]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched_fair.c
sched: Cleanup select_task_rq_fair()
[mirror_ubuntu-jammy-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
172e082a 27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
172e082a 37unsigned int sysctl_sched_latency = 5000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
172e082a 41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
172e082a 43unsigned int sysctl_sched_min_granularity = 1000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
2bba22c5 51 * After fork, child runs first. If set to 0 (default) then
b2be5e96 52 * parent will (try to) run first.
21805085 53 */
2bba22c5 54unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
172e082a 66 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
172e082a 72unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
62160e3f 82#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 83
62160e3f 84/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
85static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86{
62160e3f 87 return cfs_rq->rq;
bf0f6f24
IM
88}
89
62160e3f
IM
90/* An entity is a task if it doesn't "own" a runqueue */
91#define entity_is_task(se) (!se->my_q)
bf0f6f24 92
8f48894f
PZ
93static inline struct task_struct *task_of(struct sched_entity *se)
94{
95#ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97#endif
98 return container_of(se, struct task_struct, se);
99}
100
b758149c
PZ
101/* Walk up scheduling entities hierarchy */
102#define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
104
105static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106{
107 return p->se.cfs_rq;
108}
109
110/* runqueue on which this entity is (to be) queued */
111static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112{
113 return se->cfs_rq;
114}
115
116/* runqueue "owned" by this group */
117static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118{
119 return grp->my_q;
120}
121
122/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
124 */
125static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126{
127 return cfs_rq->tg->cfs_rq[this_cpu];
128}
129
130/* Iterate thr' all leaf cfs_rq's on a runqueue */
131#define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134/* Do the two (enqueued) entities belong to the same group ? */
135static inline int
136is_same_group(struct sched_entity *se, struct sched_entity *pse)
137{
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
140
141 return 0;
142}
143
144static inline struct sched_entity *parent_entity(struct sched_entity *se)
145{
146 return se->parent;
147}
148
464b7527
PZ
149/* return depth at which a sched entity is present in the hierarchy */
150static inline int depth_se(struct sched_entity *se)
151{
152 int depth = 0;
153
154 for_each_sched_entity(se)
155 depth++;
156
157 return depth;
158}
159
160static void
161find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162{
163 int se_depth, pse_depth;
164
165 /*
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
170 */
171
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
175
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
179 }
180
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
184 }
185
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
189 }
190}
191
8f48894f
PZ
192#else /* !CONFIG_FAIR_GROUP_SCHED */
193
194static inline struct task_struct *task_of(struct sched_entity *se)
195{
196 return container_of(se, struct task_struct, se);
197}
bf0f6f24 198
62160e3f
IM
199static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200{
201 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
202}
203
204#define entity_is_task(se) 1
205
b758149c
PZ
206#define for_each_sched_entity(se) \
207 for (; se; se = NULL)
bf0f6f24 208
b758149c 209static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 210{
b758149c 211 return &task_rq(p)->cfs;
bf0f6f24
IM
212}
213
b758149c
PZ
214static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215{
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->cfs;
220}
221
222/* runqueue "owned" by this group */
223static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224{
225 return NULL;
226}
227
228static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229{
230 return &cpu_rq(this_cpu)->cfs;
231}
232
233#define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236static inline int
237is_same_group(struct sched_entity *se, struct sched_entity *pse)
238{
239 return 1;
240}
241
242static inline struct sched_entity *parent_entity(struct sched_entity *se)
243{
244 return NULL;
245}
246
464b7527
PZ
247static inline void
248find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249{
250}
251
b758149c
PZ
252#endif /* CONFIG_FAIR_GROUP_SCHED */
253
bf0f6f24
IM
254
255/**************************************************************
256 * Scheduling class tree data structure manipulation methods:
257 */
258
0702e3eb 259static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 260{
368059a9
PZ
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
02e0431a
PZ
263 min_vruntime = vruntime;
264
265 return min_vruntime;
266}
267
0702e3eb 268static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
269{
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
273
274 return min_vruntime;
275}
276
54fdc581
FC
277static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
279{
280 return (s64)(a->vruntime - b->vruntime) < 0;
281}
282
0702e3eb 283static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 284{
30cfdcfc 285 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
286}
287
1af5f730
PZ
288static void update_min_vruntime(struct cfs_rq *cfs_rq)
289{
290 u64 vruntime = cfs_rq->min_vruntime;
291
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
294
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
299
e17036da 300 if (!cfs_rq->curr)
1af5f730
PZ
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
304 }
305
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307}
308
bf0f6f24
IM
309/*
310 * Enqueue an entity into the rb-tree:
311 */
0702e3eb 312static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
313{
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
9014623c 317 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
318 int leftmost = 1;
319
320 /*
321 * Find the right place in the rbtree:
322 */
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
326 /*
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
329 */
9014623c 330 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
335 }
336 }
337
338 /*
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
341 */
1af5f730 342 if (leftmost)
57cb499d 343 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
344
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
347}
348
0702e3eb 349static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 350{
3fe69747
PZ
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
3fe69747
PZ
353
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
3fe69747 356 }
e9acbff6 357
bf0f6f24 358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
359}
360
bf0f6f24
IM
361static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362{
f4b6755f
PZ
363 struct rb_node *left = cfs_rq->rb_leftmost;
364
365 if (!left)
366 return NULL;
367
368 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
369}
370
f4b6755f 371static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 372{
7eee3e67 373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 374
70eee74b
BS
375 if (!last)
376 return NULL;
7eee3e67
IM
377
378 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
379}
380
bf0f6f24
IM
381/**************************************************************
382 * Scheduling class statistics methods:
383 */
384
b2be5e96
PZ
385#ifdef CONFIG_SCHED_DEBUG
386int sched_nr_latency_handler(struct ctl_table *table, int write,
8d65af78 387 void __user *buffer, size_t *lenp,
b2be5e96
PZ
388 loff_t *ppos)
389{
8d65af78 390 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
b2be5e96
PZ
391
392 if (ret || !write)
393 return ret;
394
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
397
398 return 0;
399}
400#endif
647e7cac 401
a7be37ac 402/*
f9c0b095 403 * delta /= w
a7be37ac
PZ
404 */
405static inline unsigned long
406calc_delta_fair(unsigned long delta, struct sched_entity *se)
407{
f9c0b095
PZ
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
410
411 return delta;
412}
413
647e7cac
IM
414/*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
4d78e7b6
PZ
422static u64 __sched_period(unsigned long nr_running)
423{
