]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched_fair.c
sched: maintain only task entities in cfs_rq->tasks list
[mirror_ubuntu-bionic-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
bf0f6f24
IM
76/**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
b758149c
PZ
80static inline struct task_struct *task_of(struct sched_entity *se)
81{
82 return container_of(se, struct task_struct, se);
83}
84
62160e3f 85#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 86
62160e3f 87/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
88static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89{
62160e3f 90 return cfs_rq->rq;
bf0f6f24
IM
91}
92
62160e3f
IM
93/* An entity is a task if it doesn't "own" a runqueue */
94#define entity_is_task(se) (!se->my_q)
bf0f6f24 95
b758149c
PZ
96/* Walk up scheduling entities hierarchy */
97#define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
99
100static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
101{
102 return p->se.cfs_rq;
103}
104
105/* runqueue on which this entity is (to be) queued */
106static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
107{
108 return se->cfs_rq;
109}
110
111/* runqueue "owned" by this group */
112static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
113{
114 return grp->my_q;
115}
116
117/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
119 */
120static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
121{
122 return cfs_rq->tg->cfs_rq[this_cpu];
123}
124
125/* Iterate thr' all leaf cfs_rq's on a runqueue */
126#define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
128
129/* Do the two (enqueued) entities belong to the same group ? */
130static inline int
131is_same_group(struct sched_entity *se, struct sched_entity *pse)
132{
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
135
136 return 0;
137}
138
139static inline struct sched_entity *parent_entity(struct sched_entity *se)
140{
141 return se->parent;
142}
143
62160e3f 144#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 145
62160e3f
IM
146static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
147{
148 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
149}
150
151#define entity_is_task(se) 1
152
b758149c
PZ
153#define for_each_sched_entity(se) \
154 for (; se; se = NULL)
bf0f6f24 155
b758149c 156static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 157{
b758149c 158 return &task_rq(p)->cfs;
bf0f6f24
IM
159}
160
b758149c
PZ
161static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
162{
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
165
166 return &rq->cfs;
167}
168
169/* runqueue "owned" by this group */
170static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
171{
172 return NULL;
173}
174
175static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
176{
177 return &cpu_rq(this_cpu)->cfs;
178}
179
180#define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
182
183static inline int
184is_same_group(struct sched_entity *se, struct sched_entity *pse)
185{
186 return 1;
187}
188
189static inline struct sched_entity *parent_entity(struct sched_entity *se)
190{
191 return NULL;
192}
193
194#endif /* CONFIG_FAIR_GROUP_SCHED */
195
bf0f6f24
IM
196
197/**************************************************************
198 * Scheduling class tree data structure manipulation methods:
199 */
200
0702e3eb 201static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 202{
368059a9
PZ
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
02e0431a
PZ
205 min_vruntime = vruntime;
206
207 return min_vruntime;
208}
209
0702e3eb 210static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
211{
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
215
216 return min_vruntime;
217}
218
0702e3eb 219static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 220{
30cfdcfc 221 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
222}
223
bf0f6f24
IM
224/*
225 * Enqueue an entity into the rb-tree:
226 */
0702e3eb 227static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
228{
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
9014623c 232 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
233 int leftmost = 1;
234
235 /*
236 * Find the right place in the rbtree:
237 */
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
241 /*
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
244 */
9014623c 245 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
250 }
251 }
252
253 /*
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
256 */
3fe69747 257 if (leftmost) {
57cb499d 258 cfs_rq->rb_leftmost = &se->run_node;
3fe69747
PZ
259 /*
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
262 */
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
265 }
bf0f6f24
IM
266
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
269}
270
0702e3eb 271static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 272{
3fe69747
PZ
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
276
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
279
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
286 }
287 }
e9acbff6 288
aa2ac252
PZ
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
291
bf0f6f24 292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
293}
294
295static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
296{
297 return cfs_rq->rb_leftmost;
298}
299
300static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
301{
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
303}
304
aeb73b04
PZ
305static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
306{
7eee3e67 307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 308
70eee74b
BS
309 if (!last)
310 return NULL;
7eee3e67
IM
311
312 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
313}
314
bf0f6f24
IM
315/**************************************************************
316 * Scheduling class statistics methods:
317 */
318
b2be5e96
PZ
319#ifdef CONFIG_SCHED_DEBUG
320int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
323{
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
325
326 if (ret || !write)
327 return ret;
328
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
331
332 return 0;
333}
334#endif
647e7cac 335
a7be37ac
PZ
336/*
337 * delta *= w / rw
338 */
339static inline unsigned long
340calc_delta_weight(unsigned long delta, struct sched_entity *se)
341{
342 for_each_sched_entity(se) {
343 delta = calc_delta_mine(delta,
344 se->load.weight, &cfs_rq_of(se)->load);
345 }
346
347 return delta;
348}
349
350/*
351 * delta *= rw / w
352 */
353static inline unsigned long
354calc_delta_fair(unsigned long delta, struct sched_entity *se)
355{
356 for_each_sched_entity(se) {
357 delta = calc_delta_mine(delta,
358 cfs_rq_of(se)->load.weight, &se->load);
359 }
360
361 return delta;
362}
363
647e7cac
IM
364/*
365 * The idea is to set a period in which each task runs once.
366 *
367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
368 * this period because otherwise the slices get too small.
369 *
370 * p = (nr <= nl) ? l : l*nr/nl
371 */
4d78e7b6
PZ
372static u64 __sched_period(unsigned long nr_running)
373{
374 u64 period = sysctl_sched_latency;
b2be5e96 375 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
376
377 if (unlikely(nr_running > nr_latency)) {
4bf0b771 378 period = sysctl_sched_min_granularity;
4d78e7b6 379 period *= nr_running;
4d78e7b6
PZ
380 }
381
382 return period;
383}
384
647e7cac
IM
385/*
386 * We calculate the wall-time slice from the period by taking a part
387 * proportional to the weight.
