]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched_fair.c
sched: optimize vruntime based scheduling
[mirror_ubuntu-bionic-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085
PZ
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 35 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 36 */
2bd8e6d4
IM
37const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
44
45/*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
172ac3db 49unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
bf0f6f24 50
1799e35d
IM
51/*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57unsigned int __read_mostly sysctl_sched_compat_yield;
58
bf0f6f24
IM
59/*
60 * SCHED_BATCH wake-up granularity.
71fd3714 61 * (default: 25 msec, units: nanoseconds)
bf0f6f24
IM
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
2bd8e6d4 67const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
bf0f6f24
IM
68
69/*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
2bd8e6d4 77const_debug unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 78
bf0f6f24
IM
79unsigned int sysctl_sched_runtime_limit __read_mostly;
80
bf0f6f24
IM
81extern struct sched_class fair_sched_class;
82
83/**************************************************************
84 * CFS operations on generic schedulable entities:
85 */
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
62160e3f 98#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 99
62160e3f
IM
100static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
101{
102 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
103}
104
105#define entity_is_task(se) 1
106
bf0f6f24
IM
107#endif /* CONFIG_FAIR_GROUP_SCHED */
108
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111 return container_of(se, struct task_struct, se);
112}
113
114
115/**************************************************************
116 * Scheduling class tree data structure manipulation methods:
117 */
118
e9acbff6
IM
119static inline void
120set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
121{
122 struct sched_entity *se;
123
124 cfs_rq->rb_leftmost = leftmost;
125 if (leftmost) {
126 se = rb_entry(leftmost, struct sched_entity, run_node);
127 cfs_rq->min_vruntime = max(se->vruntime,
128 cfs_rq->min_vruntime);
129 }
130}
131
bf0f6f24
IM
132/*
133 * Enqueue an entity into the rb-tree:
134 */
19ccd97a 135static void
bf0f6f24
IM
136__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
137{
138 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
139 struct rb_node *parent = NULL;
140 struct sched_entity *entry;
141 s64 key = se->fair_key;
142 int leftmost = 1;
143
144 /*
145 * Find the right place in the rbtree:
146 */
147 while (*link) {
148 parent = *link;
149 entry = rb_entry(parent, struct sched_entity, run_node);
150 /*
151 * We dont care about collisions. Nodes with
152 * the same key stay together.
153 */
154 if (key - entry->fair_key < 0) {
155 link = &parent->rb_left;
156 } else {
157 link = &parent->rb_right;
158 leftmost = 0;
159 }
160 }
161
162 /*
163 * Maintain a cache of leftmost tree entries (it is frequently
164 * used):
165 */
166 if (leftmost)
e9acbff6 167 set_leftmost(cfs_rq, &se->run_node);
bf0f6f24
IM
168
169 rb_link_node(&se->run_node, parent, link);
170 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
171 update_load_add(&cfs_rq->load, se->load.weight);
172 cfs_rq->nr_running++;
173 se->on_rq = 1;
a206c072
IM
174
175 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
bf0f6f24
IM
176}
177
19ccd97a 178static void
bf0f6f24
IM
179__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
180{
181 if (cfs_rq->rb_leftmost == &se->run_node)
e9acbff6
IM
182 set_leftmost(cfs_rq, rb_next(&se->run_node));
183
bf0f6f24
IM
184 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
185 update_load_sub(&cfs_rq->load, se->load.weight);
186 cfs_rq->nr_running--;
187 se->on_rq = 0;
a206c072
IM
188
189 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
bf0f6f24
IM
190}
191
192static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
193{
194 return cfs_rq->rb_leftmost;
195}
196
197static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
198{
199 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
200}
201
202/**************************************************************
203 * Scheduling class statistics methods:
204 */
205
21805085
PZ
206/*
207 * Calculate the preemption granularity needed to schedule every
208 * runnable task once per sysctl_sched_latency amount of time.
209 * (down to a sensible low limit on granularity)
210 *
211 * For example, if there are 2 tasks running and latency is 10 msecs,
212 * we switch tasks every 5 msecs. If we have 3 tasks running, we have
213 * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
214 * for each task. We do finer and finer scheduling up to until we
215 * reach the minimum granularity value.
