]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched_fair.c
sched: new task placement for vruntime
[mirror_ubuntu-bionic-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085
PZ
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 35 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 36 */
2bd8e6d4
IM
37const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
44
45/*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
172ac3db 49unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
bf0f6f24 50
1799e35d
IM
51/*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57unsigned int __read_mostly sysctl_sched_compat_yield;
58
bf0f6f24
IM
59/*
60 * SCHED_BATCH wake-up granularity.
71fd3714 61 * (default: 25 msec, units: nanoseconds)
bf0f6f24
IM
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
2bd8e6d4 67const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
bf0f6f24
IM
68
69/*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
2bd8e6d4 77const_debug unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 78
bf0f6f24
IM
79unsigned int sysctl_sched_runtime_limit __read_mostly;
80
bf0f6f24
IM
81extern struct sched_class fair_sched_class;
82
83/**************************************************************
84 * CFS operations on generic schedulable entities:
85 */
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
62160e3f 98#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 99
62160e3f
IM
100static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
101{
102 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
103}
104
105#define entity_is_task(se) 1
106
bf0f6f24
IM
107#endif /* CONFIG_FAIR_GROUP_SCHED */
108
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111 return container_of(se, struct task_struct, se);
112}
113
114
115/**************************************************************
116 * Scheduling class tree data structure manipulation methods:
117 */
118
e9acbff6
IM
119static inline void
120set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
121{
122 struct sched_entity *se;
123
124 cfs_rq->rb_leftmost = leftmost;
125 if (leftmost) {
126 se = rb_entry(leftmost, struct sched_entity, run_node);
127 cfs_rq->min_vruntime = max(se->vruntime,
128 cfs_rq->min_vruntime);
129 }
130}
131
bf0f6f24
IM
132/*
133 * Enqueue an entity into the rb-tree:
134 */
19ccd97a 135static void
bf0f6f24
IM
136__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
137{
138 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
139 struct rb_node *parent = NULL;
140 struct sched_entity *entry;
141 s64 key = se->fair_key;
142 int leftmost = 1;
143
144 /*
145 * Find the right place in the rbtree:
146 */
147 while (*link) {
148 parent = *link;
149 entry = rb_entry(parent, struct sched_entity, run_node);
150 /*
151 * We dont care about collisions. Nodes with
152 * the same key stay together.
153 */
154 if (key - entry->fair_key < 0) {
155 link = &parent->rb_left;
156 } else {
157 link = &parent->rb_right;
158 leftmost = 0;
159 }
160 }
161
162 /*
163 * Maintain a cache of leftmost tree entries (it is frequently
164 * used):
165 */
166 if (leftmost)
e9acbff6 167 set_leftmost(cfs_rq, &se->run_node);
bf0f6f24
IM
168
169 rb_link_node(&se->run_node, parent, link);
170 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
171 update_load_add(&cfs_rq->load, se->load.weight);
172 cfs_rq->nr_running++;
173 se->on_rq = 1;
a206c072
IM
174
175 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
bf0f6f24
IM
176}
177
19ccd97a 178static void
bf0f6f24
IM
179__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
180{
181 if (cfs_rq->rb_leftmost == &se->run_node)
e9acbff6
IM
182 set_leftmost(cfs_rq, rb_next(&se->run_node));
183
bf0f6f24
IM
184 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
185 update_load_sub(&cfs_rq->load, se->load.weight);
186 cfs_rq->nr_running--;
187 se->on_rq = 0;
a206c072
IM
188
189 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
bf0f6f24
IM
190}
191
192static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
193{
194 return cfs_rq->rb_leftmost;
195}
196
197static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
198{
199 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
200}
201
202/**************************************************************
203 * Scheduling class statistics methods:
204 */
205
4d78e7b6
PZ
206static u64 __sched_period(unsigned long nr_running)
207{
208 u64 period = sysctl_sched_latency;
209 unsigned long nr_latency =
210 sysctl_sched_latency / sysctl_sched_min_granularity;
211
212 if (unlikely(nr_running > nr_latency)) {
213 period *= nr_running;
214 do_div(period, nr_latency);
215 }
216
217 return period;
218}
219
21805085
PZ
220/*
221 * Calculate the preemption granularity needed to schedule every
222 * runnable task once per sysctl_sched_latency amount of time.
