return 0;
4951 }
4952out:
4953 task_rq_unlock(rq, &flags);
48f24c4d 4954
1da177e4
LT
4955 return ret;
4956}
1da177e4
LT
4957EXPORT_SYMBOL_GPL(set_cpus_allowed);
4958
4959/*
4960 * Move (not current) task off this cpu, onto dest cpu. We're doing
4961 * this because either it can't run here any more (set_cpus_allowed()
4962 * away from this CPU, or CPU going down), or because we're
4963 * attempting to rebalance this task on exec (sched_exec).
4964 *
4965 * So we race with normal scheduler movements, but that's OK, as long
4966 * as the task is no longer on this CPU.
efc30814
KK
4967 *
4968 * Returns non-zero if task was successfully migrated.
1da177e4 4969 */
efc30814 4970static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4971{
70b97a7f 4972 struct rq *rq_dest, *rq_src;
efc30814 4973 int ret = 0;
1da177e4
LT
4974
4975 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4976 return ret;
1da177e4
LT
4977
4978 rq_src = cpu_rq(src_cpu);
4979 rq_dest = cpu_rq(dest_cpu);
4980
4981 double_rq_lock(rq_src, rq_dest);
4982 /* Already moved. */
4983 if (task_cpu(p) != src_cpu)
4984 goto out;
4985 /* Affinity changed (again). */
4986 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4987 goto out;
4988
4989 set_task_cpu(p, dest_cpu);
4990 if (p->array) {
4991 /*
4992 * Sync timestamp with rq_dest's before activating.
4993 * The same thing could be achieved by doing this step
4994 * afterwards, and pretending it was a local activate.
4995 * This way is cleaner and logically correct.
4996 */
4997 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4998 + rq_dest->timestamp_last_tick;
4999 deactivate_task(p, rq_src);
0a565f79 5000 __activate_task(p, rq_dest);
1da177e4
LT
5001 if (TASK_PREEMPTS_CURR(p, rq_dest))
5002 resched_task(rq_dest->curr);
5003 }
efc30814 5004 ret = 1;
1da177e4
LT
5005out:
5006 double_rq_unlock(rq_src, rq_dest);
efc30814 5007 return ret;
1da177e4
LT
5008}
5009
5010/*
5011 * migration_thread - this is a highprio system thread that performs
5012 * thread migration by bumping thread off CPU then 'pushing' onto
5013 * another runqueue.
5014 */
95cdf3b7 5015static int migration_thread(void *data)
1da177e4 5016{
1da177e4 5017 int cpu = (long)data;
70b97a7f 5018 struct rq *rq;
1da177e4
LT
5019
5020 rq = cpu_rq(cpu);
5021 BUG_ON(rq->migration_thread != current);
5022
5023 set_current_state(TASK_INTERRUPTIBLE);
5024 while (!kthread_should_stop()) {
70b97a7f 5025 struct migration_req *req;
1da177e4 5026 struct list_head *head;
1da177e4 5027
3e1d1d28 5028 try_to_freeze();
1da177e4
LT
5029
5030 spin_lock_irq(&rq->lock);
5031
5032 if (cpu_is_offline(cpu)) {
5033 spin_unlock_irq(&rq->lock);
5034 goto wait_to_die;
5035 }
5036
5037 if (rq->active_balance) {
5038 active_load_balance(rq, cpu);
5039 rq->active_balance = 0;
5040 }
5041
5042 head = &rq->migration_queue;
5043
5044 if (list_empty(head)) {
5045 spin_unlock_irq(&rq->lock);
5046 schedule();
5047 set_current_state(TASK_INTERRUPTIBLE);
5048 continue;
5049 }
70b97a7f 5050 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5051 list_del_init(head->next);
5052
674311d5
NP
5053 spin_unlock(&rq->lock);
5054 __migrate_task(req->task, cpu, req->dest_cpu);
5055 local_irq_enable();
1da177e4
LT
5056
5057 complete(&req->done);
5058 }
5059 __set_current_state(TASK_RUNNING);
5060 return 0;
5061
5062wait_to_die:
5063 /* Wait for kthread_stop */
5064 set_current_state(TASK_INTERRUPTIBLE);
5065 while (!kthread_should_stop()) {
5066 schedule();
5067 set_current_state(TASK_INTERRUPTIBLE);
5068 }
5069 __set_current_state(TASK_RUNNING);
5070 return 0;
5071}
5072
5073#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5074/*
5075 * Figure out where task on dead CPU should go, use force if neccessary.
5076 * NOTE: interrupts should be disabled by the caller
5077 */
48f24c4d 5078static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5079{
efc30814 5080 unsigned long flags;
1da177e4 5081 cpumask_t mask;
70b97a7f
IM
5082 struct rq *rq;
5083 int dest_cpu;
1da177e4 5084
efc30814 5085restart:
1da177e4
LT
5086 /* On same node? */
5087 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5088 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5089 dest_cpu = any_online_cpu(mask);
5090
5091 /* On any allowed CPU? */
5092 if (dest_cpu == NR_CPUS)
48f24c4d 5093 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5094
5095 /* No more Mr. Nice Guy. */
5096 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5097 rq = task_rq_lock(p, &flags);
5098 cpus_setall(p->cpus_allowed);
5099 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5100 task_rq_unlock(rq, &flags);
1da177e4
LT
5101
5102 /*
5103 * Don't tell them about moving exiting tasks or
5104 * kernel threads (both mm NULL), since they never
5105 * leave kernel.
5106 */
48f24c4d 5107 if (p->mm && printk_ratelimit())
1da177e4
LT
5108 printk(KERN_INFO "process %d (%s) no "
5109 "longer affine to cpu%d\n",
48f24c4d 5110 p->pid, p->comm, dead_cpu);
1da177e4 5111 }
48f24c4d 5112 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5113 goto restart;
1da177e4
LT
5114}
5115
5116/*
5117 * While a dead CPU has no uninterruptible tasks queued at this point,
5118 * it might still have a nonzero ->nr_uninterruptible counter, because
5119 * for performance reasons the counter is not stricly tracking tasks to
5120 * their home CPUs. So we just add the counter to another CPU's counter,
5121 * to keep the global sum constant after CPU-down:
5122 */
70b97a7f 5123static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5124{
70b97a7f 5125 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5126 unsigned long flags;
5127
5128 local_irq_save(flags);
5129 double_rq_lock(rq_src, rq_dest);
5130 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5131 rq_src->nr_uninterruptible = 0;
5132 double_rq_unlock(rq_src, rq_dest);
5133 local_irq_restore(flags);
5134}
5135
5136/* Run through task list and migrate tasks from the dead cpu. */
5137static void migrate_live_tasks(int src_cpu)
5138{
48f24c4d 5139 struct task_struct *p, *t;
1da177e4
LT
5140
5141 write_lock_irq(&tasklist_lock);
5142
48f24c4d
IM
5143 do_each_thread(t, p) {
5144 if (p == current)
1da177e4
LT
5145 continue;
5146
48f24c4d
IM
5147 if (task_cpu(p) == src_cpu)
5148 move_task_off_dead_cpu(src_cpu, p);
5149 } while_each_thread(t, p);
1da177e4
LT
5150
5151 write_unlock_irq(&tasklist_lock);
5152}
5153
5154/* Schedules idle task to be the next runnable task on current CPU.
5155 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5156 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5157 */
5158void sched_idle_next(void)
5159{
48f24c4d 5160 int this_cpu = smp_processor_id();
70b97a7f 5161 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5162 struct task_struct *p = rq->idle;
5163 unsigned long flags;
5164
5165 /* cpu has to be offline */
48f24c4d 5166 BUG_ON(cpu_online(this_cpu));
1da177e4 5167
48f24c4d
IM
5168 /*
5169 * Strictly not necessary since rest of the CPUs are stopped by now
5170 * and interrupts disabled on the current cpu.
1da177e4
LT
5171 */
5172 spin_lock_irqsave(&rq->lock, flags);
5173
5174 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5175
5176 /* Add idle task to the _front_ of its priority queue: */
1da177e4
LT
5177 __activate_idle_task(p, rq);
5178
5179 spin_unlock_irqrestore(&rq->lock, flags);
5180}
5181
48f24c4d
IM
5182/*
5183 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5184 * offline.
