]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched_fair.c
Merge branch 'blk-end-request' of git://git.kernel.dk/linux-2.6-block
[mirror_ubuntu-zesty-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_BATCH wake-up granularity.
722aab0c 66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
19978ca6 72unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
bf0f6f24
IM
73
74/*
75 * SCHED_OTHER wake-up granularity.
722aab0c 76 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 */
19978ca6 82unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 83
da84d961
IM
84const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
85
bf0f6f24
IM
86/**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
62160e3f 90#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 91
62160e3f 92/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
93static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94{
62160e3f 95 return cfs_rq->rq;
bf0f6f24
IM
96}
97
62160e3f
IM
98/* An entity is a task if it doesn't "own" a runqueue */
99#define entity_is_task(se) (!se->my_q)
bf0f6f24 100
62160e3f 101#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 102
62160e3f
IM
103static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
104{
105 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
106}
107
108#define entity_is_task(se) 1
109
bf0f6f24
IM
110#endif /* CONFIG_FAIR_GROUP_SCHED */
111
112static inline struct task_struct *task_of(struct sched_entity *se)
113{
114 return container_of(se, struct task_struct, se);
115}
116
117
118/**************************************************************
119 * Scheduling class tree data structure manipulation methods:
120 */
121
0702e3eb 122static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 123{
368059a9
PZ
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
02e0431a
PZ
126 min_vruntime = vruntime;
127
128 return min_vruntime;
129}
130
0702e3eb 131static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
132{
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
136
137 return min_vruntime;
138}
139
0702e3eb 140static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 141{
30cfdcfc 142 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
143}
144
bf0f6f24
IM
145/*
146 * Enqueue an entity into the rb-tree:
147 */
0702e3eb 148static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
149{
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
9014623c 153 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
154 int leftmost = 1;
155
156 /*
157 * Find the right place in the rbtree:
158 */
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
162 /*
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
165 */
9014623c 166 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
171 }
172 }
173
174 /*
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
177 */
178 if (leftmost)
57cb499d 179 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
180
181 rb_link_node(&se->run_node, parent, link);
182 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
183}
184
0702e3eb 185static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
186{
187 if (cfs_rq->rb_leftmost == &se->run_node)
57cb499d 188 cfs_rq->rb_leftmost = rb_next(&se->run_node);
e9acbff6 189
bf0f6f24 190 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
191}
192
193static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
194{
195 return cfs_rq->rb_leftmost;
196}
197
198static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
199{
200 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
201}
202
aeb73b04
PZ
203static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
204{
205 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
206 struct sched_entity *se = NULL;
207 struct rb_node *parent;
208
209 while (*link) {
210 parent = *link;
211 se = rb_entry(parent, struct sched_entity, run_node);
212 link = &parent->rb_right;
213 }
214
215 return se;
216}
217
bf0f6f24
IM
218/**************************************************************
219 * Scheduling class statistics methods:
220 */
221
b2be5e96
PZ
222#ifdef CONFIG_SCHED_DEBUG
223int sched_nr_latency_handler(struct ctl_table *table, int write,
224 struct file *filp, void __user *buffer, size_t *lenp,
225 loff_t *ppos)
226{
227 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
228
229 if (ret || !write)
230 return ret;
231
232 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
233 sysctl_sched_min_granularity);
234
235 return 0;
236}
237#endif
647e7cac
IM
238
239/*
240 * The idea is to set a period in which each task runs once.
241 *
242 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
243 * this period because otherwise the slices get too small.
244 *
245 * p = (nr <= nl) ? l : l*nr/nl
246 */
4d78e7b6
PZ
247static u64 __sched_period(unsigned long nr_running)
248{
249 u64 period = sysctl_sched_latency;
b2be5e96 250 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
251
252 if (unlikely(nr_running > nr_latency)) {
4bf0b771 253 period = sysctl_sched_min_granularity;
4d78e7b6 254 period *= nr_running;
4d78e7b6
PZ
255 }
256
257 return period;
258}
259
647e7cac
IM
260/*
261 * We calculate the wall-time slice from the period by taking a part
262 * proportional to the weight.
263 *
264 * s = p*w/rw
265 */
6d0f0ebd 266static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 267{
647e7cac 268 u64 slice = __sched_period(cfs_rq->nr_running);
21805085 269
647e7cac
IM
270 slice *= se->load.weight;
271 do_div(slice, cfs_rq->load.weight);
21805085 272
647e7cac 273 return slice;
bf0f6f24
IM
274}
275
647e7cac
IM
276/*
277 * We calculate the vruntime slice.
278 *
279 * vs = s/w = p/rw
280 */
281static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 282{
647e7cac 283 u64 vslice = __sched_period(nr_running);
67e9fb2a 284
10b77724 285 vslice *= NICE_0_LOAD;
647e7cac 286 do_div(vslice, rq_weight);
67e9fb2a 287
647e7cac
IM
288 return vslice;
289}
5f6d858e 290
647e7cac
IM
291static u64 sched_vslice(struct cfs_rq *cfs_rq)
292{
293 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
294}
295
296static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
297{
298 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
299 cfs_rq->nr_running + 1);
67e9fb2a
PZ
300}
301
bf0f6f24
IM
302/*
303 * Update the current task's runtime statistics. Skip current tasks that
304 * are not in our scheduling class.
