]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched_fair.c
Merge branch 'fix/misc' into for-linus
[mirror_ubuntu-artful-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
b758149c
PZ
82static inline struct task_struct *task_of(struct sched_entity *se)
83{
84 return container_of(se, struct task_struct, se);
85}
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
b758149c
PZ
98/* Walk up scheduling entities hierarchy */
99#define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103{
104 return p->se.cfs_rq;
105}
106
107/* runqueue on which this entity is (to be) queued */
108static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109{
110 return se->cfs_rq;
111}
112
113/* runqueue "owned" by this group */
114static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115{
116 return grp->my_q;
117}
118
119/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123{
124 return cfs_rq->tg->cfs_rq[this_cpu];
125}
126
127/* Iterate thr' all leaf cfs_rq's on a runqueue */
128#define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131/* Do the two (enqueued) entities belong to the same group ? */
132static inline int
133is_same_group(struct sched_entity *se, struct sched_entity *pse)
134{
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139}
140
141static inline struct sched_entity *parent_entity(struct sched_entity *se)
142{
143 return se->parent;
144}
145
464b7527
PZ
146/* return depth at which a sched entity is present in the hierarchy */
147static inline int depth_se(struct sched_entity *se)
148{
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155}
156
157static void
158find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159{
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187}
188
62160e3f 189#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 190
62160e3f
IM
191static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192{
193 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
194}
195
196#define entity_is_task(se) 1
197
b758149c
PZ
198#define for_each_sched_entity(se) \
199 for (; se; se = NULL)
bf0f6f24 200
b758149c 201static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 202{
b758149c 203 return &task_rq(p)->cfs;
bf0f6f24
IM
204}
205
b758149c
PZ
206static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207{
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212}
213
214/* runqueue "owned" by this group */
215static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216{
217 return NULL;
218}
219
220static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221{
222 return &cpu_rq(this_cpu)->cfs;
223}
224
225#define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228static inline int
229is_same_group(struct sched_entity *se, struct sched_entity *pse)
230{
231 return 1;
232}
233
234static inline struct sched_entity *parent_entity(struct sched_entity *se)
235{
236 return NULL;
237}
238
464b7527
PZ
239static inline void
240find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241{
242}
243
b758149c
PZ
244#endif /* CONFIG_FAIR_GROUP_SCHED */
245
bf0f6f24
IM
246
247/**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
0702e3eb 251static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 252{
368059a9
PZ
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
02e0431a
PZ
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258}
259
0702e3eb 260static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
261{
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267}
268
54fdc581
FC
269static inline int entity_before(struct sched_entity *a,
270 struct sched_entity *b)
271{
272 return (s64)(a->vruntime - b->vruntime) < 0;
273}
274
0702e3eb 275static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 276{
30cfdcfc 277 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
278}
279
1af5f730
PZ
280static void update_min_vruntime(struct cfs_rq *cfs_rq)
281{
282 u64 vruntime = cfs_rq->min_vruntime;
283
284 if (cfs_rq->curr)
285 vruntime = cfs_rq->curr->vruntime;
286
287 if (cfs_rq->rb_leftmost) {
288 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
289 struct sched_entity,
290 run_node);
291
e17036da 292 if (!cfs_rq->curr)
1af5f730
PZ
293 vruntime = se->vruntime;
294 else
295 vruntime = min_vruntime(vruntime, se->vruntime);
296 }
297
298 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
299}
300
bf0f6f24
IM
301/*
302 * Enqueue an entity into the rb-tree:
303 */
0702e3eb 304static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
305{
306 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
307 struct rb_node *parent = NULL;
308 struct sched_entity *entry;
9014623c 309 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
310 int leftmost = 1;
311
312 /*
313 * Find the right place in the rbtree:
314 */
315 while (*link) {
316 parent = *link;
317 entry = rb_entry(parent, struct sched_entity, run_node);
318 /*
319 * We dont care about collisions. Nodes with
320 * the same key stay together.
