]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched_fair.c
sched: clean up min_vruntime use
[mirror_ubuntu-zesty-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085
PZ
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 35 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 36 */
2bd8e6d4
IM
37const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
44
45/*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
172ac3db 49unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
bf0f6f24 50
1799e35d
IM
51/*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57unsigned int __read_mostly sysctl_sched_compat_yield;
58
bf0f6f24
IM
59/*
60 * SCHED_BATCH wake-up granularity.
71fd3714 61 * (default: 25 msec, units: nanoseconds)
bf0f6f24
IM
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
2bd8e6d4 67const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
bf0f6f24
IM
68
69/*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
2e09bf55 77const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
bf0f6f24 78
bf0f6f24
IM
79extern struct sched_class fair_sched_class;
80
81/**************************************************************
82 * CFS operations on generic schedulable entities:
83 */
84
62160e3f 85#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 86
62160e3f 87/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
88static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89{
62160e3f 90 return cfs_rq->rq;
bf0f6f24
IM
91}
92
62160e3f
IM
93/* An entity is a task if it doesn't "own" a runqueue */
94#define entity_is_task(se) (!se->my_q)
bf0f6f24 95
62160e3f 96#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 97
62160e3f
IM
98static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
99{
100 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
101}
102
103#define entity_is_task(se) 1
104
bf0f6f24
IM
105#endif /* CONFIG_FAIR_GROUP_SCHED */
106
107static inline struct task_struct *task_of(struct sched_entity *se)
108{
109 return container_of(se, struct task_struct, se);
110}
111
112
113/**************************************************************
114 * Scheduling class tree data structure manipulation methods:
115 */
116
02e0431a
PZ
117static inline u64
118max_vruntime(u64 min_vruntime, u64 vruntime)
119{
368059a9
PZ
120 s64 delta = (s64)(vruntime - min_vruntime);
121 if (delta > 0)
02e0431a
PZ
122 min_vruntime = vruntime;
123
124 return min_vruntime;
125}
126
b0ffd246
PZ
127static inline u64
128min_vruntime(u64 min_vruntime, u64 vruntime)
129{
130 s64 delta = (s64)(vruntime - min_vruntime);
131 if (delta < 0)
132 min_vruntime = vruntime;
133
134 return min_vruntime;
135}
136
02e0431a
PZ
137static inline s64
138entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 139{
30cfdcfc 140 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
141}
142
bf0f6f24
IM
143/*
144 * Enqueue an entity into the rb-tree:
145 */
19ccd97a 146static void
bf0f6f24
IM
147__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
148{
149 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
150 struct rb_node *parent = NULL;
151 struct sched_entity *entry;
9014623c 152 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
153 int leftmost = 1;
154
155 /*
156 * Find the right place in the rbtree:
157 */
158 while (*link) {
159 parent = *link;
160 entry = rb_entry(parent, struct sched_entity, run_node);
161 /*
162 * We dont care about collisions. Nodes with
163 * the same key stay together.
