]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched_fair.c
sched, cpuset: customize sched domains, docs
[mirror_ubuntu-jammy-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
0bbd3336 66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
0bbd3336 72unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
bf0f6f24
IM
76/**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
b758149c
PZ
80static inline struct task_struct *task_of(struct sched_entity *se)
81{
82 return container_of(se, struct task_struct, se);
83}
84
62160e3f 85#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 86
62160e3f 87/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
88static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89{
62160e3f 90 return cfs_rq->rq;
bf0f6f24
IM
91}
92
62160e3f
IM
93/* An entity is a task if it doesn't "own" a runqueue */
94#define entity_is_task(se) (!se->my_q)
bf0f6f24 95
b758149c
PZ
96/* Walk up scheduling entities hierarchy */
97#define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
99
100static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
101{
102 return p->se.cfs_rq;
103}
104
105/* runqueue on which this entity is (to be) queued */
106static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
107{
108 return se->cfs_rq;
109}
110
111/* runqueue "owned" by this group */
112static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
113{
114 return grp->my_q;
115}
116
117/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
119 */
120static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
121{
122 return cfs_rq->tg->cfs_rq[this_cpu];
123}
124
125/* Iterate thr' all leaf cfs_rq's on a runqueue */
126#define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
128
129/* Do the two (enqueued) entities belong to the same group ? */
130static inline int
131is_same_group(struct sched_entity *se, struct sched_entity *pse)
132{
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
135
136 return 0;
137}
138
139static inline struct sched_entity *parent_entity(struct sched_entity *se)
140{
141 return se->parent;
142}
143
62160e3f 144#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 145
62160e3f
IM
146static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
147{
148 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
149}
150
151#define entity_is_task(se) 1
152
b758149c
PZ
153#define for_each_sched_entity(se) \
154 for (; se; se = NULL)
bf0f6f24 155
b758149c 156static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 157{
b758149c 158 return &task_rq(p)->cfs;
bf0f6f24
IM
159}
160
b758149c
PZ
161static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
162{
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
165
166 return &rq->cfs;
167}
168
169/* runqueue "owned" by this group */
170static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
171{
172 return NULL;
173}
174
175static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
176{
177 return &cpu_rq(this_cpu)->cfs;
178}
179
180#define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
182
183static inline int
184is_same_group(struct sched_entity *se, struct sched_entity *pse)
185{
186 return 1;
187}
188
189static inline struct sched_entity *parent_entity(struct sched_entity *se)
190{
191 return NULL;
192}
193
194#endif /* CONFIG_FAIR_GROUP_SCHED */
195
bf0f6f24
IM
196
197/**************************************************************
198 * Scheduling class tree data structure manipulation methods:
199 */
200
0702e3eb 201static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 202{
368059a9
PZ
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
02e0431a
PZ
205 min_vruntime = vruntime;
206
207 return min_vruntime;
208}
209
0702e3eb 210static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
211{
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
215
216 return min_vruntime;
217}
218
0702e3eb 219static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 220{
30cfdcfc 221 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
222}
223
bf0f6f24
IM
224/*
225 * Enqueue an entity into the rb-tree:
226 */
0702e3eb 227static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
228{
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
9014623c 232 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
233 int leftmost = 1;
234
235 /*
236 * Find the right place in the rbtree:
237 */
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
241 /*
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
244 */
9014623c 245 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
250 }
251 }
252
253 /*
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
256 */
3fe69747 257 if (leftmost) {
57cb499d 258 cfs_rq->rb_leftmost = &se->run_node;
3fe69747
PZ
259 /*
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
262 */
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
265 }
bf0f6f24
IM
266
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
269}
270
0702e3eb 271static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 272{
3fe69747
PZ
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
276
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
279
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
286 }
287 }
e9acbff6 288
aa2ac252
PZ
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
291
bf0f6f24 292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
293}
294
295static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
296{
297 return cfs_rq->rb_leftmost;
298}
299
300static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
301{
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
303}
304
aeb73b04
PZ
305static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
306{
7eee3e67 307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 308
70eee74b
BS
309 if (!last)
310 return NULL;
7eee3e67
IM
311
312 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
313}
314
bf0f6f24
IM
315/**************************************************************
316 * Scheduling class statistics methods:
317 */
318
b2be5e96
PZ
319#ifdef CONFIG_SCHED_DEBUG
320int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
323{
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
325
326 if (ret || !write)
327 return ret;
328
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
331
332 return 0;
333}
334#endif
647e7cac
IM
335
336/*
337 * The idea is to set a period in which each task runs once.
338 *
339 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
340 * this period because otherwise the slices get too small.
341 *
342 * p = (nr <= nl) ? l : l*nr/nl
343 */
4d78e7b6
PZ
344static u64 __sched_period(unsigned long nr_running)
345{
346 u64 period = sysctl_sched_latency;
b2be5e96 347 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
348
349 if (unlikely(nr_running > nr_latency)) {
4bf0b771 350 period = sysctl_sched_min_granularity;
4d78e7b6 351 period *= nr_running;
4d78e7b6
PZ
352 }
353
354 return period;
355}
356
647e7cac
IM
357/*
358 * We calculate the wall-time slice from the period by taking a part
359 * proportional to the weight.
