]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched_fair.c
sched: prevent wakeup over-scheduling
[mirror_ubuntu-artful-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085
PZ
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 35 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 36 */
2bd8e6d4
IM
37const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
44
45/*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
5f6d858e 49const_debug unsigned int sysctl_sched_nr_latency = 20;
bf0f6f24 50
1799e35d
IM
51/*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57unsigned int __read_mostly sysctl_sched_compat_yield;
58
bf0f6f24
IM
59/*
60 * SCHED_BATCH wake-up granularity.
155bb293 61 * (default: 10 msec, units: nanoseconds)
bf0f6f24
IM
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
155bb293 67const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
bf0f6f24
IM
68
69/*
70 * SCHED_OTHER wake-up granularity.
155bb293 71 * (default: 10 msec, units: nanoseconds)
bf0f6f24
IM
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
155bb293 77const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 78
bf0f6f24
IM
79/**************************************************************
80 * CFS operations on generic schedulable entities:
81 */
82
62160e3f 83#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 84
62160e3f 85/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
86static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
87{
62160e3f 88 return cfs_rq->rq;
bf0f6f24
IM
89}
90
62160e3f
IM
91/* An entity is a task if it doesn't "own" a runqueue */
92#define entity_is_task(se) (!se->my_q)
bf0f6f24 93
62160e3f 94#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 95
62160e3f
IM
96static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
97{
98 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
99}
100
101#define entity_is_task(se) 1
102
bf0f6f24
IM
103#endif /* CONFIG_FAIR_GROUP_SCHED */
104
105static inline struct task_struct *task_of(struct sched_entity *se)
106{
107 return container_of(se, struct task_struct, se);
108}
109
110
111/**************************************************************
112 * Scheduling class tree data structure manipulation methods:
113 */
114
0702e3eb 115static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 116{
368059a9
PZ
117 s64 delta = (s64)(vruntime - min_vruntime);
118 if (delta > 0)
02e0431a
PZ
119 min_vruntime = vruntime;
120
121 return min_vruntime;
122}
123
0702e3eb 124static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
125{
126 s64 delta = (s64)(vruntime - min_vruntime);
127 if (delta < 0)
128 min_vruntime = vruntime;
129
130 return min_vruntime;
131}
132
0702e3eb 133static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 134{
30cfdcfc 135 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
136}
137
bf0f6f24
IM
138/*
139 * Enqueue an entity into the rb-tree:
140 */
0702e3eb 141static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
142{
143 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
144 struct rb_node *parent = NULL;
145 struct sched_entity *entry;
9014623c 146 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
147 int leftmost = 1;
148
149 /*
150 * Find the right place in the rbtree:
151 */
152 while (*link) {
153 parent = *link;
154 entry = rb_entry(parent, struct sched_entity, run_node);
155 /*
156 * We dont care about collisions. Nodes with
157 * the same key stay together.
158 */
9014623c 159 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
160 link = &parent->rb_left;
161 } else {
162 link = &parent->rb_right;
163 leftmost = 0;
164 }
165 }
166
167 /*
168 * Maintain a cache of leftmost tree entries (it is frequently
169 * used):
170 */
171 if (leftmost)
57cb499d 172 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
173
174 rb_link_node(&se->run_node, parent, link);
175 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
176}
177
0702e3eb 178static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
179{
180 if (cfs_rq->rb_leftmost == &se->run_node)
57cb499d 181 cfs_rq->rb_leftmost = rb_next(&se->run_node);
e9acbff6 182
bf0f6f24 183 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
184}
185
186static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
187{
188 return cfs_rq->rb_leftmost;
189}
190
191static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
192{
193 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
194}
195
aeb73b04
PZ
196static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
197{
198 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
199 struct sched_entity *se = NULL;
200 struct rb_node *parent;
201
202 while (*link) {
203 parent = *link;
204 se = rb_entry(parent, struct sched_entity, run_node);
205 link = &parent->rb_right;
206 }
207
208 return se;
209}
210
bf0f6f24
IM
211/**************************************************************
212 * Scheduling class statistics methods:
213 */
214
647e7cac
IM
215
216/*
217 * The idea is to set a period in which each task runs once.
218 *
219 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
220 * this period because otherwise the slices get too small.
