]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched_fair.c
sched: Make select_fallback_rq() cpuset friendly
[mirror_ubuntu-bionic-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
9745512c 25
bf0f6f24 26/*
21805085 27 * Targeted preemption latency for CPU-bound tasks:
172e082a 28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 37 */
21406928
MG
38unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
2bd8e6d4 53/*
b2be5e96 54 * Minimal preemption granularity for CPU-bound tasks:
21406928 55 * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 56 */
21406928
MG
57unsigned int sysctl_sched_min_granularity = 2000000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL;
21805085
PZ
59
60/*
b2be5e96
PZ
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
21406928 63static unsigned int sched_nr_latency = 3;
b2be5e96
PZ
64
65/*
2bba22c5 66 * After fork, child runs first. If set to 0 (default) then
b2be5e96 67 * parent will (try to) run first.
21805085 68 */
2bba22c5 69unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 70
1799e35d
IM
71/*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a4c2f00f
PZ
92static const struct sched_class fair_sched_class;
93
bf0f6f24
IM
94/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
62160e3f 98#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 99
62160e3f 100/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
62160e3f 103 return cfs_rq->rq;
bf0f6f24
IM
104}
105
62160e3f
IM
106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
bf0f6f24 108
8f48894f
PZ
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
b758149c
PZ
117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
146/* Iterate thr' all leaf cfs_rq's on a runqueue */
147#define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150/* Do the two (enqueued) entities belong to the same group ? */
151static inline int
152is_same_group(struct sched_entity *se, struct sched_entity *pse)
153{
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158}
159
160static inline struct sched_entity *parent_entity(struct sched_entity *se)
161{
162 return se->parent;
163}
164
464b7527
PZ
165/* return depth at which a sched entity is present in the hierarchy */
166static inline int depth_se(struct sched_entity *se)
167{
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174}
175
176static void
177find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178{
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206}
207
8f48894f
PZ
208#else /* !CONFIG_FAIR_GROUP_SCHED */
209
210static inline struct task_struct *task_of(struct sched_entity *se)
211{
212 return container_of(se, struct task_struct, se);
213}
bf0f6f24 214
62160e3f
IM
215static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216{
217 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
218}
219
220#define entity_is_task(se) 1
221
b758149c
PZ
222#define for_each_sched_entity(se) \
223 for (; se; se = NULL)
bf0f6f24 224
b758149c 225static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 226{
b758149c 227 return &task_rq(p)->cfs;
bf0f6f24
IM
228}
229
b758149c
PZ
230static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231{
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236}
237
238/* runqueue "owned" by this group */
239static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240{
241 return NULL;
242}
243
244static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245{
246 return &cpu_rq(this_cpu)->cfs;
247}
248
249#define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252static inline int
253is_same_group(struct sched_entity *se, struct sched_entity *pse)
254{
255 return 1;
256}
257
258static inline struct sched_entity *parent_entity(struct sched_entity *se)
259{
260 return NULL;
261}
262
464b7527
PZ
263static inline void
264find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265{
266}
267
b758149c
PZ
268#endif /* CONFIG_FAIR_GROUP_SCHED */
269
bf0f6f24
IM
270
271/**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
0702e3eb 275static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 276{
368059a9
PZ
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
02e0431a
PZ
279 min_vruntime = vruntime;
280
281 return min_vruntime;
282}
283
0702e3eb 284static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
285{
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291}
292
54fdc581
FC
293static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295{
296 return (s64)(a->vruntime - b->vruntime) < 0;
297}
298
0702e3eb 299static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 300{
30cfdcfc 301 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
302}
303
1af5f730
PZ
304static void update_min_vruntime(struct cfs_rq *cfs_rq)
305{
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
e17036da 316 if (!cfs_rq->curr)
1af5f730
PZ
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323}
324
bf0f6f24
IM
325/*
326 * Enqueue an entity into the rb-tree:
327 */
0702e3eb 328static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
329{
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
9014623c 333 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
9014623c 346 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
1af5f730 358 if (leftmost)
57cb499d 359 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
363}
364
0702e3eb 365static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 366{
3fe69747
PZ
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
3fe69747
PZ
369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
3fe69747 372 }
e9acbff6 373
bf0f6f24 374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
375}
376
bf0f6f24
IM
377static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378{
f4b6755f
PZ
379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
385}
386
f4b6755f 387static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 388{
7eee3e67 389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 390
70eee74b
BS
391 if (!last)
392 return NULL;
7eee3e67
IM
393
394 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
395}
396
bf0f6f24
IM
397/**************************************************************
398 * Scheduling class statistics methods:
399 */
400
b2be5e96 401#ifdef CONFIG_SCHED_DEBUG
acb4a848 402int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 403 void __user *buffer, size_t *lenp,
b2be5e96
PZ
404 loff_t *ppos)
405{
8d65af78 406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 407 int factor = get_update_sysctl_factor();
b2be5e96
PZ
408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
acb4a848
CE
415#define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421#undef WRT_SYSCTL
422
b2be5e96
PZ
423 return 0;
424}
425#endif
647e7cac 426
a7be37ac 427/*
f9c0b095 428 * delta /= w
a7be37ac
PZ
429 */
430static inline unsigned long
431calc_delta_fair(unsigned long delta, struct sched_entity *se)
432{
f9c0b095
PZ
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
435
436 return delta;
437}
438
647e7cac
IM
439/*
440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
4d78e7b6
PZ
447static u64 __sched_period(unsigned long nr_running)
448{
449 u64 period = sysctl_sched_latency;
b2be5e96 450 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
451
452 if (unlikely(nr_running > nr_latency)) {
4bf0b771 453 period = sysctl_sched_min_granularity;
4d78e7b6 454 period *= nr_running;
4d78e7b6
PZ
455 }
456
457 return period;
458}
459
647e7cac
IM
460/*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
f9c0b095 464 * s = p*P[w/rw]
647e7cac 465 */
6d0f0ebd 466static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 467{
0a582440 468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 469
0a582440 470 for_each_sched_entity(se) {
6272d68c 471 struct load_weight *load;
3104bf03 472 struct load_weight lw;
6272d68c
LM
473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
f9c0b095 476
0a582440 477 if (unlikely(!se->on_rq)) {
3104bf03 478 lw = cfs_rq->load;
0a582440
MG
479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
bf0f6f24
IM
486}
487
647e7cac 488/*
ac884dec 489 * We calculate the vruntime slice of a to be inserted task
647e7cac 490 *
f9c0b095 491 * vs = s/w
647e7cac 492 */
f9c0b095 493static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 494{
f9c0b095 495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
496}
497
bf0f6f24
IM
498/*
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502static inline void
8ebc91d9
IM
503__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
bf0f6f24 505{
bbdba7c0 506 unsigned long delta_exec_weighted;
bf0f6f24 507
41acab88
LDM
508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
510
511 curr->sum_exec_runtime += delta_exec;
7a62eabc 512 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 513 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 514
e9acbff6 515 curr->vruntime += delta_exec_weighted;
1af5f730 516 update_min_vruntime(cfs_rq);
bf0f6f24
IM
517}
518
b7cc0896 519static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 520{
429d43bc 521 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 522 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
523 unsigned long delta_exec;
524
525 if (unlikely(!curr))
526 return;
527
528 /*
529 * Get the amount of time the current task was running
530 * since the last time we changed load (this cannot
531 * overflow on 32 bits):
532 */
8ebc91d9 533 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
534 if (!delta_exec)
535 return;
bf0f6f24 536
8ebc91d9
IM
537 __update_curr(cfs_rq, curr, delta_exec);
538 curr->exec_start = now;
d842de87
SV
539
540 if (entity_is_task(curr)) {
541 struct task_struct *curtask = task_of(curr);
542
f977bb49 543 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 544 cpuacct_charge(curtask, delta_exec);
f06febc9 545 account_group_exec_runtime(curtask, delta_exec);
d842de87 546 }
bf0f6f24
IM
547}
548
549static inline void
5870db5b 550update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 551{
41acab88 552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
553}
554
bf0f6f24
IM
555/*
556 * Task is being enqueued - update stats:
557 */
d2417e5a 558static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 559{
bf0f6f24
IM
560 /*
561 * Are we enqueueing a waiting task? (for current tasks
562 * a dequeue/enqueue event is a NOP)
563 */
429d43bc 564 if (se != cfs_rq->curr)
5870db5b 565 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
566}
567
bf0f6f24 568static void
9ef0a961 569update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 570{
41acab88
LDM
571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
576#ifdef CONFIG_SCHEDSTATS
577 if (entity_is_task(se)) {
578 trace_sched_stat_wait(task_of(se),
41acab88 579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
580 }
581#endif
41acab88 582 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
583}
584
585static inline void
19b6a2e3 586update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 587{
bf0f6f24
IM
588 /*
589 * Mark the end of the wait period if dequeueing a
590 * waiting task:
591 */
429d43bc 592 if (se != cfs_rq->curr)
9ef0a961 593 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
594}
595
596/*
597 * We are picking a new current task - update its stats:
598 */
599static inline void
79303e9e 600update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
601{
602 /*
603 * We are starting a new run period:
604 */
d281918d 605 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
606}
607
bf0f6f24
IM
608/**************************************************
609 * Scheduling class queueing methods:
610 */
611
c09595f6
PZ
612#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613static void
614add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615{
616 cfs_rq->task_weight += weight;
617}
618#else
619static inline void
620add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
621{
622}
623#endif
624
30cfdcfc
DA
625static void
626account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627{
628 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
629 if (!parent_entity(se))
630 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 631 if (entity_is_task(se)) {
c09595f6 632 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
633 list_add(&se->group_node, &cfs_rq->tasks);
634 }
30cfdcfc
DA
635 cfs_rq->nr_running++;
636 se->on_rq = 1;
637}
638
639static void
640account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641{
642 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
643 if (!parent_entity(se))
644 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 645 if (entity_is_task(se)) {
c09595f6 646 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
647 list_del_init(&se->group_node);
648 }
30cfdcfc
DA
649 cfs_rq->nr_running--;
650 se->on_rq = 0;
651}
652
2396af69 653static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 654{
bf0f6f24 655#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
656 struct task_struct *tsk = NULL;
657
658 if (entity_is_task(se))
659 tsk = task_of(se);
660
41acab88
LDM
661 if (se->statistics.sleep_start) {
662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
663
664 if ((s64)delta < 0)
665 delta = 0;
666
41acab88
LDM
667 if (unlikely(delta > se->statistics.sleep_max))
668 se->statistics.sleep_max = delta;
bf0f6f24 669
41acab88
LDM
670 se->statistics.sleep_start = 0;
671 se->statistics.sum_sleep_runtime += delta;
9745512c 672
768d0c27 673 if (tsk) {
e414314c 674 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
675 trace_sched_stat_sleep(tsk, delta);
676 }
bf0f6f24 677 }
41acab88
LDM
678 if (se->statistics.block_start) {
679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
680
681 if ((s64)delta < 0)
682 delta = 0;
683
41acab88
LDM
684 if (unlikely(delta > se->statistics.block_max))
685 se->statistics.block_max = delta;
bf0f6f24 686
41acab88
LDM
687 se->statistics.block_start = 0;
688 se->statistics.sum_sleep_runtime += delta;
30084fbd 689
e414314c 690 if (tsk) {
8f0dfc34 691 if (tsk->in_iowait) {
41acab88
LDM
692 se->statistics.iowait_sum += delta;
693 se->statistics.iowait_count++;
768d0c27 694 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
695 }
696
e414314c
PZ
697 /*
698 * Blocking time is in units of nanosecs, so shift by
699 * 20 to get a milliseconds-range estimation of the
700 * amount of time that the task spent sleeping:
701 */
702 if (unlikely(prof_on == SLEEP_PROFILING)) {
703 profile_hits(SLEEP_PROFILING,
704 (void *)get_wchan(tsk),
705 delta >> 20);
706 }
707 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 708 }
bf0f6f24
IM
709 }
710#endif
711}
712
ddc97297
PZ
713static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714{
715#ifdef CONFIG_SCHED_DEBUG
716 s64 d = se->vruntime - cfs_rq->min_vruntime;
717
718 if (d < 0)
719 d = -d;
720
721 if (d > 3*sysctl_sched_latency)
722 schedstat_inc(cfs_rq, nr_spread_over);
723#endif
724}
725
aeb73b04
PZ
726static void
727place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728{
1af5f730 729 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 730
2cb8600e
PZ
731 /*
732 * The 'current' period is already promised to the current tasks,
733 * however the extra weight of the new task will slow them down a
734 * little, place the new task so that it fits in the slot that
735 * stays open at the end.
736 */
94dfb5e7 737 if (initial && sched_feat(START_DEBIT))
f9c0b095 738 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 739
a2e7a7eb 740 /* sleeps up to a single latency don't count. */
5ca9880c 741 if (!initial) {
a2e7a7eb 742 unsigned long thresh = sysctl_sched_latency;
a7be37ac 743
a2e7a7eb
MG
744 /*
745 * Halve their sleep time's effect, to allow
746 * for a gentler effect of sleepers:
747 */
748 if (sched_feat(GENTLE_FAIR_SLEEPERS))
749 thresh >>= 1;
51e0304c 750
a2e7a7eb 751 vruntime -= thresh;
aeb73b04
PZ
752 }
753
b5d9d734
MG
754 /* ensure we never gain time by being placed backwards. */
755 vruntime = max_vruntime(se->vruntime, vruntime);
756
67e9fb2a 757 se->vruntime = vruntime;
aeb73b04
PZ
758}
759
88ec22d3
PZ
760#define ENQUEUE_WAKEUP 1
761#define ENQUEUE_MIGRATE 2
762
bf0f6f24 763static void
88ec22d3 764enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 765{
88ec22d3
PZ
766 /*
767 * Update the normalized vruntime before updating min_vruntime
768 * through callig update_curr().