360 *
361 * s = p*w/rw
362 */
6d0f0ebd 363static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 364{
6a6029b8
IM
365 return calc_delta_mine(__sched_period(cfs_rq->nr_running),
366 se->load.weight, &cfs_rq->load);
bf0f6f24
IM
367}
368
647e7cac
IM
369/*
370 * We calculate the vruntime slice.
371 *
372 * vs = s/w = p/rw
373 */
374static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 375{
647e7cac 376 u64 vslice = __sched_period(nr_running);
67e9fb2a 377
10b77724 378 vslice *= NICE_0_LOAD;
647e7cac 379 do_div(vslice, rq_weight);
67e9fb2a 380
647e7cac
IM
381 return vslice;
382}
5f6d858e 383
647e7cac
IM
384static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
385{
386 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
387 cfs_rq->nr_running + 1);
67e9fb2a
PZ
388}
389
bf0f6f24
IM
390/*
391 * Update the current task's runtime statistics. Skip current tasks that
392 * are not in our scheduling class.
393 */
394static inline void
8ebc91d9
IM
395__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
396 unsigned long delta_exec)
bf0f6f24 397{
bbdba7c0 398 unsigned long delta_exec_weighted;
bf0f6f24 399
8179ca23 400 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
401
402 curr->sum_exec_runtime += delta_exec;
7a62eabc 403 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
404 delta_exec_weighted = delta_exec;
405 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
406 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
407 &curr->load);
408 }
409 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
410}
411
b7cc0896 412static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 413{
429d43bc 414 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 415 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
416 unsigned long delta_exec;
417
418 if (unlikely(!curr))
419 return;
420
421 /*
422 * Get the amount of time the current task was running
423 * since the last time we changed load (this cannot
424 * overflow on 32 bits):
425 */
8ebc91d9 426 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 427
8ebc91d9
IM
428 __update_curr(cfs_rq, curr, delta_exec);
429 curr->exec_start = now;
d842de87
SV
430
431 if (entity_is_task(curr)) {
432 struct task_struct *curtask = task_of(curr);
433
434 cpuacct_charge(curtask, delta_exec);
435 }
bf0f6f24
IM
436}
437
438static inline void
5870db5b 439update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 440{
d281918d 441 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
442}
443
bf0f6f24
IM
444/*
445 * Task is being enqueued - update stats:
446 */
d2417e5a 447static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 448{
bf0f6f24
IM
449 /*
450 * Are we enqueueing a waiting task? (for current tasks
451 * a dequeue/enqueue event is a NOP)
452 */
429d43bc 453 if (se != cfs_rq->curr)
5870db5b 454 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
455}
456
bf0f6f24 457static void
9ef0a961 458update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 459{
bbdba7c0
IM
460 schedstat_set(se->wait_max, max(se->wait_max,
461 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
462 schedstat_set(se->wait_count, se->wait_count + 1);
463 schedstat_set(se->wait_sum, se->wait_sum +
464 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 465 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
466}
467
468static inline void
19b6a2e3 469update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 470{
bf0f6f24
IM
471 /*
472 * Mark the end of the wait period if dequeueing a
473 * waiting task:
474 */
429d43bc 475 if (se != cfs_rq->curr)
9ef0a961 476 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
477}
478
479/*
480 * We are picking a new current task - update its stats:
481 */
482static inline void
79303e9e 483update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
484{
485 /*
486 * We are starting a new run period:
487 */
d281918d 488 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
489}
490
bf0f6f24
IM
491/**************************************************
492 * Scheduling class queueing methods:
493 */
494
30cfdcfc
DA
495static void
496account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
497{
498 update_load_add(&cfs_rq->load, se->load.weight);
499 cfs_rq->nr_running++;
500 se->on_rq = 1;
501}
502
503static void
504account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
505{
506 update_load_sub(&cfs_rq->load, se->load.weight);
507 cfs_rq->nr_running--;
508 se->on_rq = 0;
509}
510
2396af69 511static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 512{
bf0f6f24
IM
513#ifdef CONFIG_SCHEDSTATS
514 if (se->sleep_start) {
d281918d 515 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 516 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
517
518 if ((s64)delta < 0)
519 delta = 0;
520
521 if (unlikely(delta > se->sleep_max))
522 se->sleep_max = delta;
523
524 se->sleep_start = 0;
525 se->sum_sleep_runtime += delta;
9745512c
AV
526
527 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
528 }
529 if (se->block_start) {
d281918d 530 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 531 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
532
533 if ((s64)delta < 0)
534 delta = 0;
535
536 if (unlikely(delta > se->block_max))
537 se->block_max = delta;
538
539 se->block_start = 0;
540 se->sum_sleep_runtime += delta;
30084fbd
IM
541
542 /*
543 * Blocking time is in units of nanosecs, so shift by 20 to
544 * get a milliseconds-range estimation of the amount of
545 * time that the task spent sleeping:
546 */
547 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 548
30084fbd
IM
549 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
550 delta >> 20);
551 }
9745512c 552 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
553 }
554#endif
555}
556
ddc97297
PZ
557static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
558{
559#ifdef CONFIG_SCHED_DEBUG
560 s64 d = se->vruntime - cfs_rq->min_vruntime;
561
562 if (d < 0)
563 d = -d;
564
565 if (d > 3*sysctl_sched_latency)
566 schedstat_inc(cfs_rq, nr_spread_over);
567#endif
568}
569
aeb73b04
PZ
570static void
571place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
572{
67e9fb2a 573 u64 vruntime;
aeb73b04 574
3fe69747
PZ
575 if (first_fair(cfs_rq)) {
576 vruntime = min_vruntime(cfs_rq->min_vruntime,
577 __pick_next_entity(cfs_rq)->vruntime);
578 } else
579 vruntime = cfs_rq->min_vruntime;
94dfb5e7 580
2cb8600e
PZ
581 /*
582 * The 'current' period is already promised to the current tasks,
583 * however the extra weight of the new task will slow them down a
584 * little, place the new task so that it fits in the slot that
585 * stays open at the end.