216 *
217 * To achieve this we use the following dynamic-granularity rule:
218 *
219 * gran = lat/nr - lat/nr/nr
220 *
221 * This comes out of the following equations:
222 *
223 * kA1 + gran = kB1
224 * kB2 + gran = kA2
225 * kA2 = kA1
226 * kB2 = kB1 - d + d/nr
227 * lat = d * nr
228 *
229 * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
230 * '1' is start of time, '2' is end of time, 'd' is delay between
231 * 1 and 2 (during which task B was running), 'nr' is number of tasks
232 * running, 'lat' is the the period of each task. ('lat' is the
233 * sched_latency that we aim for.)
234 */
235static long
236sched_granularity(struct cfs_rq *cfs_rq)
237{
238 unsigned int gran = sysctl_sched_latency;
239 unsigned int nr = cfs_rq->nr_running;
240
241 if (nr > 1) {
242 gran = gran/nr - gran/nr/nr;
172ac3db 243 gran = max(gran, sysctl_sched_min_granularity);
21805085
PZ
244 }
245
246 return gran;
247}
248
bf0f6f24
IM
249/*
250 * We rescale the rescheduling granularity of tasks according to their
251 * nice level, but only linearly, not exponentially:
252 */
253static long
254niced_granularity(struct sched_entity *curr, unsigned long granularity)
255{
256 u64 tmp;
257
7cff8cf6
IM
258 if (likely(curr->load.weight == NICE_0_LOAD))
259 return granularity;
bf0f6f24 260 /*
7cff8cf6 261 * Positive nice levels get the same granularity as nice-0:
bf0f6f24 262 */
7cff8cf6
IM
263 if (likely(curr->load.weight < NICE_0_LOAD)) {
264 tmp = curr->load.weight * (u64)granularity;
265 return (long) (tmp >> NICE_0_SHIFT);
266 }
bf0f6f24 267 /*
7cff8cf6 268 * Negative nice level tasks get linearly finer
bf0f6f24
IM
269 * granularity:
270 */
7cff8cf6 271 tmp = curr->load.inv_weight * (u64)granularity;
bf0f6f24
IM
272
273 /*
274 * It will always fit into 'long':
275 */
a0dc7260 276 return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT));
bf0f6f24
IM
277}
278
279static inline void
280limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
281{
282 long limit = sysctl_sched_runtime_limit;
283
284 /*
285 * Niced tasks have the same history dynamic range as
286 * non-niced tasks:
287 */
288 if (unlikely(se->wait_runtime > limit)) {
289 se->wait_runtime = limit;
290 schedstat_inc(se, wait_runtime_overruns);
291 schedstat_inc(cfs_rq, wait_runtime_overruns);
292 }
293 if (unlikely(se->wait_runtime < -limit)) {
294 se->wait_runtime = -limit;
295 schedstat_inc(se, wait_runtime_underruns);
296 schedstat_inc(cfs_rq, wait_runtime_underruns);
297 }
298}
299
300static inline void
301__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
302{
303 se->wait_runtime += delta;
304 schedstat_add(se, sum_wait_runtime, delta);
305 limit_wait_runtime(cfs_rq, se);
306}
307
308static void
309add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
310{
311 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
312 __add_wait_runtime(cfs_rq, se, delta);
313 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
314}
315
316/*
317 * Update the current task's runtime statistics. Skip current tasks that
318 * are not in our scheduling class.
