]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched_fair.c
sched: Make tunable scaling style configurable
[mirror_ubuntu-bionic-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
9745512c 25
bf0f6f24 26/*
21805085 27 * Targeted preemption latency for CPU-bound tasks:
172e082a 28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 37 */
172e082a 38unsigned int sysctl_sched_latency = 5000000ULL;
0bcdcf28 39unsigned int normalized_sysctl_sched_latency = 5000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
2bd8e6d4 53/*
b2be5e96 54 * Minimal preemption granularity for CPU-bound tasks:
172e082a 55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 56 */
172e082a 57unsigned int sysctl_sched_min_granularity = 1000000ULL;
0bcdcf28 58unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
21805085
PZ
59
60/*
b2be5e96
PZ
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
722aab0c 63static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
64
65/*
2bba22c5 66 * After fork, child runs first. If set to 0 (default) then
b2be5e96 67 * parent will (try to) run first.
21805085 68 */
2bba22c5 69unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 70
1799e35d
IM
71/*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a4c2f00f
PZ
92static const struct sched_class fair_sched_class;
93
bf0f6f24
IM
94/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
62160e3f 98#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 99
62160e3f 100/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
62160e3f 103 return cfs_rq->rq;
bf0f6f24
IM
104}
105
62160e3f
IM
106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
bf0f6f24 108
8f48894f
PZ
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
b758149c
PZ
117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
146/* Iterate thr' all leaf cfs_rq's on a runqueue */
147#define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150/* Do the two (enqueued) entities belong to the same group ? */
151static inline int
152is_same_group(struct sched_entity *se, struct sched_entity *pse)
153{
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158}
159
160static inline struct sched_entity *parent_entity(struct sched_entity *se)
161{
162 return se->parent;
163}
164
464b7527
PZ
165/* return depth at which a sched entity is present in the hierarchy */
166static inline int depth_se(struct sched_entity *se)
167{
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174}
175
176static void
177find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178{
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206}
207
8f48894f
PZ
208#else /* !CONFIG_FAIR_GROUP_SCHED */
209
210static inline struct task_struct *task_of(struct sched_entity *se)
211{
212 return container_of(se, struct task_struct, se);
213}
bf0f6f24 214
62160e3f
IM
215static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216{
217 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
218}
219
220#define entity_is_task(se) 1
221
b758149c
PZ
222#define for_each_sched_entity(se) \
223 for (; se; se = NULL)
bf0f6f24 224
b758149c 225static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 226{
b758149c 227 return &task_rq(p)->cfs;
bf0f6f24
IM
228}
229
b758149c
PZ
230static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231{
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236}
237
238/* runqueue "owned" by this group */
239static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240{
241 return NULL;
242}
243
244static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245{
246 return &cpu_rq(this_cpu)->cfs;
247}
248
249#define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252static inline int
253is_same_group(struct sched_entity *se, struct sched_entity *pse)
254{
255 return 1;
256}
257
258static inline struct sched_entity *parent_entity(struct sched_entity *se)
259{
260 return NULL;
261}
262
464b7527
PZ
263static inline void
264find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265{
266}
267
b758149c
PZ
268#endif /* CONFIG_FAIR_GROUP_SCHED */
269
bf0f6f24
IM
270
271/**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
0702e3eb 275static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 276{
368059a9
PZ
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
02e0431a
PZ
279 min_vruntime = vruntime;
280
281 return min_vruntime;
282}
283
0702e3eb 284static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
285{
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291}
292
54fdc581
FC
293static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295{
296 return (s64)(a->vruntime - b->vruntime) < 0;
297}
298
0702e3eb 299static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 300{
30cfdcfc 301 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
302}
303
1af5f730
PZ
304static void update_min_vruntime(struct cfs_rq *cfs_rq)
305{
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
e17036da 316 if (!cfs_rq->curr)
1af5f730
PZ
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323}
324
bf0f6f24
IM
325/*
326 * Enqueue an entity into the rb-tree:
327 */
0702e3eb 328static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
329{
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
9014623c 333 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
9014623c 346 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
1af5f730 358 if (leftmost)
57cb499d 359 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
363}
364
0702e3eb 365static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 366{
3fe69747
PZ
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
3fe69747
PZ
369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
3fe69747 372 }
e9acbff6 373
bf0f6f24 374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
375}
376
bf0f6f24
IM
377static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378{
f4b6755f
PZ
379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
385}
386
f4b6755f 387static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 388{
7eee3e67 389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 390
70eee74b
BS
391 if (!last)
392 return NULL;
7eee3e67
IM
393
394 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
395}
396
bf0f6f24
IM
397/**************************************************************
398 * Scheduling class statistics methods:
399 */
400
b2be5e96
PZ
401#ifdef CONFIG_SCHED_DEBUG
402int sched_nr_latency_handler(struct ctl_table *table, int write,
8d65af78 403 void __user *buffer, size_t *lenp,
b2be5e96
PZ
404 loff_t *ppos)
405{
8d65af78 406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
b2be5e96
PZ
407
408 if (ret || !write)
409 return ret;
410
411 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
412 sysctl_sched_min_granularity);
413
414 return 0;
415}
416#endif
647e7cac 417
a7be37ac 418/*
f9c0b095 419 * delta /= w
a7be37ac
PZ
420 */
421static inline unsigned long
422calc_delta_fair(unsigned long delta, struct sched_entity *se)
423{
f9c0b095
PZ
424 if (unlikely(se->load.weight != NICE_0_LOAD))
425 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
426
427 return delta;
428}
429
647e7cac
IM
430/*
431 * The idea is to set a period in which each task runs once.
432 *
433 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
434 * this period because otherwise the slices get too small.
435 *
436 * p = (nr <= nl) ? l : l*nr/nl
437 */
4d78e7b6
PZ
438static u64 __sched_period(unsigned long nr_running)
439{
440 u64 period = sysctl_sched_latency;
b2be5e96 441 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
442
443 if (unlikely(nr_running > nr_latency)) {
4bf0b771 444 period = sysctl_sched_min_granularity;
4d78e7b6 445 period *= nr_running;
4d78e7b6
PZ
446 }
447
448 return period;
449}
450
647e7cac
IM
451/*
452 * We calculate the wall-time slice from the period by taking a part
453 * proportional to the weight.
454 *
f9c0b095 455 * s = p*P[w/rw]
647e7cac 456 */
6d0f0ebd 457static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 458{
0a582440 459 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 460
0a582440 461 for_each_sched_entity(se) {
6272d68c 462 struct load_weight *load;
3104bf03 463 struct load_weight lw;
6272d68c
LM
464
465 cfs_rq = cfs_rq_of(se);
466 load = &cfs_rq->load;
f9c0b095 467
0a582440 468 if (unlikely(!se->on_rq)) {
3104bf03 469 lw = cfs_rq->load;
0a582440
MG
470
471 update_load_add(&lw, se->load.weight);
472 load = &lw;
473 }
474 slice = calc_delta_mine(slice, se->load.weight, load);
475 }
476 return slice;
bf0f6f24
IM
477}
478
647e7cac 479/*
ac884dec 480 * We calculate the vruntime slice of a to be inserted task
647e7cac 481 *
f9c0b095 482 * vs = s/w
647e7cac 483 */
f9c0b095 484static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 485{
f9c0b095 486 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
487}
488
bf0f6f24
IM
489/*
490 * Update the current task's runtime statistics. Skip current tasks that
491 * are not in our scheduling class.