321 */
9014623c 322 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
323 link = &parent->rb_left;
324 } else {
325 link = &parent->rb_right;
326 leftmost = 0;
327 }
328 }
329
330 /*
331 * Maintain a cache of leftmost tree entries (it is frequently
332 * used):
333 */
1af5f730 334 if (leftmost)
57cb499d 335 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
336
337 rb_link_node(&se->run_node, parent, link);
338 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
339}
340
0702e3eb 341static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 342{
3fe69747
PZ
343 if (cfs_rq->rb_leftmost == &se->run_node) {
344 struct rb_node *next_node;
3fe69747
PZ
345
346 next_node = rb_next(&se->run_node);
347 cfs_rq->rb_leftmost = next_node;
3fe69747 348 }
e9acbff6 349
bf0f6f24 350 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
351}
352
bf0f6f24
IM
353static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
354{
f4b6755f
PZ
355 struct rb_node *left = cfs_rq->rb_leftmost;
356
357 if (!left)
358 return NULL;
359
360 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
361}
362
f4b6755f 363static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 364{
7eee3e67 365 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 366
70eee74b
BS
367 if (!last)
368 return NULL;
7eee3e67
IM
369
370 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
371}
372
bf0f6f24
IM
373/**************************************************************
374 * Scheduling class statistics methods:
375 */
376
b2be5e96
PZ
377#ifdef CONFIG_SCHED_DEBUG
378int sched_nr_latency_handler(struct ctl_table *table, int write,
379 struct file *filp, void __user *buffer, size_t *lenp,
380 loff_t *ppos)
381{
382 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
383
384 if (ret || !write)
385 return ret;
386
387 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
388 sysctl_sched_min_granularity);
389
390 return 0;
391}
392#endif
647e7cac 393
a7be37ac 394/*
f9c0b095 395 * delta /= w
a7be37ac
PZ
396 */
397static inline unsigned long
398calc_delta_fair(unsigned long delta, struct sched_entity *se)
399{
f9c0b095
PZ
400 if (unlikely(se->load.weight != NICE_0_LOAD))
401 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
402
403 return delta;
404}
405
647e7cac
IM
406/*
407 * The idea is to set a period in which each task runs once.
408 *
409 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
410 * this period because otherwise the slices get too small.
411 *
412 * p = (nr <= nl) ? l : l*nr/nl
413 */
4d78e7b6
PZ
414static u64 __sched_period(unsigned long nr_running)
415{
416 u64 period = sysctl_sched_latency;
b2be5e96 417 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
418
419 if (unlikely(nr_running > nr_latency)) {
4bf0b771 420 period = sysctl_sched_min_granularity;
4d78e7b6 421 period *= nr_running;
4d78e7b6
PZ
422 }
423
424 return period;
425}
426
647e7cac
IM
427/*
428 * We calculate the wall-time slice from the period by taking a part
429 * proportional to the weight.
430 *
f9c0b095 431 * s = p*P[w/rw]
647e7cac 432 */
6d0f0ebd 433static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 434{
0a582440 435 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 436
0a582440 437 for_each_sched_entity(se) {
6272d68c 438 struct load_weight *load;
3104bf03 439 struct load_weight lw;
6272d68c
LM
440
441 cfs_rq = cfs_rq_of(se);
442 load = &cfs_rq->load;
f9c0b095 443
0a582440 444 if (unlikely(!se->on_rq)) {
3104bf03 445 lw = cfs_rq->load;
0a582440
MG
446
447 update_load_add(&lw, se->load.weight);
448 load = &lw;
449 }
450 slice = calc_delta_mine(slice, se->load.weight, load);
451 }
452 return slice;
bf0f6f24
IM
453}
454
647e7cac 455/*
ac884dec 456 * We calculate the vruntime slice of a to be inserted task
647e7cac 457 *
f9c0b095 458 * vs = s/w
647e7cac 459 */
f9c0b095 460static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 461{
f9c0b095 462 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
463}
464
bf0f6f24
IM
465/*
466 * Update the current task's runtime statistics. Skip current tasks that
467 * are not in our scheduling class.