223 * (down to a sensible low limit on granularity)
224 *
225 * For example, if there are 2 tasks running and latency is 10 msecs,
226 * we switch tasks every 5 msecs. If we have 3 tasks running, we have
227 * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
228 * for each task. We do finer and finer scheduling up to until we
229 * reach the minimum granularity value.
230 *
231 * To achieve this we use the following dynamic-granularity rule:
232 *
233 * gran = lat/nr - lat/nr/nr
234 *
235 * This comes out of the following equations:
236 *
237 * kA1 + gran = kB1
238 * kB2 + gran = kA2
239 * kA2 = kA1
240 * kB2 = kB1 - d + d/nr
241 * lat = d * nr
242 *
243 * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
244 * '1' is start of time, '2' is end of time, 'd' is delay between
245 * 1 and 2 (during which task B was running), 'nr' is number of tasks
246 * running, 'lat' is the the period of each task. ('lat' is the
247 * sched_latency that we aim for.)
248 */
249static long
250sched_granularity(struct cfs_rq *cfs_rq)
251{
252 unsigned int gran = sysctl_sched_latency;
253 unsigned int nr = cfs_rq->nr_running;
254
255 if (nr > 1) {
256 gran = gran/nr - gran/nr/nr;
172ac3db 257 gran = max(gran, sysctl_sched_min_granularity);
21805085
PZ
258 }
259
260 return gran;
261}
262
bf0f6f24
IM
263/*
264 * We rescale the rescheduling granularity of tasks according to their
265 * nice level, but only linearly, not exponentially:
266 */
267static long
268niced_granularity(struct sched_entity *curr, unsigned long granularity)
269{
270 u64 tmp;
271
7cff8cf6
IM
272 if (likely(curr->load.weight == NICE_0_LOAD))
273 return granularity;
bf0f6f24 274 /*
7cff8cf6 275 * Positive nice levels get the same granularity as nice-0:
bf0f6f24 276 */
7cff8cf6
IM
277 if (likely(curr->load.weight < NICE_0_LOAD)) {
278 tmp = curr->load.weight * (u64)granularity;
279 return (long) (tmp >> NICE_0_SHIFT);
280 }
bf0f6f24 281 /*
7cff8cf6 282 * Negative nice level tasks get linearly finer
bf0f6f24
IM
283 * granularity:
284 */
7cff8cf6 285 tmp = curr->load.inv_weight * (u64)granularity;
bf0f6f24
IM
286
287 /*
288 * It will always fit into 'long':
289 */
a0dc7260 290 return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT));
bf0f6f24
IM
291}
292
293static inline void
294limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
295{
296 long limit = sysctl_sched_runtime_limit;
297
298 /*
299 * Niced tasks have the same history dynamic range as
300 * non-niced tasks:
301 */
302 if (unlikely(se->wait_runtime > limit)) {
303 se->wait_runtime = limit;
304 schedstat_inc(se, wait_runtime_overruns);
305 schedstat_inc(cfs_rq, wait_runtime_overruns);
306 }
307 if (unlikely(se->wait_runtime < -limit)) {
308 se->wait_runtime = -limit;
309 schedstat_inc(se, wait_runtime_underruns);
310 schedstat_inc(cfs_rq, wait_runtime_underruns);
311 }
312}
313
314static inline void
315__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
316{
317 se->wait_runtime += delta;
318 schedstat_add(se, sum_wait_runtime, delta);
319 limit_wait_runtime(cfs_rq, se);
320}
321
322static void
323add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
324{
325 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
326 __add_wait_runtime(cfs_rq, se, delta);
327 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
328}
329
330/*
331 * Update the current task's runtime statistics. Skip current tasks that
332 * are not in our scheduling class.