769 */
770 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
771 se->vruntime += cfs_rq->min_vruntime;
772
bf0f6f24 773 /*
a2a2d680 774 * Update run-time statistics of the 'current'.
bf0f6f24 775 */
b7cc0896 776 update_curr(cfs_rq);
a992241d 777 account_entity_enqueue(cfs_rq, se);
bf0f6f24 778
88ec22d3 779 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 780 place_entity(cfs_rq, se, 0);
2396af69 781 enqueue_sleeper(cfs_rq, se);
e9acbff6 782 }
bf0f6f24 783
d2417e5a 784 update_stats_enqueue(cfs_rq, se);
ddc97297 785 check_spread(cfs_rq, se);
83b699ed
SV
786 if (se != cfs_rq->curr)
787 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
788}
789
a571bbea 790static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695 791{
de69a80b 792 if (!se || cfs_rq->last == se)
2002c695
PZ
793 cfs_rq->last = NULL;
794
de69a80b 795 if (!se || cfs_rq->next == se)
2002c695
PZ
796 cfs_rq->next = NULL;
797}
798
a571bbea
PZ
799static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
800{
801 for_each_sched_entity(se)
802 __clear_buddies(cfs_rq_of(se), se);
803}
804
bf0f6f24 805static void
525c2716 806dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 807{
a2a2d680
DA
808 /*
809 * Update run-time statistics of the 'current'.
810 */
811 update_curr(cfs_rq);
812
19b6a2e3 813 update_stats_dequeue(cfs_rq, se);
db36cc7d 814 if (sleep) {
67e9fb2a 815#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
816 if (entity_is_task(se)) {
817 struct task_struct *tsk = task_of(se);
818
819 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 820 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 821 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 822 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 823 }
db36cc7d 824#endif
67e9fb2a
PZ
825 }
826
2002c695 827 clear_buddies(cfs_rq, se);
4793241b 828
83b699ed 829 if (se != cfs_rq->curr)
30cfdcfc
DA
830 __dequeue_entity(cfs_rq, se);
831 account_entity_dequeue(cfs_rq, se);
1af5f730 832 update_min_vruntime(cfs_rq);
88ec22d3
PZ
833
834 /*
835 * Normalize the entity after updating the min_vruntime because the
836 * update can refer to the ->curr item and we need to reflect this
837 * movement in our normalized position.
838 */
839 if (!sleep)
840 se->vruntime -= cfs_rq->min_vruntime;
bf0f6f24
IM
841}
842
843/*
844 * Preempt the current task with a newly woken task if needed:
845 */
7c92e54f 846static void
2e09bf55 847check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 848{
11697830
PZ
849 unsigned long ideal_runtime, delta_exec;
850
6d0f0ebd 851 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 852 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 853 if (delta_exec > ideal_runtime) {
bf0f6f24 854 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
855 /*
856 * The current task ran long enough, ensure it doesn't get
857 * re-elected due to buddy favours.
858 */
859 clear_buddies(cfs_rq, curr);
f685ceac
MG
860 return;
861 }
862
863 /*
864 * Ensure that a task that missed wakeup preemption by a
865 * narrow margin doesn't have to wait for a full slice.
866 * This also mitigates buddy induced latencies under load.
867 */
868 if (!sched_feat(WAKEUP_PREEMPT))
869 return;
870
871 if (delta_exec < sysctl_sched_min_granularity)
872 return;
873
874 if (cfs_rq->nr_running > 1) {
875 struct sched_entity *se = __pick_next_entity(cfs_rq);
876 s64 delta = curr->vruntime - se->vruntime;
877
878 if (delta > ideal_runtime)
879 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 880 }
bf0f6f24
IM
881}
882
83b699ed 883static void
8494f412 884set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 885{
83b699ed
SV
886 /* 'current' is not kept within the tree. */
887 if (se->on_rq) {
888 /*
889 * Any task has to be enqueued before it get to execute on
890 * a CPU. So account for the time it spent waiting on the
891 * runqueue.
892 */
893 update_stats_wait_end(cfs_rq, se);
894 __dequeue_entity(cfs_rq, se);
895 }
896
79303e9e 897 update_stats_curr_start(cfs_rq, se);
429d43bc 898 cfs_rq->curr = se;
eba1ed4b
IM
899#ifdef CONFIG_SCHEDSTATS
900 /*
901 * Track our maximum slice length, if the CPU's load is at
902 * least twice that of our own weight (i.e. dont track it
903 * when there are only lesser-weight tasks around):
904 */
495eca49 905 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 906 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
907 se->sum_exec_runtime - se->prev_sum_exec_runtime);
908 }
909#endif
4a55b450 910 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
911}
912
3f3a4904
PZ
913static int
914wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
915
f4b6755f 916static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 917{
f4b6755f 918 struct sched_entity *se = __pick_next_entity(cfs_rq);
f685ceac 919 struct sched_entity *left = se;
f4b6755f 920
f685ceac
MG
921 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
922 se = cfs_rq->next;
aa2ac252 923
f685ceac
MG
924 /*
925 * Prefer last buddy, try to return the CPU to a preempted task.
926 */
927 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
928 se = cfs_rq->last;
929
930 clear_buddies(cfs_rq, se);
4793241b
PZ
931
932 return se;
aa2ac252
PZ
933}
934
ab6cde26 935static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
936{
937 /*
938 * If still on the runqueue then deactivate_task()
939 * was not called and update_curr() has to be done:
940 */
941 if (prev->on_rq)
b7cc0896 942 update_curr(cfs_rq);
bf0f6f24 943
ddc97297 944 check_spread(cfs_rq, prev);
30cfdcfc 945 if (prev->on_rq) {
5870db5b 946 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
947 /* Put 'current' back into the tree. */
948 __enqueue_entity(cfs_rq, prev);
949 }
429d43bc 950 cfs_rq->curr = NULL;
bf0f6f24
IM
951}
952
8f4d37ec
PZ
953static void
954entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 955{
bf0f6f24 956 /*
30cfdcfc 957 * Update run-time statistics of the 'current'.
bf0f6f24 958 */
30cfdcfc 959 update_curr(cfs_rq);
bf0f6f24 960
8f4d37ec
PZ
961#ifdef CONFIG_SCHED_HRTICK
962 /*
963 * queued ticks are scheduled to match the slice, so don't bother
964 * validating it and just reschedule.
965 */
983ed7a6
HH
966 if (queued) {
967 resched_task(rq_of(cfs_rq)->curr);
968 return;
969 }
8f4d37ec
PZ
970 /*
971 * don't let the period tick interfere with the hrtick preemption
972 */
973 if (!sched_feat(DOUBLE_TICK) &&
974 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
975 return;
976#endif
977
ce6c1311 978 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 979 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
980}
981
982/**************************************************
983 * CFS operations on tasks:
984 */
985
8f4d37ec
PZ
986#ifdef CONFIG_SCHED_HRTICK
987static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
988{
8f4d37ec
PZ
989 struct sched_entity *se = &p->se;
990 struct cfs_rq *cfs_rq = cfs_rq_of(se);
991
992 WARN_ON(task_rq(p) != rq);
993
994 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
995 u64 slice = sched_slice(cfs_rq, se);
996 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
997 s64 delta = slice - ran;
998
999 if (delta < 0) {
1000 if (rq->curr == p)
1001 resched_task(p);
1002 return;
1003 }
1004
1005 /*
1006 * Don't schedule slices shorter than 10000ns, that just
1007 * doesn't make sense. Rely on vruntime for fairness.
1008 */
31656519 1009 if (rq->curr != p)
157124c1 1010 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1011
31656519 1012 hrtick_start(rq, delta);
8f4d37ec
PZ
1013 }
1014}
a4c2f00f
PZ
1015
1016/*
1017 * called from enqueue/dequeue and updates the hrtick when the
1018 * current task is from our class and nr_running is low enough
1019 * to matter.
1020 */
1021static void hrtick_update(struct rq *rq)
1022{
1023 struct task_struct *curr = rq->curr;
1024
1025 if (curr->sched_class != &fair_sched_class)
1026 return;
1027
1028 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1029 hrtick_start_fair(rq, curr);
1030}
55e12e5e 1031#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1032static inline void
1033hrtick_start_fair(struct rq *rq, struct task_struct *p)
1034{
1035}
a4c2f00f
PZ
1036
1037static inline void hrtick_update(struct rq *rq)
1038{
1039}
8f4d37ec
PZ
1040#endif
1041
bf0f6f24
IM
1042/*
1043 * The enqueue_task method is called before nr_running is
1044 * increased. Here we update the fair scheduling stats and
1045 * then put the task into the rbtree:
1046 */
ea87bb78
TG
1047static void
1048enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
bf0f6f24
IM
1049{
1050 struct cfs_rq *cfs_rq;
62fb1851 1051 struct sched_entity *se = &p->se;
88ec22d3
PZ
1052 int flags = 0;
1053
1054 if (wakeup)
1055 flags |= ENQUEUE_WAKEUP;
1056 if (p->state == TASK_WAKING)
1057 flags |= ENQUEUE_MIGRATE;
bf0f6f24
IM
1058
1059 for_each_sched_entity(se) {
62fb1851 1060 if (se->on_rq)
bf0f6f24
IM
1061 break;
1062 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1063 enqueue_entity(cfs_rq, se, flags);
1064 flags = ENQUEUE_WAKEUP;
bf0f6f24 1065 }
8f4d37ec 1066
a4c2f00f 1067 hrtick_update(rq);
bf0f6f24
IM
1068}
1069
1070/*
1071 * The dequeue_task method is called before nr_running is
1072 * decreased. We remove the task from the rbtree and
1073 * update the fair scheduling stats:
1074 */
f02231e5 1075static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
1076{
1077 struct cfs_rq *cfs_rq;
62fb1851 1078 struct sched_entity *se = &p->se;
bf0f6f24
IM
1079
1080 for_each_sched_entity(se) {
1081 cfs_rq = cfs_rq_of(se);
525c2716 1082 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 1083 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1084 if (cfs_rq->load.weight)
bf0f6f24 1085 break;
b9fa3df3 1086 sleep = 1;
bf0f6f24 1087 }
8f4d37ec 1088
a4c2f00f 1089 hrtick_update(rq);
bf0f6f24
IM
1090}
1091
1092/*
1799e35d
IM
1093 * sched_yield() support is very simple - we dequeue and enqueue.
1094 *
1095 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1096 */
4530d7ab 1097static void yield_task_fair(struct rq *rq)
bf0f6f24 1098{
db292ca3
IM
1099 struct task_struct *curr = rq->curr;
1100 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1101 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1102
1103 /*
1799e35d
IM
1104 * Are we the only task in the tree?
1105 */
1106 if (unlikely(cfs_rq->nr_running == 1))
1107 return;
1108
2002c695
PZ
1109 clear_buddies(cfs_rq, se);
1110
db292ca3 1111 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1112 update_rq_clock(rq);
1799e35d 1113 /*
a2a2d680 1114 * Update run-time statistics of the 'current'.
1799e35d 1115 */
2b1e315d 1116 update_curr(cfs_rq);
1799e35d
IM
1117
1118 return;
1119 }
1120 /*
1121 * Find the rightmost entry in the rbtree:
bf0f6f24 1122 */
2b1e315d 1123 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1124 /*
1125 * Already in the rightmost position?
1126 */
54fdc581 1127 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1128 return;
1129
1130 /*
1131 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1132 * Upon rescheduling, sched_class::put_prev_task() will place
1133 * 'current' within the tree based on its new key value.
1799e35d 1134 */
30cfdcfc 1135 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1136}
1137
e7693a36 1138#ifdef CONFIG_SMP
098fb9db 1139
88ec22d3
PZ
1140static void task_waking_fair(struct rq *rq, struct task_struct *p)
1141{
1142 struct sched_entity *se = &p->se;
1143 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1144
1145 se->vruntime -= cfs_rq->min_vruntime;
1146}
1147
bb3469ac 1148#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1149/*
1150 * effective_load() calculates the load change as seen from the root_task_group
1151 *
1152 * Adding load to a group doesn't make a group heavier, but can cause movement
1153 * of group shares between cpus. Assuming the shares were perfectly aligned one
1154 * can calculate the shift in shares.
1155 *
1156 * The problem is that perfectly aligning the shares is rather expensive, hence
1157 * we try to avoid doing that too often - see update_shares(), which ratelimits
1158 * this change.
1159 *
1160 * We compensate this by not only taking the current delta into account, but
1161 * also considering the delta between when the shares were last adjusted and
1162 * now.
1163 *
1164 * We still saw a performance dip, some tracing learned us that between
1165 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1166 * significantly. Therefore try to bias the error in direction of failing
1167 * the affine wakeup.
1168 *
1169 */
f1d239f7
PZ
1170static long effective_load(struct task_group *tg, int cpu,
1171 long wl, long wg)
bb3469ac 1172{
4be9daaa 1173 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1174
1175 if (!tg->parent)
1176 return wl;
1177
f5bfb7d9
PZ
1178 /*
1179 * By not taking the decrease of shares on the other cpu into
1180 * account our error leans towards reducing the affine wakeups.
