]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched_fair.c
latencytop: optimize LT_BACKTRACEDEPTH loops a bit
[mirror_ubuntu-bionic-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
0bbd3336 66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
0bbd3336 72unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
bf0f6f24
IM
76/**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
62160e3f 80#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 81
62160e3f 82/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
83static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
84{
62160e3f 85 return cfs_rq->rq;
bf0f6f24
IM
86}
87
62160e3f
IM
88/* An entity is a task if it doesn't "own" a runqueue */
89#define entity_is_task(se) (!se->my_q)
bf0f6f24 90
62160e3f 91#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 92
62160e3f
IM
93static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94{
95 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
96}
97
98#define entity_is_task(se) 1
99
bf0f6f24
IM
100#endif /* CONFIG_FAIR_GROUP_SCHED */
101
102static inline struct task_struct *task_of(struct sched_entity *se)
103{
104 return container_of(se, struct task_struct, se);
105}
106
107
108/**************************************************************
109 * Scheduling class tree data structure manipulation methods:
110 */
111
0702e3eb 112static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 113{
368059a9
PZ
114 s64 delta = (s64)(vruntime - min_vruntime);
115 if (delta > 0)
02e0431a
PZ
116 min_vruntime = vruntime;
117
118 return min_vruntime;
119}
120
0702e3eb 121static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
122{
123 s64 delta = (s64)(vruntime - min_vruntime);
124 if (delta < 0)
125 min_vruntime = vruntime;
126
127 return min_vruntime;
128}
129
0702e3eb 130static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 131{
30cfdcfc 132 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
133}
134
bf0f6f24
IM
135/*
136 * Enqueue an entity into the rb-tree:
137 */
0702e3eb 138static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
139{
140 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
141 struct rb_node *parent = NULL;
142 struct sched_entity *entry;
9014623c 143 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
144 int leftmost = 1;
145
146 /*
147 * Find the right place in the rbtree:
148 */
149 while (*link) {
150 parent = *link;
151 entry = rb_entry(parent, struct sched_entity, run_node);
152 /*
153 * We dont care about collisions. Nodes with
154 * the same key stay together.
155 */
9014623c 156 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
157 link = &parent->rb_left;
158 } else {
159 link = &parent->rb_right;
160 leftmost = 0;
161 }
162 }
163
164 /*
165 * Maintain a cache of leftmost tree entries (it is frequently
166 * used):
167 */
3fe69747 168 if (leftmost) {
57cb499d 169 cfs_rq->rb_leftmost = &se->run_node;
3fe69747
PZ
170 /*
171 * maintain cfs_rq->min_vruntime to be a monotonic increasing
172 * value tracking the leftmost vruntime in the tree.
173 */
174 cfs_rq->min_vruntime =
175 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
176 }
bf0f6f24
IM
177
178 rb_link_node(&se->run_node, parent, link);
179 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
180}
181
0702e3eb 182static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 183{
3fe69747
PZ
184 if (cfs_rq->rb_leftmost == &se->run_node) {
185 struct rb_node *next_node;
186 struct sched_entity *next;
187
188 next_node = rb_next(&se->run_node);
189 cfs_rq->rb_leftmost = next_node;
190
191 if (next_node) {
192 next = rb_entry(next_node,
193 struct sched_entity, run_node);
194 cfs_rq->min_vruntime =
195 max_vruntime(cfs_rq->min_vruntime,
196 next->vruntime);
197 }
198 }
e9acbff6 199
aa2ac252
PZ
200 if (cfs_rq->next == se)
201 cfs_rq->next = NULL;
202
bf0f6f24 203 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
204}
205
206static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
207{
208 return cfs_rq->rb_leftmost;
209}
210
211static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
212{
213 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
214}
215
aeb73b04
PZ
216static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
217{
7eee3e67 218 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 219
70eee74b
BS
220 if (!last)
221 return NULL;
7eee3e67
IM
222
223 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
224}
225
bf0f6f24
IM
226/**************************************************************
227 * Scheduling class statistics methods:
228 */
229
b2be5e96
PZ
230#ifdef CONFIG_SCHED_DEBUG
231int sched_nr_latency_handler(struct ctl_table *table, int write,
232 struct file *filp, void __user *buffer, size_t *lenp,
233 loff_t *ppos)
234{
235 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
236
237 if (ret || !write)
238 return ret;
239
240 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
241 sysctl_sched_min_granularity);
242
243 return 0;
244}
245#endif
647e7cac
IM
246
247/*
248 * The idea is to set a period in which each task runs once.
249 *
250 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
251 * this period because otherwise the slices get too small.
252 *
253 * p = (nr <= nl) ? l : l*nr/nl
254 */
4d78e7b6
PZ
255static u64 __sched_period(unsigned long nr_running)
256{
257 u64 period = sysctl_sched_latency;
b2be5e96 258 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
259
260 if (unlikely(nr_running > nr_latency)) {
4bf0b771 261 period = sysctl_sched_min_granularity;
4d78e7b6 262 period *= nr_running;
4d78e7b6
PZ
263 }
264
265 return period;
266}
267
647e7cac
IM
268/*
269 * We calculate the wall-time slice from the period by taking a part
270 * proportional to the weight.