388 *
389 * s = p*w/rw
390 */
6d0f0ebd 391static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 392{
a7be37ac 393 return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
bf0f6f24
IM
394}
395
647e7cac 396/*
ac884dec 397 * We calculate the vruntime slice of a to be inserted task
647e7cac 398 *
a7be37ac 399 * vs = s*rw/w = p
647e7cac 400 */
ac884dec 401static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 402{
ac884dec 403 unsigned long nr_running = cfs_rq->nr_running;
67e9fb2a 404
ac884dec
PZ
405 if (!se->on_rq)
406 nr_running++;
67e9fb2a 407
a7be37ac
PZ
408 return __sched_period(nr_running);
409}
410
bf0f6f24
IM
411/*
412 * Update the current task's runtime statistics. Skip current tasks that
413 * are not in our scheduling class.
414 */
415static inline void
8ebc91d9
IM
416__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
417 unsigned long delta_exec)
bf0f6f24 418{
bbdba7c0 419 unsigned long delta_exec_weighted;
bf0f6f24 420
8179ca23 421 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
422
423 curr->sum_exec_runtime += delta_exec;
7a62eabc 424 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 425 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 426 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
427}
428
b7cc0896 429static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 430{
429d43bc 431 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 432 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
433 unsigned long delta_exec;
434
435 if (unlikely(!curr))
436 return;
437
438 /*
439 * Get the amount of time the current task was running
440 * since the last time we changed load (this cannot
441 * overflow on 32 bits):
442 */
8ebc91d9 443 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 444
8ebc91d9
IM
445 __update_curr(cfs_rq, curr, delta_exec);
446 curr->exec_start = now;
d842de87
SV
447
448 if (entity_is_task(curr)) {
449 struct task_struct *curtask = task_of(curr);
450
451 cpuacct_charge(curtask, delta_exec);
452 }
bf0f6f24
IM
453}
454
455static inline void
5870db5b 456update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 457{
d281918d 458 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
459}
460
bf0f6f24
IM
461/*
462 * Task is being enqueued - update stats:
463 */
d2417e5a 464static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 465{
bf0f6f24
IM
466 /*
467 * Are we enqueueing a waiting task? (for current tasks
468 * a dequeue/enqueue event is a NOP)
469 */
429d43bc 470 if (se != cfs_rq->curr)
5870db5b 471 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
472}
473
bf0f6f24 474static void
9ef0a961 475update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 476{
bbdba7c0
IM
477 schedstat_set(se->wait_max, max(se->wait_max,
478 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
479 schedstat_set(se->wait_count, se->wait_count + 1);
480 schedstat_set(se->wait_sum, se->wait_sum +
481 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 482 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
483}
484
485static inline void
19b6a2e3 486update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 487{
bf0f6f24
IM
488 /*
489 * Mark the end of the wait period if dequeueing a
490 * waiting task:
491 */
429d43bc 492 if (se != cfs_rq->curr)
9ef0a961 493 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
494}
495
496/*
497 * We are picking a new current task - update its stats:
498 */
499static inline void
79303e9e 500update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
501{
502 /*
503 * We are starting a new run period:
504 */
d281918d 505 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
506}
507
bf0f6f24
IM
508/**************************************************
509 * Scheduling class queueing methods:
510 */
511
c09595f6
PZ
512#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
513static void
514add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
515{
516 cfs_rq->task_weight += weight;
517}
518#else
519static inline void
520add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
521{
522}
523#endif
524
30cfdcfc
DA
525static void
526account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
527{
528 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
529 if (!parent_entity(se))
530 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 531 if (entity_is_task(se)) {
c09595f6 532 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
533 list_add(&se->group_node, &cfs_rq->tasks);
534 }
30cfdcfc
DA
535 cfs_rq->nr_running++;
536 se->on_rq = 1;
537}
538
539static void
540account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
541{
542 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
543 if (!parent_entity(se))
544 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 545 if (entity_is_task(se)) {
c09595f6 546 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
547 list_del_init(&se->group_node);
548 }
30cfdcfc
DA
549 cfs_rq->nr_running--;
550 se->on_rq = 0;
551}
552
2396af69 553static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 554{
bf0f6f24
IM
555#ifdef CONFIG_SCHEDSTATS
556 if (se->sleep_start) {
d281918d 557 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 558 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
559
560 if ((s64)delta < 0)
561 delta = 0;
562
563 if (unlikely(delta > se->sleep_max))
564 se->sleep_max = delta;
565
566 se->sleep_start = 0;
567 se->sum_sleep_runtime += delta;
9745512c
AV
568
569 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
570 }
571 if (se->block_start) {
d281918d 572 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 573 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
574
575 if ((s64)delta < 0)
576 delta = 0;
577
578 if (unlikely(delta > se->block_max))
579 se->block_max = delta;
580
581 se->block_start = 0;
582 se->sum_sleep_runtime += delta;
30084fbd
IM
583
584 /*
585 * Blocking time is in units of nanosecs, so shift by 20 to
586 * get a milliseconds-range estimation of the amount of
587 * time that the task spent sleeping:
588 */
589 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 590
30084fbd
IM
591 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
592 delta >> 20);
593 }
9745512c 594 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
595 }
596#endif
597}
598
ddc97297
PZ
599static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
600{
601#ifdef CONFIG_SCHED_DEBUG
602 s64 d = se->vruntime - cfs_rq->min_vruntime;
603
604 if (d < 0)
605 d = -d;
606
607 if (d > 3*sysctl_sched_latency)
608 schedstat_inc(cfs_rq, nr_spread_over);
609#endif
610}
611
aeb73b04
PZ
612static void
613place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
614{
67e9fb2a 615 u64 vruntime;
aeb73b04 616
3fe69747
PZ
617 if (first_fair(cfs_rq)) {
618 vruntime = min_vruntime(cfs_rq->min_vruntime,
619 __pick_next_entity(cfs_rq)->vruntime);
620 } else
621 vruntime = cfs_rq->min_vruntime;
94dfb5e7 622
2cb8600e
PZ
623 /*
624 * The 'current' period is already promised to the current tasks,
625 * however the extra weight of the new task will slow them down a
626 * little, place the new task so that it fits in the slot that
627 * stays open at the end.