424 u64 period = sysctl_sched_latency;
b2be5e96 425 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
426
427 if (unlikely(nr_running > nr_latency)) {
4bf0b771 428 period = sysctl_sched_min_granularity;
4d78e7b6 429 period *= nr_running;
4d78e7b6
PZ
430 }
431
432 return period;
433}
434
647e7cac
IM
435/*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
f9c0b095 439 * s = p*P[w/rw]
647e7cac 440 */
6d0f0ebd 441static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 442{
0a582440 443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 444
0a582440 445 for_each_sched_entity(se) {
6272d68c 446 struct load_weight *load;
3104bf03 447 struct load_weight lw;
6272d68c
LM
448
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
f9c0b095 451
0a582440 452 if (unlikely(!se->on_rq)) {
3104bf03 453 lw = cfs_rq->load;
0a582440
MG
454
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
457 }
458 slice = calc_delta_mine(slice, se->load.weight, load);
459 }
460 return slice;
bf0f6f24
IM
461}
462
647e7cac 463/*
ac884dec 464 * We calculate the vruntime slice of a to be inserted task
647e7cac 465 *
f9c0b095 466 * vs = s/w
647e7cac 467 */
f9c0b095 468static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 469{
f9c0b095 470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
471}
472
bf0f6f24
IM
473/*
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
476 */
477static inline void
8ebc91d9
IM
478__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
bf0f6f24 480{
bbdba7c0 481 unsigned long delta_exec_weighted;
bf0f6f24 482
8179ca23 483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
484
485 curr->sum_exec_runtime += delta_exec;
7a62eabc 486 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 488 curr->vruntime += delta_exec_weighted;
1af5f730 489 update_min_vruntime(cfs_rq);
bf0f6f24
IM
490}
491
b7cc0896 492static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 493{
429d43bc 494 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 495 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
496 unsigned long delta_exec;
497
498 if (unlikely(!curr))
499 return;
500
501 /*
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
505 */
8ebc91d9 506 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
507 if (!delta_exec)
508 return;
bf0f6f24 509
8ebc91d9
IM
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
d842de87
SV
512
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
515
f977bb49 516 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 517 cpuacct_charge(curtask, delta_exec);
f06febc9 518 account_group_exec_runtime(curtask, delta_exec);
d842de87 519 }
bf0f6f24
IM
520}
521
522static inline void
5870db5b 523update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 524{
d281918d 525 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
526}
527
bf0f6f24
IM
528/*
529 * Task is being enqueued - update stats:
530 */
d2417e5a 531static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 532{
bf0f6f24
IM
533 /*
534 * Are we enqueueing a waiting task? (for current tasks
535 * a dequeue/enqueue event is a NOP)
536 */
429d43bc 537 if (se != cfs_rq->curr)
5870db5b 538 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
539}
540
bf0f6f24 541static void
9ef0a961 542update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 543{
bbdba7c0
IM
544 schedstat_set(se->wait_max, max(se->wait_max,
545 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
546 schedstat_set(se->wait_count, se->wait_count + 1);
547 schedstat_set(se->wait_sum, se->wait_sum +
548 rq_of(cfs_rq)->clock - se->wait_start);
768d0c27
PZ
549#ifdef CONFIG_SCHEDSTATS
550 if (entity_is_task(se)) {
551 trace_sched_stat_wait(task_of(se),
552 rq_of(cfs_rq)->clock - se->wait_start);
553 }
554#endif
e1f84508 555 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
556}
557
558static inline void
19b6a2e3 559update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 560{
bf0f6f24
IM
561 /*
562 * Mark the end of the wait period if dequeueing a
563 * waiting task:
564 */
429d43bc 565 if (se != cfs_rq->curr)
9ef0a961 566 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
567}
568
569/*
570 * We are picking a new current task - update its stats:
571 */
572static inline void
79303e9e 573update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
574{
575 /*
576 * We are starting a new run period:
577 */
d281918d 578 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
579}
580
bf0f6f24
IM
581/**************************************************
582 * Scheduling class queueing methods:
583 */
584
c09595f6
PZ
585#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
586static void
587add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
588{
589 cfs_rq->task_weight += weight;
590}
591#else
592static inline void
593add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
594{
595}
596#endif
597
30cfdcfc
DA
598static void
599account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
600{
601 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
602 if (!parent_entity(se))
603 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 604 if (entity_is_task(se)) {
c09595f6 605 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
606 list_add(&se->group_node, &cfs_rq->tasks);
607 }
30cfdcfc
DA
608 cfs_rq->nr_running++;
609 se->on_rq = 1;
610}
611
612static void
613account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
614{
615 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
616 if (!parent_entity(se))
617 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 618 if (entity_is_task(se)) {
c09595f6 619 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
620 list_del_init(&se->group_node);
621 }
30cfdcfc
DA
622 cfs_rq->nr_running--;
623 se->on_rq = 0;
624}
625
2396af69 626static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 627{
bf0f6f24 628#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
629 struct task_struct *tsk = NULL;
630
631 if (entity_is_task(se))
632 tsk = task_of(se);
633
bf0f6f24 634 if (se->sleep_start) {
d281918d 635 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
636
637 if ((s64)delta < 0)
638 delta = 0;
639
640 if (unlikely(delta > se->sleep_max))
641 se->sleep_max = delta;
642
643 se->sleep_start = 0;
644 se->sum_sleep_runtime += delta;
9745512c 645
768d0c27 646 if (tsk) {
e414314c 647 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
648 trace_sched_stat_sleep(tsk, delta);
649 }
bf0f6f24
IM
650 }
651 if (se->block_start) {
d281918d 652 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
653
654 if ((s64)delta < 0)
655 delta = 0;
656
657 if (unlikely(delta > se->block_max))
658 se->block_max = delta;
659
660 se->block_start = 0;
661 se->sum_sleep_runtime += delta;
30084fbd 662
e414314c 663 if (tsk) {
8f0dfc34
AV
664 if (tsk->in_iowait) {
665 se->iowait_sum += delta;
666 se->iowait_count++;
768d0c27 667 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
668 }
669
e414314c
PZ
670 /*
671 * Blocking time is in units of nanosecs, so shift by
672 * 20 to get a milliseconds-range estimation of the
673 * amount of time that the task spent sleeping:
674 */
675 if (unlikely(prof_on == SLEEP_PROFILING)) {
676 profile_hits(SLEEP_PROFILING,
677 (void *)get_wchan(tsk),
678 delta >> 20);
679 }
680 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 681 }
bf0f6f24
IM
682 }
683#endif
684}
685
ddc97297
PZ
686static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
687{
688#ifdef CONFIG_SCHED_DEBUG
689 s64 d = se->vruntime - cfs_rq->min_vruntime;
690
691 if (d < 0)
692 d = -d;
693
694 if (d > 3*sysctl_sched_latency)
695 schedstat_inc(cfs_rq, nr_spread_over);
696#endif
697}
698
aeb73b04
PZ
699static void
700place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
701{
1af5f730 702 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 703
2cb8600e
PZ
704 /*
705 * The 'current' period is already promised to the current tasks,
706 * however the extra weight of the new task will slow them down a
707 * little, place the new task so that it fits in the slot that
708 * stays open at the end.
709 */
94dfb5e7 710 if (initial && sched_feat(START_DEBIT))
f9c0b095 711 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 712
a2e7a7eb
MG
713 /* sleeps up to a single latency don't count. */
714 if (!initial && sched_feat(FAIR_SLEEPERS)) {
715 unsigned long thresh = sysctl_sched_latency;
a7be37ac 716
a2e7a7eb
MG
717 /*
718 * Convert the sleeper threshold into virtual time.
719 * SCHED_IDLE is a special sub-class. We care about
720 * fairness only relative to other SCHED_IDLE tasks,
721 * all of which have the same weight.