468 */
469static inline void
8ebc91d9
IM
470__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
471 unsigned long delta_exec)
bf0f6f24 472{
bbdba7c0 473 unsigned long delta_exec_weighted;
bf0f6f24 474
8179ca23 475 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
476
477 curr->sum_exec_runtime += delta_exec;
7a62eabc 478 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 479 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 480 curr->vruntime += delta_exec_weighted;
1af5f730 481 update_min_vruntime(cfs_rq);
bf0f6f24
IM
482}
483
b7cc0896 484static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 485{
429d43bc 486 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 487 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
488 unsigned long delta_exec;
489
490 if (unlikely(!curr))
491 return;
492
493 /*
494 * Get the amount of time the current task was running
495 * since the last time we changed load (this cannot
496 * overflow on 32 bits):
497 */
8ebc91d9 498 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
499 if (!delta_exec)
500 return;
bf0f6f24 501
8ebc91d9
IM
502 __update_curr(cfs_rq, curr, delta_exec);
503 curr->exec_start = now;
d842de87
SV
504
505 if (entity_is_task(curr)) {
506 struct task_struct *curtask = task_of(curr);
507
508 cpuacct_charge(curtask, delta_exec);
f06febc9 509 account_group_exec_runtime(curtask, delta_exec);
d842de87 510 }
bf0f6f24
IM
511}
512
513static inline void
5870db5b 514update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 515{
d281918d 516 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
517}
518
bf0f6f24
IM
519/*
520 * Task is being enqueued - update stats:
521 */
d2417e5a 522static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
bf0f6f24
IM
524 /*
525 * Are we enqueueing a waiting task? (for current tasks
526 * a dequeue/enqueue event is a NOP)
527 */
429d43bc 528 if (se != cfs_rq->curr)
5870db5b 529 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
530}
531
bf0f6f24 532static void
9ef0a961 533update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 534{
bbdba7c0
IM
535 schedstat_set(se->wait_max, max(se->wait_max,
536 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
537 schedstat_set(se->wait_count, se->wait_count + 1);
538 schedstat_set(se->wait_sum, se->wait_sum +
539 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 540 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
541}
542
543static inline void
19b6a2e3 544update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 545{
bf0f6f24
IM
546 /*
547 * Mark the end of the wait period if dequeueing a
548 * waiting task:
549 */
429d43bc 550 if (se != cfs_rq->curr)
9ef0a961 551 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
552}
553
554/*
555 * We are picking a new current task - update its stats:
556 */
557static inline void
79303e9e 558update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
559{
560 /*
561 * We are starting a new run period:
562 */
d281918d 563 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
564}
565
bf0f6f24
IM
566/**************************************************
567 * Scheduling class queueing methods:
568 */
569
c09595f6
PZ
570#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
571static void
572add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
573{
574 cfs_rq->task_weight += weight;
575}
576#else
577static inline void
578add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
579{
580}
581#endif
582
30cfdcfc
DA
583static void
584account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
585{
586 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
587 if (!parent_entity(se))
588 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 589 if (entity_is_task(se)) {
c09595f6 590 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
591 list_add(&se->group_node, &cfs_rq->tasks);
592 }
30cfdcfc
DA
593 cfs_rq->nr_running++;
594 se->on_rq = 1;
595}
596
597static void
598account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
599{
600 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
601 if (!parent_entity(se))
602 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 603 if (entity_is_task(se)) {
c09595f6 604 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
605 list_del_init(&se->group_node);
606 }
30cfdcfc
DA
607 cfs_rq->nr_running--;
608 se->on_rq = 0;
609}
610
2396af69 611static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 612{
bf0f6f24
IM
613#ifdef CONFIG_SCHEDSTATS
614 if (se->sleep_start) {
d281918d 615 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 616 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
617
618 if ((s64)delta < 0)
619 delta = 0;
620
621 if (unlikely(delta > se->sleep_max))
622 se->sleep_max = delta;
623
624 se->sleep_start = 0;
625 se->sum_sleep_runtime += delta;
9745512c
AV
626
627 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
628 }
629 if (se->block_start) {
d281918d 630 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 631 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
632
633 if ((s64)delta < 0)
634 delta = 0;
635
636 if (unlikely(delta > se->block_max))
637 se->block_max = delta;
638
639 se->block_start = 0;
640 se->sum_sleep_runtime += delta;
30084fbd
IM
641
642 /*
643 * Blocking time is in units of nanosecs, so shift by 20 to
644 * get a milliseconds-range estimation of the amount of
645 * time that the task spent sleeping:
646 */
647 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 648
30084fbd
IM
649 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
650 delta >> 20);
651 }
9745512c 652 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
653 }
654#endif
655}
656
ddc97297
PZ
657static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
658{
659#ifdef CONFIG_SCHED_DEBUG
660 s64 d = se->vruntime - cfs_rq->min_vruntime;
661
662 if (d < 0)
663 d = -d;
664
665 if (d > 3*sysctl_sched_latency)
666 schedstat_inc(cfs_rq, nr_spread_over);
667#endif
668}
669
aeb73b04
PZ
670static void
671place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
672{
1af5f730 673 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 674
2cb8600e
PZ
675 /*
676 * The 'current' period is already promised to the current tasks,
677 * however the extra weight of the new task will slow them down a
678 * little, place the new task so that it fits in the slot that
679 * stays open at the end.
680 */
94dfb5e7 681 if (initial && sched_feat(START_DEBIT))
f9c0b095 682 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 683
8465e792 684 if (!initial) {
2cb8600e 685 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
686 if (sched_feat(NEW_FAIR_SLEEPERS)) {
687 unsigned long thresh = sysctl_sched_latency;
688
689 /*
6bc912b7
PZ
690 * Convert the sleeper threshold into virtual time.