628 */
94dfb5e7 629 if (initial && sched_feat(START_DEBIT))
647e7cac 630 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 631
8465e792 632 if (!initial) {
2cb8600e 633 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
634 if (sched_feat(NEW_FAIR_SLEEPERS)) {
635 unsigned long thresh = sysctl_sched_latency;
636
637 /*
638 * convert the sleeper threshold into virtual time
639 */
640 if (sched_feat(NORMALIZED_SLEEPER))
641 thresh = calc_delta_fair(thresh, se);
642
643 vruntime -= thresh;
644 }
94359f05 645
2cb8600e
PZ
646 /* ensure we never gain time by being placed backwards. */
647 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
648 }
649
67e9fb2a 650 se->vruntime = vruntime;
aeb73b04
PZ
651}
652
bf0f6f24 653static void
83b699ed 654enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
655{
656 /*
a2a2d680 657 * Update run-time statistics of the 'current'.
bf0f6f24 658 */
b7cc0896 659 update_curr(cfs_rq);
a992241d 660 account_entity_enqueue(cfs_rq, se);
bf0f6f24 661
e9acbff6 662 if (wakeup) {
aeb73b04 663 place_entity(cfs_rq, se, 0);
2396af69 664 enqueue_sleeper(cfs_rq, se);
e9acbff6 665 }
bf0f6f24 666
d2417e5a 667 update_stats_enqueue(cfs_rq, se);
ddc97297 668 check_spread(cfs_rq, se);
83b699ed
SV
669 if (se != cfs_rq->curr)
670 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
671}
672
673static void
525c2716 674dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 675{
a2a2d680
DA
676 /*
677 * Update run-time statistics of the 'current'.
678 */
679 update_curr(cfs_rq);
680
19b6a2e3 681 update_stats_dequeue(cfs_rq, se);
db36cc7d 682 if (sleep) {
67e9fb2a 683#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
684 if (entity_is_task(se)) {
685 struct task_struct *tsk = task_of(se);
686
687 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 688 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 689 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 690 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 691 }
db36cc7d 692#endif
67e9fb2a
PZ
693 }
694
83b699ed 695 if (se != cfs_rq->curr)
30cfdcfc
DA
696 __dequeue_entity(cfs_rq, se);
697 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
698}
699
700/*
701 * Preempt the current task with a newly woken task if needed:
702 */
7c92e54f 703static void
2e09bf55 704check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 705{
11697830
PZ
706 unsigned long ideal_runtime, delta_exec;
707
6d0f0ebd 708 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 709 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 710 if (delta_exec > ideal_runtime)
bf0f6f24
IM
711 resched_task(rq_of(cfs_rq)->curr);
712}
713
83b699ed 714static void
8494f412 715set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 716{
83b699ed
SV
717 /* 'current' is not kept within the tree. */
718 if (se->on_rq) {
719 /*
720 * Any task has to be enqueued before it get to execute on
721 * a CPU. So account for the time it spent waiting on the
722 * runqueue.
723 */
724 update_stats_wait_end(cfs_rq, se);
725 __dequeue_entity(cfs_rq, se);
726 }
727
79303e9e 728 update_stats_curr_start(cfs_rq, se);
429d43bc 729 cfs_rq->curr = se;
eba1ed4b
IM
730#ifdef CONFIG_SCHEDSTATS
731 /*
732 * Track our maximum slice length, if the CPU's load is at
733 * least twice that of our own weight (i.e. dont track it
734 * when there are only lesser-weight tasks around):
735 */
495eca49 736 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
737 se->slice_max = max(se->slice_max,
738 se->sum_exec_runtime - se->prev_sum_exec_runtime);
739 }
740#endif
4a55b450 741 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
742}
743
aa2ac252
PZ
744static struct sched_entity *
745pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
746{
103638d9
PZ
747 struct rq *rq = rq_of(cfs_rq);
748 u64 pair_slice = rq->clock - cfs_rq->pair_start;
aa2ac252 749
103638d9
PZ
750 if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
751 cfs_rq->pair_start = rq->clock;
aa2ac252 752 return se;
103638d9 753 }
aa2ac252
PZ
754
755 return cfs_rq->next;
756}
757
9948f4b2 758static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 759{
08ec3df5 760 struct sched_entity *se = NULL;
bf0f6f24 761
08ec3df5
DA
762 if (first_fair(cfs_rq)) {
763 se = __pick_next_entity(cfs_rq);
aa2ac252 764 se = pick_next(cfs_rq, se);
08ec3df5
DA
765 set_next_entity(cfs_rq, se);
766 }
bf0f6f24
IM
767
768 return se;
769}
770
ab6cde26 771static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
772{
773 /*
774 * If still on the runqueue then deactivate_task()
775 * was not called and update_curr() has to be done:
776 */
777 if (prev->on_rq)
b7cc0896 778 update_curr(cfs_rq);
bf0f6f24 779
ddc97297 780 check_spread(cfs_rq, prev);
30cfdcfc 781 if (prev->on_rq) {
5870db5b 782 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
783 /* Put 'current' back into the tree. */
784 __enqueue_entity(cfs_rq, prev);
785 }
429d43bc 786 cfs_rq->curr = NULL;
bf0f6f24
IM
787}
788
8f4d37ec
PZ
789static void
790entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 791{
bf0f6f24 792 /*
30cfdcfc 793 * Update run-time statistics of the 'current'.