492 */
493static inline void
8ebc91d9
IM
494__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
495 unsigned long delta_exec)
bf0f6f24 496{
bbdba7c0 497 unsigned long delta_exec_weighted;
bf0f6f24 498
8179ca23 499 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
500
501 curr->sum_exec_runtime += delta_exec;
7a62eabc 502 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 503 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 504 curr->vruntime += delta_exec_weighted;
1af5f730 505 update_min_vruntime(cfs_rq);
bf0f6f24
IM
506}
507
b7cc0896 508static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 509{
429d43bc 510 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 511 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
512 unsigned long delta_exec;
513
514 if (unlikely(!curr))
515 return;
516
517 /*
518 * Get the amount of time the current task was running
519 * since the last time we changed load (this cannot
520 * overflow on 32 bits):
521 */
8ebc91d9 522 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
523 if (!delta_exec)
524 return;
bf0f6f24 525
8ebc91d9
IM
526 __update_curr(cfs_rq, curr, delta_exec);
527 curr->exec_start = now;
d842de87
SV
528
529 if (entity_is_task(curr)) {
530 struct task_struct *curtask = task_of(curr);
531
f977bb49 532 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 533 cpuacct_charge(curtask, delta_exec);
f06febc9 534 account_group_exec_runtime(curtask, delta_exec);
d842de87 535 }
bf0f6f24
IM
536}
537
538static inline void
5870db5b 539update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 540{
d281918d 541 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
542}
543
bf0f6f24
IM
544/*
545 * Task is being enqueued - update stats:
546 */
d2417e5a 547static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 548{
bf0f6f24
IM
549 /*
550 * Are we enqueueing a waiting task? (for current tasks
551 * a dequeue/enqueue event is a NOP)
552 */
429d43bc 553 if (se != cfs_rq->curr)
5870db5b 554 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
555}
556
bf0f6f24 557static void
9ef0a961 558update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 559{
bbdba7c0
IM
560 schedstat_set(se->wait_max, max(se->wait_max,
561 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
562 schedstat_set(se->wait_count, se->wait_count + 1);
563 schedstat_set(se->wait_sum, se->wait_sum +
564 rq_of(cfs_rq)->clock - se->wait_start);
768d0c27
PZ
565#ifdef CONFIG_SCHEDSTATS
566 if (entity_is_task(se)) {
567 trace_sched_stat_wait(task_of(se),
568 rq_of(cfs_rq)->clock - se->wait_start);
569 }
570#endif
e1f84508 571 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
572}
573
574static inline void
19b6a2e3 575update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 576{
bf0f6f24
IM
577 /*
578 * Mark the end of the wait period if dequeueing a
579 * waiting task:
580 */
429d43bc 581 if (se != cfs_rq->curr)
9ef0a961 582 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
583}
584
585/*
586 * We are picking a new current task - update its stats:
587 */
588static inline void
79303e9e 589update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
590{
591 /*
592 * We are starting a new run period:
593 */
d281918d 594 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
595}
596
bf0f6f24
IM
597/**************************************************
598 * Scheduling class queueing methods:
599 */
600
c09595f6
PZ
601#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
602static void
603add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
604{
605 cfs_rq->task_weight += weight;
606}
607#else
608static inline void
609add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
610{
611}
612#endif
613
30cfdcfc
DA
614static void
615account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
616{
617 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
618 if (!parent_entity(se))
619 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 620 if (entity_is_task(se)) {
c09595f6 621 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
622 list_add(&se->group_node, &cfs_rq->tasks);
623 }
30cfdcfc
DA
624 cfs_rq->nr_running++;
625 se->on_rq = 1;
626}
627
628static void
629account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
630{
631 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
632 if (!parent_entity(se))
633 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 634 if (entity_is_task(se)) {
c09595f6 635 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
636 list_del_init(&se->group_node);
637 }
30cfdcfc
DA
638 cfs_rq->nr_running--;
639 se->on_rq = 0;
640}
641
2396af69 642static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 643{
bf0f6f24 644#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
645 struct task_struct *tsk = NULL;
646
647 if (entity_is_task(se))
648 tsk = task_of(se);
649
bf0f6f24 650 if (se->sleep_start) {
d281918d 651 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
652
653 if ((s64)delta < 0)
654 delta = 0;
655
656 if (unlikely(delta > se->sleep_max))
657 se->sleep_max = delta;
658
659 se->sleep_start = 0;
660 se->sum_sleep_runtime += delta;
9745512c 661
768d0c27 662 if (tsk) {
e414314c 663 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
664 trace_sched_stat_sleep(tsk, delta);
665 }
bf0f6f24
IM
666 }
667 if (se->block_start) {
d281918d 668 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
669
670 if ((s64)delta < 0)
671 delta = 0;
672
673 if (unlikely(delta > se->block_max))
674 se->block_max = delta;
675
676 se->block_start = 0;
677 se->sum_sleep_runtime += delta;
30084fbd 678
e414314c 679 if (tsk) {
8f0dfc34
AV
680 if (tsk->in_iowait) {
681 se->iowait_sum += delta;
682 se->iowait_count++;
768d0c27 683 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
684 }
685
e414314c
PZ
686 /*
687 * Blocking time is in units of nanosecs, so shift by
688 * 20 to get a milliseconds-range estimation of the
689 * amount of time that the task spent sleeping:
690 */
691 if (unlikely(prof_on == SLEEP_PROFILING)) {
692 profile_hits(SLEEP_PROFILING,
693 (void *)get_wchan(tsk),
694 delta >> 20);
695 }
696 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 697 }
bf0f6f24
IM
698 }
699#endif
700}
701
ddc97297
PZ
702static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
703{
704#ifdef CONFIG_SCHED_DEBUG
705 s64 d = se->vruntime - cfs_rq->min_vruntime;
706
707 if (d < 0)
708 d = -d;
709
710 if (d > 3*sysctl_sched_latency)
711 schedstat_inc(cfs_rq, nr_spread_over);
712#endif
713}
714
aeb73b04
PZ
715static void
716place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
717{
1af5f730 718 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 719
2cb8600e
PZ
720 /*
721 * The 'current' period is already promised to the current tasks,
722 * however the extra weight of the new task will slow them down a
723 * little, place the new task so that it fits in the slot that
724 * stays open at the end.
725 */
94dfb5e7 726 if (initial && sched_feat(START_DEBIT))
f9c0b095 727 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 728
a2e7a7eb
MG
729 /* sleeps up to a single latency don't count. */
730 if (!initial && sched_feat(FAIR_SLEEPERS)) {
731 unsigned long thresh = sysctl_sched_latency;
a7be37ac 732
a2e7a7eb
MG
733 /*
734 * Convert the sleeper threshold into virtual time.
735 * SCHED_IDLE is a special sub-class. We care about
736 * fairness only relative to other SCHED_IDLE tasks,
737 * all of which have the same weight.