221 *
222 * p = (nr <= nl) ? l : l*nr/nl
223 */
4d78e7b6
PZ
224static u64 __sched_period(unsigned long nr_running)
225{
226 u64 period = sysctl_sched_latency;
5f6d858e 227 unsigned long nr_latency = sysctl_sched_nr_latency;
4d78e7b6
PZ
228
229 if (unlikely(nr_running > nr_latency)) {
230 period *= nr_running;
231 do_div(period, nr_latency);
232 }
233
234 return period;
235}
236
647e7cac
IM
237/*
238 * We calculate the wall-time slice from the period by taking a part
239 * proportional to the weight.
240 *
241 * s = p*w/rw
242 */
6d0f0ebd 243static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 244{
647e7cac 245 u64 slice = __sched_period(cfs_rq->nr_running);
21805085 246
647e7cac
IM
247 slice *= se->load.weight;
248 do_div(slice, cfs_rq->load.weight);
21805085 249
647e7cac 250 return slice;
bf0f6f24
IM
251}
252
647e7cac
IM
253/*
254 * We calculate the vruntime slice.
255 *
256 * vs = s/w = p/rw
257 */
258static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 259{
647e7cac 260 u64 vslice = __sched_period(nr_running);
67e9fb2a 261
647e7cac 262 do_div(vslice, rq_weight);
67e9fb2a 263
647e7cac
IM
264 return vslice;
265}
5f6d858e 266
647e7cac
IM
267static u64 sched_vslice(struct cfs_rq *cfs_rq)
268{
269 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
270}
271
272static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
273{
274 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
275 cfs_rq->nr_running + 1);
67e9fb2a
PZ
276}
277
bf0f6f24
IM
278/*
279 * Update the current task's runtime statistics. Skip current tasks that
280 * are not in our scheduling class.
281 */
282static inline void
8ebc91d9
IM
283__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
284 unsigned long delta_exec)
bf0f6f24 285{
bbdba7c0 286 unsigned long delta_exec_weighted;
b0ffd246 287 u64 vruntime;
bf0f6f24 288
8179ca23 289 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
290
291 curr->sum_exec_runtime += delta_exec;
7a62eabc 292 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
293 delta_exec_weighted = delta_exec;
294 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
295 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
296 &curr->load);
297 }
298 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
299
300 /*
301 * maintain cfs_rq->min_vruntime to be a monotonic increasing
302 * value tracking the leftmost vruntime in the tree.
303 */
304 if (first_fair(cfs_rq)) {
b0ffd246
PZ
305 vruntime = min_vruntime(curr->vruntime,
306 __pick_next_entity(cfs_rq)->vruntime);
02e0431a 307 } else
b0ffd246 308 vruntime = curr->vruntime;
02e0431a
PZ
309
310 cfs_rq->min_vruntime =
b0ffd246 311 max_vruntime(cfs_rq->min_vruntime, vruntime);
bf0f6f24
IM
312}
313
b7cc0896 314static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 315{
429d43bc 316 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 317 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
318 unsigned long delta_exec;
319
320 if (unlikely(!curr))
321 return;
322
323 /*
324 * Get the amount of time the current task was running
325 * since the last time we changed load (this cannot
326 * overflow on 32 bits):
327 */
8ebc91d9 328 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 329
8ebc91d9
IM
330 __update_curr(cfs_rq, curr, delta_exec);
331 curr->exec_start = now;
bf0f6f24
IM
332}
333
334static inline void
5870db5b 335update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 336{
d281918d 337 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
338}
339
bf0f6f24
IM
340/*
341 * Task is being enqueued - update stats:
342 */
d2417e5a 343static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 344{
bf0f6f24
IM
345 /*
346 * Are we enqueueing a waiting task? (for current tasks
347 * a dequeue/enqueue event is a NOP)
348 */
429d43bc 349 if (se != cfs_rq->curr)
5870db5b 350 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
351}
352
bf0f6f24 353static void
9ef0a961 354update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 355{
bbdba7c0
IM
356 schedstat_set(se->wait_max, max(se->wait_max,
357 rq_of(cfs_rq)->clock - se->wait_start));
6cfb0d5d 358 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
359}
360
361static inline void
19b6a2e3 362update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 363{
bf0f6f24
IM
364 /*
365 * Mark the end of the wait period if dequeueing a