333 */
334static inline void
8ebc91d9
IM
335__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
336 unsigned long delta_exec)
bf0f6f24 337{
e9acbff6 338 unsigned long delta, delta_fair, delta_mine, delta_exec_weighted;
bf0f6f24
IM
339 struct load_weight *lw = &cfs_rq->load;
340 unsigned long load = lw->weight;
341
8179ca23 342 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
343
344 curr->sum_exec_runtime += delta_exec;
345 cfs_rq->exec_clock += delta_exec;
e9acbff6
IM
346 delta_exec_weighted = delta_exec;
347 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
348 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
349 &curr->load);
350 }
351 curr->vruntime += delta_exec_weighted;
bf0f6f24 352
6cb58195
IM
353 if (!sched_feat(FAIR_SLEEPERS))
354 return;
355
fd8bb43e
IM
356 if (unlikely(!load))
357 return;
358
bf0f6f24
IM
359 delta_fair = calc_delta_fair(delta_exec, lw);
360 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
361
5f01d519 362 if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
ea0aa3b2 363 delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
b2133c8b
IM
364 delta = min(delta, (unsigned long)(
365 (long)sysctl_sched_runtime_limit - curr->wait_runtime));
bf0f6f24
IM
366 cfs_rq->sleeper_bonus -= delta;
367 delta_mine -= delta;
368 }
369
370 cfs_rq->fair_clock += delta_fair;
371 /*
372 * We executed delta_exec amount of time on the CPU,
373 * but we were only entitled to delta_mine amount of
374 * time during that period (if nr_running == 1 then
375 * the two values are equal)
376 * [Note: delta_mine - delta_exec is negative]:
377 */
378 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
379}
380
b7cc0896 381static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 382{
429d43bc 383 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 384 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
385 unsigned long delta_exec;
386
387 if (unlikely(!curr))
388 return;
389
390 /*
391 * Get the amount of time the current task was running
392 * since the last time we changed load (this cannot
393 * overflow on 32 bits):
394 */
8ebc91d9 395 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 396
8ebc91d9
IM
397 __update_curr(cfs_rq, curr, delta_exec);
398 curr->exec_start = now;
bf0f6f24
IM
399}
400
401static inline void
5870db5b 402update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
403{
404 se->wait_start_fair = cfs_rq->fair_clock;
d281918d 405 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
406}
407
bf0f6f24 408static inline unsigned long
08e2388a 409calc_weighted(unsigned long delta, struct sched_entity *se)
bf0f6f24 410{
08e2388a 411 unsigned long weight = se->load.weight;
bf0f6f24 412
08e2388a
IM
413 if (unlikely(weight != NICE_0_LOAD))
414 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
415 else
416 return delta;
bf0f6f24 417}
bf0f6f24
IM
418
419/*
420 * Task is being enqueued - update stats:
421 */
d2417e5a 422static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 423{
bf0f6f24
IM
424 /*
425 * Are we enqueueing a waiting task? (for current tasks
426 * a dequeue/enqueue event is a NOP)
427 */
429d43bc 428 if (se != cfs_rq->curr)
5870db5b 429 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
430 /*
431 * Update the key:
432 */
e9acbff6 433 se->fair_key = se->vruntime;
bf0f6f24
IM
434}
435
436/*
437 * Note: must be called with a freshly updated rq->fair_clock.
438 */
439static inline void
8ebc91d9
IM
440__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se,
441 unsigned long delta_fair)
bf0f6f24 442{
d281918d
IM
443 schedstat_set(se->wait_max, max(se->wait_max,
444 rq_of(cfs_rq)->clock - se->wait_start));
bf0f6f24 445
08e2388a 446 delta_fair = calc_weighted(delta_fair, se);
bf0f6f24
IM
447
448 add_wait_runtime(cfs_rq, se, delta_fair);
449}
450
451static void
9ef0a961 452update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
453{
454 unsigned long delta_fair;
455
b77d69db
IM
456 if (unlikely(!se->wait_start_fair))
457 return;
458
bf0f6f24
IM
459 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
460 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
461
8ebc91d9 462 __update_stats_wait_end(cfs_rq, se, delta_fair);
bf0f6f24
IM
463
464 se->wait_start_fair = 0;
6cfb0d5d 465 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
466}
467
468static inline void
19b6a2e3 469update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 470{
b7cc0896 471 update_curr(cfs_rq);
bf0f6f24
IM
472 /*
473 * Mark the end of the wait period if dequeueing a
474 * waiting task:
475 */
429d43bc 476 if (se != cfs_rq->curr)
9ef0a961 477 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
478}
479
480/*
481 * We are picking a new current task - update its stats:
482 */
483static inline void
79303e9e 484update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