271 *
272 * s = p*w/rw
273 */
6d0f0ebd 274static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 275{
6a6029b8
IM
276 return calc_delta_mine(__sched_period(cfs_rq->nr_running),
277 se->load.weight, &cfs_rq->load);
bf0f6f24
IM
278}
279
647e7cac
IM
280/*
281 * We calculate the vruntime slice.
282 *
283 * vs = s/w = p/rw
284 */
285static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 286{
647e7cac 287 u64 vslice = __sched_period(nr_running);
67e9fb2a 288
10b77724 289 vslice *= NICE_0_LOAD;
647e7cac 290 do_div(vslice, rq_weight);
67e9fb2a 291
647e7cac
IM
292 return vslice;
293}
5f6d858e 294
647e7cac
IM
295static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
296{
297 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
298 cfs_rq->nr_running + 1);
67e9fb2a
PZ
299}
300
bf0f6f24
IM
301/*
302 * Update the current task's runtime statistics. Skip current tasks that
303 * are not in our scheduling class.
304 */
305static inline void
8ebc91d9
IM
306__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
307 unsigned long delta_exec)
bf0f6f24 308{
bbdba7c0 309 unsigned long delta_exec_weighted;
bf0f6f24 310
8179ca23 311 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
312
313 curr->sum_exec_runtime += delta_exec;
7a62eabc 314 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
315 delta_exec_weighted = delta_exec;
316 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
317 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
318 &curr->load);
319 }
320 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
321}
322
b7cc0896 323static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 324{
429d43bc 325 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 326 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
327 unsigned long delta_exec;
328
329 if (unlikely(!curr))
330 return;
331
332 /*
333 * Get the amount of time the current task was running
334 * since the last time we changed load (this cannot
335 * overflow on 32 bits):
336 */
8ebc91d9 337 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 338
8ebc91d9
IM
339 __update_curr(cfs_rq, curr, delta_exec);
340 curr->exec_start = now;
d842de87
SV
341
342 if (entity_is_task(curr)) {
343 struct task_struct *curtask = task_of(curr);
344
345 cpuacct_charge(curtask, delta_exec);
346 }
bf0f6f24
IM
347}
348
349static inline void
5870db5b 350update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 351{
d281918d 352 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
353}
354
bf0f6f24
IM
355/*
356 * Task is being enqueued - update stats:
357 */
d2417e5a 358static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 359{
bf0f6f24
IM
360 /*
361 * Are we enqueueing a waiting task? (for current tasks
362 * a dequeue/enqueue event is a NOP)
363 */
429d43bc 364 if (se != cfs_rq->curr)
5870db5b 365 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
366}
367
bf0f6f24 368static void
9ef0a961 369update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 370{
bbdba7c0
IM
371 schedstat_set(se->wait_max, max(se->wait_max,
372 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
373 schedstat_set(se->wait_count, se->wait_count + 1);
374 schedstat_set(se->wait_sum, se->wait_sum +
375 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 376 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
377}
378
379static inline void
19b6a2e3 380update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 381{
bf0f6f24
IM
382 /*
383 * Mark the end of the wait period if dequeueing a
384 * waiting task:
385 */
429d43bc 386 if (se != cfs_rq->curr)
9ef0a961 387 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
388}
389
390/*
391 * We are picking a new current task - update its stats:
392 */
393static inline void
79303e9e 394update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
395{
396 /*
397 * We are starting a new run period:
398 */
d281918d 399 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
400}
401
bf0f6f24
IM
402/**************************************************
403 * Scheduling class queueing methods:
404 */
405
30cfdcfc
DA
406static void
407account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
408{
409 update_load_add(&cfs_rq->load, se->load.weight);
410 cfs_rq->nr_running++;
411 se->on_rq = 1;
412}
413
414static void
415account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
416{
417 update_load_sub(&cfs_rq->load, se->load.weight);
418 cfs_rq->nr_running--;
419 se->on_rq = 0;
420}
421
2396af69 422static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 423{
bf0f6f24
IM
424#ifdef CONFIG_SCHEDSTATS
425 if (se->sleep_start) {
d281918d 426 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 427 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
428
429 if ((s64)delta < 0)
430 delta = 0;
431
432 if (unlikely(delta > se->sleep_max))
433 se->sleep_max = delta;
434
435 se->sleep_start = 0;
436 se->sum_sleep_runtime += delta;
9745512c
AV
437
438 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
439 }
440 if (se->block_start) {
d281918d 441 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 442 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
443
444 if ((s64)delta < 0)
445 delta = 0;
446
447 if (unlikely(delta > se->block_max))
448 se->block_max = delta;
449
450 se->block_start = 0;
451 se->sum_sleep_runtime += delta;
30084fbd
IM
452
453 /*
454 * Blocking time is in units of nanosecs, so shift by 20 to
455 * get a milliseconds-range estimation of the amount of
456 * time that the task spent sleeping:
457 */
458 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 459
30084fbd
IM
460 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
461 delta >> 20);
462 }
9745512c 463 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
464 }
465#endif
466}
467
ddc97297
PZ
468static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
469{
470#ifdef CONFIG_SCHED_DEBUG
471 s64 d = se->vruntime - cfs_rq->min_vruntime;
472
473 if (d < 0)
474 d = -d;
475
476 if (d > 3*sysctl_sched_latency)
477 schedstat_inc(cfs_rq, nr_spread_over);
478#endif
479}
480
aeb73b04
PZ
481static void
482place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
483{
67e9fb2a 484 u64 vruntime;
aeb73b04 485
3fe69747
PZ
486 if (first_fair(cfs_rq)) {
487 vruntime = min_vruntime(cfs_rq->min_vruntime,
488 __pick_next_entity(cfs_rq)->vruntime);
489 } else
490 vruntime = cfs_rq->min_vruntime;
94dfb5e7 491
2cb8600e
PZ
492 /*
493 * The 'current' period is already promised to the current tasks,
494 * however the extra weight of the new task will slow them down a
495 * little, place the new task so that it fits in the slot that
496 * stays open at the end.