319 */
320static inline void
8ebc91d9
IM
321__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
322 unsigned long delta_exec)
bf0f6f24 323{
e9acbff6 324 unsigned long delta, delta_fair, delta_mine, delta_exec_weighted;
bf0f6f24
IM
325 struct load_weight *lw = &cfs_rq->load;
326 unsigned long load = lw->weight;
327
8179ca23 328 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
329
330 curr->sum_exec_runtime += delta_exec;
331 cfs_rq->exec_clock += delta_exec;
e9acbff6
IM
332 delta_exec_weighted = delta_exec;
333 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
334 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
335 &curr->load);
336 }
337 curr->vruntime += delta_exec_weighted;
bf0f6f24 338
6cb58195
IM
339 if (!sched_feat(FAIR_SLEEPERS))
340 return;
341
fd8bb43e
IM
342 if (unlikely(!load))
343 return;
344
bf0f6f24
IM
345 delta_fair = calc_delta_fair(delta_exec, lw);
346 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
347
5f01d519 348 if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
ea0aa3b2 349 delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
b2133c8b
IM
350 delta = min(delta, (unsigned long)(
351 (long)sysctl_sched_runtime_limit - curr->wait_runtime));
bf0f6f24
IM
352 cfs_rq->sleeper_bonus -= delta;
353 delta_mine -= delta;
354 }
355
356 cfs_rq->fair_clock += delta_fair;
357 /*
358 * We executed delta_exec amount of time on the CPU,
359 * but we were only entitled to delta_mine amount of
360 * time during that period (if nr_running == 1 then
361 * the two values are equal)
362 * [Note: delta_mine - delta_exec is negative]:
363 */
364 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
365}
366
b7cc0896 367static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 368{
429d43bc 369 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 370 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
371 unsigned long delta_exec;
372
373 if (unlikely(!curr))
374 return;
375
376 /*
377 * Get the amount of time the current task was running
378 * since the last time we changed load (this cannot
379 * overflow on 32 bits):
380 */
8ebc91d9 381 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 382
8ebc91d9
IM
383 __update_curr(cfs_rq, curr, delta_exec);
384 curr->exec_start = now;
bf0f6f24
IM
385}
386
387static inline void
5870db5b 388update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
389{
390 se->wait_start_fair = cfs_rq->fair_clock;
d281918d 391 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
392}
393
bf0f6f24 394static inline unsigned long
08e2388a 395calc_weighted(unsigned long delta, struct sched_entity *se)
bf0f6f24 396{
08e2388a 397 unsigned long weight = se->load.weight;
bf0f6f24 398
08e2388a
IM
399 if (unlikely(weight != NICE_0_LOAD))
400 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
401 else
402 return delta;
bf0f6f24 403}
bf0f6f24
IM
404
405/*
406 * Task is being enqueued - update stats:
407 */
d2417e5a 408static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 409{
bf0f6f24
IM
410 /*
411 * Are we enqueueing a waiting task? (for current tasks
412 * a dequeue/enqueue event is a NOP)
413 */
429d43bc 414 if (se != cfs_rq->curr)
5870db5b 415 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
416 /*
417 * Update the key:
418 */
e9acbff6 419 se->fair_key = se->vruntime;
bf0f6f24
IM
420}
421
422/*
423 * Note: must be called with a freshly updated rq->fair_clock.
424 */
425static inline void
8ebc91d9
IM
426__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se,
427 unsigned long delta_fair)
bf0f6f24 428{
d281918d
IM
429 schedstat_set(se->wait_max, max(se->wait_max,
430 rq_of(cfs_rq)->clock - se->wait_start));
bf0f6f24 431
08e2388a 432 delta_fair = calc_weighted(delta_fair, se);
bf0f6f24
IM
433
434 add_wait_runtime(cfs_rq, se, delta_fair);
435}
436
437static void
9ef0a961 438update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
439{
440 unsigned long delta_fair;
441
b77d69db
IM
442 if (unlikely(!se->wait_start_fair))
443 return;
444
bf0f6f24
IM
445 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
446 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
447
8ebc91d9 448 __update_stats_wait_end(cfs_rq, se, delta_fair);
bf0f6f24
IM
449
450 se->wait_start_fair = 0;
6cfb0d5d 451 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
452}
453
454static inline void
19b6a2e3 455update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 456{
b7cc0896 457 update_curr(cfs_rq);
bf0f6f24
IM
458 /*
459 * Mark the end of the wait period if dequeueing a
460 * waiting task:
461 */
429d43bc 462 if (se != cfs_rq->curr)
9ef0a961 463 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
464}
465
466/*
467 * We are picking a new current task - update its stats:
468 */
469static inline void
79303e9e 470update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