691 * SCHED_IDLE is a special sub-class. We care about
692 * fairness only relative to other SCHED_IDLE tasks,
693 * all of which have the same weight.
a7be37ac 694 */
6bc912b7 695 if (sched_feat(NORMALIZED_SLEEPER) &&
d07387b4
PT
696 (!entity_is_task(se) ||
697 task_of(se)->policy != SCHED_IDLE))
a7be37ac
PZ
698 thresh = calc_delta_fair(thresh, se);
699
700 vruntime -= thresh;
701 }
94359f05 702
2cb8600e
PZ
703 /* ensure we never gain time by being placed backwards. */
704 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
705 }
706
67e9fb2a 707 se->vruntime = vruntime;
aeb73b04
PZ
708}
709
bf0f6f24 710static void
83b699ed 711enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
712{
713 /*
a2a2d680 714 * Update run-time statistics of the 'current'.
bf0f6f24 715 */
b7cc0896 716 update_curr(cfs_rq);
a992241d 717 account_entity_enqueue(cfs_rq, se);
bf0f6f24 718
e9acbff6 719 if (wakeup) {
aeb73b04 720 place_entity(cfs_rq, se, 0);
2396af69 721 enqueue_sleeper(cfs_rq, se);
e9acbff6 722 }
bf0f6f24 723
d2417e5a 724 update_stats_enqueue(cfs_rq, se);
ddc97297 725 check_spread(cfs_rq, se);
83b699ed
SV
726 if (se != cfs_rq->curr)
727 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
728}
729
a571bbea 730static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695
PZ
731{
732 if (cfs_rq->last == se)
733 cfs_rq->last = NULL;
734
735 if (cfs_rq->next == se)
736 cfs_rq->next = NULL;
737}
738
a571bbea
PZ
739static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
740{
741 for_each_sched_entity(se)
742 __clear_buddies(cfs_rq_of(se), se);
743}
744
bf0f6f24 745static void
525c2716 746dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 747{
a2a2d680
DA
748 /*
749 * Update run-time statistics of the 'current'.
750 */
751 update_curr(cfs_rq);
752
19b6a2e3 753 update_stats_dequeue(cfs_rq, se);
db36cc7d 754 if (sleep) {
67e9fb2a 755#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
756 if (entity_is_task(se)) {
757 struct task_struct *tsk = task_of(se);
758
759 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 760 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 761 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 762 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 763 }
db36cc7d 764#endif
67e9fb2a
PZ
765 }
766
2002c695 767 clear_buddies(cfs_rq, se);
4793241b 768
83b699ed 769 if (se != cfs_rq->curr)
30cfdcfc
DA
770 __dequeue_entity(cfs_rq, se);
771 account_entity_dequeue(cfs_rq, se);
1af5f730 772 update_min_vruntime(cfs_rq);
bf0f6f24
IM
773}
774
775/*
776 * Preempt the current task with a newly woken task if needed:
777 */
7c92e54f 778static void
2e09bf55 779check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 780{
11697830
PZ
781 unsigned long ideal_runtime, delta_exec;
782
6d0f0ebd 783 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 784 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 785 if (delta_exec > ideal_runtime) {
bf0f6f24 786 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
787 /*
788 * The current task ran long enough, ensure it doesn't get
789 * re-elected due to buddy favours.
790 */
791 clear_buddies(cfs_rq, curr);
792 }
bf0f6f24
IM
793}
794
83b699ed 795static void
8494f412 796set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 797{
83b699ed
SV
798 /* 'current' is not kept within the tree. */
799 if (se->on_rq) {
800 /*
801 * Any task has to be enqueued before it get to execute on
802 * a CPU. So account for the time it spent waiting on the
803 * runqueue.