485{
486 /*
487 * We are starting a new run period:
488 */
d281918d 489 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
490}
491
492/*
493 * We are descheduling a task - update its stats:
494 */
495static inline void
c7e9b5b2 496update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
497{
498 se->exec_start = 0;
499}
500
501/**************************************************
502 * Scheduling class queueing methods:
503 */
504
8ebc91d9
IM
505static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se,
506 unsigned long delta_fair)
bf0f6f24 507{
8ebc91d9 508 unsigned long load = cfs_rq->load.weight;
bf0f6f24
IM
509 long prev_runtime;
510
b2133c8b
IM
511 /*
512 * Do not boost sleepers if there's too much bonus 'in flight'
513 * already:
514 */
515 if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
516 return;
517
e59c80c5 518 if (sched_feat(SLEEPER_LOAD_AVG))
bf0f6f24
IM
519 load = rq_of(cfs_rq)->cpu_load[2];
520
bf0f6f24
IM
521 /*
522 * Fix up delta_fair with the effect of us running
523 * during the whole sleep period:
524 */
e59c80c5 525 if (sched_feat(SLEEPER_AVG))
bf0f6f24
IM
526 delta_fair = div64_likely32((u64)delta_fair * load,
527 load + se->load.weight);
528
08e2388a 529 delta_fair = calc_weighted(delta_fair, se);
bf0f6f24
IM
530
531 prev_runtime = se->wait_runtime;
532 __add_wait_runtime(cfs_rq, se, delta_fair);
533 delta_fair = se->wait_runtime - prev_runtime;
534
535 /*
536 * Track the amount of bonus we've given to sleepers:
537 */
538 cfs_rq->sleeper_bonus += delta_fair;
bf0f6f24
IM
539}
540
2396af69 541static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
542{
543 struct task_struct *tsk = task_of(se);
544 unsigned long delta_fair;
545
546 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
e59c80c5 547 !sched_feat(FAIR_SLEEPERS))
bf0f6f24
IM
548 return;
549
550 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
551 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
552
8ebc91d9 553 __enqueue_sleeper(cfs_rq, se, delta_fair);
bf0f6f24
IM
554
555 se->sleep_start_fair = 0;
556
557#ifdef CONFIG_SCHEDSTATS
558 if (se->sleep_start) {
d281918d 559 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
560
561 if ((s64)delta < 0)
562 delta = 0;
563
564 if (unlikely(delta > se->sleep_max))
565 se->sleep_max = delta;
566
567 se->sleep_start = 0;
568 se->sum_sleep_runtime += delta;
569 }
570 if (se->block_start) {
d281918d 571 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
572
573 if ((s64)delta < 0)
574 delta = 0;
575
576 if (unlikely(delta > se->block_max))
577 se->block_max = delta;
578
579 se->block_start = 0;
580 se->sum_sleep_runtime += delta;
30084fbd
IM
581
582 /*
583 * Blocking time is in units of nanosecs, so shift by 20 to
584 * get a milliseconds-range estimation of the amount of
585 * time that the task spent sleeping:
586 */
587 if (unlikely(prof_on == SLEEP_PROFILING)) {
588 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
589 delta >> 20);
590 }
bf0f6f24
IM
591 }
592#endif
593}
594
595static void
668031ca 596enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
597{
598 /*
599 * Update the fair clock.
600 */
b7cc0896 601 update_curr(cfs_rq);
bf0f6f24 602
e9acbff6
IM
603 if (wakeup) {
604 u64 min_runtime, latency;
605
606 min_runtime = cfs_rq->min_vruntime;
607 min_runtime += sysctl_sched_latency/2;
608
609 if (sched_feat(NEW_FAIR_SLEEPERS)) {
610 latency = calc_weighted(sysctl_sched_latency, se);
611 if (min_runtime > latency)
612 min_runtime -= latency;
613 }
614
615 se->vruntime = max(se->vruntime, min_runtime);
616
2396af69 617 enqueue_sleeper(cfs_rq, se);
e9acbff6 618 }
bf0f6f24 619
d2417e5a 620 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
621 __enqueue_entity(cfs_rq, se);
622}
623
624static void
525c2716 625dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 626{
19b6a2e3 627 update_stats_dequeue(cfs_rq, se);
bf0f6f24
IM
628 if (sleep) {
629 se->sleep_start_fair = cfs_rq->fair_clock;
630#ifdef CONFIG_SCHEDSTATS
631 if (entity_is_task(se)) {
632 struct task_struct *tsk = task_of(se);
633
634 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 635 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 636 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 637 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 638 }
bf0f6f24
IM
639#endif
640 }
641 __dequeue_entity(cfs_rq, se);
642}
643
644/*
645 * Preempt the current task with a newly woken task if needed:
646 */
7c92e54f 647static void
bf0f6f24
IM
648__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
649 struct sched_entity *curr, unsigned long granularity)
650{
651 s64 __delta = curr->fair_key - se->fair_key;
11697830
PZ
652 unsigned long ideal_runtime, delta_exec;
653
654 /*
655 * ideal_runtime is compared against sum_exec_runtime, which is
656 * walltime, hence do not scale.