471{
472 /*
473 * We are starting a new run period:
474 */
d281918d 475 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
476}
477
478/*
479 * We are descheduling a task - update its stats:
480 */
481static inline void
c7e9b5b2 482update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
483{
484 se->exec_start = 0;
485}
486
487/**************************************************
488 * Scheduling class queueing methods:
489 */
490
8ebc91d9
IM
491static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se,
492 unsigned long delta_fair)
bf0f6f24 493{
8ebc91d9 494 unsigned long load = cfs_rq->load.weight;
bf0f6f24
IM
495 long prev_runtime;
496
b2133c8b
IM
497 /*
498 * Do not boost sleepers if there's too much bonus 'in flight'
499 * already:
500 */
501 if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
502 return;
503
e59c80c5 504 if (sched_feat(SLEEPER_LOAD_AVG))
bf0f6f24
IM
505 load = rq_of(cfs_rq)->cpu_load[2];
506
bf0f6f24
IM
507 /*
508 * Fix up delta_fair with the effect of us running
509 * during the whole sleep period:
510 */
e59c80c5 511 if (sched_feat(SLEEPER_AVG))
bf0f6f24
IM
512 delta_fair = div64_likely32((u64)delta_fair * load,
513 load + se->load.weight);
514
08e2388a 515 delta_fair = calc_weighted(delta_fair, se);
bf0f6f24
IM
516
517 prev_runtime = se->wait_runtime;
518 __add_wait_runtime(cfs_rq, se, delta_fair);
519 delta_fair = se->wait_runtime - prev_runtime;
520
521 /*
522 * Track the amount of bonus we've given to sleepers:
523 */
524 cfs_rq->sleeper_bonus += delta_fair;
bf0f6f24
IM
525}
526
2396af69 527static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
528{
529 struct task_struct *tsk = task_of(se);
530 unsigned long delta_fair;
531
532 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
e59c80c5 533 !sched_feat(FAIR_SLEEPERS))
bf0f6f24
IM
534 return;
535
536 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
537 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
538
8ebc91d9 539 __enqueue_sleeper(cfs_rq, se, delta_fair);
bf0f6f24
IM
540
541 se->sleep_start_fair = 0;
542
543#ifdef CONFIG_SCHEDSTATS
544 if (se->sleep_start) {
d281918d 545 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
546
547 if ((s64)delta < 0)
548 delta = 0;
549
550 if (unlikely(delta > se->sleep_max))
551 se->sleep_max = delta;
552
553 se->sleep_start = 0;
554 se->sum_sleep_runtime += delta;
555 }
556 if (se->block_start) {
d281918d 557 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
558
559 if ((s64)delta < 0)
560 delta = 0;
561
562 if (unlikely(delta > se->block_max))
563 se->block_max = delta;
564
565 se->block_start = 0;
566 se->sum_sleep_runtime += delta;
30084fbd
IM
567
568 /*
569 * Blocking time is in units of nanosecs, so shift by 20 to
570 * get a milliseconds-range estimation of the amount of
571 * time that the task spent sleeping:
572 */
573 if (unlikely(prof_on == SLEEP_PROFILING)) {
574 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
575 delta >> 20);
576 }
bf0f6f24
IM
577 }
578#endif
579}
580
581static void
668031ca 582enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
583{
584 /*
585 * Update the fair clock.
586 */
b7cc0896 587 update_curr(cfs_rq);
bf0f6f24 588
e9acbff6
IM
589 if (wakeup) {
590 u64 min_runtime, latency;
591
592 min_runtime = cfs_rq->min_vruntime;
593 min_runtime += sysctl_sched_latency/2;
594
595 if (sched_feat(NEW_FAIR_SLEEPERS)) {
596 latency = calc_weighted(sysctl_sched_latency, se);
597 if (min_runtime > latency)
598 min_runtime -= latency;
599 }
600
601 se->vruntime = max(se->vruntime, min_runtime);
602
2396af69 603 enqueue_sleeper(cfs_rq, se);
e9acbff6 604 }
bf0f6f24 605
d2417e5a 606 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
607 __enqueue_entity(cfs_rq, se);
608}
609
610static void
525c2716 611dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 612{
19b6a2e3 613 update_stats_dequeue(cfs_rq, se);
bf0f6f24
IM
614 if (sleep) {
615 se->sleep_start_fair = cfs_rq->fair_clock;
616#ifdef CONFIG_SCHEDSTATS
617 if (entity_is_task(se)) {
618 struct task_struct *tsk = task_of(se);
619
620 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 621 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 622 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 623 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 624 }
bf0f6f24
IM
625#endif
626 }
627 __dequeue_entity(cfs_rq, se);
628}
629
630/*
631 * Preempt the current task with a newly woken task if needed:
632 */
7c92e54f 633static void
bf0f6f24
IM
634__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
635 struct sched_entity *curr, unsigned long granularity)
636{
637 s64 __delta = curr->fair_key - se->fair_key;
11697830
PZ
638 unsigned long ideal_runtime, delta_exec;
639
640 /*
641 * ideal_runtime is compared against sum_exec_runtime, which is
642 * walltime, hence do not scale.
