]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched_fair.c
sched: Break out cpu_power from the sched_group structure
[mirror_ubuntu-jammy-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
9745512c 26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
864616ee 29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 30 *
21805085 31 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
bf0f6f24 35 *
d274a4ce
IM
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 38 */
21406928
MG
39unsigned int sysctl_sched_latency = 6000000ULL;
40unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 41
1983a922
CE
42/*
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 *
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 */
51enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
864616ee 56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 57 */
0bf377bb
IM
58unsigned int sysctl_sched_min_granularity = 750000ULL;
59unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
60
61/*
b2be5e96
PZ
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 */
0bf377bb 64static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
65
66/*
2bba22c5 67 * After fork, child runs first. If set to 0 (default) then
b2be5e96 68 * parent will (try to) run first.
21805085 69 */
2bba22c5 70unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 71
bf0f6f24
IM
72/*
73 * SCHED_OTHER wake-up granularity.
172e082a 74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
172e082a 80unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 81unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 82
da84d961
IM
83const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84
a7a4f8a7
PT
85/*
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
89 */
90unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91
a4c2f00f
PZ
92static const struct sched_class fair_sched_class;
93
bf0f6f24
IM
94/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
62160e3f 98#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 99
62160e3f 100/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
62160e3f 103 return cfs_rq->rq;
bf0f6f24
IM
104}
105
62160e3f
IM
106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
bf0f6f24 108
8f48894f
PZ
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
b758149c
PZ
117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
3d4b47b4
PZ
146static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
147{
148 if (!cfs_rq->on_list) {
67e86250
PT
149 /*
150 * Ensure we either appear before our parent (if already
151 * enqueued) or force our parent to appear after us when it is
152 * enqueued. The fact that we always enqueue bottom-up
153 * reduces this to two cases.
154 */
155 if (cfs_rq->tg->parent &&
156 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
157 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
158 &rq_of(cfs_rq)->leaf_cfs_rq_list);
159 } else {
160 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 161 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 162 }
3d4b47b4
PZ
163
164 cfs_rq->on_list = 1;
165 }
166}
167
168static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
169{
170 if (cfs_rq->on_list) {
171 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
172 cfs_rq->on_list = 0;
173 }
174}
175
b758149c
PZ
176/* Iterate thr' all leaf cfs_rq's on a runqueue */
177#define for_each_leaf_cfs_rq(rq, cfs_rq) \
178 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
179
180/* Do the two (enqueued) entities belong to the same group ? */
181static inline int
182is_same_group(struct sched_entity *se, struct sched_entity *pse)
183{
184 if (se->cfs_rq == pse->cfs_rq)
185 return 1;
186
187 return 0;
188}
189
190static inline struct sched_entity *parent_entity(struct sched_entity *se)
191{
192 return se->parent;
193}
194
464b7527
PZ
195/* return depth at which a sched entity is present in the hierarchy */
196static inline int depth_se(struct sched_entity *se)
197{
198 int depth = 0;
199
200 for_each_sched_entity(se)
201 depth++;
202
203 return depth;
204}
205
206static void
207find_matching_se(struct sched_entity **se, struct sched_entity **pse)
208{
209 int se_depth, pse_depth;
210
211 /*
212 * preemption test can be made between sibling entities who are in the
213 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
214 * both tasks until we find their ancestors who are siblings of common
215 * parent.
216 */
217
218 /* First walk up until both entities are at same depth */
219 se_depth = depth_se(*se);
220 pse_depth = depth_se(*pse);
221
222 while (se_depth > pse_depth) {
223 se_depth--;
224 *se = parent_entity(*se);
225 }
226
227 while (pse_depth > se_depth) {
228 pse_depth--;
229 *pse = parent_entity(*pse);
230 }
231
232 while (!is_same_group(*se, *pse)) {
233 *se = parent_entity(*se);
234 *pse = parent_entity(*pse);
235 }
236}
237
8f48894f
PZ
238#else /* !CONFIG_FAIR_GROUP_SCHED */
239
240static inline struct task_struct *task_of(struct sched_entity *se)
241{
242 return container_of(se, struct task_struct, se);
243}
bf0f6f24 244
62160e3f
IM
245static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
246{
247 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
248}
249
250#define entity_is_task(se) 1
251
b758149c
PZ
252#define for_each_sched_entity(se) \
253 for (; se; se = NULL)
bf0f6f24 254
b758149c 255static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 256{
b758149c 257 return &task_rq(p)->cfs;
bf0f6f24
IM
258}
259
b758149c
PZ
260static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
261{
262 struct task_struct *p = task_of(se);
263 struct rq *rq = task_rq(p);
264
265 return &rq->cfs;
266}
267
268/* runqueue "owned" by this group */
269static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
270{
271 return NULL;
272}
273
274static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
275{
276 return &cpu_rq(this_cpu)->cfs;
277}
278
3d4b47b4
PZ
279static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
280{
281}
282
283static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
284{
285}
286
b758149c
PZ
287#define for_each_leaf_cfs_rq(rq, cfs_rq) \
288 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
289
290static inline int
291is_same_group(struct sched_entity *se, struct sched_entity *pse)
292{
293 return 1;
294}
295
296static inline struct sched_entity *parent_entity(struct sched_entity *se)
297{
298 return NULL;
299}
300
464b7527
PZ
301static inline void
302find_matching_se(struct sched_entity **se, struct sched_entity **pse)
303{
304}
305
b758149c
PZ
306#endif /* CONFIG_FAIR_GROUP_SCHED */
307
bf0f6f24
IM
308
309/**************************************************************
310 * Scheduling class tree data structure manipulation methods:
311 */
312
0702e3eb 313static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 314{
368059a9
PZ
315 s64 delta = (s64)(vruntime - min_vruntime);
316 if (delta > 0)
02e0431a
PZ
317 min_vruntime = vruntime;
318
319 return min_vruntime;
320}
321
0702e3eb 322static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
323{
324 s64 delta = (s64)(vruntime - min_vruntime);
325 if (delta < 0)
326 min_vruntime = vruntime;
327
328 return min_vruntime;
329}
330
54fdc581
FC
331static inline int entity_before(struct sched_entity *a,
332 struct sched_entity *b)
333{
334 return (s64)(a->vruntime - b->vruntime) < 0;
335}
336
0702e3eb 337static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 338{
30cfdcfc 339 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
340}
341
1af5f730
PZ
342static void update_min_vruntime(struct cfs_rq *cfs_rq)
343{
344 u64 vruntime = cfs_rq->min_vruntime;
345
346 if (cfs_rq->curr)
347 vruntime = cfs_rq->curr->vruntime;
348
349 if (cfs_rq->rb_leftmost) {
350 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
351 struct sched_entity,
352 run_node);
353
e17036da 354 if (!cfs_rq->curr)
1af5f730
PZ
355 vruntime = se->vruntime;
356 else
357 vruntime = min_vruntime(vruntime, se->vruntime);
358 }
359
360 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
361#ifndef CONFIG_64BIT
362 smp_wmb();
363 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
364#endif
1af5f730
PZ
365}
366
bf0f6f24
IM
367/*
368 * Enqueue an entity into the rb-tree:
369 */
0702e3eb 370static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
371{
372 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
373 struct rb_node *parent = NULL;
374 struct sched_entity *entry;
9014623c 375 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
376 int leftmost = 1;
377
378 /*
379 * Find the right place in the rbtree:
380 */
381 while (*link) {
382 parent = *link;
383 entry = rb_entry(parent, struct sched_entity, run_node);
384 /*
385 * We dont care about collisions. Nodes with
386 * the same key stay together.
387 */
9014623c 388 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
389 link = &parent->rb_left;
390 } else {
391 link = &parent->rb_right;
392 leftmost = 0;
393 }
394 }
395
396 /*
397 * Maintain a cache of leftmost tree entries (it is frequently
398 * used):
399 */
1af5f730 400 if (leftmost)
57cb499d 401 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
402
403 rb_link_node(&se->run_node, parent, link);
404 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
405}
406
0702e3eb 407static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 408{
3fe69747
PZ
409 if (cfs_rq->rb_leftmost == &se->run_node) {
410 struct rb_node *next_node;
3fe69747
PZ
411
412 next_node = rb_next(&se->run_node);
413 cfs_rq->rb_leftmost = next_node;
3fe69747 414 }
e9acbff6 415
bf0f6f24 416 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
417}
418
ac53db59 419static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 420{
f4b6755f
PZ
421 struct rb_node *left = cfs_rq->rb_leftmost;
422
423 if (!left)
424 return NULL;
425
426 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
427}
428
ac53db59
RR
429static struct sched_entity *__pick_next_entity(struct sched_entity *se)
430{
431 struct rb_node *next = rb_next(&se->run_node);
432
433 if (!next)
434 return NULL;
435
436 return rb_entry(next, struct sched_entity, run_node);
437}
438
439#ifdef CONFIG_SCHED_DEBUG
f4b6755f 440static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 441{
7eee3e67 442 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 443
70eee74b
BS
444 if (!last)
445 return NULL;
7eee3e67
IM
446
447 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
448}
449
bf0f6f24
IM
450/**************************************************************
451 * Scheduling class statistics methods:
452 */
453
acb4a848 454int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 455 void __user *buffer, size_t *lenp,
b2be5e96
PZ
456 loff_t *ppos)
457{
8d65af78 458 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 459 int factor = get_update_sysctl_factor();
b2be5e96
PZ
460
461 if (ret || !write)
462 return ret;
463
464 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
465 sysctl_sched_min_granularity);
466
acb4a848
CE
467#define WRT_SYSCTL(name) \
468 (normalized_sysctl_##name = sysctl_##name / (factor))
469 WRT_SYSCTL(sched_min_granularity);
470 WRT_SYSCTL(sched_latency);
471 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
472#undef WRT_SYSCTL
473
b2be5e96
PZ
474 return 0;
475}
476#endif
647e7cac 477
a7be37ac 478/*
f9c0b095 479 * delta /= w
a7be37ac
PZ
480 */
481static inline unsigned long
482calc_delta_fair(unsigned long delta, struct sched_entity *se)
483{
f9c0b095
PZ
484 if (unlikely(se->load.weight != NICE_0_LOAD))
485 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
486
487 return delta;
488}
489
647e7cac
IM
490/*
491 * The idea is to set a period in which each task runs once.
492 *
493 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
494 * this period because otherwise the slices get too small.
495 *
496 * p = (nr <= nl) ? l : l*nr/nl
497 */
4d78e7b6
PZ
498static u64 __sched_period(unsigned long nr_running)
499{
500 u64 period = sysctl_sched_latency;
b2be5e96 501 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
502
503 if (unlikely(nr_running > nr_latency)) {
4bf0b771 504 period = sysctl_sched_min_granularity;
4d78e7b6 505 period *= nr_running;
4d78e7b6
PZ
506 }
507
508 return period;
509}
510
647e7cac
IM
511/*
512 * We calculate the wall-time slice from the period by taking a part
513 * proportional to the weight.
514 *
f9c0b095 515 * s = p*P[w/rw]
647e7cac 516 */
6d0f0ebd 517static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 518{
0a582440 519 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 520
0a582440 521 for_each_sched_entity(se) {
6272d68c 522 struct load_weight *load;
3104bf03 523 struct load_weight lw;
6272d68c
LM
524
525 cfs_rq = cfs_rq_of(se);
526 load = &cfs_rq->load;
f9c0b095 527
0a582440 528 if (unlikely(!se->on_rq)) {
3104bf03 529 lw = cfs_rq->load;
0a582440
MG
530
531 update_load_add(&lw, se->load.weight);
532 load = &lw;
533 }
534 slice = calc_delta_mine(slice, se->load.weight, load);
535 }
536 return slice;
bf0f6f24
IM
537}
538
647e7cac 539/*
ac884dec 540 * We calculate the vruntime slice of a to be inserted task
647e7cac 541 *
f9c0b095 542 * vs = s/w
647e7cac 543 */
f9c0b095 544static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 545{
f9c0b095 546 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
547}
548
d6b55918 549static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 550static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 551
bf0f6f24
IM
552/*
553 * Update the current task's runtime statistics. Skip current tasks that
554 * are not in our scheduling class.
555 */
556static inline void
8ebc91d9
IM
557__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
558 unsigned long delta_exec)
bf0f6f24 559{
bbdba7c0 560 unsigned long delta_exec_weighted;
bf0f6f24 561
41acab88
LDM
562 schedstat_set(curr->statistics.exec_max,
563 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
564
565 curr->sum_exec_runtime += delta_exec;
7a62eabc 566 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 567 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 568
e9acbff6 569 curr->vruntime += delta_exec_weighted;
1af5f730 570 update_min_vruntime(cfs_rq);
3b3d190e 571
70caf8a6 572#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 573 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 574#endif
bf0f6f24
IM
575}
576
b7cc0896 577static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 578{
429d43bc 579 struct sched_entity *curr = cfs_rq->curr;
305e6835 580 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
581 unsigned long delta_exec;
582
583 if (unlikely(!curr))
584 return;
585
586 /*
587 * Get the amount of time the current task was running
588 * since the last time we changed load (this cannot
589 * overflow on 32 bits):
590 */
8ebc91d9 591 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
592 if (!delta_exec)
593 return;
bf0f6f24 594
8ebc91d9
IM
595 __update_curr(cfs_rq, curr, delta_exec);
596 curr->exec_start = now;
d842de87
SV
597
598 if (entity_is_task(curr)) {
599 struct task_struct *curtask = task_of(curr);
600
f977bb49 601 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 602 cpuacct_charge(curtask, delta_exec);
f06febc9 603 account_group_exec_runtime(curtask, delta_exec);
d842de87 604 }
bf0f6f24
IM
605}
606
607static inline void
5870db5b 608update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 609{
41acab88 610 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
611}
612
bf0f6f24
IM
613/*
614 * Task is being enqueued - update stats:
615 */
d2417e5a 616static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 617{
bf0f6f24
IM
618 /*
619 * Are we enqueueing a waiting task? (for current tasks
620 * a dequeue/enqueue event is a NOP)
621 */
429d43bc 622 if (se != cfs_rq->curr)
5870db5b 623 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
624}
625
bf0f6f24 626static void
9ef0a961 627update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 628{
41acab88
LDM
629 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
630 rq_of(cfs_rq)->clock - se->statistics.wait_start));
631 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
632 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
633 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
634#ifdef CONFIG_SCHEDSTATS
635 if (entity_is_task(se)) {
636 trace_sched_stat_wait(task_of(se),
41acab88 637 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
638 }
639#endif
41acab88 640 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
641}
642
643static inline void
19b6a2e3 644update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 645{
bf0f6f24
IM
646 /*
647 * Mark the end of the wait period if dequeueing a
648 * waiting task:
649 */
429d43bc 650 if (se != cfs_rq->curr)
9ef0a961 651 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
652}
653
654/*
655 * We are picking a new current task - update its stats:
656 */
657static inline void
79303e9e 658update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
659{
660 /*
661 * We are starting a new run period:
662 */
305e6835 663 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
664}
665
bf0f6f24
IM
666/**************************************************
667 * Scheduling class queueing methods:
668 */
669
c09595f6
PZ
670#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
671static void
672add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
673{
674 cfs_rq->task_weight += weight;
675}
676#else
677static inline void
678add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
679{
680}
681#endif
682
30cfdcfc
DA
683static void
684account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
685{
686 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
687 if (!parent_entity(se))
688 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 689 if (entity_is_task(se)) {
c09595f6 690 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
691 list_add(&se->group_node, &cfs_rq->tasks);
692 }
30cfdcfc 693 cfs_rq->nr_running++;
30cfdcfc
DA
694}
695
696static void
697account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
698{
699 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
700 if (!parent_entity(se))
701 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 702 if (entity_is_task(se)) {
c09595f6 703 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
704 list_del_init(&se->group_node);
705 }
30cfdcfc 706 cfs_rq->nr_running--;
30cfdcfc
DA
707}
708
3ff6dcac
YZ
709#ifdef CONFIG_FAIR_GROUP_SCHED
710# ifdef CONFIG_SMP
d6b55918
PT
711static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
712 int global_update)
713{
714 struct task_group *tg = cfs_rq->tg;
715 long load_avg;
716
717 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
718 load_avg -= cfs_rq->load_contribution;
719
720 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
721 atomic_add(load_avg, &tg->load_weight);
722 cfs_rq->load_contribution += load_avg;
723 }
724}
725
726static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 727{
a7a4f8a7 728 u64 period = sysctl_sched_shares_window;
2069dd75 729 u64 now, delta;
e33078ba 730 unsigned long load = cfs_rq->load.weight;
2069dd75 731
b815f196 732 if (cfs_rq->tg == &root_task_group)
2069dd75
PZ
733 return;
734
05ca62c6 735 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
736 delta = now - cfs_rq->load_stamp;
737
e33078ba
PT
738 /* truncate load history at 4 idle periods */
739 if (cfs_rq->load_stamp > cfs_rq->load_last &&
740 now - cfs_rq->load_last > 4 * period) {
741 cfs_rq->load_period = 0;
742 cfs_rq->load_avg = 0;
f07333bf 743 delta = period - 1;
e33078ba
PT
744 }
745
2069dd75 746 cfs_rq->load_stamp = now;
3b3d190e 747 cfs_rq->load_unacc_exec_time = 0;
2069dd75 748 cfs_rq->load_period += delta;
e33078ba
PT
749 if (load) {
750 cfs_rq->load_last = now;
751 cfs_rq->load_avg += delta * load;
752 }
2069dd75 753
d6b55918
PT
754 /* consider updating load contribution on each fold or truncate */
755 if (global_update || cfs_rq->load_period > period
756 || !cfs_rq->load_period)
757 update_cfs_rq_load_contribution(cfs_rq, global_update);
758
2069dd75
PZ
759 while (cfs_rq->load_period > period) {
760 /*
761 * Inline assembly required to prevent the compiler
762 * optimising this loop into a divmod call.