804 */
805 update_stats_wait_end(cfs_rq, se);
806 __dequeue_entity(cfs_rq, se);
807 }
808
79303e9e 809 update_stats_curr_start(cfs_rq, se);
429d43bc 810 cfs_rq->curr = se;
eba1ed4b
IM
811#ifdef CONFIG_SCHEDSTATS
812 /*
813 * Track our maximum slice length, if the CPU's load is at
814 * least twice that of our own weight (i.e. dont track it
815 * when there are only lesser-weight tasks around):
816 */
495eca49 817 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
818 se->slice_max = max(se->slice_max,
819 se->sum_exec_runtime - se->prev_sum_exec_runtime);
820 }
821#endif
4a55b450 822 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
823}
824
3f3a4904
PZ
825static int
826wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
827
f4b6755f 828static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 829{
f4b6755f
PZ
830 struct sched_entity *se = __pick_next_entity(cfs_rq);
831
4793241b
PZ
832 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
833 return cfs_rq->next;
aa2ac252 834
4793241b
PZ
835 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
836 return cfs_rq->last;
837
838 return se;
aa2ac252
PZ
839}
840
ab6cde26 841static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
842{
843 /*
844 * If still on the runqueue then deactivate_task()
845 * was not called and update_curr() has to be done:
846 */
847 if (prev->on_rq)
b7cc0896 848 update_curr(cfs_rq);
bf0f6f24 849
ddc97297 850 check_spread(cfs_rq, prev);
30cfdcfc 851 if (prev->on_rq) {
5870db5b 852 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
853 /* Put 'current' back into the tree. */
854 __enqueue_entity(cfs_rq, prev);
855 }
429d43bc 856 cfs_rq->curr = NULL;
bf0f6f24
IM
857}
858
8f4d37ec
PZ
859static void
860entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 861{
bf0f6f24 862 /*
30cfdcfc 863 * Update run-time statistics of the 'current'.
bf0f6f24 864 */
30cfdcfc 865 update_curr(cfs_rq);
bf0f6f24 866
8f4d37ec
PZ
867#ifdef CONFIG_SCHED_HRTICK
868 /*
869 * queued ticks are scheduled to match the slice, so don't bother
870 * validating it and just reschedule.
871 */
983ed7a6
HH
872 if (queued) {
873 resched_task(rq_of(cfs_rq)->curr);
874 return;
875 }
8f4d37ec
PZ
876 /*
877 * don't let the period tick interfere with the hrtick preemption
878 */
879 if (!sched_feat(DOUBLE_TICK) &&
880 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
881 return;
882#endif
883
ce6c1311 884 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 885 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
886}
887
888/**************************************************
889 * CFS operations on tasks:
890 */
891
8f4d37ec
PZ
892#ifdef CONFIG_SCHED_HRTICK
893static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
894{
8f4d37ec
PZ
895 struct sched_entity *se = &p->se;
896 struct cfs_rq *cfs_rq = cfs_rq_of(se);
897
898 WARN_ON(task_rq(p) != rq);
899
900 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
901 u64 slice = sched_slice(cfs_rq, se);
902 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
903 s64 delta = slice - ran;
904
905 if (delta < 0) {
906 if (rq->curr == p)
907 resched_task(p);
908 return;
909 }
910
911 /*
912 * Don't schedule slices shorter than 10000ns, that just
913 * doesn't make sense. Rely on vruntime for fairness.
914 */
31656519 915 if (rq->curr != p)
157124c1 916 delta = max_t(s64, 10000LL, delta);
8f4d37ec 917
31656519 918 hrtick_start(rq, delta);
8f4d37ec
PZ
919 }
920}
a4c2f00f
PZ
921
922/*
923 * called from enqueue/dequeue and updates the hrtick when the
924 * current task is from our class and nr_running is low enough
925 * to matter.
926 */
927static void hrtick_update(struct rq *rq)
928{
929 struct task_struct *curr = rq->curr;
930
931 if (curr->sched_class != &fair_sched_class)
932 return;
933
934 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
935 hrtick_start_fair(rq, curr);
936}
55e12e5e 937#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
938static inline void
939hrtick_start_fair(struct rq *rq, struct task_struct *p)
940{
941}
a4c2f00f
PZ
942
943static inline void hrtick_update(struct rq *rq)
944{
945}
8f4d37ec
PZ
946#endif
947
bf0f6f24
IM
948/*
949 * The enqueue_task method is called before nr_running is
950 * increased. Here we update the fair scheduling stats and
951 * then put the task into the rbtree:
952 */
fd390f6a 953static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
954{
955 struct cfs_rq *cfs_rq;
62fb1851 956 struct sched_entity *se = &p->se;
bf0f6f24
IM
957
958 for_each_sched_entity(se) {
62fb1851 959 if (se->on_rq)
bf0f6f24
IM
960 break;
961 cfs_rq = cfs_rq_of(se);
83b699ed 962 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 963 wakeup = 1;
bf0f6f24 964 }
8f4d37ec 965
a4c2f00f 966 hrtick_update(rq);
bf0f6f24
IM
967}
968
969/*
970 * The dequeue_task method is called before nr_running is
971 * decreased. We remove the task from the rbtree and
972 * update the fair scheduling stats:
973 */
f02231e5 974static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
975{
976 struct cfs_rq *cfs_rq;
62fb1851 977 struct sched_entity *se = &p->se;
bf0f6f24
IM
978
979 for_each_sched_entity(se) {
980 cfs_rq = cfs_rq_of(se);
525c2716 981 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 982 /* Don't dequeue parent if it has other entities besides us */
62fb1851 983 if (cfs_rq->load.weight)
bf0f6f24 984 break;
b9fa3df3 985 sleep = 1;
bf0f6f24 986 }
8f4d37ec 987
a4c2f00f 988 hrtick_update(rq);
bf0f6f24
IM
989}
990
991/*
1799e35d
IM
992 * sched_yield() support is very simple - we dequeue and enqueue.