164 */
9014623c 165 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
166 link = &parent->rb_left;
167 } else {
168 link = &parent->rb_right;
169 leftmost = 0;
170 }
171 }
172
173 /*
174 * Maintain a cache of leftmost tree entries (it is frequently
175 * used):
176 */
177 if (leftmost)
57cb499d 178 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
179
180 rb_link_node(&se->run_node, parent, link);
181 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
182}
183
19ccd97a 184static void
bf0f6f24
IM
185__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
186{
187 if (cfs_rq->rb_leftmost == &se->run_node)
57cb499d 188 cfs_rq->rb_leftmost = rb_next(&se->run_node);
e9acbff6 189
bf0f6f24 190 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
191}
192
193static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
194{
195 return cfs_rq->rb_leftmost;
196}
197
198static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
199{
200 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
201}
202
aeb73b04
PZ
203static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
204{
205 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
206 struct sched_entity *se = NULL;
207 struct rb_node *parent;
208
209 while (*link) {
210 parent = *link;
211 se = rb_entry(parent, struct sched_entity, run_node);
212 link = &parent->rb_right;
213 }
214
215 return se;
216}
217
bf0f6f24
IM
218/**************************************************************
219 * Scheduling class statistics methods:
220 */
221
4d78e7b6
PZ
222static u64 __sched_period(unsigned long nr_running)
223{
224 u64 period = sysctl_sched_latency;
225 unsigned long nr_latency =
226 sysctl_sched_latency / sysctl_sched_min_granularity;
227
228 if (unlikely(nr_running > nr_latency)) {
229 period *= nr_running;
230 do_div(period, nr_latency);
231 }
232
233 return period;
234}
235
6d0f0ebd 236static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 237{
6d0f0ebd 238 u64 period = __sched_period(cfs_rq->nr_running);
21805085 239
6d0f0ebd
PZ
240 period *= se->load.weight;
241 do_div(period, cfs_rq->load.weight);
21805085 242
6d0f0ebd 243 return period;
bf0f6f24
IM
244}
245
67e9fb2a
PZ
246static u64 __sched_vslice(unsigned long nr_running)
247{
248 u64 period = __sched_period(nr_running);
249
250 do_div(period, nr_running);
251
252 return period;
253}
254
bf0f6f24
IM
255/*
256 * Update the current task's runtime statistics. Skip current tasks that
257 * are not in our scheduling class.
258 */
259static inline void
8ebc91d9
IM
260__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
261 unsigned long delta_exec)
bf0f6f24 262{
bbdba7c0 263 unsigned long delta_exec_weighted;
b0ffd246 264 u64 vruntime;
bf0f6f24 265
8179ca23 266 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
267
268 curr->sum_exec_runtime += delta_exec;
7a62eabc 269 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
270 delta_exec_weighted = delta_exec;
271 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
272 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
273 &curr->load);
274 }
275 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
276
277 /*
278 * maintain cfs_rq->min_vruntime to be a monotonic increasing
279 * value tracking the leftmost vruntime in the tree.
280 */
281 if (first_fair(cfs_rq)) {
b0ffd246
PZ
282 vruntime = min_vruntime(curr->vruntime,
283 __pick_next_entity(cfs_rq)->vruntime);
02e0431a 284 } else
b0ffd246 285 vruntime = curr->vruntime;
02e0431a
PZ
286
287 cfs_rq->min_vruntime =
b0ffd246 288 max_vruntime(cfs_rq->min_vruntime, vruntime);
bf0f6f24
IM
289}
290
b7cc0896 291static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 292{
429d43bc 293 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 294 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
295 unsigned long delta_exec;
296
297 if (unlikely(!curr))
298 return;
299
300 /*
301 * Get the amount of time the current task was running
302 * since the last time we changed load (this cannot
303 * overflow on 32 bits):
304 */
8ebc91d9 305 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 306
8ebc91d9
IM
307 __update_curr(cfs_rq, curr, delta_exec);
308 curr->exec_start = now;
bf0f6f24
IM
309}
310
311static inline void
5870db5b 312update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 313{
d281918d 314 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
315}
316
bf0f6f24 317static inline unsigned long
08e2388a 318calc_weighted(unsigned long delta, struct sched_entity *se)
bf0f6f24 319{
08e2388a 320 unsigned long weight = se->load.weight;
bf0f6f24 321
08e2388a
IM
322 if (unlikely(weight != NICE_0_LOAD))