bf0f6f24 794 */
30cfdcfc 795 update_curr(cfs_rq);
bf0f6f24 796
8f4d37ec
PZ
797#ifdef CONFIG_SCHED_HRTICK
798 /*
799 * queued ticks are scheduled to match the slice, so don't bother
800 * validating it and just reschedule.
801 */
983ed7a6
HH
802 if (queued) {
803 resched_task(rq_of(cfs_rq)->curr);
804 return;
805 }
8f4d37ec
PZ
806 /*
807 * don't let the period tick interfere with the hrtick preemption
808 */
809 if (!sched_feat(DOUBLE_TICK) &&
810 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
811 return;
812#endif
813
ce6c1311 814 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 815 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
816}
817
818/**************************************************
819 * CFS operations on tasks:
820 */
821
8f4d37ec
PZ
822#ifdef CONFIG_SCHED_HRTICK
823static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
824{
8f4d37ec
PZ
825 struct sched_entity *se = &p->se;
826 struct cfs_rq *cfs_rq = cfs_rq_of(se);
827
828 WARN_ON(task_rq(p) != rq);
829
830 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
831 u64 slice = sched_slice(cfs_rq, se);
832 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
833 s64 delta = slice - ran;
834
835 if (delta < 0) {
836 if (rq->curr == p)
837 resched_task(p);
838 return;
839 }
840
841 /*
842 * Don't schedule slices shorter than 10000ns, that just
843 * doesn't make sense. Rely on vruntime for fairness.
844 */
31656519 845 if (rq->curr != p)
157124c1 846 delta = max_t(s64, 10000LL, delta);
8f4d37ec 847
31656519 848 hrtick_start(rq, delta);
8f4d37ec
PZ
849 }
850}
55e12e5e 851#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
852static inline void
853hrtick_start_fair(struct rq *rq, struct task_struct *p)
854{
855}
856#endif
857
bf0f6f24
IM
858/*
859 * The enqueue_task method is called before nr_running is
860 * increased. Here we update the fair scheduling stats and
861 * then put the task into the rbtree:
862 */
fd390f6a 863static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
864{
865 struct cfs_rq *cfs_rq;
62fb1851 866 struct sched_entity *se = &p->se;
bf0f6f24
IM
867
868 for_each_sched_entity(se) {
62fb1851 869 if (se->on_rq)
bf0f6f24
IM
870 break;
871 cfs_rq = cfs_rq_of(se);
83b699ed 872 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 873 wakeup = 1;
bf0f6f24 874 }
8f4d37ec
PZ
875
876 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
877}
878
879/*
880 * The dequeue_task method is called before nr_running is
881 * decreased. We remove the task from the rbtree and
882 * update the fair scheduling stats:
883 */
f02231e5 884static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
885{
886 struct cfs_rq *cfs_rq;
62fb1851 887 struct sched_entity *se = &p->se;
bf0f6f24
IM
888
889 for_each_sched_entity(se) {
890 cfs_rq = cfs_rq_of(se);
525c2716 891 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 892 /* Don't dequeue parent if it has other entities besides us */
62fb1851 893 if (cfs_rq->load.weight)
bf0f6f24 894 break;
b9fa3df3 895 sleep = 1;
bf0f6f24 896 }
8f4d37ec
PZ
897
898 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
899}
900
901/*
1799e35d
IM
902 * sched_yield() support is very simple - we dequeue and enqueue.
903 *
904 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 905 */
4530d7ab 906static void yield_task_fair(struct rq *rq)
bf0f6f24 907{
db292ca3
IM
908 struct task_struct *curr = rq->curr;
909 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
910 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
911
912 /*
1799e35d
IM
913 * Are we the only task in the tree?
914 */
915 if (unlikely(cfs_rq->nr_running == 1))
916 return;
917
db292ca3 918 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 919 update_rq_clock(rq);
1799e35d 920 /*
a2a2d680 921 * Update run-time statistics of the 'current'.
1799e35d 922 */
2b1e315d 923 update_curr(cfs_rq);
1799e35d
IM
924
925 return;
926 }
927 /*
928 * Find the rightmost entry in the rbtree:
bf0f6f24 929 */
2b1e315d 930 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
931 /*
932 * Already in the rightmost position?
933 */
79b3feff 934 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
935 return;
936
937 /*
938 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
939 * Upon rescheduling, sched_class::put_prev_task() will place
940 * 'current' within the tree based on its new key value.
1799e35d 941 */
30cfdcfc 942 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
943}
944
e7693a36
GH
945/*
946 * wake_idle() will wake a task on an idle cpu if task->cpu is
947 * not idle and an idle cpu is available. The span of cpus to
948 * search starts with cpus closest then further out as needed,
949 * so we always favor a closer, idle cpu.
e761b772
MK
950 * Domains may include CPUs that are not usable for migration,
951 * hence we need to mask them out (cpu_active_map)
e7693a36
GH
952 *
953 * Returns the CPU we should wake onto.
954 */
955#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
956static int wake_idle(int cpu, struct task_struct *p)
957{
958 cpumask_t tmp;
959 struct sched_domain *sd;
960 int i;
961
962 /*
963 * If it is idle, then it is the best cpu to run this task.