305 */
306static inline void
8ebc91d9
IM
307__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
308 unsigned long delta_exec)
bf0f6f24 309{
bbdba7c0 310 unsigned long delta_exec_weighted;
b0ffd246 311 u64 vruntime;
bf0f6f24 312
8179ca23 313 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
314
315 curr->sum_exec_runtime += delta_exec;
7a62eabc 316 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
317 delta_exec_weighted = delta_exec;
318 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
319 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
320 &curr->load);
321 }
322 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
323
324 /*
325 * maintain cfs_rq->min_vruntime to be a monotonic increasing
326 * value tracking the leftmost vruntime in the tree.
327 */
328 if (first_fair(cfs_rq)) {
b0ffd246
PZ
329 vruntime = min_vruntime(curr->vruntime,
330 __pick_next_entity(cfs_rq)->vruntime);
02e0431a 331 } else
b0ffd246 332 vruntime = curr->vruntime;
02e0431a
PZ
333
334 cfs_rq->min_vruntime =
b0ffd246 335 max_vruntime(cfs_rq->min_vruntime, vruntime);
bf0f6f24
IM
336}
337
b7cc0896 338static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 339{
429d43bc 340 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 341 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
342 unsigned long delta_exec;
343
344 if (unlikely(!curr))
345 return;
346
347 /*
348 * Get the amount of time the current task was running
349 * since the last time we changed load (this cannot
350 * overflow on 32 bits):
351 */
8ebc91d9 352 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 353
8ebc91d9
IM
354 __update_curr(cfs_rq, curr, delta_exec);
355 curr->exec_start = now;
d842de87
SV
356
357 if (entity_is_task(curr)) {
358 struct task_struct *curtask = task_of(curr);
359
360 cpuacct_charge(curtask, delta_exec);
361 }
bf0f6f24
IM
362}
363
364static inline void
5870db5b 365update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 366{
d281918d 367 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
368}
369
bf0f6f24
IM
370/*
371 * Task is being enqueued - update stats:
372 */
d2417e5a 373static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 374{
bf0f6f24
IM
375 /*
376 * Are we enqueueing a waiting task? (for current tasks
377 * a dequeue/enqueue event is a NOP)
378 */
429d43bc 379 if (se != cfs_rq->curr)
5870db5b 380 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
381}
382
bf0f6f24 383static void
9ef0a961 384update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 385{
bbdba7c0
IM
386 schedstat_set(se->wait_max, max(se->wait_max,
387 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
388 schedstat_set(se->wait_count, se->wait_count + 1);
389 schedstat_set(se->wait_sum, se->wait_sum +
390 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 391 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
392}
393
394static inline void
19b6a2e3 395update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 396{
bf0f6f24
IM
397 /*
398 * Mark the end of the wait period if dequeueing a
399 * waiting task:
400 */
429d43bc 401 if (se != cfs_rq->curr)
9ef0a961 402 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
403}
404
405/*
406 * We are picking a new current task - update its stats:
407 */
408static inline void
79303e9e 409update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
410{
411 /*
412 * We are starting a new run period:
413 */
d281918d 414 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
415}
416
bf0f6f24
IM
417/**************************************************
418 * Scheduling class queueing methods:
419 */
420
30cfdcfc
DA
421static void
422account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
423{
424 update_load_add(&cfs_rq->load, se->load.weight);
425 cfs_rq->nr_running++;
426 se->on_rq = 1;
427}
428
429static void
430account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
431{
432 update_load_sub(&cfs_rq->load, se->load.weight);
433 cfs_rq->nr_running--;
434 se->on_rq = 0;
435}
436
2396af69 437static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 438{
bf0f6f24
IM
439#ifdef CONFIG_SCHEDSTATS
440 if (se->sleep_start) {
d281918d 441 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 442 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
443
444 if ((s64)delta < 0)
445 delta = 0;
446
447 if (unlikely(delta > se->sleep_max))
448 se->sleep_max = delta;
449
450 se->sleep_start = 0;
451 se->sum_sleep_runtime += delta;
9745512c
AV
452
453 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
454 }
455 if (se->block_start) {
d281918d 456 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 457 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
458
459 if ((s64)delta < 0)
460 delta = 0;
461
462 if (unlikely(delta > se->block_max))
463 se->block_max = delta;
464
465 se->block_start = 0;
466 se->sum_sleep_runtime += delta;
30084fbd
IM
467
468 /*
469 * Blocking time is in units of nanosecs, so shift by 20 to
470 * get a milliseconds-range estimation of the amount of
471 * time that the task spent sleeping:
472 */
473 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 474
30084fbd
IM
475 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
476 delta >> 20);
477 }
9745512c 478 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
479 }
480#endif
481}
482
ddc97297
PZ
483static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
484{
485#ifdef CONFIG_SCHED_DEBUG
486 s64 d = se->vruntime - cfs_rq->min_vruntime;
487
488 if (d < 0)
489 d = -d;
490
491 if (d > 3*sysctl_sched_latency)
492 schedstat_inc(cfs_rq, nr_spread_over);
493#endif
494}
495
aeb73b04
PZ
496static void
497place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
498{
67e9fb2a 499 u64 vruntime;
aeb73b04 500
67e9fb2a 501 vruntime = cfs_rq->min_vruntime;
94dfb5e7 502
06877c33 503 if (sched_feat(TREE_AVG)) {
94dfb5e7
PZ
504 struct sched_entity *last = __pick_last_entity(cfs_rq);
505 if (last) {
67e9fb2a
PZ
506 vruntime += last->vruntime;
507 vruntime >>= 1;
94dfb5e7 508 }
67e9fb2a 509 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
647e7cac 510 vruntime += sched_vslice(cfs_rq)/2;
94dfb5e7 511
2cb8600e
PZ
512 /*
513 * The 'current' period is already promised to the current tasks,
514 * however the extra weight of the new task will slow them down a
515 * little, place the new task so that it fits in the slot that
516 * stays open at the end.