366 * waiting task:
367 */
429d43bc 368 if (se != cfs_rq->curr)
9ef0a961 369 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
370}
371
372/*
373 * We are picking a new current task - update its stats:
374 */
375static inline void
79303e9e 376update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
377{
378 /*
379 * We are starting a new run period:
380 */
d281918d 381 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
382}
383
384/*
385 * We are descheduling a task - update its stats:
386 */
387static inline void
c7e9b5b2 388update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
389{
390 se->exec_start = 0;
391}
392
393/**************************************************
394 * Scheduling class queueing methods:
395 */
396
30cfdcfc
DA
397static void
398account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
399{
400 update_load_add(&cfs_rq->load, se->load.weight);
401 cfs_rq->nr_running++;
402 se->on_rq = 1;
403}
404
405static void
406account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
407{
408 update_load_sub(&cfs_rq->load, se->load.weight);
409 cfs_rq->nr_running--;
410 se->on_rq = 0;
411}
412
2396af69 413static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 414{
bf0f6f24
IM
415#ifdef CONFIG_SCHEDSTATS
416 if (se->sleep_start) {
d281918d 417 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
418
419 if ((s64)delta < 0)
420 delta = 0;
421
422 if (unlikely(delta > se->sleep_max))
423 se->sleep_max = delta;
424
425 se->sleep_start = 0;
426 se->sum_sleep_runtime += delta;
427 }
428 if (se->block_start) {
d281918d 429 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
430
431 if ((s64)delta < 0)
432 delta = 0;
433
434 if (unlikely(delta > se->block_max))
435 se->block_max = delta;
436
437 se->block_start = 0;
438 se->sum_sleep_runtime += delta;
30084fbd
IM
439
440 /*
441 * Blocking time is in units of nanosecs, so shift by 20 to
442 * get a milliseconds-range estimation of the amount of
443 * time that the task spent sleeping:
444 */
445 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf
IM
446 struct task_struct *tsk = task_of(se);
447
30084fbd
IM
448 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
449 delta >> 20);
450 }
bf0f6f24
IM
451 }
452#endif
453}
454
ddc97297
PZ
455static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
456{
457#ifdef CONFIG_SCHED_DEBUG
458 s64 d = se->vruntime - cfs_rq->min_vruntime;
459
460 if (d < 0)
461 d = -d;
462
463 if (d > 3*sysctl_sched_latency)
464 schedstat_inc(cfs_rq, nr_spread_over);
465#endif
466}
467
aeb73b04
PZ
468static void
469place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
470{
67e9fb2a 471 u64 vruntime;
aeb73b04 472
67e9fb2a 473 vruntime = cfs_rq->min_vruntime;
94dfb5e7 474
06877c33 475 if (sched_feat(TREE_AVG)) {
94dfb5e7
PZ
476 struct sched_entity *last = __pick_last_entity(cfs_rq);
477 if (last) {
67e9fb2a
PZ
478 vruntime += last->vruntime;
479 vruntime >>= 1;
94dfb5e7 480 }
67e9fb2a 481 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
647e7cac 482 vruntime += sched_vslice(cfs_rq)/2;
94dfb5e7
PZ
483
484 if (initial && sched_feat(START_DEBIT))
647e7cac 485 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 486
8465e792 487 if (!initial) {
e62dd02e
DA
488 if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
489 task_of(se)->policy != SCHED_BATCH)
94359f05
IM
490 vruntime -= sysctl_sched_latency;
491
b8487b92 492 vruntime = max_t(s64, vruntime, se->vruntime);
aeb73b04
PZ
493 }
494
67e9fb2a
PZ
495 se->vruntime = vruntime;
496
aeb73b04
PZ
497}
498
bf0f6f24 499static void
83b699ed 500enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
501{
502 /*
a2a2d680 503 * Update run-time statistics of the 'current'.
bf0f6f24 504 */
b7cc0896 505 update_curr(cfs_rq);
bf0f6f24 506
e9acbff6 507 if (wakeup) {
aeb73b04 508 place_entity(cfs_rq, se, 0);
2396af69 509 enqueue_sleeper(cfs_rq, se);
e9acbff6 510 }
bf0f6f24 511
d2417e5a 512 update_stats_enqueue(cfs_rq, se);
ddc97297 513 check_spread(cfs_rq, se);
83b699ed
SV
514 if (se != cfs_rq->curr)
515 __enqueue_entity(cfs_rq, se);
30cfdcfc 516 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
517}
518
519static void
525c2716 520dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 521{
a2a2d680
DA
522 /*
523 * Update run-time statistics of the 'current'.