763 * See __iter_div_u64_rem() for another example of this.
764 */
765 asm("" : "+rm" (cfs_rq->load_period));
766 cfs_rq->load_period /= 2;
767 cfs_rq->load_avg /= 2;
768 }
3d4b47b4 769
e33078ba
PT
770 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
771 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
772}
773
6d5ab293 774static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
775{
776 long load_weight, load, shares;
777
6d5ab293 778 load = cfs_rq->load.weight;
3ff6dcac
YZ
779
780 load_weight = atomic_read(&tg->load_weight);
3ff6dcac 781 load_weight += load;
6d5ab293 782 load_weight -= cfs_rq->load_contribution;
3ff6dcac
YZ
783
784 shares = (tg->shares * load);
785 if (load_weight)
786 shares /= load_weight;
787
788 if (shares < MIN_SHARES)
789 shares = MIN_SHARES;
790 if (shares > tg->shares)
791 shares = tg->shares;
792
793 return shares;
794}
795
796static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
797{
798 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
799 update_cfs_load(cfs_rq, 0);
6d5ab293 800 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
801 }
802}
803# else /* CONFIG_SMP */
804static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
805{
806}
807
6d5ab293 808static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
809{
810 return tg->shares;
811}
812
813static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
814{
815}
816# endif /* CONFIG_SMP */
2069dd75
PZ
817static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
818 unsigned long weight)
819{
19e5eebb
PT
820 if (se->on_rq) {
821 /* commit outstanding execution time */
822 if (cfs_rq->curr == se)
823 update_curr(cfs_rq);
2069dd75 824 account_entity_dequeue(cfs_rq, se);
19e5eebb 825 }
2069dd75
PZ
826
827 update_load_set(&se->load, weight);
828
829 if (se->on_rq)
830 account_entity_enqueue(cfs_rq, se);
831}
832
6d5ab293 833static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
834{
835 struct task_group *tg;
836 struct sched_entity *se;
3ff6dcac 837 long shares;
2069dd75 838
2069dd75
PZ
839 tg = cfs_rq->tg;
840 se = tg->se[cpu_of(rq_of(cfs_rq))];
841 if (!se)
842 return;
3ff6dcac
YZ
843#ifndef CONFIG_SMP
844 if (likely(se->load.weight == tg->shares))
845 return;
846#endif
6d5ab293 847 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
848
849 reweight_entity(cfs_rq_of(se), se, shares);
850}
851#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 852static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
853{
854}
855
6d5ab293 856static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
857{
858}
43365bd7
PT
859
860static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
861{
862}
2069dd75
PZ
863#endif /* CONFIG_FAIR_GROUP_SCHED */
864
2396af69 865static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 866{
bf0f6f24 867#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
868 struct task_struct *tsk = NULL;
869
870 if (entity_is_task(se))
871 tsk = task_of(se);
872
41acab88
LDM
873 if (se->statistics.sleep_start) {
874 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
875
876 if ((s64)delta < 0)
877 delta = 0;
878
41acab88
LDM
879 if (unlikely(delta > se->statistics.sleep_max))
880 se->statistics.sleep_max = delta;
bf0f6f24 881
41acab88
LDM
882 se->statistics.sleep_start = 0;
883 se->statistics.sum_sleep_runtime += delta;
9745512c 884
768d0c27 885 if (tsk) {
e414314c 886 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
887 trace_sched_stat_sleep(tsk, delta);
888 }
bf0f6f24 889 }
41acab88
LDM
890 if (se->statistics.block_start) {
891 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
892
893 if ((s64)delta < 0)
894 delta = 0;
895
41acab88
LDM
896 if (unlikely(delta > se->statistics.block_max))
897 se->statistics.block_max = delta;
bf0f6f24 898
41acab88
LDM
899 se->statistics.block_start = 0;
900 se->statistics.sum_sleep_runtime += delta;
30084fbd 901
e414314c 902 if (tsk) {
8f0dfc34 903 if (tsk->in_iowait) {
41acab88
LDM
904 se->statistics.iowait_sum += delta;
905 se->statistics.iowait_count++;
768d0c27 906 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
907 }
908
e414314c
PZ
909 /*
910 * Blocking time is in units of nanosecs, so shift by
911 * 20 to get a milliseconds-range estimation of the
912 * amount of time that the task spent sleeping:
913 */
914 if (unlikely(prof_on == SLEEP_PROFILING)) {
915 profile_hits(SLEEP_PROFILING,
916 (void *)get_wchan(tsk),
917 delta >> 20);
918 }
919 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 920 }
bf0f6f24
IM
921 }
922#endif
923}
924
ddc97297
PZ
925static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
926{
927#ifdef CONFIG_SCHED_DEBUG
928 s64 d = se->vruntime - cfs_rq->min_vruntime;
929
930 if (d < 0)
931 d = -d;
932
933 if (d > 3*sysctl_sched_latency)
934 schedstat_inc(cfs_rq, nr_spread_over);
935#endif
936}
937
aeb73b04
PZ
938static void
939place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
940{
1af5f730 941 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 942
2cb8600e
PZ
943 /*
944 * The 'current' period is already promised to the current tasks,
945 * however the extra weight of the new task will slow them down a
946 * little, place the new task so that it fits in the slot that
947 * stays open at the end.
948 */
94dfb5e7 949 if (initial && sched_feat(START_DEBIT))
f9c0b095 950 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 951
a2e7a7eb 952 /* sleeps up to a single latency don't count. */
5ca9880c 953 if (!initial) {
a2e7a7eb 954 unsigned long thresh = sysctl_sched_latency;
a7be37ac 955
a2e7a7eb
MG
956 /*
957 * Halve their sleep time's effect, to allow
958 * for a gentler effect of sleepers:
959 */
960 if (sched_feat(GENTLE_FAIR_SLEEPERS))
961 thresh >>= 1;
51e0304c 962
a2e7a7eb 963 vruntime -= thresh;
aeb73b04
PZ
964 }
965
b5d9d734
MG
966 /* ensure we never gain time by being placed backwards. */
967 vruntime = max_vruntime(se->vruntime, vruntime);
968
67e9fb2a 969 se->vruntime = vruntime;
aeb73b04
PZ
970}
971
bf0f6f24 972static void
88ec22d3 973enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 974{
88ec22d3
PZ
975 /*
976 * Update the normalized vruntime before updating min_vruntime
977 * through callig update_curr().
978 */
371fd7e7 979 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
980 se->vruntime += cfs_rq->min_vruntime;
981
bf0f6f24 982 /*
a2a2d680 983 * Update run-time statistics of the 'current'.
bf0f6f24 984 */
b7cc0896 985 update_curr(cfs_rq);
d6b55918 986 update_cfs_load(cfs_rq, 0);
a992241d 987 account_entity_enqueue(cfs_rq, se);
6d5ab293 988 update_cfs_shares(cfs_rq);
bf0f6f24 989
88ec22d3 990 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 991 place_entity(cfs_rq, se, 0);
2396af69 992 enqueue_sleeper(cfs_rq, se);
e9acbff6 993 }
bf0f6f24 994
d2417e5a 995 update_stats_enqueue(cfs_rq, se);
ddc97297 996 check_spread(cfs_rq, se);
83b699ed
SV
997 if (se != cfs_rq->curr)
998 __enqueue_entity(cfs_rq, se);
2069dd75 999 se->on_rq = 1;
3d4b47b4
PZ
1000
1001 if (cfs_rq->nr_running == 1)
1002 list_add_leaf_cfs_rq(cfs_rq);
bf0f6f24
IM
1003}
1004
2c13c919 1005static void __clear_buddies_last(struct sched_entity *se)
2002c695 1006{
2c13c919
RR
1007 for_each_sched_entity(se) {
1008 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1009 if (cfs_rq->last == se)
1010 cfs_rq->last = NULL;
1011 else
1012 break;
1013 }
1014}
2002c695 1015
2c13c919
RR
1016static void __clear_buddies_next(struct sched_entity *se)
1017{
1018 for_each_sched_entity(se) {
1019 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1020 if (cfs_rq->next == se)
1021 cfs_rq->next = NULL;
1022 else
1023 break;
1024 }
2002c695
PZ
1025}
1026
ac53db59
RR
1027static void __clear_buddies_skip(struct sched_entity *se)
1028{
1029 for_each_sched_entity(se) {
1030 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1031 if (cfs_rq->skip == se)
1032 cfs_rq->skip = NULL;
1033 else
1034 break;
1035 }
1036}
1037
a571bbea
PZ
1038static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1039{
2c13c919
RR
1040 if (cfs_rq->last == se)
1041 __clear_buddies_last(se);
1042
1043 if (cfs_rq->next == se)
1044 __clear_buddies_next(se);
ac53db59
RR
1045
1046 if (cfs_rq->skip == se)
1047 __clear_buddies_skip(se);
a571bbea
PZ
1048}
1049
bf0f6f24 1050static void
371fd7e7 1051dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1052{
a2a2d680
DA
1053 /*
1054 * Update run-time statistics of the 'current'.
1055 */
1056 update_curr(cfs_rq);
1057
19b6a2e3 1058 update_stats_dequeue(cfs_rq, se);
371fd7e7 1059 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1060#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1061 if (entity_is_task(se)) {
1062 struct task_struct *tsk = task_of(se);
1063
1064 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1065 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1066 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1067 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1068 }
db36cc7d 1069#endif
67e9fb2a
PZ
1070 }
1071
2002c695 1072 clear_buddies(cfs_rq, se);
4793241b 1073
83b699ed 1074 if (se != cfs_rq->curr)
30cfdcfc 1075 __dequeue_entity(cfs_rq, se);
2069dd75 1076 se->on_rq = 0;
d6b55918 1077 update_cfs_load(cfs_rq, 0);
30cfdcfc 1078 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1079
1080 /*
1081 * Normalize the entity after updating the min_vruntime because the
1082 * update can refer to the ->curr item and we need to reflect this
1083 * movement in our normalized position.
1084 */
371fd7e7 1085 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1086 se->vruntime -= cfs_rq->min_vruntime;
1e876231
PZ
1087
1088 update_min_vruntime(cfs_rq);
1089 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1090}
1091
1092/*
1093 * Preempt the current task with a newly woken task if needed:
1094 */
7c92e54f 1095static void
2e09bf55 1096check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1097{
11697830
PZ
1098 unsigned long ideal_runtime, delta_exec;
1099
6d0f0ebd 1100 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1101 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1102 if (delta_exec > ideal_runtime) {
bf0f6f24 1103 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1104 /*
1105 * The current task ran long enough, ensure it doesn't get
1106 * re-elected due to buddy favours.
1107 */
1108 clear_buddies(cfs_rq, curr);
f685ceac
MG
1109 return;
1110 }
1111
1112 /*
1113 * Ensure that a task that missed wakeup preemption by a
1114 * narrow margin doesn't have to wait for a full slice.
1115 * This also mitigates buddy induced latencies under load.
1116 */
1117 if (!sched_feat(WAKEUP_PREEMPT))
1118 return;
1119
1120 if (delta_exec < sysctl_sched_min_granularity)
1121 return;
1122
1123 if (cfs_rq->nr_running > 1) {
ac53db59 1124 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac
MG
1125 s64 delta = curr->vruntime - se->vruntime;
1126
d7d82944
MG
1127 if (delta < 0)
1128 return;
1129
f685ceac
MG
1130 if (delta > ideal_runtime)
1131 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1132 }
bf0f6f24
IM
1133}
1134
83b699ed 1135static void
8494f412 1136set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1137{
83b699ed
SV
1138 /* 'current' is not kept within the tree. */
1139 if (se->on_rq) {
1140 /*
1141 * Any task has to be enqueued before it get to execute on
1142 * a CPU. So account for the time it spent waiting on the
1143 * runqueue.
1144 */
1145 update_stats_wait_end(cfs_rq, se);
1146 __dequeue_entity(cfs_rq, se);
1147 }
1148
79303e9e 1149 update_stats_curr_start(cfs_rq, se);
429d43bc 1150 cfs_rq->curr = se;
eba1ed4b
IM
1151#ifdef CONFIG_SCHEDSTATS
1152 /*
1153 * Track our maximum slice length, if the CPU's load is at
1154 * least twice that of our own weight (i.e. dont track it
1155 * when there are only lesser-weight tasks around):
1156 */
495eca49 1157 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1158 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1159 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1160 }
1161#endif
4a55b450 1162 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1163}
1164
3f3a4904
PZ
1165static int
1166wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1167
ac53db59
RR
1168/*
1169 * Pick the next process, keeping these things in mind, in this order:
1170 * 1) keep things fair between processes/task groups
1171 * 2) pick the "next" process, since someone really wants that to run
1172 * 3) pick the "last" process, for cache locality
1173 * 4) do not run the "skip" process, if something else is available
1174 */
f4b6755f 1175static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1176{
ac53db59 1177 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1178 struct sched_entity *left = se;
f4b6755f 1179
ac53db59
RR
1180 /*
1181 * Avoid running the skip buddy, if running something else can
1182 * be done without getting too unfair.
1183 */
1184 if (cfs_rq->skip == se) {
1185 struct sched_entity *second = __pick_next_entity(se);
1186 if (second && wakeup_preempt_entity(second, left) < 1)
1187 se = second;
1188 }
aa2ac252 1189
f685ceac
MG
1190 /*
1191 * Prefer last buddy, try to return the CPU to a preempted task.
1192 */
1193 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1194 se = cfs_rq->last;
1195
ac53db59
RR
1196 /*
1197 * Someone really wants this to run. If it's not unfair, run it.
1198 */
1199 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1200 se = cfs_rq->next;
1201
f685ceac 1202 clear_buddies(cfs_rq, se);
4793241b
PZ
1203
1204 return se;
aa2ac252
PZ
1205}
1206
ab6cde26 1207static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1208{
1209 /*
1210 * If still on the runqueue then deactivate_task()
1211 * was not called and update_curr() has to be done:
1212 */
1213 if (prev->on_rq)
b7cc0896 1214 update_curr(cfs_rq);
bf0f6f24 1215
ddc97297 1216 check_spread(cfs_rq, prev);
30cfdcfc 1217 if (prev->on_rq) {
5870db5b 1218 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1219 /* Put 'current' back into the tree. */
1220 __enqueue_entity(cfs_rq, prev);
1221 }
429d43bc 1222 cfs_rq->curr = NULL;
bf0f6f24
IM
1223}
1224
8f4d37ec
PZ
1225static void
1226entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1227{
bf0f6f24 1228 /*
30cfdcfc 1229 * Update run-time statistics of the 'current'.
bf0f6f24 1230 */
30cfdcfc 1231 update_curr(cfs_rq);
bf0f6f24 1232
43365bd7
PT
1233 /*
1234 * Update share accounting for long-running entities.
1235 */
1236 update_entity_shares_tick(cfs_rq);
1237
8f4d37ec
PZ
1238#ifdef CONFIG_SCHED_HRTICK
1239 /*
1240 * queued ticks are scheduled to match the slice, so don't bother
1241 * validating it and just reschedule.