517 */
94dfb5e7 518 if (initial && sched_feat(START_DEBIT))
647e7cac 519 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 520
8465e792 521 if (!initial) {
2cb8600e 522 /* sleeps upto a single latency don't count. */
6cbf1c12 523 if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se))
94359f05
IM
524 vruntime -= sysctl_sched_latency;
525
2cb8600e
PZ
526 /* ensure we never gain time by being placed backwards. */
527 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
528 }
529
67e9fb2a 530 se->vruntime = vruntime;
aeb73b04
PZ
531}
532
bf0f6f24 533static void
83b699ed 534enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
535{
536 /*
a2a2d680 537 * Update run-time statistics of the 'current'.
bf0f6f24 538 */
b7cc0896 539 update_curr(cfs_rq);
bf0f6f24 540
e9acbff6 541 if (wakeup) {
aeb73b04 542 place_entity(cfs_rq, se, 0);
2396af69 543 enqueue_sleeper(cfs_rq, se);
e9acbff6 544 }
bf0f6f24 545
d2417e5a 546 update_stats_enqueue(cfs_rq, se);
ddc97297 547 check_spread(cfs_rq, se);
83b699ed
SV
548 if (se != cfs_rq->curr)
549 __enqueue_entity(cfs_rq, se);
30cfdcfc 550 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
551}
552
553static void
525c2716 554dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 555{
a2a2d680
DA
556 /*
557 * Update run-time statistics of the 'current'.
558 */
559 update_curr(cfs_rq);
560
19b6a2e3 561 update_stats_dequeue(cfs_rq, se);
db36cc7d 562 if (sleep) {
67e9fb2a 563#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
564 if (entity_is_task(se)) {
565 struct task_struct *tsk = task_of(se);
566
567 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 568 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 569 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 570 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 571 }
db36cc7d 572#endif
67e9fb2a
PZ
573 }
574
83b699ed 575 if (se != cfs_rq->curr)
30cfdcfc
DA
576 __dequeue_entity(cfs_rq, se);
577 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
578}
579
580/*
581 * Preempt the current task with a newly woken task if needed:
582 */
7c92e54f 583static void
2e09bf55 584check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 585{
11697830
PZ
586 unsigned long ideal_runtime, delta_exec;
587
6d0f0ebd 588 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 589 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 590 if (delta_exec > ideal_runtime)
bf0f6f24
IM
591 resched_task(rq_of(cfs_rq)->curr);
592}
593
83b699ed 594static void
8494f412 595set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 596{
83b699ed
SV
597 /* 'current' is not kept within the tree. */
598 if (se->on_rq) {
599 /*
600 * Any task has to be enqueued before it get to execute on
601 * a CPU. So account for the time it spent waiting on the
602 * runqueue.
603 */
604 update_stats_wait_end(cfs_rq, se);
605 __dequeue_entity(cfs_rq, se);
606 }
607
79303e9e 608 update_stats_curr_start(cfs_rq, se);
429d43bc 609 cfs_rq->curr = se;
eba1ed4b
IM
610#ifdef CONFIG_SCHEDSTATS
611 /*
612 * Track our maximum slice length, if the CPU's load is at
613 * least twice that of our own weight (i.e. dont track it
614 * when there are only lesser-weight tasks around):
615 */
495eca49 616 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
617 se->slice_max = max(se->slice_max,
618 se->sum_exec_runtime - se->prev_sum_exec_runtime);
619 }
620#endif
4a55b450 621 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
622}
623
9948f4b2 624static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 625{
08ec3df5 626 struct sched_entity *se = NULL;
bf0f6f24 627
08ec3df5
DA
628 if (first_fair(cfs_rq)) {
629 se = __pick_next_entity(cfs_rq);
630 set_next_entity(cfs_rq, se);
631 }
bf0f6f24
IM
632
633 return se;
634}
635
ab6cde26 636static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
637{
638 /*
639 * If still on the runqueue then deactivate_task()
640 * was not called and update_curr() has to be done:
641 */
642 if (prev->on_rq)
b7cc0896 643 update_curr(cfs_rq);
bf0f6f24 644
ddc97297 645 check_spread(cfs_rq, prev);
30cfdcfc 646 if (prev->on_rq) {
5870db5b 647 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
648 /* Put 'current' back into the tree. */
649 __enqueue_entity(cfs_rq, prev);
650 }
429d43bc 651 cfs_rq->curr = NULL;
bf0f6f24
IM
652}
653
8f4d37ec
PZ
654static void
655entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 656{
bf0f6f24 657 /*
30cfdcfc 658 * Update run-time statistics of the 'current'.
bf0f6f24 659 */
30cfdcfc 660 update_curr(cfs_rq);
bf0f6f24 661
8f4d37ec
PZ
662#ifdef CONFIG_SCHED_HRTICK
663 /*
664 * queued ticks are scheduled to match the slice, so don't bother
665 * validating it and just reschedule.