586 */
94dfb5e7 587 if (initial && sched_feat(START_DEBIT))
647e7cac 588 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 589
8465e792 590 if (!initial) {
2cb8600e 591 /* sleeps upto a single latency don't count. */
018d6db4 592 if (sched_feat(NEW_FAIR_SLEEPERS)) {
112f53f5
PZ
593 if (sched_feat(NORMALIZED_SLEEPER))
594 vruntime -= calc_delta_fair(sysctl_sched_latency,
595 &cfs_rq->load);
596 else
597 vruntime -= sysctl_sched_latency;
018d6db4 598 }
94359f05 599
2cb8600e
PZ
600 /* ensure we never gain time by being placed backwards. */
601 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
602 }
603
67e9fb2a 604 se->vruntime = vruntime;
aeb73b04
PZ
605}
606
bf0f6f24 607static void
83b699ed 608enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
609{
610 /*
a2a2d680 611 * Update run-time statistics of the 'current'.
bf0f6f24 612 */
b7cc0896 613 update_curr(cfs_rq);
bf0f6f24 614
e9acbff6 615 if (wakeup) {
aeb73b04 616 place_entity(cfs_rq, se, 0);
2396af69 617 enqueue_sleeper(cfs_rq, se);
e9acbff6 618 }
bf0f6f24 619
d2417e5a 620 update_stats_enqueue(cfs_rq, se);
ddc97297 621 check_spread(cfs_rq, se);
83b699ed
SV
622 if (se != cfs_rq->curr)
623 __enqueue_entity(cfs_rq, se);
30cfdcfc 624 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
625}
626
4ae7d5ce
IM
627static void update_avg(u64 *avg, u64 sample)
628{
629 s64 diff = sample - *avg;
630 *avg += diff >> 3;
631}
632
633static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
634{
635 if (!se->last_wakeup)
636 return;
637
638 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
639 se->last_wakeup = 0;
640}
641
bf0f6f24 642static void
525c2716 643dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 644{
a2a2d680
DA
645 /*
646 * Update run-time statistics of the 'current'.
647 */
648 update_curr(cfs_rq);
649
19b6a2e3 650 update_stats_dequeue(cfs_rq, se);
db36cc7d 651 if (sleep) {
4ae7d5ce 652 update_avg_stats(cfs_rq, se);
67e9fb2a 653#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
654 if (entity_is_task(se)) {
655 struct task_struct *tsk = task_of(se);
656
657 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 658 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 659 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 660 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 661 }
db36cc7d 662#endif
67e9fb2a
PZ
663 }
664
83b699ed 665 if (se != cfs_rq->curr)
30cfdcfc
DA
666 __dequeue_entity(cfs_rq, se);
667 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
668}
669
670/*
671 * Preempt the current task with a newly woken task if needed:
672 */
7c92e54f 673static void
2e09bf55 674check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 675{
11697830
PZ
676 unsigned long ideal_runtime, delta_exec;
677
6d0f0ebd 678 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 679 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 680 if (delta_exec > ideal_runtime)
bf0f6f24
IM
681 resched_task(rq_of(cfs_rq)->curr);
682}
683
83b699ed 684static void
8494f412 685set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 686{
83b699ed
SV
687 /* 'current' is not kept within the tree. */
688 if (se->on_rq) {
689 /*
690 * Any task has to be enqueued before it get to execute on
691 * a CPU. So account for the time it spent waiting on the
692 * runqueue.