497 */
94dfb5e7 498 if (initial && sched_feat(START_DEBIT))
647e7cac 499 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 500
8465e792 501 if (!initial) {
2cb8600e 502 /* sleeps upto a single latency don't count. */
018d6db4
IM
503 if (sched_feat(NEW_FAIR_SLEEPERS)) {
504 vruntime -= calc_delta_fair(sysctl_sched_latency,
505 &cfs_rq->load);
506 }
94359f05 507
2cb8600e
PZ
508 /* ensure we never gain time by being placed backwards. */
509 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
510 }
511
67e9fb2a 512 se->vruntime = vruntime;
aeb73b04
PZ
513}
514
bf0f6f24 515static void
83b699ed 516enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
517{
518 /*
a2a2d680 519 * Update run-time statistics of the 'current'.
bf0f6f24 520 */
b7cc0896 521 update_curr(cfs_rq);
bf0f6f24 522
e9acbff6 523 if (wakeup) {
aeb73b04 524 place_entity(cfs_rq, se, 0);
2396af69 525 enqueue_sleeper(cfs_rq, se);
e9acbff6 526 }
bf0f6f24 527
d2417e5a 528 update_stats_enqueue(cfs_rq, se);
ddc97297 529 check_spread(cfs_rq, se);
83b699ed
SV
530 if (se != cfs_rq->curr)
531 __enqueue_entity(cfs_rq, se);
30cfdcfc 532 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
533}
534
4ae7d5ce
IM
535static void update_avg(u64 *avg, u64 sample)
536{
537 s64 diff = sample - *avg;
538 *avg += diff >> 3;
539}
540
541static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
542{
543 if (!se->last_wakeup)
544 return;
545
546 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
547 se->last_wakeup = 0;
548}
549
bf0f6f24 550static void
525c2716 551dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 552{
a2a2d680
DA
553 /*
554 * Update run-time statistics of the 'current'.
555 */
556 update_curr(cfs_rq);
557
19b6a2e3 558 update_stats_dequeue(cfs_rq, se);
db36cc7d 559 if (sleep) {
4ae7d5ce 560 update_avg_stats(cfs_rq, se);
67e9fb2a 561#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
562 if (entity_is_task(se)) {
563 struct task_struct *tsk = task_of(se);
564
565 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 566 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 567 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 568 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 569 }
db36cc7d 570#endif
67e9fb2a
PZ
571 }
572
83b699ed 573 if (se != cfs_rq->curr)
30cfdcfc
DA
574 __dequeue_entity(cfs_rq, se);
575 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
576}
577
578/*
579 * Preempt the current task with a newly woken task if needed:
580 */
7c92e54f 581static void
2e09bf55 582check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 583{
11697830
PZ
584 unsigned long ideal_runtime, delta_exec;
585
6d0f0ebd 586 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 587 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 588 if (delta_exec > ideal_runtime)
bf0f6f24
IM
589 resched_task(rq_of(cfs_rq)->curr);
590}
591
83b699ed 592static void
8494f412 593set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 594{
83b699ed
SV
595 /* 'current' is not kept within the tree. */
596 if (se->on_rq) {
597 /*
598 * Any task has to be enqueued before it get to execute on
599 * a CPU. So account for the time it spent waiting on the
600 * runqueue.
601 */
602 update_stats_wait_end(cfs_rq, se);
603 __dequeue_entity(cfs_rq, se);
604 }
605
79303e9e 606 update_stats_curr_start(cfs_rq, se);
429d43bc 607 cfs_rq->curr = se;
eba1ed4b
IM
608#ifdef CONFIG_SCHEDSTATS
609 /*
610 * Track our maximum slice length, if the CPU's load is at
611 * least twice that of our own weight (i.e. dont track it
612 * when there are only lesser-weight tasks around):
613 */
495eca49 614 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
615 se->slice_max = max(se->slice_max,
616 se->sum_exec_runtime - se->prev_sum_exec_runtime);
617 }
618#endif
4a55b450 619 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
620}
621
0bbd3336
PZ
622static int
623wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
624
aa2ac252
PZ
625static struct sched_entity *
626pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
627{
aa2ac252
PZ
628 if (!cfs_rq->next)
629 return se;
630
0bbd3336 631 if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
aa2ac252
PZ
632 return se;
633
634 return cfs_rq->next;
635}
636
9948f4b2 637static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 638{
08ec3df5 639 struct sched_entity *se = NULL;
bf0f6f24 640
08ec3df5
DA
641 if (first_fair(cfs_rq)) {
642 se = __pick_next_entity(cfs_rq);
aa2ac252 643 se = pick_next(cfs_rq, se);
08ec3df5
DA
644 set_next_entity(cfs_rq, se);
645 }
bf0f6f24
IM
646
647 return se;
648}
649
ab6cde26 650static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
651{
652 /*
653 * If still on the runqueue then deactivate_task()
654 * was not called and update_curr() has to be done:
655 */
656 if (prev->on_rq)
b7cc0896 657 update_curr(cfs_rq);
bf0f6f24 658
ddc97297 659 check_spread(cfs_rq, prev);
30cfdcfc 660 if (prev->on_rq) {
5870db5b 661 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
662 /* Put 'current' back into the tree. */
663 __enqueue_entity(cfs_rq, prev);
664 }
429d43bc 665 cfs_rq->curr = NULL;
bf0f6f24
IM
666}
667
8f4d37ec
PZ
668static void
669entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 670{
bf0f6f24 671 /*
30cfdcfc 672 * Update run-time statistics of the 'current'.