643 */
644 ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running,
645 (unsigned long)sysctl_sched_min_granularity);
646
647 /*
648 * If we executed more than what the latency constraint suggests,
649 * reduce the rescheduling granularity. This way the total latency
650 * of how much a task is not scheduled converges to
651 * sysctl_sched_latency:
652 */
653 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
654 if (delta_exec > ideal_runtime)
655 granularity = 0;
bf0f6f24
IM
656
657 /*
658 * Take scheduling granularity into account - do not
659 * preempt the current task unless the best task has
660 * a larger than sched_granularity fairness advantage:
11697830
PZ
661 *
662 * scale granularity as key space is in fair_clock.
bf0f6f24 663 */
4a55b450 664 if (__delta > niced_granularity(curr, granularity))
bf0f6f24
IM
665 resched_task(rq_of(cfs_rq)->curr);
666}
667
668static inline void
8494f412 669set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
670{
671 /*
672 * Any task has to be enqueued before it get to execute on
673 * a CPU. So account for the time it spent waiting on the
674 * runqueue. (note, here we rely on pick_next_task() having
675 * done a put_prev_task_fair() shortly before this, which
676 * updated rq->fair_clock - used by update_stats_wait_end())
677 */
9ef0a961 678 update_stats_wait_end(cfs_rq, se);
79303e9e 679 update_stats_curr_start(cfs_rq, se);
429d43bc 680 cfs_rq->curr = se;
eba1ed4b
IM
681#ifdef CONFIG_SCHEDSTATS
682 /*
683 * Track our maximum slice length, if the CPU's load is at
684 * least twice that of our own weight (i.e. dont track it
685 * when there are only lesser-weight tasks around):
686 */
687 if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
688 se->slice_max = max(se->slice_max,
689 se->sum_exec_runtime - se->prev_sum_exec_runtime);
690 }
691#endif
4a55b450 692 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
693}
694
9948f4b2 695static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24
IM
696{
697 struct sched_entity *se = __pick_next_entity(cfs_rq);
698
8494f412 699 set_next_entity(cfs_rq, se);
bf0f6f24
IM
700
701 return se;
702}
703
ab6cde26 704static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
705{
706 /*
707 * If still on the runqueue then deactivate_task()
708 * was not called and update_curr() has to be done:
709 */
710 if (prev->on_rq)
b7cc0896 711 update_curr(cfs_rq);
bf0f6f24 712
c7e9b5b2 713 update_stats_curr_end(cfs_rq, prev);
bf0f6f24
IM
714
715 if (prev->on_rq)
5870db5b 716 update_stats_wait_start(cfs_rq, prev);
429d43bc 717 cfs_rq->curr = NULL;
bf0f6f24
IM
718}
719
720static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
721{
bf0f6f24 722 struct sched_entity *next;
c1b3da3e 723
bf0f6f24
IM
724 /*
725 * Dequeue and enqueue the task to update its
726 * position within the tree:
727 */
525c2716 728 dequeue_entity(cfs_rq, curr, 0);
668031ca 729 enqueue_entity(cfs_rq, curr, 0);
bf0f6f24
IM
730
731 /*
732 * Reschedule if another task tops the current one.