5185 */
5186void idle_task_exit(void)
5187{
5188 struct mm_struct *mm = current->active_mm;
5189
5190 BUG_ON(cpu_online(smp_processor_id()));
5191
5192 if (mm != &init_mm)
5193 switch_mm(mm, &init_mm, current);
5194 mmdrop(mm);
5195}
5196
054b9108 5197/* called under rq->lock with disabled interrupts */
36c8b586 5198static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5199{
70b97a7f 5200 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5201
5202 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5203 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5204
5205 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5206 BUG_ON(p->state == TASK_DEAD);
1da177e4 5207
48f24c4d 5208 get_task_struct(p);
1da177e4
LT
5209
5210 /*
5211 * Drop lock around migration; if someone else moves it,
5212 * that's OK. No task can be added to this CPU, so iteration is
5213 * fine.
054b9108 5214 * NOTE: interrupts should be left disabled --dev@
1da177e4 5215 */
054b9108 5216 spin_unlock(&rq->lock);
48f24c4d 5217 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5218 spin_lock(&rq->lock);
1da177e4 5219
48f24c4d 5220 put_task_struct(p);
1da177e4
LT
5221}
5222
5223/* release_task() removes task from tasklist, so we won't find dead tasks. */
5224static void migrate_dead_tasks(unsigned int dead_cpu)
5225{
70b97a7f 5226 struct rq *rq = cpu_rq(dead_cpu);
48f24c4d 5227 unsigned int arr, i;
1da177e4
LT
5228
5229 for (arr = 0; arr < 2; arr++) {
5230 for (i = 0; i < MAX_PRIO; i++) {
5231 struct list_head *list = &rq->arrays[arr].queue[i];
48f24c4d 5232
1da177e4 5233 while (!list_empty(list))
36c8b586
IM
5234 migrate_dead(dead_cpu, list_entry(list->next,
5235 struct task_struct, run_list));
1da177e4
LT
5236 }
5237 }
5238}
5239#endif /* CONFIG_HOTPLUG_CPU */
5240
5241/*
5242 * migration_call - callback that gets triggered when a CPU is added.
5243 * Here we can start up the necessary migration thread for the new CPU.
5244 */
48f24c4d
IM
5245static int __cpuinit
5246migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5247{
1da177e4 5248 struct task_struct *p;
48f24c4d 5249 int cpu = (long)hcpu;
1da177e4 5250 unsigned long flags;
70b97a7f 5251 struct rq *rq;
1da177e4
LT
5252
5253 switch (action) {
5254 case CPU_UP_PREPARE:
5255 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5256 if (IS_ERR(p))
5257 return NOTIFY_BAD;
5258 p->flags |= PF_NOFREEZE;
5259 kthread_bind(p, cpu);
5260 /* Must be high prio: stop_machine expects to yield to it. */
5261 rq = task_rq_lock(p, &flags);
5262 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5263 task_rq_unlock(rq, &flags);
5264 cpu_rq(cpu)->migration_thread = p;
5265 break;
48f24c4d 5266
1da177e4
LT
5267 case CPU_ONLINE:
5268 /* Strictly unneccessary, as first user will wake it. */
5269 wake_up_process(cpu_rq(cpu)->migration_thread);
5270 break;
48f24c4d 5271
1da177e4
LT
5272#ifdef CONFIG_HOTPLUG_CPU
5273 case CPU_UP_CANCELED:
fc75cdfa
HC
5274 if (!cpu_rq(cpu)->migration_thread)
5275 break;
1da177e4 5276 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5277 kthread_bind(cpu_rq(cpu)->migration_thread,
5278 any_online_cpu(cpu_online_map));
1da177e4
LT
5279 kthread_stop(cpu_rq(cpu)->migration_thread);
5280 cpu_rq(cpu)->migration_thread = NULL;
5281 break;
48f24c4d 5282
1da177e4
LT
5283 case CPU_DEAD:
5284 migrate_live_tasks(cpu);
5285 rq = cpu_rq(cpu);
5286 kthread_stop(rq->migration_thread);
5287 rq->migration_thread = NULL;
5288 /* Idle task back to normal (off runqueue, low prio) */
5289 rq = task_rq_lock(rq->idle, &flags);
5290 deactivate_task(rq->idle, rq);
5291 rq->idle->static_prio = MAX_PRIO;
5292 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5293 migrate_dead_tasks(cpu);
5294 task_rq_unlock(rq, &flags);
5295 migrate_nr_uninterruptible(rq);
5296 BUG_ON(rq->nr_running != 0);
5297
5298 /* No need to migrate the tasks: it was best-effort if
5299 * they didn't do lock_cpu_hotplug(). Just wake up
5300 * the requestors. */
5301 spin_lock_irq(&rq->lock);
5302 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5303 struct migration_req *req;
5304
1da177e4 5305 req = list_entry(rq->migration_queue.next,
70b97a7f 5306 struct migration_req, list);
1da177e4
LT
5307 list_del_init(&req->list);
5308 complete(&req->done);
5309 }
5310 spin_unlock_irq(&rq->lock);
5311 break;
5312#endif
5313 }
5314 return NOTIFY_OK;
5315}
5316
5317/* Register at highest priority so that task migration (migrate_all_tasks)
5318 * happens before everything else.
5319 */
26c2143b 5320static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5321 .notifier_call = migration_call,
5322 .priority = 10
5323};
5324
5325int __init migration_init(void)
5326{
5327 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5328 int err;
48f24c4d
IM
5329
5330 /* Start one for the boot CPU: */
07dccf33
AM
5331 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5332 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5333 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5334 register_cpu_notifier(&migration_notifier);
48f24c4d 5335
1da177e4
LT
5336 return 0;
5337}
5338#endif
5339
5340#ifdef CONFIG_SMP
1a20ff27 5341#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5342#ifdef SCHED_DOMAIN_DEBUG
5343static void sched_domain_debug(struct sched_domain *sd, int cpu)
5344{
5345 int level = 0;
5346
41c7ce9a
NP
5347 if (!sd) {
5348 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5349 return;
5350 }
5351
1da177e4
LT
5352 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5353
5354 do {
5355 int i;
5356 char str[NR_CPUS];
5357 struct sched_group *group = sd->groups;
5358 cpumask_t groupmask;
5359
5360 cpumask_scnprintf(str, NR_CPUS, sd->span);
5361 cpus_clear(groupmask);
5362
5363 printk(KERN_DEBUG);
5364 for (i = 0; i < level + 1; i++)
5365 printk(" ");
5366 printk("domain %d: ", level);
5367
5368 if (!(sd->flags & SD_LOAD_BALANCE)) {
5369 printk("does not load-balance\n");
5370 if (sd->parent)
5371 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5372 break;
5373 }
5374
5375 printk("span %s\n", str);
5376
5377 if (!cpu_isset(cpu, sd->span))
5378 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5379 if (!cpu_isset(cpu, group->cpumask))
5380 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5381
5382 printk(KERN_DEBUG);
5383 for (i = 0; i < level + 2; i++)
5384 printk(" ");
5385 printk("groups:");
5386 do {
5387 if (!group) {
5388 printk("\n");
5389 printk(KERN_ERR "ERROR: group is NULL\n");
5390 break;
5391 }
5392
5393 if (!group->cpu_power) {
5394 printk("\n");
5395 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5396 }
5397
5398 if (!cpus_weight(group->cpumask)) {
5399 printk("\n");
5400 printk(KERN_ERR "ERROR: empty group\n");
5401 }
5402
5403 if (cpus_intersects(groupmask, group->cpumask)) {
5404 printk("\n");
5405 printk(KERN_ERR "ERROR: repeated CPUs\n");
5406 }
5407
5408 cpus_or(groupmask, groupmask, group->cpumask);
5409
5410 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5411 printk(" %s", str);
5412
5413 group = group->next;
5414 } while (group != sd->groups);
5415 printk("\n");
5416
5417 if (!cpus_equal(sd->span, groupmask))
5418 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5419
5420 level++;
5421 sd = sd->parent;
5422
5423 if (sd) {
5424 if (!cpus_subset(groupmask, sd->span))
5425 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5426 }
5427
5428 } while (sd);
5429}
5430#else
48f24c4d 5431# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5432#endif
5433
1a20ff27 5434static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5435{
5436 if (cpus_weight(sd->span) == 1)
5437 return 1;
5438
5439 /* Following flags need at least 2 groups */
5440 if (sd->flags & (SD_LOAD_BALANCE |
5441 SD_BALANCE_NEWIDLE |
5442 SD_BALANCE_FORK |
89c4710e
SS
5443 SD_BALANCE_EXEC |
5444 SD_SHARE_CPUPOWER |
5445 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5446 if (sd->groups != sd->groups->next)
5447 return 0;
5448 }
5449
5450 /* Following flags don't use groups */
5451 if (sd->flags & (SD_WAKE_IDLE |
5452 SD_WAKE_AFFINE |
5453 SD_WAKE_BALANCE))
5454 return 0;
5455
5456 return 1;
5457}
5458
48f24c4d
IM
5459static int
5460sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5461{
5462 unsigned long cflags = sd->flags, pflags = parent->flags;
5463
5464 if (sd_degenerate(parent))
5465 return 1;
5466
5467 if (!cpus_equal(sd->span, parent->span))
5468 return 0;
5469
5470 /* Does parent contain flags not in child? */
5471 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5472 if (cflags & SD_WAKE_AFFINE)
5473 pflags &= ~SD_WAKE_BALANCE;
5474 /* Flags needing groups don't count if only 1 group in parent */
5475 if (parent->groups == parent->groups->next) {
5476 pflags &= ~(SD_LOAD_BALANCE |
5477 SD_BALANCE_NEWIDLE |
5478 SD_BALANCE_FORK |
89c4710e
SS
5479 SD_BALANCE_EXEC |
5480 SD_SHARE_CPUPOWER |
5481 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5482 }
5483 if (~cflags & pflags)
5484 return 0;
5485
5486 return 1;
5487}
5488
1da177e4
LT
5489/*
5490 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5491 * hold the hotplug lock.