1242 */
983ed7a6
HH
1243 if (queued) {
1244 resched_task(rq_of(cfs_rq)->curr);
1245 return;
1246 }
8f4d37ec
PZ
1247 /*
1248 * don't let the period tick interfere with the hrtick preemption
1249 */
1250 if (!sched_feat(DOUBLE_TICK) &&
1251 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1252 return;
1253#endif
1254
ce6c1311 1255 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 1256 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1257}
1258
1259/**************************************************
1260 * CFS operations on tasks:
1261 */
1262
8f4d37ec
PZ
1263#ifdef CONFIG_SCHED_HRTICK
1264static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1265{
8f4d37ec
PZ
1266 struct sched_entity *se = &p->se;
1267 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1268
1269 WARN_ON(task_rq(p) != rq);
1270
1271 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1272 u64 slice = sched_slice(cfs_rq, se);
1273 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1274 s64 delta = slice - ran;
1275
1276 if (delta < 0) {
1277 if (rq->curr == p)
1278 resched_task(p);
1279 return;
1280 }
1281
1282 /*
1283 * Don't schedule slices shorter than 10000ns, that just
1284 * doesn't make sense. Rely on vruntime for fairness.
1285 */
31656519 1286 if (rq->curr != p)
157124c1 1287 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1288
31656519 1289 hrtick_start(rq, delta);
8f4d37ec
PZ
1290 }
1291}
a4c2f00f
PZ
1292
1293/*
1294 * called from enqueue/dequeue and updates the hrtick when the
1295 * current task is from our class and nr_running is low enough
1296 * to matter.
1297 */
1298static void hrtick_update(struct rq *rq)
1299{
1300 struct task_struct *curr = rq->curr;
1301
1302 if (curr->sched_class != &fair_sched_class)
1303 return;
1304
1305 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1306 hrtick_start_fair(rq, curr);
1307}
55e12e5e 1308#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1309static inline void
1310hrtick_start_fair(struct rq *rq, struct task_struct *p)
1311{
1312}
a4c2f00f
PZ
1313
1314static inline void hrtick_update(struct rq *rq)
1315{
1316}
8f4d37ec
PZ
1317#endif
1318
bf0f6f24
IM
1319/*
1320 * The enqueue_task method is called before nr_running is
1321 * increased. Here we update the fair scheduling stats and
1322 * then put the task into the rbtree:
1323 */
ea87bb78 1324static void
371fd7e7 1325enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1326{
1327 struct cfs_rq *cfs_rq;
62fb1851 1328 struct sched_entity *se = &p->se;
bf0f6f24
IM
1329
1330 for_each_sched_entity(se) {
62fb1851 1331 if (se->on_rq)
bf0f6f24
IM
1332 break;
1333 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1334 enqueue_entity(cfs_rq, se, flags);
1335 flags = ENQUEUE_WAKEUP;
bf0f6f24 1336 }
8f4d37ec 1337
2069dd75
PZ
1338 for_each_sched_entity(se) {
1339 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1340
d6b55918 1341 update_cfs_load(cfs_rq, 0);
6d5ab293 1342 update_cfs_shares(cfs_rq);
2069dd75
PZ
1343 }
1344
a4c2f00f 1345 hrtick_update(rq);
bf0f6f24
IM
1346}
1347
2f36825b
VP
1348static void set_next_buddy(struct sched_entity *se);
1349
bf0f6f24
IM
1350/*
1351 * The dequeue_task method is called before nr_running is
1352 * decreased. We remove the task from the rbtree and
1353 * update the fair scheduling stats:
1354 */
371fd7e7 1355static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1356{
1357 struct cfs_rq *cfs_rq;
62fb1851 1358 struct sched_entity *se = &p->se;
2f36825b 1359 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
1360
1361 for_each_sched_entity(se) {
1362 cfs_rq = cfs_rq_of(se);
371fd7e7 1363 dequeue_entity(cfs_rq, se, flags);
2069dd75 1364
bf0f6f24 1365 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
1366 if (cfs_rq->load.weight) {
1367 /*
1368 * Bias pick_next to pick a task from this cfs_rq, as
1369 * p is sleeping when it is within its sched_slice.
1370 */
1371 if (task_sleep && parent_entity(se))
1372 set_next_buddy(parent_entity(se));
bf0f6f24 1373 break;
2f36825b 1374 }
371fd7e7 1375 flags |= DEQUEUE_SLEEP;
bf0f6f24 1376 }
8f4d37ec 1377
2069dd75
PZ
1378 for_each_sched_entity(se) {
1379 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1380
d6b55918 1381 update_cfs_load(cfs_rq, 0);
6d5ab293 1382 update_cfs_shares(cfs_rq);
2069dd75
PZ
1383 }
1384
a4c2f00f 1385 hrtick_update(rq);
bf0f6f24
IM
1386}
1387
e7693a36 1388#ifdef CONFIG_SMP
098fb9db 1389
74f8e4b2 1390static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
1391{
1392 struct sched_entity *se = &p->se;
1393 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
1394 u64 min_vruntime;
1395
1396#ifndef CONFIG_64BIT
1397 u64 min_vruntime_copy;
88ec22d3 1398
3fe1698b
PZ
1399 do {
1400 min_vruntime_copy = cfs_rq->min_vruntime_copy;
1401 smp_rmb();
1402 min_vruntime = cfs_rq->min_vruntime;
1403 } while (min_vruntime != min_vruntime_copy);
1404#else
1405 min_vruntime = cfs_rq->min_vruntime;
1406#endif
88ec22d3 1407
3fe1698b 1408 se->vruntime -= min_vruntime;
88ec22d3
PZ
1409}
1410
bb3469ac 1411#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1412/*
1413 * effective_load() calculates the load change as seen from the root_task_group
1414 *
1415 * Adding load to a group doesn't make a group heavier, but can cause movement
1416 * of group shares between cpus. Assuming the shares were perfectly aligned one
1417 * can calculate the shift in shares.
f5bfb7d9 1418 */
2069dd75 1419static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1420{
4be9daaa 1421 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1422
1423 if (!tg->parent)
1424 return wl;
1425
4be9daaa 1426 for_each_sched_entity(se) {
977dda7c 1427 long lw, w;
4be9daaa 1428
977dda7c
PT
1429 tg = se->my_q->tg;
1430 w = se->my_q->load.weight;
bb3469ac 1431
977dda7c
PT
1432 /* use this cpu's instantaneous contribution */
1433 lw = atomic_read(&tg->load_weight);
1434 lw -= se->my_q->load_contribution;
1435 lw += w + wg;
4be9daaa 1436
977dda7c 1437 wl += w;
940959e9 1438
977dda7c
PT
1439 if (lw > 0 && wl < lw)
1440 wl = (wl * tg->shares) / lw;
1441 else
1442 wl = tg->shares;
940959e9 1443
977dda7c
PT
1444 /* zero point is MIN_SHARES */
1445 if (wl < MIN_SHARES)
1446 wl = MIN_SHARES;
1447 wl -= se->load.weight;
4be9daaa 1448 wg = 0;
4be9daaa 1449 }
bb3469ac 1450
4be9daaa 1451 return wl;
bb3469ac 1452}
4be9daaa 1453
bb3469ac 1454#else
4be9daaa 1455
83378269
PZ
1456static inline unsigned long effective_load(struct task_group *tg, int cpu,
1457 unsigned long wl, unsigned long wg)
4be9daaa 1458{
83378269 1459 return wl;
bb3469ac 1460}
4be9daaa 1461
bb3469ac
PZ
1462#endif
1463
c88d5910 1464static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1465{
e37b6a7b 1466 s64 this_load, load;
c88d5910 1467 int idx, this_cpu, prev_cpu;
098fb9db 1468 unsigned long tl_per_task;
c88d5910 1469 struct task_group *tg;
83378269 1470 unsigned long weight;
b3137bc8 1471 int balanced;
098fb9db 1472
c88d5910
PZ
1473 idx = sd->wake_idx;
1474 this_cpu = smp_processor_id();
1475 prev_cpu = task_cpu(p);
1476 load = source_load(prev_cpu, idx);
1477 this_load = target_load(this_cpu, idx);
098fb9db 1478
b3137bc8
MG
1479 /*
1480 * If sync wakeup then subtract the (maximum possible)
1481 * effect of the currently running task from the load
1482 * of the current CPU:
1483 */
f3b577de 1484 rcu_read_lock();
83378269
PZ
1485 if (sync) {
1486 tg = task_group(current);
1487 weight = current->se.load.weight;
1488
c88d5910 1489 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1490 load += effective_load(tg, prev_cpu, 0, -weight);
1491 }
b3137bc8 1492
83378269
PZ
1493 tg = task_group(p);
1494 weight = p->se.load.weight;
b3137bc8 1495
71a29aa7
PZ
1496 /*
1497 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1498 * due to the sync cause above having dropped this_load to 0, we'll
1499 * always have an imbalance, but there's really nothing you can do
1500 * about that, so that's good too.
71a29aa7
PZ
1501 *
1502 * Otherwise check if either cpus are near enough in load to allow this
1503 * task to be woken on this_cpu.
1504 */
e37b6a7b
PT
1505 if (this_load > 0) {
1506 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
1507
1508 this_eff_load = 100;
1509 this_eff_load *= power_of(prev_cpu);
1510 this_eff_load *= this_load +
1511 effective_load(tg, this_cpu, weight, weight);
1512
1513 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1514 prev_eff_load *= power_of(this_cpu);
1515 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1516
1517 balanced = this_eff_load <= prev_eff_load;
1518 } else
1519 balanced = true;
f3b577de 1520 rcu_read_unlock();
b3137bc8 1521
098fb9db 1522 /*
4ae7d5ce
IM
1523 * If the currently running task will sleep within
1524 * a reasonable amount of time then attract this newly
1525 * woken task:
098fb9db 1526 */
2fb7635c
PZ
1527 if (sync && balanced)
1528 return 1;
098fb9db 1529
41acab88 1530 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1531 tl_per_task = cpu_avg_load_per_task(this_cpu);
1532
c88d5910
PZ
1533 if (balanced ||
1534 (this_load <= load &&
1535 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1536 /*
1537 * This domain has SD_WAKE_AFFINE and
1538 * p is cache cold in this domain, and
1539 * there is no bad imbalance.
1540 */
c88d5910 1541 schedstat_inc(sd, ttwu_move_affine);
41acab88 1542 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1543
1544 return 1;
1545 }
1546 return 0;
1547}
1548
aaee1203
PZ
1549/*
1550 * find_idlest_group finds and returns the least busy CPU group within the
1551 * domain.
1552 */
1553static struct sched_group *
78e7ed53 1554find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1555 int this_cpu, int load_idx)
e7693a36 1556{
b3bd3de6 1557 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 1558 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1559 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1560
aaee1203
PZ
1561 do {
1562 unsigned long load, avg_load;
1563 int local_group;
1564 int i;
e7693a36 1565
aaee1203
PZ
1566 /* Skip over this group if it has no CPUs allowed */
1567 if (!cpumask_intersects(sched_group_cpus(group),
1568 &p->cpus_allowed))
1569 continue;
1570
1571 local_group = cpumask_test_cpu(this_cpu,
1572 sched_group_cpus(group));
1573
1574 /* Tally up the load of all CPUs in the group */
1575 avg_load = 0;
1576
1577 for_each_cpu(i, sched_group_cpus(group)) {
1578 /* Bias balancing toward cpus of our domain */
1579 if (local_group)
1580 load = source_load(i, load_idx);
1581 else
1582 load = target_load(i, load_idx);
1583
1584 avg_load += load;
1585 }
1586
1587 /* Adjust by relative CPU power of the group */
9c3f75cb 1588 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
1589
1590 if (local_group) {
1591 this_load = avg_load;
aaee1203
PZ
1592 } else if (avg_load < min_load) {
1593 min_load = avg_load;
1594 idlest = group;
1595 }
1596 } while (group = group->next, group != sd->groups);
1597
1598 if (!idlest || 100*this_load < imbalance*min_load)
1599 return NULL;
1600 return idlest;
1601}
1602
1603/*
1604 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1605 */
1606static int
1607find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1608{
1609 unsigned long load, min_load = ULONG_MAX;
1610 int idlest = -1;
1611 int i;
1612
1613 /* Traverse only the allowed CPUs */
1614 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1615 load = weighted_cpuload(i);
1616
1617 if (load < min_load || (load == min_load && i == this_cpu)) {
1618 min_load = load;
1619 idlest = i;
e7693a36
GH
1620 }
1621 }
1622
aaee1203
PZ
1623 return idlest;
1624}
e7693a36 1625
a50bde51
PZ
1626/*
1627 * Try and locate an idle CPU in the sched_domain.
1628 */
99bd5e2f 1629static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
1630{
1631 int cpu = smp_processor_id();
1632 int prev_cpu = task_cpu(p);
99bd5e2f 1633 struct sched_domain *sd;
a50bde51
PZ
1634 int i;
1635
1636 /*
99bd5e2f
SS
1637 * If the task is going to be woken-up on this cpu and if it is
1638 * already idle, then it is the right target.
a50bde51 1639 */
99bd5e2f
SS
1640 if (target == cpu && idle_cpu(cpu))
1641 return cpu;
1642
1643 /*
1644 * If the task is going to be woken-up on the cpu where it previously
1645 * ran and if it is currently idle, then it the right target.
1646 */
1647 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 1648 return prev_cpu;
a50bde51
PZ
1649
1650 /*
99bd5e2f 1651 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 1652 */
dce840a0 1653 rcu_read_lock();
99bd5e2f
SS
1654 for_each_domain(target, sd) {
1655 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 1656 break;
99bd5e2f
SS
1657
1658 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1659 if (idle_cpu(i)) {
1660 target = i;
1661 break;
1662 }
a50bde51 1663 }
99bd5e2f
SS
1664
1665 /*
1666 * Lets stop looking for an idle sibling when we reached
1667 * the domain that spans the current cpu and prev_cpu.
1668 */
1669 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1670 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1671 break;
a50bde51 1672 }
dce840a0 1673 rcu_read_unlock();
a50bde51
PZ
1674
1675 return target;
1676}
1677
aaee1203
PZ
1678/*
1679 * sched_balance_self: balance the current task (running on cpu) in domains
1680 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1681 * SD_BALANCE_EXEC.
1682 *
1683 * Balance, ie. select the least loaded group.
1684 *
1685 * Returns the target CPU number, or the same CPU if no balancing is needed.
1686 *
1687 * preempt must be disabled.
1688 */
0017d735 1689static int
7608dec2 1690select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1691{
29cd8bae 1692 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1693 int cpu = smp_processor_id();
1694 int prev_cpu = task_cpu(p);
1695 int new_cpu = cpu;
99bd5e2f 1696 int want_affine = 0;
29cd8bae 1697 int want_sd = 1;
5158f4e4 1698 int sync = wake_flags & WF_SYNC;
c88d5910 1699
0763a660 1700 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 1701 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1702 want_affine = 1;
1703 new_cpu = prev_cpu;
1704 }
aaee1203 1705
dce840a0 1706 rcu_read_lock();
aaee1203 1707 for_each_domain(cpu, tmp) {
e4f42888
PZ
1708 if (!(tmp->flags & SD_LOAD_BALANCE))
1709 continue;
1710
aaee1203 1711 /*
ae154be1
PZ
1712 * If power savings logic is enabled for a domain, see if we
1713 * are not overloaded, if so, don't balance wider.
aaee1203 1714 */
59abf026 1715 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1716 unsigned long power = 0;
1717 unsigned long nr_running = 0;
1718 unsigned long capacity;
1719 int i;
1720
1721 for_each_cpu(i, sched_domain_span(tmp)) {
1722 power += power_of(i);
1723 nr_running += cpu_rq(i)->cfs.nr_running;
1724 }
1725
1399fa78 1726 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 1727
59abf026
PZ
1728 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1729 nr_running /= 2;
1730
1731 if (nr_running < capacity)
29cd8bae 1732 want_sd = 0;
ae154be1 1733 }
aaee1203 1734
fe3bcfe1 1735 /*
99bd5e2f
SS
1736 * If both cpu and prev_cpu are part of this domain,
1737 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 1738 */
99bd5e2f
SS
1739 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1740 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1741 affine_sd = tmp;
1742 want_affine = 0;
c88d5910
PZ
1743 }
1744
29cd8bae
PZ
1745 if (!want_sd && !want_affine)
1746 break;
1747
0763a660 1748 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1749 continue;
1750
29cd8bae
PZ
1751 if (want_sd)
1752 sd = tmp;
1753 }
1754
8b911acd 1755 if (affine_sd) {
99bd5e2f 1756 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
1757 prev_cpu = cpu;
1758
1759 new_cpu = select_idle_sibling(p, prev_cpu);
1760 goto unlock;
8b911acd 1761 }
e7693a36 1762
aaee1203 1763 while (sd) {
5158f4e4 1764 int load_idx = sd->forkexec_idx;
aaee1203 1765 struct sched_group *group;
c88d5910 1766 int weight;
098fb9db 1767
0763a660 1768 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1769 sd = sd->child;
1770 continue;
1771 }
098fb9db 1772
5158f4e4
PZ
1773 if (sd_flag & SD_BALANCE_WAKE)
1774 load_idx = sd->wake_idx;
098fb9db 1775
5158f4e4 1776 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1777 if (!group) {
1778 sd = sd->child;
1779 continue;
1780 }
4ae7d5ce 1781
d7c33c49 1782 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1783 if (new_cpu == -1 || new_cpu == cpu) {
1784 /* Now try balancing at a lower domain level of cpu */
1785 sd = sd->child;
1786 continue;
e7693a36 1787 }
aaee1203
PZ
1788
1789 /* Now try balancing at a lower domain level of new_cpu */
1790 cpu = new_cpu;
669c55e9 1791 weight = sd->span_weight;
aaee1203
PZ
1792 sd = NULL;
1793 for_each_domain(cpu, tmp) {
669c55e9 1794 if (weight <= tmp->span_weight)
aaee1203 1795 break;
0763a660 1796 if (tmp->flags & sd_flag)
aaee1203
PZ
1797 sd = tmp;
1798 }
1799 /* while loop will break here if sd == NULL */
e7693a36 1800 }
dce840a0
PZ
1801unlock:
1802 rcu_read_unlock();
e7693a36 1803
c88d5910 1804 return new_cpu;
e7693a36
GH
1805}
1806#endif /* CONFIG_SMP */
1807
e52fb7c0
PZ
1808static unsigned long
1809wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1810{
1811 unsigned long gran = sysctl_sched_wakeup_granularity;
1812
1813 /*
e52fb7c0
PZ
1814 * Since its curr running now, convert the gran from real-time
1815 * to virtual-time in his units.