733 */
734 next = __pick_next_entity(cfs_rq);
735 if (next == curr)
736 return;
737
11697830
PZ
738 __check_preempt_curr_fair(cfs_rq, next, curr,
739 sched_granularity(cfs_rq));
bf0f6f24
IM
740}
741
742/**************************************************
743 * CFS operations on tasks:
744 */
745
746#ifdef CONFIG_FAIR_GROUP_SCHED
747
748/* Walk up scheduling entities hierarchy */
749#define for_each_sched_entity(se) \
750 for (; se; se = se->parent)
751
752static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
753{
754 return p->se.cfs_rq;
755}
756
757/* runqueue on which this entity is (to be) queued */
758static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
759{
760 return se->cfs_rq;
761}
762
763/* runqueue "owned" by this group */
764static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
765{
766 return grp->my_q;
767}
768
769/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
770 * another cpu ('this_cpu')
771 */
772static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
773{
774 /* A later patch will take group into account */
775 return &cpu_rq(this_cpu)->cfs;
776}
777
778/* Iterate thr' all leaf cfs_rq's on a runqueue */
779#define for_each_leaf_cfs_rq(rq, cfs_rq) \
780 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
781
782/* Do the two (enqueued) tasks belong to the same group ? */
783static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
784{
785 if (curr->se.cfs_rq == p->se.cfs_rq)
786 return 1;
787
788 return 0;
789}
790
791#else /* CONFIG_FAIR_GROUP_SCHED */
792
793#define for_each_sched_entity(se) \
794 for (; se; se = NULL)
795
796static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
797{
798 return &task_rq(p)->cfs;
799}
800
801static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
802{
803 struct task_struct *p = task_of(se);
804 struct rq *rq = task_rq(p);
805
806 return &rq->cfs;
807}
808
809/* runqueue "owned" by this group */
810static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
811{
812 return NULL;
813}
814
815static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
816{
817 return &cpu_rq(this_cpu)->cfs;
818}
819
820#define for_each_leaf_cfs_rq(rq, cfs_rq) \
821 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
822
823static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
824{
825 return 1;
826}
827
828#endif /* CONFIG_FAIR_GROUP_SCHED */
829
830/*
831 * The enqueue_task method is called before nr_running is
832 * increased. Here we update the fair scheduling stats and
833 * then put the task into the rbtree:
834 */
fd390f6a 835static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
836{
837 struct cfs_rq *cfs_rq;
838 struct sched_entity *se = &p->se;
839
840 for_each_sched_entity(se) {
841 if (se->on_rq)
842 break;
843 cfs_rq = cfs_rq_of(se);
668031ca 844 enqueue_entity(cfs_rq, se, wakeup);
bf0f6f24
IM
845 }
846}
847
848/*
849 * The dequeue_task method is called before nr_running is
850 * decreased. We remove the task from the rbtree and
851 * update the fair scheduling stats:
852 */
f02231e5 853static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
854{
855 struct cfs_rq *cfs_rq;
856 struct sched_entity *se = &p->se;
857
858 for_each_sched_entity(se) {
859 cfs_rq = cfs_rq_of(se);
525c2716 860 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
861 /* Don't dequeue parent if it has other entities besides us */
862 if (cfs_rq->load.weight)
863 break;
864 }
865}
866
867/*
1799e35d
IM
868 * sched_yield() support is very simple - we dequeue and enqueue.
869 *
870 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24
IM
871 */
872static void yield_task_fair(struct rq *rq, struct task_struct *p)
873{
874 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1799e35d
IM
875 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
876 struct sched_entity *rightmost, *se = &p->se;
877 struct rb_node *parent;
bf0f6f24
IM
878
879 /*
1799e35d
IM
880 * Are we the only task in the tree?
881 */
882 if (unlikely(cfs_rq->nr_running == 1))
883 return;
884
885 if (likely(!sysctl_sched_compat_yield)) {
886 __update_rq_clock(rq);
887 /*
888 * Dequeue and enqueue the task to update its
889 * position within the tree:
890 */
891 dequeue_entity(cfs_rq, &p->se, 0);
892 enqueue_entity(cfs_rq, &p->se, 0);
893
894 return;
895 }
896 /*
897 * Find the rightmost entry in the rbtree:
bf0f6f24 898 */
1799e35d
IM
899 do {
900 parent = *link;
901 link = &parent->rb_right;
902 } while (*link);
903
904 rightmost = rb_entry(parent, struct sched_entity, run_node);
905 /*
906 * Already in the rightmost position?