5492 */
9c1cfda2 5493static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5494{
70b97a7f 5495 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5496 struct sched_domain *tmp;
5497
5498 /* Remove the sched domains which do not contribute to scheduling. */
5499 for (tmp = sd; tmp; tmp = tmp->parent) {
5500 struct sched_domain *parent = tmp->parent;
5501 if (!parent)
5502 break;
1a848870 5503 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5504 tmp->parent = parent->parent;
1a848870
SS
5505 if (parent->parent)
5506 parent->parent->child = tmp;
5507 }
245af2c7
SS
5508 }
5509
1a848870 5510 if (sd && sd_degenerate(sd)) {
245af2c7 5511 sd = sd->parent;
1a848870
SS
5512 if (sd)
5513 sd->child = NULL;
5514 }
1da177e4
LT
5515
5516 sched_domain_debug(sd, cpu);
5517
674311d5 5518 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5519}
5520
5521/* cpus with isolated domains */
5c1e1767 5522static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5523
5524/* Setup the mask of cpus configured for isolated domains */
5525static int __init isolated_cpu_setup(char *str)
5526{
5527 int ints[NR_CPUS], i;
5528
5529 str = get_options(str, ARRAY_SIZE(ints), ints);
5530 cpus_clear(cpu_isolated_map);
5531 for (i = 1; i <= ints[0]; i++)
5532 if (ints[i] < NR_CPUS)
5533 cpu_set(ints[i], cpu_isolated_map);
5534 return 1;
5535}
5536
5537__setup ("isolcpus=", isolated_cpu_setup);
5538
5539/*
6711cab4
SS
5540 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5541 * to a function which identifies what group(along with sched group) a CPU
5542 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5543 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5544 *
5545 * init_sched_build_groups will build a circular linked list of the groups
5546 * covered by the given span, and will set each group's ->cpumask correctly,
5547 * and ->cpu_power to 0.
5548 */
a616058b 5549static void
6711cab4
SS
5550init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5551 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5552 struct sched_group **sg))
1da177e4
LT
5553{
5554 struct sched_group *first = NULL, *last = NULL;
5555 cpumask_t covered = CPU_MASK_NONE;
5556 int i;
5557
5558 for_each_cpu_mask(i, span) {
6711cab4
SS
5559 struct sched_group *sg;
5560 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5561 int j;
5562
5563 if (cpu_isset(i, covered))
5564 continue;
5565
5566 sg->cpumask = CPU_MASK_NONE;
5567 sg->cpu_power = 0;
5568
5569 for_each_cpu_mask(j, span) {
6711cab4 5570 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5571 continue;
5572
5573 cpu_set(j, covered);
5574 cpu_set(j, sg->cpumask);
5575 }
5576 if (!first)
5577 first = sg;
5578 if (last)
5579 last->next = sg;
5580 last = sg;
5581 }
5582 last->next = first;
5583}
5584
9c1cfda2 5585#define SD_NODES_PER_DOMAIN 16
1da177e4 5586
198e2f18 5587/*
5588 * Self-tuning task migration cost measurement between source and target CPUs.
5589 *
5590 * This is done by measuring the cost of manipulating buffers of varying
5591 * sizes. For a given buffer-size here are the steps that are taken:
5592 *
5593 * 1) the source CPU reads+dirties a shared buffer
5594 * 2) the target CPU reads+dirties the same shared buffer
5595 *
5596 * We measure how long they take, in the following 4 scenarios:
5597 *
5598 * - source: CPU1, target: CPU2 | cost1
5599 * - source: CPU2, target: CPU1 | cost2
5600 * - source: CPU1, target: CPU1 | cost3
5601 * - source: CPU2, target: CPU2 | cost4
5602 *
5603 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5604 * the cost of migration.
5605 *
5606 * We then start off from a small buffer-size and iterate up to larger
5607 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5608 * doing a maximum search for the cost. (The maximum cost for a migration
5609 * normally occurs when the working set size is around the effective cache
5610 * size.)
5611 */
5612#define SEARCH_SCOPE 2
5613#define MIN_CACHE_SIZE (64*1024U)
5614#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5615#define ITERATIONS 1
198e2f18 5616#define SIZE_THRESH 130
5617#define COST_THRESH 130
5618
5619/*
5620 * The migration cost is a function of 'domain distance'. Domain
5621 * distance is the number of steps a CPU has to iterate down its
5622 * domain tree to share a domain with the other CPU. The farther
5623 * two CPUs are from each other, the larger the distance gets.
5624 *
5625 * Note that we use the distance only to cache measurement results,
5626 * the distance value is not used numerically otherwise. When two
5627 * CPUs have the same distance it is assumed that the migration
5628 * cost is the same. (this is a simplification but quite practical)
5629 */
5630#define MAX_DOMAIN_DISTANCE 32
5631
5632static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5633 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5634/*
5635 * Architectures may override the migration cost and thus avoid
5636 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5637 * virtualized hardware:
5638 */
5639#ifdef CONFIG_DEFAULT_MIGRATION_COST
5640 CONFIG_DEFAULT_MIGRATION_COST
5641#else
5642 -1LL
5643#endif
5644};
198e2f18 5645
5646/*
5647 * Allow override of migration cost - in units of microseconds.
5648 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5649 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5650 */
5651static int __init migration_cost_setup(char *str)
5652{
5653 int ints[MAX_DOMAIN_DISTANCE+1], i;
5654
5655 str = get_options(str, ARRAY_SIZE(ints), ints);
5656
5657 printk("#ints: %d\n", ints[0]);
5658 for (i = 1; i <= ints[0]; i++) {
5659 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5660 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5661 }
5662 return 1;
5663}
5664
5665__setup ("migration_cost=", migration_cost_setup);
5666
5667/*
5668 * Global multiplier (divisor) for migration-cutoff values,
5669 * in percentiles. E.g. use a value of 150 to get 1.5 times
5670 * longer cache-hot cutoff times.
5671 *
5672 * (We scale it from 100 to 128 to long long handling easier.)