722 */
723 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
724 task_of(se)->policy != SCHED_IDLE))
725 thresh = calc_delta_fair(thresh, se);
a7be37ac 726
a2e7a7eb
MG
727 /*
728 * Halve their sleep time's effect, to allow
729 * for a gentler effect of sleepers:
730 */
731 if (sched_feat(GENTLE_FAIR_SLEEPERS))
732 thresh >>= 1;
51e0304c 733
a2e7a7eb 734 vruntime -= thresh;
aeb73b04
PZ
735 }
736
b5d9d734
MG
737 /* ensure we never gain time by being placed backwards. */
738 vruntime = max_vruntime(se->vruntime, vruntime);
739
67e9fb2a 740 se->vruntime = vruntime;
aeb73b04
PZ
741}
742
bf0f6f24 743static void
83b699ed 744enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
745{
746 /*
a2a2d680 747 * Update run-time statistics of the 'current'.
bf0f6f24 748 */
b7cc0896 749 update_curr(cfs_rq);
a992241d 750 account_entity_enqueue(cfs_rq, se);
bf0f6f24 751
e9acbff6 752 if (wakeup) {
aeb73b04 753 place_entity(cfs_rq, se, 0);
2396af69 754 enqueue_sleeper(cfs_rq, se);
e9acbff6 755 }
bf0f6f24 756
d2417e5a 757 update_stats_enqueue(cfs_rq, se);
ddc97297 758 check_spread(cfs_rq, se);
83b699ed
SV
759 if (se != cfs_rq->curr)
760 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
761}
762
a571bbea 763static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695 764{
de69a80b 765 if (!se || cfs_rq->last == se)
2002c695
PZ
766 cfs_rq->last = NULL;
767
de69a80b 768 if (!se || cfs_rq->next == se)
2002c695
PZ
769 cfs_rq->next = NULL;
770}
771
a571bbea
PZ
772static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
773{
774 for_each_sched_entity(se)
775 __clear_buddies(cfs_rq_of(se), se);
776}
777
bf0f6f24 778static void
525c2716 779dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 780{
a2a2d680
DA
781 /*
782 * Update run-time statistics of the 'current'.
783 */
784 update_curr(cfs_rq);
785
19b6a2e3 786 update_stats_dequeue(cfs_rq, se);
db36cc7d 787 if (sleep) {
67e9fb2a 788#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
789 if (entity_is_task(se)) {
790 struct task_struct *tsk = task_of(se);
791
792 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 793 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 794 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 795 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 796 }
db36cc7d 797#endif
67e9fb2a
PZ
798 }
799
2002c695 800 clear_buddies(cfs_rq, se);
4793241b 801
83b699ed 802 if (se != cfs_rq->curr)
30cfdcfc
DA
803 __dequeue_entity(cfs_rq, se);
804 account_entity_dequeue(cfs_rq, se);
1af5f730 805 update_min_vruntime(cfs_rq);
bf0f6f24
IM
806}
807
808/*
809 * Preempt the current task with a newly woken task if needed:
810 */
7c92e54f 811static void
2e09bf55 812check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 813{
11697830
PZ
814 unsigned long ideal_runtime, delta_exec;
815
6d0f0ebd 816 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 817 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 818 if (delta_exec > ideal_runtime) {
bf0f6f24 819 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
820 /*
821 * The current task ran long enough, ensure it doesn't get
822 * re-elected due to buddy favours.
823 */
824 clear_buddies(cfs_rq, curr);
825 }
bf0f6f24
IM
826}
827
83b699ed 828static void
8494f412 829set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 830{
83b699ed
SV
831 /* 'current' is not kept within the tree. */
832 if (se->on_rq) {
833 /*
834 * Any task has to be enqueued before it get to execute on
835 * a CPU. So account for the time it spent waiting on the
836 * runqueue.
837 */
838 update_stats_wait_end(cfs_rq, se);
839 __dequeue_entity(cfs_rq, se);
840 }
841
79303e9e 842 update_stats_curr_start(cfs_rq, se);
429d43bc 843 cfs_rq->curr = se;
eba1ed4b
IM
844#ifdef CONFIG_SCHEDSTATS
845 /*
846 * Track our maximum slice length, if the CPU's load is at
847 * least twice that of our own weight (i.e. dont track it
848 * when there are only lesser-weight tasks around):
849 */
495eca49 850 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
851 se->slice_max = max(se->slice_max,
852 se->sum_exec_runtime - se->prev_sum_exec_runtime);
853 }
854#endif
4a55b450 855 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
856}
857
3f3a4904
PZ
858static int
859wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
860
f4b6755f 861static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 862{
f4b6755f
PZ
863 struct sched_entity *se = __pick_next_entity(cfs_rq);
864
4793241b
PZ
865 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
866 return cfs_rq->next;
aa2ac252 867
4793241b
PZ
868 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
869 return cfs_rq->last;
870
871 return se;
aa2ac252
PZ
872}
873
ab6cde26 874static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
875{
876 /*
877 * If still on the runqueue then deactivate_task()
878 * was not called and update_curr() has to be done:
879 */
880 if (prev->on_rq)
b7cc0896 881 update_curr(cfs_rq);
bf0f6f24 882
ddc97297 883 check_spread(cfs_rq, prev);
30cfdcfc 884 if (prev->on_rq) {
5870db5b 885 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
886 /* Put 'current' back into the tree. */
887 __enqueue_entity(cfs_rq, prev);
888 }
429d43bc 889 cfs_rq->curr = NULL;
bf0f6f24
IM
890}
891
8f4d37ec
PZ
892static void
893entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 894{
bf0f6f24 895 /*
30cfdcfc 896 * Update run-time statistics of the 'current'.
bf0f6f24 897 */
30cfdcfc 898 update_curr(cfs_rq);
bf0f6f24 899
8f4d37ec
PZ
900#ifdef CONFIG_SCHED_HRTICK
901 /*
902 * queued ticks are scheduled to match the slice, so don't bother
903 * validating it and just reschedule.
904 */
983ed7a6
HH
905 if (queued) {
906 resched_task(rq_of(cfs_rq)->curr);
907 return;
908 }
8f4d37ec
PZ
909 /*
910 * don't let the period tick interfere with the hrtick preemption
911 */
912 if (!sched_feat(DOUBLE_TICK) &&
913 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
914 return;
915#endif
916
ce6c1311 917 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 918 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
919}
920
921/**************************************************
922 * CFS operations on tasks:
923 */
924
8f4d37ec
PZ
925#ifdef CONFIG_SCHED_HRTICK
926static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
927{
8f4d37ec
PZ
928 struct sched_entity *se = &p->se;
929 struct cfs_rq *cfs_rq = cfs_rq_of(se);
930
931 WARN_ON(task_rq(p) != rq);
932
933 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
934 u64 slice = sched_slice(cfs_rq, se);
935 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
936 s64 delta = slice - ran;
937
938 if (delta < 0) {
939 if (rq->curr == p)
940 resched_task(p);
941 return;
942 }
943
944 /*
945 * Don't schedule slices shorter than 10000ns, that just
946 * doesn't make sense. Rely on vruntime for fairness.
947 */
31656519 948 if (rq->curr != p)
157124c1 949 delta = max_t(s64, 10000LL, delta);
8f4d37ec 950
31656519 951 hrtick_start(rq, delta);
8f4d37ec
PZ
952 }
953}
a4c2f00f
PZ
954
955/*
956 * called from enqueue/dequeue and updates the hrtick when the
957 * current task is from our class and nr_running is low enough
958 * to matter.