bf0f6f24 673 */
30cfdcfc 674 update_curr(cfs_rq);
bf0f6f24 675
8f4d37ec
PZ
676#ifdef CONFIG_SCHED_HRTICK
677 /*
678 * queued ticks are scheduled to match the slice, so don't bother
679 * validating it and just reschedule.
680 */
681 if (queued)
682 return resched_task(rq_of(cfs_rq)->curr);
683 /*
684 * don't let the period tick interfere with the hrtick preemption
685 */
686 if (!sched_feat(DOUBLE_TICK) &&
687 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
688 return;
689#endif
690
ce6c1311 691 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 692 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
693}
694
695/**************************************************
696 * CFS operations on tasks:
697 */
698
699#ifdef CONFIG_FAIR_GROUP_SCHED
700
701/* Walk up scheduling entities hierarchy */
702#define for_each_sched_entity(se) \
703 for (; se; se = se->parent)
704
705static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
706{
707 return p->se.cfs_rq;
708}
709
710/* runqueue on which this entity is (to be) queued */
711static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
712{
713 return se->cfs_rq;
714}
715
716/* runqueue "owned" by this group */
717static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
718{
719 return grp->my_q;
720}
721
722/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
723 * another cpu ('this_cpu')
724 */
725static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
726{
29f59db3 727 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
728}
729
730/* Iterate thr' all leaf cfs_rq's on a runqueue */
731#define for_each_leaf_cfs_rq(rq, cfs_rq) \
ec2c507f 732 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
bf0f6f24 733
fad095a7
SV
734/* Do the two (enqueued) entities belong to the same group ? */
735static inline int
736is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 737{
fad095a7 738 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
739 return 1;
740
741 return 0;
742}
743
fad095a7
SV
744static inline struct sched_entity *parent_entity(struct sched_entity *se)
745{
746 return se->parent;
747}
748
bf0f6f24
IM
749#else /* CONFIG_FAIR_GROUP_SCHED */
750
751#define for_each_sched_entity(se) \
752 for (; se; se = NULL)
753
754static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
755{
756 return &task_rq(p)->cfs;
757}
758
759static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
760{
761 struct task_struct *p = task_of(se);
762 struct rq *rq = task_rq(p);
763
764 return &rq->cfs;
765}
766
767/* runqueue "owned" by this group */
768static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
769{
770 return NULL;
771}
772
773static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
774{
775 return &cpu_rq(this_cpu)->cfs;
776}
777
778#define for_each_leaf_cfs_rq(rq, cfs_rq) \
779 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
780
fad095a7
SV
781static inline int
782is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
783{
784 return 1;
785}
786
fad095a7
SV
787static inline struct sched_entity *parent_entity(struct sched_entity *se)
788{
789 return NULL;
790}
791
bf0f6f24
IM
792#endif /* CONFIG_FAIR_GROUP_SCHED */
793
8f4d37ec
PZ
794#ifdef CONFIG_SCHED_HRTICK
795static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
796{
797 int requeue = rq->curr == p;
798 struct sched_entity *se = &p->se;
799 struct cfs_rq *cfs_rq = cfs_rq_of(se);
800
801 WARN_ON(task_rq(p) != rq);
802
803 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
804 u64 slice = sched_slice(cfs_rq, se);
805 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
806 s64 delta = slice - ran;
807
808 if (delta < 0) {
809 if (rq->curr == p)
810 resched_task(p);
811 return;
812 }
813
814 /*
815 * Don't schedule slices shorter than 10000ns, that just
816 * doesn't make sense. Rely on vruntime for fairness.