323 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
324 else
325 return delta;
bf0f6f24 326}
bf0f6f24
IM
327
328/*
329 * Task is being enqueued - update stats:
330 */
d2417e5a 331static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 332{
bf0f6f24
IM
333 /*
334 * Are we enqueueing a waiting task? (for current tasks
335 * a dequeue/enqueue event is a NOP)
336 */
429d43bc 337 if (se != cfs_rq->curr)
5870db5b 338 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
339}
340
bf0f6f24 341static void
9ef0a961 342update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 343{
bbdba7c0
IM
344 schedstat_set(se->wait_max, max(se->wait_max,
345 rq_of(cfs_rq)->clock - se->wait_start));
6cfb0d5d 346 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
347}
348
349static inline void
19b6a2e3 350update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 351{
b7cc0896 352 update_curr(cfs_rq);
bf0f6f24
IM
353 /*
354 * Mark the end of the wait period if dequeueing a
355 * waiting task:
356 */
429d43bc 357 if (se != cfs_rq->curr)
9ef0a961 358 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
359}
360
361/*
362 * We are picking a new current task - update its stats:
363 */
364static inline void
79303e9e 365update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
366{
367 /*
368 * We are starting a new run period:
369 */
d281918d 370 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
371}
372
373/*
374 * We are descheduling a task - update its stats:
375 */
376static inline void
c7e9b5b2 377update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
378{
379 se->exec_start = 0;
380}
381
382/**************************************************
383 * Scheduling class queueing methods:
384 */
385
30cfdcfc
DA
386static void
387account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
388{
389 update_load_add(&cfs_rq->load, se->load.weight);
390 cfs_rq->nr_running++;
391 se->on_rq = 1;
392}
393
394static void
395account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
396{
397 update_load_sub(&cfs_rq->load, se->load.weight);
398 cfs_rq->nr_running--;
399 se->on_rq = 0;
400}
401
2396af69 402static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 403{
bf0f6f24
IM
404#ifdef CONFIG_SCHEDSTATS
405 if (se->sleep_start) {
d281918d 406 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
407
408 if ((s64)delta < 0)
409 delta = 0;
410
411 if (unlikely(delta > se->sleep_max))
412 se->sleep_max = delta;
413
414 se->sleep_start = 0;
415 se->sum_sleep_runtime += delta;
416 }
417 if (se->block_start) {
d281918d 418 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
419
420 if ((s64)delta < 0)
421 delta = 0;
422
423 if (unlikely(delta > se->block_max))
424 se->block_max = delta;
425
426 se->block_start = 0;
427 se->sum_sleep_runtime += delta;
30084fbd
IM
428
429 /*
430 * Blocking time is in units of nanosecs, so shift by 20 to
431 * get a milliseconds-range estimation of the amount of
432 * time that the task spent sleeping:
433 */
434 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf
IM
435 struct task_struct *tsk = task_of(se);
436
30084fbd
IM
437 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
438 delta >> 20);
439 }
bf0f6f24
IM
440 }
441#endif
442}
443
ddc97297
PZ
444static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
445{
446#ifdef CONFIG_SCHED_DEBUG
447 s64 d = se->vruntime - cfs_rq->min_vruntime;
448
449 if (d < 0)
450 d = -d;
451
452 if (d > 3*sysctl_sched_latency)
453 schedstat_inc(cfs_rq, nr_spread_over);
454#endif
455}
456
aeb73b04
PZ
457static void
458place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
459{
67e9fb2a 460 u64 vruntime;
aeb73b04 461
67e9fb2a 462 vruntime = cfs_rq->min_vruntime;
94dfb5e7
PZ
463
464 if (sched_feat(USE_TREE_AVG)) {
465 struct sched_entity *last = __pick_last_entity(cfs_rq);
466 if (last) {
67e9fb2a
PZ
467 vruntime += last->vruntime;
468 vruntime >>= 1;
94dfb5e7 469 }
67e9fb2a
PZ
470 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
471 vruntime += __sched_vslice(cfs_rq->nr_running)/2;
94dfb5e7
PZ
472
473 if (initial && sched_feat(START_DEBIT))
67e9fb2a 474 vruntime += __sched_vslice(cfs_rq->nr_running + 1);
aeb73b04 475
8465e792 476 if (!initial) {
94359f05
IM
477 if (sched_feat(NEW_FAIR_SLEEPERS))
478 vruntime -= sysctl_sched_latency;
479
b8487b92 480 vruntime = max_t(s64, vruntime, se->vruntime);
aeb73b04
PZ
481 }
482
67e9fb2a
PZ
483 se->vruntime = vruntime;
484
aeb73b04
PZ
485}
486
bf0f6f24 487static void
83b699ed 488enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
489{
490 /*
491 * Update the fair clock.