959 */
960static void hrtick_update(struct rq *rq)
961{
962 struct task_struct *curr = rq->curr;
963
964 if (curr->sched_class != &fair_sched_class)
965 return;
966
967 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
968 hrtick_start_fair(rq, curr);
969}
55e12e5e 970#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
971static inline void
972hrtick_start_fair(struct rq *rq, struct task_struct *p)
973{
974}
a4c2f00f
PZ
975
976static inline void hrtick_update(struct rq *rq)
977{
978}
8f4d37ec
PZ
979#endif
980
bf0f6f24
IM
981/*
982 * The enqueue_task method is called before nr_running is
983 * increased. Here we update the fair scheduling stats and
984 * then put the task into the rbtree:
985 */
fd390f6a 986static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
987{
988 struct cfs_rq *cfs_rq;
62fb1851 989 struct sched_entity *se = &p->se;
bf0f6f24
IM
990
991 for_each_sched_entity(se) {
62fb1851 992 if (se->on_rq)
bf0f6f24
IM
993 break;
994 cfs_rq = cfs_rq_of(se);
83b699ed 995 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 996 wakeup = 1;
bf0f6f24 997 }
8f4d37ec 998
a4c2f00f 999 hrtick_update(rq);
bf0f6f24
IM
1000}
1001
1002/*
1003 * The dequeue_task method is called before nr_running is
1004 * decreased. We remove the task from the rbtree and
1005 * update the fair scheduling stats:
1006 */
f02231e5 1007static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
1008{
1009 struct cfs_rq *cfs_rq;
62fb1851 1010 struct sched_entity *se = &p->se;
bf0f6f24
IM
1011
1012 for_each_sched_entity(se) {
1013 cfs_rq = cfs_rq_of(se);
525c2716 1014 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 1015 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1016 if (cfs_rq->load.weight)
bf0f6f24 1017 break;
b9fa3df3 1018 sleep = 1;
bf0f6f24 1019 }
8f4d37ec 1020
a4c2f00f 1021 hrtick_update(rq);
bf0f6f24
IM
1022}
1023
1024/*
1799e35d
IM
1025 * sched_yield() support is very simple - we dequeue and enqueue.
1026 *
1027 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1028 */
4530d7ab 1029static void yield_task_fair(struct rq *rq)
bf0f6f24 1030{
db292ca3
IM
1031 struct task_struct *curr = rq->curr;
1032 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1033 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1034
1035 /*
1799e35d
IM
1036 * Are we the only task in the tree?
1037 */
1038 if (unlikely(cfs_rq->nr_running == 1))
1039 return;
1040
2002c695
PZ
1041 clear_buddies(cfs_rq, se);
1042
db292ca3 1043 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1044 update_rq_clock(rq);
1799e35d 1045 /*
a2a2d680 1046 * Update run-time statistics of the 'current'.
1799e35d 1047 */
2b1e315d 1048 update_curr(cfs_rq);
1799e35d
IM
1049
1050 return;
1051 }
1052 /*
1053 * Find the rightmost entry in the rbtree:
bf0f6f24 1054 */
2b1e315d 1055 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1056 /*
1057 * Already in the rightmost position?
1058 */
54fdc581 1059 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1060 return;
1061
1062 /*
1063 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1064 * Upon rescheduling, sched_class::put_prev_task() will place
1065 * 'current' within the tree based on its new key value.
1799e35d 1066 */
30cfdcfc 1067 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1068}
1069
e7693a36 1070#ifdef CONFIG_SMP
098fb9db 1071
bb3469ac 1072#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1073/*
1074 * effective_load() calculates the load change as seen from the root_task_group
1075 *
1076 * Adding load to a group doesn't make a group heavier, but can cause movement
1077 * of group shares between cpus. Assuming the shares were perfectly aligned one
1078 * can calculate the shift in shares.
1079 *
1080 * The problem is that perfectly aligning the shares is rather expensive, hence
1081 * we try to avoid doing that too often - see update_shares(), which ratelimits
1082 * this change.
1083 *
1084 * We compensate this by not only taking the current delta into account, but
1085 * also considering the delta between when the shares were last adjusted and
1086 * now.
1087 *
1088 * We still saw a performance dip, some tracing learned us that between
1089 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1090 * significantly. Therefore try to bias the error in direction of failing
1091 * the affine wakeup.
1092 *
1093 */
f1d239f7
PZ
1094static long effective_load(struct task_group *tg, int cpu,
1095 long wl, long wg)
bb3469ac 1096{
4be9daaa 1097 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1098
1099 if (!tg->parent)
1100 return wl;
1101
f5bfb7d9
PZ
1102 /*
1103 * By not taking the decrease of shares on the other cpu into
1104 * account our error leans towards reducing the affine wakeups.
1105 */
1106 if (!wl && sched_feat(ASYM_EFF_LOAD))
1107 return wl;
1108
4be9daaa 1109 for_each_sched_entity(se) {
cb5ef42a 1110 long S, rw, s, a, b;
940959e9
PZ
1111 long more_w;
1112
1113 /*
1114 * Instead of using this increment, also add the difference
1115 * between when the shares were last updated and now.
1116 */
1117 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1118 wl += more_w;
1119 wg += more_w;
4be9daaa
PZ
1120
1121 S = se->my_q->tg->shares;
1122 s = se->my_q->shares;
f1d239f7 1123 rw = se->my_q->rq_weight;
bb3469ac 1124
cb5ef42a
PZ
1125 a = S*(rw + wl);
1126 b = S*rw + s*wg;
4be9daaa 1127
940959e9
PZ
1128 wl = s*(a-b);
1129
1130 if (likely(b))
1131 wl /= b;
1132
83378269
PZ
1133 /*
1134 * Assume the group is already running and will
1135 * thus already be accounted for in the weight.
1136 *
1137 * That is, moving shares between CPUs, does not
1138 * alter the group weight.
1139 */
4be9daaa 1140 wg = 0;
4be9daaa 1141 }
bb3469ac 1142
4be9daaa 1143 return wl;
bb3469ac 1144}
4be9daaa 1145
bb3469ac 1146#else
4be9daaa 1147
83378269
PZ
1148static inline unsigned long effective_load(struct task_group *tg, int cpu,
1149 unsigned long wl, unsigned long wg)
4be9daaa 1150{
83378269 1151 return wl;
bb3469ac 1152}
4be9daaa 1153
bb3469ac
PZ
1154#endif
1155
c88d5910 1156static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1157{
c88d5910
PZ
1158 struct task_struct *curr = current;
1159 unsigned long this_load, load;
1160 int idx, this_cpu, prev_cpu;
098fb9db 1161 unsigned long tl_per_task;
c88d5910
PZ
1162 unsigned int imbalance;
1163 struct task_group *tg;
83378269 1164 unsigned long weight;
b3137bc8 1165 int balanced;
098fb9db 1166
c88d5910
PZ
1167 idx = sd->wake_idx;
1168 this_cpu = smp_processor_id();
1169 prev_cpu = task_cpu(p);
1170 load = source_load(prev_cpu, idx);
1171 this_load = target_load(this_cpu, idx);
098fb9db 1172
e69b0f1b
PZ
1173 if (sync) {
1174 if (sched_feat(SYNC_LESS) &&
1175 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1176 p->se.avg_overlap > sysctl_sched_migration_cost))
1177 sync = 0;
1178 } else {
1179 if (sched_feat(SYNC_MORE) &&
1180 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1181 p->se.avg_overlap < sysctl_sched_migration_cost))
1182 sync = 1;
1183 }
fc631c82 1184
b3137bc8
MG
1185 /*
1186 * If sync wakeup then subtract the (maximum possible)
1187 * effect of the currently running task from the load
1188 * of the current CPU:
1189 */
83378269
PZ
1190 if (sync) {
1191 tg = task_group(current);
1192 weight = current->se.load.weight;
1193
c88d5910 1194 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1195 load += effective_load(tg, prev_cpu, 0, -weight);
1196 }
b3137bc8 1197
83378269
PZ
1198 tg = task_group(p);
1199 weight = p->se.load.weight;
b3137bc8 1200
c88d5910
PZ
1201 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1202
71a29aa7
PZ
1203 /*
1204 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1205 * due to the sync cause above having dropped this_load to 0, we'll
1206 * always have an imbalance, but there's really nothing you can do
1207 * about that, so that's good too.