524 */
525 update_curr(cfs_rq);
526
19b6a2e3 527 update_stats_dequeue(cfs_rq, se);
db36cc7d 528 if (sleep) {
95938a35 529 se->peer_preempt = 0;
67e9fb2a 530#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
531 if (entity_is_task(se)) {
532 struct task_struct *tsk = task_of(se);
533
534 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 535 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 536 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 537 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 538 }
db36cc7d 539#endif
67e9fb2a
PZ
540 }
541
83b699ed 542 if (se != cfs_rq->curr)
30cfdcfc
DA
543 __dequeue_entity(cfs_rq, se);
544 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
545}
546
547/*
548 * Preempt the current task with a newly woken task if needed:
549 */
7c92e54f 550static void
2e09bf55 551check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 552{
11697830
PZ
553 unsigned long ideal_runtime, delta_exec;
554
6d0f0ebd 555 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 556 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
95938a35
MG
557 if (delta_exec > ideal_runtime ||
558 (sched_feat(PREEMPT_RESTRICT) && curr->peer_preempt))
bf0f6f24 559 resched_task(rq_of(cfs_rq)->curr);
95938a35 560 curr->peer_preempt = 0;
bf0f6f24
IM
561}
562
83b699ed 563static void
8494f412 564set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 565{
83b699ed
SV
566 /* 'current' is not kept within the tree. */
567 if (se->on_rq) {
568 /*
569 * Any task has to be enqueued before it get to execute on
570 * a CPU. So account for the time it spent waiting on the
571 * runqueue.
572 */
573 update_stats_wait_end(cfs_rq, se);
574 __dequeue_entity(cfs_rq, se);
575 }
576
79303e9e 577 update_stats_curr_start(cfs_rq, se);
429d43bc 578 cfs_rq->curr = se;
eba1ed4b
IM
579#ifdef CONFIG_SCHEDSTATS
580 /*
581 * Track our maximum slice length, if the CPU's load is at
582 * least twice that of our own weight (i.e. dont track it
583 * when there are only lesser-weight tasks around):
584 */
495eca49 585 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
586 se->slice_max = max(se->slice_max,
587 se->sum_exec_runtime - se->prev_sum_exec_runtime);
588 }
589#endif
4a55b450 590 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
591}
592
9948f4b2 593static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 594{
08ec3df5 595 struct sched_entity *se = NULL;
bf0f6f24 596
08ec3df5
DA
597 if (first_fair(cfs_rq)) {
598 se = __pick_next_entity(cfs_rq);
599 set_next_entity(cfs_rq, se);
600 }
bf0f6f24
IM
601
602 return se;
603}
604
ab6cde26 605static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
606{
607 /*
608 * If still on the runqueue then deactivate_task()
609 * was not called and update_curr() has to be done:
610 */
611 if (prev->on_rq)
b7cc0896 612 update_curr(cfs_rq);
bf0f6f24 613
c7e9b5b2 614 update_stats_curr_end(cfs_rq, prev);
bf0f6f24 615
ddc97297 616 check_spread(cfs_rq, prev);
30cfdcfc 617 if (prev->on_rq) {
5870db5b 618 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
619 /* Put 'current' back into the tree. */
620 __enqueue_entity(cfs_rq, prev);
621 }
429d43bc 622 cfs_rq->curr = NULL;
bf0f6f24
IM
623}
624
625static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
626{
bf0f6f24 627 /*
30cfdcfc 628 * Update run-time statistics of the 'current'.
