]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched_fair.c
sched: documentation: place_entity() comments
[mirror_ubuntu-artful-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085 27 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
28 * 'timeslice length' - timeslices in CFS are of variable length
29 * and have no persistent notion like in traditional, time-slice
30 * based scheduling concepts.
bf0f6f24 31 *
d274a4ce
IM
32 * (to see the precise effective timeslice length of your workload,
33 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 34 */
2bd8e6d4
IM
35const_debug unsigned int sysctl_sched_latency = 20000000ULL;
36
37/*
38 * After fork, child runs first. (default) If set to 0 then
39 * parent will (try to) run first.
40 */
41const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
42
43/*
44 * Minimal preemption granularity for CPU-bound tasks:
45 * (default: 2 msec, units: nanoseconds)
46 */
5f6d858e 47const_debug unsigned int sysctl_sched_nr_latency = 20;
bf0f6f24 48
1799e35d
IM
49/*
50 * sys_sched_yield() compat mode
51 *
52 * This option switches the agressive yield implementation of the
53 * old scheduler back on.
54 */
55unsigned int __read_mostly sysctl_sched_compat_yield;
56
bf0f6f24
IM
57/*
58 * SCHED_BATCH wake-up granularity.
155bb293 59 * (default: 10 msec, units: nanoseconds)
bf0f6f24
IM
60 *
61 * This option delays the preemption effects of decoupled workloads
62 * and reduces their over-scheduling. Synchronous workloads will still
63 * have immediate wakeup/sleep latencies.
64 */
155bb293 65const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
bf0f6f24
IM
66
67/*
68 * SCHED_OTHER wake-up granularity.
155bb293 69 * (default: 10 msec, units: nanoseconds)
bf0f6f24
IM
70 *
71 * This option delays the preemption effects of decoupled workloads
72 * and reduces their over-scheduling. Synchronous workloads will still
73 * have immediate wakeup/sleep latencies.
74 */
155bb293 75const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 76
da84d961
IM
77const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
78
bf0f6f24
IM
79/**************************************************************
80 * CFS operations on generic schedulable entities:
81 */
82
62160e3f 83#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 84
62160e3f 85/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
86static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
87{
62160e3f 88 return cfs_rq->rq;
bf0f6f24
IM
89}
90
62160e3f
IM
91/* An entity is a task if it doesn't "own" a runqueue */
92#define entity_is_task(se) (!se->my_q)
bf0f6f24 93
62160e3f 94#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 95
62160e3f
IM
96static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
97{
98 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
99}
100
101#define entity_is_task(se) 1
102
bf0f6f24
IM
103#endif /* CONFIG_FAIR_GROUP_SCHED */
104
105static inline struct task_struct *task_of(struct sched_entity *se)
106{
107 return container_of(se, struct task_struct, se);
108}
109
110
111/**************************************************************
112 * Scheduling class tree data structure manipulation methods:
113 */
114
0702e3eb 115static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 116{
368059a9
PZ
117 s64 delta = (s64)(vruntime - min_vruntime);
118 if (delta > 0)
02e0431a
PZ
119 min_vruntime = vruntime;
120
121 return min_vruntime;
122}
123
0702e3eb 124static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
125{
126 s64 delta = (s64)(vruntime - min_vruntime);
127 if (delta < 0)
128 min_vruntime = vruntime;
129
130 return min_vruntime;
131}
132
0702e3eb 133static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 134{
30cfdcfc 135 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
136}
137
bf0f6f24
IM
138/*
139 * Enqueue an entity into the rb-tree:
140 */
0702e3eb 141static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
142{
143 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
144 struct rb_node *parent = NULL;
145 struct sched_entity *entry;
9014623c 146 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
147 int leftmost = 1;
148
149 /*
150 * Find the right place in the rbtree:
151 */
152 while (*link) {
153 parent = *link;
154 entry = rb_entry(parent, struct sched_entity, run_node);
155 /*
156 * We dont care about collisions. Nodes with
157 * the same key stay together.