693 */
694 update_stats_wait_end(cfs_rq, se);
695 __dequeue_entity(cfs_rq, se);
696 }
697
79303e9e 698 update_stats_curr_start(cfs_rq, se);
429d43bc 699 cfs_rq->curr = se;
eba1ed4b
IM
700#ifdef CONFIG_SCHEDSTATS
701 /*
702 * Track our maximum slice length, if the CPU's load is at
703 * least twice that of our own weight (i.e. dont track it
704 * when there are only lesser-weight tasks around):
705 */
495eca49 706 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
707 se->slice_max = max(se->slice_max,
708 se->sum_exec_runtime - se->prev_sum_exec_runtime);
709 }
710#endif
4a55b450 711 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
712}
713
0bbd3336
PZ
714static int
715wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
716
aa2ac252
PZ
717static struct sched_entity *
718pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
719{
aa2ac252
PZ
720 if (!cfs_rq->next)
721 return se;
722
0bbd3336 723 if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
aa2ac252
PZ
724 return se;
725
726 return cfs_rq->next;
727}
728
9948f4b2 729static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 730{
08ec3df5 731 struct sched_entity *se = NULL;
bf0f6f24 732
08ec3df5
DA
733 if (first_fair(cfs_rq)) {
734 se = __pick_next_entity(cfs_rq);
aa2ac252 735 se = pick_next(cfs_rq, se);
08ec3df5
DA
736 set_next_entity(cfs_rq, se);
737 }
bf0f6f24
IM
738
739 return se;
740}
741
ab6cde26 742static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
743{
744 /*
745 * If still on the runqueue then deactivate_task()
746 * was not called and update_curr() has to be done:
747 */
748 if (prev->on_rq)
b7cc0896 749 update_curr(cfs_rq);
bf0f6f24 750
ddc97297 751 check_spread(cfs_rq, prev);
30cfdcfc 752 if (prev->on_rq) {
5870db5b 753 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
754 /* Put 'current' back into the tree. */
755 __enqueue_entity(cfs_rq, prev);
756 }
429d43bc 757 cfs_rq->curr = NULL;
bf0f6f24
IM
758}
759
8f4d37ec
PZ
760static void
761entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 762{
bf0f6f24 763 /*
30cfdcfc 764 * Update run-time statistics of the 'current'.
bf0f6f24 765 */
30cfdcfc 766 update_curr(cfs_rq);
bf0f6f24 767
8f4d37ec
PZ
768#ifdef CONFIG_SCHED_HRTICK
769 /*
770 * queued ticks are scheduled to match the slice, so don't bother
771 * validating it and just reschedule.
772 */
773 if (queued)
774 return resched_task(rq_of(cfs_rq)->curr);
775 /*
776 * don't let the period tick interfere with the hrtick preemption
777 */
778 if (!sched_feat(DOUBLE_TICK) &&
779 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
780 return;
781#endif
782
ce6c1311 783 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 784 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
785}
786
787/**************************************************
788 * CFS operations on tasks:
789 */
790
8f4d37ec
PZ
791#ifdef CONFIG_SCHED_HRTICK
792static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
793{
794 int requeue = rq->curr == p;
795 struct sched_entity *se = &p->se;
796 struct cfs_rq *cfs_rq = cfs_rq_of(se);
797
798 WARN_ON(task_rq(p) != rq);
799
800 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
801 u64 slice = sched_slice(cfs_rq, se);
802 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
803 s64 delta = slice - ran;
804
805 if (delta < 0) {
806 if (rq->curr == p)
807 resched_task(p);
808 return;
809 }
810
811 /*
812 * Don't schedule slices shorter than 10000ns, that just
813 * doesn't make sense. Rely on vruntime for fairness.
814 */
815 if (!requeue)
816 delta = max(10000LL, delta);
817
818 hrtick_start(rq, delta, requeue);
819 }
820}
821#else
822static inline void
823hrtick_start_fair(struct rq *rq, struct task_struct *p)
824{
825}
826#endif
827
bf0f6f24
IM
828/*
829 * The enqueue_task method is called before nr_running is
830 * increased. Here we update the fair scheduling stats and
831 * then put the task into the rbtree:
832 */
fd390f6a 833static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
834{
835 struct cfs_rq *cfs_rq;
62fb1851 836 struct sched_entity *se = &p->se;
bf0f6f24
IM
837
838 for_each_sched_entity(se) {
62fb1851 839 if (se->on_rq)
bf0f6f24
IM
840 break;
841 cfs_rq = cfs_rq_of(se);
83b699ed 842 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 843 wakeup = 1;
bf0f6f24 844 }
8f4d37ec
PZ
845
846 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
847}
848
849/*
850 * The dequeue_task method is called before nr_running is
851 * decreased. We remove the task from the rbtree and
852 * update the fair scheduling stats:
853 */
f02231e5 854static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
855{
856 struct cfs_rq *cfs_rq;
62fb1851 857 struct sched_entity *se = &p->se;
bf0f6f24
IM
858
859 for_each_sched_entity(se) {
860 cfs_rq = cfs_rq_of(se);
525c2716 861 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 862 /* Don't dequeue parent if it has other entities besides us */
62fb1851 863 if (cfs_rq->load.weight)
bf0f6f24 864 break;
b9fa3df3 865 sleep = 1;
bf0f6f24 866 }
8f4d37ec
PZ
867
868 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
869}
870
871/*
1799e35d
IM
872 * sched_yield() support is very simple - we dequeue and enqueue.
873 *
874 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 875 */
4530d7ab 876static void yield_task_fair(struct rq *rq)
bf0f6f24 877{
db292ca3
IM
878 struct task_struct *curr = rq->curr;
879 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
880 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
881
882 /*
1799e35d
IM
883 * Are we the only task in the tree?
884 */
885 if (unlikely(cfs_rq->nr_running == 1))
886 return;
887
db292ca3 888 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1799e35d
IM
889 __update_rq_clock(rq);
890 /*
a2a2d680 891 * Update run-time statistics of the 'current'.