738 */
739 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
740 task_of(se)->policy != SCHED_IDLE))
741 thresh = calc_delta_fair(thresh, se);
a7be37ac 742
a2e7a7eb
MG
743 /*
744 * Halve their sleep time's effect, to allow
745 * for a gentler effect of sleepers:
746 */
747 if (sched_feat(GENTLE_FAIR_SLEEPERS))
748 thresh >>= 1;
51e0304c 749
a2e7a7eb 750 vruntime -= thresh;
aeb73b04
PZ
751 }
752
b5d9d734
MG
753 /* ensure we never gain time by being placed backwards. */
754 vruntime = max_vruntime(se->vruntime, vruntime);
755
67e9fb2a 756 se->vruntime = vruntime;
aeb73b04
PZ
757}
758
bf0f6f24 759static void
83b699ed 760enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
761{
762 /*
a2a2d680 763 * Update run-time statistics of the 'current'.
bf0f6f24 764 */
b7cc0896 765 update_curr(cfs_rq);
a992241d 766 account_entity_enqueue(cfs_rq, se);
bf0f6f24 767
e9acbff6 768 if (wakeup) {
aeb73b04 769 place_entity(cfs_rq, se, 0);
2396af69 770 enqueue_sleeper(cfs_rq, se);
e9acbff6 771 }
bf0f6f24 772
d2417e5a 773 update_stats_enqueue(cfs_rq, se);
ddc97297 774 check_spread(cfs_rq, se);
83b699ed
SV
775 if (se != cfs_rq->curr)
776 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
777}
778
a571bbea 779static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695 780{
de69a80b 781 if (!se || cfs_rq->last == se)
2002c695
PZ
782 cfs_rq->last = NULL;
783
de69a80b 784 if (!se || cfs_rq->next == se)
2002c695
PZ
785 cfs_rq->next = NULL;
786}
787
a571bbea
PZ
788static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
789{
790 for_each_sched_entity(se)
791 __clear_buddies(cfs_rq_of(se), se);
792}
793
bf0f6f24 794static void
525c2716 795dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 796{
a2a2d680
DA
797 /*
798 * Update run-time statistics of the 'current'.
799 */
800 update_curr(cfs_rq);
801
19b6a2e3 802 update_stats_dequeue(cfs_rq, se);
db36cc7d 803 if (sleep) {
67e9fb2a 804#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
805 if (entity_is_task(se)) {
806 struct task_struct *tsk = task_of(se);
807
808 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 809 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 810 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 811 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 812 }
db36cc7d 813#endif
67e9fb2a
PZ
814 }
815
2002c695 816 clear_buddies(cfs_rq, se);
4793241b 817
83b699ed 818 if (se != cfs_rq->curr)
30cfdcfc
DA
819 __dequeue_entity(cfs_rq, se);
820 account_entity_dequeue(cfs_rq, se);
1af5f730 821 update_min_vruntime(cfs_rq);
bf0f6f24
IM
822}
823
824/*
825 * Preempt the current task with a newly woken task if needed:
826 */
7c92e54f 827static void
2e09bf55 828check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 829{
11697830
PZ
830 unsigned long ideal_runtime, delta_exec;
831
6d0f0ebd 832 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 833 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 834 if (delta_exec > ideal_runtime) {
bf0f6f24 835 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
836 /*
837 * The current task ran long enough, ensure it doesn't get
838 * re-elected due to buddy favours.
839 */
840 clear_buddies(cfs_rq, curr);
f685ceac
MG
841 return;
842 }
843
844 /*
845 * Ensure that a task that missed wakeup preemption by a
846 * narrow margin doesn't have to wait for a full slice.
847 * This also mitigates buddy induced latencies under load.
848 */
849 if (!sched_feat(WAKEUP_PREEMPT))
850 return;
851
852 if (delta_exec < sysctl_sched_min_granularity)
853 return;
854
855 if (cfs_rq->nr_running > 1) {
856 struct sched_entity *se = __pick_next_entity(cfs_rq);
857 s64 delta = curr->vruntime - se->vruntime;
858
859 if (delta > ideal_runtime)
860 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 861 }
bf0f6f24
IM
862}
863
83b699ed 864static void
8494f412 865set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 866{
83b699ed
SV
867 /* 'current' is not kept within the tree. */
868 if (se->on_rq) {
869 /*
870 * Any task has to be enqueued before it get to execute on
871 * a CPU. So account for the time it spent waiting on the
872 * runqueue.
873 */
874 update_stats_wait_end(cfs_rq, se);
875 __dequeue_entity(cfs_rq, se);
876 }
877
79303e9e 878 update_stats_curr_start(cfs_rq, se);
429d43bc 879 cfs_rq->curr = se;
eba1ed4b
IM
880#ifdef CONFIG_SCHEDSTATS
881 /*
882 * Track our maximum slice length, if the CPU's load is at
883 * least twice that of our own weight (i.e. dont track it
884 * when there are only lesser-weight tasks around):
885 */
495eca49 886 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
887 se->slice_max = max(se->slice_max,
888 se->sum_exec_runtime - se->prev_sum_exec_runtime);
889 }
890#endif
4a55b450 891 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
892}
893
3f3a4904
PZ
894static int
895wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
896
f4b6755f 897static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 898{
f4b6755f 899 struct sched_entity *se = __pick_next_entity(cfs_rq);
f685ceac 900 struct sched_entity *left = se;
f4b6755f 901
f685ceac
MG
902 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
903 se = cfs_rq->next;
aa2ac252 904
f685ceac
MG
905 /*
906 * Prefer last buddy, try to return the CPU to a preempted task.
907 */
908 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
909 se = cfs_rq->last;
910
911 clear_buddies(cfs_rq, se);
4793241b
PZ
912
913 return se;
aa2ac252
PZ
914}
915
ab6cde26 916static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
917{
918 /*
919 * If still on the runqueue then deactivate_task()
920 * was not called and update_curr() has to be done:
921 */
922 if (prev->on_rq)
b7cc0896 923 update_curr(cfs_rq);
bf0f6f24 924
ddc97297 925 check_spread(cfs_rq, prev);
30cfdcfc 926 if (prev->on_rq) {
5870db5b 927 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
928 /* Put 'current' back into the tree. */
929 __enqueue_entity(cfs_rq, prev);
930 }
429d43bc 931 cfs_rq->curr = NULL;
bf0f6f24
IM
932}
933
8f4d37ec
PZ
934static void
935entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 936{
bf0f6f24 937 /*
30cfdcfc 938 * Update run-time statistics of the 'current'.
bf0f6f24 939 */
30cfdcfc 940 update_curr(cfs_rq);
bf0f6f24 941
8f4d37ec
PZ
942#ifdef CONFIG_SCHED_HRTICK
943 /*
944 * queued ticks are scheduled to match the slice, so don't bother
945 * validating it and just reschedule.
946 */
983ed7a6
HH
947 if (queued) {
948 resched_task(rq_of(cfs_rq)->curr);
949 return;
950 }
8f4d37ec
PZ
951 /*
952 * don't let the period tick interfere with the hrtick preemption
953 */
954 if (!sched_feat(DOUBLE_TICK) &&
955 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
956 return;
957#endif
958
ce6c1311 959 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 960 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
961}
962
963/**************************************************
964 * CFS operations on tasks:
965 */
966
8f4d37ec
PZ
967#ifdef CONFIG_SCHED_HRTICK
968static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
969{
8f4d37ec
PZ
970 struct sched_entity *se = &p->se;
971 struct cfs_rq *cfs_rq = cfs_rq_of(se);
972
973 WARN_ON(task_rq(p) != rq);
974
975 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
976 u64 slice = sched_slice(cfs_rq, se);
977 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
978 s64 delta = slice - ran;
979
980 if (delta < 0) {
981 if (rq->curr == p)
982 resched_task(p);
983 return;
984 }
985
986 /*
987 * Don't schedule slices shorter than 10000ns, that just
988 * doesn't make sense. Rely on vruntime for fairness.