71a29aa7
PZ
1208 *
1209 * Otherwise check if either cpus are near enough in load to allow this
1210 * task to be woken on this_cpu.
1211 */
c88d5910
PZ
1212 balanced = !this_load ||
1213 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
83378269 1214 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1215
098fb9db 1216 /*
4ae7d5ce
IM
1217 * If the currently running task will sleep within
1218 * a reasonable amount of time then attract this newly
1219 * woken task:
098fb9db 1220 */
2fb7635c
PZ
1221 if (sync && balanced)
1222 return 1;
098fb9db
IM
1223
1224 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1225 tl_per_task = cpu_avg_load_per_task(this_cpu);
1226
c88d5910
PZ
1227 if (balanced ||
1228 (this_load <= load &&
1229 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1230 /*
1231 * This domain has SD_WAKE_AFFINE and
1232 * p is cache cold in this domain, and
1233 * there is no bad imbalance.
1234 */
c88d5910 1235 schedstat_inc(sd, ttwu_move_affine);
098fb9db
IM
1236 schedstat_inc(p, se.nr_wakeups_affine);
1237
1238 return 1;
1239 }
1240 return 0;
1241}
1242
aaee1203
PZ
1243/*
1244 * find_idlest_group finds and returns the least busy CPU group within the
1245 * domain.
1246 */
1247static struct sched_group *
78e7ed53 1248find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1249 int this_cpu, int load_idx)
e7693a36 1250{
aaee1203
PZ
1251 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1252 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1253 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1254
aaee1203
PZ
1255 do {
1256 unsigned long load, avg_load;
1257 int local_group;
1258 int i;
e7693a36 1259
aaee1203
PZ
1260 /* Skip over this group if it has no CPUs allowed */
1261 if (!cpumask_intersects(sched_group_cpus(group),
1262 &p->cpus_allowed))
1263 continue;
1264
1265 local_group = cpumask_test_cpu(this_cpu,
1266 sched_group_cpus(group));
1267
1268 /* Tally up the load of all CPUs in the group */
1269 avg_load = 0;
1270
1271 for_each_cpu(i, sched_group_cpus(group)) {
1272 /* Bias balancing toward cpus of our domain */
1273 if (local_group)
1274 load = source_load(i, load_idx);
1275 else
1276 load = target_load(i, load_idx);
1277
1278 avg_load += load;
1279 }
1280
1281 /* Adjust by relative CPU power of the group */
1282 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1283
1284 if (local_group) {
1285 this_load = avg_load;
1286 this = group;
1287 } else if (avg_load < min_load) {
1288 min_load = avg_load;
1289 idlest = group;
1290 }
1291 } while (group = group->next, group != sd->groups);
1292
1293 if (!idlest || 100*this_load < imbalance*min_load)
1294 return NULL;
1295 return idlest;
1296}
1297
1298/*
1299 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1300 */
1301static int
1302find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1303{
1304 unsigned long load, min_load = ULONG_MAX;
1305 int idlest = -1;
1306 int i;
1307
1308 /* Traverse only the allowed CPUs */
1309 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1310 load = weighted_cpuload(i);
1311
1312 if (load < min_load || (load == min_load && i == this_cpu)) {
1313 min_load = load;
1314 idlest = i;
e7693a36
GH
1315 }
1316 }
1317
aaee1203
PZ
1318 return idlest;
1319}
e7693a36 1320
a50bde51
PZ
1321/*
1322 * Try and locate an idle CPU in the sched_domain.
1323 */
1324static int
1325select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1326{
1327 int cpu = smp_processor_id();
1328 int prev_cpu = task_cpu(p);
1329 int i;
1330
1331 /*
1332 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1333 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1334 * always a better target than the current cpu.
1335 */
1336 if (target == cpu) {
1337 if (!cpu_rq(prev_cpu)->cfs.nr_running)
1338 target = prev_cpu;
1339 }
1340
1341 /*
1342 * Otherwise, iterate the domain and find an elegible idle cpu.
1343 */
1344 if (target == -1 || target == cpu) {
1345 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1346 if (!cpu_rq(i)->cfs.nr_running) {
1347 target = i;
1348 break;
1349 }
1350 }
1351 }
1352
1353 return target;
1354}
1355
aaee1203
PZ
1356/*
1357 * sched_balance_self: balance the current task (running on cpu) in domains
1358 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1359 * SD_BALANCE_EXEC.
1360 *
1361 * Balance, ie. select the least loaded group.
1362 *
1363 * Returns the target CPU number, or the same CPU if no balancing is needed.
1364 *
1365 * preempt must be disabled.
1366 */
5158f4e4 1367static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1368{
29cd8bae 1369 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1370 int cpu = smp_processor_id();
1371 int prev_cpu = task_cpu(p);
1372 int new_cpu = cpu;
1373 int want_affine = 0;
29cd8bae 1374 int want_sd = 1;
5158f4e4 1375 int sync = wake_flags & WF_SYNC;
c88d5910 1376
0763a660 1377 if (sd_flag & SD_BALANCE_WAKE) {
3f04e8cd
MG
1378 if (sched_feat(AFFINE_WAKEUPS) &&
1379 cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1380 want_affine = 1;
1381 new_cpu = prev_cpu;
1382 }
aaee1203 1383
83f54960 1384 rcu_read_lock();
aaee1203
PZ
1385 for_each_domain(cpu, tmp) {
1386 /*
ae154be1
PZ
1387 * If power savings logic is enabled for a domain, see if we
1388 * are not overloaded, if so, don't balance wider.
aaee1203 1389 */
59abf026 1390 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1391 unsigned long power = 0;
1392 unsigned long nr_running = 0;
1393 unsigned long capacity;
1394 int i;
1395
1396 for_each_cpu(i, sched_domain_span(tmp)) {
1397 power += power_of(i);
1398 nr_running += cpu_rq(i)->cfs.nr_running;
1399 }
1400
1401 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1402
59abf026
PZ
1403 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1404 nr_running /= 2;
1405
1406 if (nr_running < capacity)
29cd8bae 1407 want_sd = 0;
ae154be1 1408 }
aaee1203 1409
a1f84a3a 1410 if (want_affine && (tmp->flags & SD_WAKE_AFFINE)) {
a50bde51 1411 int target = -1;
c88d5910 1412
a50bde51
PZ
1413 /*
1414 * If both cpu and prev_cpu are part of this domain,
1415 * cpu is a valid SD_WAKE_AFFINE target.