1799e35d 892 */
2b1e315d 893 update_curr(cfs_rq);
1799e35d
IM
894
895 return;
896 }
897 /*
898 * Find the rightmost entry in the rbtree:
bf0f6f24 899 */
2b1e315d 900 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
901 /*
902 * Already in the rightmost position?
903 */
79b3feff 904 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
905 return;
906
907 /*
908 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
909 * Upon rescheduling, sched_class::put_prev_task() will place
910 * 'current' within the tree based on its new key value.
1799e35d 911 */
30cfdcfc 912 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
913}
914
e7693a36
GH
915/*
916 * wake_idle() will wake a task on an idle cpu if task->cpu is
917 * not idle and an idle cpu is available. The span of cpus to
918 * search starts with cpus closest then further out as needed,
919 * so we always favor a closer, idle cpu.
920 *
921 * Returns the CPU we should wake onto.
922 */
923#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
924static int wake_idle(int cpu, struct task_struct *p)
925{
926 cpumask_t tmp;
927 struct sched_domain *sd;
928 int i;
929
930 /*
931 * If it is idle, then it is the best cpu to run this task.
932 *
933 * This cpu is also the best, if it has more than one task already.
934 * Siblings must be also busy(in most cases) as they didn't already
935 * pickup the extra load from this cpu and hence we need not check
936 * sibling runqueue info. This will avoid the checks and cache miss
937 * penalities associated with that.
938 */
939 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
940 return cpu;
941
942 for_each_domain(cpu, sd) {
943 if (sd->flags & SD_WAKE_IDLE) {
944 cpus_and(tmp, sd->span, p->cpus_allowed);
945 for_each_cpu_mask(i, tmp) {
946 if (idle_cpu(i)) {
947 if (i != task_cpu(p)) {
948 schedstat_inc(p,
949 se.nr_wakeups_idle);
950 }
951 return i;
952 }
953 }
954 } else {
955 break;
956 }
957 }
958 return cpu;
959}
960#else
961static inline int wake_idle(int cpu, struct task_struct *p)
962{
963 return cpu;
964}
965#endif
966
967#ifdef CONFIG_SMP
098fb9db 968
4ae7d5ce
IM
969static const struct sched_class fair_sched_class;
970
098fb9db 971static int
4ae7d5ce
IM
972wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
973 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
974 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
975 unsigned int imbalance)
976{
4ae7d5ce 977 struct task_struct *curr = this_rq->curr;
098fb9db
IM
978 unsigned long tl = this_load;
979 unsigned long tl_per_task;
980
981 if (!(this_sd->flags & SD_WAKE_AFFINE))
982 return 0;
983
984 /*
4ae7d5ce
IM
985 * If the currently running task will sleep within
986 * a reasonable amount of time then attract this newly
987 * woken task:
098fb9db 988 */
4ae7d5ce
IM
989 if (sync && curr->sched_class == &fair_sched_class) {
990 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
991 p->se.avg_overlap < sysctl_sched_migration_cost)
992 return 1;
993 }
098fb9db
IM
994
995 schedstat_inc(p, se.nr_wakeups_affine_attempts);
996 tl_per_task = cpu_avg_load_per_task(this_cpu);
997
998 /*
999 * If sync wakeup then subtract the (maximum possible)
1000 * effect of the currently running task from the load
1001 * of the current CPU:
1002 */
1003 if (sync)
1004 tl -= current->se.load.weight;
1005
ac192d39 1006 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
098fb9db
IM
1007 100*(tl + p->se.load.weight) <= imbalance*load) {
1008 /*
1009 * This domain has SD_WAKE_AFFINE and
1010 * p is cache cold in this domain, and
1011 * there is no bad imbalance.
1012 */
1013 schedstat_inc(this_sd, ttwu_move_affine);
1014 schedstat_inc(p, se.nr_wakeups_affine);
1015
1016 return 1;
1017 }
1018 return 0;
1019}
1020
e7693a36
GH
1021static int select_task_rq_fair(struct task_struct *p, int sync)
1022{
e7693a36 1023 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1024 int prev_cpu, this_cpu, new_cpu;
098fb9db 1025 unsigned long load, this_load;
4ae7d5ce 1026 struct rq *rq, *this_rq;
098fb9db 1027 unsigned int imbalance;
098fb9db 1028 int idx;
e7693a36 1029
ac192d39
IM
1030 prev_cpu = task_cpu(p);
1031 rq = task_rq(p);
1032 this_cpu = smp_processor_id();
4ae7d5ce 1033 this_rq = cpu_rq(this_cpu);
ac192d39 1034 new_cpu = prev_cpu;
e7693a36 1035
ac192d39
IM
1036 /*
1037 * 'this_sd' is the first domain that both
1038 * this_cpu and prev_cpu are present in:
1039 */
e7693a36 1040 for_each_domain(this_cpu, sd) {
ac192d39 1041 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1042 this_sd = sd;
1043 break;
1044 }
1045 }
1046
1047 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
f4827386 1048 goto out;
e7693a36
GH
1049
1050 /*
1051 * Check for affine wakeup and passive balancing possibilities.