666 */
667 if (queued)
668 return resched_task(rq_of(cfs_rq)->curr);
669 /*
670 * don't let the period tick interfere with the hrtick preemption
671 */
672 if (!sched_feat(DOUBLE_TICK) &&
673 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
674 return;
675#endif
676
ce6c1311 677 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 678 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
679}
680
681/**************************************************
682 * CFS operations on tasks:
683 */
684
685#ifdef CONFIG_FAIR_GROUP_SCHED
686
687/* Walk up scheduling entities hierarchy */
688#define for_each_sched_entity(se) \
689 for (; se; se = se->parent)
690
691static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
692{
693 return p->se.cfs_rq;
694}
695
696/* runqueue on which this entity is (to be) queued */
697static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
698{
699 return se->cfs_rq;
700}
701
702/* runqueue "owned" by this group */
703static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
704{
705 return grp->my_q;
706}
707
708/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
709 * another cpu ('this_cpu')
710 */
711static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
712{
29f59db3 713 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
714}
715
716/* Iterate thr' all leaf cfs_rq's on a runqueue */
717#define for_each_leaf_cfs_rq(rq, cfs_rq) \
ec2c507f 718 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
bf0f6f24 719
fad095a7
SV
720/* Do the two (enqueued) entities belong to the same group ? */
721static inline int
722is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 723{
fad095a7 724 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
725 return 1;
726
727 return 0;
728}
729
fad095a7
SV
730static inline struct sched_entity *parent_entity(struct sched_entity *se)
731{
732 return se->parent;
733}
734
6b2d7700
SV
735#define GROUP_IMBALANCE_PCT 20
736
bf0f6f24
IM
737#else /* CONFIG_FAIR_GROUP_SCHED */
738
739#define for_each_sched_entity(se) \
740 for (; se; se = NULL)
741
742static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
743{
744 return &task_rq(p)->cfs;
745}
746
747static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
748{
749 struct task_struct *p = task_of(se);
750 struct rq *rq = task_rq(p);
751
752 return &rq->cfs;
753}
754
755/* runqueue "owned" by this group */
756static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
757{
758 return NULL;
759}
760
761static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
762{
763 return &cpu_rq(this_cpu)->cfs;
764}
765
766#define for_each_leaf_cfs_rq(rq, cfs_rq) \
767 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
768
fad095a7
SV
769static inline int
770is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
771{
772 return 1;
773}
774
fad095a7
SV
775static inline struct sched_entity *parent_entity(struct sched_entity *se)
776{
777 return NULL;
778}
779
bf0f6f24
IM
780#endif /* CONFIG_FAIR_GROUP_SCHED */
781
8f4d37ec
PZ
782#ifdef CONFIG_SCHED_HRTICK
783static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
784{
785 int requeue = rq->curr == p;
786 struct sched_entity *se = &p->se;
787 struct cfs_rq *cfs_rq = cfs_rq_of(se);
788
789 WARN_ON(task_rq(p) != rq);
790
791 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
792 u64 slice = sched_slice(cfs_rq, se);
793 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
794 s64 delta = slice - ran;
795
796 if (delta < 0) {
797 if (rq->curr == p)
798 resched_task(p);
799 return;
800 }
801
802 /*
803 * Don't schedule slices shorter than 10000ns, that just
804 * doesn't make sense. Rely on vruntime for fairness.
805 */
806 if (!requeue)
807 delta = max(10000LL, delta);
808
809 hrtick_start(rq, delta, requeue);
810 }
811}
812#else
813static inline void
814hrtick_start_fair(struct rq *rq, struct task_struct *p)
815{
816}
817#endif
818
bf0f6f24
IM
819/*
820 * The enqueue_task method is called before nr_running is
821 * increased. Here we update the fair scheduling stats and
822 * then put the task into the rbtree:
823 */
fd390f6a 824static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
825{
826 struct cfs_rq *cfs_rq;
58e2d4ca
SV
827 struct sched_entity *se = &p->se,
828 *topse = NULL; /* Highest schedulable entity */
829 int incload = 1;
bf0f6f24
IM
830
831 for_each_sched_entity(se) {
58e2d4ca
SV
832 topse = se;
833 if (se->on_rq) {
834 incload = 0;
bf0f6f24 835 break;
58e2d4ca 836 }
bf0f6f24 837 cfs_rq = cfs_rq_of(se);
83b699ed 838 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 839 wakeup = 1;
bf0f6f24 840 }
58e2d4ca
SV
841 /* Increment cpu load if we just enqueued the first task of a group on
842 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
843 * at the highest grouping level.