1181 */
1182 if (!wl && sched_feat(ASYM_EFF_LOAD))
1183 return wl;
1184
4be9daaa 1185 for_each_sched_entity(se) {
cb5ef42a 1186 long S, rw, s, a, b;
940959e9
PZ
1187 long more_w;
1188
1189 /*
1190 * Instead of using this increment, also add the difference
1191 * between when the shares were last updated and now.
1192 */
1193 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1194 wl += more_w;
1195 wg += more_w;
4be9daaa
PZ
1196
1197 S = se->my_q->tg->shares;
1198 s = se->my_q->shares;
f1d239f7 1199 rw = se->my_q->rq_weight;
bb3469ac 1200
cb5ef42a
PZ
1201 a = S*(rw + wl);
1202 b = S*rw + s*wg;
4be9daaa 1203
940959e9
PZ
1204 wl = s*(a-b);
1205
1206 if (likely(b))
1207 wl /= b;
1208
83378269
PZ
1209 /*
1210 * Assume the group is already running and will
1211 * thus already be accounted for in the weight.
1212 *
1213 * That is, moving shares between CPUs, does not
1214 * alter the group weight.
1215 */
4be9daaa 1216 wg = 0;
4be9daaa 1217 }
bb3469ac 1218
4be9daaa 1219 return wl;
bb3469ac 1220}
4be9daaa 1221
bb3469ac 1222#else
4be9daaa 1223
83378269
PZ
1224static inline unsigned long effective_load(struct task_group *tg, int cpu,
1225 unsigned long wl, unsigned long wg)
4be9daaa 1226{
83378269 1227 return wl;
bb3469ac 1228}
4be9daaa 1229
bb3469ac
PZ
1230#endif
1231
c88d5910 1232static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1233{
c88d5910
PZ
1234 unsigned long this_load, load;
1235 int idx, this_cpu, prev_cpu;
098fb9db 1236 unsigned long tl_per_task;
c88d5910
PZ
1237 unsigned int imbalance;
1238 struct task_group *tg;
83378269 1239 unsigned long weight;
b3137bc8 1240 int balanced;
098fb9db 1241
c88d5910
PZ
1242 idx = sd->wake_idx;
1243 this_cpu = smp_processor_id();
1244 prev_cpu = task_cpu(p);
1245 load = source_load(prev_cpu, idx);
1246 this_load = target_load(this_cpu, idx);
098fb9db 1247
b3137bc8
MG
1248 /*
1249 * If sync wakeup then subtract the (maximum possible)
1250 * effect of the currently running task from the load
1251 * of the current CPU:
1252 */
83378269
PZ
1253 if (sync) {
1254 tg = task_group(current);
1255 weight = current->se.load.weight;
1256
c88d5910 1257 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1258 load += effective_load(tg, prev_cpu, 0, -weight);
1259 }
b3137bc8 1260
83378269
PZ
1261 tg = task_group(p);
1262 weight = p->se.load.weight;
b3137bc8 1263
c88d5910
PZ
1264 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1265
71a29aa7
PZ
1266 /*
1267 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1268 * due to the sync cause above having dropped this_load to 0, we'll
1269 * always have an imbalance, but there's really nothing you can do
1270 * about that, so that's good too.
71a29aa7
PZ
1271 *
1272 * Otherwise check if either cpus are near enough in load to allow this
1273 * task to be woken on this_cpu.
1274 */
c88d5910
PZ
1275 balanced = !this_load ||
1276 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
83378269 1277 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1278
098fb9db 1279 /*
4ae7d5ce
IM
1280 * If the currently running task will sleep within
1281 * a reasonable amount of time then attract this newly
1282 * woken task:
098fb9db 1283 */
2fb7635c
PZ
1284 if (sync && balanced)
1285 return 1;
098fb9db 1286
41acab88 1287 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1288 tl_per_task = cpu_avg_load_per_task(this_cpu);
1289
c88d5910
PZ
1290 if (balanced ||
1291 (this_load <= load &&
1292 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1293 /*
1294 * This domain has SD_WAKE_AFFINE and
1295 * p is cache cold in this domain, and
1296 * there is no bad imbalance.
1297 */
c88d5910 1298 schedstat_inc(sd, ttwu_move_affine);
41acab88 1299 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1300
1301 return 1;
1302 }
1303 return 0;
1304}
1305
aaee1203
PZ
1306/*
1307 * find_idlest_group finds and returns the least busy CPU group within the
1308 * domain.
1309 */
1310static struct sched_group *
78e7ed53 1311find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1312 int this_cpu, int load_idx)
e7693a36 1313{
aaee1203
PZ
1314 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1315 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1316 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1317
aaee1203
PZ
1318 do {
1319 unsigned long load, avg_load;
1320 int local_group;
1321 int i;
e7693a36 1322
aaee1203
PZ
1323 /* Skip over this group if it has no CPUs allowed */
1324 if (!cpumask_intersects(sched_group_cpus(group),
1325 &p->cpus_allowed))
1326 continue;
1327
1328 local_group = cpumask_test_cpu(this_cpu,
1329 sched_group_cpus(group));
1330
1331 /* Tally up the load of all CPUs in the group */
1332 avg_load = 0;
1333
1334 for_each_cpu(i, sched_group_cpus(group)) {
1335 /* Bias balancing toward cpus of our domain */
1336 if (local_group)
1337 load = source_load(i, load_idx);
1338 else
1339 load = target_load(i, load_idx);
1340
1341 avg_load += load;
1342 }
1343
1344 /* Adjust by relative CPU power of the group */
1345 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1346
1347 if (local_group) {
1348 this_load = avg_load;
1349 this = group;
1350 } else if (avg_load < min_load) {
1351 min_load = avg_load;
1352 idlest = group;
1353 }
1354 } while (group = group->next, group != sd->groups);
1355
1356 if (!idlest || 100*this_load < imbalance*min_load)
1357 return NULL;
1358 return idlest;
1359}
1360
1361/*
1362 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1363 */
1364static int
1365find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1366{
1367 unsigned long load, min_load = ULONG_MAX;
1368 int idlest = -1;
1369 int i;
1370
1371 /* Traverse only the allowed CPUs */
1372 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1373 load = weighted_cpuload(i);
1374
1375 if (load < min_load || (load == min_load && i == this_cpu)) {
1376 min_load = load;
1377 idlest = i;
e7693a36
GH
1378 }
1379 }
1380
aaee1203
PZ
1381 return idlest;
1382}
e7693a36 1383
a50bde51
PZ
1384/*
1385 * Try and locate an idle CPU in the sched_domain.
1386 */
1387static int
1388select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1389{
1390 int cpu = smp_processor_id();
1391 int prev_cpu = task_cpu(p);
1392 int i;
1393
1394 /*
1395 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1396 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1397 * always a better target than the current cpu.
1398 */
fe3bcfe1
PZ
1399 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1400 return prev_cpu;
a50bde51
PZ
1401
1402 /*
1403 * Otherwise, iterate the domain and find an elegible idle cpu.
1404 */
fe3bcfe1
PZ
1405 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1406 if (!cpu_rq(i)->cfs.nr_running) {
1407 target = i;
1408 break;
a50bde51
PZ
1409 }
1410 }
1411
1412 return target;
1413}
1414
aaee1203
PZ
1415/*
1416 * sched_balance_self: balance the current task (running on cpu) in domains
1417 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1418 * SD_BALANCE_EXEC.
1419 *
1420 * Balance, ie. select the least loaded group.
1421 *
1422 * Returns the target CPU number, or the same CPU if no balancing is needed.
1423 *
1424 * preempt must be disabled.
1425 */
5158f4e4 1426static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1427{
29cd8bae 1428 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1429 int cpu = smp_processor_id();
1430 int prev_cpu = task_cpu(p);
1431 int new_cpu = cpu;
8b911acd 1432 int want_affine = 0, cpu_idle = !current->pid;
29cd8bae 1433 int want_sd = 1;
5158f4e4 1434 int sync = wake_flags & WF_SYNC;
c88d5910 1435
0763a660 1436 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 1437 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1438 want_affine = 1;
1439 new_cpu = prev_cpu;
1440 }
aaee1203
PZ
1441
1442 for_each_domain(cpu, tmp) {
e4f42888
PZ
1443 if (!(tmp->flags & SD_LOAD_BALANCE))
1444 continue;
1445
aaee1203 1446 /*
ae154be1
PZ
1447 * If power savings logic is enabled for a domain, see if we
1448 * are not overloaded, if so, don't balance wider.
aaee1203 1449 */
59abf026 1450 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1451 unsigned long power = 0;
1452 unsigned long nr_running = 0;
1453 unsigned long capacity;
1454 int i;
1455
1456 for_each_cpu(i, sched_domain_span(tmp)) {
1457 power += power_of(i);
1458 nr_running += cpu_rq(i)->cfs.nr_running;
1459 }
1460
1461 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1462
59abf026
PZ
1463 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1464 nr_running /= 2;
1465
1466 if (nr_running < capacity)
29cd8bae 1467 want_sd = 0;
ae154be1 1468 }
aaee1203 1469
fe3bcfe1
PZ
1470 /*
1471 * While iterating the domains looking for a spanning
1472 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1473 * in cache sharing domains along the way.
1474 */
1475 if (want_affine) {
a50bde51 1476 int target = -1;
c88d5910 1477
a50bde51
PZ
1478 /*
1479 * If both cpu and prev_cpu are part of this domain,
1480 * cpu is a valid SD_WAKE_AFFINE target.
1481 */
a1f84a3a 1482 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
a50bde51 1483 target = cpu;
a1f84a3a
MG
1484
1485 /*
a50bde51
PZ
1486 * If there's an idle sibling in this domain, make that
1487 * the wake_affine target instead of the current cpu.
a1f84a3a 1488 */
8b911acd 1489 if (!cpu_idle && tmp->flags & SD_SHARE_PKG_RESOURCES)
a50bde51 1490 target = select_idle_sibling(p, tmp, target);
a1f84a3a 1491
a50bde51 1492 if (target >= 0) {
fe3bcfe1
PZ
1493 if (tmp->flags & SD_WAKE_AFFINE) {
1494 affine_sd = tmp;
1495 want_affine = 0;
8b911acd
MG
1496 if (target != cpu)
1497 cpu_idle = 1;
fe3bcfe1 1498 }
a50bde51 1499 cpu = target;
a1f84a3a 1500 }
c88d5910
PZ
1501 }
1502
29cd8bae
PZ
1503 if (!want_sd && !want_affine)
1504 break;
1505
0763a660 1506 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1507 continue;
1508
29cd8bae
PZ
1509 if (want_sd)
1510 sd = tmp;
1511 }
1512
8b911acd 1513#ifdef CONFIG_FAIR_GROUP_SCHED
29cd8bae
PZ
1514 if (sched_feat(LB_SHARES_UPDATE)) {
1515 /*
1516 * Pick the largest domain to update shares over
1517 */
1518 tmp = sd;
1519 if (affine_sd && (!tmp ||
1520 cpumask_weight(sched_domain_span(affine_sd)) >
1521 cpumask_weight(sched_domain_span(sd))))
1522 tmp = affine_sd;
1523
1524 if (tmp)
1525 update_shares(tmp);
c88d5910 1526 }
8b911acd 1527#endif
aaee1203 1528
8b911acd
MG
1529 if (affine_sd) {
1530 if (cpu_idle || cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1531 return cpu;
1532 }
e7693a36 1533
aaee1203 1534 while (sd) {
5158f4e4 1535 int load_idx = sd->forkexec_idx;
aaee1203 1536 struct sched_group *group;
c88d5910 1537 int weight;
098fb9db 1538
0763a660 1539 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1540 sd = sd->child;
1541 continue;
1542 }
098fb9db 1543
5158f4e4
PZ
1544 if (sd_flag & SD_BALANCE_WAKE)
1545 load_idx = sd->wake_idx;
098fb9db 1546
5158f4e4 1547 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1548 if (!group) {
1549 sd = sd->child;
1550 continue;
1551 }
4ae7d5ce 1552
d7c33c49 1553 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1554 if (new_cpu == -1 || new_cpu == cpu) {
1555 /* Now try balancing at a lower domain level of cpu */
1556 sd = sd->child;
1557 continue;
e7693a36 1558 }
aaee1203
PZ
1559
1560 /* Now try balancing at a lower domain level of new_cpu */
1561 cpu = new_cpu;
1562 weight = cpumask_weight(sched_domain_span(sd));
1563 sd = NULL;
1564 for_each_domain(cpu, tmp) {
1565 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1566 break;
0763a660 1567 if (tmp->flags & sd_flag)
aaee1203
PZ
1568 sd = tmp;
1569 }
1570 /* while loop will break here if sd == NULL */
e7693a36
GH
1571 }
1572
c88d5910 1573 return new_cpu;
e7693a36
GH
1574}
1575#endif /* CONFIG_SMP */
1576
e52fb7c0
PZ
1577static unsigned long
1578wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1579{
1580 unsigned long gran = sysctl_sched_wakeup_granularity;
1581
1582 /*
e52fb7c0
PZ
1583 * Since its curr running now, convert the gran from real-time
1584 * to virtual-time in his units.