1416 */
a1f84a3a 1417 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
a50bde51 1418 target = cpu;
a1f84a3a
MG
1419
1420 /*
a50bde51
PZ
1421 * If there's an idle sibling in this domain, make that
1422 * the wake_affine target instead of the current cpu.
1423 *
1424 * XXX: should we possibly do this outside of
1425 * WAKE_AFFINE, in case the shared cache domain is
1426 * smaller than the WAKE_AFFINE domain?
a1f84a3a 1427 */
a50bde51
PZ
1428 if (tmp->flags & SD_PREFER_SIBLING)
1429 target = select_idle_sibling(p, tmp, target);
a1f84a3a 1430
a50bde51 1431 if (target >= 0) {
a1f84a3a
MG
1432 affine_sd = tmp;
1433 want_affine = 0;
a50bde51 1434 cpu = target;
a1f84a3a 1435 }
c88d5910
PZ
1436 }
1437
29cd8bae
PZ
1438 if (!want_sd && !want_affine)
1439 break;
1440
0763a660 1441 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1442 continue;
1443
29cd8bae
PZ
1444 if (want_sd)
1445 sd = tmp;
1446 }
1447
1448 if (sched_feat(LB_SHARES_UPDATE)) {
1449 /*
1450 * Pick the largest domain to update shares over
1451 */
1452 tmp = sd;
1453 if (affine_sd && (!tmp ||
1454 cpumask_weight(sched_domain_span(affine_sd)) >
1455 cpumask_weight(sched_domain_span(sd))))
1456 tmp = affine_sd;
1457
1458 if (tmp)
1459 update_shares(tmp);
c88d5910 1460 }
aaee1203 1461
29cd8bae
PZ
1462 if (affine_sd && wake_affine(affine_sd, p, sync)) {
1463 new_cpu = cpu;
f4827386 1464 goto out;
29cd8bae 1465 }
e7693a36 1466
aaee1203 1467 while (sd) {
5158f4e4 1468 int load_idx = sd->forkexec_idx;
aaee1203 1469 struct sched_group *group;
c88d5910 1470 int weight;
098fb9db 1471
0763a660 1472 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1473 sd = sd->child;
1474 continue;
1475 }
098fb9db 1476
5158f4e4
PZ
1477 if (sd_flag & SD_BALANCE_WAKE)
1478 load_idx = sd->wake_idx;
098fb9db 1479
5158f4e4 1480 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1481 if (!group) {
1482 sd = sd->child;
1483 continue;
1484 }
4ae7d5ce 1485
d7c33c49 1486 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1487 if (new_cpu == -1 || new_cpu == cpu) {
1488 /* Now try balancing at a lower domain level of cpu */
1489 sd = sd->child;
1490 continue;
e7693a36 1491 }
aaee1203
PZ
1492
1493 /* Now try balancing at a lower domain level of new_cpu */
1494 cpu = new_cpu;
1495 weight = cpumask_weight(sched_domain_span(sd));
1496 sd = NULL;
1497 for_each_domain(cpu, tmp) {
1498 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1499 break;
0763a660 1500 if (tmp->flags & sd_flag)
aaee1203
PZ
1501 sd = tmp;
1502 }
1503 /* while loop will break here if sd == NULL */
e7693a36
GH
1504 }
1505
f4827386 1506out:
83f54960 1507 rcu_read_unlock();
c88d5910 1508 return new_cpu;
e7693a36
GH
1509}
1510#endif /* CONFIG_SMP */
1511
e52fb7c0
PZ
1512/*
1513 * Adaptive granularity
1514 *
1515 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1516 * with the limit of wakeup_gran -- when it never does a wakeup.
1517 *
1518 * So the smaller avg_wakeup is the faster we want this task to preempt,
1519 * but we don't want to treat the preemptee unfairly and therefore allow it
1520 * to run for at least the amount of time we'd like to run.
1521 *
1522 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1523 *
1524 * NOTE: we use *nr_running to scale with load, this nicely matches the
1525 * degrading latency on load.
1526 */
1527static unsigned long
1528adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1529{
1530 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1531 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1532 u64 gran = 0;
1533
1534 if (this_run < expected_wakeup)
1535 gran = expected_wakeup - this_run;
1536
1537 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1538}
1539
1540static unsigned long
1541wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1542{
1543 unsigned long gran = sysctl_sched_wakeup_granularity;
1544
e52fb7c0
PZ
1545 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1546 gran = adaptive_gran(curr, se);
1547
0bbd3336 1548 /*
e52fb7c0
PZ
1549 * Since its curr running now, convert the gran from real-time
1550 * to virtual-time in his units.
0bbd3336 1551 */
e52fb7c0
PZ
1552 if (sched_feat(ASYM_GRAN)) {
1553 /*
1554 * By using 'se' instead of 'curr' we penalize light tasks, so
1555 * they get preempted easier. That is, if 'se' < 'curr' then
1556 * the resulting gran will be larger, therefore penalizing the
1557 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1558 * be smaller, again penalizing the lighter task.
1559 *
1560 * This is especially important for buddies when the leftmost
1561 * task is higher priority than the buddy.
1562 */
1563 if (unlikely(se->load.weight != NICE_0_LOAD))
1564 gran = calc_delta_fair(gran, se);
1565 } else {
1566 if (unlikely(curr->load.weight != NICE_0_LOAD))
1567 gran = calc_delta_fair(gran, curr);
1568 }
0bbd3336
PZ
1569
1570 return gran;
1571}
1572
464b7527
PZ
1573/*
1574 * Should 'se' preempt 'curr'.
1575 *
1576 * |s1
1577 * |s2
1578 * |s3
1579 * g
1580 * |<--->|c
1581 *
1582 * w(c, s1) = -1
1583 * w(c, s2) = 0
1584 * w(c, s3) = 1
1585 *
1586 */
1587static int
1588wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1589{
1590 s64 gran, vdiff = curr->vruntime - se->vruntime;
1591
1592 if (vdiff <= 0)
1593 return -1;
1594
e52fb7c0 1595 gran = wakeup_gran(curr, se);
464b7527
PZ
1596 if (vdiff > gran)
1597 return 1;
1598
1599 return 0;
1600}
1601
02479099
PZ
1602static void set_last_buddy(struct sched_entity *se)
1603{
6bc912b7
PZ
1604 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1605 for_each_sched_entity(se)
1606 cfs_rq_of(se)->last = se;
1607 }
02479099
PZ
1608}
1609
1610static void set_next_buddy(struct sched_entity *se)
1611{
6bc912b7
PZ
1612 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1613 for_each_sched_entity(se)
1614 cfs_rq_of(se)->next = se;
1615 }
02479099
PZ
1616}
1617
bf0f6f24
IM
1618/*
1619 * Preempt the current task with a newly woken task if needed:
1620 */
5a9b86f6 1621static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1622{
1623 struct task_struct *curr = rq->curr;
8651a86c 1624 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1625 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5a9b86f6 1626 int sync = wake_flags & WF_SYNC;
bf0f6f24 1627
03e89e45 1628 update_curr(cfs_rq);
4793241b 1629
03e89e45 1630 if (unlikely(rt_prio(p->prio))) {
bf0f6f24
IM
1631 resched_task(curr);
1632 return;
1633 }
aa2ac252 1634
d95f98d0
PZ
1635 if (unlikely(p->sched_class != &fair_sched_class))
1636 return;
1637
4ae7d5ce
IM
1638 if (unlikely(se == pse))
1639 return;
1640
4793241b
PZ
1641 /*
1642 * Only set the backward buddy when the current task is still on the
1643 * rq. This can happen when a wakeup gets interleaved with schedule on
1644 * the ->pre_schedule() or idle_balance() point, either of which can
1645 * drop the rq lock.