989 */
31656519 990 if (rq->curr != p)
157124c1 991 delta = max_t(s64, 10000LL, delta);
8f4d37ec 992
31656519 993 hrtick_start(rq, delta);
8f4d37ec
PZ
994 }
995}
a4c2f00f
PZ
996
997/*
998 * called from enqueue/dequeue and updates the hrtick when the
999 * current task is from our class and nr_running is low enough
1000 * to matter.
1001 */
1002static void hrtick_update(struct rq *rq)
1003{
1004 struct task_struct *curr = rq->curr;
1005
1006 if (curr->sched_class != &fair_sched_class)
1007 return;
1008
1009 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1010 hrtick_start_fair(rq, curr);
1011}
55e12e5e 1012#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1013static inline void
1014hrtick_start_fair(struct rq *rq, struct task_struct *p)
1015{
1016}
a4c2f00f
PZ
1017
1018static inline void hrtick_update(struct rq *rq)
1019{
1020}
8f4d37ec
PZ
1021#endif
1022
bf0f6f24
IM
1023/*
1024 * The enqueue_task method is called before nr_running is
1025 * increased. Here we update the fair scheduling stats and
1026 * then put the task into the rbtree:
1027 */
fd390f6a 1028static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
1029{
1030 struct cfs_rq *cfs_rq;
62fb1851 1031 struct sched_entity *se = &p->se;
bf0f6f24
IM
1032
1033 for_each_sched_entity(se) {
62fb1851 1034 if (se->on_rq)
bf0f6f24
IM
1035 break;
1036 cfs_rq = cfs_rq_of(se);
83b699ed 1037 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 1038 wakeup = 1;
bf0f6f24 1039 }
8f4d37ec 1040
a4c2f00f 1041 hrtick_update(rq);
bf0f6f24
IM
1042}
1043
1044/*
1045 * The dequeue_task method is called before nr_running is
1046 * decreased. We remove the task from the rbtree and
1047 * update the fair scheduling stats:
1048 */
f02231e5 1049static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
1050{
1051 struct cfs_rq *cfs_rq;
62fb1851 1052 struct sched_entity *se = &p->se;
bf0f6f24
IM
1053
1054 for_each_sched_entity(se) {
1055 cfs_rq = cfs_rq_of(se);
525c2716 1056 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 1057 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1058 if (cfs_rq->load.weight)
bf0f6f24 1059 break;
b9fa3df3 1060 sleep = 1;
bf0f6f24 1061 }
8f4d37ec 1062
a4c2f00f 1063 hrtick_update(rq);
bf0f6f24
IM
1064}
1065
1066/*
1799e35d
IM
1067 * sched_yield() support is very simple - we dequeue and enqueue.
1068 *
1069 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1070 */
4530d7ab 1071static void yield_task_fair(struct rq *rq)
bf0f6f24 1072{
db292ca3
IM
1073 struct task_struct *curr = rq->curr;
1074 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1075 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1076
1077 /*
1799e35d
IM
1078 * Are we the only task in the tree?
1079 */
1080 if (unlikely(cfs_rq->nr_running == 1))
1081 return;
1082
2002c695
PZ
1083 clear_buddies(cfs_rq, se);
1084
db292ca3 1085 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1086 update_rq_clock(rq);
1799e35d 1087 /*
a2a2d680 1088 * Update run-time statistics of the 'current'.
1799e35d 1089 */
2b1e315d 1090 update_curr(cfs_rq);
1799e35d
IM
1091
1092 return;
1093 }
1094 /*
1095 * Find the rightmost entry in the rbtree:
bf0f6f24 1096 */
2b1e315d 1097 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1098 /*
1099 * Already in the rightmost position?
1100 */
54fdc581 1101 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1102 return;
1103
1104 /*
1105 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1106 * Upon rescheduling, sched_class::put_prev_task() will place
1107 * 'current' within the tree based on its new key value.
1799e35d 1108 */
30cfdcfc 1109 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1110}
1111
e7693a36 1112#ifdef CONFIG_SMP
098fb9db 1113
bb3469ac 1114#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1115/*
1116 * effective_load() calculates the load change as seen from the root_task_group
1117 *
1118 * Adding load to a group doesn't make a group heavier, but can cause movement
1119 * of group shares between cpus. Assuming the shares were perfectly aligned one
1120 * can calculate the shift in shares.
1121 *
1122 * The problem is that perfectly aligning the shares is rather expensive, hence
1123 * we try to avoid doing that too often - see update_shares(), which ratelimits
1124 * this change.
1125 *
1126 * We compensate this by not only taking the current delta into account, but
1127 * also considering the delta between when the shares were last adjusted and
1128 * now.
1129 *
1130 * We still saw a performance dip, some tracing learned us that between
1131 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1132 * significantly. Therefore try to bias the error in direction of failing
1133 * the affine wakeup.
1134 *
1135 */
f1d239f7
PZ
1136static long effective_load(struct task_group *tg, int cpu,
1137 long wl, long wg)
bb3469ac 1138{
4be9daaa 1139 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1140
1141 if (!tg->parent)
1142 return wl;
1143
f5bfb7d9
PZ
1144 /*
1145 * By not taking the decrease of shares on the other cpu into
1146 * account our error leans towards reducing the affine wakeups.
1147 */
1148 if (!wl && sched_feat(ASYM_EFF_LOAD))
1149 return wl;
1150
4be9daaa 1151 for_each_sched_entity(se) {
cb5ef42a 1152 long S, rw, s, a, b;
940959e9
PZ
1153 long more_w;
1154
1155 /*
1156 * Instead of using this increment, also add the difference
1157 * between when the shares were last updated and now.
1158 */
1159 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1160 wl += more_w;
1161 wg += more_w;
4be9daaa
PZ
1162
1163 S = se->my_q->tg->shares;
1164 s = se->my_q->shares;
f1d239f7 1165 rw = se->my_q->rq_weight;
bb3469ac 1166
cb5ef42a
PZ
1167 a = S*(rw + wl);
1168 b = S*rw + s*wg;
4be9daaa 1169
940959e9
PZ
1170 wl = s*(a-b);
1171
1172 if (likely(b))
1173 wl /= b;
1174
83378269
PZ
1175 /*
1176 * Assume the group is already running and will
1177 * thus already be accounted for in the weight.
1178 *
1179 * That is, moving shares between CPUs, does not
1180 * alter the group weight.