13814d42
MG
1585 *
1586 * By using 'se' instead of 'curr' we penalize light tasks, so
1587 * they get preempted easier. That is, if 'se' < 'curr' then
1588 * the resulting gran will be larger, therefore penalizing the
1589 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1590 * be smaller, again penalizing the lighter task.
1591 *
1592 * This is especially important for buddies when the leftmost
1593 * task is higher priority than the buddy.
0bbd3336 1594 */
13814d42
MG
1595 if (unlikely(se->load.weight != NICE_0_LOAD))
1596 gran = calc_delta_fair(gran, se);
0bbd3336
PZ
1597
1598 return gran;
1599}
1600
464b7527
PZ
1601/*
1602 * Should 'se' preempt 'curr'.
1603 *
1604 * |s1
1605 * |s2
1606 * |s3
1607 * g
1608 * |<--->|c
1609 *
1610 * w(c, s1) = -1
1611 * w(c, s2) = 0
1612 * w(c, s3) = 1
1613 *
1614 */
1615static int
1616wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1617{
1618 s64 gran, vdiff = curr->vruntime - se->vruntime;
1619
1620 if (vdiff <= 0)
1621 return -1;
1622
e52fb7c0 1623 gran = wakeup_gran(curr, se);
464b7527
PZ
1624 if (vdiff > gran)
1625 return 1;
1626
1627 return 0;
1628}
1629
02479099
PZ
1630static void set_last_buddy(struct sched_entity *se)
1631{
6bc912b7
PZ
1632 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1633 for_each_sched_entity(se)
1634 cfs_rq_of(se)->last = se;
1635 }
02479099
PZ
1636}
1637
1638static void set_next_buddy(struct sched_entity *se)
1639{
6bc912b7
PZ
1640 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1641 for_each_sched_entity(se)
1642 cfs_rq_of(se)->next = se;
1643 }
02479099
PZ
1644}
1645
bf0f6f24
IM
1646/*
1647 * Preempt the current task with a newly woken task if needed:
1648 */
5a9b86f6 1649static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1650{
1651 struct task_struct *curr = rq->curr;
8651a86c 1652 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1653 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 1654 int scale = cfs_rq->nr_running >= sched_nr_latency;
bf0f6f24 1655
3a7e73a2
PZ
1656 if (unlikely(rt_prio(p->prio)))
1657 goto preempt;
aa2ac252 1658
d95f98d0
PZ
1659 if (unlikely(p->sched_class != &fair_sched_class))
1660 return;
1661
4ae7d5ce
IM
1662 if (unlikely(se == pse))
1663 return;
1664
f685ceac 1665 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
3cb63d52 1666 set_next_buddy(pse);
57fdc26d 1667
aec0a514
BR
1668 /*
1669 * We can come here with TIF_NEED_RESCHED already set from new task
1670 * wake up path.
1671 */
1672 if (test_tsk_need_resched(curr))
1673 return;
1674
91c234b4 1675 /*
6bc912b7 1676 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1677 * the tick):
1678 */
6bc912b7 1679 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1680 return;
bf0f6f24 1681
6bc912b7 1682 /* Idle tasks are by definition preempted by everybody. */
3a7e73a2
PZ
1683 if (unlikely(curr->policy == SCHED_IDLE))
1684 goto preempt;
bf0f6f24 1685
ad4b78bb
PZ
1686 if (!sched_feat(WAKEUP_PREEMPT))
1687 return;
1688
3a7e73a2 1689 update_curr(cfs_rq);
464b7527 1690 find_matching_se(&se, &pse);
002f128b 1691 BUG_ON(!pse);
3a7e73a2
PZ
1692 if (wakeup_preempt_entity(se, pse) == 1)
1693 goto preempt;
464b7527 1694
3a7e73a2 1695 return;
a65ac745 1696
3a7e73a2
PZ
1697preempt:
1698 resched_task(curr);
1699 /*
1700 * Only set the backward buddy when the current task is still
1701 * on the rq. This can happen when a wakeup gets interleaved
1702 * with schedule on the ->pre_schedule() or idle_balance()
1703 * point, either of which can * drop the rq lock.
1704 *
1705 * Also, during early boot the idle thread is in the fair class,
1706 * for obvious reasons its a bad idea to schedule back to it.
1707 */
1708 if (unlikely(!se->on_rq || curr == rq->idle))
1709 return;
1710
1711 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1712 set_last_buddy(se);
bf0f6f24
IM
1713}
1714
fb8d4724 1715static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1716{
8f4d37ec 1717 struct task_struct *p;
bf0f6f24
IM
1718 struct cfs_rq *cfs_rq = &rq->cfs;
1719 struct sched_entity *se;
1720
36ace27e 1721 if (!cfs_rq->nr_running)
bf0f6f24
IM
1722 return NULL;
1723
1724 do {
9948f4b2 1725 se = pick_next_entity(cfs_rq);
f4b6755f 1726 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1727 cfs_rq = group_cfs_rq(se);
1728 } while (cfs_rq);
1729
8f4d37ec
PZ
1730 p = task_of(se);
1731 hrtick_start_fair(rq, p);
1732
1733 return p;
bf0f6f24
IM
1734}
1735
1736/*
1737 * Account for a descheduled task:
1738 */
31ee529c 1739static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1740{
1741 struct sched_entity *se = &prev->se;
1742 struct cfs_rq *cfs_rq;
1743
1744 for_each_sched_entity(se) {
1745 cfs_rq = cfs_rq_of(se);
ab6cde26 1746 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1747 }
1748}
1749
681f3e68 1750#ifdef CONFIG_SMP
bf0f6f24
IM
1751/**************************************************
1752 * Fair scheduling class load-balancing methods:
1753 */
1754
1e3c88bd
PZ
1755/*
1756 * pull_task - move a task from a remote runqueue to the local runqueue.
1757 * Both runqueues must be locked.
1758 */
1759static void pull_task(struct rq *src_rq, struct task_struct *p,
1760 struct rq *this_rq, int this_cpu)
1761{
1762 deactivate_task(src_rq, p, 0);
1763 set_task_cpu(p, this_cpu);
1764 activate_task(this_rq, p, 0);
1765 check_preempt_curr(this_rq, p, 0);
1766}
1767
1768/*
1769 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1770 */
1771static
1772int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1773 struct sched_domain *sd, enum cpu_idle_type idle,
1774 int *all_pinned)
1775{
1776 int tsk_cache_hot = 0;
1777 /*
1778 * We do not migrate tasks that are:
1779 * 1) running (obviously), or
1780 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1781 * 3) are cache-hot on their current CPU.
1782 */
1783 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 1784 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
1785 return 0;
1786 }
1787 *all_pinned = 0;
1788
1789 if (task_running(rq, p)) {
41acab88 1790 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
1791 return 0;
1792 }
1793
1794 /*
1795 * Aggressive migration if:
1796 * 1) task is cache cold, or
1797 * 2) too many balance attempts have failed.
1798 */
1799
1800 tsk_cache_hot = task_hot(p, rq->clock, sd);
1801 if (!tsk_cache_hot ||
1802 sd->nr_balance_failed > sd->cache_nice_tries) {
1803#ifdef CONFIG_SCHEDSTATS
1804 if (tsk_cache_hot) {
1805 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 1806 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
1807 }
1808#endif
1809 return 1;
1810 }
1811
1812 if (tsk_cache_hot) {
41acab88 1813 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
1814 return 0;
1815 }
1816 return 1;
1817}
1818
897c395f
PZ
1819/*
1820 * move_one_task tries to move exactly one task from busiest to this_rq, as
1821 * part of active balancing operations within "domain".
1822 * Returns 1 if successful and 0 otherwise.
1823 *
1824 * Called with both runqueues locked.
1825 */
1826static int
1827move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1828 struct sched_domain *sd, enum cpu_idle_type idle)
1829{
1830 struct task_struct *p, *n;
1831 struct cfs_rq *cfs_rq;
1832 int pinned = 0;
1833
1834 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1835 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1836
1837 if (!can_migrate_task(p, busiest, this_cpu,
1838 sd, idle, &pinned))
1839 continue;
1840
1841 pull_task(busiest, p, this_rq, this_cpu);
1842 /*
1843 * Right now, this is only the second place pull_task()
1844 * is called, so we can safely collect pull_task()
1845 * stats here rather than inside pull_task().
1846 */
1847 schedstat_inc(sd, lb_gained[idle]);
1848 return 1;
1849 }
1850 }
1851
1852 return 0;
1853}
1854
1e3c88bd
PZ
1855static unsigned long
1856balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1857 unsigned long max_load_move, struct sched_domain *sd,
1858 enum cpu_idle_type idle, int *all_pinned,
ee00e66f 1859 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1e3c88bd
PZ
1860{
1861 int loops = 0, pulled = 0, pinned = 0;
1e3c88bd 1862 long rem_load_move = max_load_move;
ee00e66f 1863 struct task_struct *p, *n;
1e3c88bd
PZ
1864
1865 if (max_load_move == 0)
1866 goto out;
1867
1868 pinned = 1;
1869
ee00e66f
PZ
1870 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1871 if (loops++ > sysctl_sched_nr_migrate)
1872 break;
1e3c88bd 1873
ee00e66f
PZ
1874 if ((p->se.load.weight >> 1) > rem_load_move ||
1875 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1876 continue;
1e3c88bd 1877
ee00e66f
PZ
1878 pull_task(busiest, p, this_rq, this_cpu);
1879 pulled++;
1880 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
1881
1882#ifdef CONFIG_PREEMPT
ee00e66f
PZ
1883 /*
1884 * NEWIDLE balancing is a source of latency, so preemptible
1885 * kernels will stop after the first task is pulled to minimize
1886 * the critical section.
1887 */
1888 if (idle == CPU_NEWLY_IDLE)
1889 break;
1e3c88bd
PZ
1890#endif
1891
ee00e66f
PZ
1892 /*
1893 * We only want to steal up to the prescribed amount of
1894 * weighted load.
1895 */
1896 if (rem_load_move <= 0)
1897 break;
1898
1e3c88bd
PZ
1899 if (p->prio < *this_best_prio)
1900 *this_best_prio = p->prio;
1e3c88bd
PZ
1901 }
1902out:
1903 /*
1904 * Right now, this is one of only two places pull_task() is called,
1905 * so we can safely collect pull_task() stats here rather than
1906 * inside pull_task().
1907 */
1908 schedstat_add(sd, lb_gained[idle], pulled);
1909
1910 if (all_pinned)
1911 *all_pinned = pinned;
1912
1913 return max_load_move - rem_load_move;
1914}
1915
230059de
PZ
1916#ifdef CONFIG_FAIR_GROUP_SCHED
1917static unsigned long
1918load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1919 unsigned long max_load_move,
1920 struct sched_domain *sd, enum cpu_idle_type idle,
1921 int *all_pinned, int *this_best_prio)
1922{
1923 long rem_load_move = max_load_move;
1924 int busiest_cpu = cpu_of(busiest);
1925 struct task_group *tg;
1926
1927 rcu_read_lock();
1928 update_h_load(busiest_cpu);
1929
1930 list_for_each_entry_rcu(tg, &task_groups, list) {
1931 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1932 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1933 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1934 u64 rem_load, moved_load;
1935
1936 /*
1937 * empty group
1938 */
1939 if (!busiest_cfs_rq->task_weight)
1940 continue;
1941
1942 rem_load = (u64)rem_load_move * busiest_weight;
1943 rem_load = div_u64(rem_load, busiest_h_load + 1);
1944
1945 moved_load = balance_tasks(this_rq, this_cpu, busiest,
1946 rem_load, sd, idle, all_pinned, this_best_prio,
1947 busiest_cfs_rq);
1948
1949 if (!moved_load)
1950 continue;
1951
1952 moved_load *= busiest_h_load;
1953 moved_load = div_u64(moved_load, busiest_weight + 1);
1954
1955 rem_load_move -= moved_load;
1956 if (rem_load_move < 0)
1957 break;
1958 }
1959 rcu_read_unlock();
1960
1961 return max_load_move - rem_load_move;
1962}
1963#else
1964static unsigned long
1965load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1966 unsigned long max_load_move,
1967 struct sched_domain *sd, enum cpu_idle_type idle,
1968 int *all_pinned, int *this_best_prio)
1969{
1970 return balance_tasks(this_rq, this_cpu, busiest,
1971 max_load_move, sd, idle, all_pinned,
1972 this_best_prio, &busiest->cfs);
1973}
1974#endif
1975
1e3c88bd
PZ
1976/*
1977 * move_tasks tries to move up to max_load_move weighted load from busiest to
1978 * this_rq, as part of a balancing operation within domain "sd".
1979 * Returns 1 if successful and 0 otherwise.
1980 *
1981 * Called with both runqueues locked.
1982 */
1983static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1984 unsigned long max_load_move,
1985 struct sched_domain *sd, enum cpu_idle_type idle,
1986 int *all_pinned)
1987{
3d45fd80 1988 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
1989 int this_best_prio = this_rq->curr->prio;
1990
1991 do {
3d45fd80 1992 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd
PZ
1993 max_load_move - total_load_moved,
1994 sd, idle, all_pinned, &this_best_prio);
3d45fd80
PZ
1995
1996 total_load_moved += load_moved;
1e3c88bd
PZ
1997
1998#ifdef CONFIG_PREEMPT
1999 /*
2000 * NEWIDLE balancing is a source of latency, so preemptible
2001 * kernels will stop after the first task is pulled to minimize
2002 * the critical section.