844 */
845 if (incload)
846 inc_cpu_load(rq, topse->load.weight);
8f4d37ec
PZ
847
848 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
849}
850
851/*
852 * The dequeue_task method is called before nr_running is
853 * decreased. We remove the task from the rbtree and
854 * update the fair scheduling stats:
855 */
f02231e5 856static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
857{
858 struct cfs_rq *cfs_rq;
58e2d4ca
SV
859 struct sched_entity *se = &p->se,
860 *topse = NULL; /* Highest schedulable entity */
861 int decload = 1;
bf0f6f24
IM
862
863 for_each_sched_entity(se) {
58e2d4ca 864 topse = se;
bf0f6f24 865 cfs_rq = cfs_rq_of(se);
525c2716 866 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 867 /* Don't dequeue parent if it has other entities besides us */
58e2d4ca
SV
868 if (cfs_rq->load.weight) {
869 if (parent_entity(se))
870 decload = 0;
bf0f6f24 871 break;
58e2d4ca 872 }
b9fa3df3 873 sleep = 1;
bf0f6f24 874 }
58e2d4ca
SV
875 /* Decrement cpu load if we just dequeued the last task of a group on
876 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
877 * at the highest grouping level.
878 */
879 if (decload)
880 dec_cpu_load(rq, topse->load.weight);
8f4d37ec
PZ
881
882 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
883}
884
885/*
1799e35d
IM
886 * sched_yield() support is very simple - we dequeue and enqueue.
887 *
888 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 889 */
4530d7ab 890static void yield_task_fair(struct rq *rq)
bf0f6f24 891{
db292ca3
IM
892 struct task_struct *curr = rq->curr;
893 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
894 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
895
896 /*
1799e35d
IM
897 * Are we the only task in the tree?
898 */
899 if (unlikely(cfs_rq->nr_running == 1))
900 return;
901
db292ca3 902 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1799e35d
IM
903 __update_rq_clock(rq);
904 /*
a2a2d680 905 * Update run-time statistics of the 'current'.
1799e35d 906 */
2b1e315d 907 update_curr(cfs_rq);
1799e35d
IM
908
909 return;
910 }
911 /*
912 * Find the rightmost entry in the rbtree:
bf0f6f24 913 */
2b1e315d 914 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
915 /*
916 * Already in the rightmost position?
917 */
2b1e315d 918 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
919 return;
920
921 /*
922 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
923 * Upon rescheduling, sched_class::put_prev_task() will place
924 * 'current' within the tree based on its new key value.
1799e35d 925 */
30cfdcfc 926 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
927}
928
e7693a36
GH
929/*
930 * wake_idle() will wake a task on an idle cpu if task->cpu is
931 * not idle and an idle cpu is available. The span of cpus to
932 * search starts with cpus closest then further out as needed,
933 * so we always favor a closer, idle cpu.
934 *
935 * Returns the CPU we should wake onto.
936 */
937#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
938static int wake_idle(int cpu, struct task_struct *p)
939{
940 cpumask_t tmp;
941 struct sched_domain *sd;
942 int i;
943
944 /*
945 * If it is idle, then it is the best cpu to run this task.
946 *
947 * This cpu is also the best, if it has more than one task already.
948 * Siblings must be also busy(in most cases) as they didn't already
949 * pickup the extra load from this cpu and hence we need not check
950 * sibling runqueue info. This will avoid the checks and cache miss
951 * penalities associated with that.
952 */
953 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
954 return cpu;
955
956 for_each_domain(cpu, sd) {
957 if (sd->flags & SD_WAKE_IDLE) {
958 cpus_and(tmp, sd->span, p->cpus_allowed);
959 for_each_cpu_mask(i, tmp) {
960 if (idle_cpu(i)) {
961 if (i != task_cpu(p)) {
962 schedstat_inc(p,
963 se.nr_wakeups_idle);
964 }
965 return i;
966 }
967 }
968 } else {
969 break;
970 }
971 }
972 return cpu;
973}
974#else
975static inline int wake_idle(int cpu, struct task_struct *p)
976{
977 return cpu;
978}
979#endif
980
981#ifdef CONFIG_SMP
982static int select_task_rq_fair(struct task_struct *p, int sync)
983{
984 int cpu, this_cpu;
985 struct rq *rq;
986 struct sched_domain *sd, *this_sd = NULL;
987 int new_cpu;
988
989 cpu = task_cpu(p);
990 rq = task_rq(p);
991 this_cpu = smp_processor_id();
992 new_cpu = cpu;
993
9ec3b77e
DA
994 if (cpu == this_cpu)
995 goto out_set_cpu;
996
e7693a36
GH
997 for_each_domain(this_cpu, sd) {
998 if (cpu_isset(cpu, sd->span)) {
999 this_sd = sd;
1000 break;
1001 }
1002 }
1003
1004 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1005 goto out_set_cpu;
1006
1007 /*
1008 * Check for affine wakeup and passive balancing possibilities.