907 */
908 if (unlikely(rightmost == se))
909 return;
910
911 /*
912 * Minimally necessary key value to be last in the tree:
913 */
914 se->fair_key = rightmost->fair_key + 1;
915
916 if (cfs_rq->rb_leftmost == &se->run_node)
917 cfs_rq->rb_leftmost = rb_next(&se->run_node);
918 /*
919 * Relink the task to the rightmost position:
920 */
921 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
922 rb_link_node(&se->run_node, parent, link);
923 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
924}
925
926/*
927 * Preempt the current task with a newly woken task if needed:
928 */
929static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
930{
931 struct task_struct *curr = rq->curr;
932 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
933 unsigned long gran;
934
935 if (unlikely(rt_prio(p->prio))) {
a8e504d2 936 update_rq_clock(rq);
b7cc0896 937 update_curr(cfs_rq);
bf0f6f24
IM
938 resched_task(curr);
939 return;
940 }
941
942 gran = sysctl_sched_wakeup_granularity;
943 /*
944 * Batch tasks prefer throughput over latency:
945 */
946 if (unlikely(p->policy == SCHED_BATCH))
947 gran = sysctl_sched_batch_wakeup_granularity;
948
949 if (is_same_group(curr, p))
950 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
951}
952
fb8d4724 953static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
954{
955 struct cfs_rq *cfs_rq = &rq->cfs;
956 struct sched_entity *se;
957
958 if (unlikely(!cfs_rq->nr_running))
959 return NULL;
960
961 do {
9948f4b2 962 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
963 cfs_rq = group_cfs_rq(se);
964 } while (cfs_rq);
965
966 return task_of(se);
967}
968
969/*
970 * Account for a descheduled task:
971 */
31ee529c 972static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
973{
974 struct sched_entity *se = &prev->se;
975 struct cfs_rq *cfs_rq;
976
977 for_each_sched_entity(se) {
978 cfs_rq = cfs_rq_of(se);
ab6cde26 979 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
980 }
981}
982
983/**************************************************
984 * Fair scheduling class load-balancing methods:
985 */
986
987/*
988 * Load-balancing iterator. Note: while the runqueue stays locked
989 * during the whole iteration, the current task might be
990 * dequeued so the iterator has to be dequeue-safe. Here we
991 * achieve that by always pre-iterating before returning
992 * the current task:
993 */
994static inline struct task_struct *
995__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
996{
997 struct task_struct *p;
998
999 if (!curr)
1000 return NULL;
1001
1002 p = rb_entry(curr, struct task_struct, se.run_node);
1003 cfs_rq->rb_load_balance_curr = rb_next(curr);
1004
1005 return p;
1006}
1007
1008static struct task_struct *load_balance_start_fair(void *arg)
1009{
1010 struct cfs_rq *cfs_rq = arg;
1011
1012 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1013}
1014
1015static struct task_struct *load_balance_next_fair(void *arg)
1016{
1017 struct cfs_rq *cfs_rq = arg;
1018
1019 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1020}
1021
a4ac01c3 1022#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
1023static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1024{
1025 struct sched_entity *curr;
1026 struct task_struct *p;
1027
1028 if (!cfs_rq->nr_running)
1029 return MAX_PRIO;
1030
1031 curr = __pick_next_entity(cfs_rq);
1032 p = task_of(curr);
1033
1034 return p->prio;
1035}
a4ac01c3 1036#endif
bf0f6f24 1037
43010659 1038static unsigned long
bf0f6f24 1039load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
1040 unsigned long max_nr_move, unsigned long max_load_move,
1041 struct sched_domain *sd, enum cpu_idle_type idle,
1042 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
1043{
1044 struct cfs_rq *busy_cfs_rq;
1045 unsigned long load_moved, total_nr_moved = 0, nr_moved;
1046 long rem_load_move = max_load_move;
1047 struct rq_iterator cfs_rq_iterator;
1048
1049 cfs_rq_iterator.start = load_balance_start_fair;
1050 cfs_rq_iterator.next = load_balance_next_fair;
1051
1052 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 1053#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 1054 struct cfs_rq *this_cfs_rq;
e56f31aa 1055 long imbalance;
bf0f6f24 1056 unsigned long maxload;
bf0f6f24
IM
1057
1058 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1059
e56f31aa 1060 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
1061 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1062 if (imbalance <= 0)
1063 continue;
1064
1065 /* Don't pull more than imbalance/2 */
1066 imbalance /= 2;
1067 maxload = min(rem_load_move, imbalance);
1068
a4ac01c3
PW
1069 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1070#else
e56f31aa 1071# define maxload rem_load_move
a4ac01c3 1072#endif
bf0f6f24
IM
1073 /* pass busy_cfs_rq argument into
1074 * load_balance_[start|next]_fair iterators
1075 */
1076 cfs_rq_iterator.arg = busy_cfs_rq;
1077 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
1078 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 1079 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
1080
1081 total_nr_moved += nr_moved;
1082 max_nr_move -= nr_moved;
1083 rem_load_move -= load_moved;
1084
1085 if (max_nr_move <= 0 || rem_load_move <= 0)
1086 break;
1087 }
1088
43010659 1089 return max_load_move - rem_load_move;
bf0f6f24
IM
1090}
1091
1092/*
1093 * scheduler tick hitting a task of our scheduling class:
1094 */
1095static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1096{
1097 struct cfs_rq *cfs_rq;
1098 struct sched_entity *se = &curr->se;
1099
1100 for_each_sched_entity(se) {
1101 cfs_rq = cfs_rq_of(se);
1102 entity_tick(cfs_rq, se);
1103 }
1104}
1105
1106/*
1107 * Share the fairness runtime between parent and child, thus the
1108 * total amount of pressure for CPU stays equal - new tasks
1109 * get a chance to run but frequent forkers are not allowed to
1110 * monopolize the CPU. Note: the parent runqueue is locked,
1111 * the child is not running yet.