2003 */
2004 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2005 break;
baa8c110
PZ
2006
2007 if (raw_spin_is_contended(&this_rq->lock) ||
2008 raw_spin_is_contended(&busiest->lock))
2009 break;
1e3c88bd 2010#endif
3d45fd80 2011 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2012
2013 return total_load_moved > 0;
2014}
2015
1e3c88bd
PZ
2016/********** Helpers for find_busiest_group ************************/
2017/*
2018 * sd_lb_stats - Structure to store the statistics of a sched_domain
2019 * during load balancing.
2020 */
2021struct sd_lb_stats {
2022 struct sched_group *busiest; /* Busiest group in this sd */
2023 struct sched_group *this; /* Local group in this sd */
2024 unsigned long total_load; /* Total load of all groups in sd */
2025 unsigned long total_pwr; /* Total power of all groups in sd */
2026 unsigned long avg_load; /* Average load across all groups in sd */
2027
2028 /** Statistics of this group */
2029 unsigned long this_load;
2030 unsigned long this_load_per_task;
2031 unsigned long this_nr_running;
2032
2033 /* Statistics of the busiest group */
2034 unsigned long max_load;
2035 unsigned long busiest_load_per_task;
2036 unsigned long busiest_nr_running;
dd5feea1 2037 unsigned long busiest_group_capacity;
1e3c88bd
PZ
2038
2039 int group_imb; /* Is there imbalance in this sd */
2040#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2041 int power_savings_balance; /* Is powersave balance needed for this sd */
2042 struct sched_group *group_min; /* Least loaded group in sd */
2043 struct sched_group *group_leader; /* Group which relieves group_min */
2044 unsigned long min_load_per_task; /* load_per_task in group_min */
2045 unsigned long leader_nr_running; /* Nr running of group_leader */
2046 unsigned long min_nr_running; /* Nr running of group_min */
2047#endif
2048};
2049
2050/*
2051 * sg_lb_stats - stats of a sched_group required for load_balancing
2052 */
2053struct sg_lb_stats {
2054 unsigned long avg_load; /*Avg load across the CPUs of the group */
2055 unsigned long group_load; /* Total load over the CPUs of the group */
2056 unsigned long sum_nr_running; /* Nr tasks running in the group */
2057 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2058 unsigned long group_capacity;
2059 int group_imb; /* Is there an imbalance in the group ? */
2060};
2061
2062/**
2063 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2064 * @group: The group whose first cpu is to be returned.
2065 */
2066static inline unsigned int group_first_cpu(struct sched_group *group)
2067{
2068 return cpumask_first(sched_group_cpus(group));
2069}
2070
2071/**
2072 * get_sd_load_idx - Obtain the load index for a given sched domain.
2073 * @sd: The sched_domain whose load_idx is to be obtained.
2074 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2075 */
2076static inline int get_sd_load_idx(struct sched_domain *sd,
2077 enum cpu_idle_type idle)
2078{
2079 int load_idx;
2080
2081 switch (idle) {
2082 case CPU_NOT_IDLE:
2083 load_idx = sd->busy_idx;
2084 break;
2085
2086 case CPU_NEWLY_IDLE:
2087 load_idx = sd->newidle_idx;
2088 break;
2089 default:
2090 load_idx = sd->idle_idx;
2091 break;
2092 }
2093
2094 return load_idx;
2095}
2096
2097
2098#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2099/**
2100 * init_sd_power_savings_stats - Initialize power savings statistics for
2101 * the given sched_domain, during load balancing.
2102 *
2103 * @sd: Sched domain whose power-savings statistics are to be initialized.
2104 * @sds: Variable containing the statistics for sd.
2105 * @idle: Idle status of the CPU at which we're performing load-balancing.
2106 */
2107static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2108 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2109{
2110 /*
2111 * Busy processors will not participate in power savings
2112 * balance.
2113 */
2114 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2115 sds->power_savings_balance = 0;
2116 else {
2117 sds->power_savings_balance = 1;
2118 sds->min_nr_running = ULONG_MAX;
2119 sds->leader_nr_running = 0;
2120 }
2121}
2122
2123/**
2124 * update_sd_power_savings_stats - Update the power saving stats for a
2125 * sched_domain while performing load balancing.
2126 *
2127 * @group: sched_group belonging to the sched_domain under consideration.
2128 * @sds: Variable containing the statistics of the sched_domain
2129 * @local_group: Does group contain the CPU for which we're performing
2130 * load balancing ?
2131 * @sgs: Variable containing the statistics of the group.
2132 */
2133static inline void update_sd_power_savings_stats(struct sched_group *group,
2134 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2135{
2136
2137 if (!sds->power_savings_balance)
2138 return;
2139
2140 /*
2141 * If the local group is idle or completely loaded
2142 * no need to do power savings balance at this domain
2143 */
2144 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2145 !sds->this_nr_running))
2146 sds->power_savings_balance = 0;
2147
2148 /*
2149 * If a group is already running at full capacity or idle,
2150 * don't include that group in power savings calculations
2151 */
2152 if (!sds->power_savings_balance ||
2153 sgs->sum_nr_running >= sgs->group_capacity ||
2154 !sgs->sum_nr_running)
2155 return;
2156
2157 /*
2158 * Calculate the group which has the least non-idle load.
2159 * This is the group from where we need to pick up the load
2160 * for saving power
2161 */
2162 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2163 (sgs->sum_nr_running == sds->min_nr_running &&
2164 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2165 sds->group_min = group;
2166 sds->min_nr_running = sgs->sum_nr_running;
2167 sds->min_load_per_task = sgs->sum_weighted_load /
2168 sgs->sum_nr_running;
2169 }
2170
2171 /*
2172 * Calculate the group which is almost near its
2173 * capacity but still has some space to pick up some load
2174 * from other group and save more power
2175 */
2176 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2177 return;
2178
2179 if (sgs->sum_nr_running > sds->leader_nr_running ||
2180 (sgs->sum_nr_running == sds->leader_nr_running &&
2181 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2182 sds->group_leader = group;
2183 sds->leader_nr_running = sgs->sum_nr_running;
2184 }
2185}
2186
2187/**
2188 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2189 * @sds: Variable containing the statistics of the sched_domain
2190 * under consideration.
2191 * @this_cpu: Cpu at which we're currently performing load-balancing.
2192 * @imbalance: Variable to store the imbalance.
2193 *
2194 * Description:
2195 * Check if we have potential to perform some power-savings balance.
2196 * If yes, set the busiest group to be the least loaded group in the
2197 * sched_domain, so that it's CPUs can be put to idle.
2198 *
2199 * Returns 1 if there is potential to perform power-savings balance.
2200 * Else returns 0.
2201 */
2202static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2203 int this_cpu, unsigned long *imbalance)
2204{
2205 if (!sds->power_savings_balance)
2206 return 0;
2207
2208 if (sds->this != sds->group_leader ||
2209 sds->group_leader == sds->group_min)
2210 return 0;
2211
2212 *imbalance = sds->min_load_per_task;
2213 sds->busiest = sds->group_min;
2214
2215 return 1;
2216
2217}
2218#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2219static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2220 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2221{
2222 return;
2223}
2224
2225static inline void update_sd_power_savings_stats(struct sched_group *group,
2226 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2227{
2228 return;
2229}
2230
2231static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2232 int this_cpu, unsigned long *imbalance)
2233{
2234 return 0;
2235}
2236#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2237
2238
2239unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2240{
2241 return SCHED_LOAD_SCALE;
2242}
2243
2244unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2245{
2246 return default_scale_freq_power(sd, cpu);
2247}
2248
2249unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2250{
2251 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2252 unsigned long smt_gain = sd->smt_gain;
2253
2254 smt_gain /= weight;
2255
2256 return smt_gain;
2257}
2258
2259unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2260{
2261 return default_scale_smt_power(sd, cpu);
2262}
2263
2264unsigned long scale_rt_power(int cpu)
2265{
2266 struct rq *rq = cpu_rq(cpu);
2267 u64 total, available;
2268
2269 sched_avg_update(rq);
2270
2271 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2272 available = total - rq->rt_avg;
2273
2274 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2275 total = SCHED_LOAD_SCALE;
2276
2277 total >>= SCHED_LOAD_SHIFT;
2278
2279 return div_u64(available, total);
2280}
2281
2282static void update_cpu_power(struct sched_domain *sd, int cpu)
2283{
2284 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2285 unsigned long power = SCHED_LOAD_SCALE;
2286 struct sched_group *sdg = sd->groups;
2287
2288 if (sched_feat(ARCH_POWER))
2289 power *= arch_scale_freq_power(sd, cpu);
2290 else
2291 power *= default_scale_freq_power(sd, cpu);
2292
2293 power >>= SCHED_LOAD_SHIFT;
2294
2295 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2296 if (sched_feat(ARCH_POWER))
2297 power *= arch_scale_smt_power(sd, cpu);
2298 else
2299 power *= default_scale_smt_power(sd, cpu);
2300
2301 power >>= SCHED_LOAD_SHIFT;
2302 }
2303
2304 power *= scale_rt_power(cpu);
2305 power >>= SCHED_LOAD_SHIFT;
2306
2307 if (!power)
2308 power = 1;
2309
2310 sdg->cpu_power = power;
2311}
2312
2313static void update_group_power(struct sched_domain *sd, int cpu)
2314{
2315 struct sched_domain *child = sd->child;
2316 struct sched_group *group, *sdg = sd->groups;
2317 unsigned long power;
2318
2319 if (!child) {
2320 update_cpu_power(sd, cpu);
2321 return;
2322 }
2323
2324 power = 0;
2325
2326 group = child->groups;
2327 do {
2328 power += group->cpu_power;
2329 group = group->next;
2330 } while (group != child->groups);
2331
2332 sdg->cpu_power = power;
2333}
2334
2335/**
2336 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2337 * @sd: The sched_domain whose statistics are to be updated.
2338 * @group: sched_group whose statistics are to be updated.
2339 * @this_cpu: Cpu for which load balance is currently performed.
2340 * @idle: Idle status of this_cpu
2341 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2342 * @sd_idle: Idle status of the sched_domain containing group.
2343 * @local_group: Does group contain this_cpu.
2344 * @cpus: Set of cpus considered for load balancing.
2345 * @balance: Should we balance.
2346 * @sgs: variable to hold the statistics for this group.
2347 */
2348static inline void update_sg_lb_stats(struct sched_domain *sd,
2349 struct sched_group *group, int this_cpu,
2350 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2351 int local_group, const struct cpumask *cpus,
2352 int *balance, struct sg_lb_stats *sgs)
2353{
2354 unsigned long load, max_cpu_load, min_cpu_load;
2355 int i;
2356 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 2357 unsigned long avg_load_per_task = 0;
1e3c88bd 2358
871e35bc 2359 if (local_group)
1e3c88bd 2360 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
2361
2362 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
2363 max_cpu_load = 0;
2364 min_cpu_load = ~0UL;
2365
2366 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2367 struct rq *rq = cpu_rq(i);
2368
2369 if (*sd_idle && rq->nr_running)
2370 *sd_idle = 0;
2371
2372 /* Bias balancing toward cpus of our domain */
2373 if (local_group) {
2374 if (idle_cpu(i) && !first_idle_cpu) {
2375 first_idle_cpu = 1;
2376 balance_cpu = i;
2377 }
2378
2379 load = target_load(i, load_idx);
2380 } else {
2381 load = source_load(i, load_idx);
2382 if (load > max_cpu_load)
2383 max_cpu_load = load;
2384 if (min_cpu_load > load)
2385 min_cpu_load = load;
2386 }
2387
2388 sgs->group_load += load;
2389 sgs->sum_nr_running += rq->nr_running;
2390 sgs->sum_weighted_load += weighted_cpuload(i);
2391
1e3c88bd
PZ
2392 }
2393
2394 /*
2395 * First idle cpu or the first cpu(busiest) in this sched group
2396 * is eligible for doing load balancing at this and above
2397 * domains. In the newly idle case, we will allow all the cpu's
2398 * to do the newly idle load balance.
2399 */
2400 if (idle != CPU_NEWLY_IDLE && local_group &&
8f190fb3 2401 balance_cpu != this_cpu) {
1e3c88bd
PZ
2402 *balance = 0;
2403 return;
2404 }
2405
871e35bc
GS
2406 update_group_power(sd, this_cpu);
2407
1e3c88bd
PZ
2408 /* Adjust by relative CPU power of the group */
2409 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2410
1e3c88bd
PZ
2411 /*
2412 * Consider the group unbalanced when the imbalance is larger
2413 * than the average weight of two tasks.
2414 *
2415 * APZ: with cgroup the avg task weight can vary wildly and
2416 * might not be a suitable number - should we keep a
2417 * normalized nr_running number somewhere that negates
2418 * the hierarchy?
2419 */
dd5feea1
SS
2420 if (sgs->sum_nr_running)
2421 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd
PZ
2422
2423 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2424 sgs->group_imb = 1;
2425
2426 sgs->group_capacity =
2427 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2428}
2429
2430/**
2431 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2432 * @sd: sched_domain whose statistics are to be updated.
2433 * @this_cpu: Cpu for which load balance is currently performed.
2434 * @idle: Idle status of this_cpu
2435 * @sd_idle: Idle status of the sched_domain containing group.