bf0f6f24 629 */
30cfdcfc 630 update_curr(cfs_rq);
bf0f6f24 631
ce6c1311 632 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 633 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
634}
635
636/**************************************************
637 * CFS operations on tasks:
638 */
639
640#ifdef CONFIG_FAIR_GROUP_SCHED
641
642/* Walk up scheduling entities hierarchy */
643#define for_each_sched_entity(se) \
644 for (; se; se = se->parent)
645
646static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
647{
648 return p->se.cfs_rq;
649}
650
651/* runqueue on which this entity is (to be) queued */
652static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
653{
654 return se->cfs_rq;
655}
656
657/* runqueue "owned" by this group */
658static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
659{
660 return grp->my_q;
661}
662
663/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
664 * another cpu ('this_cpu')
665 */
666static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
667{
29f59db3 668 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
669}
670
671/* Iterate thr' all leaf cfs_rq's on a runqueue */
672#define for_each_leaf_cfs_rq(rq, cfs_rq) \
673 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
674
fad095a7
SV
675/* Do the two (enqueued) entities belong to the same group ? */
676static inline int
677is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 678{
fad095a7 679 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
680 return 1;
681
682 return 0;
683}
684
fad095a7
SV
685static inline struct sched_entity *parent_entity(struct sched_entity *se)
686{
687 return se->parent;
688}
689
bf0f6f24
IM
690#else /* CONFIG_FAIR_GROUP_SCHED */
691
692#define for_each_sched_entity(se) \
693 for (; se; se = NULL)
694
695static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
696{
697 return &task_rq(p)->cfs;
698}
699
700static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
701{
702 struct task_struct *p = task_of(se);
703 struct rq *rq = task_rq(p);
704
705 return &rq->cfs;
706}
707
708/* runqueue "owned" by this group */
709static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
710{
711 return NULL;
712}
713
714static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
715{
716 return &cpu_rq(this_cpu)->cfs;
717}
718
719#define for_each_leaf_cfs_rq(rq, cfs_rq) \
720 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
721
fad095a7
SV
722static inline int
723is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
724{
725 return 1;
726}
727
fad095a7
SV
728static inline struct sched_entity *parent_entity(struct sched_entity *se)
729{
730 return NULL;
731}
732
bf0f6f24
IM
733#endif /* CONFIG_FAIR_GROUP_SCHED */
734
735/*
736 * The enqueue_task method is called before nr_running is
737 * increased. Here we update the fair scheduling stats and
738 * then put the task into the rbtree:
739 */
fd390f6a 740static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
741{
742 struct cfs_rq *cfs_rq;
743 struct sched_entity *se = &p->se;
744
745 for_each_sched_entity(se) {
746 if (se->on_rq)
747 break;
748 cfs_rq = cfs_rq_of(se);
83b699ed 749 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 750 wakeup = 1;
bf0f6f24
IM
751 }
752}
753
754/*
755 * The dequeue_task method is called before nr_running is
756 * decreased. We remove the task from the rbtree and
757 * update the fair scheduling stats:
758 */
f02231e5 759static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
760{
761 struct cfs_rq *cfs_rq;
762 struct sched_entity *se = &p->se;
763
764 for_each_sched_entity(se) {
765 cfs_rq = cfs_rq_of(se);
525c2716 766 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
767 /* Don't dequeue parent if it has other entities besides us */
768 if (cfs_rq->load.weight)
769 break;
b9fa3df3 770 sleep = 1;
bf0f6f24
IM
771 }
772}
773
774/*
1799e35d
IM
775 * sched_yield() support is very simple - we dequeue and enqueue.
776 *
777 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 778 */
4530d7ab 779static void yield_task_fair(struct rq *rq)
bf0f6f24 780{
72ea22f8 781 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
4530d7ab 782 struct sched_entity *rightmost, *se = &rq->curr->se;
bf0f6f24
IM
783
784 /*
1799e35d
IM
785 * Are we the only task in the tree?
786 */
787 if (unlikely(cfs_rq->nr_running == 1))
788 return;
789
790 if (likely(!sysctl_sched_compat_yield)) {
791 __update_rq_clock(rq);
792 /*
a2a2d680 793 * Update run-time statistics of the 'current'.
1799e35d 794 */
2b1e315d 795 update_curr(cfs_rq);
1799e35d
IM
796
797 return;
798 }
799 /*
800 * Find the rightmost entry in the rbtree:
bf0f6f24 801 */
2b1e315d 802 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
803 /*
804 * Already in the rightmost position?
805 */
2b1e315d 806 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
807 return;
808
809 /*
810 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
811 * Upon rescheduling, sched_class::put_prev_task() will place
812 * 'current' within the tree based on its new key value.