993 *
994 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 995 */
4530d7ab 996static void yield_task_fair(struct rq *rq)
bf0f6f24 997{
db292ca3
IM
998 struct task_struct *curr = rq->curr;
999 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1000 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1001
1002 /*
1799e35d
IM
1003 * Are we the only task in the tree?
1004 */
1005 if (unlikely(cfs_rq->nr_running == 1))
1006 return;
1007
2002c695
PZ
1008 clear_buddies(cfs_rq, se);
1009
db292ca3 1010 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1011 update_rq_clock(rq);
1799e35d 1012 /*
a2a2d680 1013 * Update run-time statistics of the 'current'.
1799e35d 1014 */
2b1e315d 1015 update_curr(cfs_rq);
1799e35d
IM
1016
1017 return;
1018 }
1019 /*
1020 * Find the rightmost entry in the rbtree:
bf0f6f24 1021 */
2b1e315d 1022 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1023 /*
1024 * Already in the rightmost position?
1025 */
54fdc581 1026 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1027 return;
1028
1029 /*
1030 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1031 * Upon rescheduling, sched_class::put_prev_task() will place
1032 * 'current' within the tree based on its new key value.
1799e35d 1033 */
30cfdcfc 1034 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1035}
1036
e7693a36
GH
1037/*
1038 * wake_idle() will wake a task on an idle cpu if task->cpu is
1039 * not idle and an idle cpu is available. The span of cpus to
1040 * search starts with cpus closest then further out as needed,
1041 * so we always favor a closer, idle cpu.
e761b772 1042 * Domains may include CPUs that are not usable for migration,
96f874e2 1043 * hence we need to mask them out (cpu_active_mask)
e7693a36
GH
1044 *
1045 * Returns the CPU we should wake onto.
1046 */
1047#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1048static int wake_idle(int cpu, struct task_struct *p)
1049{
e7693a36
GH
1050 struct sched_domain *sd;
1051 int i;
7eb52dfa
VS
1052 unsigned int chosen_wakeup_cpu;
1053 int this_cpu;
1054
1055 /*
1056 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1057 * are idle and this is not a kernel thread and this task's affinity
1058 * allows it to be moved to preferred cpu, then just move!
1059 */
1060
1061 this_cpu = smp_processor_id();
1062 chosen_wakeup_cpu =
1063 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1064
1065 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1066 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1067 p->mm && !(p->flags & PF_KTHREAD) &&
1068 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1069 return chosen_wakeup_cpu;
e7693a36
GH
1070
1071 /*
1072 * If it is idle, then it is the best cpu to run this task.
1073 *
1074 * This cpu is also the best, if it has more than one task already.
1075 * Siblings must be also busy(in most cases) as they didn't already
1076 * pickup the extra load from this cpu and hence we need not check
1077 * sibling runqueue info. This will avoid the checks and cache miss
1078 * penalities associated with that.
1079 */
104f6454 1080 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1081 return cpu;
1082
1083 for_each_domain(cpu, sd) {
1d3504fc
HS
1084 if ((sd->flags & SD_WAKE_IDLE)
1085 || ((sd->flags & SD_WAKE_IDLE_FAR)
1086 && !task_hot(p, task_rq(p)->clock, sd))) {
758b2cdc
RR
1087 for_each_cpu_and(i, sched_domain_span(sd),
1088 &p->cpus_allowed) {
1089 if (cpu_active(i) && idle_cpu(i)) {
e7693a36
GH
1090 if (i != task_cpu(p)) {
1091 schedstat_inc(p,
1092 se.nr_wakeups_idle);
1093 }
1094 return i;
1095 }
1096 }
1097 } else {
1098 break;
1099 }
1100 }
1101 return cpu;
1102}
55e12e5e 1103#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
1104static inline int wake_idle(int cpu, struct task_struct *p)
1105{
1106 return cpu;
1107}
1108#endif
1109
1110#ifdef CONFIG_SMP
098fb9db 1111
bb3469ac 1112#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1113/*
1114 * effective_load() calculates the load change as seen from the root_task_group
1115 *
1116 * Adding load to a group doesn't make a group heavier, but can cause movement
1117 * of group shares between cpus. Assuming the shares were perfectly aligned one
1118 * can calculate the shift in shares.