5673 */
5674
5675#define MIGRATION_FACTOR_SCALE 128
5676
5677static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5678
5679static int __init setup_migration_factor(char *str)
5680{
5681 get_option(&str, &migration_factor);
5682 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5683 return 1;
5684}
5685
5686__setup("migration_factor=", setup_migration_factor);
5687
5688/*
5689 * Estimated distance of two CPUs, measured via the number of domains
5690 * we have to pass for the two CPUs to be in the same span:
5691 */
5692static unsigned long domain_distance(int cpu1, int cpu2)
5693{
5694 unsigned long distance = 0;
5695 struct sched_domain *sd;
5696
5697 for_each_domain(cpu1, sd) {
5698 WARN_ON(!cpu_isset(cpu1, sd->span));
5699 if (cpu_isset(cpu2, sd->span))
5700 return distance;
5701 distance++;
5702 }
5703 if (distance >= MAX_DOMAIN_DISTANCE) {
5704 WARN_ON(1);
5705 distance = MAX_DOMAIN_DISTANCE-1;
5706 }
5707
5708 return distance;
5709}
5710
5711static unsigned int migration_debug;
5712
5713static int __init setup_migration_debug(char *str)
5714{
5715 get_option(&str, &migration_debug);
5716 return 1;
5717}
5718
5719__setup("migration_debug=", setup_migration_debug);
5720
5721/*
5722 * Maximum cache-size that the scheduler should try to measure.
5723 * Architectures with larger caches should tune this up during
5724 * bootup. Gets used in the domain-setup code (i.e. during SMP
5725 * bootup).
5726 */
5727unsigned int max_cache_size;
5728
5729static int __init setup_max_cache_size(char *str)
5730{
5731 get_option(&str, &max_cache_size);
5732 return 1;
5733}
5734
5735__setup("max_cache_size=", setup_max_cache_size);
5736
5737/*
5738 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5739 * is the operation that is timed, so we try to generate unpredictable
5740 * cachemisses that still end up filling the L2 cache:
5741 */
5742static void touch_cache(void *__cache, unsigned long __size)
5743{
5744 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5745 chunk2 = 2*size/3;
5746 unsigned long *cache = __cache;
5747 int i;
5748
5749 for (i = 0; i < size/6; i += 8) {
5750 switch (i % 6) {
5751 case 0: cache[i]++;
5752 case 1: cache[size-1-i]++;
5753 case 2: cache[chunk1-i]++;
5754 case 3: cache[chunk1+i]++;
5755 case 4: cache[chunk2-i]++;
5756 case 5: cache[chunk2+i]++;
5757 }
5758 }
5759}
5760
5761/*
5762 * Measure the cache-cost of one task migration. Returns in units of nsec.
5763 */
48f24c4d
IM
5764static unsigned long long
5765measure_one(void *cache, unsigned long size, int source, int target)
198e2f18 5766{
5767 cpumask_t mask, saved_mask;
5768 unsigned long long t0, t1, t2, t3, cost;
5769
5770 saved_mask = current->cpus_allowed;
5771
5772 /*
5773 * Flush source caches to RAM and invalidate them:
5774 */
5775 sched_cacheflush();
5776
5777 /*
5778 * Migrate to the source CPU:
5779 */
5780 mask = cpumask_of_cpu(source);
5781 set_cpus_allowed(current, mask);
5782 WARN_ON(smp_processor_id() != source);
5783
5784 /*
5785 * Dirty the working set:
5786 */
5787 t0 = sched_clock();
5788 touch_cache(cache, size);
5789 t1 = sched_clock();
5790
5791 /*
5792 * Migrate to the target CPU, dirty the L2 cache and access
5793 * the shared buffer. (which represents the working set
5794 * of a migrated task.)
5795 */
5796 mask = cpumask_of_cpu(target);
5797 set_cpus_allowed(current, mask);
5798 WARN_ON(smp_processor_id() != target);
5799
5800 t2 = sched_clock();
5801 touch_cache(cache, size);
5802 t3 = sched_clock();
5803
5804 cost = t1-t0 + t3-t2;
5805
5806 if (migration_debug >= 2)
5807 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5808 source, target, t1-t0, t1-t0, t3-t2, cost);
5809 /*
5810 * Flush target caches to RAM and invalidate them:
5811 */
5812 sched_cacheflush();
5813
5814 set_cpus_allowed(current, saved_mask);
5815
5816 return cost;
5817}
5818
5819/*
5820 * Measure a series of task migrations and return the average
5821 * result. Since this code runs early during bootup the system
5822 * is 'undisturbed' and the average latency makes sense.
5823 *
5824 * The algorithm in essence auto-detects the relevant cache-size,
5825 * so it will properly detect different cachesizes for different
5826 * cache-hierarchies, depending on how the CPUs are connected.
5827 *
5828 * Architectures can prime the upper limit of the search range via
5829 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5830 */
5831static unsigned long long
5832measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5833{
5834 unsigned long long cost1, cost2;
5835 int i;
5836
5837 /*
5838 * Measure the migration cost of 'size' bytes, over an
5839 * average of 10 runs:
5840 *
5841 * (We perturb the cache size by a small (0..4k)
5842 * value to compensate size/alignment related artifacts.
5843 * We also subtract the cost of the operation done on
5844 * the same CPU.)
5845 */
5846 cost1 = 0;
5847
5848 /*
5849 * dry run, to make sure we start off cache-cold on cpu1,
5850 * and to get any vmalloc pagefaults in advance:
5851 */
5852 measure_one(cache, size, cpu1, cpu2);
5853 for (i = 0; i < ITERATIONS; i++)
5854 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5855
5856 measure_one(cache, size, cpu2, cpu1);
5857 for (i = 0; i < ITERATIONS; i++)
5858 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5859
5860 /*
5861 * (We measure the non-migrating [cached] cost on both
5862 * cpu1 and cpu2, to handle CPUs with different speeds)
5863 */
5864 cost2 = 0;
5865
5866 measure_one(cache, size, cpu1, cpu1);
5867 for (i = 0; i < ITERATIONS; i++)
5868 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5869
5870 measure_one(cache, size, cpu2, cpu2);
5871 for (i = 0; i < ITERATIONS; i++)
5872 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5873
5874 /*
5875 * Get the per-iteration migration cost:
5876 */
5877 do_div(cost1, 2*ITERATIONS);
5878 do_div(cost2, 2*ITERATIONS);
5879
5880 return cost1 - cost2;
5881}
5882
5883static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5884{
5885 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5886 unsigned int max_size, size, size_found = 0;
5887 long long cost = 0, prev_cost;
5888 void *cache;
5889
5890 /*
5891 * Search from max_cache_size*5 down to 64K - the real relevant
5892 * cachesize has to lie somewhere inbetween.
5893 */
5894 if (max_cache_size) {
5895 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5896 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5897 } else {
5898 /*
5899 * Since we have no estimation about the relevant
5900 * search range
5901 */
5902 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5903 size = MIN_CACHE_SIZE;
5904 }
5905
5906 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5907 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5908 return 0;
5909 }
5910
5911 /*
5912 * Allocate the working set:
5913 */
5914 cache = vmalloc(max_size);
5915 if (!cache) {
5916 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
2ed6e34f 5917 return 1000000; /* return 1 msec on very small boxen */
198e2f18 5918 }
5919
5920 while (size <= max_size) {
5921 prev_cost = cost;
5922 cost = measure_cost(cpu1, cpu2, cache, size);
5923
5924 /*
5925 * Update the max:
5926 */
5927 if (cost > 0) {
5928 if (max_cost < cost) {
5929 max_cost = cost;
5930 size_found = size;
5931 }
5932 }
5933 /*
5934 * Calculate average fluctuation, we use this to prevent
5935 * noise from triggering an early break out of the loop:
5936 */
5937 fluct = abs(cost - prev_cost);
5938 avg_fluct = (avg_fluct + fluct)/2;
5939
5940 if (migration_debug)
5941 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5942 cpu1, cpu2, size,
5943 (long)cost / 1000000,
5944 ((long)cost / 100000) % 10,
5945 (long)max_cost / 1000000,
5946 ((long)max_cost / 100000) % 10,
5947 domain_distance(cpu1, cpu2),
5948 cost, avg_fluct);
5949
5950 /*
5951 * If we iterated at least 20% past the previous maximum,
5952 * and the cost has dropped by more than 20% already,
5953 * (taking fluctuations into account) then we assume to
5954 * have found the maximum and break out of the loop early:
5955 */
5956 if (size_found && (size*100 > size_found*SIZE_THRESH))
5957 if (cost+avg_fluct <= 0 ||
5958 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5959
5960 if (migration_debug)
5961 printk("-> found max.\n");
5962 break;
5963 }
5964 /*
70b4d63e 5965 * Increase the cachesize in 10% steps:
198e2f18 5966 */
70b4d63e 5967 size = size * 10 / 9;
198e2f18 5968 }
5969
5970 if (migration_debug)
5971 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5972 cpu1, cpu2, size_found, max_cost);
5973
5974 vfree(cache);
5975
5976 /*
5977 * A task is considered 'cache cold' if at least 2 times
5978 * the worst-case cost of migration has passed.