817 */
818 if (!requeue)
819 delta = max(10000LL, delta);
820
821 hrtick_start(rq, delta, requeue);
822 }
823}
824#else
825static inline void
826hrtick_start_fair(struct rq *rq, struct task_struct *p)
827{
828}
829#endif
830
bf0f6f24
IM
831/*
832 * The enqueue_task method is called before nr_running is
833 * increased. Here we update the fair scheduling stats and
834 * then put the task into the rbtree:
835 */
fd390f6a 836static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
837{
838 struct cfs_rq *cfs_rq;
62fb1851 839 struct sched_entity *se = &p->se;
bf0f6f24
IM
840
841 for_each_sched_entity(se) {
62fb1851 842 if (se->on_rq)
bf0f6f24
IM
843 break;
844 cfs_rq = cfs_rq_of(se);
83b699ed 845 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 846 wakeup = 1;
bf0f6f24 847 }
8f4d37ec
PZ
848
849 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
850}
851
852/*
853 * The dequeue_task method is called before nr_running is
854 * decreased. We remove the task from the rbtree and
855 * update the fair scheduling stats:
856 */
f02231e5 857static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
858{
859 struct cfs_rq *cfs_rq;
62fb1851 860 struct sched_entity *se = &p->se;
bf0f6f24
IM
861
862 for_each_sched_entity(se) {
863 cfs_rq = cfs_rq_of(se);
525c2716 864 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 865 /* Don't dequeue parent if it has other entities besides us */
62fb1851 866 if (cfs_rq->load.weight)
bf0f6f24 867 break;
b9fa3df3 868 sleep = 1;
bf0f6f24 869 }
8f4d37ec
PZ
870
871 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
872}
873
874/*
1799e35d
IM
875 * sched_yield() support is very simple - we dequeue and enqueue.
876 *
877 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 878 */
4530d7ab 879static void yield_task_fair(struct rq *rq)
bf0f6f24 880{
db292ca3
IM
881 struct task_struct *curr = rq->curr;
882 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
883 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
884
885 /*
1799e35d
IM
886 * Are we the only task in the tree?
887 */
888 if (unlikely(cfs_rq->nr_running == 1))
889 return;
890
db292ca3 891 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1799e35d
IM
892 __update_rq_clock(rq);
893 /*
a2a2d680 894 * Update run-time statistics of the 'current'.
1799e35d 895 */
2b1e315d 896 update_curr(cfs_rq);
1799e35d
IM
897
898 return;
899 }
900 /*
901 * Find the rightmost entry in the rbtree:
bf0f6f24 902 */
2b1e315d 903 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
904 /*
905 * Already in the rightmost position?
906 */
2b1e315d 907 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
908 return;
909
910 /*
911 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
912 * Upon rescheduling, sched_class::put_prev_task() will place
913 * 'current' within the tree based on its new key value.
1799e35d 914 */
30cfdcfc 915 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
916}
917
e7693a36
GH
918/*
919 * wake_idle() will wake a task on an idle cpu if task->cpu is
920 * not idle and an idle cpu is available. The span of cpus to
921 * search starts with cpus closest then further out as needed,
922 * so we always favor a closer, idle cpu.
923 *
924 * Returns the CPU we should wake onto.
925 */
926#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
927static int wake_idle(int cpu, struct task_struct *p)
928{
929 cpumask_t tmp;
930 struct sched_domain *sd;
931 int i;
932
933 /*
934 * If it is idle, then it is the best cpu to run this task.
935 *
936 * This cpu is also the best, if it has more than one task already.
937 * Siblings must be also busy(in most cases) as they didn't already
938 * pickup the extra load from this cpu and hence we need not check
939 * sibling runqueue info. This will avoid the checks and cache miss
940 * penalities associated with that.
941 */
942 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
943 return cpu;
944
945 for_each_domain(cpu, sd) {
946 if (sd->flags & SD_WAKE_IDLE) {
947 cpus_and(tmp, sd->span, p->cpus_allowed);
948 for_each_cpu_mask(i, tmp) {
949 if (idle_cpu(i)) {
950 if (i != task_cpu(p)) {
951 schedstat_inc(p,
952 se.nr_wakeups_idle);
953 }
954 return i;
955 }
956 }
957 } else {
958 break;
959 }
960 }
961 return cpu;
962}
963#else
964static inline int wake_idle(int cpu, struct task_struct *p)
965{
966 return cpu;
967}
968#endif
969
970#ifdef CONFIG_SMP
098fb9db 971
4ae7d5ce
IM
972static const struct sched_class fair_sched_class;
973
098fb9db 974static int
4ae7d5ce
IM
975wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
976 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
977 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
978 unsigned int imbalance)
979{
4ae7d5ce 980 struct task_struct *curr = this_rq->curr;
098fb9db
IM
981 unsigned long tl = this_load;
982 unsigned long tl_per_task;
983
984 if (!(this_sd->flags & SD_WAKE_AFFINE))
985 return 0;
986
987 /*
4ae7d5ce
IM
988 * If the currently running task will sleep within
989 * a reasonable amount of time then attract this newly
990 * woken task:
098fb9db 991 */
4ae7d5ce
IM
992 if (sync && curr->sched_class == &fair_sched_class) {
993 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
994 p->se.avg_overlap < sysctl_sched_migration_cost)
995 return 1;
996 }
098fb9db
IM
997
998 schedstat_inc(p, se.nr_wakeups_affine_attempts);
999 tl_per_task = cpu_avg_load_per_task(this_cpu);
1000
1001 /*
1002 * If sync wakeup then subtract the (maximum possible)
1003 * effect of the currently running task from the load
1004 * of the current CPU:
1005 */
1006 if (sync)
1007 tl -= current->se.load.weight;
1008
ac192d39 1009 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
098fb9db
IM
1010 100*(tl + p->se.load.weight) <= imbalance*load) {
1011 /*
1012 * This domain has SD_WAKE_AFFINE and
1013 * p is cache cold in this domain, and
1014 * there is no bad imbalance.