492 */
b7cc0896 493 update_curr(cfs_rq);
bf0f6f24 494
e9acbff6 495 if (wakeup) {
67e9fb2a 496 /* se->vruntime += cfs_rq->min_vruntime; */
aeb73b04 497 place_entity(cfs_rq, se, 0);
2396af69 498 enqueue_sleeper(cfs_rq, se);
e9acbff6 499 }
bf0f6f24 500
d2417e5a 501 update_stats_enqueue(cfs_rq, se);
ddc97297 502 check_spread(cfs_rq, se);
83b699ed
SV
503 if (se != cfs_rq->curr)
504 __enqueue_entity(cfs_rq, se);
30cfdcfc 505 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
506}
507
508static void
525c2716 509dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 510{
19b6a2e3 511 update_stats_dequeue(cfs_rq, se);
db36cc7d 512 if (sleep) {
67e9fb2a 513#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
514 if (entity_is_task(se)) {
515 struct task_struct *tsk = task_of(se);
516
517 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 518 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 519 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 520 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 521 }
db36cc7d 522#endif
67e9fb2a
PZ
523 }
524
83b699ed 525 if (se != cfs_rq->curr)
30cfdcfc
DA
526 __dequeue_entity(cfs_rq, se);
527 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
528}
529
530/*
531 * Preempt the current task with a newly woken task if needed:
532 */
7c92e54f 533static void
2e09bf55 534check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 535{
11697830
PZ
536 unsigned long ideal_runtime, delta_exec;
537
6d0f0ebd 538 ideal_runtime = sched_slice(cfs_rq, curr);
11697830
PZ
539 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
540 if (delta_exec > ideal_runtime)
bf0f6f24
IM
541 resched_task(rq_of(cfs_rq)->curr);
542}
543
83b699ed 544static void
8494f412 545set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 546{
83b699ed
SV
547 /* 'current' is not kept within the tree. */
548 if (se->on_rq) {
549 /*
550 * Any task has to be enqueued before it get to execute on
551 * a CPU. So account for the time it spent waiting on the
552 * runqueue.
553 */
554 update_stats_wait_end(cfs_rq, se);
555 __dequeue_entity(cfs_rq, se);
556 }
557
79303e9e 558 update_stats_curr_start(cfs_rq, se);
429d43bc 559 cfs_rq->curr = se;
eba1ed4b
IM
560#ifdef CONFIG_SCHEDSTATS
561 /*
562 * Track our maximum slice length, if the CPU's load is at
563 * least twice that of our own weight (i.e. dont track it
564 * when there are only lesser-weight tasks around):
565 */
495eca49 566 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
567 se->slice_max = max(se->slice_max,
568 se->sum_exec_runtime - se->prev_sum_exec_runtime);
569 }
570#endif
4a55b450 571 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
572}
573
9948f4b2 574static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24
IM
575{
576 struct sched_entity *se = __pick_next_entity(cfs_rq);
577
8494f412 578 set_next_entity(cfs_rq, se);
bf0f6f24
IM
579
580 return se;
581}
582
ab6cde26 583static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
584{
585 /*
586 * If still on the runqueue then deactivate_task()
587 * was not called and update_curr() has to be done:
588 */
589 if (prev->on_rq)
b7cc0896 590 update_curr(cfs_rq);
bf0f6f24 591
c7e9b5b2 592 update_stats_curr_end(cfs_rq, prev);
bf0f6f24 593
ddc97297 594 check_spread(cfs_rq, prev);
30cfdcfc 595 if (prev->on_rq) {
5870db5b 596 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
597 /* Put 'current' back into the tree. */
598 __enqueue_entity(cfs_rq, prev);
599 }
429d43bc 600 cfs_rq->curr = NULL;
bf0f6f24
IM
601}
602
603static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
604{
bf0f6f24 605 /*
30cfdcfc 606 * Update run-time statistics of the 'current'.