5979 *
5980 * (this limit is only listened to if the load-balancing
5981 * situation is 'nice' - if there is a large imbalance we
5982 * ignore it for the sake of CPU utilization and
5983 * processing fairness.)
5984 */
5985 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5986}
5987
5988static void calibrate_migration_costs(const cpumask_t *cpu_map)
5989{
5990 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5991 unsigned long j0, j1, distance, max_distance = 0;
5992 struct sched_domain *sd;
5993
5994 j0 = jiffies;
5995
5996 /*
5997 * First pass - calculate the cacheflush times:
5998 */
5999 for_each_cpu_mask(cpu1, *cpu_map) {
6000 for_each_cpu_mask(cpu2, *cpu_map) {
6001 if (cpu1 == cpu2)
6002 continue;
6003 distance = domain_distance(cpu1, cpu2);
6004 max_distance = max(max_distance, distance);
6005 /*
6006 * No result cached yet?
6007 */
6008 if (migration_cost[distance] == -1LL)
6009 migration_cost[distance] =
6010 measure_migration_cost(cpu1, cpu2);
6011 }
6012 }
6013 /*
6014 * Second pass - update the sched domain hierarchy with
6015 * the new cache-hot-time estimations:
6016 */
6017 for_each_cpu_mask(cpu, *cpu_map) {
6018 distance = 0;
6019 for_each_domain(cpu, sd) {
6020 sd->cache_hot_time = migration_cost[distance];
6021 distance++;
6022 }
6023 }
6024 /*
6025 * Print the matrix:
6026 */
6027 if (migration_debug)
6028 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6029 max_cache_size,
6030#ifdef CONFIG_X86
6031 cpu_khz/1000
6032#else
6033 -1
6034#endif
6035 );
bd576c95 6036 if (system_state == SYSTEM_BOOTING) {
74732646
DJ
6037 if (num_online_cpus() > 1) {
6038 printk("migration_cost=");
6039 for (distance = 0; distance <= max_distance; distance++) {
6040 if (distance)
6041 printk(",");
6042 printk("%ld", (long)migration_cost[distance] / 1000);
6043 }
6044 printk("\n");
bd576c95 6045 }
198e2f18 6046 }
198e2f18 6047 j1 = jiffies;
6048 if (migration_debug)
6049 printk("migration: %ld seconds\n", (j1-j0)/HZ);
6050
6051 /*
6052 * Move back to the original CPU. NUMA-Q gets confused
6053 * if we migrate to another quad during bootup.
6054 */
6055 if (raw_smp_processor_id() != orig_cpu) {
6056 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6057 saved_mask = current->cpus_allowed;
6058
6059 set_cpus_allowed(current, mask);
6060 set_cpus_allowed(current, saved_mask);
6061 }
6062}
6063
9c1cfda2 6064#ifdef CONFIG_NUMA
198e2f18 6065
9c1cfda2
JH
6066/**
6067 * find_next_best_node - find the next node to include in a sched_domain
6068 * @node: node whose sched_domain we're building
6069 * @used_nodes: nodes already in the sched_domain
6070 *
6071 * Find the next node to include in a given scheduling domain. Simply
6072 * finds the closest node not already in the @used_nodes map.
6073 *
6074 * Should use nodemask_t.
6075 */
6076static int find_next_best_node(int node, unsigned long *used_nodes)
6077{
6078 int i, n, val, min_val, best_node = 0;
6079
6080 min_val = INT_MAX;
6081
6082 for (i = 0; i < MAX_NUMNODES; i++) {
6083 /* Start at @node */
6084 n = (node + i) % MAX_NUMNODES;
6085
6086 if (!nr_cpus_node(n))
6087 continue;
6088
6089 /* Skip already used nodes */
6090 if (test_bit(n, used_nodes))
6091 continue;
6092
6093 /* Simple min distance search */
6094 val = node_distance(node, n);
6095
6096 if (val < min_val) {
6097 min_val = val;
6098 best_node = n;
6099 }
6100 }
6101
6102 set_bit(best_node, used_nodes);
6103 return best_node;
6104}
6105
6106/**
6107 * sched_domain_node_span - get a cpumask for a node's sched_domain
6108 * @node: node whose cpumask we're constructing
6109 * @size: number of nodes to include in this span
6110 *
6111 * Given a node, construct a good cpumask for its sched_domain to span. It
6112 * should be one that prevents unnecessary balancing, but also spreads tasks
6113 * out optimally.
6114 */
6115static cpumask_t sched_domain_node_span(int node)
6116{
9c1cfda2 6117 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6118 cpumask_t span, nodemask;
6119 int i;
9c1cfda2
JH
6120
6121 cpus_clear(span);
6122 bitmap_zero(used_nodes, MAX_NUMNODES);
6123
6124 nodemask = node_to_cpumask(node);
6125 cpus_or(span, span, nodemask);
6126 set_bit(node, used_nodes);
6127
6128 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6129 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6130
9c1cfda2
JH
6131 nodemask = node_to_cpumask(next_node);
6132 cpus_or(span, span, nodemask);
6133 }
6134
6135 return span;
6136}
6137#endif
6138
5c45bf27 6139int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6140
9c1cfda2 6141/*
48f24c4d 6142 * SMT sched-domains:
9c1cfda2 6143 */
1da177e4
LT
6144#ifdef CONFIG_SCHED_SMT
6145static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6146static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6147
6711cab4
SS
6148static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6149 struct sched_group **sg)
1da177e4 6150{
6711cab4
SS
6151 if (sg)
6152 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6153 return cpu;
6154}
6155#endif
6156
48f24c4d
IM
6157/*
6158 * multi-core sched-domains:
6159 */
1e9f28fa
SS
6160#ifdef CONFIG_SCHED_MC
6161static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6162static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6163#endif
6164
6165#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
6166static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6167 struct sched_group **sg)
1e9f28fa 6168{
6711cab4 6169 int group;
a616058b
SS
6170 cpumask_t mask = cpu_sibling_map[cpu];
6171 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6172 group = first_cpu(mask);
6173 if (sg)
6174 *sg = &per_cpu(sched_group_core, group);
6175 return group;
1e9f28fa
SS
6176}
6177#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
6178static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6179 struct sched_group **sg)
1e9f28fa 6180{
6711cab4
SS
6181 if (sg)
6182 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6183 return cpu;
6184}
6185#endif
6186
1da177e4 6187static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6188static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6189
6711cab4
SS
6190static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6191 struct sched_group **sg)
1da177e4 6192{
6711cab4 6193 int group;
48f24c4d 6194#ifdef CONFIG_SCHED_MC
1e9f28fa 6195 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6196 cpus_and(mask, mask, *cpu_map);
6711cab4 6197 group = first_cpu(mask);
1e9f28fa 6198#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
6199 cpumask_t mask = cpu_sibling_map[cpu];
6200 cpus_and(mask, mask, *cpu_map);
6711cab4 6201 group = first_cpu(mask);
1da177e4 6202#else
6711cab4 6203 group = cpu;
1da177e4 6204#endif
6711cab4
SS
6205 if (sg)
6206 *sg = &per_cpu(sched_group_phys, group);
6207 return group;
1da177e4
LT
6208}
6209
6210#ifdef CONFIG_NUMA
1da177e4 6211/*
9c1cfda2
JH
6212 * The init_sched_build_groups can't handle what we want to do with node
6213 * groups, so roll our own. Now each node has its own list of groups which
6214 * gets dynamically allocated.
1da177e4 6215 */
9c1cfda2 6216static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6217static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6218
9c1cfda2 6219static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6220static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6221
6711cab4
SS
6222static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6223 struct sched_group **sg)
9c1cfda2 6224{
6711cab4
SS
6225 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6226 int group;
6227
6228 cpus_and(nodemask, nodemask, *cpu_map);
6229 group = first_cpu(nodemask);
6230
6231 if (sg)
6232 *sg = &per_cpu(sched_group_allnodes, group);
6233 return group;
1da177e4 6234}
6711cab4 6235
08069033
SS
6236static void init_numa_sched_groups_power(struct sched_group *group_head)
6237{
6238 struct sched_group *sg = group_head;
6239 int j;
6240
6241 if (!sg)
6242 return;
6243next_sg:
6244 for_each_cpu_mask(j, sg->cpumask) {
6245 struct sched_domain *sd;
6246
6247 sd = &per_cpu(phys_domains, j);
6248 if (j != first_cpu(sd->groups->cpumask)) {
6249 /*
6250 * Only add "power" once for each
6251 * physical package.