158 */
9014623c 159 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
160 link = &parent->rb_left;
161 } else {
162 link = &parent->rb_right;
163 leftmost = 0;
164 }
165 }
166
167 /*
168 * Maintain a cache of leftmost tree entries (it is frequently
169 * used):
170 */
171 if (leftmost)
57cb499d 172 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
173
174 rb_link_node(&se->run_node, parent, link);
175 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
176}
177
0702e3eb 178static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
179{
180 if (cfs_rq->rb_leftmost == &se->run_node)
57cb499d 181 cfs_rq->rb_leftmost = rb_next(&se->run_node);
e9acbff6 182
bf0f6f24 183 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
184}
185
186static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
187{
188 return cfs_rq->rb_leftmost;
189}
190
191static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
192{
193 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
194}
195
aeb73b04
PZ
196static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
197{
198 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
199 struct sched_entity *se = NULL;
200 struct rb_node *parent;
201
202 while (*link) {
203 parent = *link;
204 se = rb_entry(parent, struct sched_entity, run_node);
205 link = &parent->rb_right;
206 }
207
208 return se;
209}
210
bf0f6f24
IM
211/**************************************************************
212 * Scheduling class statistics methods:
213 */
214
647e7cac
IM
215
216/*
217 * The idea is to set a period in which each task runs once.
218 *
219 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
220 * this period because otherwise the slices get too small.
221 *
222 * p = (nr <= nl) ? l : l*nr/nl
223 */
4d78e7b6
PZ
224static u64 __sched_period(unsigned long nr_running)
225{
226 u64 period = sysctl_sched_latency;
5f6d858e 227 unsigned long nr_latency = sysctl_sched_nr_latency;
4d78e7b6
PZ
228
229 if (unlikely(nr_running > nr_latency)) {
230 period *= nr_running;
231 do_div(period, nr_latency);
232 }
233
234 return period;
235}
236
647e7cac
IM
237/*
238 * We calculate the wall-time slice from the period by taking a part
239 * proportional to the weight.
240 *
241 * s = p*w/rw
242 */
6d0f0ebd 243static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 244{
647e7cac 245 u64 slice = __sched_period(cfs_rq->nr_running);
21805085 246
647e7cac
IM
247 slice *= se->load.weight;
248 do_div(slice, cfs_rq->load.weight);
21805085 249
647e7cac 250 return slice;
bf0f6f24
IM
251}
252
647e7cac
IM
253/*
254 * We calculate the vruntime slice.
255 *
256 * vs = s/w = p/rw
257 */
258static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 259{
647e7cac 260 u64 vslice = __sched_period(nr_running);
67e9fb2a 261
10b77724 262 vslice *= NICE_0_LOAD;
647e7cac 263 do_div(vslice, rq_weight);
67e9fb2a 264
647e7cac
IM
265 return vslice;
266}
5f6d858e 267
647e7cac
IM
268static u64 sched_vslice(struct cfs_rq *cfs_rq)
269{
270 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
271}
272
273static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
274{
275 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
276 cfs_rq->nr_running + 1);
67e9fb2a
PZ
277}
278
bf0f6f24
IM
279/*
280 * Update the current task's runtime statistics. Skip current tasks that
281 * are not in our scheduling class.
282 */
283static inline void
8ebc91d9
IM
284__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
285 unsigned long delta_exec)
bf0f6f24 286{
bbdba7c0 287 unsigned long delta_exec_weighted;
b0ffd246 288 u64 vruntime;
bf0f6f24 289
8179ca23 290 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
291
292 curr->sum_exec_runtime += delta_exec;
7a62eabc 293 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
294 delta_exec_weighted = delta_exec;
295 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
296 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
297 &curr->load);
298 }
299 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
300
301 /*
302 * maintain cfs_rq->min_vruntime to be a monotonic increasing
303 * value tracking the leftmost vruntime in the tree.