1015 */
1016 schedstat_inc(this_sd, ttwu_move_affine);
1017 schedstat_inc(p, se.nr_wakeups_affine);
1018
1019 return 1;
1020 }
1021 return 0;
1022}
1023
e7693a36
GH
1024static int select_task_rq_fair(struct task_struct *p, int sync)
1025{
e7693a36 1026 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1027 int prev_cpu, this_cpu, new_cpu;
098fb9db 1028 unsigned long load, this_load;
4ae7d5ce 1029 struct rq *rq, *this_rq;
098fb9db 1030 unsigned int imbalance;
098fb9db 1031 int idx;
e7693a36 1032
ac192d39
IM
1033 prev_cpu = task_cpu(p);
1034 rq = task_rq(p);
1035 this_cpu = smp_processor_id();
4ae7d5ce 1036 this_rq = cpu_rq(this_cpu);
ac192d39 1037 new_cpu = prev_cpu;
e7693a36 1038
ac192d39
IM
1039 /*
1040 * 'this_sd' is the first domain that both
1041 * this_cpu and prev_cpu are present in:
1042 */
e7693a36 1043 for_each_domain(this_cpu, sd) {
ac192d39 1044 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1045 this_sd = sd;
1046 break;
1047 }
1048 }
1049
1050 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
f4827386 1051 goto out;
e7693a36
GH
1052
1053 /*
1054 * Check for affine wakeup and passive balancing possibilities.
1055 */
098fb9db 1056 if (!this_sd)
f4827386 1057 goto out;
e7693a36 1058
098fb9db
IM
1059 idx = this_sd->wake_idx;
1060
1061 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1062
ac192d39 1063 load = source_load(prev_cpu, idx);
098fb9db
IM
1064 this_load = target_load(this_cpu, idx);
1065
4ae7d5ce
IM
1066 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1067 load, this_load, imbalance))
1068 return this_cpu;
1069
1070 if (prev_cpu == this_cpu)
f4827386 1071 goto out;
098fb9db
IM
1072
1073 /*
1074 * Start passive balancing when half the imbalance_pct
1075 * limit is reached.
1076 */
1077 if (this_sd->flags & SD_WAKE_BALANCE) {
1078 if (imbalance*this_load <= 100*load) {
1079 schedstat_inc(this_sd, ttwu_move_balance);
1080 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1081 return this_cpu;
e7693a36
GH
1082 }
1083 }
1084
f4827386 1085out:
e7693a36
GH
1086 return wake_idle(new_cpu, p);
1087}
1088#endif /* CONFIG_SMP */
1089
0bbd3336
PZ
1090static unsigned long wakeup_gran(struct sched_entity *se)
1091{
1092 unsigned long gran = sysctl_sched_wakeup_granularity;
1093
1094 /*
1095 * More easily preempt - nice tasks, while not making
1096 * it harder for + nice tasks.
1097 */
1098 if (unlikely(se->load.weight > NICE_0_LOAD))
1099 gran = calc_delta_fair(gran, &se->load);
1100
1101 return gran;
1102}
1103
1104/*
1105 * Should 'se' preempt 'curr'.
1106 *
1107 * |s1
1108 * |s2
1109 * |s3
1110 * g
1111 * |<--->|c
1112 *
1113 * w(c, s1) = -1
1114 * w(c, s2) = 0
1115 * w(c, s3) = 1
1116 *
1117 */
1118static int
1119wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1120{
1121 s64 gran, vdiff = curr->vruntime - se->vruntime;
1122
1123 if (vdiff < 0)
1124 return -1;
1125
1126 gran = wakeup_gran(curr);
1127 if (vdiff > gran)
1128 return 1;
1129
1130 return 0;
1131}
e7693a36 1132
bf0f6f24
IM
1133/*
1134 * Preempt the current task with a newly woken task if needed:
1135 */
2e09bf55 1136static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1137{
1138 struct task_struct *curr = rq->curr;
fad095a7 1139 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1140 struct sched_entity *se = &curr->se, *pse = &p->se;
bf0f6f24
IM
1141
1142 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1143 update_rq_clock(rq);
b7cc0896 1144 update_curr(cfs_rq);
bf0f6f24
IM
1145 resched_task(curr);
1146 return;
1147 }
aa2ac252 1148
4ae7d5ce
IM
1149 se->last_wakeup = se->sum_exec_runtime;
1150 if (unlikely(se == pse))
1151 return;
1152
aa2ac252
PZ
1153 cfs_rq_of(pse)->next = pse;
1154
91c234b4
IM
1155 /*
1156 * Batch tasks do not preempt (their preemption is driven by
1157 * the tick):
1158 */
1159 if (unlikely(p->policy == SCHED_BATCH))
1160 return;
bf0f6f24 1161
77d9cc44
IM
1162 if (!sched_feat(WAKEUP_PREEMPT))
1163 return;
8651a86c 1164
77d9cc44
IM
1165 while (!is_same_group(se, pse)) {
1166 se = parent_entity(se);
1167 pse = parent_entity(pse);
ce6c1311 1168 }
77d9cc44 1169
0bbd3336 1170 if (wakeup_preempt_entity(se, pse) == 1)
77d9cc44 1171 resched_task(curr);
bf0f6f24
IM
1172}
1173
fb8d4724 1174static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1175{
8f4d37ec 1176 struct task_struct *p;
bf0f6f24
IM
1177 struct cfs_rq *cfs_rq = &rq->cfs;
1178 struct sched_entity *se;
1179
1180 if (unlikely(!cfs_rq->nr_running))
1181 return NULL;
1182
1183 do {
9948f4b2 1184 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1185 cfs_rq = group_cfs_rq(se);
1186 } while (cfs_rq);
1187
8f4d37ec
PZ
1188 p = task_of(se);
1189 hrtick_start_fair(rq, p);
1190
1191 return p;
bf0f6f24
IM
1192}
1193
1194/*
1195 * Account for a descheduled task:
1196 */
31ee529c 1197static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1198{
1199 struct sched_entity *se = &prev->se;
1200 struct cfs_rq *cfs_rq;
1201
1202 for_each_sched_entity(se) {