6252 */
6253 continue;
6254 }
6255
6256 sg->cpu_power += sd->groups->cpu_power;
6257 }
6258 sg = sg->next;
6259 if (sg != group_head)
6260 goto next_sg;
6261}
1da177e4
LT
6262#endif
6263
a616058b 6264#ifdef CONFIG_NUMA
51888ca2
SV
6265/* Free memory allocated for various sched_group structures */
6266static void free_sched_groups(const cpumask_t *cpu_map)
6267{
a616058b 6268 int cpu, i;
51888ca2
SV
6269
6270 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6271 struct sched_group **sched_group_nodes
6272 = sched_group_nodes_bycpu[cpu];
6273
51888ca2
SV
6274 if (!sched_group_nodes)
6275 continue;
6276
6277 for (i = 0; i < MAX_NUMNODES; i++) {
6278 cpumask_t nodemask = node_to_cpumask(i);
6279 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6280
6281 cpus_and(nodemask, nodemask, *cpu_map);
6282 if (cpus_empty(nodemask))
6283 continue;
6284
6285 if (sg == NULL)
6286 continue;
6287 sg = sg->next;
6288next_sg:
6289 oldsg = sg;
6290 sg = sg->next;
6291 kfree(oldsg);
6292 if (oldsg != sched_group_nodes[i])
6293 goto next_sg;
6294 }
6295 kfree(sched_group_nodes);
6296 sched_group_nodes_bycpu[cpu] = NULL;
6297 }
51888ca2 6298}
a616058b
SS
6299#else
6300static void free_sched_groups(const cpumask_t *cpu_map)
6301{
6302}
6303#endif
51888ca2 6304
89c4710e
SS
6305/*
6306 * Initialize sched groups cpu_power.
6307 *
6308 * cpu_power indicates the capacity of sched group, which is used while
6309 * distributing the load between different sched groups in a sched domain.
6310 * Typically cpu_power for all the groups in a sched domain will be same unless
6311 * there are asymmetries in the topology. If there are asymmetries, group
6312 * having more cpu_power will pickup more load compared to the group having
6313 * less cpu_power.
6314 *
6315 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6316 * the maximum number of tasks a group can handle in the presence of other idle
6317 * or lightly loaded groups in the same sched domain.
6318 */
6319static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6320{
6321 struct sched_domain *child;
6322 struct sched_group *group;
6323
6324 WARN_ON(!sd || !sd->groups);
6325
6326 if (cpu != first_cpu(sd->groups->cpumask))
6327 return;
6328
6329 child = sd->child;
6330
6331 /*
6332 * For perf policy, if the groups in child domain share resources
6333 * (for example cores sharing some portions of the cache hierarchy
6334 * or SMT), then set this domain groups cpu_power such that each group
6335 * can handle only one task, when there are other idle groups in the
6336 * same sched domain.
6337 */
6338 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6339 (child->flags &
6340 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6341 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6342 return;
6343 }
6344
6345 sd->groups->cpu_power = 0;
6346
6347 /*
6348 * add cpu_power of each child group to this groups cpu_power
6349 */
6350 group = child->groups;
6351 do {
6352 sd->groups->cpu_power += group->cpu_power;
6353 group = group->next;
6354 } while (group != child->groups);
6355}
6356
1da177e4 6357/*
1a20ff27
DG
6358 * Build sched domains for a given set of cpus and attach the sched domains
6359 * to the individual cpus
1da177e4 6360 */
51888ca2 6361static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6362{
6363 int i;
89c4710e 6364 struct sched_domain *sd;
d1b55138
JH
6365#ifdef CONFIG_NUMA
6366 struct sched_group **sched_group_nodes = NULL;
6711cab4 6367 int sd_allnodes = 0;
d1b55138
JH
6368
6369 /*
6370 * Allocate the per-node list of sched groups
6371 */
51888ca2 6372 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
d3a5aa98 6373 GFP_KERNEL);
d1b55138
JH
6374 if (!sched_group_nodes) {
6375 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6376 return -ENOMEM;
d1b55138
JH
6377 }
6378 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6379#endif
1da177e4
LT
6380
6381 /*
1a20ff27 6382 * Set up domains for cpus specified by the cpu_map.
1da177e4 6383 */
1a20ff27 6384 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6385 struct sched_domain *sd = NULL, *p;
6386 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6387
1a20ff27 6388 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6389
6390#ifdef CONFIG_NUMA
d1b55138 6391 if (cpus_weight(*cpu_map)
9c1cfda2
JH
6392 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6393 sd = &per_cpu(allnodes_domains, i);
6394 *sd = SD_ALLNODES_INIT;
6395 sd->span = *cpu_map;
6711cab4 6396 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6397 p = sd;
6711cab4 6398 sd_allnodes = 1;
9c1cfda2
JH
6399 } else
6400 p = NULL;
6401
1da177e4 6402 sd = &per_cpu(node_domains, i);
1da177e4 6403 *sd = SD_NODE_INIT;
9c1cfda2
JH
6404 sd->span = sched_domain_node_span(cpu_to_node(i));
6405 sd->parent = p;
1a848870
SS
6406 if (p)
6407 p->child = sd;
9c1cfda2 6408 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6409#endif
6410
6411 p = sd;
6412 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6413 *sd = SD_CPU_INIT;
6414 sd->span = nodemask;
6415 sd->parent = p;
1a848870
SS
6416 if (p)
6417 p->child = sd;
6711cab4 6418 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6419
1e9f28fa
SS
6420#ifdef CONFIG_SCHED_MC
6421 p = sd;
6422 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6423 *sd = SD_MC_INIT;
6424 sd->span = cpu_coregroup_map(i);
6425 cpus_and(sd->span, sd->span, *cpu_map);
6426 sd->parent = p;
1a848870 6427 p->child = sd;
6711cab4 6428 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6429#endif
6430
1da177e4
LT
6431#ifdef CONFIG_SCHED_SMT
6432 p = sd;
6433 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6434 *sd = SD_SIBLING_INIT;
6435 sd->span = cpu_sibling_map[i];
1a20ff27 6436 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6437 sd->parent = p;
1a848870 6438 p->child = sd;
6711cab4 6439 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6440#endif
6441 }
6442
6443#ifdef CONFIG_SCHED_SMT
6444 /* Set up CPU (sibling) groups */
9c1cfda2 6445 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6446 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6447 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6448 if (i != first_cpu(this_sibling_map))
6449 continue;
6450
6711cab4 6451 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
1da177e4
LT
6452 }
6453#endif
6454
1e9f28fa
SS
6455#ifdef CONFIG_SCHED_MC
6456 /* Set up multi-core groups */
6457 for_each_cpu_mask(i, *cpu_map) {
6458 cpumask_t this_core_map = cpu_coregroup_map(i);
6459 cpus_and(this_core_map, this_core_map, *cpu_map);
6460 if (i != first_cpu(this_core_map))
6461 continue;
6711cab4 6462 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
1e9f28fa
SS
6463 }
6464#endif
6465
6466
1da177e4
LT
6467 /* Set up physical groups */
6468 for (i = 0; i < MAX_NUMNODES; i++) {
6469 cpumask_t nodemask = node_to_cpumask(i);
6470
1a20ff27 6471 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6472 if (cpus_empty(nodemask))
6473 continue;
6474
6711cab4 6475 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6476 }
6477
6478#ifdef CONFIG_NUMA
6479 /* Set up node groups */
6711cab4
SS
6480 if (sd_allnodes)
6481 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
9c1cfda2
JH
6482
6483 for (i = 0; i < MAX_NUMNODES; i++) {
6484 /* Set up node groups */
6485 struct sched_group *sg, *prev;
6486 cpumask_t nodemask = node_to_cpumask(i);
6487 cpumask_t domainspan;
6488 cpumask_t covered = CPU_MASK_NONE;
6489 int j;
6490
6491 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6492 if (cpus_empty(nodemask)) {
6493 sched_group_nodes[i] = NULL;
9c1cfda2 6494 continue;
d1b55138 6495 }
9c1cfda2
JH
6496
6497 domainspan = sched_domain_node_span(i);