964 *
965 * This cpu is also the best, if it has more than one task already.
966 * Siblings must be also busy(in most cases) as they didn't already
967 * pickup the extra load from this cpu and hence we need not check
968 * sibling runqueue info. This will avoid the checks and cache miss
969 * penalities associated with that.
970 */
104f6454 971 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
972 return cpu;
973
974 for_each_domain(cpu, sd) {
1d3504fc
HS
975 if ((sd->flags & SD_WAKE_IDLE)
976 || ((sd->flags & SD_WAKE_IDLE_FAR)
977 && !task_hot(p, task_rq(p)->clock, sd))) {
e7693a36 978 cpus_and(tmp, sd->span, p->cpus_allowed);
e761b772 979 cpus_and(tmp, tmp, cpu_active_map);
363ab6f1 980 for_each_cpu_mask_nr(i, tmp) {
e7693a36
GH
981 if (idle_cpu(i)) {
982 if (i != task_cpu(p)) {
983 schedstat_inc(p,
984 se.nr_wakeups_idle);
985 }
986 return i;
987 }
988 }
989 } else {
990 break;
991 }
992 }
993 return cpu;
994}
55e12e5e 995#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
996static inline int wake_idle(int cpu, struct task_struct *p)
997{
998 return cpu;
999}
1000#endif
1001
1002#ifdef CONFIG_SMP
098fb9db 1003
4ae7d5ce
IM
1004static const struct sched_class fair_sched_class;
1005
bb3469ac 1006#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1007/*
1008 * effective_load() calculates the load change as seen from the root_task_group
1009 *
1010 * Adding load to a group doesn't make a group heavier, but can cause movement
1011 * of group shares between cpus. Assuming the shares were perfectly aligned one
1012 * can calculate the shift in shares.
1013 *
1014 * The problem is that perfectly aligning the shares is rather expensive, hence
1015 * we try to avoid doing that too often - see update_shares(), which ratelimits
1016 * this change.
1017 *
1018 * We compensate this by not only taking the current delta into account, but
1019 * also considering the delta between when the shares were last adjusted and
1020 * now.
1021 *
1022 * We still saw a performance dip, some tracing learned us that between
1023 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1024 * significantly. Therefore try to bias the error in direction of failing
1025 * the affine wakeup.
1026 *
1027 */
f1d239f7
PZ
1028static long effective_load(struct task_group *tg, int cpu,
1029 long wl, long wg)
bb3469ac 1030{
4be9daaa 1031 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1032
1033 if (!tg->parent)
1034 return wl;
1035
f5bfb7d9
PZ
1036 /*
1037 * By not taking the decrease of shares on the other cpu into
1038 * account our error leans towards reducing the affine wakeups.
1039 */
1040 if (!wl && sched_feat(ASYM_EFF_LOAD))
1041 return wl;
1042
4be9daaa 1043 for_each_sched_entity(se) {
cb5ef42a 1044 long S, rw, s, a, b;
940959e9
PZ
1045 long more_w;
1046
1047 /*
1048 * Instead of using this increment, also add the difference
1049 * between when the shares were last updated and now.
1050 */
1051 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1052 wl += more_w;
1053 wg += more_w;
4be9daaa
PZ
1054
1055 S = se->my_q->tg->shares;
1056 s = se->my_q->shares;
f1d239f7 1057 rw = se->my_q->rq_weight;
bb3469ac 1058
cb5ef42a
PZ
1059 a = S*(rw + wl);
1060 b = S*rw + s*wg;
4be9daaa 1061
940959e9
PZ
1062 wl = s*(a-b);
1063
1064 if (likely(b))
1065 wl /= b;
1066
83378269
PZ
1067 /*
1068 * Assume the group is already running and will
1069 * thus already be accounted for in the weight.
1070 *
1071 * That is, moving shares between CPUs, does not
1072 * alter the group weight.
1073 */
4be9daaa 1074 wg = 0;
4be9daaa 1075 }
bb3469ac 1076
4be9daaa 1077 return wl;
bb3469ac 1078}
4be9daaa 1079
bb3469ac 1080#else
4be9daaa 1081
83378269
PZ
1082static inline unsigned long effective_load(struct task_group *tg, int cpu,
1083 unsigned long wl, unsigned long wg)
4be9daaa 1084{
83378269 1085 return wl;
bb3469ac 1086}
4be9daaa 1087
bb3469ac
PZ
1088#endif
1089
098fb9db 1090static int
4ae7d5ce
IM
1091wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1092 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1093 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1094 unsigned int imbalance)
1095{
4ae7d5ce 1096 struct task_struct *curr = this_rq->curr;
83378269 1097 struct task_group *tg;
098fb9db
IM
1098 unsigned long tl = this_load;
1099 unsigned long tl_per_task;
83378269 1100 unsigned long weight;
b3137bc8 1101 int balanced;
098fb9db 1102
b3137bc8 1103 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1104 return 0;
1105
b3137bc8
MG
1106 /*
1107 * If sync wakeup then subtract the (maximum possible)
1108 * effect of the currently running task from the load
1109 * of the current CPU:
1110 */
83378269
PZ
1111 if (sync) {
1112 tg = task_group(current);
1113 weight = current->se.load.weight;
1114
1115 tl += effective_load(tg, this_cpu, -weight, -weight);
1116 load += effective_load(tg, prev_cpu, 0, -weight);
1117 }
b3137bc8 1118
83378269
PZ
1119 tg = task_group(p);
1120 weight = p->se.load.weight;
b3137bc8 1121
83378269
PZ
1122 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1123 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1124
098fb9db 1125 /*
4ae7d5ce
IM
1126 * If the currently running task will sleep within
1127 * a reasonable amount of time then attract this newly
1128 * woken task:
098fb9db 1129 */
2087a1ad 1130 if (sync && balanced) {
4ae7d5ce 1131 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
2087a1ad 1132 p->se.avg_overlap < sysctl_sched_migration_cost)
4ae7d5ce
IM
1133 return 1;
1134 }
098fb9db
IM
1135
1136 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1137 tl_per_task = cpu_avg_load_per_task(this_cpu);
1138
ac192d39 1139 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
b3137bc8 1140 balanced) {
098fb9db
IM
1141 /*
1142 * This domain has SD_WAKE_AFFINE and
1143 * p is cache cold in this domain, and
1144 * there is no bad imbalance.