bf0f6f24 607 */
30cfdcfc 608 update_curr(cfs_rq);
bf0f6f24 609
2e09bf55
IM
610 if (cfs_rq->nr_running > 1)
611 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
612}
613
614/**************************************************
615 * CFS operations on tasks:
616 */
617
618#ifdef CONFIG_FAIR_GROUP_SCHED
619
620/* Walk up scheduling entities hierarchy */
621#define for_each_sched_entity(se) \
622 for (; se; se = se->parent)
623
624static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
625{
626 return p->se.cfs_rq;
627}
628
629/* runqueue on which this entity is (to be) queued */
630static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
631{
632 return se->cfs_rq;
633}
634
635/* runqueue "owned" by this group */
636static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
637{
638 return grp->my_q;
639}
640
641/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
642 * another cpu ('this_cpu')
643 */
644static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
645{
29f59db3 646 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
647}
648
649/* Iterate thr' all leaf cfs_rq's on a runqueue */
650#define for_each_leaf_cfs_rq(rq, cfs_rq) \
651 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
652
653/* Do the two (enqueued) tasks belong to the same group ? */
654static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
655{
656 if (curr->se.cfs_rq == p->se.cfs_rq)
657 return 1;
658
659 return 0;
660}
661
662#else /* CONFIG_FAIR_GROUP_SCHED */
663
664#define for_each_sched_entity(se) \
665 for (; se; se = NULL)
666
667static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
668{
669 return &task_rq(p)->cfs;
670}
671
672static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
673{
674 struct task_struct *p = task_of(se);
675 struct rq *rq = task_rq(p);
676
677 return &rq->cfs;
678}
679
680/* runqueue "owned" by this group */
681static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
682{
683 return NULL;
684}
685
686static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
687{
688 return &cpu_rq(this_cpu)->cfs;
689}
690
691#define for_each_leaf_cfs_rq(rq, cfs_rq) \
692 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
693
694static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
695{
696 return 1;
697}
698
699#endif /* CONFIG_FAIR_GROUP_SCHED */
700
701/*
702 * The enqueue_task method is called before nr_running is
703 * increased. Here we update the fair scheduling stats and
704 * then put the task into the rbtree:
705 */
fd390f6a 706static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
707{
708 struct cfs_rq *cfs_rq;
709 struct sched_entity *se = &p->se;
710
711 for_each_sched_entity(se) {
712 if (se->on_rq)
713 break;
714 cfs_rq = cfs_rq_of(se);
83b699ed 715 enqueue_entity(cfs_rq, se, wakeup);
bf0f6f24
IM
716 }
717}
718
719/*
720 * The dequeue_task method is called before nr_running is
721 * decreased. We remove the task from the rbtree and
722 * update the fair scheduling stats:
723 */
f02231e5 724static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
725{
726 struct cfs_rq *cfs_rq;
727 struct sched_entity *se = &p->se;
728
729 for_each_sched_entity(se) {
730 cfs_rq = cfs_rq_of(se);
525c2716 731 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
732 /* Don't dequeue parent if it has other entities besides us */
733 if (cfs_rq->load.weight)
734 break;
735 }
736}
737
738/*
1799e35d
IM
739 * sched_yield() support is very simple - we dequeue and enqueue.
740 *
741 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 742 */
4530d7ab 743static void yield_task_fair(struct rq *rq)
bf0f6f24 744{
72ea22f8 745 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
4530d7ab 746 struct sched_entity *rightmost, *se = &rq->curr->se;
bf0f6f24
IM
747
748 /*
1799e35d
IM
749 * Are we the only task in the tree?
750 */
751 if (unlikely(cfs_rq->nr_running == 1))
752 return;
753
754 if (likely(!sysctl_sched_compat_yield)) {
755 __update_rq_clock(rq);
756 /*
757 * Dequeue and enqueue the task to update its
758 * position within the tree:
759 */
2b1e315d 760 update_curr(cfs_rq);
1799e35d
IM
761
762 return;
763 }
764 /*
765 * Find the rightmost entry in the rbtree:
bf0f6f24 766 */
2b1e315d 767 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
768 /*
769 * Already in the rightmost position?
770 */
2b1e315d 771 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
772 return;
773
774 /*
775 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
776 * Upon rescheduling, sched_class::put_prev_task() will place
777 * 'current' within the tree based on its new key value.