1203 cfs_rq = cfs_rq_of(se);
ab6cde26 1204 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1205 }
1206}
1207
681f3e68 1208#ifdef CONFIG_SMP
bf0f6f24
IM
1209/**************************************************
1210 * Fair scheduling class load-balancing methods:
1211 */
1212
1213/*
1214 * Load-balancing iterator. Note: while the runqueue stays locked
1215 * during the whole iteration, the current task might be
1216 * dequeued so the iterator has to be dequeue-safe. Here we
1217 * achieve that by always pre-iterating before returning
1218 * the current task:
1219 */
a9957449 1220static struct task_struct *
bf0f6f24
IM
1221__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1222{
1223 struct task_struct *p;
1224
1225 if (!curr)
1226 return NULL;
1227
1228 p = rb_entry(curr, struct task_struct, se.run_node);
1229 cfs_rq->rb_load_balance_curr = rb_next(curr);
1230
1231 return p;
1232}
1233
1234static struct task_struct *load_balance_start_fair(void *arg)
1235{
1236 struct cfs_rq *cfs_rq = arg;
1237
1238 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1239}
1240
1241static struct task_struct *load_balance_next_fair(void *arg)
1242{
1243 struct cfs_rq *cfs_rq = arg;
1244
1245 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1246}
1247
62fb1851
PZ
1248#ifdef CONFIG_FAIR_GROUP_SCHED
1249static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1250{
1251 struct sched_entity *curr;
1252 struct task_struct *p;
1253
1254 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1255 return MAX_PRIO;
1256
1257 curr = cfs_rq->curr;
1258 if (!curr)
1259 curr = __pick_next_entity(cfs_rq);
1260
1261 p = task_of(curr);
1262
1263 return p->prio;
1264}
1265#endif
1266
43010659 1267static unsigned long
bf0f6f24 1268load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1269 unsigned long max_load_move,
a4ac01c3
PW
1270 struct sched_domain *sd, enum cpu_idle_type idle,
1271 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
1272{
1273 struct cfs_rq *busy_cfs_rq;
bf0f6f24
IM
1274 long rem_load_move = max_load_move;
1275 struct rq_iterator cfs_rq_iterator;
1276
1277 cfs_rq_iterator.start = load_balance_start_fair;
1278 cfs_rq_iterator.next = load_balance_next_fair;
1279
1280 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 1281#ifdef CONFIG_FAIR_GROUP_SCHED
62fb1851
PZ
1282 struct cfs_rq *this_cfs_rq;
1283 long imbalance;
1284 unsigned long maxload;
bf0f6f24 1285
62fb1851 1286 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
6b2d7700 1287
62fb1851
PZ
1288 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1289 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1290 if (imbalance <= 0)
bf0f6f24
IM
1291 continue;
1292
62fb1851
PZ
1293 /* Don't pull more than imbalance/2 */
1294 imbalance /= 2;
1295 maxload = min(rem_load_move, imbalance);
bf0f6f24 1296
62fb1851 1297 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
a4ac01c3 1298#else
e56f31aa 1299# define maxload rem_load_move
a4ac01c3 1300#endif
e1d1484f
PW
1301 /*
1302 * pass busy_cfs_rq argument into
bf0f6f24
IM
1303 * load_balance_[start|next]_fair iterators
1304 */
1305 cfs_rq_iterator.arg = busy_cfs_rq;
62fb1851 1306 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
e1d1484f
PW
1307 maxload, sd, idle, all_pinned,
1308 this_best_prio,
1309 &cfs_rq_iterator);
bf0f6f24 1310
e1d1484f 1311 if (rem_load_move <= 0)
bf0f6f24
IM
1312 break;
1313 }
1314
43010659 1315 return max_load_move - rem_load_move;
bf0f6f24
IM
1316}
1317
e1d1484f
PW
1318static int
1319move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1320 struct sched_domain *sd, enum cpu_idle_type idle)
1321{
1322 struct cfs_rq *busy_cfs_rq;
1323 struct rq_iterator cfs_rq_iterator;
1324
1325 cfs_rq_iterator.start = load_balance_start_fair;
1326 cfs_rq_iterator.next = load_balance_next_fair;
1327
1328 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1329 /*
1330 * pass busy_cfs_rq argument into
1331 * load_balance_[start|next]_fair iterators
1332 */
1333 cfs_rq_iterator.arg = busy_cfs_rq;
1334 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1335 &cfs_rq_iterator))
1336 return 1;
1337 }
1338
1339 return 0;
1340}
681f3e68 1341#endif
e1d1484f 1342
bf0f6f24
IM
1343/*
1344 * scheduler tick hitting a task of our scheduling class:
1345 */
8f4d37ec 1346static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1347{
1348 struct cfs_rq *cfs_rq;
1349 struct sched_entity *se = &curr->se;
1350
1351 for_each_sched_entity(se) {
1352 cfs_rq = cfs_rq_of(se);
8f4d37ec 1353 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1354 }
1355}
1356
8eb172d9 1357#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1358
bf0f6f24
IM
1359/*
1360 * Share the fairness runtime between parent and child, thus the
1361 * total amount of pressure for CPU stays equal - new tasks
1362 * get a chance to run but frequent forkers are not allowed to
1363 * monopolize the CPU. Note: the parent runqueue is locked,
1364 * the child is not running yet.