1799e35d 813 */
30cfdcfc 814 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
815}
816
817/*
818 * Preempt the current task with a newly woken task if needed:
819 */
2e09bf55 820static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
821{
822 struct task_struct *curr = rq->curr;
fad095a7 823 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 824 struct sched_entity *se = &curr->se, *pse = &p->se;
810e95cc 825 s64 delta, gran;
bf0f6f24
IM
826
827 if (unlikely(rt_prio(p->prio))) {
a8e504d2 828 update_rq_clock(rq);
b7cc0896 829 update_curr(cfs_rq);
bf0f6f24
IM
830 resched_task(curr);
831 return;
832 }
833
ce6c1311
PZ
834 if (sched_feat(WAKEUP_PREEMPT)) {
835 while (!is_same_group(se, pse)) {
836 se = parent_entity(se);
837 pse = parent_entity(pse);
838 }
8651a86c 839
ce6c1311
PZ
840 delta = se->vruntime - pse->vruntime;
841 gran = sysctl_sched_wakeup_granularity;
842 if (unlikely(se->load.weight != NICE_0_LOAD))
843 gran = calc_delta_fair(gran, &se->load);
8651a86c 844
95938a35
MG
845 if (delta > gran) {
846 int now = !sched_feat(PREEMPT_RESTRICT);
847
848 if (now || p->prio < curr->prio || !se->peer_preempt++)
849 resched_task(curr);
850 }
ce6c1311 851 }
bf0f6f24
IM
852}
853
fb8d4724 854static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
855{
856 struct cfs_rq *cfs_rq = &rq->cfs;
857 struct sched_entity *se;
858
859 if (unlikely(!cfs_rq->nr_running))
860 return NULL;
861
862 do {
9948f4b2 863 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
864 cfs_rq = group_cfs_rq(se);
865 } while (cfs_rq);
866
867 return task_of(se);
868}
869
870/*
871 * Account for a descheduled task:
872 */
31ee529c 873static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
874{
875 struct sched_entity *se = &prev->se;
876 struct cfs_rq *cfs_rq;
877
878 for_each_sched_entity(se) {
879 cfs_rq = cfs_rq_of(se);
ab6cde26 880 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
881 }
882}
883
884/**************************************************
885 * Fair scheduling class load-balancing methods:
886 */
887
888/*
889 * Load-balancing iterator. Note: while the runqueue stays locked
890 * during the whole iteration, the current task might be
891 * dequeued so the iterator has to be dequeue-safe. Here we
892 * achieve that by always pre-iterating before returning
893 * the current task:
894 */
a9957449 895static struct task_struct *
bf0f6f24
IM
896__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
897{
898 struct task_struct *p;
899
900 if (!curr)
901 return NULL;
902
903 p = rb_entry(curr, struct task_struct, se.run_node);
904 cfs_rq->rb_load_balance_curr = rb_next(curr);
905
906 return p;
907}
908
909static struct task_struct *load_balance_start_fair(void *arg)
910{
911 struct cfs_rq *cfs_rq = arg;
912
913 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
914}
915
916static struct task_struct *load_balance_next_fair(void *arg)
917{
918 struct cfs_rq *cfs_rq = arg;
919
920 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
921}
922
a4ac01c3 923#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
924static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
925{
926 struct sched_entity *curr;
927 struct task_struct *p;
928
929 if (!cfs_rq->nr_running)
930 return MAX_PRIO;
931
9b5b7751
SV
932 curr = cfs_rq->curr;
933 if (!curr)
934 curr = __pick_next_entity(cfs_rq);
935
bf0f6f24
IM
936 p = task_of(curr);
937
938 return p->prio;
939}
a4ac01c3 940#endif
bf0f6f24 941
43010659 942static unsigned long
bf0f6f24 943load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
944 unsigned long max_nr_move, unsigned long max_load_move,
945 struct sched_domain *sd, enum cpu_idle_type idle,
946 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
947{
948 struct cfs_rq *busy_cfs_rq;
949 unsigned long load_moved, total_nr_moved = 0, nr_moved;
950 long rem_load_move = max_load_move;
951 struct rq_iterator cfs_rq_iterator;
952
953 cfs_rq_iterator.start = load_balance_start_fair;
954 cfs_rq_iterator.next = load_balance_next_fair;
955
956 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 957#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 958 struct cfs_rq *this_cfs_rq;
e56f31aa 959 long imbalance;
bf0f6f24 960 unsigned long maxload;
bf0f6f24
IM
961
962 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