304 */
305 if (first_fair(cfs_rq)) {
b0ffd246
PZ
306 vruntime = min_vruntime(curr->vruntime,
307 __pick_next_entity(cfs_rq)->vruntime);
02e0431a 308 } else
b0ffd246 309 vruntime = curr->vruntime;
02e0431a
PZ
310
311 cfs_rq->min_vruntime =
b0ffd246 312 max_vruntime(cfs_rq->min_vruntime, vruntime);
bf0f6f24
IM
313}
314
b7cc0896 315static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 316{
429d43bc 317 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 318 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
319 unsigned long delta_exec;
320
321 if (unlikely(!curr))
322 return;
323
324 /*
325 * Get the amount of time the current task was running
326 * since the last time we changed load (this cannot
327 * overflow on 32 bits):
328 */
8ebc91d9 329 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 330
8ebc91d9
IM
331 __update_curr(cfs_rq, curr, delta_exec);
332 curr->exec_start = now;
bf0f6f24
IM
333}
334
335static inline void
5870db5b 336update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 337{
d281918d 338 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
339}
340
bf0f6f24
IM
341/*
342 * Task is being enqueued - update stats:
343 */
d2417e5a 344static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 345{
bf0f6f24
IM
346 /*
347 * Are we enqueueing a waiting task? (for current tasks
348 * a dequeue/enqueue event is a NOP)
349 */
429d43bc 350 if (se != cfs_rq->curr)
5870db5b 351 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
352}
353
bf0f6f24 354static void
9ef0a961 355update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 356{
bbdba7c0
IM
357 schedstat_set(se->wait_max, max(se->wait_max,
358 rq_of(cfs_rq)->clock - se->wait_start));
6cfb0d5d 359 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
360}
361
362static inline void
19b6a2e3 363update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 364{
bf0f6f24
IM
365 /*
366 * Mark the end of the wait period if dequeueing a
367 * waiting task:
368 */
429d43bc 369 if (se != cfs_rq->curr)
9ef0a961 370 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
371}
372
373/*
374 * We are picking a new current task - update its stats:
375 */
376static inline void
79303e9e 377update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
378{
379 /*
380 * We are starting a new run period:
381 */
d281918d 382 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
383}
384
bf0f6f24
IM
385/**************************************************
386 * Scheduling class queueing methods:
387 */
388
30cfdcfc
DA
389static void
390account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
391{
392 update_load_add(&cfs_rq->load, se->load.weight);
393 cfs_rq->nr_running++;
394 se->on_rq = 1;
395}
396
397static void
398account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
399{
400 update_load_sub(&cfs_rq->load, se->load.weight);
401 cfs_rq->nr_running--;
402 se->on_rq = 0;
403}
404
2396af69 405static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 406{
bf0f6f24
IM
407#ifdef CONFIG_SCHEDSTATS
408 if (se->sleep_start) {
d281918d 409 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
410
411 if ((s64)delta < 0)
412 delta = 0;
413
414 if (unlikely(delta > se->sleep_max))
415 se->sleep_max = delta;
416
417 se->sleep_start = 0;
418 se->sum_sleep_runtime += delta;
419 }
420 if (se->block_start) {
d281918d 421 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
422
423 if ((s64)delta < 0)
424 delta = 0;
425
426 if (unlikely(delta > se->block_max))
427 se->block_max = delta;
428
429 se->block_start = 0;
430 se->sum_sleep_runtime += delta;
30084fbd
IM
431
432 /*
433 * Blocking time is in units of nanosecs, so shift by 20 to
434 * get a milliseconds-range estimation of the amount of
435 * time that the task spent sleeping:
436 */
437 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf
IM
438 struct task_struct *tsk = task_of(se);
439
30084fbd
IM
440 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
441 delta >> 20);
442 }
bf0f6f24
IM
443 }
444#endif
445}
446
ddc97297
PZ
447static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
448{
449#ifdef CONFIG_SCHED_DEBUG
450 s64 d = se->vruntime - cfs_rq->min_vruntime;
451
452 if (d < 0)
453 d = -d;
454
455 if (d > 3*sysctl_sched_latency)
456 schedstat_inc(cfs_rq, nr_spread_over);
457#endif
458}
459
aeb73b04
PZ
460static void
461place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
462{
67e9fb2a 463 u64 vruntime;
aeb73b04 464
67e9fb2a 465 vruntime = cfs_rq->min_vruntime;
94dfb5e7 466
06877c33 467 if (sched_feat(TREE_AVG)) {
94dfb5e7
PZ
468 struct sched_entity *last = __pick_last_entity(cfs_rq);
469 if (last) {
67e9fb2a
PZ
470 vruntime += last->vruntime;
471 vruntime >>= 1;
94dfb5e7 472 }
67e9fb2a 473 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
647e7cac 474 vruntime += sched_vslice(cfs_rq)/2;
94dfb5e7 475
2cb8600e
PZ
476 /*
477 * The 'current' period is already promised to the current tasks,
478 * however the extra weight of the new task will slow them down a
479 * little, place the new task so that it fits in the slot that
480 * stays open at the end.