1009 */
1010 if (this_sd) {
1011 int idx = this_sd->wake_idx;
1012 unsigned int imbalance;
1013 unsigned long load, this_load;
1014
1015 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1016
1017 load = source_load(cpu, idx);
1018 this_load = target_load(this_cpu, idx);
1019
1020 new_cpu = this_cpu; /* Wake to this CPU if we can */
1021
1022 if (this_sd->flags & SD_WAKE_AFFINE) {
1023 unsigned long tl = this_load;
1024 unsigned long tl_per_task;
1025
1026 /*
1027 * Attract cache-cold tasks on sync wakeups:
1028 */
1029 if (sync && !task_hot(p, rq->clock, this_sd))
1030 goto out_set_cpu;
1031
1032 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1033 tl_per_task = cpu_avg_load_per_task(this_cpu);
1034
1035 /*
1036 * If sync wakeup then subtract the (maximum possible)
1037 * effect of the currently running task from the load
1038 * of the current CPU:
1039 */
1040 if (sync)
1041 tl -= current->se.load.weight;
1042
1043 if ((tl <= load &&
1044 tl + target_load(cpu, idx) <= tl_per_task) ||
1045 100*(tl + p->se.load.weight) <= imbalance*load) {
1046 /*
1047 * This domain has SD_WAKE_AFFINE and
1048 * p is cache cold in this domain, and
1049 * there is no bad imbalance.
1050 */
1051 schedstat_inc(this_sd, ttwu_move_affine);
1052 schedstat_inc(p, se.nr_wakeups_affine);
1053 goto out_set_cpu;
1054 }
1055 }
1056
1057 /*
1058 * Start passive balancing when half the imbalance_pct
1059 * limit is reached.
1060 */
1061 if (this_sd->flags & SD_WAKE_BALANCE) {
1062 if (imbalance*this_load <= 100*load) {
1063 schedstat_inc(this_sd, ttwu_move_balance);
1064 schedstat_inc(p, se.nr_wakeups_passive);
1065 goto out_set_cpu;
1066 }
1067 }
1068 }
1069
1070 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1071out_set_cpu:
1072 return wake_idle(new_cpu, p);
1073}
1074#endif /* CONFIG_SMP */
1075
1076
bf0f6f24
IM
1077/*
1078 * Preempt the current task with a newly woken task if needed:
1079 */
2e09bf55 1080static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1081{
1082 struct task_struct *curr = rq->curr;
fad095a7 1083 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1084 struct sched_entity *se = &curr->se, *pse = &p->se;
502d26b5 1085 unsigned long gran;
bf0f6f24
IM
1086
1087 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1088 update_rq_clock(rq);
b7cc0896 1089 update_curr(cfs_rq);
bf0f6f24
IM
1090 resched_task(curr);
1091 return;
1092 }
91c234b4
IM
1093 /*
1094 * Batch tasks do not preempt (their preemption is driven by
1095 * the tick):
1096 */
1097 if (unlikely(p->policy == SCHED_BATCH))
1098 return;
bf0f6f24 1099
77d9cc44
IM
1100 if (!sched_feat(WAKEUP_PREEMPT))
1101 return;
8651a86c 1102
77d9cc44
IM
1103 while (!is_same_group(se, pse)) {
1104 se = parent_entity(se);
1105 pse = parent_entity(pse);
ce6c1311 1106 }
77d9cc44 1107
77d9cc44
IM
1108 gran = sysctl_sched_wakeup_granularity;
1109 if (unlikely(se->load.weight != NICE_0_LOAD))
1110 gran = calc_delta_fair(gran, &se->load);
1111
502d26b5 1112 if (pse->vruntime + gran < se->vruntime)
77d9cc44 1113 resched_task(curr);
bf0f6f24
IM
1114}
1115
fb8d4724 1116static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1117{
8f4d37ec 1118 struct task_struct *p;
bf0f6f24
IM
1119 struct cfs_rq *cfs_rq = &rq->cfs;
1120 struct sched_entity *se;
1121
1122 if (unlikely(!cfs_rq->nr_running))
1123 return NULL;
1124
1125 do {
9948f4b2 1126 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1127 cfs_rq = group_cfs_rq(se);
1128 } while (cfs_rq);
1129
8f4d37ec
PZ
1130 p = task_of(se);
1131 hrtick_start_fair(rq, p);
1132
1133 return p;
bf0f6f24
IM
1134}
1135
1136/*
1137 * Account for a descheduled task:
1138 */
31ee529c 1139static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1140{
1141 struct sched_entity *se = &prev->se;
1142 struct cfs_rq *cfs_rq;
1143
1144 for_each_sched_entity(se) {
1145 cfs_rq = cfs_rq_of(se);
ab6cde26 1146 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1147 }
1148}
1149
681f3e68 1150#ifdef CONFIG_SMP
bf0f6f24
IM
1151/**************************************************
1152 * Fair scheduling class load-balancing methods:
1153 */
1154
1155/*
1156 * Load-balancing iterator. Note: while the runqueue stays locked
1157 * during the whole iteration, the current task might be
1158 * dequeued so the iterator has to be dequeue-safe. Here we
1159 * achieve that by always pre-iterating before returning
1160 * the current task:
1161 */
a9957449 1162static struct task_struct *
bf0f6f24
IM
1163__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1164{
1165 struct task_struct *p;
1166
1167 if (!curr)
1168 return NULL;
1169
1170 p = rb_entry(curr, struct task_struct, se.run_node);
1171 cfs_rq->rb_load_balance_curr = rb_next(curr);
1172
1173 return p;
1174}
1175
1176static struct task_struct *load_balance_start_fair(void *arg)
1177{
1178 struct cfs_rq *cfs_rq = arg;
1179
1180 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1181}