1181 */
4be9daaa 1182 wg = 0;
4be9daaa 1183 }
bb3469ac 1184
4be9daaa 1185 return wl;
bb3469ac 1186}
4be9daaa 1187
bb3469ac 1188#else
4be9daaa 1189
83378269
PZ
1190static inline unsigned long effective_load(struct task_group *tg, int cpu,
1191 unsigned long wl, unsigned long wg)
4be9daaa 1192{
83378269 1193 return wl;
bb3469ac 1194}
4be9daaa 1195
bb3469ac
PZ
1196#endif
1197
c88d5910 1198static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1199{
c88d5910
PZ
1200 struct task_struct *curr = current;
1201 unsigned long this_load, load;
1202 int idx, this_cpu, prev_cpu;
098fb9db 1203 unsigned long tl_per_task;
c88d5910
PZ
1204 unsigned int imbalance;
1205 struct task_group *tg;
83378269 1206 unsigned long weight;
b3137bc8 1207 int balanced;
098fb9db 1208
c88d5910
PZ
1209 idx = sd->wake_idx;
1210 this_cpu = smp_processor_id();
1211 prev_cpu = task_cpu(p);
1212 load = source_load(prev_cpu, idx);
1213 this_load = target_load(this_cpu, idx);
098fb9db 1214
e69b0f1b
PZ
1215 if (sync) {
1216 if (sched_feat(SYNC_LESS) &&
1217 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1218 p->se.avg_overlap > sysctl_sched_migration_cost))
1219 sync = 0;
1220 } else {
1221 if (sched_feat(SYNC_MORE) &&
1222 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1223 p->se.avg_overlap < sysctl_sched_migration_cost))
1224 sync = 1;
1225 }
fc631c82 1226
b3137bc8
MG
1227 /*
1228 * If sync wakeup then subtract the (maximum possible)
1229 * effect of the currently running task from the load
1230 * of the current CPU:
1231 */
83378269
PZ
1232 if (sync) {
1233 tg = task_group(current);
1234 weight = current->se.load.weight;
1235
c88d5910 1236 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1237 load += effective_load(tg, prev_cpu, 0, -weight);
1238 }
b3137bc8 1239
83378269
PZ
1240 tg = task_group(p);
1241 weight = p->se.load.weight;
b3137bc8 1242
c88d5910
PZ
1243 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1244
71a29aa7
PZ
1245 /*
1246 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1247 * due to the sync cause above having dropped this_load to 0, we'll
1248 * always have an imbalance, but there's really nothing you can do
1249 * about that, so that's good too.
71a29aa7
PZ
1250 *
1251 * Otherwise check if either cpus are near enough in load to allow this
1252 * task to be woken on this_cpu.
1253 */
c88d5910
PZ
1254 balanced = !this_load ||
1255 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
83378269 1256 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1257
098fb9db 1258 /*
4ae7d5ce
IM
1259 * If the currently running task will sleep within
1260 * a reasonable amount of time then attract this newly
1261 * woken task:
098fb9db 1262 */
2fb7635c
PZ
1263 if (sync && balanced)
1264 return 1;
098fb9db
IM
1265
1266 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1267 tl_per_task = cpu_avg_load_per_task(this_cpu);
1268
c88d5910
PZ
1269 if (balanced ||
1270 (this_load <= load &&
1271 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1272 /*
1273 * This domain has SD_WAKE_AFFINE and
1274 * p is cache cold in this domain, and
1275 * there is no bad imbalance.
1276 */
c88d5910 1277 schedstat_inc(sd, ttwu_move_affine);
098fb9db
IM
1278 schedstat_inc(p, se.nr_wakeups_affine);
1279
1280 return 1;
1281 }
1282 return 0;
1283}
1284
aaee1203
PZ
1285/*
1286 * find_idlest_group finds and returns the least busy CPU group within the
1287 * domain.
1288 */
1289static struct sched_group *
78e7ed53 1290find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1291 int this_cpu, int load_idx)
e7693a36 1292{
aaee1203
PZ
1293 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1294 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1295 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1296
aaee1203
PZ
1297 do {
1298 unsigned long load, avg_load;
1299 int local_group;
1300 int i;
e7693a36 1301
aaee1203
PZ
1302 /* Skip over this group if it has no CPUs allowed */
1303 if (!cpumask_intersects(sched_group_cpus(group),
1304 &p->cpus_allowed))
1305 continue;
1306
1307 local_group = cpumask_test_cpu(this_cpu,
1308 sched_group_cpus(group));
1309
1310 /* Tally up the load of all CPUs in the group */
1311 avg_load = 0;
1312
1313 for_each_cpu(i, sched_group_cpus(group)) {
1314 /* Bias balancing toward cpus of our domain */
1315 if (local_group)
1316 load = source_load(i, load_idx);
1317 else
1318 load = target_load(i, load_idx);
1319
1320 avg_load += load;
1321 }
1322
1323 /* Adjust by relative CPU power of the group */
1324 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1325
1326 if (local_group) {
1327 this_load = avg_load;
1328 this = group;
1329 } else if (avg_load < min_load) {
1330 min_load = avg_load;
1331 idlest = group;
1332 }
1333 } while (group = group->next, group != sd->groups);
1334
1335 if (!idlest || 100*this_load < imbalance*min_load)
1336 return NULL;
1337 return idlest;
1338}
1339
1340/*
1341 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1342 */
1343static int
1344find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1345{
1346 unsigned long load, min_load = ULONG_MAX;
1347 int idlest = -1;
1348 int i;
1349
1350 /* Traverse only the allowed CPUs */
1351 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1352 load = weighted_cpuload(i);
1353
1354 if (load < min_load || (load == min_load && i == this_cpu)) {
1355 min_load = load;
1356 idlest = i;
e7693a36
GH
1357 }
1358 }
1359
aaee1203
PZ
1360 return idlest;
1361}
e7693a36 1362
a50bde51
PZ
1363/*
1364 * Try and locate an idle CPU in the sched_domain.
1365 */
1366static int
1367select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1368{
1369 int cpu = smp_processor_id();
1370 int prev_cpu = task_cpu(p);
1371 int i;
1372
1373 /*
1374 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1375 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1376 * always a better target than the current cpu.
1377 */
fe3bcfe1
PZ
1378 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1379 return prev_cpu;
a50bde51
PZ
1380
1381 /*
1382 * Otherwise, iterate the domain and find an elegible idle cpu.
1383 */
fe3bcfe1
PZ
1384 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1385 if (!cpu_rq(i)->cfs.nr_running) {
1386 target = i;
1387 break;
a50bde51
PZ
1388 }
1389 }
1390
1391 return target;
1392}
1393
aaee1203
PZ
1394/*
1395 * sched_balance_self: balance the current task (running on cpu) in domains
1396 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1397 * SD_BALANCE_EXEC.
1398 *
1399 * Balance, ie. select the least loaded group.
1400 *
1401 * Returns the target CPU number, or the same CPU if no balancing is needed.
1402 *
1403 * preempt must be disabled.
1404 */
5158f4e4 1405static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1406{
29cd8bae 1407 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1408 int cpu = smp_processor_id();
1409 int prev_cpu = task_cpu(p);
1410 int new_cpu = cpu;
1411 int want_affine = 0;
29cd8bae 1412 int want_sd = 1;
5158f4e4 1413 int sync = wake_flags & WF_SYNC;
c88d5910 1414
0763a660 1415 if (sd_flag & SD_BALANCE_WAKE) {
3f04e8cd
MG
1416 if (sched_feat(AFFINE_WAKEUPS) &&
1417 cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1418 want_affine = 1;
1419 new_cpu = prev_cpu;
1420 }
aaee1203
PZ
1421
1422 for_each_domain(cpu, tmp) {
1423 /*
ae154be1
PZ
1424 * If power savings logic is enabled for a domain, see if we
1425 * are not overloaded, if so, don't balance wider.
aaee1203 1426 */
59abf026 1427 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1428 unsigned long power = 0;
1429 unsigned long nr_running = 0;
1430 unsigned long capacity;
1431 int i;
1432
1433 for_each_cpu(i, sched_domain_span(tmp)) {
1434 power += power_of(i);
1435 nr_running += cpu_rq(i)->cfs.nr_running;
1436 }
1437
1438 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1439
59abf026
PZ
1440 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1441 nr_running /= 2;
1442
1443 if (nr_running < capacity)
29cd8bae 1444 want_sd = 0;
ae154be1 1445 }
aaee1203 1446
fe3bcfe1
PZ
1447 /*
1448 * While iterating the domains looking for a spanning
1449 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1450 * in cache sharing domains along the way.