1646 *
1647 * Also, during early boot the idle thread is in the fair class, for
1648 * obvious reasons its a bad idea to schedule back to the idle thread.
1649 */
1650 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099 1651 set_last_buddy(se);
5a9b86f6 1652 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK))
3cb63d52 1653 set_next_buddy(pse);
57fdc26d 1654
aec0a514
BR
1655 /*
1656 * We can come here with TIF_NEED_RESCHED already set from new task
1657 * wake up path.
1658 */
1659 if (test_tsk_need_resched(curr))
1660 return;
1661
91c234b4 1662 /*
6bc912b7 1663 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1664 * the tick):
1665 */
6bc912b7 1666 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1667 return;
bf0f6f24 1668
6bc912b7
PZ
1669 /* Idle tasks are by definition preempted by everybody. */
1670 if (unlikely(curr->policy == SCHED_IDLE)) {
1671 resched_task(curr);
91c234b4 1672 return;
6bc912b7 1673 }
bf0f6f24 1674
e6b1b2c9
PZ
1675 if ((sched_feat(WAKEUP_SYNC) && sync) ||
1676 (sched_feat(WAKEUP_OVERLAP) &&
1677 (se->avg_overlap < sysctl_sched_migration_cost &&
1678 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1679 resched_task(curr);
1680 return;
1681 }
1682
ad4b78bb
PZ
1683 if (sched_feat(WAKEUP_RUNNING)) {
1684 if (pse->avg_running < se->avg_running) {
1685 set_next_buddy(pse);
1686 resched_task(curr);
1687 return;
1688 }
1689 }
1690
1691 if (!sched_feat(WAKEUP_PREEMPT))
1692 return;
1693
464b7527
PZ
1694 find_matching_se(&se, &pse);
1695
002f128b 1696 BUG_ON(!pse);
464b7527 1697
002f128b
PT
1698 if (wakeup_preempt_entity(se, pse) == 1)
1699 resched_task(curr);
bf0f6f24
IM
1700}
1701
fb8d4724 1702static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1703{
8f4d37ec 1704 struct task_struct *p;
bf0f6f24
IM
1705 struct cfs_rq *cfs_rq = &rq->cfs;
1706 struct sched_entity *se;
1707
1708 if (unlikely(!cfs_rq->nr_running))
1709 return NULL;
1710
1711 do {
9948f4b2 1712 se = pick_next_entity(cfs_rq);
a9f3e2b5
MG
1713 /*
1714 * If se was a buddy, clear it so that it will have to earn
1715 * the favour again.
de69a80b
PZ
1716 *
1717 * If se was not a buddy, clear the buddies because neither
1718 * was elegible to run, let them earn it again.
1719 *
1720 * IOW. unconditionally clear buddies.
a9f3e2b5 1721 */
de69a80b 1722 __clear_buddies(cfs_rq, NULL);
f4b6755f 1723 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1724 cfs_rq = group_cfs_rq(se);
1725 } while (cfs_rq);
1726
8f4d37ec
PZ
1727 p = task_of(se);
1728 hrtick_start_fair(rq, p);
1729
1730 return p;
bf0f6f24
IM
1731}
1732
1733/*
1734 * Account for a descheduled task:
1735 */
31ee529c 1736static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1737{
1738 struct sched_entity *se = &prev->se;
1739 struct cfs_rq *cfs_rq;
1740
1741 for_each_sched_entity(se) {
1742 cfs_rq = cfs_rq_of(se);
ab6cde26 1743 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1744 }
1745}
1746
681f3e68 1747#ifdef CONFIG_SMP
bf0f6f24
IM
1748/**************************************************
1749 * Fair scheduling class load-balancing methods:
1750 */
1751
1752/*
1753 * Load-balancing iterator. Note: while the runqueue stays locked
1754 * during the whole iteration, the current task might be
1755 * dequeued so the iterator has to be dequeue-safe. Here we
1756 * achieve that by always pre-iterating before returning
1757 * the current task:
1758 */
a9957449 1759static struct task_struct *
4a55bd5e 1760__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1761{
354d60c2
DG
1762 struct task_struct *p = NULL;
1763 struct sched_entity *se;
bf0f6f24 1764
77ae6513
MG
1765 if (next == &cfs_rq->tasks)
1766 return NULL;
1767
b87f1724
BR
1768 se = list_entry(next, struct sched_entity, group_node);
1769 p = task_of(se);
1770 cfs_rq->balance_iterator = next->next;
77ae6513 1771
bf0f6f24
IM
1772 return p;
1773}
1774
1775static struct task_struct *load_balance_start_fair(void *arg)
1776{
1777 struct cfs_rq *cfs_rq = arg;
1778
4a55bd5e 1779 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1780}
1781
1782static struct task_struct *load_balance_next_fair(void *arg)
1783{
1784 struct cfs_rq *cfs_rq = arg;
1785
4a55bd5e 1786 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1787}
1788
c09595f6
PZ
1789static unsigned long
1790__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1791 unsigned long max_load_move, struct sched_domain *sd,
1792 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1793 struct cfs_rq *cfs_rq)
62fb1851 1794{
c09595f6 1795 struct rq_iterator cfs_rq_iterator;
62fb1851 1796
c09595f6
PZ
1797 cfs_rq_iterator.start = load_balance_start_fair;
1798 cfs_rq_iterator.next = load_balance_next_fair;
1799 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1800
c09595f6
PZ
1801 return balance_tasks(this_rq, this_cpu, busiest,
1802 max_load_move, sd, idle, all_pinned,
1803 this_best_prio, &cfs_rq_iterator);
62fb1851 1804}
62fb1851 1805
c09595f6 1806#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1807static unsigned long
bf0f6f24 1808load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1809 unsigned long max_load_move,
a4ac01c3
PW
1810 struct sched_domain *sd, enum cpu_idle_type idle,
1811 int *all_pinned, int *this_best_prio)
bf0f6f24 1812{
bf0f6f24 1813 long rem_load_move = max_load_move;
c09595f6
PZ
1814 int busiest_cpu = cpu_of(busiest);
1815 struct task_group *tg;
18d95a28 1816
c09595f6 1817 rcu_read_lock();
c8cba857 1818 update_h_load(busiest_cpu);
18d95a28 1819
caea8a03 1820 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1821 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1822 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1823 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1824 u64 rem_load, moved_load;
18d95a28 1825
c09595f6
PZ
1826 /*
1827 * empty group
1828 */
c8cba857 1829 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1830 continue;
1831
243e0e7b
SV
1832 rem_load = (u64)rem_load_move * busiest_weight;
1833 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1834
c09595f6 1835 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1836 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1837 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1838
c09595f6 1839 if (!moved_load)
bf0f6f24
IM
1840 continue;
1841
42a3ac7d 1842 moved_load *= busiest_h_load;
243e0e7b 1843 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1844
c09595f6
PZ
1845 rem_load_move -= moved_load;
1846 if (rem_load_move < 0)
bf0f6f24
IM
1847 break;
1848 }
c09595f6 1849 rcu_read_unlock();
bf0f6f24 1850
43010659 1851 return max_load_move - rem_load_move;
bf0f6f24 1852}
c09595f6
PZ
1853#else
1854static unsigned long
1855load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1856 unsigned long max_load_move,
1857 struct sched_domain *sd, enum cpu_idle_type idle,
1858 int *all_pinned, int *this_best_prio)
1859{
1860 return __load_balance_fair(this_rq, this_cpu, busiest,
1861 max_load_move, sd, idle, all_pinned,
1862 this_best_prio, &busiest->cfs);
1863}
1864#endif
bf0f6f24 1865
e1d1484f
PW
1866static int
1867move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1868 struct sched_domain *sd, enum cpu_idle_type idle)
1869{
1870 struct cfs_rq *busy_cfs_rq;
1871 struct rq_iterator cfs_rq_iterator;
1872
1873 cfs_rq_iterator.start = load_balance_start_fair;
1874 cfs_rq_iterator.next = load_balance_next_fair;
1875
1876 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1877 /*
1878 * pass busy_cfs_rq argument into
1879 * load_balance_[start|next]_fair iterators
1880 */
1881 cfs_rq_iterator.arg = busy_cfs_rq;
1882 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1883 &cfs_rq_iterator))
1884 return 1;
1885 }
1886
1887 return 0;
1888}
55e12e5e 1889#endif /* CONFIG_SMP */
e1d1484f 1890
bf0f6f24
IM
1891/*
1892 * scheduler tick hitting a task of our scheduling class:
1893 */
8f4d37ec 1894static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1895{
1896 struct cfs_rq *cfs_rq;
1897 struct sched_entity *se = &curr->se;
1898
1899 for_each_sched_entity(se) {
1900 cfs_rq = cfs_rq_of(se);
8f4d37ec 1901 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1902 }
1903}
1904
1905/*
1906 * Share the fairness runtime between parent and child, thus the
1907 * total amount of pressure for CPU stays equal - new tasks
1908 * get a chance to run but frequent forkers are not allowed to
1909 * monopolize the CPU. Note: the parent runqueue is locked,
1910 * the child is not running yet.