1182
1183static struct task_struct *load_balance_next_fair(void *arg)
1184{
1185 struct cfs_rq *cfs_rq = arg;
1186
1187 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1188}
1189
43010659 1190static unsigned long
bf0f6f24 1191load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1192 unsigned long max_load_move,
a4ac01c3
PW
1193 struct sched_domain *sd, enum cpu_idle_type idle,
1194 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
1195{
1196 struct cfs_rq *busy_cfs_rq;
bf0f6f24
IM
1197 long rem_load_move = max_load_move;
1198 struct rq_iterator cfs_rq_iterator;
6b2d7700 1199 unsigned long load_moved;
bf0f6f24
IM
1200
1201 cfs_rq_iterator.start = load_balance_start_fair;
1202 cfs_rq_iterator.next = load_balance_next_fair;
1203
1204 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 1205#ifdef CONFIG_FAIR_GROUP_SCHED
6b2d7700
SV
1206 struct cfs_rq *this_cfs_rq = busy_cfs_rq->tg->cfs_rq[this_cpu];
1207 unsigned long maxload, task_load, group_weight;
1208 unsigned long thisload, per_task_load;
1209 struct sched_entity *se = busy_cfs_rq->tg->se[busiest->cpu];
bf0f6f24 1210
6b2d7700
SV
1211 task_load = busy_cfs_rq->load.weight;
1212 group_weight = se->load.weight;
bf0f6f24 1213
6b2d7700
SV
1214 /*
1215 * 'group_weight' is contributed by tasks of total weight
1216 * 'task_load'. To move 'rem_load_move' worth of weight only,
1217 * we need to move a maximum task load of:
1218 *
1219 * maxload = (remload / group_weight) * task_load;
1220 */
1221 maxload = (rem_load_move * task_load) / group_weight;
1222
1223 if (!maxload || !task_load)
bf0f6f24
IM
1224 continue;
1225
6b2d7700
SV
1226 per_task_load = task_load / busy_cfs_rq->nr_running;
1227 /*
1228 * balance_tasks will try to forcibly move atleast one task if
1229 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
1230 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
1231 */
1232 if (100 * maxload < GROUP_IMBALANCE_PCT * per_task_load)
1233 continue;
bf0f6f24 1234
6b2d7700
SV
1235 /* Disable priority-based load balance */
1236 *this_best_prio = 0;
1237 thisload = this_cfs_rq->load.weight;
a4ac01c3 1238#else
e56f31aa 1239# define maxload rem_load_move
a4ac01c3 1240#endif
e1d1484f
PW
1241 /*
1242 * pass busy_cfs_rq argument into
bf0f6f24
IM
1243 * load_balance_[start|next]_fair iterators
1244 */
1245 cfs_rq_iterator.arg = busy_cfs_rq;
6b2d7700 1246 load_moved = balance_tasks(this_rq, this_cpu, busiest,
e1d1484f
PW
1247 maxload, sd, idle, all_pinned,
1248 this_best_prio,
1249 &cfs_rq_iterator);
bf0f6f24 1250
6b2d7700
SV
1251#ifdef CONFIG_FAIR_GROUP_SCHED
1252 /*
1253 * load_moved holds the task load that was moved. The
1254 * effective (group) weight moved would be:
1255 * load_moved_eff = load_moved/task_load * group_weight;
1256 */
1257 load_moved = (group_weight * load_moved) / task_load;
1258
1259 /* Adjust shares on both cpus to reflect load_moved */
1260 group_weight -= load_moved;
1261 set_se_shares(se, group_weight);
1262
1263 se = busy_cfs_rq->tg->se[this_cpu];
1264 if (!thisload)
1265 group_weight = load_moved;
1266 else
1267 group_weight = se->load.weight + load_moved;
1268 set_se_shares(se, group_weight);
1269#endif
1270
1271 rem_load_move -= load_moved;
1272
e1d1484f 1273 if (rem_load_move <= 0)
bf0f6f24
IM
1274 break;
1275 }
1276
43010659 1277 return max_load_move - rem_load_move;
bf0f6f24
IM
1278}
1279
e1d1484f
PW
1280static int
1281move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1282 struct sched_domain *sd, enum cpu_idle_type idle)
1283{
1284 struct cfs_rq *busy_cfs_rq;
1285 struct rq_iterator cfs_rq_iterator;
1286
1287 cfs_rq_iterator.start = load_balance_start_fair;
1288 cfs_rq_iterator.next = load_balance_next_fair;
1289
1290 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1291 /*
1292 * pass busy_cfs_rq argument into
1293 * load_balance_[start|next]_fair iterators
1294 */
1295 cfs_rq_iterator.arg = busy_cfs_rq;
1296 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1297 &cfs_rq_iterator))
1298 return 1;
1299 }
1300
1301 return 0;
1302}
681f3e68 1303#endif
e1d1484f 1304
bf0f6f24
IM
1305/*
1306 * scheduler tick hitting a task of our scheduling class:
1307 */
8f4d37ec 1308static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1309{
1310 struct cfs_rq *cfs_rq;
1311 struct sched_entity *se = &curr->se;
1312
1313 for_each_sched_entity(se) {
1314 cfs_rq = cfs_rq_of(se);
8f4d37ec 1315 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1316 }
1317}
1318
8eb172d9 1319#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1320
bf0f6f24
IM
1321/*
1322 * Share the fairness runtime between parent and child, thus the
1323 * total amount of pressure for CPU stays equal - new tasks
1324 * get a chance to run but frequent forkers are not allowed to
1325 * monopolize the CPU. Note: the parent runqueue is locked,
1326 * the child is not running yet.