481 */
94dfb5e7 482 if (initial && sched_feat(START_DEBIT))
647e7cac 483 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 484
8465e792 485 if (!initial) {
2cb8600e 486 /* sleeps upto a single latency don't count. */
e62dd02e
DA
487 if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
488 task_of(se)->policy != SCHED_BATCH)
94359f05
IM
489 vruntime -= sysctl_sched_latency;
490
2cb8600e
PZ
491 /* ensure we never gain time by being placed backwards. */
492 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
493 }
494
67e9fb2a 495 se->vruntime = vruntime;
aeb73b04
PZ
496}
497
bf0f6f24 498static void
83b699ed 499enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
500{
501 /*
a2a2d680 502 * Update run-time statistics of the 'current'.
bf0f6f24 503 */
b7cc0896 504 update_curr(cfs_rq);
bf0f6f24 505
e9acbff6 506 if (wakeup) {
aeb73b04 507 place_entity(cfs_rq, se, 0);
2396af69 508 enqueue_sleeper(cfs_rq, se);
e9acbff6 509 }
bf0f6f24 510
d2417e5a 511 update_stats_enqueue(cfs_rq, se);
ddc97297 512 check_spread(cfs_rq, se);
83b699ed
SV
513 if (se != cfs_rq->curr)
514 __enqueue_entity(cfs_rq, se);
30cfdcfc 515 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
516}
517
518static void
525c2716 519dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 520{
a2a2d680
DA
521 /*
522 * Update run-time statistics of the 'current'.
523 */
524 update_curr(cfs_rq);
525
19b6a2e3 526 update_stats_dequeue(cfs_rq, se);
db36cc7d 527 if (sleep) {
95938a35 528 se->peer_preempt = 0;
67e9fb2a 529#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
530 if (entity_is_task(se)) {
531 struct task_struct *tsk = task_of(se);
532
533 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 534 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 535 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 536 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 537 }
db36cc7d 538#endif
67e9fb2a
PZ
539 }
540
83b699ed 541 if (se != cfs_rq->curr)
30cfdcfc
DA
542 __dequeue_entity(cfs_rq, se);
543 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
544}
545
546/*
547 * Preempt the current task with a newly woken task if needed:
548 */
7c92e54f 549static void
2e09bf55 550check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 551{
11697830
PZ
552 unsigned long ideal_runtime, delta_exec;
553
6d0f0ebd 554 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 555 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
95938a35
MG
556 if (delta_exec > ideal_runtime ||
557 (sched_feat(PREEMPT_RESTRICT) && curr->peer_preempt))
bf0f6f24 558 resched_task(rq_of(cfs_rq)->curr);
95938a35 559 curr->peer_preempt = 0;
bf0f6f24
IM
560}
561
83b699ed 562static void
8494f412 563set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 564{
83b699ed
SV
565 /* 'current' is not kept within the tree. */
566 if (se->on_rq) {
567 /*
568 * Any task has to be enqueued before it get to execute on
569 * a CPU. So account for the time it spent waiting on the
570 * runqueue.