657 */
658 ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running,
659 (unsigned long)sysctl_sched_min_granularity);
660
661 /*
662 * If we executed more than what the latency constraint suggests,
663 * reduce the rescheduling granularity. This way the total latency
664 * of how much a task is not scheduled converges to
665 * sysctl_sched_latency:
666 */
667 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
668 if (delta_exec > ideal_runtime)
669 granularity = 0;
bf0f6f24
IM
670
671 /*
672 * Take scheduling granularity into account - do not
673 * preempt the current task unless the best task has
674 * a larger than sched_granularity fairness advantage:
11697830
PZ
675 *
676 * scale granularity as key space is in fair_clock.
bf0f6f24 677 */
4a55b450 678 if (__delta > niced_granularity(curr, granularity))
bf0f6f24
IM
679 resched_task(rq_of(cfs_rq)->curr);
680}
681
682static inline void
8494f412 683set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
684{
685 /*
686 * Any task has to be enqueued before it get to execute on
687 * a CPU. So account for the time it spent waiting on the
688 * runqueue. (note, here we rely on pick_next_task() having
689 * done a put_prev_task_fair() shortly before this, which
690 * updated rq->fair_clock - used by update_stats_wait_end())
691 */
9ef0a961 692 update_stats_wait_end(cfs_rq, se);
79303e9e 693 update_stats_curr_start(cfs_rq, se);
429d43bc 694 cfs_rq->curr = se;
eba1ed4b
IM
695#ifdef CONFIG_SCHEDSTATS
696 /*
697 * Track our maximum slice length, if the CPU's load is at
698 * least twice that of our own weight (i.e. dont track it
699 * when there are only lesser-weight tasks around):
700 */
701 if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
702 se->slice_max = max(se->slice_max,
703 se->sum_exec_runtime - se->prev_sum_exec_runtime);
704 }
705#endif
4a55b450 706 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
707}
708
9948f4b2 709static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24
IM
710{
711 struct sched_entity *se = __pick_next_entity(cfs_rq);
712
8494f412 713 set_next_entity(cfs_rq, se);
bf0f6f24
IM
714
715 return se;
716}
717
ab6cde26 718static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
719{
720 /*
721 * If still on the runqueue then deactivate_task()
722 * was not called and update_curr() has to be done:
723 */
724 if (prev->on_rq)
b7cc0896 725 update_curr(cfs_rq);
bf0f6f24 726
c7e9b5b2 727 update_stats_curr_end(cfs_rq, prev);
bf0f6f24
IM
728
729 if (prev->on_rq)
5870db5b 730 update_stats_wait_start(cfs_rq, prev);
429d43bc 731 cfs_rq->curr = NULL;
bf0f6f24
IM
732}
733
734static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
735{
bf0f6f24 736 struct sched_entity *next;
c1b3da3e 737
bf0f6f24
IM
738 /*
739 * Dequeue and enqueue the task to update its
740 * position within the tree:
741 */
525c2716 742 dequeue_entity(cfs_rq, curr, 0);
668031ca 743 enqueue_entity(cfs_rq, curr, 0);
bf0f6f24
IM
744
745 /*
746 * Reschedule if another task tops the current one.