13814d42
MG
1816 *
1817 * By using 'se' instead of 'curr' we penalize light tasks, so
1818 * they get preempted easier. That is, if 'se' < 'curr' then
1819 * the resulting gran will be larger, therefore penalizing the
1820 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1821 * be smaller, again penalizing the lighter task.
1822 *
1823 * This is especially important for buddies when the leftmost
1824 * task is higher priority than the buddy.
0bbd3336 1825 */
f4ad9bd2 1826 return calc_delta_fair(gran, se);
0bbd3336
PZ
1827}
1828
464b7527
PZ
1829/*
1830 * Should 'se' preempt 'curr'.
1831 *
1832 * |s1
1833 * |s2
1834 * |s3
1835 * g
1836 * |<--->|c
1837 *
1838 * w(c, s1) = -1
1839 * w(c, s2) = 0
1840 * w(c, s3) = 1
1841 *
1842 */
1843static int
1844wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1845{
1846 s64 gran, vdiff = curr->vruntime - se->vruntime;
1847
1848 if (vdiff <= 0)
1849 return -1;
1850
e52fb7c0 1851 gran = wakeup_gran(curr, se);
464b7527
PZ
1852 if (vdiff > gran)
1853 return 1;
1854
1855 return 0;
1856}
1857
02479099
PZ
1858static void set_last_buddy(struct sched_entity *se)
1859{
69c80f3e
VP
1860 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1861 return;
1862
1863 for_each_sched_entity(se)
1864 cfs_rq_of(se)->last = se;
02479099
PZ
1865}
1866
1867static void set_next_buddy(struct sched_entity *se)
1868{
69c80f3e
VP
1869 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1870 return;
1871
1872 for_each_sched_entity(se)
1873 cfs_rq_of(se)->next = se;
02479099
PZ
1874}
1875
ac53db59
RR
1876static void set_skip_buddy(struct sched_entity *se)
1877{
69c80f3e
VP
1878 for_each_sched_entity(se)
1879 cfs_rq_of(se)->skip = se;
ac53db59
RR
1880}
1881
bf0f6f24
IM
1882/*
1883 * Preempt the current task with a newly woken task if needed:
1884 */
5a9b86f6 1885static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1886{
1887 struct task_struct *curr = rq->curr;
8651a86c 1888 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1889 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 1890 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 1891 int next_buddy_marked = 0;
bf0f6f24 1892
4ae7d5ce
IM
1893 if (unlikely(se == pse))
1894 return;
1895
2f36825b 1896 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 1897 set_next_buddy(pse);
2f36825b
VP
1898 next_buddy_marked = 1;
1899 }
57fdc26d 1900
aec0a514
BR
1901 /*
1902 * We can come here with TIF_NEED_RESCHED already set from new task
1903 * wake up path.
1904 */
1905 if (test_tsk_need_resched(curr))
1906 return;
1907
a2f5c9ab
DH
1908 /* Idle tasks are by definition preempted by non-idle tasks. */
1909 if (unlikely(curr->policy == SCHED_IDLE) &&
1910 likely(p->policy != SCHED_IDLE))
1911 goto preempt;
1912
91c234b4 1913 /*
a2f5c9ab
DH
1914 * Batch and idle tasks do not preempt non-idle tasks (their preemption
1915 * is driven by the tick):
91c234b4 1916 */
6bc912b7 1917 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1918 return;
bf0f6f24 1919
bf0f6f24 1920
ad4b78bb
PZ
1921 if (!sched_feat(WAKEUP_PREEMPT))
1922 return;
1923
3a7e73a2 1924 update_curr(cfs_rq);
464b7527 1925 find_matching_se(&se, &pse);
002f128b 1926 BUG_ON(!pse);
2f36825b
VP
1927 if (wakeup_preempt_entity(se, pse) == 1) {
1928 /*
1929 * Bias pick_next to pick the sched entity that is
1930 * triggering this preemption.
1931 */
1932 if (!next_buddy_marked)
1933 set_next_buddy(pse);
3a7e73a2 1934 goto preempt;
2f36825b 1935 }
464b7527 1936
3a7e73a2 1937 return;
a65ac745 1938
3a7e73a2
PZ
1939preempt:
1940 resched_task(curr);
1941 /*
1942 * Only set the backward buddy when the current task is still
1943 * on the rq. This can happen when a wakeup gets interleaved
1944 * with schedule on the ->pre_schedule() or idle_balance()
1945 * point, either of which can * drop the rq lock.
1946 *
1947 * Also, during early boot the idle thread is in the fair class,
1948 * for obvious reasons its a bad idea to schedule back to it.
1949 */
1950 if (unlikely(!se->on_rq || curr == rq->idle))
1951 return;
1952
1953 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1954 set_last_buddy(se);
bf0f6f24
IM
1955}
1956
fb8d4724 1957static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1958{
8f4d37ec 1959 struct task_struct *p;
bf0f6f24
IM
1960 struct cfs_rq *cfs_rq = &rq->cfs;
1961 struct sched_entity *se;
1962
36ace27e 1963 if (!cfs_rq->nr_running)
bf0f6f24
IM
1964 return NULL;
1965
1966 do {
9948f4b2 1967 se = pick_next_entity(cfs_rq);
f4b6755f 1968 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1969 cfs_rq = group_cfs_rq(se);
1970 } while (cfs_rq);
1971
8f4d37ec
PZ
1972 p = task_of(se);
1973 hrtick_start_fair(rq, p);
1974
1975 return p;
bf0f6f24
IM
1976}
1977
1978/*
1979 * Account for a descheduled task:
1980 */
31ee529c 1981static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1982{
1983 struct sched_entity *se = &prev->se;
1984 struct cfs_rq *cfs_rq;
1985
1986 for_each_sched_entity(se) {
1987 cfs_rq = cfs_rq_of(se);
ab6cde26 1988 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1989 }
1990}
1991
ac53db59
RR
1992/*
1993 * sched_yield() is very simple
1994 *
1995 * The magic of dealing with the ->skip buddy is in pick_next_entity.
1996 */
1997static void yield_task_fair(struct rq *rq)
1998{
1999 struct task_struct *curr = rq->curr;
2000 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2001 struct sched_entity *se = &curr->se;
2002
2003 /*
2004 * Are we the only task in the tree?
2005 */
2006 if (unlikely(rq->nr_running == 1))
2007 return;
2008
2009 clear_buddies(cfs_rq, se);
2010
2011 if (curr->policy != SCHED_BATCH) {
2012 update_rq_clock(rq);
2013 /*
2014 * Update run-time statistics of the 'current'.
2015 */
2016 update_curr(cfs_rq);
2017 }
2018
2019 set_skip_buddy(se);
2020}
2021
d95f4122
MG
2022static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2023{
2024 struct sched_entity *se = &p->se;
2025
2026 if (!se->on_rq)
2027 return false;
2028
2029 /* Tell the scheduler that we'd really like pse to run next. */
2030 set_next_buddy(se);
2031
d95f4122
MG
2032 yield_task_fair(rq);
2033
2034 return true;
2035}
2036
681f3e68 2037#ifdef CONFIG_SMP
bf0f6f24
IM
2038/**************************************************
2039 * Fair scheduling class load-balancing methods:
2040 */
2041
1e3c88bd
PZ
2042/*
2043 * pull_task - move a task from a remote runqueue to the local runqueue.
2044 * Both runqueues must be locked.
2045 */
2046static void pull_task(struct rq *src_rq, struct task_struct *p,
2047 struct rq *this_rq, int this_cpu)
2048{
2049 deactivate_task(src_rq, p, 0);
2050 set_task_cpu(p, this_cpu);
2051 activate_task(this_rq, p, 0);
2052 check_preempt_curr(this_rq, p, 0);
2053}
2054
2055/*
2056 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2057 */
2058static
2059int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2060 struct sched_domain *sd, enum cpu_idle_type idle,
2061 int *all_pinned)
2062{
2063 int tsk_cache_hot = 0;
2064 /*
2065 * We do not migrate tasks that are:
2066 * 1) running (obviously), or
2067 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2068 * 3) are cache-hot on their current CPU.
2069 */
2070 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 2071 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
2072 return 0;
2073 }
2074 *all_pinned = 0;
2075
2076 if (task_running(rq, p)) {
41acab88 2077 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
2078 return 0;
2079 }
2080
2081 /*
2082 * Aggressive migration if:
2083 * 1) task is cache cold, or
2084 * 2) too many balance attempts have failed.
2085 */
2086
305e6835 2087 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
2088 if (!tsk_cache_hot ||
2089 sd->nr_balance_failed > sd->cache_nice_tries) {
2090#ifdef CONFIG_SCHEDSTATS
2091 if (tsk_cache_hot) {
2092 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 2093 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
2094 }
2095#endif
2096 return 1;
2097 }
2098
2099 if (tsk_cache_hot) {
41acab88 2100 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
2101 return 0;
2102 }
2103 return 1;
2104}
2105
897c395f
PZ
2106/*
2107 * move_one_task tries to move exactly one task from busiest to this_rq, as
2108 * part of active balancing operations within "domain".
2109 * Returns 1 if successful and 0 otherwise.
2110 *
2111 * Called with both runqueues locked.
2112 */
2113static int
2114move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2115 struct sched_domain *sd, enum cpu_idle_type idle)
2116{
2117 struct task_struct *p, *n;
2118 struct cfs_rq *cfs_rq;
2119 int pinned = 0;
2120
2121 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2122 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2123
2124 if (!can_migrate_task(p, busiest, this_cpu,
2125 sd, idle, &pinned))
2126 continue;
2127
2128 pull_task(busiest, p, this_rq, this_cpu);
2129 /*
2130 * Right now, this is only the second place pull_task()
2131 * is called, so we can safely collect pull_task()
2132 * stats here rather than inside pull_task().
2133 */
2134 schedstat_inc(sd, lb_gained[idle]);
2135 return 1;
2136 }
2137 }
2138
2139 return 0;
2140}
2141
1e3c88bd
PZ
2142static unsigned long
2143balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2144 unsigned long max_load_move, struct sched_domain *sd,
2145 enum cpu_idle_type idle, int *all_pinned,
931aeeda 2146 struct cfs_rq *busiest_cfs_rq)
1e3c88bd 2147{
b30aef17 2148 int loops = 0, pulled = 0;
1e3c88bd 2149 long rem_load_move = max_load_move;
ee00e66f 2150 struct task_struct *p, *n;
1e3c88bd
PZ
2151
2152 if (max_load_move == 0)
2153 goto out;
2154
ee00e66f
PZ
2155 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2156 if (loops++ > sysctl_sched_nr_migrate)
2157 break;
1e3c88bd 2158
ee00e66f 2159 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17
KC
2160 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2161 all_pinned))
ee00e66f 2162 continue;
1e3c88bd 2163
ee00e66f
PZ
2164 pull_task(busiest, p, this_rq, this_cpu);
2165 pulled++;
2166 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2167
2168#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2169 /*
2170 * NEWIDLE balancing is a source of latency, so preemptible
2171 * kernels will stop after the first task is pulled to minimize
2172 * the critical section.
2173 */
2174 if (idle == CPU_NEWLY_IDLE)
2175 break;
1e3c88bd
PZ
2176#endif
2177
ee00e66f
PZ
2178 /*
2179 * We only want to steal up to the prescribed amount of
2180 * weighted load.
2181 */
2182 if (rem_load_move <= 0)
2183 break;
1e3c88bd
PZ
2184 }
2185out:
2186 /*
2187 * Right now, this is one of only two places pull_task() is called,
2188 * so we can safely collect pull_task() stats here rather than
2189 * inside pull_task().
2190 */
2191 schedstat_add(sd, lb_gained[idle], pulled);
2192
1e3c88bd
PZ
2193 return max_load_move - rem_load_move;
2194}
2195
230059de 2196#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2197/*
2198 * update tg->load_weight by folding this cpu's load_avg
2199 */
67e86250 2200static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2201{
2202 struct cfs_rq *cfs_rq;
2203 unsigned long flags;
2204 struct rq *rq;
9e3081ca
PZ
2205
2206 if (!tg->se[cpu])
2207 return 0;
2208
2209 rq = cpu_rq(cpu);
2210 cfs_rq = tg->cfs_rq[cpu];
2211
2212 raw_spin_lock_irqsave(&rq->lock, flags);
2213
2214 update_rq_clock(rq);
d6b55918 2215 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2216
2217 /*
2218 * We need to update shares after updating tg->load_weight in
2219 * order to adjust the weight of groups with long running tasks.
2220 */
6d5ab293 2221 update_cfs_shares(cfs_rq);
9e3081ca
PZ
2222
2223 raw_spin_unlock_irqrestore(&rq->lock, flags);
2224
2225 return 0;
2226}
2227
2228static void update_shares(int cpu)
2229{
2230 struct cfs_rq *cfs_rq;
2231 struct rq *rq = cpu_rq(cpu);
2232
2233 rcu_read_lock();
67e86250
PT
2234 for_each_leaf_cfs_rq(rq, cfs_rq)
2235 update_shares_cpu(cfs_rq->tg, cpu);
9e3081ca
PZ
2236 rcu_read_unlock();
2237}
2238
230059de
PZ
2239static unsigned long
2240load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2241 unsigned long max_load_move,
2242 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2243 int *all_pinned)
230059de
PZ
2244{
2245 long rem_load_move = max_load_move;
2246 int busiest_cpu = cpu_of(busiest);
2247 struct task_group *tg;
2248
2249 rcu_read_lock();
2250 update_h_load(busiest_cpu);
2251
2252 list_for_each_entry_rcu(tg, &task_groups, list) {
2253 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2254 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2255 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2256 u64 rem_load, moved_load;
2257
2258 /*
2259 * empty group
2260 */
2261 if (!busiest_cfs_rq->task_weight)
2262 continue;
2263
2264 rem_load = (u64)rem_load_move * busiest_weight;
2265 rem_load = div_u64(rem_load, busiest_h_load + 1);
2266
2267 moved_load = balance_tasks(this_rq, this_cpu, busiest,
931aeeda 2268 rem_load, sd, idle, all_pinned,
230059de
PZ
2269 busiest_cfs_rq);
2270
2271 if (!moved_load)
2272 continue;
2273
2274 moved_load *= busiest_h_load;
2275 moved_load = div_u64(moved_load, busiest_weight + 1);
2276
2277 rem_load_move -= moved_load;
2278 if (rem_load_move < 0)
2279 break;
2280 }
2281 rcu_read_unlock();
2282
2283 return max_load_move - rem_load_move;
2284}
2285#else
9e3081ca
PZ
2286static inline void update_shares(int cpu)
2287{
2288}
2289
230059de
PZ
2290static unsigned long
2291load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2292 unsigned long max_load_move,
2293 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2294 int *all_pinned)
230059de
PZ
2295{
2296 return balance_tasks(this_rq, this_cpu, busiest,
2297 max_load_move, sd, idle, all_pinned,
931aeeda 2298 &busiest->cfs);
230059de
PZ
2299}
2300#endif
2301
1e3c88bd
PZ
2302/*
2303 * move_tasks tries to move up to max_load_move weighted load from busiest to
2304 * this_rq, as part of a balancing operation within domain "sd".