571 */
572 update_stats_wait_end(cfs_rq, se);
573 __dequeue_entity(cfs_rq, se);
574 }
575
79303e9e 576 update_stats_curr_start(cfs_rq, se);
429d43bc 577 cfs_rq->curr = se;
eba1ed4b
IM
578#ifdef CONFIG_SCHEDSTATS
579 /*
580 * Track our maximum slice length, if the CPU's load is at
581 * least twice that of our own weight (i.e. dont track it
582 * when there are only lesser-weight tasks around):
583 */
495eca49 584 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
585 se->slice_max = max(se->slice_max,
586 se->sum_exec_runtime - se->prev_sum_exec_runtime);
587 }
588#endif
4a55b450 589 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
590}
591
9948f4b2 592static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 593{
08ec3df5 594 struct sched_entity *se = NULL;
bf0f6f24 595
08ec3df5
DA
596 if (first_fair(cfs_rq)) {
597 se = __pick_next_entity(cfs_rq);
598 set_next_entity(cfs_rq, se);
599 }
bf0f6f24
IM
600
601 return se;
602}
603
ab6cde26 604static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
605{
606 /*
607 * If still on the runqueue then deactivate_task()
608 * was not called and update_curr() has to be done:
609 */
610 if (prev->on_rq)
b7cc0896 611 update_curr(cfs_rq);
bf0f6f24 612
ddc97297 613 check_spread(cfs_rq, prev);
30cfdcfc 614 if (prev->on_rq) {
5870db5b 615 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
616 /* Put 'current' back into the tree. */
617 __enqueue_entity(cfs_rq, prev);
618 }
429d43bc 619 cfs_rq->curr = NULL;
bf0f6f24
IM
620}
621
622static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
623{
bf0f6f24 624 /*
30cfdcfc 625 * Update run-time statistics of the 'current'.
bf0f6f24 626 */
30cfdcfc 627 update_curr(cfs_rq);
bf0f6f24 628
ce6c1311 629 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 630 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
631}
632
633/**************************************************
634 * CFS operations on tasks:
635 */
636
637#ifdef CONFIG_FAIR_GROUP_SCHED
638
639/* Walk up scheduling entities hierarchy */
640#define for_each_sched_entity(se) \
641 for (; se; se = se->parent)
642
643static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
644{
645 return p->se.cfs_rq;
646}
647
648/* runqueue on which this entity is (to be) queued */
649static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
650{
651 return se->cfs_rq;
652}
653
654/* runqueue "owned" by this group */
655static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
656{
657 return grp->my_q;
658}
659
660/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
661 * another cpu ('this_cpu')
662 */
663static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
664{
29f59db3 665 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
666}
667
668/* Iterate thr' all leaf cfs_rq's on a runqueue */
669#define for_each_leaf_cfs_rq(rq, cfs_rq) \
670 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
671
fad095a7
SV
672/* Do the two (enqueued) entities belong to the same group ? */
673static inline int
674is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 675{
fad095a7 676 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
677 return 1;
678
679 return 0;
680}
681
fad095a7
SV
682static inline struct sched_entity *parent_entity(struct sched_entity *se)
683{
684 return se->parent;
685}
686
bf0f6f24
IM
687#else /* CONFIG_FAIR_GROUP_SCHED */
688
689#define for_each_sched_entity(se) \
690 for (; se; se = NULL)
691
692static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
693{
694 return &task_rq(p)->cfs;
695}
696
697static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
698{
699 struct task_struct *p = task_of(se);
700 struct rq *rq = task_rq(p);
701
702 return &rq->cfs;
703}
704
705/* runqueue "owned" by this group */
706static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
707{
708 return NULL;
709}
710
711static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
712{
713 return &cpu_rq(this_cpu)->cfs;
714}
715
716#define for_each_leaf_cfs_rq(rq, cfs_rq) \
717 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
718
fad095a7
SV
719static inline int
720is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
721{
722 return 1;
723}
724
fad095a7
SV
725static inline struct sched_entity *parent_entity(struct sched_entity *se)
726{
727 return NULL;
728}
729
bf0f6f24
IM
730#endif /* CONFIG_FAIR_GROUP_SCHED */
731
732/*
733 * The enqueue_task method is called before nr_running is
734 * increased. Here we update the fair scheduling stats and
735 * then put the task into the rbtree:
736 */
fd390f6a 737static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
738{
739 struct cfs_rq *cfs_rq;
740 struct sched_entity *se = &p->se;
741
742 for_each_sched_entity(se) {
743 if (se->on_rq)
744 break;
745 cfs_rq = cfs_rq_of(se);
83b699ed 746 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 747 wakeup = 1;
bf0f6f24
IM
748 }
749}
750
751/*
752 * The dequeue_task method is called before nr_running is
753 * decreased. We remove the task from the rbtree and
754 * update the fair scheduling stats:
755 */
f02231e5 756static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
757{
758 struct cfs_rq *cfs_rq;
759 struct sched_entity *se = &p->se;
760
761 for_each_sched_entity(se) {
762 cfs_rq = cfs_rq_of(se);
525c2716 763 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
764 /* Don't dequeue parent if it has other entities besides us */
765 if (cfs_rq->load.weight)
766 break;
b9fa3df3 767 sleep = 1;
bf0f6f24
IM
768 }
769}
770
771/*
1799e35d
IM
772 * sched_yield() support is very simple - we dequeue and enqueue.