1145 */
1146 schedstat_inc(this_sd, ttwu_move_affine);
1147 schedstat_inc(p, se.nr_wakeups_affine);
1148
1149 return 1;
1150 }
1151 return 0;
1152}
1153
e7693a36
GH
1154static int select_task_rq_fair(struct task_struct *p, int sync)
1155{
e7693a36 1156 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1157 int prev_cpu, this_cpu, new_cpu;
098fb9db 1158 unsigned long load, this_load;
4ae7d5ce 1159 struct rq *rq, *this_rq;
098fb9db 1160 unsigned int imbalance;
098fb9db 1161 int idx;
e7693a36 1162
ac192d39
IM
1163 prev_cpu = task_cpu(p);
1164 rq = task_rq(p);
1165 this_cpu = smp_processor_id();
4ae7d5ce 1166 this_rq = cpu_rq(this_cpu);
ac192d39 1167 new_cpu = prev_cpu;
e7693a36 1168
ac192d39
IM
1169 /*
1170 * 'this_sd' is the first domain that both
1171 * this_cpu and prev_cpu are present in:
1172 */
e7693a36 1173 for_each_domain(this_cpu, sd) {
ac192d39 1174 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1175 this_sd = sd;
1176 break;
1177 }
1178 }
1179
1180 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
f4827386 1181 goto out;
e7693a36
GH
1182
1183 /*
1184 * Check for affine wakeup and passive balancing possibilities.
1185 */
098fb9db 1186 if (!this_sd)
f4827386 1187 goto out;
e7693a36 1188
098fb9db
IM
1189 idx = this_sd->wake_idx;
1190
1191 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1192
ac192d39 1193 load = source_load(prev_cpu, idx);
098fb9db
IM
1194 this_load = target_load(this_cpu, idx);
1195
4ae7d5ce
IM
1196 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1197 load, this_load, imbalance))
1198 return this_cpu;
1199
1200 if (prev_cpu == this_cpu)
f4827386 1201 goto out;
098fb9db
IM
1202
1203 /*
1204 * Start passive balancing when half the imbalance_pct
1205 * limit is reached.
1206 */
1207 if (this_sd->flags & SD_WAKE_BALANCE) {
1208 if (imbalance*this_load <= 100*load) {
1209 schedstat_inc(this_sd, ttwu_move_balance);
1210 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1211 return this_cpu;
e7693a36
GH
1212 }
1213 }
1214
f4827386 1215out:
e7693a36
GH
1216 return wake_idle(new_cpu, p);
1217}
1218#endif /* CONFIG_SMP */
1219
0bbd3336
PZ
1220static unsigned long wakeup_gran(struct sched_entity *se)
1221{
1222 unsigned long gran = sysctl_sched_wakeup_granularity;
1223
1224 /*
a7be37ac
PZ
1225 * More easily preempt - nice tasks, while not making it harder for
1226 * + nice tasks.
0bbd3336 1227 */
c9c294a6 1228 if (sched_feat(ASYM_GRAN))
69569850 1229 gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
0bbd3336
PZ
1230
1231 return gran;
1232}
1233
bf0f6f24
IM
1234/*
1235 * Preempt the current task with a newly woken task if needed:
1236 */
15afe09b 1237static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
bf0f6f24
IM
1238{
1239 struct task_struct *curr = rq->curr;
fad095a7 1240 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1241 struct sched_entity *se = &curr->se, *pse = &p->se;
69569850 1242 s64 delta_exec;
bf0f6f24
IM
1243
1244 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1245 update_rq_clock(rq);
b7cc0896 1246 update_curr(cfs_rq);
bf0f6f24
IM
1247 resched_task(curr);
1248 return;
1249 }
aa2ac252 1250
4ae7d5ce
IM
1251 if (unlikely(se == pse))
1252 return;
1253
57fdc26d
PZ
1254 cfs_rq_of(pse)->next = pse;
1255
aec0a514
BR
1256 /*
1257 * We can come here with TIF_NEED_RESCHED already set from new task
1258 * wake up path.