2305 * Returns 1 if successful and 0 otherwise.
2306 *
2307 * Called with both runqueues locked.
2308 */
2309static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2310 unsigned long max_load_move,
2311 struct sched_domain *sd, enum cpu_idle_type idle,
2312 int *all_pinned)
2313{
3d45fd80 2314 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2315
2316 do {
3d45fd80 2317 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd 2318 max_load_move - total_load_moved,
931aeeda 2319 sd, idle, all_pinned);
3d45fd80
PZ
2320
2321 total_load_moved += load_moved;
1e3c88bd
PZ
2322
2323#ifdef CONFIG_PREEMPT
2324 /*
2325 * NEWIDLE balancing is a source of latency, so preemptible
2326 * kernels will stop after the first task is pulled to minimize
2327 * the critical section.
2328 */
2329 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2330 break;
baa8c110
PZ
2331
2332 if (raw_spin_is_contended(&this_rq->lock) ||
2333 raw_spin_is_contended(&busiest->lock))
2334 break;
1e3c88bd 2335#endif
3d45fd80 2336 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2337
2338 return total_load_moved > 0;
2339}
2340
1e3c88bd
PZ
2341/********** Helpers for find_busiest_group ************************/
2342/*
2343 * sd_lb_stats - Structure to store the statistics of a sched_domain
2344 * during load balancing.
2345 */
2346struct sd_lb_stats {
2347 struct sched_group *busiest; /* Busiest group in this sd */
2348 struct sched_group *this; /* Local group in this sd */
2349 unsigned long total_load; /* Total load of all groups in sd */
2350 unsigned long total_pwr; /* Total power of all groups in sd */
2351 unsigned long avg_load; /* Average load across all groups in sd */
2352
2353 /** Statistics of this group */
2354 unsigned long this_load;
2355 unsigned long this_load_per_task;
2356 unsigned long this_nr_running;
fab47622 2357 unsigned long this_has_capacity;
aae6d3dd 2358 unsigned int this_idle_cpus;
1e3c88bd
PZ
2359
2360 /* Statistics of the busiest group */
aae6d3dd 2361 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
2362 unsigned long max_load;
2363 unsigned long busiest_load_per_task;
2364 unsigned long busiest_nr_running;
dd5feea1 2365 unsigned long busiest_group_capacity;
fab47622 2366 unsigned long busiest_has_capacity;
aae6d3dd 2367 unsigned int busiest_group_weight;
1e3c88bd
PZ
2368
2369 int group_imb; /* Is there imbalance in this sd */
2370#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2371 int power_savings_balance; /* Is powersave balance needed for this sd */
2372 struct sched_group *group_min; /* Least loaded group in sd */
2373 struct sched_group *group_leader; /* Group which relieves group_min */
2374 unsigned long min_load_per_task; /* load_per_task in group_min */
2375 unsigned long leader_nr_running; /* Nr running of group_leader */
2376 unsigned long min_nr_running; /* Nr running of group_min */
2377#endif
2378};
2379
2380/*
2381 * sg_lb_stats - stats of a sched_group required for load_balancing
2382 */
2383struct sg_lb_stats {
2384 unsigned long avg_load; /*Avg load across the CPUs of the group */
2385 unsigned long group_load; /* Total load over the CPUs of the group */
2386 unsigned long sum_nr_running; /* Nr tasks running in the group */
2387 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2388 unsigned long group_capacity;
aae6d3dd
SS
2389 unsigned long idle_cpus;
2390 unsigned long group_weight;
1e3c88bd 2391 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2392 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2393};
2394
2395/**
2396 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2397 * @group: The group whose first cpu is to be returned.
2398 */
2399static inline unsigned int group_first_cpu(struct sched_group *group)
2400{
2401 return cpumask_first(sched_group_cpus(group));
2402}
2403
2404/**
2405 * get_sd_load_idx - Obtain the load index for a given sched domain.
2406 * @sd: The sched_domain whose load_idx is to be obtained.
2407 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2408 */
2409static inline int get_sd_load_idx(struct sched_domain *sd,
2410 enum cpu_idle_type idle)
2411{
2412 int load_idx;
2413
2414 switch (idle) {
2415 case CPU_NOT_IDLE:
2416 load_idx = sd->busy_idx;
2417 break;
2418
2419 case CPU_NEWLY_IDLE:
2420 load_idx = sd->newidle_idx;
2421 break;
2422 default:
2423 load_idx = sd->idle_idx;
2424 break;
2425 }
2426
2427 return load_idx;
2428}
2429
2430
2431#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2432/**
2433 * init_sd_power_savings_stats - Initialize power savings statistics for
2434 * the given sched_domain, during load balancing.
2435 *
2436 * @sd: Sched domain whose power-savings statistics are to be initialized.
2437 * @sds: Variable containing the statistics for sd.
2438 * @idle: Idle status of the CPU at which we're performing load-balancing.
2439 */
2440static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2441 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2442{
2443 /*
2444 * Busy processors will not participate in power savings
2445 * balance.
2446 */
2447 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2448 sds->power_savings_balance = 0;
2449 else {
2450 sds->power_savings_balance = 1;
2451 sds->min_nr_running = ULONG_MAX;
2452 sds->leader_nr_running = 0;
2453 }
2454}
2455
2456/**
2457 * update_sd_power_savings_stats - Update the power saving stats for a
2458 * sched_domain while performing load balancing.
2459 *
2460 * @group: sched_group belonging to the sched_domain under consideration.
2461 * @sds: Variable containing the statistics of the sched_domain
2462 * @local_group: Does group contain the CPU for which we're performing
2463 * load balancing ?
2464 * @sgs: Variable containing the statistics of the group.
2465 */
2466static inline void update_sd_power_savings_stats(struct sched_group *group,
2467 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2468{
2469
2470 if (!sds->power_savings_balance)
2471 return;
2472
2473 /*
2474 * If the local group is idle or completely loaded
2475 * no need to do power savings balance at this domain
2476 */
2477 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2478 !sds->this_nr_running))
2479 sds->power_savings_balance = 0;
2480
2481 /*
2482 * If a group is already running at full capacity or idle,
2483 * don't include that group in power savings calculations
2484 */
2485 if (!sds->power_savings_balance ||
2486 sgs->sum_nr_running >= sgs->group_capacity ||
2487 !sgs->sum_nr_running)
2488 return;
2489
2490 /*
2491 * Calculate the group which has the least non-idle load.
2492 * This is the group from where we need to pick up the load
2493 * for saving power
2494 */
2495 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2496 (sgs->sum_nr_running == sds->min_nr_running &&
2497 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2498 sds->group_min = group;
2499 sds->min_nr_running = sgs->sum_nr_running;
2500 sds->min_load_per_task = sgs->sum_weighted_load /
2501 sgs->sum_nr_running;
2502 }
2503
2504 /*
2505 * Calculate the group which is almost near its
2506 * capacity but still has some space to pick up some load
2507 * from other group and save more power
2508 */
2509 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2510 return;
2511
2512 if (sgs->sum_nr_running > sds->leader_nr_running ||
2513 (sgs->sum_nr_running == sds->leader_nr_running &&
2514 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2515 sds->group_leader = group;
2516 sds->leader_nr_running = sgs->sum_nr_running;
2517 }
2518}
2519
2520/**
2521 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2522 * @sds: Variable containing the statistics of the sched_domain
2523 * under consideration.
2524 * @this_cpu: Cpu at which we're currently performing load-balancing.
2525 * @imbalance: Variable to store the imbalance.
2526 *
2527 * Description:
2528 * Check if we have potential to perform some power-savings balance.
2529 * If yes, set the busiest group to be the least loaded group in the
2530 * sched_domain, so that it's CPUs can be put to idle.
2531 *
2532 * Returns 1 if there is potential to perform power-savings balance.
2533 * Else returns 0.
2534 */
2535static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2536 int this_cpu, unsigned long *imbalance)
2537{
2538 if (!sds->power_savings_balance)
2539 return 0;
2540
2541 if (sds->this != sds->group_leader ||
2542 sds->group_leader == sds->group_min)
2543 return 0;
2544
2545 *imbalance = sds->min_load_per_task;
2546 sds->busiest = sds->group_min;
2547
2548 return 1;
2549
2550}
2551#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2552static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2553 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2554{
2555 return;
2556}
2557
2558static inline void update_sd_power_savings_stats(struct sched_group *group,
2559 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2560{
2561 return;
2562}
2563
2564static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2565 int this_cpu, unsigned long *imbalance)
2566{
2567 return 0;
2568}
2569#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2570
2571
2572unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2573{
1399fa78 2574 return SCHED_POWER_SCALE;
1e3c88bd
PZ
2575}
2576
2577unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2578{
2579 return default_scale_freq_power(sd, cpu);
2580}
2581
2582unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2583{
669c55e9 2584 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2585 unsigned long smt_gain = sd->smt_gain;
2586
2587 smt_gain /= weight;
2588
2589 return smt_gain;
2590}
2591
2592unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2593{
2594 return default_scale_smt_power(sd, cpu);
2595}
2596
2597unsigned long scale_rt_power(int cpu)
2598{
2599 struct rq *rq = cpu_rq(cpu);
2600 u64 total, available;
2601
1e3c88bd 2602 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
2603
2604 if (unlikely(total < rq->rt_avg)) {
2605 /* Ensures that power won't end up being negative */
2606 available = 0;
2607 } else {
2608 available = total - rq->rt_avg;
2609 }
1e3c88bd 2610
1399fa78
NR
2611 if (unlikely((s64)total < SCHED_POWER_SCALE))
2612 total = SCHED_POWER_SCALE;
1e3c88bd 2613
1399fa78 2614 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2615
2616 return div_u64(available, total);
2617}
2618
2619static void update_cpu_power(struct sched_domain *sd, int cpu)
2620{
669c55e9 2621 unsigned long weight = sd->span_weight;
1399fa78 2622 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
2623 struct sched_group *sdg = sd->groups;
2624
1e3c88bd
PZ
2625 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2626 if (sched_feat(ARCH_POWER))
2627 power *= arch_scale_smt_power(sd, cpu);
2628 else
2629 power *= default_scale_smt_power(sd, cpu);
2630
1399fa78 2631 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2632 }
2633
9c3f75cb 2634 sdg->sgp->power_orig = power;
9d5efe05
SV
2635
2636 if (sched_feat(ARCH_POWER))
2637 power *= arch_scale_freq_power(sd, cpu);
2638 else
2639 power *= default_scale_freq_power(sd, cpu);
2640
1399fa78 2641 power >>= SCHED_POWER_SHIFT;
9d5efe05 2642
1e3c88bd 2643 power *= scale_rt_power(cpu);
1399fa78 2644 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2645
2646 if (!power)
2647 power = 1;
2648
e51fd5e2 2649 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 2650 sdg->sgp->power = power;
1e3c88bd
PZ
2651}
2652
2653static void update_group_power(struct sched_domain *sd, int cpu)
2654{
2655 struct sched_domain *child = sd->child;
2656 struct sched_group *group, *sdg = sd->groups;
2657 unsigned long power;
2658
2659 if (!child) {
2660 update_cpu_power(sd, cpu);
2661 return;
2662 }
2663
2664 power = 0;
2665
2666 group = child->groups;
2667 do {
9c3f75cb 2668 power += group->sgp->power;
1e3c88bd
PZ
2669 group = group->next;
2670 } while (group != child->groups);
2671
9c3f75cb 2672 sdg->sgp->power = power;
1e3c88bd
PZ
2673}
2674
9d5efe05
SV
2675/*
2676 * Try and fix up capacity for tiny siblings, this is needed when
2677 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2678 * which on its own isn't powerful enough.
2679 *
2680 * See update_sd_pick_busiest() and check_asym_packing().
2681 */
2682static inline int
2683fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2684{
2685 /*
1399fa78 2686 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 2687 */
a6c75f2f 2688 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
2689 return 0;
2690
2691 /*
2692 * If ~90% of the cpu_power is still there, we're good.
2693 */
9c3f75cb 2694 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
2695 return 1;
2696
2697 return 0;
2698}
2699
1e3c88bd
PZ
2700/**
2701 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2702 * @sd: The sched_domain whose statistics are to be updated.
2703 * @group: sched_group whose statistics are to be updated.
2704 * @this_cpu: Cpu for which load balance is currently performed.
2705 * @idle: Idle status of this_cpu
2706 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
2707 * @local_group: Does group contain this_cpu.
2708 * @cpus: Set of cpus considered for load balancing.
2709 * @balance: Should we balance.
2710 * @sgs: variable to hold the statistics for this group.
2711 */
2712static inline void update_sg_lb_stats(struct sched_domain *sd,
2713 struct sched_group *group, int this_cpu,
46e49b38 2714 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
2715 int local_group, const struct cpumask *cpus,
2716 int *balance, struct sg_lb_stats *sgs)
2717{
2582f0eb 2718 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
2719 int i;
2720 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 2721 unsigned long avg_load_per_task = 0;
1e3c88bd 2722
871e35bc 2723 if (local_group)
1e3c88bd 2724 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
2725
2726 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
2727 max_cpu_load = 0;
2728 min_cpu_load = ~0UL;
2582f0eb 2729 max_nr_running = 0;
1e3c88bd
PZ
2730
2731 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2732 struct rq *rq = cpu_rq(i);
2733
1e3c88bd
PZ
2734 /* Bias balancing toward cpus of our domain */
2735 if (local_group) {
2736 if (idle_cpu(i) && !first_idle_cpu) {
2737 first_idle_cpu = 1;
2738 balance_cpu = i;
2739 }
2740
2741 load = target_load(i, load_idx);
2742 } else {
2743 load = source_load(i, load_idx);
2582f0eb 2744 if (load > max_cpu_load) {
1e3c88bd 2745 max_cpu_load = load;
2582f0eb
NR
2746 max_nr_running = rq->nr_running;
2747 }
1e3c88bd
PZ
2748 if (min_cpu_load > load)
2749 min_cpu_load = load;
2750 }
2751
2752 sgs->group_load += load;
2753 sgs->sum_nr_running += rq->nr_running;
2754 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
2755 if (idle_cpu(i))
2756 sgs->idle_cpus++;
1e3c88bd
PZ
2757 }
2758
2759 /*
2760 * First idle cpu or the first cpu(busiest) in this sched group
2761 * is eligible for doing load balancing at this and above
2762 * domains. In the newly idle case, we will allow all the cpu's
2763 * to do the newly idle load balance.
2764 */
bbc8cb5b
PZ
2765 if (idle != CPU_NEWLY_IDLE && local_group) {
2766 if (balance_cpu != this_cpu) {
2767 *balance = 0;
2768 return;
2769 }
2770 update_group_power(sd, this_cpu);
1e3c88bd
PZ
2771 }
2772
2773 /* Adjust by relative CPU power of the group */
9c3f75cb 2774 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 2775
1e3c88bd
PZ
2776 /*
2777 * Consider the group unbalanced when the imbalance is larger
866ab43e 2778 * than the average weight of a task.
1e3c88bd
PZ
2779 *
2780 * APZ: with cgroup the avg task weight can vary wildly and
2781 * might not be a suitable number - should we keep a
2782 * normalized nr_running number somewhere that negates
2783 * the hierarchy?
2784 */
dd5feea1
SS
2785 if (sgs->sum_nr_running)
2786 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 2787
866ab43e 2788 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
2789 sgs->group_imb = 1;
2790
9c3f75cb 2791 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 2792 SCHED_POWER_SCALE);
9d5efe05
SV
2793 if (!sgs->group_capacity)
2794 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 2795 sgs->group_weight = group->group_weight;
fab47622
NR
2796
2797 if (sgs->group_capacity > sgs->sum_nr_running)
2798 sgs->group_has_capacity = 1;
1e3c88bd
PZ
2799}
2800
532cb4c4
MN
2801/**
2802 * update_sd_pick_busiest - return 1 on busiest group
2803 * @sd: sched_domain whose statistics are to be checked
2804 * @sds: sched_domain statistics
2805 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
2806 * @sgs: sched_group statistics
2807 * @this_cpu: the current cpu
532cb4c4
MN
2808 *
2809 * Determine if @sg is a busier group than the previously selected
2810 * busiest group.
2811 */
2812static bool update_sd_pick_busiest(struct sched_domain *sd,
2813 struct sd_lb_stats *sds,
2814 struct sched_group *sg,
2815 struct sg_lb_stats *sgs,
2816 int this_cpu)
2817{
2818 if (sgs->avg_load <= sds->max_load)
2819 return false;
2820
2821 if (sgs->sum_nr_running > sgs->group_capacity)
2822 return true;
2823
2824 if (sgs->group_imb)
2825 return true;
2826
2827 /*
2828 * ASYM_PACKING needs to move all the work to the lowest
2829 * numbered CPUs in the group, therefore mark all groups
2830 * higher than ourself as busy.