1451 */
1452 if (want_affine) {
a50bde51 1453 int target = -1;
c88d5910 1454
a50bde51
PZ
1455 /*
1456 * If both cpu and prev_cpu are part of this domain,
1457 * cpu is a valid SD_WAKE_AFFINE target.
1458 */
a1f84a3a 1459 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
a50bde51 1460 target = cpu;
a1f84a3a
MG
1461
1462 /*
a50bde51
PZ
1463 * If there's an idle sibling in this domain, make that
1464 * the wake_affine target instead of the current cpu.
a1f84a3a 1465 */
a50bde51
PZ
1466 if (tmp->flags & SD_PREFER_SIBLING)
1467 target = select_idle_sibling(p, tmp, target);
a1f84a3a 1468
a50bde51 1469 if (target >= 0) {
fe3bcfe1
PZ
1470 if (tmp->flags & SD_WAKE_AFFINE) {
1471 affine_sd = tmp;
1472 want_affine = 0;
1473 }
a50bde51 1474 cpu = target;
a1f84a3a 1475 }
c88d5910
PZ
1476 }
1477
29cd8bae
PZ
1478 if (!want_sd && !want_affine)
1479 break;
1480
0763a660 1481 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1482 continue;
1483
29cd8bae
PZ
1484 if (want_sd)
1485 sd = tmp;
1486 }
1487
1488 if (sched_feat(LB_SHARES_UPDATE)) {
1489 /*
1490 * Pick the largest domain to update shares over
1491 */
1492 tmp = sd;
1493 if (affine_sd && (!tmp ||
1494 cpumask_weight(sched_domain_span(affine_sd)) >
1495 cpumask_weight(sched_domain_span(sd))))
1496 tmp = affine_sd;
1497
1498 if (tmp)
1499 update_shares(tmp);
c88d5910 1500 }
aaee1203 1501
fb58bac5
PZ
1502 if (affine_sd && wake_affine(affine_sd, p, sync))
1503 return cpu;
e7693a36 1504
aaee1203 1505 while (sd) {
5158f4e4 1506 int load_idx = sd->forkexec_idx;
aaee1203 1507 struct sched_group *group;
c88d5910 1508 int weight;
098fb9db 1509
0763a660 1510 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1511 sd = sd->child;
1512 continue;
1513 }
098fb9db 1514
5158f4e4
PZ
1515 if (sd_flag & SD_BALANCE_WAKE)
1516 load_idx = sd->wake_idx;
098fb9db 1517
5158f4e4 1518 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1519 if (!group) {
1520 sd = sd->child;
1521 continue;
1522 }
4ae7d5ce 1523
d7c33c49 1524 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1525 if (new_cpu == -1 || new_cpu == cpu) {
1526 /* Now try balancing at a lower domain level of cpu */
1527 sd = sd->child;
1528 continue;
e7693a36 1529 }
aaee1203
PZ
1530
1531 /* Now try balancing at a lower domain level of new_cpu */
1532 cpu = new_cpu;
1533 weight = cpumask_weight(sched_domain_span(sd));
1534 sd = NULL;
1535 for_each_domain(cpu, tmp) {
1536 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1537 break;
0763a660 1538 if (tmp->flags & sd_flag)
aaee1203
PZ
1539 sd = tmp;
1540 }
1541 /* while loop will break here if sd == NULL */
e7693a36
GH
1542 }
1543
c88d5910 1544 return new_cpu;
e7693a36
GH
1545}
1546#endif /* CONFIG_SMP */
1547
e52fb7c0
PZ
1548/*
1549 * Adaptive granularity
1550 *
1551 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1552 * with the limit of wakeup_gran -- when it never does a wakeup.
1553 *
1554 * So the smaller avg_wakeup is the faster we want this task to preempt,
1555 * but we don't want to treat the preemptee unfairly and therefore allow it
1556 * to run for at least the amount of time we'd like to run.
1557 *
1558 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1559 *
1560 * NOTE: we use *nr_running to scale with load, this nicely matches the
1561 * degrading latency on load.
1562 */
1563static unsigned long
1564adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1565{
1566 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1567 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1568 u64 gran = 0;
1569
1570 if (this_run < expected_wakeup)
1571 gran = expected_wakeup - this_run;
1572
1573 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1574}
1575
1576static unsigned long
1577wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1578{
1579 unsigned long gran = sysctl_sched_wakeup_granularity;
1580
e52fb7c0
PZ
1581 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1582 gran = adaptive_gran(curr, se);
1583
0bbd3336 1584 /*
e52fb7c0
PZ
1585 * Since its curr running now, convert the gran from real-time
1586 * to virtual-time in his units.
0bbd3336 1587 */
e52fb7c0
PZ
1588 if (sched_feat(ASYM_GRAN)) {
1589 /*
1590 * By using 'se' instead of 'curr' we penalize light tasks, so
1591 * they get preempted easier. That is, if 'se' < 'curr' then
1592 * the resulting gran will be larger, therefore penalizing the
1593 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1594 * be smaller, again penalizing the lighter task.
1595 *
1596 * This is especially important for buddies when the leftmost
1597 * task is higher priority than the buddy.
1598 */
1599 if (unlikely(se->load.weight != NICE_0_LOAD))
1600 gran = calc_delta_fair(gran, se);
1601 } else {
1602 if (unlikely(curr->load.weight != NICE_0_LOAD))
1603 gran = calc_delta_fair(gran, curr);
1604 }
0bbd3336
PZ
1605
1606 return gran;
1607}
1608
464b7527
PZ
1609/*
1610 * Should 'se' preempt 'curr'.
1611 *
1612 * |s1
1613 * |s2
1614 * |s3
1615 * g
1616 * |<--->|c
1617 *
1618 * w(c, s1) = -1
1619 * w(c, s2) = 0
1620 * w(c, s3) = 1
1621 *
1622 */
1623static int
1624wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1625{
1626 s64 gran, vdiff = curr->vruntime - se->vruntime;
1627
1628 if (vdiff <= 0)
1629 return -1;
1630
e52fb7c0 1631 gran = wakeup_gran(curr, se);
464b7527
PZ
1632 if (vdiff > gran)
1633 return 1;
1634
1635 return 0;
1636}
1637
02479099
PZ
1638static void set_last_buddy(struct sched_entity *se)
1639{
6bc912b7
PZ
1640 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1641 for_each_sched_entity(se)
1642 cfs_rq_of(se)->last = se;
1643 }
02479099
PZ
1644}
1645
1646static void set_next_buddy(struct sched_entity *se)
1647{
6bc912b7
PZ
1648 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1649 for_each_sched_entity(se)
1650 cfs_rq_of(se)->next = se;
1651 }
02479099
PZ
1652}
1653
bf0f6f24
IM
1654/*
1655 * Preempt the current task with a newly woken task if needed:
1656 */
5a9b86f6 1657static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1658{
1659 struct task_struct *curr = rq->curr;
8651a86c 1660 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1661 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5a9b86f6 1662 int sync = wake_flags & WF_SYNC;
f685ceac 1663 int scale = cfs_rq->nr_running >= sched_nr_latency;
bf0f6f24 1664
3a7e73a2
PZ
1665 if (unlikely(rt_prio(p->prio)))
1666 goto preempt;
aa2ac252 1667
d95f98d0
PZ
1668 if (unlikely(p->sched_class != &fair_sched_class))
1669 return;
1670
4ae7d5ce
IM
1671 if (unlikely(se == pse))
1672 return;
1673
f685ceac 1674 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
3cb63d52 1675 set_next_buddy(pse);
57fdc26d 1676
aec0a514
BR
1677 /*
1678 * We can come here with TIF_NEED_RESCHED already set from new task
1679 * wake up path.