963
e56f31aa 964 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
965 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
966 if (imbalance <= 0)
967 continue;
968
969 /* Don't pull more than imbalance/2 */
970 imbalance /= 2;
971 maxload = min(rem_load_move, imbalance);
972
a4ac01c3
PW
973 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
974#else
e56f31aa 975# define maxload rem_load_move
a4ac01c3 976#endif
bf0f6f24
IM
977 /* pass busy_cfs_rq argument into
978 * load_balance_[start|next]_fair iterators
979 */
980 cfs_rq_iterator.arg = busy_cfs_rq;
981 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
982 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 983 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
984
985 total_nr_moved += nr_moved;
986 max_nr_move -= nr_moved;
987 rem_load_move -= load_moved;
988
989 if (max_nr_move <= 0 || rem_load_move <= 0)
990 break;
991 }
992
43010659 993 return max_load_move - rem_load_move;
bf0f6f24
IM
994}
995
996/*
997 * scheduler tick hitting a task of our scheduling class:
998 */
999static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1000{
1001 struct cfs_rq *cfs_rq;
1002 struct sched_entity *se = &curr->se;
1003
1004 for_each_sched_entity(se) {
1005 cfs_rq = cfs_rq_of(se);
1006 entity_tick(cfs_rq, se);
1007 }
1008}
1009
4d78e7b6
PZ
1010#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1011
bf0f6f24
IM
1012/*
1013 * Share the fairness runtime between parent and child, thus the
1014 * total amount of pressure for CPU stays equal - new tasks
1015 * get a chance to run but frequent forkers are not allowed to
1016 * monopolize the CPU. Note: the parent runqueue is locked,
1017 * the child is not running yet.
1018 */
ee0827d8 1019static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1020{
1021 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1022 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1023 int this_cpu = smp_processor_id();
bf0f6f24
IM
1024
1025 sched_info_queued(p);
1026
7109c442 1027 update_curr(cfs_rq);
aeb73b04 1028 place_entity(cfs_rq, se, 1);
4d78e7b6 1029
00bf7bfc 1030 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
4d78e7b6 1031 curr->vruntime < se->vruntime) {
87fefa38 1032 /*
edcb60a3
IM
1033 * Upon rescheduling, sched_class::put_prev_task() will place
1034 * 'current' within the tree based on its new key value.
1035 */
4d78e7b6 1036 swap(curr->vruntime, se->vruntime);
4d78e7b6 1037 }
bf0f6f24 1038
e9acbff6 1039 update_stats_enqueue(cfs_rq, se);
ddc97297
PZ
1040 check_spread(cfs_rq, se);
1041 check_spread(cfs_rq, curr);
bf0f6f24 1042 __enqueue_entity(cfs_rq, se);
30cfdcfc 1043 account_entity_enqueue(cfs_rq, se);
95938a35 1044 se->peer_preempt = 0;
bb61c210 1045 resched_task(rq->curr);
bf0f6f24
IM
1046}
1047
83b699ed
SV
1048/* Account for a task changing its policy or group.
1049 *
1050 * This routine is mostly called to set cfs_rq->curr field when a task
1051 * migrates between groups/classes.
1052 */
1053static void set_curr_task_fair(struct rq *rq)
1054{
1055 struct sched_entity *se = &rq->curr->se;
1056
1057 for_each_sched_entity(se)
1058 set_next_entity(cfs_rq_of(se), se);
1059}
1060
bf0f6f24
IM
1061/*
1062 * All the scheduling class methods:
1063 */
5522d5d5
IM
1064static const struct sched_class fair_sched_class = {
1065 .next = &idle_sched_class,
bf0f6f24
IM
1066 .enqueue_task = enqueue_task_fair,
1067 .dequeue_task = dequeue_task_fair,
1068 .yield_task = yield_task_fair,
1069
2e09bf55 1070 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1071
1072 .pick_next_task = pick_next_task_fair,
1073 .put_prev_task = put_prev_task_fair,
1074
1075 .load_balance = load_balance_fair,
1076
83b699ed 1077 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1078 .task_tick = task_tick_fair,
1079 .task_new = task_new_fair,
1080};
1081
1082#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1083static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1084{
bf0f6f24
IM
1085 struct cfs_rq *cfs_rq;
1086
75c28ace
SV
1087#ifdef CONFIG_FAIR_GROUP_SCHED
1088 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1089#endif
c3b64f1e 1090 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1091 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1092}
1093#endif