2831 */
2832 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2833 this_cpu < group_first_cpu(sg)) {
2834 if (!sds->busiest)
2835 return true;
2836
2837 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2838 return true;
2839 }
2840
2841 return false;
2842}
2843
1e3c88bd
PZ
2844/**
2845 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2846 * @sd: sched_domain whose statistics are to be updated.
2847 * @this_cpu: Cpu for which load balance is currently performed.
2848 * @idle: Idle status of this_cpu
1e3c88bd
PZ
2849 * @cpus: Set of cpus considered for load balancing.
2850 * @balance: Should we balance.
2851 * @sds: variable to hold the statistics for this sched_domain.
2852 */
2853static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
2854 enum cpu_idle_type idle, const struct cpumask *cpus,
2855 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
2856{
2857 struct sched_domain *child = sd->child;
532cb4c4 2858 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
2859 struct sg_lb_stats sgs;
2860 int load_idx, prefer_sibling = 0;
2861
2862 if (child && child->flags & SD_PREFER_SIBLING)
2863 prefer_sibling = 1;
2864
2865 init_sd_power_savings_stats(sd, sds, idle);
2866 load_idx = get_sd_load_idx(sd, idle);
2867
2868 do {
2869 int local_group;
2870
532cb4c4 2871 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 2872 memset(&sgs, 0, sizeof(sgs));
46e49b38 2873 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
2874 local_group, cpus, balance, &sgs);
2875
8f190fb3 2876 if (local_group && !(*balance))
1e3c88bd
PZ
2877 return;
2878
2879 sds->total_load += sgs.group_load;
9c3f75cb 2880 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
2881
2882 /*
2883 * In case the child domain prefers tasks go to siblings
532cb4c4 2884 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
2885 * and move all the excess tasks away. We lower the capacity
2886 * of a group only if the local group has the capacity to fit
2887 * these excess tasks, i.e. nr_running < group_capacity. The
2888 * extra check prevents the case where you always pull from the
2889 * heaviest group when it is already under-utilized (possible
2890 * with a large weight task outweighs the tasks on the system).
1e3c88bd 2891 */
75dd321d 2892 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
2893 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2894
2895 if (local_group) {
2896 sds->this_load = sgs.avg_load;
532cb4c4 2897 sds->this = sg;
1e3c88bd
PZ
2898 sds->this_nr_running = sgs.sum_nr_running;
2899 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 2900 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 2901 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 2902 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 2903 sds->max_load = sgs.avg_load;
532cb4c4 2904 sds->busiest = sg;
1e3c88bd 2905 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 2906 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 2907 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 2908 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 2909 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 2910 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
2911 sds->group_imb = sgs.group_imb;
2912 }
2913
532cb4c4
MN
2914 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2915 sg = sg->next;
2916 } while (sg != sd->groups);
2917}
2918
2ec57d44 2919int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
2920{
2921 return 0*SD_ASYM_PACKING;
2922}
2923
2924/**
2925 * check_asym_packing - Check to see if the group is packed into the
2926 * sched doman.
2927 *
2928 * This is primarily intended to used at the sibling level. Some
2929 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2930 * case of POWER7, it can move to lower SMT modes only when higher
2931 * threads are idle. When in lower SMT modes, the threads will
2932 * perform better since they share less core resources. Hence when we
2933 * have idle threads, we want them to be the higher ones.
2934 *
2935 * This packing function is run on idle threads. It checks to see if
2936 * the busiest CPU in this domain (core in the P7 case) has a higher
2937 * CPU number than the packing function is being run on. Here we are
2938 * assuming lower CPU number will be equivalent to lower a SMT thread
2939 * number.
2940 *
b6b12294
MN
2941 * Returns 1 when packing is required and a task should be moved to
2942 * this CPU. The amount of the imbalance is returned in *imbalance.
2943 *
532cb4c4
MN
2944 * @sd: The sched_domain whose packing is to be checked.
2945 * @sds: Statistics of the sched_domain which is to be packed
2946 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2947 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
2948 */
2949static int check_asym_packing(struct sched_domain *sd,
2950 struct sd_lb_stats *sds,
2951 int this_cpu, unsigned long *imbalance)
2952{
2953 int busiest_cpu;
2954
2955 if (!(sd->flags & SD_ASYM_PACKING))
2956 return 0;
2957
2958 if (!sds->busiest)
2959 return 0;
2960
2961 busiest_cpu = group_first_cpu(sds->busiest);
2962 if (this_cpu > busiest_cpu)
2963 return 0;
2964
9c3f75cb 2965 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
1399fa78 2966 SCHED_POWER_SCALE);
532cb4c4 2967 return 1;
1e3c88bd
PZ
2968}
2969
2970/**
2971 * fix_small_imbalance - Calculate the minor imbalance that exists
2972 * amongst the groups of a sched_domain, during
2973 * load balancing.
2974 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2975 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2976 * @imbalance: Variable to store the imbalance.
2977 */
2978static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2979 int this_cpu, unsigned long *imbalance)
2980{
2981 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2982 unsigned int imbn = 2;
dd5feea1 2983 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
2984
2985 if (sds->this_nr_running) {
2986 sds->this_load_per_task /= sds->this_nr_running;
2987 if (sds->busiest_load_per_task >
2988 sds->this_load_per_task)
2989 imbn = 1;
2990 } else
2991 sds->this_load_per_task =
2992 cpu_avg_load_per_task(this_cpu);
2993
dd5feea1 2994 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 2995 * SCHED_POWER_SCALE;
9c3f75cb 2996 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
2997
2998 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2999 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
3000 *imbalance = sds->busiest_load_per_task;
3001 return;
3002 }
3003
3004 /*
3005 * OK, we don't have enough imbalance to justify moving tasks,
3006 * however we may be able to increase total CPU power used by
3007 * moving them.
3008 */
3009
9c3f75cb 3010 pwr_now += sds->busiest->sgp->power *
1e3c88bd 3011 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 3012 pwr_now += sds->this->sgp->power *
1e3c88bd 3013 min(sds->this_load_per_task, sds->this_load);
1399fa78 3014 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3015
3016 /* Amount of load we'd subtract */
1399fa78 3017 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 3018 sds->busiest->sgp->power;
1e3c88bd 3019 if (sds->max_load > tmp)
9c3f75cb 3020 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
3021 min(sds->busiest_load_per_task, sds->max_load - tmp);
3022
3023 /* Amount of load we'd add */
9c3f75cb 3024 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 3025 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
3026 tmp = (sds->max_load * sds->busiest->sgp->power) /
3027 sds->this->sgp->power;
1e3c88bd 3028 else
1399fa78 3029 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
3030 sds->this->sgp->power;
3031 pwr_move += sds->this->sgp->power *
1e3c88bd 3032 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 3033 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3034
3035 /* Move if we gain throughput */
3036 if (pwr_move > pwr_now)
3037 *imbalance = sds->busiest_load_per_task;
3038}
3039
3040/**
3041 * calculate_imbalance - Calculate the amount of imbalance present within the
3042 * groups of a given sched_domain during load balance.
3043 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3044 * @this_cpu: Cpu for which currently load balance is being performed.
3045 * @imbalance: The variable to store the imbalance.
3046 */
3047static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3048 unsigned long *imbalance)
3049{
dd5feea1
SS
3050 unsigned long max_pull, load_above_capacity = ~0UL;
3051
3052 sds->busiest_load_per_task /= sds->busiest_nr_running;
3053 if (sds->group_imb) {
3054 sds->busiest_load_per_task =
3055 min(sds->busiest_load_per_task, sds->avg_load);
3056 }
3057
1e3c88bd
PZ
3058 /*
3059 * In the presence of smp nice balancing, certain scenarios can have
3060 * max load less than avg load(as we skip the groups at or below
3061 * its cpu_power, while calculating max_load..)
3062 */
3063 if (sds->max_load < sds->avg_load) {
3064 *imbalance = 0;
3065 return fix_small_imbalance(sds, this_cpu, imbalance);
3066 }
3067
dd5feea1
SS
3068 if (!sds->group_imb) {
3069 /*
3070 * Don't want to pull so many tasks that a group would go idle.
3071 */
3072 load_above_capacity = (sds->busiest_nr_running -
3073 sds->busiest_group_capacity);
3074
1399fa78 3075 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 3076
9c3f75cb 3077 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
3078 }
3079
3080 /*
3081 * We're trying to get all the cpus to the average_load, so we don't
3082 * want to push ourselves above the average load, nor do we wish to
3083 * reduce the max loaded cpu below the average load. At the same time,
3084 * we also don't want to reduce the group load below the group capacity
3085 * (so that we can implement power-savings policies etc). Thus we look
3086 * for the minimum possible imbalance.
3087 * Be careful of negative numbers as they'll appear as very large values
3088 * with unsigned longs.
3089 */
3090 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
3091
3092 /* How much load to actually move to equalise the imbalance */
9c3f75cb
PZ
3093 *imbalance = min(max_pull * sds->busiest->sgp->power,
3094 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 3095 / SCHED_POWER_SCALE;
1e3c88bd
PZ
3096
3097 /*
3098 * if *imbalance is less than the average load per runnable task
25985edc 3099 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
3100 * a think about bumping its value to force at least one task to be
3101 * moved
3102 */
3103 if (*imbalance < sds->busiest_load_per_task)
3104 return fix_small_imbalance(sds, this_cpu, imbalance);
3105
3106}
fab47622 3107
1e3c88bd
PZ
3108/******* find_busiest_group() helpers end here *********************/
3109
3110/**
3111 * find_busiest_group - Returns the busiest group within the sched_domain
3112 * if there is an imbalance. If there isn't an imbalance, and
3113 * the user has opted for power-savings, it returns a group whose
3114 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3115 * such a group exists.
3116 *
3117 * Also calculates the amount of weighted load which should be moved
3118 * to restore balance.
3119 *
3120 * @sd: The sched_domain whose busiest group is to be returned.
3121 * @this_cpu: The cpu for which load balancing is currently being performed.
3122 * @imbalance: Variable which stores amount of weighted load which should
3123 * be moved to restore balance/put a group to idle.
3124 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
3125 * @cpus: The set of CPUs under consideration for load-balancing.
3126 * @balance: Pointer to a variable indicating if this_cpu
3127 * is the appropriate cpu to perform load balancing at this_level.
3128 *
3129 * Returns: - the busiest group if imbalance exists.
3130 * - If no imbalance and user has opted for power-savings balance,
3131 * return the least loaded group whose CPUs can be
3132 * put to idle by rebalancing its tasks onto our group.
3133 */
3134static struct sched_group *
3135find_busiest_group(struct sched_domain *sd, int this_cpu,
3136 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 3137 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
3138{
3139 struct sd_lb_stats sds;
3140
3141 memset(&sds, 0, sizeof(sds));
3142
3143 /*
3144 * Compute the various statistics relavent for load balancing at
3145 * this level.
3146 */
46e49b38 3147 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 3148
cc57aa8f
PZ
3149 /*
3150 * this_cpu is not the appropriate cpu to perform load balancing at
3151 * this level.
1e3c88bd 3152 */
8f190fb3 3153 if (!(*balance))
1e3c88bd
PZ
3154 goto ret;
3155
532cb4c4
MN
3156 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3157 check_asym_packing(sd, &sds, this_cpu, imbalance))
3158 return sds.busiest;
3159
cc57aa8f 3160 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
3161 if (!sds.busiest || sds.busiest_nr_running == 0)
3162 goto out_balanced;
3163
1399fa78 3164 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 3165
866ab43e
PZ
3166 /*
3167 * If the busiest group is imbalanced the below checks don't
3168 * work because they assumes all things are equal, which typically
3169 * isn't true due to cpus_allowed constraints and the like.
3170 */
3171 if (sds.group_imb)
3172 goto force_balance;
3173
cc57aa8f 3174 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
3175 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3176 !sds.busiest_has_capacity)
3177 goto force_balance;
3178
cc57aa8f
PZ
3179 /*
3180 * If the local group is more busy than the selected busiest group
3181 * don't try and pull any tasks.
3182 */
1e3c88bd
PZ
3183 if (sds.this_load >= sds.max_load)
3184 goto out_balanced;
3185
cc57aa8f
PZ
3186 /*
3187 * Don't pull any tasks if this group is already above the domain
3188 * average load.
3189 */
1e3c88bd
PZ
3190 if (sds.this_load >= sds.avg_load)
3191 goto out_balanced;
3192
c186fafe 3193 if (idle == CPU_IDLE) {
aae6d3dd
SS
3194 /*
3195 * This cpu is idle. If the busiest group load doesn't
3196 * have more tasks than the number of available cpu's and
3197 * there is no imbalance between this and busiest group
3198 * wrt to idle cpu's, it is balanced.
3199 */
c186fafe 3200 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
3201 sds.busiest_nr_running <= sds.busiest_group_weight)
3202 goto out_balanced;
c186fafe
PZ
3203 } else {
3204 /*
3205 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3206 * imbalance_pct to be conservative.
3207 */
3208 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3209 goto out_balanced;
aae6d3dd 3210 }
1e3c88bd 3211
fab47622 3212force_balance:
1e3c88bd
PZ
3213 /* Looks like there is an imbalance. Compute it */
3214 calculate_imbalance(&sds, this_cpu, imbalance);
3215 return sds.busiest;
3216
3217out_balanced:
3218 /*
3219 * There is no obvious imbalance. But check if we can do some balancing
3220 * to save power.
3221 */
3222 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3223 return sds.busiest;
3224ret:
3225 *imbalance = 0;
3226 return NULL;
3227}
3228
3229/*
3230 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3231 */
3232static struct rq *
9d5efe05
SV
3233find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3234 enum cpu_idle_type idle, unsigned long imbalance,
3235 const struct cpumask *cpus)
1e3c88bd
PZ
3236{
3237 struct rq *busiest = NULL, *rq;
3238 unsigned long max_load = 0;
3239 int i;
3240
3241 for_each_cpu(i, sched_group_cpus(group)) {
3242 unsigned long power = power_of(i);
1399fa78
NR
3243 unsigned long capacity = DIV_ROUND_CLOSEST(power,
3244 SCHED_POWER_SCALE);
1e3c88bd
PZ
3245 unsigned long wl;
3246
9d5efe05
SV
3247 if (!capacity)
3248 capacity = fix_small_capacity(sd, group);
3249
1e3c88bd
PZ
3250 if (!cpumask_test_cpu(i, cpus))
3251 continue;
3252
3253 rq = cpu_rq(i);
6e40f5bb 3254 wl = weighted_cpuload(i);
1e3c88bd 3255
6e40f5bb
TG
3256 /*
3257 * When comparing with imbalance, use weighted_cpuload()
3258 * which is not scaled with the cpu power.
3259 */
1e3c88bd
PZ
3260 if (capacity && rq->nr_running == 1 && wl > imbalance)
3261 continue;
3262
6e40f5bb
TG
3263 /*
3264 * For the load comparisons with the other cpu's, consider
3265 * the weighted_cpuload() scaled with the cpu power, so that
3266 * the load can be moved away from the cpu that is potentially
3267 * running at a lower capacity.
3268 */
1399fa78 3269 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 3270
1e3c88bd
PZ
3271 if (wl > max_load) {
3272 max_load = wl;
3273 busiest = rq;
3274 }
3275 }
3276
3277 return busiest;
3278}
3279
3280/*
3281 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3282 * so long as it is large enough.
3283 */
3284#define MAX_PINNED_INTERVAL 512
3285
3286/* Working cpumask for load_balance and load_balance_newidle. */
3287static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3288
46e49b38 3289static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 3290 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3291{
3292 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3293
3294 /*
3295 * ASYM_PACKING needs to force migrate tasks from busy but
3296 * higher numbered CPUs in order to pack all tasks in the
3297 * lowest numbered CPUs.
3298 */
3299 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3300 return 1;
3301
1af3ed3d
PZ
3302 /*
3303 * The only task running in a non-idle cpu can be moved to this
3304 * cpu in an attempt to completely freeup the other CPU
3305 * package.
3306 *
3307 * The package power saving logic comes from
3308 * find_busiest_group(). If there are no imbalance, then
3309 * f_b_g() will return NULL. However when sched_mc={1,2} then
3310 * f_b_g() will select a group from which a running task may be
3311 * pulled to this cpu in order to make the other package idle.
3312 * If there is no opportunity to make a package idle and if
3313 * there are no imbalance, then f_b_g() will return NULL and no
3314 * action will be taken in load_balance_newidle().