747 */
748 next = __pick_next_entity(cfs_rq);
749 if (next == curr)
750 return;
751
11697830
PZ
752 __check_preempt_curr_fair(cfs_rq, next, curr,
753 sched_granularity(cfs_rq));
bf0f6f24
IM
754}
755
756/**************************************************
757 * CFS operations on tasks:
758 */
759
760#ifdef CONFIG_FAIR_GROUP_SCHED
761
762/* Walk up scheduling entities hierarchy */
763#define for_each_sched_entity(se) \
764 for (; se; se = se->parent)
765
766static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
767{
768 return p->se.cfs_rq;
769}
770
771/* runqueue on which this entity is (to be) queued */
772static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
773{
774 return se->cfs_rq;
775}
776
777/* runqueue "owned" by this group */
778static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
779{
780 return grp->my_q;
781}
782
783/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
784 * another cpu ('this_cpu')
785 */
786static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
787{
788 /* A later patch will take group into account */
789 return &cpu_rq(this_cpu)->cfs;
790}
791
792/* Iterate thr' all leaf cfs_rq's on a runqueue */
793#define for_each_leaf_cfs_rq(rq, cfs_rq) \
794 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
795
796/* Do the two (enqueued) tasks belong to the same group ? */
797static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
798{
799 if (curr->se.cfs_rq == p->se.cfs_rq)
800 return 1;
801
802 return 0;
803}
804
805#else /* CONFIG_FAIR_GROUP_SCHED */
806
807#define for_each_sched_entity(se) \
808 for (; se; se = NULL)
809
810static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
811{
812 return &task_rq(p)->cfs;
813}
814
815static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
816{
817 struct task_struct *p = task_of(se);
818 struct rq *rq = task_rq(p);
819
820 return &rq->cfs;
821}
822
823/* runqueue "owned" by this group */
824static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
825{
826 return NULL;
827}
828
829static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
830{
831 return &cpu_rq(this_cpu)->cfs;
832}
833
834#define for_each_leaf_cfs_rq(rq, cfs_rq) \
835 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
836
837static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
838{
839 return 1;
840}
841
842#endif /* CONFIG_FAIR_GROUP_SCHED */
843
844/*
845 * The enqueue_task method is called before nr_running is
846 * increased. Here we update the fair scheduling stats and
847 * then put the task into the rbtree:
848 */
fd390f6a 849static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
850{
851 struct cfs_rq *cfs_rq;
852 struct sched_entity *se = &p->se;
853
854 for_each_sched_entity(se) {
855 if (se->on_rq)
856 break;
857 cfs_rq = cfs_rq_of(se);
668031ca 858 enqueue_entity(cfs_rq, se, wakeup);
bf0f6f24
IM
859 }
860}
861
862/*
863 * The dequeue_task method is called before nr_running is
864 * decreased. We remove the task from the rbtree and
865 * update the fair scheduling stats:
866 */
f02231e5 867static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
868{
869 struct cfs_rq *cfs_rq;
870 struct sched_entity *se = &p->se;
871
872 for_each_sched_entity(se) {
873 cfs_rq = cfs_rq_of(se);
525c2716 874 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
875 /* Don't dequeue parent if it has other entities besides us */
876 if (cfs_rq->load.weight)
877 break;
878 }
879}
880
881/*
1799e35d
IM
882 * sched_yield() support is very simple - we dequeue and enqueue.
883 *
884 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24
IM
885 */
886static void yield_task_fair(struct rq *rq, struct task_struct *p)
887{
888 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1799e35d
IM
889 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
890 struct sched_entity *rightmost, *se = &p->se;
891 struct rb_node *parent;
bf0f6f24
IM
892
893 /*
1799e35d
IM
894 * Are we the only task in the tree?
895 */
896 if (unlikely(cfs_rq->nr_running == 1))
897 return;
898
899 if (likely(!sysctl_sched_compat_yield)) {
900 __update_rq_clock(rq);
901 /*
902 * Dequeue and enqueue the task to update its
903 * position within the tree:
904 */
905 dequeue_entity(cfs_rq, &p->se, 0);
906 enqueue_entity(cfs_rq, &p->se, 0);
907
908 return;
909 }
910 /*
911 * Find the rightmost entry in the rbtree:
bf0f6f24 912 */
1799e35d
IM
913 do {
914 parent = *link;
915 link = &parent->rb_right;
916 } while (*link);
917
918 rightmost = rb_entry(parent, struct sched_entity, run_node);
919 /*
920 * Already in the rightmost position?