1799e35d 778 */
30cfdcfc 779 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
780}
781
782/*
783 * Preempt the current task with a newly woken task if needed:
784 */
2e09bf55 785static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
786{
787 struct task_struct *curr = rq->curr;
8651a86c
SV
788 struct cfs_rq *cfs_rq = task_cfs_rq(curr), *pcfs_rq;
789 struct sched_entity *se = &curr->se, *pse = &p->se;
bf0f6f24
IM
790
791 if (unlikely(rt_prio(p->prio))) {
a8e504d2 792 update_rq_clock(rq);
b7cc0896 793 update_curr(cfs_rq);
bf0f6f24
IM
794 resched_task(curr);
795 return;
796 }
797
8651a86c
SV
798 for_each_sched_entity(se) {
799 cfs_rq = cfs_rq_of(se);
800 pcfs_rq = cfs_rq_of(pse);
801
802 if (cfs_rq == pcfs_rq) {
803 s64 delta = se->vruntime - pse->vruntime;
804
805 if (delta > (s64)sysctl_sched_wakeup_granularity)
806 resched_task(curr);
807 break;
808 }
809#ifdef CONFIG_FAIR_GROUP_SCHED
810 pse = pse->parent;
811#endif
2e09bf55 812 }
bf0f6f24
IM
813}
814
fb8d4724 815static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
816{
817 struct cfs_rq *cfs_rq = &rq->cfs;
818 struct sched_entity *se;
819
820 if (unlikely(!cfs_rq->nr_running))
821 return NULL;
822
823 do {
9948f4b2 824 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
825 cfs_rq = group_cfs_rq(se);
826 } while (cfs_rq);
827
828 return task_of(se);
829}
830
831/*
832 * Account for a descheduled task:
833 */
31ee529c 834static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
835{
836 struct sched_entity *se = &prev->se;
837 struct cfs_rq *cfs_rq;
838
839 for_each_sched_entity(se) {
840 cfs_rq = cfs_rq_of(se);
ab6cde26 841 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
842 }
843}
844
845/**************************************************
846 * Fair scheduling class load-balancing methods:
847 */
848
849/*
850 * Load-balancing iterator. Note: while the runqueue stays locked
851 * during the whole iteration, the current task might be
852 * dequeued so the iterator has to be dequeue-safe. Here we
853 * achieve that by always pre-iterating before returning
854 * the current task:
855 */
856static inline struct task_struct *
857__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
858{
859 struct task_struct *p;
860
861 if (!curr)
862 return NULL;
863
864 p = rb_entry(curr, struct task_struct, se.run_node);
865 cfs_rq->rb_load_balance_curr = rb_next(curr);
866
867 return p;
868}
869
870static struct task_struct *load_balance_start_fair(void *arg)
871{
872 struct cfs_rq *cfs_rq = arg;
873
874 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
875}
876
877static struct task_struct *load_balance_next_fair(void *arg)
878{
879 struct cfs_rq *cfs_rq = arg;
880
881 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
882}
883
a4ac01c3 884#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
885static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
886{
887 struct sched_entity *curr;
888 struct task_struct *p;
889
890 if (!cfs_rq->nr_running)
891 return MAX_PRIO;
892
9b5b7751
SV
893 curr = cfs_rq->curr;
894 if (!curr)
895 curr = __pick_next_entity(cfs_rq);
896
bf0f6f24
IM
897 p = task_of(curr);
898
899 return p->prio;
900}
a4ac01c3 901#endif
bf0f6f24 902
43010659 903static unsigned long
bf0f6f24 904load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
905 unsigned long max_nr_move, unsigned long max_load_move,
906 struct sched_domain *sd, enum cpu_idle_type idle,
907 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
908{
909 struct cfs_rq *busy_cfs_rq;
910 unsigned long load_moved, total_nr_moved = 0, nr_moved;
911 long rem_load_move = max_load_move;
912 struct rq_iterator cfs_rq_iterator;
913
914 cfs_rq_iterator.start = load_balance_start_fair;
915 cfs_rq_iterator.next = load_balance_next_fair;
916
917 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 918#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 919 struct cfs_rq *this_cfs_rq;
e56f31aa 920 long imbalance;
bf0f6f24 921 unsigned long maxload;
bf0f6f24
IM
922
923 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
924