1052 */
098fb9db 1053 if (!this_sd)
f4827386 1054 goto out;
e7693a36 1055
098fb9db
IM
1056 idx = this_sd->wake_idx;
1057
1058 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1059
ac192d39 1060 load = source_load(prev_cpu, idx);
098fb9db
IM
1061 this_load = target_load(this_cpu, idx);
1062
4ae7d5ce
IM
1063 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1064 load, this_load, imbalance))
1065 return this_cpu;
1066
1067 if (prev_cpu == this_cpu)
f4827386 1068 goto out;
098fb9db
IM
1069
1070 /*
1071 * Start passive balancing when half the imbalance_pct
1072 * limit is reached.
1073 */
1074 if (this_sd->flags & SD_WAKE_BALANCE) {
1075 if (imbalance*this_load <= 100*load) {
1076 schedstat_inc(this_sd, ttwu_move_balance);
1077 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1078 return this_cpu;
e7693a36
GH
1079 }
1080 }
1081
f4827386 1082out:
e7693a36
GH
1083 return wake_idle(new_cpu, p);
1084}
1085#endif /* CONFIG_SMP */
1086
0bbd3336
PZ
1087static unsigned long wakeup_gran(struct sched_entity *se)
1088{
1089 unsigned long gran = sysctl_sched_wakeup_granularity;
1090
1091 /*
1092 * More easily preempt - nice tasks, while not making
1093 * it harder for + nice tasks.
1094 */
1095 if (unlikely(se->load.weight > NICE_0_LOAD))
1096 gran = calc_delta_fair(gran, &se->load);
1097
1098 return gran;
1099}
1100
1101/*
1102 * Should 'se' preempt 'curr'.
1103 *
1104 * |s1
1105 * |s2
1106 * |s3
1107 * g
1108 * |<--->|c
1109 *
1110 * w(c, s1) = -1
1111 * w(c, s2) = 0
1112 * w(c, s3) = 1
1113 *
1114 */
1115static int
1116wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1117{
1118 s64 gran, vdiff = curr->vruntime - se->vruntime;
1119
1120 if (vdiff < 0)
1121 return -1;
1122
1123 gran = wakeup_gran(curr);
1124 if (vdiff > gran)
1125 return 1;
1126
1127 return 0;
1128}
e7693a36 1129
354d60c2
DG
1130/* return depth at which a sched entity is present in the hierarchy */
1131static inline int depth_se(struct sched_entity *se)
1132{
1133 int depth = 0;
1134
1135 for_each_sched_entity(se)
1136 depth++;
1137
1138 return depth;
1139}
1140
bf0f6f24
IM
1141/*
1142 * Preempt the current task with a newly woken task if needed:
1143 */
2e09bf55 1144static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1145{
1146 struct task_struct *curr = rq->curr;
fad095a7 1147 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1148 struct sched_entity *se = &curr->se, *pse = &p->se;
354d60c2 1149 int se_depth, pse_depth;
bf0f6f24
IM
1150
1151 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1152 update_rq_clock(rq);
b7cc0896 1153 update_curr(cfs_rq);
bf0f6f24
IM
1154 resched_task(curr);
1155 return;
1156 }
aa2ac252 1157
4ae7d5ce
IM
1158 se->last_wakeup = se->sum_exec_runtime;
1159 if (unlikely(se == pse))
1160 return;
1161
aa2ac252
PZ
1162 cfs_rq_of(pse)->next = pse;
1163
91c234b4
IM
1164 /*
1165 * Batch tasks do not preempt (their preemption is driven by
1166 * the tick):
1167 */
1168 if (unlikely(p->policy == SCHED_BATCH))
1169 return;
bf0f6f24 1170
77d9cc44
IM
1171 if (!sched_feat(WAKEUP_PREEMPT))
1172 return;
8651a86c 1173
354d60c2
DG
1174 /*
1175 * preemption test can be made between sibling entities who are in the
1176 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1177 * both tasks until we find their ancestors who are siblings of common
1178 * parent.