773 *
774 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 775 */
4530d7ab 776static void yield_task_fair(struct rq *rq)
bf0f6f24 777{
72ea22f8 778 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
4530d7ab 779 struct sched_entity *rightmost, *se = &rq->curr->se;
bf0f6f24
IM
780
781 /*
1799e35d
IM
782 * Are we the only task in the tree?
783 */
784 if (unlikely(cfs_rq->nr_running == 1))
785 return;
786
787 if (likely(!sysctl_sched_compat_yield)) {
788 __update_rq_clock(rq);
789 /*
a2a2d680 790 * Update run-time statistics of the 'current'.
1799e35d 791 */
2b1e315d 792 update_curr(cfs_rq);
1799e35d
IM
793
794 return;
795 }
796 /*
797 * Find the rightmost entry in the rbtree:
bf0f6f24 798 */
2b1e315d 799 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
800 /*
801 * Already in the rightmost position?
802 */
2b1e315d 803 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
804 return;
805
806 /*
807 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
808 * Upon rescheduling, sched_class::put_prev_task() will place
809 * 'current' within the tree based on its new key value.
1799e35d 810 */
30cfdcfc 811 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
812}
813
814/*
815 * Preempt the current task with a newly woken task if needed:
816 */
2e09bf55 817static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
818{
819 struct task_struct *curr = rq->curr;
fad095a7 820 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 821 struct sched_entity *se = &curr->se, *pse = &p->se;
810e95cc 822 s64 delta, gran;
bf0f6f24
IM
823
824 if (unlikely(rt_prio(p->prio))) {
a8e504d2 825 update_rq_clock(rq);
b7cc0896 826 update_curr(cfs_rq);
bf0f6f24
IM
827 resched_task(curr);
828 return;
829 }
91c234b4
IM
830 /*
831 * Batch tasks do not preempt (their preemption is driven by
832 * the tick):
833 */
834 if (unlikely(p->policy == SCHED_BATCH))
835 return;
bf0f6f24 836
ce6c1311
PZ
837 if (sched_feat(WAKEUP_PREEMPT)) {
838 while (!is_same_group(se, pse)) {
839 se = parent_entity(se);
840 pse = parent_entity(pse);
841 }
8651a86c 842
ce6c1311
PZ
843 delta = se->vruntime - pse->vruntime;
844 gran = sysctl_sched_wakeup_granularity;
845 if (unlikely(se->load.weight != NICE_0_LOAD))
846 gran = calc_delta_fair(gran, &se->load);
8651a86c 847
95938a35
MG
848 if (delta > gran) {
849 int now = !sched_feat(PREEMPT_RESTRICT);
850
851 if (now || p->prio < curr->prio || !se->peer_preempt++)
852 resched_task(curr);
853 }
ce6c1311 854 }
bf0f6f24
IM
855}
856
fb8d4724 857static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
858{
859 struct cfs_rq *cfs_rq = &rq->cfs;
860 struct sched_entity *se;
861
862 if (unlikely(!cfs_rq->nr_running))
863 return NULL;
864
865 do {
9948f4b2 866 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
867 cfs_rq = group_cfs_rq(se);
868 } while (cfs_rq);
869
870 return task_of(se);
871}
872
873/*
874 * Account for a descheduled task:
875 */
31ee529c 876static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
877{
878 struct sched_entity *se = &prev->se;
879 struct cfs_rq *cfs_rq;
880
881 for_each_sched_entity(se) {
882 cfs_rq = cfs_rq_of(se);
ab6cde26 883 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
884 }
885}
886
681f3e68 887#ifdef CONFIG_SMP
bf0f6f24
IM
888/**************************************************
889 * Fair scheduling class load-balancing methods:
890 */
891
892/*
893 * Load-balancing iterator. Note: while the runqueue stays locked