2436 * @cpus: Set of cpus considered for load balancing.
2437 * @balance: Should we balance.
2438 * @sds: variable to hold the statistics for this sched_domain.
2439 */
2440static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2441 enum cpu_idle_type idle, int *sd_idle,
2442 const struct cpumask *cpus, int *balance,
2443 struct sd_lb_stats *sds)
2444{
2445 struct sched_domain *child = sd->child;
2446 struct sched_group *group = sd->groups;
2447 struct sg_lb_stats sgs;
2448 int load_idx, prefer_sibling = 0;
2449
2450 if (child && child->flags & SD_PREFER_SIBLING)
2451 prefer_sibling = 1;
2452
2453 init_sd_power_savings_stats(sd, sds, idle);
2454 load_idx = get_sd_load_idx(sd, idle);
2455
2456 do {
2457 int local_group;
2458
2459 local_group = cpumask_test_cpu(this_cpu,
2460 sched_group_cpus(group));
2461 memset(&sgs, 0, sizeof(sgs));
2462 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2463 local_group, cpus, balance, &sgs);
2464
8f190fb3 2465 if (local_group && !(*balance))
1e3c88bd
PZ
2466 return;
2467
2468 sds->total_load += sgs.group_load;
2469 sds->total_pwr += group->cpu_power;
2470
2471 /*
2472 * In case the child domain prefers tasks go to siblings
2473 * first, lower the group capacity to one so that we'll try
2474 * and move all the excess tasks away.
2475 */
2476 if (prefer_sibling)
2477 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2478
2479 if (local_group) {
2480 sds->this_load = sgs.avg_load;
2481 sds->this = group;
2482 sds->this_nr_running = sgs.sum_nr_running;
2483 sds->this_load_per_task = sgs.sum_weighted_load;
2484 } else if (sgs.avg_load > sds->max_load &&
2485 (sgs.sum_nr_running > sgs.group_capacity ||
2486 sgs.group_imb)) {
2487 sds->max_load = sgs.avg_load;
2488 sds->busiest = group;
2489 sds->busiest_nr_running = sgs.sum_nr_running;
dd5feea1 2490 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd
PZ
2491 sds->busiest_load_per_task = sgs.sum_weighted_load;
2492 sds->group_imb = sgs.group_imb;
2493 }
2494
2495 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2496 group = group->next;
2497 } while (group != sd->groups);
2498}
2499
2500/**
2501 * fix_small_imbalance - Calculate the minor imbalance that exists
2502 * amongst the groups of a sched_domain, during
2503 * load balancing.
2504 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2505 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2506 * @imbalance: Variable to store the imbalance.
2507 */
2508static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2509 int this_cpu, unsigned long *imbalance)
2510{
2511 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2512 unsigned int imbn = 2;
dd5feea1 2513 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
2514
2515 if (sds->this_nr_running) {
2516 sds->this_load_per_task /= sds->this_nr_running;
2517 if (sds->busiest_load_per_task >
2518 sds->this_load_per_task)
2519 imbn = 1;
2520 } else
2521 sds->this_load_per_task =
2522 cpu_avg_load_per_task(this_cpu);
2523
dd5feea1
SS
2524 scaled_busy_load_per_task = sds->busiest_load_per_task
2525 * SCHED_LOAD_SCALE;
2526 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2527
2528 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2529 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
2530 *imbalance = sds->busiest_load_per_task;
2531 return;
2532 }
2533
2534 /*
2535 * OK, we don't have enough imbalance to justify moving tasks,
2536 * however we may be able to increase total CPU power used by
2537 * moving them.
2538 */
2539
2540 pwr_now += sds->busiest->cpu_power *
2541 min(sds->busiest_load_per_task, sds->max_load);
2542 pwr_now += sds->this->cpu_power *
2543 min(sds->this_load_per_task, sds->this_load);
2544 pwr_now /= SCHED_LOAD_SCALE;
2545
2546 /* Amount of load we'd subtract */
2547 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2548 sds->busiest->cpu_power;
2549 if (sds->max_load > tmp)
2550 pwr_move += sds->busiest->cpu_power *
2551 min(sds->busiest_load_per_task, sds->max_load - tmp);
2552
2553 /* Amount of load we'd add */
2554 if (sds->max_load * sds->busiest->cpu_power <
2555 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2556 tmp = (sds->max_load * sds->busiest->cpu_power) /
2557 sds->this->cpu_power;
2558 else
2559 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2560 sds->this->cpu_power;
2561 pwr_move += sds->this->cpu_power *
2562 min(sds->this_load_per_task, sds->this_load + tmp);
2563 pwr_move /= SCHED_LOAD_SCALE;
2564
2565 /* Move if we gain throughput */
2566 if (pwr_move > pwr_now)
2567 *imbalance = sds->busiest_load_per_task;
2568}
2569
2570/**
2571 * calculate_imbalance - Calculate the amount of imbalance present within the
2572 * groups of a given sched_domain during load balance.
2573 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2574 * @this_cpu: Cpu for which currently load balance is being performed.
2575 * @imbalance: The variable to store the imbalance.
2576 */
2577static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2578 unsigned long *imbalance)
2579{
dd5feea1
SS
2580 unsigned long max_pull, load_above_capacity = ~0UL;
2581
2582 sds->busiest_load_per_task /= sds->busiest_nr_running;
2583 if (sds->group_imb) {
2584 sds->busiest_load_per_task =
2585 min(sds->busiest_load_per_task, sds->avg_load);
2586 }
2587
1e3c88bd
PZ
2588 /*
2589 * In the presence of smp nice balancing, certain scenarios can have
2590 * max load less than avg load(as we skip the groups at or below
2591 * its cpu_power, while calculating max_load..)
2592 */
2593 if (sds->max_load < sds->avg_load) {
2594 *imbalance = 0;
2595 return fix_small_imbalance(sds, this_cpu, imbalance);
2596 }
2597
dd5feea1
SS
2598 if (!sds->group_imb) {
2599 /*
2600 * Don't want to pull so many tasks that a group would go idle.
2601 */
2602 load_above_capacity = (sds->busiest_nr_running -
2603 sds->busiest_group_capacity);
2604
2605 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2606
2607 load_above_capacity /= sds->busiest->cpu_power;
2608 }
2609
2610 /*
2611 * We're trying to get all the cpus to the average_load, so we don't
2612 * want to push ourselves above the average load, nor do we wish to
2613 * reduce the max loaded cpu below the average load. At the same time,
2614 * we also don't want to reduce the group load below the group capacity
2615 * (so that we can implement power-savings policies etc). Thus we look
2616 * for the minimum possible imbalance.
2617 * Be careful of negative numbers as they'll appear as very large values
2618 * with unsigned longs.
2619 */
2620 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
2621
2622 /* How much load to actually move to equalise the imbalance */
2623 *imbalance = min(max_pull * sds->busiest->cpu_power,
2624 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2625 / SCHED_LOAD_SCALE;
2626
2627 /*
2628 * if *imbalance is less than the average load per runnable task
2629 * there is no gaurantee that any tasks will be moved so we'll have
2630 * a think about bumping its value to force at least one task to be
2631 * moved
2632 */
2633 if (*imbalance < sds->busiest_load_per_task)
2634 return fix_small_imbalance(sds, this_cpu, imbalance);
2635
2636}
2637/******* find_busiest_group() helpers end here *********************/
2638
2639/**
2640 * find_busiest_group - Returns the busiest group within the sched_domain
2641 * if there is an imbalance. If there isn't an imbalance, and
2642 * the user has opted for power-savings, it returns a group whose
2643 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2644 * such a group exists.
2645 *
2646 * Also calculates the amount of weighted load which should be moved
2647 * to restore balance.
2648 *
2649 * @sd: The sched_domain whose busiest group is to be returned.
2650 * @this_cpu: The cpu for which load balancing is currently being performed.
2651 * @imbalance: Variable which stores amount of weighted load which should
2652 * be moved to restore balance/put a group to idle.
2653 * @idle: The idle status of this_cpu.
2654 * @sd_idle: The idleness of sd
2655 * @cpus: The set of CPUs under consideration for load-balancing.
2656 * @balance: Pointer to a variable indicating if this_cpu
2657 * is the appropriate cpu to perform load balancing at this_level.
2658 *
2659 * Returns: - the busiest group if imbalance exists.
2660 * - If no imbalance and user has opted for power-savings balance,
2661 * return the least loaded group whose CPUs can be
2662 * put to idle by rebalancing its tasks onto our group.
2663 */
2664static struct sched_group *
2665find_busiest_group(struct sched_domain *sd, int this_cpu,
2666 unsigned long *imbalance, enum cpu_idle_type idle,
2667 int *sd_idle, const struct cpumask *cpus, int *balance)
2668{
2669 struct sd_lb_stats sds;
2670
2671 memset(&sds, 0, sizeof(sds));
2672
2673 /*
2674 * Compute the various statistics relavent for load balancing at
2675 * this level.
2676 */
2677 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2678 balance, &sds);
2679
2680 /* Cases where imbalance does not exist from POV of this_cpu */
2681 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2682 * at this level.
2683 * 2) There is no busy sibling group to pull from.
2684 * 3) This group is the busiest group.
2685 * 4) This group is more busy than the avg busieness at this
2686 * sched_domain.
2687 * 5) The imbalance is within the specified limit.
1e3c88bd 2688 */
8f190fb3 2689 if (!(*balance))
1e3c88bd
PZ
2690 goto ret;
2691
2692 if (!sds.busiest || sds.busiest_nr_running == 0)
2693 goto out_balanced;
2694
2695 if (sds.this_load >= sds.max_load)
2696 goto out_balanced;
2697
2698 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2699
2700 if (sds.this_load >= sds.avg_load)
2701 goto out_balanced;
2702
2703 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2704 goto out_balanced;
2705
1e3c88bd
PZ
2706 /* Looks like there is an imbalance. Compute it */
2707 calculate_imbalance(&sds, this_cpu, imbalance);
2708 return sds.busiest;
2709
2710out_balanced:
2711 /*
2712 * There is no obvious imbalance. But check if we can do some balancing
2713 * to save power.
2714 */
2715 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2716 return sds.busiest;
2717ret:
2718 *imbalance = 0;
2719 return NULL;
2720}
2721
2722/*
2723 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2724 */
2725static struct rq *
2726find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2727 unsigned long imbalance, const struct cpumask *cpus)
2728{
2729 struct rq *busiest = NULL, *rq;
2730 unsigned long max_load = 0;
2731 int i;
2732
2733 for_each_cpu(i, sched_group_cpus(group)) {
2734 unsigned long power = power_of(i);
2735 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2736 unsigned long wl;
2737
2738 if (!cpumask_test_cpu(i, cpus))
2739 continue;
2740
2741 rq = cpu_rq(i);
6e40f5bb 2742 wl = weighted_cpuload(i);
1e3c88bd 2743
6e40f5bb
TG
2744 /*
2745 * When comparing with imbalance, use weighted_cpuload()
2746 * which is not scaled with the cpu power.
2747 */
1e3c88bd
PZ
2748 if (capacity && rq->nr_running == 1 && wl > imbalance)
2749 continue;
2750
6e40f5bb
TG
2751 /*
2752 * For the load comparisons with the other cpu's, consider
2753 * the weighted_cpuload() scaled with the cpu power, so that
2754 * the load can be moved away from the cpu that is potentially
2755 * running at a lower capacity.
2756 */
2757 wl = (wl * SCHED_LOAD_SCALE) / power;
2758
1e3c88bd
PZ
2759 if (wl > max_load) {
2760 max_load = wl;
2761 busiest = rq;
2762 }
2763 }
2764
2765 return busiest;
2766}
2767
2768/*
2769 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2770 * so long as it is large enough.
2771 */
2772#define MAX_PINNED_INTERVAL 512
2773
2774/* Working cpumask for load_balance and load_balance_newidle. */
2775static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2776
1af3ed3d
PZ
2777static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2778{
2779 if (idle == CPU_NEWLY_IDLE) {
2780 /*
2781 * The only task running in a non-idle cpu can be moved to this
2782 * cpu in an attempt to completely freeup the other CPU
2783 * package.
2784 *
2785 * The package power saving logic comes from
2786 * find_busiest_group(). If there are no imbalance, then
2787 * f_b_g() will return NULL. However when sched_mc={1,2} then
2788 * f_b_g() will select a group from which a running task may be
2789 * pulled to this cpu in order to make the other package idle.
2790 * If there is no opportunity to make a package idle and if
2791 * there are no imbalance, then f_b_g() will return NULL and no
2792 * action will be taken in load_balance_newidle().
2793 *
2794 * Under normal task pull operation due to imbalance, there
2795 * will be more than one task in the source run queue and
2796 * move_tasks() will succeed. ld_moved will be true and this
2797 * active balance code will not be triggered.
2798 */
2799 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2800 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2801 return 0;
2802
2803 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2804 return 0;
2805 }
2806
2807 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2808}
2809
1e3c88bd
PZ
2810/*
2811 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2812 * tasks if there is an imbalance.
2813 */
2814static int load_balance(int this_cpu, struct rq *this_rq,
2815 struct sched_domain *sd, enum cpu_idle_type idle,
2816 int *balance)
2817{
2818 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2819 struct sched_group *group;
2820 unsigned long imbalance;
2821 struct rq *busiest;
2822 unsigned long flags;
2823 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2824
2825 cpumask_copy(cpus, cpu_active_mask);
2826
2827 /*
2828 * When power savings policy is enabled for the parent domain, idle
2829 * sibling can pick up load irrespective of busy siblings. In this case,
2830 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2831 * portraying it as CPU_NOT_IDLE.