1680 */
1681 if (test_tsk_need_resched(curr))
1682 return;
1683
91c234b4 1684 /*
6bc912b7 1685 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1686 * the tick):
1687 */
6bc912b7 1688 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1689 return;
bf0f6f24 1690
6bc912b7 1691 /* Idle tasks are by definition preempted by everybody. */
3a7e73a2
PZ
1692 if (unlikely(curr->policy == SCHED_IDLE))
1693 goto preempt;
bf0f6f24 1694
3a7e73a2
PZ
1695 if (sched_feat(WAKEUP_SYNC) && sync)
1696 goto preempt;
15afe09b 1697
3a7e73a2
PZ
1698 if (sched_feat(WAKEUP_OVERLAP) &&
1699 se->avg_overlap < sysctl_sched_migration_cost &&
1700 pse->avg_overlap < sysctl_sched_migration_cost)
1701 goto preempt;
1702
ad4b78bb
PZ
1703 if (!sched_feat(WAKEUP_PREEMPT))
1704 return;
1705
3a7e73a2 1706 update_curr(cfs_rq);
464b7527 1707 find_matching_se(&se, &pse);
002f128b 1708 BUG_ON(!pse);
3a7e73a2
PZ
1709 if (wakeup_preempt_entity(se, pse) == 1)
1710 goto preempt;
464b7527 1711
3a7e73a2 1712 return;
a65ac745 1713
3a7e73a2
PZ
1714preempt:
1715 resched_task(curr);
1716 /*
1717 * Only set the backward buddy when the current task is still
1718 * on the rq. This can happen when a wakeup gets interleaved
1719 * with schedule on the ->pre_schedule() or idle_balance()
1720 * point, either of which can * drop the rq lock.
1721 *
1722 * Also, during early boot the idle thread is in the fair class,
1723 * for obvious reasons its a bad idea to schedule back to it.
1724 */
1725 if (unlikely(!se->on_rq || curr == rq->idle))
1726 return;
1727
1728 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1729 set_last_buddy(se);
bf0f6f24
IM
1730}
1731
fb8d4724 1732static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1733{
8f4d37ec 1734 struct task_struct *p;
bf0f6f24
IM
1735 struct cfs_rq *cfs_rq = &rq->cfs;
1736 struct sched_entity *se;
1737
36ace27e 1738 if (!cfs_rq->nr_running)
bf0f6f24
IM
1739 return NULL;
1740
1741 do {
9948f4b2 1742 se = pick_next_entity(cfs_rq);
f4b6755f 1743 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1744 cfs_rq = group_cfs_rq(se);
1745 } while (cfs_rq);
1746
8f4d37ec
PZ
1747 p = task_of(se);
1748 hrtick_start_fair(rq, p);
1749
1750 return p;
bf0f6f24
IM
1751}
1752
1753/*
1754 * Account for a descheduled task:
1755 */
31ee529c 1756static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1757{
1758 struct sched_entity *se = &prev->se;
1759 struct cfs_rq *cfs_rq;
1760
1761 for_each_sched_entity(se) {
1762 cfs_rq = cfs_rq_of(se);
ab6cde26 1763 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1764 }
1765}
1766
681f3e68 1767#ifdef CONFIG_SMP
bf0f6f24
IM
1768/**************************************************
1769 * Fair scheduling class load-balancing methods:
1770 */
1771
1772/*
1773 * Load-balancing iterator. Note: while the runqueue stays locked
1774 * during the whole iteration, the current task might be
1775 * dequeued so the iterator has to be dequeue-safe. Here we
1776 * achieve that by always pre-iterating before returning
1777 * the current task:
1778 */
a9957449 1779static struct task_struct *
4a55bd5e 1780__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1781{
354d60c2
DG
1782 struct task_struct *p = NULL;
1783 struct sched_entity *se;
bf0f6f24 1784
77ae6513
MG
1785 if (next == &cfs_rq->tasks)
1786 return NULL;
1787
b87f1724
BR
1788 se = list_entry(next, struct sched_entity, group_node);
1789 p = task_of(se);
1790 cfs_rq->balance_iterator = next->next;
77ae6513 1791
bf0f6f24
IM
1792 return p;
1793}
1794
1795static struct task_struct *load_balance_start_fair(void *arg)
1796{
1797 struct cfs_rq *cfs_rq = arg;
1798
4a55bd5e 1799 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1800}
1801
1802static struct task_struct *load_balance_next_fair(void *arg)
1803{
1804 struct cfs_rq *cfs_rq = arg;
1805
4a55bd5e 1806 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1807}
1808
c09595f6
PZ
1809static unsigned long
1810__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1811 unsigned long max_load_move, struct sched_domain *sd,
1812 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1813 struct cfs_rq *cfs_rq)
62fb1851 1814{
c09595f6 1815 struct rq_iterator cfs_rq_iterator;
62fb1851 1816
c09595f6
PZ
1817 cfs_rq_iterator.start = load_balance_start_fair;
1818 cfs_rq_iterator.next = load_balance_next_fair;
1819 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1820
c09595f6
PZ
1821 return balance_tasks(this_rq, this_cpu, busiest,
1822 max_load_move, sd, idle, all_pinned,
1823 this_best_prio, &cfs_rq_iterator);
62fb1851 1824}
62fb1851 1825
c09595f6 1826#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1827static unsigned long
bf0f6f24 1828load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1829 unsigned long max_load_move,
a4ac01c3
PW
1830 struct sched_domain *sd, enum cpu_idle_type idle,
1831 int *all_pinned, int *this_best_prio)
bf0f6f24 1832{
bf0f6f24 1833 long rem_load_move = max_load_move;
c09595f6
PZ
1834 int busiest_cpu = cpu_of(busiest);
1835 struct task_group *tg;
18d95a28 1836
c09595f6 1837 rcu_read_lock();
c8cba857 1838 update_h_load(busiest_cpu);
18d95a28 1839
caea8a03 1840 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1841 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1842 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1843 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1844 u64 rem_load, moved_load;
18d95a28 1845
c09595f6
PZ
1846 /*
1847 * empty group
1848 */
c8cba857 1849 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1850 continue;
1851
243e0e7b
SV
1852 rem_load = (u64)rem_load_move * busiest_weight;
1853 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1854
c09595f6 1855 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1856 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1857 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1858
c09595f6 1859 if (!moved_load)
bf0f6f24
IM
1860 continue;
1861
42a3ac7d 1862 moved_load *= busiest_h_load;
243e0e7b 1863 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1864
c09595f6
PZ
1865 rem_load_move -= moved_load;
1866 if (rem_load_move < 0)
bf0f6f24
IM
1867 break;
1868 }
c09595f6 1869 rcu_read_unlock();
bf0f6f24 1870
43010659 1871 return max_load_move - rem_load_move;
bf0f6f24 1872}
c09595f6
PZ
1873#else
1874static unsigned long
1875load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1876 unsigned long max_load_move,
1877 struct sched_domain *sd, enum cpu_idle_type idle,