6498 cpus_and(domainspan, domainspan, *cpu_map);
6499
15f0b676 6500 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6501 if (!sg) {
6502 printk(KERN_WARNING "Can not alloc domain group for "
6503 "node %d\n", i);
6504 goto error;
6505 }
9c1cfda2
JH
6506 sched_group_nodes[i] = sg;
6507 for_each_cpu_mask(j, nodemask) {
6508 struct sched_domain *sd;
6509 sd = &per_cpu(node_domains, j);
6510 sd->groups = sg;
9c1cfda2
JH
6511 }
6512 sg->cpu_power = 0;
6513 sg->cpumask = nodemask;
51888ca2 6514 sg->next = sg;
9c1cfda2
JH
6515 cpus_or(covered, covered, nodemask);
6516 prev = sg;
6517
6518 for (j = 0; j < MAX_NUMNODES; j++) {
6519 cpumask_t tmp, notcovered;
6520 int n = (i + j) % MAX_NUMNODES;
6521
6522 cpus_complement(notcovered, covered);
6523 cpus_and(tmp, notcovered, *cpu_map);
6524 cpus_and(tmp, tmp, domainspan);
6525 if (cpus_empty(tmp))
6526 break;
6527
6528 nodemask = node_to_cpumask(n);
6529 cpus_and(tmp, tmp, nodemask);
6530 if (cpus_empty(tmp))
6531 continue;
6532
15f0b676
SV
6533 sg = kmalloc_node(sizeof(struct sched_group),
6534 GFP_KERNEL, i);
9c1cfda2
JH
6535 if (!sg) {
6536 printk(KERN_WARNING
6537 "Can not alloc domain group for node %d\n", j);
51888ca2 6538 goto error;
9c1cfda2
JH
6539 }
6540 sg->cpu_power = 0;
6541 sg->cpumask = tmp;
51888ca2 6542 sg->next = prev->next;
9c1cfda2
JH
6543 cpus_or(covered, covered, tmp);
6544 prev->next = sg;
6545 prev = sg;
6546 }
9c1cfda2 6547 }
1da177e4
LT
6548#endif
6549
6550 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6551#ifdef CONFIG_SCHED_SMT
1a20ff27 6552 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6553 sd = &per_cpu(cpu_domains, i);
89c4710e 6554 init_sched_groups_power(i, sd);
5c45bf27 6555 }
1da177e4 6556#endif
1e9f28fa 6557#ifdef CONFIG_SCHED_MC
5c45bf27 6558 for_each_cpu_mask(i, *cpu_map) {
1e9f28fa 6559 sd = &per_cpu(core_domains, i);
89c4710e 6560 init_sched_groups_power(i, sd);
5c45bf27
SS
6561 }
6562#endif
1e9f28fa 6563
5c45bf27 6564 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6565 sd = &per_cpu(phys_domains, i);
89c4710e 6566 init_sched_groups_power(i, sd);
1da177e4
LT
6567 }
6568
9c1cfda2 6569#ifdef CONFIG_NUMA
08069033
SS
6570 for (i = 0; i < MAX_NUMNODES; i++)
6571 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6572
6711cab4
SS
6573 if (sd_allnodes) {
6574 struct sched_group *sg;
f712c0c7 6575
6711cab4 6576 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6577 init_numa_sched_groups_power(sg);
6578 }
9c1cfda2
JH
6579#endif
6580
1da177e4 6581 /* Attach the domains */
1a20ff27 6582 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6583 struct sched_domain *sd;
6584#ifdef CONFIG_SCHED_SMT
6585 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6586#elif defined(CONFIG_SCHED_MC)
6587 sd = &per_cpu(core_domains, i);
1da177e4
LT
6588#else
6589 sd = &per_cpu(phys_domains, i);
6590#endif
6591 cpu_attach_domain(sd, i);
6592 }
198e2f18 6593 /*
6594 * Tune cache-hot values:
6595 */
6596 calibrate_migration_costs(cpu_map);
51888ca2
SV
6597
6598 return 0;
6599
a616058b 6600#ifdef CONFIG_NUMA
51888ca2
SV
6601error:
6602 free_sched_groups(cpu_map);
6603 return -ENOMEM;
a616058b 6604#endif
1da177e4 6605}
1a20ff27
DG
6606/*
6607 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6608 */
51888ca2 6609static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6610{
6611 cpumask_t cpu_default_map;
51888ca2 6612 int err;
1da177e4 6613
1a20ff27
DG
6614 /*
6615 * Setup mask for cpus without special case scheduling requirements.
6616 * For now this just excludes isolated cpus, but could be used to
6617 * exclude other special cases in the future.
6618 */
6619 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6620
51888ca2
SV
6621 err = build_sched_domains(&cpu_default_map);
6622
6623 return err;
1a20ff27
DG
6624}
6625
6626static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6627{
51888ca2 6628 free_sched_groups(cpu_map);
9c1cfda2 6629}
1da177e4 6630
1a20ff27
DG
6631/*
6632 * Detach sched domains from a group of cpus specified in cpu_map
6633 * These cpus will now be attached to the NULL domain
6634 */
858119e1 6635static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6636{
6637 int i;
6638
6639 for_each_cpu_mask(i, *cpu_map)
6640 cpu_attach_domain(NULL, i);
6641 synchronize_sched();
6642 arch_destroy_sched_domains(cpu_map);
6643}
6644
6645/*
6646 * Partition sched domains as specified by the cpumasks below.
6647 * This attaches all cpus from the cpumasks to the NULL domain,
6648 * waits for a RCU quiescent period, recalculates sched
6649 * domain information and then attaches them back to the
6650 * correct sched domains
6651 * Call with hotplug lock held
6652 */
51888ca2 6653int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6654{
6655 cpumask_t change_map;
51888ca2 6656 int err = 0;
1a20ff27
DG
6657
6658 cpus_and(*partition1, *partition1, cpu_online_map);
6659 cpus_and(*partition2, *partition2, cpu_online_map);
6660 cpus_or(change_map, *partition1, *partition2);
6661
6662 /* Detach sched domains from all of the affected cpus */
6663 detach_destroy_domains(&change_map);
6664 if (!cpus_empty(*partition1))
51888ca2
SV
6665 err = build_sched_domains(partition1);
6666 if (!err && !cpus_empty(*partition2))
6667 err = build_sched_domains(partition2);
6668
6669 return err;
1a20ff27
DG
6670}
6671
5c45bf27
SS
6672#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6673int arch_reinit_sched_domains(void)
6674{
6675 int err;
6676
6677 lock_cpu_hotplug();
6678 detach_destroy_domains(&cpu_online_map);
6679 err = arch_init_sched_domains(&cpu_online_map);
6680 unlock_cpu_hotplug();
6681
6682 return err;
6683}
6684
6685static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6686{
6687 int ret;
6688
6689 if (buf[0] != '0' && buf[0] != '1')
6690 return -EINVAL;
6691
6692 if (smt)
6693 sched_smt_power_savings = (buf[0] == '1');
6694 else
6695 sched_mc_power_savings = (buf[0] == '1');
6696
6697 ret = arch_reinit_sched_domains();
6698
6699 return ret ? ret : count;
6700}
6701
6702int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6703{
6704 int err = 0;
48f24c4d 6705
5c45bf27
SS
6706#ifdef CONFIG_SCHED_SMT
6707 if (smt_capable())
6708 err = sysfs_create_file(&cls->kset.kobj,
6709 &attr_sched_smt_power_savings.attr);
6710#endif
6711#ifdef CONFIG_SCHED_MC
6712 if (!err && mc_capable())
6713 err = sysfs_create_file(&cls->kset.kobj,
6714 &attr_sched_mc_power_savings.attr);
6715#endif
6716 return err;
6717}
6718#endif
6719
6720#ifdef CONFIG_SCHED_MC
6721static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6722{
6723 return sprintf(page, "%u\n", sched_mc_power_savings);
6724}
48f24c4d
IM
6725static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6726 const char *buf, size_t count)
5c45bf27
SS
6727{
6728 return sched_power_savings_store(buf, count, 0);
6729}
6730SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6731 sched_mc_power_savings_store);
6732#endif
6733
6734#ifdef CONFIG_SCHED_SMT
6735static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6736{
6737 return sprintf(page, "%u\n", sched_smt_power_savings);
6738}
48f24c4d
IM
6739static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6740 const char *buf, size_t count)
5c45bf27
SS
6741{
6742 return sched_power_savings_store(buf, count, 1);
6743}
6744SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6745 sched_smt_power_savings_store);
6746#endif
6747
1da177e4
LT
6748/*
6749 * Force a reinitialization of the sched domains hierarchy. The domains
6750 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6751 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6752 * which will prevent rebalancing while the sched domains are recalculated.