3315 *
3316 * Under normal task pull operation due to imbalance, there
3317 * will be more than one task in the source run queue and
3318 * move_tasks() will succeed. ld_moved will be true and this
3319 * active balance code will not be triggered.
3320 */
1af3ed3d
PZ
3321 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3322 return 0;
3323 }
3324
3325 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3326}
3327
969c7921
TH
3328static int active_load_balance_cpu_stop(void *data);
3329
1e3c88bd
PZ
3330/*
3331 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3332 * tasks if there is an imbalance.
3333 */
3334static int load_balance(int this_cpu, struct rq *this_rq,
3335 struct sched_domain *sd, enum cpu_idle_type idle,
3336 int *balance)
3337{
46e49b38 3338 int ld_moved, all_pinned = 0, active_balance = 0;
1e3c88bd
PZ
3339 struct sched_group *group;
3340 unsigned long imbalance;
3341 struct rq *busiest;
3342 unsigned long flags;
3343 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3344
3345 cpumask_copy(cpus, cpu_active_mask);
3346
1e3c88bd
PZ
3347 schedstat_inc(sd, lb_count[idle]);
3348
3349redo:
46e49b38 3350 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
3351 cpus, balance);
3352
3353 if (*balance == 0)
3354 goto out_balanced;
3355
3356 if (!group) {
3357 schedstat_inc(sd, lb_nobusyg[idle]);
3358 goto out_balanced;
3359 }
3360
9d5efe05 3361 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3362 if (!busiest) {
3363 schedstat_inc(sd, lb_nobusyq[idle]);
3364 goto out_balanced;
3365 }
3366
3367 BUG_ON(busiest == this_rq);
3368
3369 schedstat_add(sd, lb_imbalance[idle], imbalance);
3370
3371 ld_moved = 0;
3372 if (busiest->nr_running > 1) {
3373 /*
3374 * Attempt to move tasks. If find_busiest_group has found
3375 * an imbalance but busiest->nr_running <= 1, the group is
3376 * still unbalanced. ld_moved simply stays zero, so it is
3377 * correctly treated as an imbalance.
3378 */
b30aef17 3379 all_pinned = 1;
1e3c88bd
PZ
3380 local_irq_save(flags);
3381 double_rq_lock(this_rq, busiest);
3382 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3383 imbalance, sd, idle, &all_pinned);
3384 double_rq_unlock(this_rq, busiest);
3385 local_irq_restore(flags);
3386
3387 /*
3388 * some other cpu did the load balance for us.
3389 */
3390 if (ld_moved && this_cpu != smp_processor_id())
3391 resched_cpu(this_cpu);
3392
3393 /* All tasks on this runqueue were pinned by CPU affinity */
3394 if (unlikely(all_pinned)) {
3395 cpumask_clear_cpu(cpu_of(busiest), cpus);
3396 if (!cpumask_empty(cpus))
3397 goto redo;
3398 goto out_balanced;
3399 }
3400 }
3401
3402 if (!ld_moved) {
3403 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3404 /*
3405 * Increment the failure counter only on periodic balance.
3406 * We do not want newidle balance, which can be very
3407 * frequent, pollute the failure counter causing
3408 * excessive cache_hot migrations and active balances.
3409 */
3410 if (idle != CPU_NEWLY_IDLE)
3411 sd->nr_balance_failed++;
1e3c88bd 3412
46e49b38 3413 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
3414 raw_spin_lock_irqsave(&busiest->lock, flags);
3415
969c7921
TH
3416 /* don't kick the active_load_balance_cpu_stop,
3417 * if the curr task on busiest cpu can't be
3418 * moved to this_cpu
1e3c88bd
PZ
3419 */
3420 if (!cpumask_test_cpu(this_cpu,
3421 &busiest->curr->cpus_allowed)) {
3422 raw_spin_unlock_irqrestore(&busiest->lock,
3423 flags);
3424 all_pinned = 1;
3425 goto out_one_pinned;
3426 }
3427
969c7921
TH
3428 /*
3429 * ->active_balance synchronizes accesses to
3430 * ->active_balance_work. Once set, it's cleared
3431 * only after active load balance is finished.
3432 */
1e3c88bd
PZ
3433 if (!busiest->active_balance) {
3434 busiest->active_balance = 1;
3435 busiest->push_cpu = this_cpu;
3436 active_balance = 1;
3437 }
3438 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3439
1e3c88bd 3440 if (active_balance)
969c7921
TH
3441 stop_one_cpu_nowait(cpu_of(busiest),
3442 active_load_balance_cpu_stop, busiest,
3443 &busiest->active_balance_work);
1e3c88bd
PZ
3444
3445 /*
3446 * We've kicked active balancing, reset the failure
3447 * counter.
3448 */
3449 sd->nr_balance_failed = sd->cache_nice_tries+1;
3450 }
3451 } else
3452 sd->nr_balance_failed = 0;
3453
3454 if (likely(!active_balance)) {
3455 /* We were unbalanced, so reset the balancing interval */
3456 sd->balance_interval = sd->min_interval;
3457 } else {
3458 /*
3459 * If we've begun active balancing, start to back off. This
3460 * case may not be covered by the all_pinned logic if there
3461 * is only 1 task on the busy runqueue (because we don't call
3462 * move_tasks).
3463 */
3464 if (sd->balance_interval < sd->max_interval)
3465 sd->balance_interval *= 2;
3466 }
3467
1e3c88bd
PZ
3468 goto out;
3469
3470out_balanced:
3471 schedstat_inc(sd, lb_balanced[idle]);
3472
3473 sd->nr_balance_failed = 0;
3474
3475out_one_pinned:
3476 /* tune up the balancing interval */
3477 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3478 (sd->balance_interval < sd->max_interval))
3479 sd->balance_interval *= 2;
3480
46e49b38 3481 ld_moved = 0;
1e3c88bd 3482out:
1e3c88bd
PZ
3483 return ld_moved;
3484}
3485
1e3c88bd
PZ
3486/*
3487 * idle_balance is called by schedule() if this_cpu is about to become
3488 * idle. Attempts to pull tasks from other CPUs.
3489 */
3490static void idle_balance(int this_cpu, struct rq *this_rq)
3491{
3492 struct sched_domain *sd;
3493 int pulled_task = 0;
3494 unsigned long next_balance = jiffies + HZ;
3495
3496 this_rq->idle_stamp = this_rq->clock;
3497
3498 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3499 return;
3500
f492e12e
PZ
3501 /*
3502 * Drop the rq->lock, but keep IRQ/preempt disabled.
3503 */
3504 raw_spin_unlock(&this_rq->lock);
3505
c66eaf61 3506 update_shares(this_cpu);
dce840a0 3507 rcu_read_lock();
1e3c88bd
PZ
3508 for_each_domain(this_cpu, sd) {
3509 unsigned long interval;
f492e12e 3510 int balance = 1;
1e3c88bd
PZ
3511
3512 if (!(sd->flags & SD_LOAD_BALANCE))
3513 continue;
3514
f492e12e 3515 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 3516 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
3517 pulled_task = load_balance(this_cpu, this_rq,
3518 sd, CPU_NEWLY_IDLE, &balance);
3519 }
1e3c88bd
PZ
3520
3521 interval = msecs_to_jiffies(sd->balance_interval);
3522 if (time_after(next_balance, sd->last_balance + interval))
3523 next_balance = sd->last_balance + interval;
d5ad140b
NR
3524 if (pulled_task) {
3525 this_rq->idle_stamp = 0;
1e3c88bd 3526 break;
d5ad140b 3527 }
1e3c88bd 3528 }
dce840a0 3529 rcu_read_unlock();
f492e12e
PZ
3530
3531 raw_spin_lock(&this_rq->lock);
3532
1e3c88bd
PZ
3533 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3534 /*
3535 * We are going idle. next_balance may be set based on
3536 * a busy processor. So reset next_balance.
3537 */
3538 this_rq->next_balance = next_balance;
3539 }
3540}
3541
3542/*
969c7921
TH
3543 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3544 * running tasks off the busiest CPU onto idle CPUs. It requires at
3545 * least 1 task to be running on each physical CPU where possible, and
3546 * avoids physical / logical imbalances.
1e3c88bd 3547 */
969c7921 3548static int active_load_balance_cpu_stop(void *data)
1e3c88bd 3549{
969c7921
TH
3550 struct rq *busiest_rq = data;
3551 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 3552 int target_cpu = busiest_rq->push_cpu;
969c7921 3553 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 3554 struct sched_domain *sd;
969c7921
TH
3555
3556 raw_spin_lock_irq(&busiest_rq->lock);
3557
3558 /* make sure the requested cpu hasn't gone down in the meantime */
3559 if (unlikely(busiest_cpu != smp_processor_id() ||
3560 !busiest_rq->active_balance))
3561 goto out_unlock;
1e3c88bd
PZ
3562
3563 /* Is there any task to move? */
3564 if (busiest_rq->nr_running <= 1)
969c7921 3565 goto out_unlock;
1e3c88bd
PZ
3566
3567 /*
3568 * This condition is "impossible", if it occurs
3569 * we need to fix it. Originally reported by
3570 * Bjorn Helgaas on a 128-cpu setup.
3571 */
3572 BUG_ON(busiest_rq == target_rq);
3573
3574 /* move a task from busiest_rq to target_rq */
3575 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3576
3577 /* Search for an sd spanning us and the target CPU. */
dce840a0 3578 rcu_read_lock();
1e3c88bd
PZ
3579 for_each_domain(target_cpu, sd) {
3580 if ((sd->flags & SD_LOAD_BALANCE) &&
3581 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3582 break;
3583 }
3584
3585 if (likely(sd)) {
3586 schedstat_inc(sd, alb_count);
3587
3588 if (move_one_task(target_rq, target_cpu, busiest_rq,
3589 sd, CPU_IDLE))
3590 schedstat_inc(sd, alb_pushed);
3591 else
3592 schedstat_inc(sd, alb_failed);
3593 }
dce840a0 3594 rcu_read_unlock();
1e3c88bd 3595 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
3596out_unlock:
3597 busiest_rq->active_balance = 0;
3598 raw_spin_unlock_irq(&busiest_rq->lock);
3599 return 0;
1e3c88bd
PZ
3600}
3601
3602#ifdef CONFIG_NO_HZ
83cd4fe2
VP
3603
3604static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3605
3606static void trigger_sched_softirq(void *data)
3607{
3608 raise_softirq_irqoff(SCHED_SOFTIRQ);
3609}
3610
3611static inline void init_sched_softirq_csd(struct call_single_data *csd)
3612{
3613 csd->func = trigger_sched_softirq;
3614 csd->info = NULL;
3615 csd->flags = 0;
3616 csd->priv = 0;
3617}
3618
3619/*
3620 * idle load balancing details
3621 * - One of the idle CPUs nominates itself as idle load_balancer, while
3622 * entering idle.
3623 * - This idle load balancer CPU will also go into tickless mode when
3624 * it is idle, just like all other idle CPUs
3625 * - When one of the busy CPUs notice that there may be an idle rebalancing
3626 * needed, they will kick the idle load balancer, which then does idle
3627 * load balancing for all the idle CPUs.
3628 */
1e3c88bd
PZ
3629static struct {
3630 atomic_t load_balancer;
83cd4fe2
VP
3631 atomic_t first_pick_cpu;
3632 atomic_t second_pick_cpu;
3633 cpumask_var_t idle_cpus_mask;
3634 cpumask_var_t grp_idle_mask;
3635 unsigned long next_balance; /* in jiffy units */
3636} nohz ____cacheline_aligned;
1e3c88bd
PZ
3637
3638int get_nohz_load_balancer(void)
3639{
3640 return atomic_read(&nohz.load_balancer);
3641}
3642
3643#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3644/**
3645 * lowest_flag_domain - Return lowest sched_domain containing flag.
3646 * @cpu: The cpu whose lowest level of sched domain is to
3647 * be returned.
3648 * @flag: The flag to check for the lowest sched_domain
3649 * for the given cpu.
3650 *
3651 * Returns the lowest sched_domain of a cpu which contains the given flag.
3652 */
3653static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3654{
3655 struct sched_domain *sd;
3656
3657 for_each_domain(cpu, sd)
3658 if (sd && (sd->flags & flag))
3659 break;
3660
3661 return sd;
3662}
3663
3664/**
3665 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3666 * @cpu: The cpu whose domains we're iterating over.
3667 * @sd: variable holding the value of the power_savings_sd
3668 * for cpu.
3669 * @flag: The flag to filter the sched_domains to be iterated.
3670 *
3671 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3672 * set, starting from the lowest sched_domain to the highest.
3673 */
3674#define for_each_flag_domain(cpu, sd, flag) \
3675 for (sd = lowest_flag_domain(cpu, flag); \
3676 (sd && (sd->flags & flag)); sd = sd->parent)
3677
3678/**
3679 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3680 * @ilb_group: group to be checked for semi-idleness
3681 *
3682 * Returns: 1 if the group is semi-idle. 0 otherwise.
3683 *
3684 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3685 * and atleast one non-idle CPU. This helper function checks if the given
3686 * sched_group is semi-idle or not.
3687 */
3688static inline int is_semi_idle_group(struct sched_group *ilb_group)
3689{
83cd4fe2 3690 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
3691 sched_group_cpus(ilb_group));
3692
3693 /*
3694 * A sched_group is semi-idle when it has atleast one busy cpu
3695 * and atleast one idle cpu.
3696 */
83cd4fe2 3697 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
3698 return 0;
3699
83cd4fe2 3700 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
3701 return 0;
3702
3703 return 1;
3704}
3705/**
3706 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3707 * @cpu: The cpu which is nominating a new idle_load_balancer.
3708 *
3709 * Returns: Returns the id of the idle load balancer if it exists,
3710 * Else, returns >= nr_cpu_ids.
3711 *
3712 * This algorithm picks the idle load balancer such that it belongs to a
3713 * semi-idle powersavings sched_domain. The idea is to try and avoid
3714 * completely idle packages/cores just for the purpose of idle load balancing
3715 * when there are other idle cpu's which are better suited for that job.
3716 */
3717static int find_new_ilb(int cpu)
3718{
3719 struct sched_domain *sd;
3720 struct sched_group *ilb_group;
dce840a0 3721 int ilb = nr_cpu_ids;
1e3c88bd
PZ
3722
3723 /*
3724 * Have idle load balancer selection from semi-idle packages only
3725 * when power-aware load balancing is enabled
3726 */
3727 if (!(sched_smt_power_savings || sched_mc_power_savings))
3728 goto out_done;
3729
3730 /*
3731 * Optimize for the case when we have no idle CPUs or only one
3732 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3733 */
83cd4fe2 3734 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
3735 goto out_done;
3736
dce840a0 3737 rcu_read_lock();
1e3c88bd
PZ
3738 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3739 ilb_group = sd->groups;
3740
3741 do {
dce840a0
PZ
3742 if (is_semi_idle_group(ilb_group)) {
3743 ilb = cpumask_first(nohz.grp_idle_mask);
3744 goto unlock;
3745 }
1e3c88bd
PZ
3746
3747 ilb_group = ilb_group->next;
3748
3749 } while (ilb_group != sd->groups);
3750 }
dce840a0
PZ
3751unlock:
3752 rcu_read_unlock();
1e3c88bd
PZ
3753
3754out_done:
dce840a0 3755 return ilb;
1e3c88bd
PZ
3756}
3757#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3758static inline int find_new_ilb(int call_cpu)
3759{
83cd4fe2 3760 return nr_cpu_ids;
1e3c88bd
PZ
3761}
3762#endif
3763
83cd4fe2
VP
3764/*
3765 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3766 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3767 * CPU (if there is one).
3768 */
3769static void nohz_balancer_kick(int cpu)
3770{
3771 int ilb_cpu;
3772
3773 nohz.next_balance++;
3774
3775 ilb_cpu = get_nohz_load_balancer();
3776
3777 if (ilb_cpu >= nr_cpu_ids) {
3778 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3779 if (ilb_cpu >= nr_cpu_ids)
3780 return;
3781 }
3782
3783 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3784 struct call_single_data *cp;
3785
3786 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3787 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3788 __smp_call_function_single(ilb_cpu, cp, 0);
3789 }
3790 return;
3791}
3792
1e3c88bd
PZ
3793/*
3794 * This routine will try to nominate the ilb (idle load balancing)
3795 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 3796 * load balancing on behalf of all those cpus.
1e3c88bd 3797 *
83cd4fe2
VP
3798 * When the ilb owner becomes busy, we will not have new ilb owner until some
3799 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3800 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 3801 *
83cd4fe2
VP
3802 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3803 * ilb owner CPU in future (when there is a need for idle load balancing on
3804 * behalf of all idle CPUs).