894 * during the whole iteration, the current task might be
895 * dequeued so the iterator has to be dequeue-safe. Here we
896 * achieve that by always pre-iterating before returning
897 * the current task:
898 */
a9957449 899static struct task_struct *
bf0f6f24
IM
900__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
901{
902 struct task_struct *p;
903
904 if (!curr)
905 return NULL;
906
907 p = rb_entry(curr, struct task_struct, se.run_node);
908 cfs_rq->rb_load_balance_curr = rb_next(curr);
909
910 return p;
911}
912
913static struct task_struct *load_balance_start_fair(void *arg)
914{
915 struct cfs_rq *cfs_rq = arg;
916
917 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
918}
919
920static struct task_struct *load_balance_next_fair(void *arg)
921{
922 struct cfs_rq *cfs_rq = arg;
923
924 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
925}
926
a4ac01c3 927#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
928static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
929{
930 struct sched_entity *curr;
931 struct task_struct *p;
932
933 if (!cfs_rq->nr_running)
934 return MAX_PRIO;
935
9b5b7751
SV
936 curr = cfs_rq->curr;
937 if (!curr)
938 curr = __pick_next_entity(cfs_rq);
939
bf0f6f24
IM
940 p = task_of(curr);
941
942 return p->prio;
943}
a4ac01c3 944#endif
bf0f6f24 945
43010659 946static unsigned long
bf0f6f24 947load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 948 unsigned long max_load_move,
a4ac01c3
PW
949 struct sched_domain *sd, enum cpu_idle_type idle,
950 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
951{
952 struct cfs_rq *busy_cfs_rq;
bf0f6f24
IM
953 long rem_load_move = max_load_move;
954 struct rq_iterator cfs_rq_iterator;
955
956 cfs_rq_iterator.start = load_balance_start_fair;
957 cfs_rq_iterator.next = load_balance_next_fair;
958
959 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 960#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 961 struct cfs_rq *this_cfs_rq;
e56f31aa 962 long imbalance;
bf0f6f24 963 unsigned long maxload;
bf0f6f24
IM
964
965 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
966
e56f31aa 967 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
968 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
969 if (imbalance <= 0)
970 continue;
971
972 /* Don't pull more than imbalance/2 */
973 imbalance /= 2;
974 maxload = min(rem_load_move, imbalance);
975
a4ac01c3
PW
976 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
977#else
e56f31aa 978# define maxload rem_load_move
a4ac01c3 979#endif
e1d1484f
PW
980 /*
981 * pass busy_cfs_rq argument into
bf0f6f24
IM
982 * load_balance_[start|next]_fair iterators
983 */
984 cfs_rq_iterator.arg = busy_cfs_rq;
e1d1484f
PW
985 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
986 maxload, sd, idle, all_pinned,
987 this_best_prio,
988 &cfs_rq_iterator);
bf0f6f24 989
e1d1484f 990 if (rem_load_move <= 0)
bf0f6f24
IM
991 break;
992 }
993
43010659 994 return max_load_move - rem_load_move;
bf0f6f24
IM
995}
996
e1d1484f
PW
997static int
998move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
999 struct sched_domain *sd, enum cpu_idle_type idle)
1000{
1001 struct cfs_rq *busy_cfs_rq;
1002 struct rq_iterator cfs_rq_iterator;
1003
1004 cfs_rq_iterator.start = load_balance_start_fair;
1005 cfs_rq_iterator.next = load_balance_next_fair;
1006
1007 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1008 /*
1009 * pass busy_cfs_rq argument into