2832 */
2833 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2834 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2835 sd_idle = 1;
2836
2837 schedstat_inc(sd, lb_count[idle]);
2838
2839redo:
2840 update_shares(sd);
2841 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2842 cpus, balance);
2843
2844 if (*balance == 0)
2845 goto out_balanced;
2846
2847 if (!group) {
2848 schedstat_inc(sd, lb_nobusyg[idle]);
2849 goto out_balanced;
2850 }
2851
2852 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2853 if (!busiest) {
2854 schedstat_inc(sd, lb_nobusyq[idle]);
2855 goto out_balanced;
2856 }
2857
2858 BUG_ON(busiest == this_rq);
2859
2860 schedstat_add(sd, lb_imbalance[idle], imbalance);
2861
2862 ld_moved = 0;
2863 if (busiest->nr_running > 1) {
2864 /*
2865 * Attempt to move tasks. If find_busiest_group has found
2866 * an imbalance but busiest->nr_running <= 1, the group is
2867 * still unbalanced. ld_moved simply stays zero, so it is
2868 * correctly treated as an imbalance.
2869 */
2870 local_irq_save(flags);
2871 double_rq_lock(this_rq, busiest);
2872 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2873 imbalance, sd, idle, &all_pinned);
2874 double_rq_unlock(this_rq, busiest);
2875 local_irq_restore(flags);
2876
2877 /*
2878 * some other cpu did the load balance for us.
2879 */
2880 if (ld_moved && this_cpu != smp_processor_id())
2881 resched_cpu(this_cpu);
2882
2883 /* All tasks on this runqueue were pinned by CPU affinity */
2884 if (unlikely(all_pinned)) {
2885 cpumask_clear_cpu(cpu_of(busiest), cpus);
2886 if (!cpumask_empty(cpus))
2887 goto redo;
2888 goto out_balanced;
2889 }
2890 }
2891
2892 if (!ld_moved) {
2893 schedstat_inc(sd, lb_failed[idle]);
2894 sd->nr_balance_failed++;
2895
1af3ed3d 2896 if (need_active_balance(sd, sd_idle, idle)) {
1e3c88bd
PZ
2897 raw_spin_lock_irqsave(&busiest->lock, flags);
2898
2899 /* don't kick the migration_thread, if the curr
2900 * task on busiest cpu can't be moved to this_cpu
2901 */
2902 if (!cpumask_test_cpu(this_cpu,
2903 &busiest->curr->cpus_allowed)) {
2904 raw_spin_unlock_irqrestore(&busiest->lock,
2905 flags);
2906 all_pinned = 1;
2907 goto out_one_pinned;
2908 }
2909
2910 if (!busiest->active_balance) {
2911 busiest->active_balance = 1;
2912 busiest->push_cpu = this_cpu;
2913 active_balance = 1;
2914 }
2915 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2916 if (active_balance)
2917 wake_up_process(busiest->migration_thread);
2918
2919 /*
2920 * We've kicked active balancing, reset the failure
2921 * counter.
2922 */
2923 sd->nr_balance_failed = sd->cache_nice_tries+1;
2924 }
2925 } else
2926 sd->nr_balance_failed = 0;
2927
2928 if (likely(!active_balance)) {
2929 /* We were unbalanced, so reset the balancing interval */
2930 sd->balance_interval = sd->min_interval;
2931 } else {
2932 /*
2933 * If we've begun active balancing, start to back off. This
2934 * case may not be covered by the all_pinned logic if there
2935 * is only 1 task on the busy runqueue (because we don't call
2936 * move_tasks).
2937 */
2938 if (sd->balance_interval < sd->max_interval)
2939 sd->balance_interval *= 2;
2940 }
2941
2942 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2943 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2944 ld_moved = -1;
2945
2946 goto out;
2947
2948out_balanced:
2949 schedstat_inc(sd, lb_balanced[idle]);
2950
2951 sd->nr_balance_failed = 0;
2952
2953out_one_pinned:
2954 /* tune up the balancing interval */
2955 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2956 (sd->balance_interval < sd->max_interval))
2957 sd->balance_interval *= 2;
2958
2959 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2960 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2961 ld_moved = -1;
2962 else
2963 ld_moved = 0;
2964out:
2965 if (ld_moved)
2966 update_shares(sd);
2967 return ld_moved;
2968}
2969
1e3c88bd
PZ
2970/*
2971 * idle_balance is called by schedule() if this_cpu is about to become
2972 * idle. Attempts to pull tasks from other CPUs.
2973 */
2974static void idle_balance(int this_cpu, struct rq *this_rq)
2975{
2976 struct sched_domain *sd;
2977 int pulled_task = 0;
2978 unsigned long next_balance = jiffies + HZ;
2979
2980 this_rq->idle_stamp = this_rq->clock;
2981
2982 if (this_rq->avg_idle < sysctl_sched_migration_cost)
2983 return;
2984
f492e12e
PZ
2985 /*
2986 * Drop the rq->lock, but keep IRQ/preempt disabled.
2987 */
2988 raw_spin_unlock(&this_rq->lock);
2989
1e3c88bd
PZ
2990 for_each_domain(this_cpu, sd) {
2991 unsigned long interval;
f492e12e 2992 int balance = 1;
1e3c88bd
PZ
2993
2994 if (!(sd->flags & SD_LOAD_BALANCE))
2995 continue;
2996
f492e12e 2997 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 2998 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
2999 pulled_task = load_balance(this_cpu, this_rq,
3000 sd, CPU_NEWLY_IDLE, &balance);
3001 }
1e3c88bd
PZ
3002
3003 interval = msecs_to_jiffies(sd->balance_interval);
3004 if (time_after(next_balance, sd->last_balance + interval))
3005 next_balance = sd->last_balance + interval;
3006 if (pulled_task) {
3007 this_rq->idle_stamp = 0;
3008 break;
3009 }
3010 }
f492e12e
PZ
3011
3012 raw_spin_lock(&this_rq->lock);
3013
1e3c88bd
PZ
3014 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3015 /*
3016 * We are going idle. next_balance may be set based on
3017 * a busy processor. So reset next_balance.
3018 */
3019 this_rq->next_balance = next_balance;
3020 }
3021}
3022
3023/*
3024 * active_load_balance is run by migration threads. It pushes running tasks
3025 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3026 * running on each physical CPU where possible, and avoids physical /
3027 * logical imbalances.
3028 *
3029 * Called with busiest_rq locked.
3030 */
3031static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3032{
3033 int target_cpu = busiest_rq->push_cpu;
3034 struct sched_domain *sd;
3035 struct rq *target_rq;
3036
3037 /* Is there any task to move? */
3038 if (busiest_rq->nr_running <= 1)
3039 return;
3040
3041 target_rq = cpu_rq(target_cpu);
3042
3043 /*
3044 * This condition is "impossible", if it occurs
3045 * we need to fix it. Originally reported by
3046 * Bjorn Helgaas on a 128-cpu setup.
3047 */
3048 BUG_ON(busiest_rq == target_rq);
3049
3050 /* move a task from busiest_rq to target_rq */
3051 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3052
3053 /* Search for an sd spanning us and the target CPU. */
3054 for_each_domain(target_cpu, sd) {
3055 if ((sd->flags & SD_LOAD_BALANCE) &&
3056 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3057 break;
3058 }
3059
3060 if (likely(sd)) {
3061 schedstat_inc(sd, alb_count);
3062
3063 if (move_one_task(target_rq, target_cpu, busiest_rq,
3064 sd, CPU_IDLE))
3065 schedstat_inc(sd, alb_pushed);
3066 else
3067 schedstat_inc(sd, alb_failed);
3068 }
3069 double_unlock_balance(busiest_rq, target_rq);
3070}
3071
3072#ifdef CONFIG_NO_HZ
3073static struct {
3074 atomic_t load_balancer;
3075 cpumask_var_t cpu_mask;
3076 cpumask_var_t ilb_grp_nohz_mask;
3077} nohz ____cacheline_aligned = {
3078 .load_balancer = ATOMIC_INIT(-1),
3079};
3080
3081int get_nohz_load_balancer(void)
3082{
3083 return atomic_read(&nohz.load_balancer);
3084}
3085
3086#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3087/**
3088 * lowest_flag_domain - Return lowest sched_domain containing flag.
3089 * @cpu: The cpu whose lowest level of sched domain is to
3090 * be returned.
3091 * @flag: The flag to check for the lowest sched_domain
3092 * for the given cpu.
3093 *
3094 * Returns the lowest sched_domain of a cpu which contains the given flag.
3095 */
3096static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3097{
3098 struct sched_domain *sd;
3099
3100 for_each_domain(cpu, sd)
3101 if (sd && (sd->flags & flag))
3102 break;
3103
3104 return sd;
3105}
3106
3107/**
3108 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3109 * @cpu: The cpu whose domains we're iterating over.
3110 * @sd: variable holding the value of the power_savings_sd
3111 * for cpu.
3112 * @flag: The flag to filter the sched_domains to be iterated.
3113 *
3114 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3115 * set, starting from the lowest sched_domain to the highest.
3116 */
3117#define for_each_flag_domain(cpu, sd, flag) \
3118 for (sd = lowest_flag_domain(cpu, flag); \
3119 (sd && (sd->flags & flag)); sd = sd->parent)
3120
3121/**
3122 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3123 * @ilb_group: group to be checked for semi-idleness
3124 *
3125 * Returns: 1 if the group is semi-idle. 0 otherwise.
3126 *
3127 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3128 * and atleast one non-idle CPU. This helper function checks if the given
3129 * sched_group is semi-idle or not.
3130 */
3131static inline int is_semi_idle_group(struct sched_group *ilb_group)
3132{
3133 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3134 sched_group_cpus(ilb_group));
3135
3136 /*
3137 * A sched_group is semi-idle when it has atleast one busy cpu
3138 * and atleast one idle cpu.
3139 */
3140 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3141 return 0;
3142
3143 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3144 return 0;
3145
3146 return 1;
3147}
3148/**
3149 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3150 * @cpu: The cpu which is nominating a new idle_load_balancer.
3151 *
3152 * Returns: Returns the id of the idle load balancer if it exists,
3153 * Else, returns >= nr_cpu_ids.
3154 *
3155 * This algorithm picks the idle load balancer such that it belongs to a
3156 * semi-idle powersavings sched_domain. The idea is to try and avoid
3157 * completely idle packages/cores just for the purpose of idle load balancing
3158 * when there are other idle cpu's which are better suited for that job.
3159 */
3160static int find_new_ilb(int cpu)
3161{
3162 struct sched_domain *sd;
3163 struct sched_group *ilb_group;
3164
3165 /*
3166 * Have idle load balancer selection from semi-idle packages only
3167 * when power-aware load balancing is enabled
3168 */
3169 if (!(sched_smt_power_savings || sched_mc_power_savings))
3170 goto out_done;
3171
3172 /*
3173 * Optimize for the case when we have no idle CPUs or only one
3174 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3175 */
3176 if (cpumask_weight(nohz.cpu_mask) < 2)
3177 goto out_done;
3178
3179 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3180 ilb_group = sd->groups;
3181
3182 do {
3183 if (is_semi_idle_group(ilb_group))
3184 return cpumask_first(nohz.ilb_grp_nohz_mask);
3185
3186 ilb_group = ilb_group->next;
3187
3188 } while (ilb_group != sd->groups);
3189 }
3190
3191out_done:
3192 return cpumask_first(nohz.cpu_mask);
3193}
3194#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3195static inline int find_new_ilb(int call_cpu)
3196{
3197 return cpumask_first(nohz.cpu_mask);
3198}
3199#endif
3200
3201/*
3202 * This routine will try to nominate the ilb (idle load balancing)
3203 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3204 * load balancing on behalf of all those cpus. If all the cpus in the system
3205 * go into this tickless mode, then there will be no ilb owner (as there is
3206 * no need for one) and all the cpus will sleep till the next wakeup event
3207 * arrives...
3208 *
3209 * For the ilb owner, tick is not stopped. And this tick will be used
3210 * for idle load balancing. ilb owner will still be part of
3211 * nohz.cpu_mask..
3212 *
3213 * While stopping the tick, this cpu will become the ilb owner if there
3214 * is no other owner. And will be the owner till that cpu becomes busy
3215 * or if all cpus in the system stop their ticks at which point
3216 * there is no need for ilb owner.
3217 *
3218 * When the ilb owner becomes busy, it nominates another owner, during the
3219 * next busy scheduler_tick()
3220 */
3221int select_nohz_load_balancer(int stop_tick)
3222{
3223 int cpu = smp_processor_id();
3224
3225 if (stop_tick) {
3226 cpu_rq(cpu)->in_nohz_recently = 1;
3227
3228 if (!cpu_active(cpu)) {
3229 if (atomic_read(&nohz.load_balancer) != cpu)
3230 return 0;
3231
3232 /*
3233 * If we are going offline and still the leader,
3234 * give up!