1365 */
ee0827d8 1366static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1367{
1368 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1369 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1370 int this_cpu = smp_processor_id();
bf0f6f24
IM
1371
1372 sched_info_queued(p);
1373
7109c442 1374 update_curr(cfs_rq);
aeb73b04 1375 place_entity(cfs_rq, se, 1);
4d78e7b6 1376
3c90e6e9 1377 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1378 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1379 curr && curr->vruntime < se->vruntime) {
87fefa38 1380 /*
edcb60a3
IM
1381 * Upon rescheduling, sched_class::put_prev_task() will place
1382 * 'current' within the tree based on its new key value.
1383 */
4d78e7b6 1384 swap(curr->vruntime, se->vruntime);
4d78e7b6 1385 }
bf0f6f24 1386
b9dca1e0 1387 enqueue_task_fair(rq, p, 0);
bb61c210 1388 resched_task(rq->curr);
bf0f6f24
IM
1389}
1390
cb469845
SR
1391/*
1392 * Priority of the task has changed. Check to see if we preempt
1393 * the current task.
1394 */
1395static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1396 int oldprio, int running)
1397{
1398 /*
1399 * Reschedule if we are currently running on this runqueue and
1400 * our priority decreased, or if we are not currently running on
1401 * this runqueue and our priority is higher than the current's
1402 */
1403 if (running) {
1404 if (p->prio > oldprio)
1405 resched_task(rq->curr);
1406 } else
1407 check_preempt_curr(rq, p);
1408}
1409
1410/*
1411 * We switched to the sched_fair class.
1412 */
1413static void switched_to_fair(struct rq *rq, struct task_struct *p,
1414 int running)
1415{
1416 /*
1417 * We were most likely switched from sched_rt, so
1418 * kick off the schedule if running, otherwise just see
1419 * if we can still preempt the current task.
1420 */
1421 if (running)
1422 resched_task(rq->curr);
1423 else
1424 check_preempt_curr(rq, p);
1425}
1426
83b699ed
SV
1427/* Account for a task changing its policy or group.
1428 *
1429 * This routine is mostly called to set cfs_rq->curr field when a task
1430 * migrates between groups/classes.
1431 */
1432static void set_curr_task_fair(struct rq *rq)
1433{
1434 struct sched_entity *se = &rq->curr->se;
1435
1436 for_each_sched_entity(se)
1437 set_next_entity(cfs_rq_of(se), se);
1438}
1439
810b3817
PZ
1440#ifdef CONFIG_FAIR_GROUP_SCHED
1441static void moved_group_fair(struct task_struct *p)
1442{
1443 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1444
1445 update_curr(cfs_rq);
1446 place_entity(cfs_rq, &p->se, 1);
1447}
1448#endif
1449
bf0f6f24
IM
1450/*
1451 * All the scheduling class methods:
1452 */
5522d5d5
IM
1453static const struct sched_class fair_sched_class = {
1454 .next = &idle_sched_class,
bf0f6f24
IM
1455 .enqueue_task = enqueue_task_fair,
1456 .dequeue_task = dequeue_task_fair,
1457 .yield_task = yield_task_fair,
e7693a36
GH
1458#ifdef CONFIG_SMP
1459 .select_task_rq = select_task_rq_fair,
1460#endif /* CONFIG_SMP */
bf0f6f24 1461
2e09bf55 1462 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1463
1464 .pick_next_task = pick_next_task_fair,
1465 .put_prev_task = put_prev_task_fair,
1466
681f3e68 1467#ifdef CONFIG_SMP
bf0f6f24 1468 .load_balance = load_balance_fair,
e1d1484f 1469 .move_one_task = move_one_task_fair,
681f3e68 1470#endif
bf0f6f24 1471
83b699ed 1472 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1473 .task_tick = task_tick_fair,
1474 .task_new = task_new_fair,
cb469845
SR
1475
1476 .prio_changed = prio_changed_fair,
1477 .switched_to = switched_to_fair,
810b3817
PZ
1478
1479#ifdef CONFIG_FAIR_GROUP_SCHED
1480 .moved_group = moved_group_fair,
1481#endif
bf0f6f24
IM
1482};
1483
1484#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1485static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1486{
bf0f6f24
IM
1487 struct cfs_rq *cfs_rq;
1488
75c28ace
SV
1489#ifdef CONFIG_FAIR_GROUP_SCHED
1490 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1491#endif
5973e5b9 1492 rcu_read_lock();
c3b64f1e 1493 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1494 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1495 rcu_read_unlock();
bf0f6f24
IM
1496}
1497#endif