1878 int *all_pinned, int *this_best_prio)
1879{
1880 return __load_balance_fair(this_rq, this_cpu, busiest,
1881 max_load_move, sd, idle, all_pinned,
1882 this_best_prio, &busiest->cfs);
1883}
1884#endif
bf0f6f24 1885
e1d1484f
PW
1886static int
1887move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1888 struct sched_domain *sd, enum cpu_idle_type idle)
1889{
1890 struct cfs_rq *busy_cfs_rq;
1891 struct rq_iterator cfs_rq_iterator;
1892
1893 cfs_rq_iterator.start = load_balance_start_fair;
1894 cfs_rq_iterator.next = load_balance_next_fair;
1895
1896 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1897 /*
1898 * pass busy_cfs_rq argument into
1899 * load_balance_[start|next]_fair iterators
1900 */
1901 cfs_rq_iterator.arg = busy_cfs_rq;
1902 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1903 &cfs_rq_iterator))
1904 return 1;
1905 }
1906
1907 return 0;
1908}
0bcdcf28
CE
1909
1910static void rq_online_fair(struct rq *rq)
1911{
1912 update_sysctl();
1913}
1914
1915static void rq_offline_fair(struct rq *rq)
1916{
1917 update_sysctl();
1918}
1919
55e12e5e 1920#endif /* CONFIG_SMP */
e1d1484f 1921
bf0f6f24
IM
1922/*
1923 * scheduler tick hitting a task of our scheduling class:
1924 */
8f4d37ec 1925static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1926{
1927 struct cfs_rq *cfs_rq;
1928 struct sched_entity *se = &curr->se;
1929
1930 for_each_sched_entity(se) {
1931 cfs_rq = cfs_rq_of(se);
8f4d37ec 1932 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1933 }
1934}
1935
1936/*
cd29fe6f
PZ
1937 * called on fork with the child task as argument from the parent's context
1938 * - child not yet on the tasklist
1939 * - preemption disabled
bf0f6f24 1940 */
cd29fe6f 1941static void task_fork_fair(struct task_struct *p)
bf0f6f24 1942{
cd29fe6f 1943 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 1944 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1945 int this_cpu = smp_processor_id();
cd29fe6f
PZ
1946 struct rq *rq = this_rq();
1947 unsigned long flags;
1948
1949 spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 1950
cd29fe6f
PZ
1951 if (unlikely(task_cpu(p) != this_cpu))
1952 __set_task_cpu(p, this_cpu);
bf0f6f24 1953
7109c442 1954 update_curr(cfs_rq);
cd29fe6f 1955
b5d9d734
MG
1956 if (curr)
1957 se->vruntime = curr->vruntime;
aeb73b04 1958 place_entity(cfs_rq, se, 1);
4d78e7b6 1959
cd29fe6f 1960 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 1961 /*
edcb60a3
IM
1962 * Upon rescheduling, sched_class::put_prev_task() will place
1963 * 'current' within the tree based on its new key value.
1964 */
4d78e7b6 1965 swap(curr->vruntime, se->vruntime);
aec0a514 1966 resched_task(rq->curr);
4d78e7b6 1967 }
bf0f6f24 1968
cd29fe6f 1969 spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
1970}
1971
cb469845
SR
1972/*
1973 * Priority of the task has changed. Check to see if we preempt
1974 * the current task.
1975 */
1976static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1977 int oldprio, int running)
1978{
1979 /*
1980 * Reschedule if we are currently running on this runqueue and
1981 * our priority decreased, or if we are not currently running on
1982 * this runqueue and our priority is higher than the current's
1983 */
1984 if (running) {
1985 if (p->prio > oldprio)
1986 resched_task(rq->curr);
1987 } else
15afe09b 1988 check_preempt_curr(rq, p, 0);
cb469845
SR
1989}
1990
1991/*
1992 * We switched to the sched_fair class.
1993 */
1994static void switched_to_fair(struct rq *rq, struct task_struct *p,
1995 int running)
1996{
1997 /*
1998 * We were most likely switched from sched_rt, so
1999 * kick off the schedule if running, otherwise just see
2000 * if we can still preempt the current task.
2001 */
2002 if (running)
2003 resched_task(rq->curr);
2004 else
15afe09b 2005 check_preempt_curr(rq, p, 0);
cb469845
SR
2006}
2007
83b699ed
SV
2008/* Account for a task changing its policy or group.
2009 *
2010 * This routine is mostly called to set cfs_rq->curr field when a task
2011 * migrates between groups/classes.
2012 */
2013static void set_curr_task_fair(struct rq *rq)
2014{
2015 struct sched_entity *se = &rq->curr->se;
2016
2017 for_each_sched_entity(se)
2018 set_next_entity(cfs_rq_of(se), se);
2019}
2020
810b3817
PZ
2021#ifdef CONFIG_FAIR_GROUP_SCHED
2022static void moved_group_fair(struct task_struct *p)
2023{
2024 struct cfs_rq *cfs_rq = task_cfs_rq(p);
2025
2026 update_curr(cfs_rq);
2027 place_entity(cfs_rq, &p->se, 1);
2028}
2029#endif
2030
dba091b9 2031unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
2032{
2033 struct sched_entity *se = &task->se;
0d721cea
PW
2034 unsigned int rr_interval = 0;
2035
2036 /*
2037 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2038 * idle runqueue:
2039 */
0d721cea
PW
2040 if (rq->cfs.load.weight)
2041 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
2042
2043 return rr_interval;
2044}
2045
bf0f6f24
IM
2046/*
2047 * All the scheduling class methods:
2048 */
5522d5d5
IM
2049static const struct sched_class fair_sched_class = {
2050 .next = &idle_sched_class,
bf0f6f24
IM
2051 .enqueue_task = enqueue_task_fair,
2052 .dequeue_task = dequeue_task_fair,
2053 .yield_task = yield_task_fair,
2054
2e09bf55 2055 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
2056
2057 .pick_next_task = pick_next_task_fair,
2058 .put_prev_task = put_prev_task_fair,
2059
681f3e68 2060#ifdef CONFIG_SMP
4ce72a2c
LZ
2061 .select_task_rq = select_task_rq_fair,
2062
bf0f6f24 2063 .load_balance = load_balance_fair,
e1d1484f 2064 .move_one_task = move_one_task_fair,
0bcdcf28
CE
2065 .rq_online = rq_online_fair,
2066 .rq_offline = rq_offline_fair,
681f3e68 2067#endif
bf0f6f24 2068
83b699ed 2069 .set_curr_task = set_curr_task_fair,
bf0f6f24 2070 .task_tick = task_tick_fair,
cd29fe6f 2071 .task_fork = task_fork_fair,
cb469845
SR
2072
2073 .prio_changed = prio_changed_fair,
2074 .switched_to = switched_to_fair,
810b3817 2075
0d721cea
PW
2076 .get_rr_interval = get_rr_interval_fair,
2077
810b3817
PZ
2078#ifdef CONFIG_FAIR_GROUP_SCHED
2079 .moved_group = moved_group_fair,
2080#endif
bf0f6f24
IM
2081};
2082
2083#ifdef CONFIG_SCHED_DEBUG
5cef9eca 2084static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 2085{
bf0f6f24
IM
2086 struct cfs_rq *cfs_rq;
2087
5973e5b9 2088 rcu_read_lock();
c3b64f1e 2089 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 2090 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 2091 rcu_read_unlock();
bf0f6f24
IM
2092}
2093#endif