1179 */
1180
1181 /* First walk up until both entities are at same depth */
1182 se_depth = depth_se(se);
1183 pse_depth = depth_se(pse);
1184
1185 while (se_depth > pse_depth) {
1186 se_depth--;
1187 se = parent_entity(se);
1188 }
1189
1190 while (pse_depth > se_depth) {
1191 pse_depth--;
1192 pse = parent_entity(pse);
1193 }
1194
77d9cc44
IM
1195 while (!is_same_group(se, pse)) {
1196 se = parent_entity(se);
1197 pse = parent_entity(pse);
ce6c1311 1198 }
77d9cc44 1199
0bbd3336 1200 if (wakeup_preempt_entity(se, pse) == 1)
77d9cc44 1201 resched_task(curr);
bf0f6f24
IM
1202}
1203
fb8d4724 1204static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1205{
8f4d37ec 1206 struct task_struct *p;
bf0f6f24
IM
1207 struct cfs_rq *cfs_rq = &rq->cfs;
1208 struct sched_entity *se;
1209
1210 if (unlikely(!cfs_rq->nr_running))
1211 return NULL;
1212
1213 do {
9948f4b2 1214 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1215 cfs_rq = group_cfs_rq(se);
1216 } while (cfs_rq);
1217
8f4d37ec
PZ
1218 p = task_of(se);
1219 hrtick_start_fair(rq, p);
1220
1221 return p;
bf0f6f24
IM
1222}
1223
1224/*
1225 * Account for a descheduled task:
1226 */
31ee529c 1227static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1228{
1229 struct sched_entity *se = &prev->se;
1230 struct cfs_rq *cfs_rq;
1231
1232 for_each_sched_entity(se) {
1233 cfs_rq = cfs_rq_of(se);
ab6cde26 1234 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1235 }
1236}
1237
681f3e68 1238#ifdef CONFIG_SMP
bf0f6f24
IM
1239/**************************************************
1240 * Fair scheduling class load-balancing methods:
1241 */
1242
1243/*
1244 * Load-balancing iterator. Note: while the runqueue stays locked
1245 * during the whole iteration, the current task might be
1246 * dequeued so the iterator has to be dequeue-safe. Here we
1247 * achieve that by always pre-iterating before returning
1248 * the current task:
1249 */
a9957449 1250static struct task_struct *
bf0f6f24
IM
1251__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1252{
354d60c2
DG
1253 struct task_struct *p = NULL;
1254 struct sched_entity *se;
bf0f6f24
IM
1255
1256 if (!curr)
1257 return NULL;
1258
354d60c2
DG
1259 /* Skip over entities that are not tasks */
1260 do {
1261 se = rb_entry(curr, struct sched_entity, run_node);
1262 curr = rb_next(curr);
1263 } while (curr && !entity_is_task(se));
1264
1265 cfs_rq->rb_load_balance_curr = curr;
1266
1267 if (entity_is_task(se))
1268 p = task_of(se);
bf0f6f24
IM
1269
1270 return p;
1271}
1272
1273static struct task_struct *load_balance_start_fair(void *arg)
1274{
1275 struct cfs_rq *cfs_rq = arg;
1276
1277 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1278}
1279
1280static struct task_struct *load_balance_next_fair(void *arg)
1281{
1282 struct cfs_rq *cfs_rq = arg;
1283
1284 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1285}
1286
62fb1851
PZ
1287#ifdef CONFIG_FAIR_GROUP_SCHED
1288static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1289{
1290 struct sched_entity *curr;
1291 struct task_struct *p;
1292
1293 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1294 return MAX_PRIO;
1295
1296 curr = cfs_rq->curr;
1297 if (!curr)
1298 curr = __pick_next_entity(cfs_rq);
1299
1300 p = task_of(curr);
1301
1302 return p->prio;
1303}
1304#endif
1305
43010659 1306static unsigned long
bf0f6f24 1307load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1308 unsigned long max_load_move,
a4ac01c3
PW
1309 struct sched_domain *sd, enum cpu_idle_type idle,
1310 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
1311{
1312 struct cfs_rq *busy_cfs_rq;
bf0f6f24
IM
1313 long rem_load_move = max_load_move;
1314 struct rq_iterator cfs_rq_iterator;
1315
1316 cfs_rq_iterator.start = load_balance_start_fair;
1317 cfs_rq_iterator.next = load_balance_next_fair;
1318
1319 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 1320#ifdef CONFIG_FAIR_GROUP_SCHED
62fb1851
PZ
1321 struct cfs_rq *this_cfs_rq;
1322 long imbalance;
1323 unsigned long maxload;
bf0f6f24 1324
62fb1851 1325 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
6b2d7700 1326
62fb1851
PZ
1327 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1328 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1329 if (imbalance <= 0)
bf0f6f24
IM
1330 continue;
1331
62fb1851
PZ
1332 /* Don't pull more than imbalance/2 */
1333 imbalance /= 2;
1334 maxload = min(rem_load_move, imbalance);
bf0f6f24 1335
62fb1851 1336 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
a4ac01c3 1337#else
e56f31aa 1338# define maxload rem_load_move
a4ac01c3 1339#endif
e1d1484f
PW
1340 /*
1341 * pass busy_cfs_rq argument into
bf0f6f24
IM
1342 * load_balance_[start|next]_fair iterators
1343 */
1344 cfs_rq_iterator.arg = busy_cfs_rq;
62fb1851 1345 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
e1d1484f
PW
1346 maxload, sd, idle, all_pinned,
1347 this_best_prio,
1348 &cfs_rq_iterator);
bf0f6f24 1349
e1d1484f 1350 if (rem_load_move <= 0)
bf0f6f24
IM
1351 break;
1352 }
1353
43010659 1354 return max_load_move - rem_load_move;
bf0f6f24
IM
1355}
1356
e1d1484f
PW
1357static int
1358move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1359 struct sched_domain *sd, enum cpu_idle_type idle)
1360{
1361 struct cfs_rq *busy_cfs_rq;
1362 struct rq_iterator cfs_rq_iterator;
1363
1364 cfs_rq_iterator.start = load_balance_start_fair;
1365 cfs_rq_iterator.next = load_balance_next_fair;
1366
1367 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1368 /*
1369 * pass busy_cfs_rq argument into
1370 * load_balance_[start|next]_fair iterators
1371 */
1372 cfs_rq_iterator.arg = busy_cfs_rq;
1373 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1374 &cfs_rq_iterator))
1375 return 1;
1376 }
1377
1378 return 0;
1379}
681f3e68 1380#endif
e1d1484f 1381
bf0f6f24
IM
1382/*
1383 * scheduler tick hitting a task of our scheduling class:
1384 */
8f4d37ec 1385static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1386{
1387 struct cfs_rq *cfs_rq;
1388 struct sched_entity *se = &curr->se;
1389
1390 for_each_sched_entity(se) {
1391 cfs_rq = cfs_rq_of(se);
8f4d37ec 1392 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1393 }
1394}
1395
8eb172d9 1396#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1397
bf0f6f24
IM
1398/*
1399 * Share the fairness runtime between parent and child, thus the
1400 * total amount of pressure for CPU stays equal - new tasks
1401 * get a chance to run but frequent forkers are not allowed to
1402 * monopolize the CPU. Note: the parent runqueue is locked,
1403 * the child is not running yet.