1911 */
ee0827d8 1912static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1913{
1914 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1915 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1916 int this_cpu = smp_processor_id();
bf0f6f24
IM
1917
1918 sched_info_queued(p);
1919
7109c442 1920 update_curr(cfs_rq);
b5d9d734
MG
1921 if (curr)
1922 se->vruntime = curr->vruntime;
aeb73b04 1923 place_entity(cfs_rq, se, 1);
4d78e7b6 1924
3c90e6e9 1925 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1926 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
54fdc581 1927 curr && entity_before(curr, se)) {
87fefa38 1928 /*
edcb60a3
IM
1929 * Upon rescheduling, sched_class::put_prev_task() will place
1930 * 'current' within the tree based on its new key value.
1931 */
4d78e7b6 1932 swap(curr->vruntime, se->vruntime);
aec0a514 1933 resched_task(rq->curr);
4d78e7b6 1934 }
bf0f6f24 1935
b9dca1e0 1936 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1937}
1938
cb469845
SR
1939/*
1940 * Priority of the task has changed. Check to see if we preempt
1941 * the current task.
1942 */
1943static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1944 int oldprio, int running)
1945{
1946 /*
1947 * Reschedule if we are currently running on this runqueue and
1948 * our priority decreased, or if we are not currently running on
1949 * this runqueue and our priority is higher than the current's
1950 */
1951 if (running) {
1952 if (p->prio > oldprio)
1953 resched_task(rq->curr);
1954 } else
15afe09b 1955 check_preempt_curr(rq, p, 0);
cb469845
SR
1956}
1957
1958/*
1959 * We switched to the sched_fair class.
1960 */
1961static void switched_to_fair(struct rq *rq, struct task_struct *p,
1962 int running)
1963{
1964 /*
1965 * We were most likely switched from sched_rt, so
1966 * kick off the schedule if running, otherwise just see
1967 * if we can still preempt the current task.
1968 */
1969 if (running)
1970 resched_task(rq->curr);
1971 else
15afe09b 1972 check_preempt_curr(rq, p, 0);
cb469845
SR
1973}
1974
83b699ed
SV
1975/* Account for a task changing its policy or group.
1976 *
1977 * This routine is mostly called to set cfs_rq->curr field when a task
1978 * migrates between groups/classes.
1979 */
1980static void set_curr_task_fair(struct rq *rq)
1981{
1982 struct sched_entity *se = &rq->curr->se;
1983
1984 for_each_sched_entity(se)
1985 set_next_entity(cfs_rq_of(se), se);
1986}
1987
810b3817
PZ
1988#ifdef CONFIG_FAIR_GROUP_SCHED
1989static void moved_group_fair(struct task_struct *p)
1990{
1991 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1992
1993 update_curr(cfs_rq);
1994 place_entity(cfs_rq, &p->se, 1);
1995}
1996#endif
1997
0d721cea
PW
1998unsigned int get_rr_interval_fair(struct task_struct *task)
1999{
2000 struct sched_entity *se = &task->se;
2001 unsigned long flags;
2002 struct rq *rq;
2003 unsigned int rr_interval = 0;
2004
2005 /*
2006 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2007 * idle runqueue:
2008 */
2009 rq = task_rq_lock(task, &flags);
2010 if (rq->cfs.load.weight)
2011 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
2012 task_rq_unlock(rq, &flags);
2013
2014 return rr_interval;
2015}
2016
bf0f6f24
IM
2017/*
2018 * All the scheduling class methods:
2019 */
5522d5d5
IM
2020static const struct sched_class fair_sched_class = {
2021 .next = &idle_sched_class,
bf0f6f24
IM
2022 .enqueue_task = enqueue_task_fair,
2023 .dequeue_task = dequeue_task_fair,
2024 .yield_task = yield_task_fair,
2025
2e09bf55 2026 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
2027
2028 .pick_next_task = pick_next_task_fair,
2029 .put_prev_task = put_prev_task_fair,
2030
681f3e68 2031#ifdef CONFIG_SMP
4ce72a2c
LZ
2032 .select_task_rq = select_task_rq_fair,
2033
bf0f6f24 2034 .load_balance = load_balance_fair,
e1d1484f 2035 .move_one_task = move_one_task_fair,
681f3e68 2036#endif
bf0f6f24 2037
83b699ed 2038 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
2039 .task_tick = task_tick_fair,
2040 .task_new = task_new_fair,
cb469845
SR
2041
2042 .prio_changed = prio_changed_fair,
2043 .switched_to = switched_to_fair,
810b3817 2044
0d721cea
PW
2045 .get_rr_interval = get_rr_interval_fair,
2046
810b3817
PZ
2047#ifdef CONFIG_FAIR_GROUP_SCHED
2048 .moved_group = moved_group_fair,
2049#endif
bf0f6f24
IM
2050};
2051
2052#ifdef CONFIG_SCHED_DEBUG
5cef9eca 2053static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 2054{
bf0f6f24
IM
2055 struct cfs_rq *cfs_rq;
2056
5973e5b9 2057 rcu_read_lock();
c3b64f1e 2058 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 2059 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 2060 rcu_read_unlock();
bf0f6f24
IM
2061}
2062#endif