1e3c88bd 3805 */
83cd4fe2 3806void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
3807{
3808 int cpu = smp_processor_id();
3809
3810 if (stop_tick) {
1e3c88bd
PZ
3811 if (!cpu_active(cpu)) {
3812 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 3813 return;
1e3c88bd
PZ
3814
3815 /*
3816 * If we are going offline and still the leader,
3817 * give up!
3818 */
83cd4fe2
VP
3819 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3820 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3821 BUG();
3822
83cd4fe2 3823 return;
1e3c88bd
PZ
3824 }
3825
83cd4fe2 3826 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 3827
83cd4fe2
VP
3828 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3829 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3830 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3831 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 3832
83cd4fe2 3833 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
3834 int new_ilb;
3835
83cd4fe2
VP
3836 /* make me the ilb owner */
3837 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3838 cpu) != nr_cpu_ids)
3839 return;
3840
1e3c88bd
PZ
3841 /*
3842 * Check to see if there is a more power-efficient
3843 * ilb.
3844 */
3845 new_ilb = find_new_ilb(cpu);
3846 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 3847 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 3848 resched_cpu(new_ilb);
83cd4fe2 3849 return;
1e3c88bd 3850 }
83cd4fe2 3851 return;
1e3c88bd
PZ
3852 }
3853 } else {
83cd4fe2
VP
3854 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3855 return;
1e3c88bd 3856
83cd4fe2 3857 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
3858
3859 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
3860 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3861 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3862 BUG();
3863 }
83cd4fe2 3864 return;
1e3c88bd
PZ
3865}
3866#endif
3867
3868static DEFINE_SPINLOCK(balancing);
3869
49c022e6
PZ
3870static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3871
3872/*
3873 * Scale the max load_balance interval with the number of CPUs in the system.
3874 * This trades load-balance latency on larger machines for less cross talk.
3875 */
3876static void update_max_interval(void)
3877{
3878 max_load_balance_interval = HZ*num_online_cpus()/10;
3879}
3880
1e3c88bd
PZ
3881/*
3882 * It checks each scheduling domain to see if it is due to be balanced,
3883 * and initiates a balancing operation if so.
3884 *
3885 * Balancing parameters are set up in arch_init_sched_domains.
3886 */
3887static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3888{
3889 int balance = 1;
3890 struct rq *rq = cpu_rq(cpu);
3891 unsigned long interval;
3892 struct sched_domain *sd;
3893 /* Earliest time when we have to do rebalance again */
3894 unsigned long next_balance = jiffies + 60*HZ;
3895 int update_next_balance = 0;
3896 int need_serialize;
3897
2069dd75
PZ
3898 update_shares(cpu);
3899
dce840a0 3900 rcu_read_lock();
1e3c88bd
PZ
3901 for_each_domain(cpu, sd) {
3902 if (!(sd->flags & SD_LOAD_BALANCE))
3903 continue;
3904
3905 interval = sd->balance_interval;
3906 if (idle != CPU_IDLE)
3907 interval *= sd->busy_factor;
3908
3909 /* scale ms to jiffies */
3910 interval = msecs_to_jiffies(interval);
49c022e6 3911 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
3912
3913 need_serialize = sd->flags & SD_SERIALIZE;
3914
3915 if (need_serialize) {
3916 if (!spin_trylock(&balancing))
3917 goto out;
3918 }
3919
3920 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3921 if (load_balance(cpu, rq, sd, idle, &balance)) {
3922 /*
3923 * We've pulled tasks over so either we're no
c186fafe 3924 * longer idle.
1e3c88bd
PZ
3925 */
3926 idle = CPU_NOT_IDLE;
3927 }
3928 sd->last_balance = jiffies;
3929 }
3930 if (need_serialize)
3931 spin_unlock(&balancing);
3932out:
3933 if (time_after(next_balance, sd->last_balance + interval)) {
3934 next_balance = sd->last_balance + interval;
3935 update_next_balance = 1;
3936 }
3937
3938 /*
3939 * Stop the load balance at this level. There is another
3940 * CPU in our sched group which is doing load balancing more
3941 * actively.
3942 */
3943 if (!balance)
3944 break;
3945 }
dce840a0 3946 rcu_read_unlock();
1e3c88bd
PZ
3947
3948 /*
3949 * next_balance will be updated only when there is a need.
3950 * When the cpu is attached to null domain for ex, it will not be
3951 * updated.
3952 */
3953 if (likely(update_next_balance))
3954 rq->next_balance = next_balance;
3955}
3956
83cd4fe2 3957#ifdef CONFIG_NO_HZ
1e3c88bd 3958/*
83cd4fe2 3959 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
3960 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3961 */
83cd4fe2
VP
3962static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3963{
3964 struct rq *this_rq = cpu_rq(this_cpu);
3965 struct rq *rq;
3966 int balance_cpu;
3967
3968 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3969 return;
3970
3971 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3972 if (balance_cpu == this_cpu)
3973 continue;
3974
3975 /*
3976 * If this cpu gets work to do, stop the load balancing
3977 * work being done for other cpus. Next load
3978 * balancing owner will pick it up.
3979 */
3980 if (need_resched()) {
3981 this_rq->nohz_balance_kick = 0;
3982 break;
3983 }
3984
3985 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 3986 update_rq_clock(this_rq);
83cd4fe2
VP
3987 update_cpu_load(this_rq);
3988 raw_spin_unlock_irq(&this_rq->lock);
3989
3990 rebalance_domains(balance_cpu, CPU_IDLE);
3991
3992 rq = cpu_rq(balance_cpu);
3993 if (time_after(this_rq->next_balance, rq->next_balance))
3994 this_rq->next_balance = rq->next_balance;
3995 }
3996 nohz.next_balance = this_rq->next_balance;
3997 this_rq->nohz_balance_kick = 0;
3998}
3999
4000/*
4001 * Current heuristic for kicking the idle load balancer
4002 * - first_pick_cpu is the one of the busy CPUs. It will kick
4003 * idle load balancer when it has more than one process active. This
4004 * eliminates the need for idle load balancing altogether when we have
4005 * only one running process in the system (common case).
4006 * - If there are more than one busy CPU, idle load balancer may have
4007 * to run for active_load_balance to happen (i.e., two busy CPUs are
4008 * SMT or core siblings and can run better if they move to different
4009 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4010 * which will kick idle load balancer as soon as it has any load.
4011 */
4012static inline int nohz_kick_needed(struct rq *rq, int cpu)
4013{
4014 unsigned long now = jiffies;
4015 int ret;
4016 int first_pick_cpu, second_pick_cpu;
4017
4018 if (time_before(now, nohz.next_balance))
4019 return 0;
4020
f6c3f168 4021 if (rq->idle_at_tick)
83cd4fe2
VP
4022 return 0;
4023
4024 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4025 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4026
4027 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4028 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4029 return 0;
4030
4031 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4032 if (ret == nr_cpu_ids || ret == cpu) {
4033 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4034 if (rq->nr_running > 1)
4035 return 1;
4036 } else {
4037 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4038 if (ret == nr_cpu_ids || ret == cpu) {
4039 if (rq->nr_running)
4040 return 1;
4041 }
4042 }
4043 return 0;
4044}
4045#else
4046static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4047#endif
4048
4049/*
4050 * run_rebalance_domains is triggered when needed from the scheduler tick.
4051 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4052 */
1e3c88bd
PZ
4053static void run_rebalance_domains(struct softirq_action *h)
4054{
4055 int this_cpu = smp_processor_id();
4056 struct rq *this_rq = cpu_rq(this_cpu);
4057 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4058 CPU_IDLE : CPU_NOT_IDLE;
4059
4060 rebalance_domains(this_cpu, idle);
4061
1e3c88bd 4062 /*
83cd4fe2 4063 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
4064 * balancing on behalf of the other idle cpus whose ticks are
4065 * stopped.
4066 */
83cd4fe2 4067 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
4068}
4069
4070static inline int on_null_domain(int cpu)
4071{
90a6501f 4072 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
4073}
4074
4075/*
4076 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
4077 */
4078static inline void trigger_load_balance(struct rq *rq, int cpu)
4079{
1e3c88bd
PZ
4080 /* Don't need to rebalance while attached to NULL domain */
4081 if (time_after_eq(jiffies, rq->next_balance) &&
4082 likely(!on_null_domain(cpu)))
4083 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
4084#ifdef CONFIG_NO_HZ
4085 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4086 nohz_balancer_kick(cpu);
4087#endif
1e3c88bd
PZ
4088}
4089
0bcdcf28
CE
4090static void rq_online_fair(struct rq *rq)
4091{
4092 update_sysctl();
4093}
4094
4095static void rq_offline_fair(struct rq *rq)
4096{
4097 update_sysctl();
4098}
4099
1e3c88bd
PZ
4100#else /* CONFIG_SMP */
4101
4102/*
4103 * on UP we do not need to balance between CPUs:
4104 */
4105static inline void idle_balance(int cpu, struct rq *rq)
4106{
4107}
4108
55e12e5e 4109#endif /* CONFIG_SMP */
e1d1484f 4110
bf0f6f24
IM
4111/*
4112 * scheduler tick hitting a task of our scheduling class:
4113 */
8f4d37ec 4114static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
4115{
4116 struct cfs_rq *cfs_rq;
4117 struct sched_entity *se = &curr->se;
4118
4119 for_each_sched_entity(se) {
4120 cfs_rq = cfs_rq_of(se);
8f4d37ec 4121 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4122 }
4123}
4124
4125/*
cd29fe6f
PZ
4126 * called on fork with the child task as argument from the parent's context
4127 * - child not yet on the tasklist
4128 * - preemption disabled
bf0f6f24 4129 */
cd29fe6f 4130static void task_fork_fair(struct task_struct *p)
bf0f6f24 4131{
cd29fe6f 4132 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 4133 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 4134 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4135 struct rq *rq = this_rq();
4136 unsigned long flags;
4137
05fa785c 4138 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4139
861d034e
PZ
4140 update_rq_clock(rq);
4141
b0a0f667
PM
4142 if (unlikely(task_cpu(p) != this_cpu)) {
4143 rcu_read_lock();
cd29fe6f 4144 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4145 rcu_read_unlock();
4146 }
bf0f6f24 4147
7109c442 4148 update_curr(cfs_rq);
cd29fe6f 4149
b5d9d734
MG
4150 if (curr)
4151 se->vruntime = curr->vruntime;
aeb73b04 4152 place_entity(cfs_rq, se, 1);
4d78e7b6 4153
cd29fe6f 4154 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4155 /*
edcb60a3
IM
4156 * Upon rescheduling, sched_class::put_prev_task() will place
4157 * 'current' within the tree based on its new key value.
4158 */
4d78e7b6 4159 swap(curr->vruntime, se->vruntime);
aec0a514 4160 resched_task(rq->curr);
4d78e7b6 4161 }
bf0f6f24 4162
88ec22d3
PZ
4163 se->vruntime -= cfs_rq->min_vruntime;
4164
05fa785c 4165 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4166}
4167
cb469845
SR
4168/*
4169 * Priority of the task has changed. Check to see if we preempt
4170 * the current task.
4171 */
da7a735e
PZ
4172static void
4173prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 4174{
da7a735e
PZ
4175 if (!p->se.on_rq)
4176 return;
4177
cb469845
SR
4178 /*
4179 * Reschedule if we are currently running on this runqueue and
4180 * our priority decreased, or if we are not currently running on
4181 * this runqueue and our priority is higher than the current's
4182 */
da7a735e 4183 if (rq->curr == p) {
cb469845
SR
4184 if (p->prio > oldprio)
4185 resched_task(rq->curr);
4186 } else
15afe09b 4187 check_preempt_curr(rq, p, 0);
cb469845
SR
4188}
4189
da7a735e
PZ
4190static void switched_from_fair(struct rq *rq, struct task_struct *p)
4191{
4192 struct sched_entity *se = &p->se;
4193 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4194
4195 /*
4196 * Ensure the task's vruntime is normalized, so that when its
4197 * switched back to the fair class the enqueue_entity(.flags=0) will
4198 * do the right thing.
4199 *
4200 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4201 * have normalized the vruntime, if it was !on_rq, then only when
4202 * the task is sleeping will it still have non-normalized vruntime.
4203 */
4204 if (!se->on_rq && p->state != TASK_RUNNING) {
4205 /*
4206 * Fix up our vruntime so that the current sleep doesn't
4207 * cause 'unlimited' sleep bonus.
4208 */
4209 place_entity(cfs_rq, se, 0);
4210 se->vruntime -= cfs_rq->min_vruntime;
4211 }
4212}
4213
cb469845
SR
4214/*
4215 * We switched to the sched_fair class.
4216 */
da7a735e 4217static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 4218{
da7a735e
PZ
4219 if (!p->se.on_rq)
4220 return;
4221
cb469845
SR
4222 /*
4223 * We were most likely switched from sched_rt, so
4224 * kick off the schedule if running, otherwise just see
4225 * if we can still preempt the current task.
4226 */
da7a735e 4227 if (rq->curr == p)
cb469845
SR
4228 resched_task(rq->curr);
4229 else
15afe09b 4230 check_preempt_curr(rq, p, 0);
cb469845
SR
4231}
4232
83b699ed
SV
4233/* Account for a task changing its policy or group.
4234 *
4235 * This routine is mostly called to set cfs_rq->curr field when a task
4236 * migrates between groups/classes.
4237 */
4238static void set_curr_task_fair(struct rq *rq)
4239{
4240 struct sched_entity *se = &rq->curr->se;
4241
4242 for_each_sched_entity(se)
4243 set_next_entity(cfs_rq_of(se), se);
4244}
4245
810b3817 4246#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4247static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4248{
b2b5ce02
PZ
4249 /*
4250 * If the task was not on the rq at the time of this cgroup movement
4251 * it must have been asleep, sleeping tasks keep their ->vruntime
4252 * absolute on their old rq until wakeup (needed for the fair sleeper
4253 * bonus in place_entity()).
4254 *
4255 * If it was on the rq, we've just 'preempted' it, which does convert
4256 * ->vruntime to a relative base.
4257 *
4258 * Make sure both cases convert their relative position when migrating
4259 * to another cgroup's rq. This does somewhat interfere with the
4260 * fair sleeper stuff for the first placement, but who cares.
4261 */
4262 if (!on_rq)
4263 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4264 set_task_rq(p, task_cpu(p));
88ec22d3 4265 if (!on_rq)
b2b5ce02 4266 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4267}
4268#endif
4269
6d686f45 4270static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4271{
4272 struct sched_entity *se = &task->se;
0d721cea
PW
4273 unsigned int rr_interval = 0;
4274
4275 /*
4276 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4277 * idle runqueue:
4278 */
0d721cea
PW
4279 if (rq->cfs.load.weight)
4280 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4281
4282 return rr_interval;
4283}
4284
bf0f6f24
IM
4285/*
4286 * All the scheduling class methods:
4287 */
5522d5d5
IM
4288static const struct sched_class fair_sched_class = {
4289 .next = &idle_sched_class,
bf0f6f24
IM
4290 .enqueue_task = enqueue_task_fair,
4291 .dequeue_task = dequeue_task_fair,
4292 .yield_task = yield_task_fair,
d95f4122 4293 .yield_to_task = yield_to_task_fair,
bf0f6f24 4294
2e09bf55 4295 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4296
4297 .pick_next_task = pick_next_task_fair,
4298 .put_prev_task = put_prev_task_fair,
4299
681f3e68 4300#ifdef CONFIG_SMP
4ce72a2c
LZ
4301 .select_task_rq = select_task_rq_fair,
4302
0bcdcf28
CE
4303 .rq_online = rq_online_fair,
4304 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4305
4306 .task_waking = task_waking_fair,
681f3e68 4307#endif
bf0f6f24 4308
83b699ed 4309 .set_curr_task = set_curr_task_fair,
bf0f6f24 4310 .task_tick = task_tick_fair,
cd29fe6f 4311 .task_fork = task_fork_fair,
cb469845
SR
4312
4313 .prio_changed = prio_changed_fair,
da7a735e 4314 .switched_from = switched_from_fair,
cb469845 4315 .switched_to = switched_to_fair,
810b3817 4316
0d721cea
PW
4317 .get_rr_interval = get_rr_interval_fair,
4318
810b3817 4319#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4320 .task_move_group = task_move_group_fair,
810b3817 4321#endif
bf0f6f24
IM
4322};
4323
4324#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4325static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4326{
bf0f6f24
IM
4327 struct cfs_rq *cfs_rq;
4328
5973e5b9 4329 rcu_read_lock();
c3b64f1e 4330 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4331 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4332 rcu_read_unlock();
bf0f6f24
IM
4333}
4334#endif