921 */
922 if (unlikely(rightmost == se))
923 return;
924
925 /*
926 * Minimally necessary key value to be last in the tree:
927 */
928 se->fair_key = rightmost->fair_key + 1;
929
930 if (cfs_rq->rb_leftmost == &se->run_node)
931 cfs_rq->rb_leftmost = rb_next(&se->run_node);
932 /*
933 * Relink the task to the rightmost position:
934 */
935 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
936 rb_link_node(&se->run_node, parent, link);
937 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
938}
939
940/*
941 * Preempt the current task with a newly woken task if needed:
942 */
943static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
944{
945 struct task_struct *curr = rq->curr;
946 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
947 unsigned long gran;
948
949 if (unlikely(rt_prio(p->prio))) {
a8e504d2 950 update_rq_clock(rq);
b7cc0896 951 update_curr(cfs_rq);
bf0f6f24
IM
952 resched_task(curr);
953 return;
954 }
955
956 gran = sysctl_sched_wakeup_granularity;
957 /*
958 * Batch tasks prefer throughput over latency:
959 */
960 if (unlikely(p->policy == SCHED_BATCH))
961 gran = sysctl_sched_batch_wakeup_granularity;
962
963 if (is_same_group(curr, p))
964 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
965}
966
fb8d4724 967static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
968{
969 struct cfs_rq *cfs_rq = &rq->cfs;
970 struct sched_entity *se;
971
972 if (unlikely(!cfs_rq->nr_running))
973 return NULL;
974
975 do {
9948f4b2 976 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
977 cfs_rq = group_cfs_rq(se);
978 } while (cfs_rq);
979
980 return task_of(se);
981}
982
983/*
984 * Account for a descheduled task:
985 */
31ee529c 986static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
987{
988 struct sched_entity *se = &prev->se;
989 struct cfs_rq *cfs_rq;
990
991 for_each_sched_entity(se) {
992 cfs_rq = cfs_rq_of(se);
ab6cde26 993 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
994 }
995}
996
997/**************************************************
998 * Fair scheduling class load-balancing methods:
999 */
1000
1001/*
1002 * Load-balancing iterator. Note: while the runqueue stays locked
1003 * during the whole iteration, the current task might be
1004 * dequeued so the iterator has to be dequeue-safe. Here we
1005 * achieve that by always pre-iterating before returning
1006 * the current task:
1007 */
1008static inline struct task_struct *
1009__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1010{
1011 struct task_struct *p;
1012
1013 if (!curr)
1014 return NULL;
1015
1016 p = rb_entry(curr, struct task_struct, se.run_node);
1017 cfs_rq->rb_load_balance_curr = rb_next(curr);
1018
1019 return p;
1020}
1021
1022static struct task_struct *load_balance_start_fair(void *arg)
1023{
1024 struct cfs_rq *cfs_rq = arg;
1025
1026 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1027}
1028
1029static struct task_struct *load_balance_next_fair(void *arg)
1030{
1031 struct cfs_rq *cfs_rq = arg;
1032
1033 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1034}
1035
a4ac01c3 1036#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
1037static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1038{
1039 struct sched_entity *curr;
1040 struct task_struct *p;
1041
1042 if (!cfs_rq->nr_running)
1043 return MAX_PRIO;
1044
1045 curr = __pick_next_entity(cfs_rq);
1046 p = task_of(curr);
1047
1048 return p->prio;
1049}
a4ac01c3 1050#endif
bf0f6f24 1051
43010659 1052static unsigned long
bf0f6f24 1053load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
1054 unsigned long max_nr_move, unsigned long max_load_move,
1055 struct sched_domain *sd, enum cpu_idle_type idle,
1056 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
1057{
1058 struct cfs_rq *busy_cfs_rq;
1059 unsigned long load_moved, total_nr_moved = 0, nr_moved;
1060 long rem_load_move = max_load_move;
1061 struct rq_iterator cfs_rq_iterator;
1062
1063 cfs_rq_iterator.start = load_balance_start_fair;
1064 cfs_rq_iterator.next = load_balance_next_fair;
1065
1066 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 1067#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 1068 struct cfs_rq *this_cfs_rq;
e56f31aa 1069 long imbalance;
bf0f6f24 1070 unsigned long maxload;
bf0f6f24
IM
1071
1072 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1073
e56f31aa 1074 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
1075 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1076 if (imbalance <= 0)
1077 continue;
1078
1079 /* Don't pull more than imbalance/2 */
1080 imbalance /= 2;
1081 maxload = min(rem_load_move, imbalance);
1082
a4ac01c3
PW
1083 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1084#else
e56f31aa 1085# define maxload rem_load_move
a4ac01c3 1086#endif
bf0f6f24
IM
1087 /* pass busy_cfs_rq argument into
1088 * load_balance_[start|next]_fair iterators
1089 */
1090 cfs_rq_iterator.arg = busy_cfs_rq;
1091 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
1092 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 1093 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
1094
1095 total_nr_moved += nr_moved;
1096 max_nr_move -= nr_moved;
1097 rem_load_move -= load_moved;
1098
1099 if (max_nr_move <= 0 || rem_load_move <= 0)
1100 break;
1101 }
1102
43010659 1103 return max_load_move - rem_load_move;
bf0f6f24
IM
1104}
1105
1106/*
1107 * scheduler tick hitting a task of our scheduling class:
1108 */
1109static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1110{
1111 struct cfs_rq *cfs_rq;
1112 struct sched_entity *se = &curr->se;
1113
1114 for_each_sched_entity(se) {
1115 cfs_rq = cfs_rq_of(se);
1116 entity_tick(cfs_rq, se);
1117 }
1118}
1119
4d78e7b6
PZ
1120#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1121
bf0f6f24
IM
1122/*
1123 * Share the fairness runtime between parent and child, thus the
1124 * total amount of pressure for CPU stays equal - new tasks
1125 * get a chance to run but frequent forkers are not allowed to
1126 * monopolize the CPU. Note: the parent runqueue is locked,
1127 * the child is not running yet.