1119 *
1120 * The problem is that perfectly aligning the shares is rather expensive, hence
1121 * we try to avoid doing that too often - see update_shares(), which ratelimits
1122 * this change.
1123 *
1124 * We compensate this by not only taking the current delta into account, but
1125 * also considering the delta between when the shares were last adjusted and
1126 * now.
1127 *
1128 * We still saw a performance dip, some tracing learned us that between
1129 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1130 * significantly. Therefore try to bias the error in direction of failing
1131 * the affine wakeup.
1132 *
1133 */
f1d239f7
PZ
1134static long effective_load(struct task_group *tg, int cpu,
1135 long wl, long wg)
bb3469ac 1136{
4be9daaa 1137 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1138
1139 if (!tg->parent)
1140 return wl;
1141
f5bfb7d9
PZ
1142 /*
1143 * By not taking the decrease of shares on the other cpu into
1144 * account our error leans towards reducing the affine wakeups.
1145 */
1146 if (!wl && sched_feat(ASYM_EFF_LOAD))
1147 return wl;
1148
4be9daaa 1149 for_each_sched_entity(se) {
cb5ef42a 1150 long S, rw, s, a, b;
940959e9
PZ
1151 long more_w;
1152
1153 /*
1154 * Instead of using this increment, also add the difference
1155 * between when the shares were last updated and now.
1156 */
1157 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1158 wl += more_w;
1159 wg += more_w;
4be9daaa
PZ
1160
1161 S = se->my_q->tg->shares;
1162 s = se->my_q->shares;
f1d239f7 1163 rw = se->my_q->rq_weight;
bb3469ac 1164
cb5ef42a
PZ
1165 a = S*(rw + wl);
1166 b = S*rw + s*wg;
4be9daaa 1167
940959e9
PZ
1168 wl = s*(a-b);
1169
1170 if (likely(b))
1171 wl /= b;
1172
83378269
PZ
1173 /*
1174 * Assume the group is already running and will
1175 * thus already be accounted for in the weight.
1176 *
1177 * That is, moving shares between CPUs, does not
1178 * alter the group weight.
1179 */
4be9daaa 1180 wg = 0;
4be9daaa 1181 }
bb3469ac 1182
4be9daaa 1183 return wl;
bb3469ac 1184}
4be9daaa 1185
bb3469ac 1186#else
4be9daaa 1187
83378269
PZ
1188static inline unsigned long effective_load(struct task_group *tg, int cpu,
1189 unsigned long wl, unsigned long wg)
4be9daaa 1190{
83378269 1191 return wl;
bb3469ac 1192}
4be9daaa 1193
bb3469ac
PZ
1194#endif
1195
098fb9db 1196static int
64b9e029 1197wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
4ae7d5ce
IM
1198 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1199 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1200 unsigned int imbalance)
1201{
fc631c82
PZ
1202 struct task_struct *curr = this_rq->curr;
1203 struct task_group *tg;
098fb9db
IM
1204 unsigned long tl = this_load;
1205 unsigned long tl_per_task;
83378269 1206 unsigned long weight;
b3137bc8 1207 int balanced;
098fb9db 1208
b3137bc8 1209 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1210 return 0;
1211
fc631c82
PZ
1212 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1213 p->se.avg_overlap > sysctl_sched_migration_cost))
1214 sync = 0;
1215
b3137bc8
MG
1216 /*
1217 * If sync wakeup then subtract the (maximum possible)
1218 * effect of the currently running task from the load
1219 * of the current CPU:
1220 */
83378269
PZ
1221 if (sync) {
1222 tg = task_group(current);
1223 weight = current->se.load.weight;
1224
1225 tl += effective_load(tg, this_cpu, -weight, -weight);
1226 load += effective_load(tg, prev_cpu, 0, -weight);
1227 }
b3137bc8 1228
83378269
PZ
1229 tg = task_group(p);
1230 weight = p->se.load.weight;
b3137bc8 1231
83378269
PZ
1232 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1233 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1234
098fb9db 1235 /*
4ae7d5ce
IM
1236 * If the currently running task will sleep within
1237 * a reasonable amount of time then attract this newly
1238 * woken task:
098fb9db 1239 */
2fb7635c
PZ
1240 if (sync && balanced)
1241 return 1;
098fb9db
IM
1242
1243 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1244 tl_per_task = cpu_avg_load_per_task(this_cpu);
1245
64b9e029
AA
1246 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1247 tl_per_task)) {
098fb9db
IM
1248 /*
1249 * This domain has SD_WAKE_AFFINE and
1250 * p is cache cold in this domain, and
1251 * there is no bad imbalance.