6753 */
6754static int update_sched_domains(struct notifier_block *nfb,
6755 unsigned long action, void *hcpu)
6756{
1da177e4
LT
6757 switch (action) {
6758 case CPU_UP_PREPARE:
6759 case CPU_DOWN_PREPARE:
1a20ff27 6760 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6761 return NOTIFY_OK;
6762
6763 case CPU_UP_CANCELED:
6764 case CPU_DOWN_FAILED:
6765 case CPU_ONLINE:
6766 case CPU_DEAD:
6767 /*
6768 * Fall through and re-initialise the domains.
6769 */
6770 break;
6771 default:
6772 return NOTIFY_DONE;
6773 }
6774
6775 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6776 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6777
6778 return NOTIFY_OK;
6779}
1da177e4
LT
6780
6781void __init sched_init_smp(void)
6782{
5c1e1767
NP
6783 cpumask_t non_isolated_cpus;
6784
1da177e4 6785 lock_cpu_hotplug();
1a20ff27 6786 arch_init_sched_domains(&cpu_online_map);
5c1e1767
NP
6787 cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
6788 if (cpus_empty(non_isolated_cpus))
6789 cpu_set(smp_processor_id(), non_isolated_cpus);
1da177e4
LT
6790 unlock_cpu_hotplug();
6791 /* XXX: Theoretical race here - CPU may be hotplugged now */
6792 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6793
6794 /* Move init over to a non-isolated CPU */
6795 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6796 BUG();
1da177e4
LT
6797}
6798#else
6799void __init sched_init_smp(void)
6800{
6801}
6802#endif /* CONFIG_SMP */
6803
6804int in_sched_functions(unsigned long addr)
6805{
6806 /* Linker adds these: start and end of __sched functions */
6807 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6808
1da177e4
LT
6809 return in_lock_functions(addr) ||
6810 (addr >= (unsigned long)__sched_text_start
6811 && addr < (unsigned long)__sched_text_end);
6812}
6813
6814void __init sched_init(void)
6815{
1da177e4
LT
6816 int i, j, k;
6817
0a945022 6818 for_each_possible_cpu(i) {
70b97a7f
IM
6819 struct prio_array *array;
6820 struct rq *rq;
1da177e4
LT
6821
6822 rq = cpu_rq(i);
6823 spin_lock_init(&rq->lock);
fcb99371 6824 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6825 rq->nr_running = 0;
1da177e4
LT
6826 rq->active = rq->arrays;
6827 rq->expired = rq->arrays + 1;
6828 rq->best_expired_prio = MAX_PRIO;
6829
6830#ifdef CONFIG_SMP
41c7ce9a 6831 rq->sd = NULL;
7897986b
NP
6832 for (j = 1; j < 3; j++)
6833 rq->cpu_load[j] = 0;
1da177e4
LT
6834 rq->active_balance = 0;
6835 rq->push_cpu = 0;
0a2966b4 6836 rq->cpu = i;
1da177e4
LT
6837 rq->migration_thread = NULL;
6838 INIT_LIST_HEAD(&rq->migration_queue);
6839#endif
6840 atomic_set(&rq->nr_iowait, 0);
6841
6842 for (j = 0; j < 2; j++) {
6843 array = rq->arrays + j;
6844 for (k = 0; k < MAX_PRIO; k++) {
6845 INIT_LIST_HEAD(array->queue + k);
6846 __clear_bit(k, array->bitmap);
6847 }
6848 // delimiter for bitsearch
6849 __set_bit(MAX_PRIO, array->bitmap);
6850 }
6851 }
6852
2dd73a4f 6853 set_load_weight(&init_task);
b50f60ce
HC
6854
6855#ifdef CONFIG_RT_MUTEXES
6856 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6857#endif
6858
1da177e4
LT
6859 /*
6860 * The boot idle thread does lazy MMU switching as well:
6861 */
6862 atomic_inc(&init_mm.mm_count);
6863 enter_lazy_tlb(&init_mm, current);
6864
6865 /*
6866 * Make us the idle thread. Technically, schedule() should not be
6867 * called from this thread, however somewhere below it might be,
6868 * but because we are the idle thread, we just pick up running again
6869 * when this runqueue becomes "idle".
6870 */
6871 init_idle(current, smp_processor_id());
6872}
6873
6874#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6875void __might_sleep(char *file, int line)
6876{
48f24c4d 6877#ifdef in_atomic
1da177e4
LT
6878 static unsigned long prev_jiffy; /* ratelimiting */
6879
6880 if ((in_atomic() || irqs_disabled()) &&
6881 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6882 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6883 return;
6884 prev_jiffy = jiffies;
91368d73 6885 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6886 " context at %s:%d\n", file, line);
6887 printk("in_atomic():%d, irqs_disabled():%d\n",
6888 in_atomic(), irqs_disabled());
a4c410f0 6889 debug_show_held_locks(current);
1da177e4
LT
6890 dump_stack();
6891 }
6892#endif
6893}
6894EXPORT_SYMBOL(__might_sleep);
6895#endif
6896
6897#ifdef CONFIG_MAGIC_SYSRQ
6898void normalize_rt_tasks(void)
6899{
70b97a7f 6900 struct prio_array *array;
1da177e4 6901 struct task_struct *p;
1da177e4 6902 unsigned long flags;
70b97a7f 6903 struct rq *rq;
1da177e4
LT
6904
6905 read_lock_irq(&tasklist_lock);
c96d145e 6906 for_each_process(p) {
1da177e4
LT
6907 if (!rt_task(p))
6908 continue;
6909
b29739f9
IM
6910 spin_lock_irqsave(&p->pi_lock, flags);
6911 rq = __task_rq_lock(p);
1da177e4
LT
6912
6913 array = p->array;
6914 if (array)
6915 deactivate_task(p, task_rq(p));
6916 __setscheduler(p, SCHED_NORMAL, 0);
6917 if (array) {
6918 __activate_task(p, task_rq(p));
6919 resched_task(rq->curr);
6920 }
6921
b29739f9
IM
6922 __task_rq_unlock(rq);
6923 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6924 }
6925 read_unlock_irq(&tasklist_lock);
6926}
6927
6928#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6929
6930#ifdef CONFIG_IA64
6931/*
6932 * These functions are only useful for the IA64 MCA handling.
6933 *
6934 * They can only be called when the whole system has been
6935 * stopped - every CPU needs to be quiescent, and no scheduling
6936 * activity can take place. Using them for anything else would
6937 * be a serious bug, and as a result, they aren't even visible
6938 * under any other configuration.
6939 */
6940
6941/**
6942 * curr_task - return the current task for a given cpu.
6943 * @cpu: the processor in question.
6944 *
6945 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6946 */
36c8b586 6947struct task_struct *curr_task(int cpu)
1df5c10a
LT
6948{
6949 return cpu_curr(cpu);
6950}
6951
6952/**
6953 * set_curr_task - set the current task for a given cpu.
6954 * @cpu: the processor in question.
6955 * @p: the task pointer to set.
6956 *
6957 * Description: This function must only be used when non-maskable interrupts
6958 * are serviced on a separate stack. It allows the architecture to switch the
6959 * notion of the current task on a cpu in a non-blocking manner. This function
6960 * must be called with all CPU's synchronized, and interrupts disabled, the
6961 * and caller must save the original value of the current task (see
6962 * curr_task() above) and restore that value before reenabling interrupts and
6963 * re-starting the system.
6964 *
6965 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6966 */
36c8b586 6967void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6968{
6969 cpu_curr(cpu) = p;
6970}
6971
6972#endif