1010 * load_balance_[start|next]_fair iterators
1011 */
1012 cfs_rq_iterator.arg = busy_cfs_rq;
1013 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1014 &cfs_rq_iterator))
1015 return 1;
1016 }
1017
1018 return 0;
1019}
681f3e68 1020#endif
e1d1484f 1021
bf0f6f24
IM
1022/*
1023 * scheduler tick hitting a task of our scheduling class:
1024 */
1025static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1026{
1027 struct cfs_rq *cfs_rq;
1028 struct sched_entity *se = &curr->se;
1029
1030 for_each_sched_entity(se) {
1031 cfs_rq = cfs_rq_of(se);
1032 entity_tick(cfs_rq, se);
1033 }
1034}
1035
8eb172d9 1036#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1037
bf0f6f24
IM
1038/*
1039 * Share the fairness runtime between parent and child, thus the
1040 * total amount of pressure for CPU stays equal - new tasks
1041 * get a chance to run but frequent forkers are not allowed to
1042 * monopolize the CPU. Note: the parent runqueue is locked,
1043 * the child is not running yet.
1044 */
ee0827d8 1045static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1046{
1047 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1048 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1049 int this_cpu = smp_processor_id();
bf0f6f24
IM
1050
1051 sched_info_queued(p);
1052
7109c442 1053 update_curr(cfs_rq);
aeb73b04 1054 place_entity(cfs_rq, se, 1);
4d78e7b6 1055
00bf7bfc 1056 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
4d78e7b6 1057 curr->vruntime < se->vruntime) {
87fefa38 1058 /*
edcb60a3
IM
1059 * Upon rescheduling, sched_class::put_prev_task() will place
1060 * 'current' within the tree based on its new key value.
1061 */
4d78e7b6 1062 swap(curr->vruntime, se->vruntime);
4d78e7b6 1063 }
bf0f6f24 1064
95938a35 1065 se->peer_preempt = 0;
b9dca1e0 1066 enqueue_task_fair(rq, p, 0);
bb61c210 1067 resched_task(rq->curr);
bf0f6f24
IM
1068}
1069
83b699ed
SV
1070/* Account for a task changing its policy or group.
1071 *
1072 * This routine is mostly called to set cfs_rq->curr field when a task
1073 * migrates between groups/classes.
1074 */
1075static void set_curr_task_fair(struct rq *rq)
1076{
1077 struct sched_entity *se = &rq->curr->se;
1078
1079 for_each_sched_entity(se)
1080 set_next_entity(cfs_rq_of(se), se);
1081}
1082
bf0f6f24
IM
1083/*
1084 * All the scheduling class methods:
1085 */
5522d5d5
IM
1086static const struct sched_class fair_sched_class = {
1087 .next = &idle_sched_class,
bf0f6f24
IM
1088 .enqueue_task = enqueue_task_fair,
1089 .dequeue_task = dequeue_task_fair,
1090 .yield_task = yield_task_fair,
1091
2e09bf55 1092 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1093
1094 .pick_next_task = pick_next_task_fair,
1095 .put_prev_task = put_prev_task_fair,
1096
681f3e68 1097#ifdef CONFIG_SMP
bf0f6f24 1098 .load_balance = load_balance_fair,
e1d1484f 1099 .move_one_task = move_one_task_fair,
681f3e68 1100#endif
bf0f6f24 1101
83b699ed 1102 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1103 .task_tick = task_tick_fair,
1104 .task_new = task_new_fair,
1105};
1106
1107#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1108static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1109{
bf0f6f24
IM
1110 struct cfs_rq *cfs_rq;
1111
75c28ace
SV
1112#ifdef CONFIG_FAIR_GROUP_SCHED
1113 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1114#endif
c3b64f1e 1115 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1116 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1117}
1118#endif