1259 */
1260 if (test_tsk_need_resched(curr))
1261 return;
1262
91c234b4
IM
1263 /*
1264 * Batch tasks do not preempt (their preemption is driven by
1265 * the tick):
1266 */
1267 if (unlikely(p->policy == SCHED_BATCH))
1268 return;
bf0f6f24 1269
77d9cc44
IM
1270 if (!sched_feat(WAKEUP_PREEMPT))
1271 return;
8651a86c 1272
15afe09b
PZ
1273 if (sched_feat(WAKEUP_OVERLAP) && sync &&
1274 se->avg_overlap < sysctl_sched_migration_cost &&
1275 pse->avg_overlap < sysctl_sched_migration_cost) {
1276 resched_task(curr);
1277 return;
1278 }
1279
69569850
PZ
1280 delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1281 if (delta_exec > wakeup_gran(pse))
77d9cc44 1282 resched_task(curr);
bf0f6f24
IM
1283}
1284
fb8d4724 1285static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1286{
8f4d37ec 1287 struct task_struct *p;
bf0f6f24
IM
1288 struct cfs_rq *cfs_rq = &rq->cfs;
1289 struct sched_entity *se;
1290
1291 if (unlikely(!cfs_rq->nr_running))
1292 return NULL;
1293
1294 do {
9948f4b2 1295 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1296 cfs_rq = group_cfs_rq(se);
1297 } while (cfs_rq);
1298
8f4d37ec
PZ
1299 p = task_of(se);
1300 hrtick_start_fair(rq, p);
1301
1302 return p;
bf0f6f24
IM
1303}
1304
1305/*
1306 * Account for a descheduled task:
1307 */
31ee529c 1308static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1309{
1310 struct sched_entity *se = &prev->se;
1311 struct cfs_rq *cfs_rq;
1312
1313 for_each_sched_entity(se) {
1314 cfs_rq = cfs_rq_of(se);
ab6cde26 1315 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1316 }
1317}
1318
681f3e68 1319#ifdef CONFIG_SMP
bf0f6f24
IM
1320/**************************************************
1321 * Fair scheduling class load-balancing methods:
1322 */
1323
1324/*
1325 * Load-balancing iterator. Note: while the runqueue stays locked
1326 * during the whole iteration, the current task might be
1327 * dequeued so the iterator has to be dequeue-safe. Here we
1328 * achieve that by always pre-iterating before returning
1329 * the current task:
1330 */
a9957449 1331static struct task_struct *
4a55bd5e 1332__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1333{
354d60c2
DG
1334 struct task_struct *p = NULL;
1335 struct sched_entity *se;
bf0f6f24 1336
77ae6513
MG
1337 if (next == &cfs_rq->tasks)
1338 return NULL;
1339
b87f1724
BR
1340 se = list_entry(next, struct sched_entity, group_node);
1341 p = task_of(se);
1342 cfs_rq->balance_iterator = next->next;
77ae6513 1343
bf0f6f24
IM
1344 return p;
1345}
1346
1347static struct task_struct *load_balance_start_fair(void *arg)
1348{
1349 struct cfs_rq *cfs_rq = arg;
1350
4a55bd5e 1351 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1352}
1353
1354static struct task_struct *load_balance_next_fair(void *arg)
1355{
1356 struct cfs_rq *cfs_rq = arg;
1357
4a55bd5e 1358 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1359}
1360
c09595f6
PZ
1361static unsigned long
1362__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1363 unsigned long max_load_move, struct sched_domain *sd,
1364 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1365 struct cfs_rq *cfs_rq)
62fb1851 1366{
c09595f6 1367 struct rq_iterator cfs_rq_iterator;
62fb1851 1368
c09595f6
PZ
1369 cfs_rq_iterator.start = load_balance_start_fair;
1370 cfs_rq_iterator.next = load_balance_next_fair;
1371 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1372
c09595f6
PZ
1373 return balance_tasks(this_rq, this_cpu, busiest,
1374 max_load_move, sd, idle, all_pinned,
1375 this_best_prio, &cfs_rq_iterator);
62fb1851 1376}
62fb1851 1377
c09595f6 1378#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1379static unsigned long
bf0f6f24 1380load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1381 unsigned long max_load_move,
a4ac01c3
PW
1382 struct sched_domain *sd, enum cpu_idle_type idle,
1383 int *all_pinned, int *this_best_prio)
bf0f6f24 1384{
bf0f6f24 1385 long rem_load_move = max_load_move;
c09595f6
PZ
1386 int busiest_cpu = cpu_of(busiest);
1387 struct task_group *tg;
18d95a28 1388
c09595f6 1389 rcu_read_lock();
c8cba857 1390 update_h_load(busiest_cpu);
18d95a28 1391
caea8a03 1392 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1393 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1394 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1395 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1396 u64 rem_load, moved_load;
18d95a28 1397
c09595f6
PZ
1398 /*
1399 * empty group
1400 */
c8cba857 1401 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1402 continue;
1403
243e0e7b
SV
1404 rem_load = (u64)rem_load_move * busiest_weight;
1405 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1406
c09595f6 1407 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1408 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1409 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1410
c09595f6 1411 if (!moved_load)
bf0f6f24
IM
1412 continue;
1413
42a3ac7d 1414 moved_load *= busiest_h_load;
243e0e7b 1415 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1416
c09595f6
PZ
1417 rem_load_move -= moved_load;
1418 if (rem_load_move < 0)
bf0f6f24
IM
1419 break;
1420 }
c09595f6 1421 rcu_read_unlock();
bf0f6f24 1422
43010659 1423 return max_load_move - rem_load_move;
bf0f6f24 1424}
c09595f6
PZ
1425#else
1426static unsigned long
1427load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1428 unsigned long max_load_move,
1429 struct sched_domain *sd, enum cpu_idle_type idle,
1430 int *all_pinned, int *this_best_prio)
1431{
1432 return __load_balance_fair(this_rq, this_cpu, busiest,
1433 max_load_move, sd, idle, all_pinned,
1434 this_best_prio, &busiest->cfs);
1435}
1436#endif
bf0f6f24 1437
e1d1484f
PW
1438static int
1439move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1440 struct sched_domain *sd, enum cpu_idle_type idle)
1441{
1442 struct cfs_rq *busy_cfs_rq;
1443 struct rq_iterator cfs_rq_iterator;
1444
1445 cfs_rq_iterator.start = load_balance_start_fair;
1446 cfs_rq_iterator.next = load_balance_next_fair;
1447
1448 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1449 /*
1450 * pass busy_cfs_rq argument into
1451 * load_balance_[start|next]_fair iterators
1452 */
1453 cfs_rq_iterator.arg = busy_cfs_rq;
1454 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1455 &cfs_rq_iterator))
1456 return 1;
1457 }
1458
1459 return 0;
1460}
55e12e5e 1461#endif /* CONFIG_SMP */
e1d1484f 1462
bf0f6f24
IM
1463/*
1464 * scheduler tick hitting a task of our scheduling class:
1465 */
8f4d37ec 1466static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1467{
1468 struct cfs_rq *cfs_rq;
1469 struct sched_entity *se = &curr->se;
1470
1471 for_each_sched_entity(se) {
1472 cfs_rq = cfs_rq_of(se);
8f4d37ec 1473 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1474 }
1475}
1476
8eb172d9 1477#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1478
bf0f6f24
IM
1479/*
1480 * Share the fairness runtime between parent and child, thus the
1481 * total amount of pressure for CPU stays equal - new tasks
1482 * get a chance to run but frequent forkers are not allowed to
1483 * monopolize the CPU. Note: the parent runqueue is locked,
1484 * the child is not running yet.