e56f31aa 925 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
926 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
927 if (imbalance <= 0)
928 continue;
929
930 /* Don't pull more than imbalance/2 */
931 imbalance /= 2;
932 maxload = min(rem_load_move, imbalance);
933
a4ac01c3
PW
934 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
935#else
e56f31aa 936# define maxload rem_load_move
a4ac01c3 937#endif
bf0f6f24
IM
938 /* pass busy_cfs_rq argument into
939 * load_balance_[start|next]_fair iterators
940 */
941 cfs_rq_iterator.arg = busy_cfs_rq;
942 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
943 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 944 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
945
946 total_nr_moved += nr_moved;
947 max_nr_move -= nr_moved;
948 rem_load_move -= load_moved;
949
950 if (max_nr_move <= 0 || rem_load_move <= 0)
951 break;
952 }
953
43010659 954 return max_load_move - rem_load_move;
bf0f6f24
IM
955}
956
957/*
958 * scheduler tick hitting a task of our scheduling class:
959 */
960static void task_tick_fair(struct rq *rq, struct task_struct *curr)
961{
962 struct cfs_rq *cfs_rq;
963 struct sched_entity *se = &curr->se;
964
965 for_each_sched_entity(se) {
966 cfs_rq = cfs_rq_of(se);
967 entity_tick(cfs_rq, se);
968 }
969}
970
4d78e7b6
PZ
971#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
972
bf0f6f24
IM
973/*
974 * Share the fairness runtime between parent and child, thus the
975 * total amount of pressure for CPU stays equal - new tasks
976 * get a chance to run but frequent forkers are not allowed to
977 * monopolize the CPU. Note: the parent runqueue is locked,
978 * the child is not running yet.
979 */
ee0827d8 980static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
981{
982 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 983 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
bf0f6f24
IM
984
985 sched_info_queued(p);
986
7109c442 987 update_curr(cfs_rq);
aeb73b04 988 place_entity(cfs_rq, se, 1);
4d78e7b6 989
4d78e7b6
PZ
990 if (sysctl_sched_child_runs_first &&
991 curr->vruntime < se->vruntime) {
87fefa38 992 /*
edcb60a3
IM
993 * Upon rescheduling, sched_class::put_prev_task() will place
994 * 'current' within the tree based on its new key value.
995 */
4d78e7b6 996 swap(curr->vruntime, se->vruntime);
4d78e7b6 997 }
bf0f6f24 998
e9acbff6 999 update_stats_enqueue(cfs_rq, se);
ddc97297
PZ
1000 check_spread(cfs_rq, se);
1001 check_spread(cfs_rq, curr);
bf0f6f24 1002 __enqueue_entity(cfs_rq, se);
30cfdcfc 1003 account_entity_enqueue(cfs_rq, se);
bb61c210 1004 resched_task(rq->curr);
bf0f6f24
IM
1005}
1006
83b699ed
SV
1007/* Account for a task changing its policy or group.
1008 *
1009 * This routine is mostly called to set cfs_rq->curr field when a task
1010 * migrates between groups/classes.
1011 */
1012static void set_curr_task_fair(struct rq *rq)
1013{
1014 struct sched_entity *se = &rq->curr->se;
1015
1016 for_each_sched_entity(se)
1017 set_next_entity(cfs_rq_of(se), se);
1018}
1019
bf0f6f24
IM
1020/*
1021 * All the scheduling class methods:
1022 */
1023struct sched_class fair_sched_class __read_mostly = {
1024 .enqueue_task = enqueue_task_fair,
1025 .dequeue_task = dequeue_task_fair,
1026 .yield_task = yield_task_fair,
1027
2e09bf55 1028 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1029
1030 .pick_next_task = pick_next_task_fair,
1031 .put_prev_task = put_prev_task_fair,
1032
1033 .load_balance = load_balance_fair,
1034
83b699ed 1035 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1036 .task_tick = task_tick_fair,
1037 .task_new = task_new_fair,
1038};
1039
1040#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1041static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1042{
bf0f6f24
IM
1043 struct cfs_rq *cfs_rq;
1044
75c28ace
SV
1045#ifdef CONFIG_FAIR_GROUP_SCHED
1046 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1047#endif
c3b64f1e 1048 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1049 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1050}
1051#endif