1112 */
ee0827d8 1113static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1114{
1115 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1116 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
bf0f6f24
IM
1117
1118 sched_info_queued(p);
1119
7109c442 1120 update_curr(cfs_rq);
d2417e5a 1121 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
1122 /*
1123 * Child runs first: we let it run before the parent
1124 * until it reschedules once. We set up the key so that
1125 * it will preempt the parent:
1126 */
9f508f82 1127 se->fair_key = curr->fair_key -
7109c442 1128 niced_granularity(curr, sched_granularity(cfs_rq)) - 1;
bf0f6f24
IM
1129 /*
1130 * The first wait is dominated by the child-runs-first logic,
1131 * so do not credit it with that waiting time yet:
1132 */
e59c80c5 1133 if (sched_feat(SKIP_INITIAL))
9f508f82 1134 se->wait_start_fair = 0;
bf0f6f24
IM
1135
1136 /*
1137 * The statistical average of wait_runtime is about
1138 * -granularity/2, so initialize the task with that:
1139 */
e59c80c5 1140 if (sched_feat(START_DEBIT))
9f508f82 1141 se->wait_runtime = -(sched_granularity(cfs_rq) / 2);
bf0f6f24 1142
e9acbff6
IM
1143 se->vruntime = cfs_rq->min_vruntime;
1144 update_stats_enqueue(cfs_rq, se);
bf0f6f24 1145 __enqueue_entity(cfs_rq, se);
bb61c210 1146 resched_task(rq->curr);
bf0f6f24
IM
1147}
1148
1149#ifdef CONFIG_FAIR_GROUP_SCHED
1150/* Account for a task changing its policy or group.
1151 *
1152 * This routine is mostly called to set cfs_rq->curr field when a task
1153 * migrates between groups/classes.
1154 */
1155static void set_curr_task_fair(struct rq *rq)
1156{
7c6c16f3 1157 struct sched_entity *se = &rq->curr->se;
a8e504d2 1158
c3b64f1e
IM
1159 for_each_sched_entity(se)
1160 set_next_entity(cfs_rq_of(se), se);
bf0f6f24
IM
1161}
1162#else
1163static void set_curr_task_fair(struct rq *rq)
1164{
1165}
1166#endif
1167
1168/*
1169 * All the scheduling class methods:
1170 */
1171struct sched_class fair_sched_class __read_mostly = {
1172 .enqueue_task = enqueue_task_fair,
1173 .dequeue_task = dequeue_task_fair,
1174 .yield_task = yield_task_fair,
1175
1176 .check_preempt_curr = check_preempt_curr_fair,
1177
1178 .pick_next_task = pick_next_task_fair,
1179 .put_prev_task = put_prev_task_fair,
1180
1181 .load_balance = load_balance_fair,
1182
1183 .set_curr_task = set_curr_task_fair,
1184 .task_tick = task_tick_fair,
1185 .task_new = task_new_fair,
1186};
1187
1188#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1189static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1190{
bf0f6f24
IM
1191 struct cfs_rq *cfs_rq;
1192
c3b64f1e 1193 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1194 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1195}
1196#endif