1128 */
ee0827d8 1129static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1130{
1131 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1132 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
bf0f6f24
IM
1133
1134 sched_info_queued(p);
1135
7109c442 1136 update_curr(cfs_rq);
4d78e7b6 1137 se->vruntime = cfs_rq->min_vruntime;
d2417e5a 1138 update_stats_enqueue(cfs_rq, se);
4d78e7b6 1139
bf0f6f24
IM
1140 /*
1141 * The first wait is dominated by the child-runs-first logic,
1142 * so do not credit it with that waiting time yet:
1143 */
e59c80c5 1144 if (sched_feat(SKIP_INITIAL))
9f508f82 1145 se->wait_start_fair = 0;
bf0f6f24
IM
1146
1147 /*
1148 * The statistical average of wait_runtime is about
1149 * -granularity/2, so initialize the task with that:
1150 */
e59c80c5 1151 if (sched_feat(START_DEBIT))
4d78e7b6
PZ
1152 se->wait_runtime = -(__sched_period(cfs_rq->nr_running+1) / 2);
1153
1154 if (sysctl_sched_child_runs_first &&
1155 curr->vruntime < se->vruntime) {
1156
1157 dequeue_entity(cfs_rq, curr, 0);
1158 swap(curr->vruntime, se->vruntime);
1159 enqueue_entity(cfs_rq, curr, 0);
1160 }
bf0f6f24 1161
e9acbff6 1162 update_stats_enqueue(cfs_rq, se);
bf0f6f24 1163 __enqueue_entity(cfs_rq, se);
bb61c210 1164 resched_task(rq->curr);
bf0f6f24
IM
1165}
1166
1167#ifdef CONFIG_FAIR_GROUP_SCHED
1168/* Account for a task changing its policy or group.
1169 *
1170 * This routine is mostly called to set cfs_rq->curr field when a task
1171 * migrates between groups/classes.
1172 */
1173static void set_curr_task_fair(struct rq *rq)
1174{
7c6c16f3 1175 struct sched_entity *se = &rq->curr->se;
a8e504d2 1176
c3b64f1e
IM
1177 for_each_sched_entity(se)
1178 set_next_entity(cfs_rq_of(se), se);
bf0f6f24
IM
1179}
1180#else
1181static void set_curr_task_fair(struct rq *rq)
1182{
1183}
1184#endif
1185
1186/*
1187 * All the scheduling class methods:
1188 */
1189struct sched_class fair_sched_class __read_mostly = {
1190 .enqueue_task = enqueue_task_fair,
1191 .dequeue_task = dequeue_task_fair,
1192 .yield_task = yield_task_fair,
1193
1194 .check_preempt_curr = check_preempt_curr_fair,
1195
1196 .pick_next_task = pick_next_task_fair,
1197 .put_prev_task = put_prev_task_fair,
1198
1199 .load_balance = load_balance_fair,
1200
1201 .set_curr_task = set_curr_task_fair,
1202 .task_tick = task_tick_fair,
1203 .task_new = task_new_fair,
1204};
1205
1206#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1207static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1208{
bf0f6f24
IM
1209 struct cfs_rq *cfs_rq;
1210
c3b64f1e 1211 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1212 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1213}
1214#endif