1327 */
ee0827d8 1328static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1329{
1330 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1331 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1332 int this_cpu = smp_processor_id();
bf0f6f24
IM
1333
1334 sched_info_queued(p);
1335
7109c442 1336 update_curr(cfs_rq);
aeb73b04 1337 place_entity(cfs_rq, se, 1);
4d78e7b6 1338
3c90e6e9 1339 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1340 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1341 curr && curr->vruntime < se->vruntime) {
87fefa38 1342 /*
edcb60a3
IM
1343 * Upon rescheduling, sched_class::put_prev_task() will place
1344 * 'current' within the tree based on its new key value.
1345 */
4d78e7b6 1346 swap(curr->vruntime, se->vruntime);
4d78e7b6 1347 }
bf0f6f24 1348
b9dca1e0 1349 enqueue_task_fair(rq, p, 0);
bb61c210 1350 resched_task(rq->curr);
bf0f6f24
IM
1351}
1352
cb469845
SR
1353/*
1354 * Priority of the task has changed. Check to see if we preempt
1355 * the current task.
1356 */
1357static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1358 int oldprio, int running)
1359{
1360 /*
1361 * Reschedule if we are currently running on this runqueue and
1362 * our priority decreased, or if we are not currently running on
1363 * this runqueue and our priority is higher than the current's
1364 */
1365 if (running) {
1366 if (p->prio > oldprio)
1367 resched_task(rq->curr);
1368 } else
1369 check_preempt_curr(rq, p);
1370}
1371
1372/*
1373 * We switched to the sched_fair class.
1374 */
1375static void switched_to_fair(struct rq *rq, struct task_struct *p,
1376 int running)
1377{
1378 /*
1379 * We were most likely switched from sched_rt, so
1380 * kick off the schedule if running, otherwise just see
1381 * if we can still preempt the current task.
1382 */
1383 if (running)
1384 resched_task(rq->curr);
1385 else
1386 check_preempt_curr(rq, p);
1387}
1388
83b699ed
SV
1389/* Account for a task changing its policy or group.
1390 *
1391 * This routine is mostly called to set cfs_rq->curr field when a task
1392 * migrates between groups/classes.
1393 */
1394static void set_curr_task_fair(struct rq *rq)
1395{
1396 struct sched_entity *se = &rq->curr->se;
1397
1398 for_each_sched_entity(se)
1399 set_next_entity(cfs_rq_of(se), se);
1400}
1401
bf0f6f24
IM
1402/*
1403 * All the scheduling class methods:
1404 */
5522d5d5
IM
1405static const struct sched_class fair_sched_class = {
1406 .next = &idle_sched_class,
bf0f6f24
IM
1407 .enqueue_task = enqueue_task_fair,
1408 .dequeue_task = dequeue_task_fair,
1409 .yield_task = yield_task_fair,
e7693a36
GH
1410#ifdef CONFIG_SMP
1411 .select_task_rq = select_task_rq_fair,
1412#endif /* CONFIG_SMP */
bf0f6f24 1413
2e09bf55 1414 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1415
1416 .pick_next_task = pick_next_task_fair,
1417 .put_prev_task = put_prev_task_fair,
1418
681f3e68 1419#ifdef CONFIG_SMP
bf0f6f24 1420 .load_balance = load_balance_fair,
e1d1484f 1421 .move_one_task = move_one_task_fair,
681f3e68 1422#endif
bf0f6f24 1423
83b699ed 1424 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1425 .task_tick = task_tick_fair,
1426 .task_new = task_new_fair,
cb469845
SR
1427
1428 .prio_changed = prio_changed_fair,
1429 .switched_to = switched_to_fair,
bf0f6f24
IM
1430};
1431
1432#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1433static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1434{
bf0f6f24
IM
1435 struct cfs_rq *cfs_rq;
1436
75c28ace
SV
1437#ifdef CONFIG_FAIR_GROUP_SCHED
1438 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1439#endif
5973e5b9 1440 rcu_read_lock();
c3b64f1e 1441 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1442 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1443 rcu_read_unlock();
bf0f6f24
IM
1444}
1445#endif