1485 */
ee0827d8 1486static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1487{
1488 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1489 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1490 int this_cpu = smp_processor_id();
bf0f6f24
IM
1491
1492 sched_info_queued(p);
1493
7109c442 1494 update_curr(cfs_rq);
aeb73b04 1495 place_entity(cfs_rq, se, 1);
4d78e7b6 1496
3c90e6e9 1497 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1498 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1499 curr && curr->vruntime < se->vruntime) {
87fefa38 1500 /*
edcb60a3
IM
1501 * Upon rescheduling, sched_class::put_prev_task() will place
1502 * 'current' within the tree based on its new key value.
1503 */
4d78e7b6 1504 swap(curr->vruntime, se->vruntime);
aec0a514 1505 resched_task(rq->curr);
4d78e7b6 1506 }
bf0f6f24 1507
b9dca1e0 1508 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1509}
1510
cb469845
SR
1511/*
1512 * Priority of the task has changed. Check to see if we preempt
1513 * the current task.
1514 */
1515static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1516 int oldprio, int running)
1517{
1518 /*
1519 * Reschedule if we are currently running on this runqueue and
1520 * our priority decreased, or if we are not currently running on
1521 * this runqueue and our priority is higher than the current's
1522 */
1523 if (running) {
1524 if (p->prio > oldprio)
1525 resched_task(rq->curr);
1526 } else
15afe09b 1527 check_preempt_curr(rq, p, 0);
cb469845
SR
1528}
1529
1530/*
1531 * We switched to the sched_fair class.
1532 */
1533static void switched_to_fair(struct rq *rq, struct task_struct *p,
1534 int running)
1535{
1536 /*
1537 * We were most likely switched from sched_rt, so
1538 * kick off the schedule if running, otherwise just see
1539 * if we can still preempt the current task.
1540 */
1541 if (running)
1542 resched_task(rq->curr);
1543 else
15afe09b 1544 check_preempt_curr(rq, p, 0);
cb469845
SR
1545}
1546
83b699ed
SV
1547/* Account for a task changing its policy or group.
1548 *
1549 * This routine is mostly called to set cfs_rq->curr field when a task
1550 * migrates between groups/classes.
1551 */
1552static void set_curr_task_fair(struct rq *rq)
1553{
1554 struct sched_entity *se = &rq->curr->se;
1555
1556 for_each_sched_entity(se)
1557 set_next_entity(cfs_rq_of(se), se);
1558}
1559
810b3817
PZ
1560#ifdef CONFIG_FAIR_GROUP_SCHED
1561static void moved_group_fair(struct task_struct *p)
1562{
1563 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1564
1565 update_curr(cfs_rq);
1566 place_entity(cfs_rq, &p->se, 1);
1567}
1568#endif
1569
bf0f6f24
IM
1570/*
1571 * All the scheduling class methods:
1572 */
5522d5d5
IM
1573static const struct sched_class fair_sched_class = {
1574 .next = &idle_sched_class,
bf0f6f24
IM
1575 .enqueue_task = enqueue_task_fair,
1576 .dequeue_task = dequeue_task_fair,
1577 .yield_task = yield_task_fair,
e7693a36
GH
1578#ifdef CONFIG_SMP
1579 .select_task_rq = select_task_rq_fair,
1580#endif /* CONFIG_SMP */
bf0f6f24 1581
2e09bf55 1582 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1583
1584 .pick_next_task = pick_next_task_fair,
1585 .put_prev_task = put_prev_task_fair,
1586
681f3e68 1587#ifdef CONFIG_SMP
bf0f6f24 1588 .load_balance = load_balance_fair,
e1d1484f 1589 .move_one_task = move_one_task_fair,
681f3e68 1590#endif
bf0f6f24 1591
83b699ed 1592 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1593 .task_tick = task_tick_fair,
1594 .task_new = task_new_fair,
cb469845
SR
1595
1596 .prio_changed = prio_changed_fair,
1597 .switched_to = switched_to_fair,
810b3817
PZ
1598
1599#ifdef CONFIG_FAIR_GROUP_SCHED
1600 .moved_group = moved_group_fair,
1601#endif
bf0f6f24
IM
1602};
1603
1604#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1605static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1606{
bf0f6f24
IM
1607 struct cfs_rq *cfs_rq;
1608
5973e5b9 1609 rcu_read_lock();
c3b64f1e 1610 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1611 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1612 rcu_read_unlock();
bf0f6f24
IM
1613}
1614#endif