1404 */
ee0827d8 1405static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1406{
1407 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1408 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1409 int this_cpu = smp_processor_id();
bf0f6f24
IM
1410
1411 sched_info_queued(p);
1412
7109c442 1413 update_curr(cfs_rq);
aeb73b04 1414 place_entity(cfs_rq, se, 1);
4d78e7b6 1415
3c90e6e9 1416 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1417 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1418 curr && curr->vruntime < se->vruntime) {
87fefa38 1419 /*
edcb60a3
IM
1420 * Upon rescheduling, sched_class::put_prev_task() will place
1421 * 'current' within the tree based on its new key value.
1422 */
4d78e7b6 1423 swap(curr->vruntime, se->vruntime);
4d78e7b6 1424 }
bf0f6f24 1425
b9dca1e0 1426 enqueue_task_fair(rq, p, 0);
bb61c210 1427 resched_task(rq->curr);
bf0f6f24
IM
1428}
1429
cb469845
SR
1430/*
1431 * Priority of the task has changed. Check to see if we preempt
1432 * the current task.
1433 */
1434static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1435 int oldprio, int running)
1436{
1437 /*
1438 * Reschedule if we are currently running on this runqueue and
1439 * our priority decreased, or if we are not currently running on
1440 * this runqueue and our priority is higher than the current's
1441 */
1442 if (running) {
1443 if (p->prio > oldprio)
1444 resched_task(rq->curr);
1445 } else
1446 check_preempt_curr(rq, p);
1447}
1448
1449/*
1450 * We switched to the sched_fair class.
1451 */
1452static void switched_to_fair(struct rq *rq, struct task_struct *p,
1453 int running)
1454{
1455 /*
1456 * We were most likely switched from sched_rt, so
1457 * kick off the schedule if running, otherwise just see
1458 * if we can still preempt the current task.
1459 */
1460 if (running)
1461 resched_task(rq->curr);
1462 else
1463 check_preempt_curr(rq, p);
1464}
1465
83b699ed
SV
1466/* Account for a task changing its policy or group.
1467 *
1468 * This routine is mostly called to set cfs_rq->curr field when a task
1469 * migrates between groups/classes.
1470 */
1471static void set_curr_task_fair(struct rq *rq)
1472{
1473 struct sched_entity *se = &rq->curr->se;
1474
1475 for_each_sched_entity(se)
1476 set_next_entity(cfs_rq_of(se), se);
1477}
1478
810b3817
PZ
1479#ifdef CONFIG_FAIR_GROUP_SCHED
1480static void moved_group_fair(struct task_struct *p)
1481{
1482 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1483
1484 update_curr(cfs_rq);
1485 place_entity(cfs_rq, &p->se, 1);
1486}
1487#endif
1488
bf0f6f24
IM
1489/*
1490 * All the scheduling class methods:
1491 */
5522d5d5
IM
1492static const struct sched_class fair_sched_class = {
1493 .next = &idle_sched_class,
bf0f6f24
IM
1494 .enqueue_task = enqueue_task_fair,
1495 .dequeue_task = dequeue_task_fair,
1496 .yield_task = yield_task_fair,
e7693a36
GH
1497#ifdef CONFIG_SMP
1498 .select_task_rq = select_task_rq_fair,
1499#endif /* CONFIG_SMP */
bf0f6f24 1500
2e09bf55 1501 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1502
1503 .pick_next_task = pick_next_task_fair,
1504 .put_prev_task = put_prev_task_fair,
1505
681f3e68 1506#ifdef CONFIG_SMP
bf0f6f24 1507 .load_balance = load_balance_fair,
e1d1484f 1508 .move_one_task = move_one_task_fair,
681f3e68 1509#endif
bf0f6f24 1510
83b699ed 1511 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1512 .task_tick = task_tick_fair,
1513 .task_new = task_new_fair,
cb469845
SR
1514
1515 .prio_changed = prio_changed_fair,
1516 .switched_to = switched_to_fair,
810b3817
PZ
1517
1518#ifdef CONFIG_FAIR_GROUP_SCHED
1519 .moved_group = moved_group_fair,
1520#endif
bf0f6f24
IM
1521};
1522
1523#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1524static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1525{
bf0f6f24
IM
1526 struct cfs_rq *cfs_rq;
1527
5973e5b9 1528 rcu_read_lock();
c3b64f1e 1529 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1530 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1531 rcu_read_unlock();
bf0f6f24
IM
1532}
1533#endif