3235 */
3236 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3237 BUG();
3238
3239 return 0;
3240 }
3241
3242 cpumask_set_cpu(cpu, nohz.cpu_mask);
3243
3244 /* time for ilb owner also to sleep */
3245 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3246 if (atomic_read(&nohz.load_balancer) == cpu)
3247 atomic_set(&nohz.load_balancer, -1);
3248 return 0;
3249 }
3250
3251 if (atomic_read(&nohz.load_balancer) == -1) {
3252 /* make me the ilb owner */
3253 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3254 return 1;
3255 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3256 int new_ilb;
3257
3258 if (!(sched_smt_power_savings ||
3259 sched_mc_power_savings))
3260 return 1;
3261 /*
3262 * Check to see if there is a more power-efficient
3263 * ilb.
3264 */
3265 new_ilb = find_new_ilb(cpu);
3266 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3267 atomic_set(&nohz.load_balancer, -1);
3268 resched_cpu(new_ilb);
3269 return 0;
3270 }
3271 return 1;
3272 }
3273 } else {
3274 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3275 return 0;
3276
3277 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3278
3279 if (atomic_read(&nohz.load_balancer) == cpu)
3280 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3281 BUG();
3282 }
3283 return 0;
3284}
3285#endif
3286
3287static DEFINE_SPINLOCK(balancing);
3288
3289/*
3290 * It checks each scheduling domain to see if it is due to be balanced,
3291 * and initiates a balancing operation if so.
3292 *
3293 * Balancing parameters are set up in arch_init_sched_domains.
3294 */
3295static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3296{
3297 int balance = 1;
3298 struct rq *rq = cpu_rq(cpu);
3299 unsigned long interval;
3300 struct sched_domain *sd;
3301 /* Earliest time when we have to do rebalance again */
3302 unsigned long next_balance = jiffies + 60*HZ;
3303 int update_next_balance = 0;
3304 int need_serialize;
3305
3306 for_each_domain(cpu, sd) {
3307 if (!(sd->flags & SD_LOAD_BALANCE))
3308 continue;
3309
3310 interval = sd->balance_interval;
3311 if (idle != CPU_IDLE)
3312 interval *= sd->busy_factor;
3313
3314 /* scale ms to jiffies */
3315 interval = msecs_to_jiffies(interval);
3316 if (unlikely(!interval))
3317 interval = 1;
3318 if (interval > HZ*NR_CPUS/10)
3319 interval = HZ*NR_CPUS/10;
3320
3321 need_serialize = sd->flags & SD_SERIALIZE;
3322
3323 if (need_serialize) {
3324 if (!spin_trylock(&balancing))
3325 goto out;
3326 }
3327
3328 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3329 if (load_balance(cpu, rq, sd, idle, &balance)) {
3330 /*
3331 * We've pulled tasks over so either we're no
3332 * longer idle, or one of our SMT siblings is
3333 * not idle.
3334 */
3335 idle = CPU_NOT_IDLE;
3336 }
3337 sd->last_balance = jiffies;
3338 }
3339 if (need_serialize)
3340 spin_unlock(&balancing);
3341out:
3342 if (time_after(next_balance, sd->last_balance + interval)) {
3343 next_balance = sd->last_balance + interval;
3344 update_next_balance = 1;
3345 }
3346
3347 /*
3348 * Stop the load balance at this level. There is another
3349 * CPU in our sched group which is doing load balancing more
3350 * actively.
3351 */
3352 if (!balance)
3353 break;
3354 }
3355
3356 /*
3357 * next_balance will be updated only when there is a need.
3358 * When the cpu is attached to null domain for ex, it will not be
3359 * updated.
3360 */
3361 if (likely(update_next_balance))
3362 rq->next_balance = next_balance;
3363}
3364
3365/*
3366 * run_rebalance_domains is triggered when needed from the scheduler tick.
3367 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3368 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3369 */
3370static void run_rebalance_domains(struct softirq_action *h)
3371{
3372 int this_cpu = smp_processor_id();
3373 struct rq *this_rq = cpu_rq(this_cpu);
3374 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3375 CPU_IDLE : CPU_NOT_IDLE;
3376
3377 rebalance_domains(this_cpu, idle);
3378
3379#ifdef CONFIG_NO_HZ
3380 /*
3381 * If this cpu is the owner for idle load balancing, then do the
3382 * balancing on behalf of the other idle cpus whose ticks are
3383 * stopped.
3384 */
3385 if (this_rq->idle_at_tick &&
3386 atomic_read(&nohz.load_balancer) == this_cpu) {
3387 struct rq *rq;
3388 int balance_cpu;
3389
3390 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3391 if (balance_cpu == this_cpu)
3392 continue;
3393
3394 /*
3395 * If this cpu gets work to do, stop the load balancing
3396 * work being done for other cpus. Next load
3397 * balancing owner will pick it up.
3398 */
3399 if (need_resched())
3400 break;
3401
3402 rebalance_domains(balance_cpu, CPU_IDLE);
3403
3404 rq = cpu_rq(balance_cpu);
3405 if (time_after(this_rq->next_balance, rq->next_balance))
3406 this_rq->next_balance = rq->next_balance;
3407 }
3408 }
3409#endif
3410}
3411
3412static inline int on_null_domain(int cpu)
3413{
90a6501f 3414 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
3415}
3416
3417/*
3418 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3419 *
3420 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3421 * idle load balancing owner or decide to stop the periodic load balancing,
3422 * if the whole system is idle.
3423 */
3424static inline void trigger_load_balance(struct rq *rq, int cpu)
3425{
3426#ifdef CONFIG_NO_HZ
3427 /*
3428 * If we were in the nohz mode recently and busy at the current
3429 * scheduler tick, then check if we need to nominate new idle
3430 * load balancer.
3431 */
3432 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3433 rq->in_nohz_recently = 0;
3434
3435 if (atomic_read(&nohz.load_balancer) == cpu) {
3436 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3437 atomic_set(&nohz.load_balancer, -1);
3438 }
3439
3440 if (atomic_read(&nohz.load_balancer) == -1) {
3441 int ilb = find_new_ilb(cpu);
3442
3443 if (ilb < nr_cpu_ids)
3444 resched_cpu(ilb);
3445 }
3446 }
3447
3448 /*
3449 * If this cpu is idle and doing idle load balancing for all the
3450 * cpus with ticks stopped, is it time for that to stop?
3451 */
3452 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3453 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3454 resched_cpu(cpu);
3455 return;
3456 }
3457
3458 /*
3459 * If this cpu is idle and the idle load balancing is done by
3460 * someone else, then no need raise the SCHED_SOFTIRQ
3461 */
3462 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3463 cpumask_test_cpu(cpu, nohz.cpu_mask))
3464 return;
3465#endif
3466 /* Don't need to rebalance while attached to NULL domain */
3467 if (time_after_eq(jiffies, rq->next_balance) &&
3468 likely(!on_null_domain(cpu)))
3469 raise_softirq(SCHED_SOFTIRQ);
3470}
3471
0bcdcf28
CE
3472static void rq_online_fair(struct rq *rq)
3473{
3474 update_sysctl();
3475}
3476
3477static void rq_offline_fair(struct rq *rq)
3478{
3479 update_sysctl();
3480}
3481
1e3c88bd
PZ
3482#else /* CONFIG_SMP */
3483
3484/*
3485 * on UP we do not need to balance between CPUs:
3486 */
3487static inline void idle_balance(int cpu, struct rq *rq)
3488{
3489}
3490
55e12e5e 3491#endif /* CONFIG_SMP */
e1d1484f 3492
bf0f6f24
IM
3493/*
3494 * scheduler tick hitting a task of our scheduling class:
3495 */
8f4d37ec 3496static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
3497{
3498 struct cfs_rq *cfs_rq;
3499 struct sched_entity *se = &curr->se;
3500
3501 for_each_sched_entity(se) {
3502 cfs_rq = cfs_rq_of(se);
8f4d37ec 3503 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
3504 }
3505}
3506
3507/*
cd29fe6f
PZ
3508 * called on fork with the child task as argument from the parent's context
3509 * - child not yet on the tasklist
3510 * - preemption disabled
bf0f6f24 3511 */
cd29fe6f 3512static void task_fork_fair(struct task_struct *p)
bf0f6f24 3513{
cd29fe6f 3514 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 3515 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 3516 int this_cpu = smp_processor_id();
cd29fe6f
PZ
3517 struct rq *rq = this_rq();
3518 unsigned long flags;
3519
05fa785c 3520 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 3521
cd29fe6f
PZ
3522 if (unlikely(task_cpu(p) != this_cpu))
3523 __set_task_cpu(p, this_cpu);
bf0f6f24 3524
7109c442 3525 update_curr(cfs_rq);
cd29fe6f 3526
b5d9d734
MG
3527 if (curr)
3528 se->vruntime = curr->vruntime;
aeb73b04 3529 place_entity(cfs_rq, se, 1);
4d78e7b6 3530
cd29fe6f 3531 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 3532 /*
edcb60a3
IM
3533 * Upon rescheduling, sched_class::put_prev_task() will place
3534 * 'current' within the tree based on its new key value.
3535 */
4d78e7b6 3536 swap(curr->vruntime, se->vruntime);
aec0a514 3537 resched_task(rq->curr);
4d78e7b6 3538 }
bf0f6f24 3539
88ec22d3
PZ
3540 se->vruntime -= cfs_rq->min_vruntime;
3541
05fa785c 3542 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
3543}
3544
cb469845
SR
3545/*
3546 * Priority of the task has changed. Check to see if we preempt
3547 * the current task.
3548 */
3549static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3550 int oldprio, int running)
3551{
3552 /*
3553 * Reschedule if we are currently running on this runqueue and
3554 * our priority decreased, or if we are not currently running on
3555 * this runqueue and our priority is higher than the current's
3556 */
3557 if (running) {
3558 if (p->prio > oldprio)
3559 resched_task(rq->curr);
3560 } else
15afe09b 3561 check_preempt_curr(rq, p, 0);
cb469845
SR
3562}
3563
3564/*
3565 * We switched to the sched_fair class.
3566 */
3567static void switched_to_fair(struct rq *rq, struct task_struct *p,
3568 int running)
3569{
3570 /*
3571 * We were most likely switched from sched_rt, so
3572 * kick off the schedule if running, otherwise just see
3573 * if we can still preempt the current task.
3574 */
3575 if (running)
3576 resched_task(rq->curr);
3577 else
15afe09b 3578 check_preempt_curr(rq, p, 0);
cb469845
SR
3579}
3580
83b699ed
SV
3581/* Account for a task changing its policy or group.
3582 *
3583 * This routine is mostly called to set cfs_rq->curr field when a task
3584 * migrates between groups/classes.
3585 */
3586static void set_curr_task_fair(struct rq *rq)
3587{
3588 struct sched_entity *se = &rq->curr->se;
3589
3590 for_each_sched_entity(se)
3591 set_next_entity(cfs_rq_of(se), se);
3592}
3593
810b3817 3594#ifdef CONFIG_FAIR_GROUP_SCHED
88ec22d3 3595static void moved_group_fair(struct task_struct *p, int on_rq)
810b3817
PZ
3596{
3597 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3598
3599 update_curr(cfs_rq);
88ec22d3
PZ
3600 if (!on_rq)
3601 place_entity(cfs_rq, &p->se, 1);
810b3817
PZ
3602}
3603#endif
3604
6d686f45 3605static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
3606{
3607 struct sched_entity *se = &task->se;
0d721cea
PW
3608 unsigned int rr_interval = 0;
3609
3610 /*
3611 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3612 * idle runqueue:
3613 */
0d721cea
PW
3614 if (rq->cfs.load.weight)
3615 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
3616
3617 return rr_interval;
3618}
3619
bf0f6f24
IM
3620/*
3621 * All the scheduling class methods:
3622 */
5522d5d5
IM
3623static const struct sched_class fair_sched_class = {
3624 .next = &idle_sched_class,
bf0f6f24
IM
3625 .enqueue_task = enqueue_task_fair,
3626 .dequeue_task = dequeue_task_fair,
3627 .yield_task = yield_task_fair,
3628
2e09bf55 3629 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
3630
3631 .pick_next_task = pick_next_task_fair,
3632 .put_prev_task = put_prev_task_fair,
3633
681f3e68 3634#ifdef CONFIG_SMP
4ce72a2c
LZ
3635 .select_task_rq = select_task_rq_fair,
3636
0bcdcf28
CE
3637 .rq_online = rq_online_fair,
3638 .rq_offline = rq_offline_fair,
88ec22d3
PZ
3639
3640 .task_waking = task_waking_fair,
681f3e68 3641#endif
bf0f6f24 3642
83b699ed 3643 .set_curr_task = set_curr_task_fair,
bf0f6f24 3644 .task_tick = task_tick_fair,
cd29fe6f 3645 .task_fork = task_fork_fair,
cb469845
SR
3646
3647 .prio_changed = prio_changed_fair,
3648 .switched_to = switched_to_fair,
810b3817 3649
0d721cea
PW
3650 .get_rr_interval = get_rr_interval_fair,
3651
810b3817
PZ
3652#ifdef CONFIG_FAIR_GROUP_SCHED
3653 .moved_group = moved_group_fair,
3654#endif
bf0f6f24
IM
3655};
3656
3657#ifdef CONFIG_SCHED_DEBUG
5cef9eca 3658static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 3659{
bf0f6f24
IM
3660 struct cfs_rq *cfs_rq;
3661
5973e5b9 3662 rcu_read_lock();
c3b64f1e 3663 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 3664 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 3665 rcu_read_unlock();
bf0f6f24
IM
3666}
3667#endif