1252 */
1253 schedstat_inc(this_sd, ttwu_move_affine);
1254 schedstat_inc(p, se.nr_wakeups_affine);
1255
1256 return 1;
1257 }
1258 return 0;
1259}
1260
e7693a36
GH
1261static int select_task_rq_fair(struct task_struct *p, int sync)
1262{
e7693a36 1263 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1264 int prev_cpu, this_cpu, new_cpu;
098fb9db 1265 unsigned long load, this_load;
64b9e029 1266 struct rq *this_rq;
098fb9db 1267 unsigned int imbalance;
098fb9db 1268 int idx;
e7693a36 1269
ac192d39 1270 prev_cpu = task_cpu(p);
ac192d39 1271 this_cpu = smp_processor_id();
4ae7d5ce 1272 this_rq = cpu_rq(this_cpu);
ac192d39 1273 new_cpu = prev_cpu;
e7693a36 1274
64b9e029
AA
1275 if (prev_cpu == this_cpu)
1276 goto out;
ac192d39
IM
1277 /*
1278 * 'this_sd' is the first domain that both
1279 * this_cpu and prev_cpu are present in:
1280 */
e7693a36 1281 for_each_domain(this_cpu, sd) {
758b2cdc 1282 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
e7693a36
GH
1283 this_sd = sd;
1284 break;
1285 }
1286 }
1287
96f874e2 1288 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
f4827386 1289 goto out;
e7693a36
GH
1290
1291 /*
1292 * Check for affine wakeup and passive balancing possibilities.
1293 */
098fb9db 1294 if (!this_sd)
f4827386 1295 goto out;
e7693a36 1296
098fb9db
IM
1297 idx = this_sd->wake_idx;
1298
1299 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1300
ac192d39 1301 load = source_load(prev_cpu, idx);
098fb9db
IM
1302 this_load = target_load(this_cpu, idx);
1303
64b9e029 1304 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
4ae7d5ce
IM
1305 load, this_load, imbalance))
1306 return this_cpu;
1307
098fb9db
IM
1308 /*
1309 * Start passive balancing when half the imbalance_pct
1310 * limit is reached.
1311 */
1312 if (this_sd->flags & SD_WAKE_BALANCE) {
1313 if (imbalance*this_load <= 100*load) {
1314 schedstat_inc(this_sd, ttwu_move_balance);
1315 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1316 return this_cpu;
e7693a36
GH
1317 }
1318 }
1319
f4827386 1320out:
e7693a36
GH
1321 return wake_idle(new_cpu, p);
1322}
1323#endif /* CONFIG_SMP */
1324
e52fb7c0
PZ
1325/*
1326 * Adaptive granularity
1327 *
1328 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1329 * with the limit of wakeup_gran -- when it never does a wakeup.
1330 *
1331 * So the smaller avg_wakeup is the faster we want this task to preempt,
1332 * but we don't want to treat the preemptee unfairly and therefore allow it
1333 * to run for at least the amount of time we'd like to run.
1334 *
1335 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1336 *
1337 * NOTE: we use *nr_running to scale with load, this nicely matches the
1338 * degrading latency on load.
1339 */
1340static unsigned long
1341adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1342{
1343 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1344 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1345 u64 gran = 0;
1346
1347 if (this_run < expected_wakeup)
1348 gran = expected_wakeup - this_run;
1349
1350 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1351}
1352
1353static unsigned long
1354wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1355{
1356 unsigned long gran = sysctl_sched_wakeup_granularity;
1357
e52fb7c0
PZ
1358 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1359 gran = adaptive_gran(curr, se);
1360
0bbd3336 1361 /*
e52fb7c0
PZ
1362 * Since its curr running now, convert the gran from real-time
1363 * to virtual-time in his units.
0bbd3336 1364 */
e52fb7c0
PZ
1365 if (sched_feat(ASYM_GRAN)) {
1366 /*
1367 * By using 'se' instead of 'curr' we penalize light tasks, so
1368 * they get preempted easier. That is, if 'se' < 'curr' then
1369 * the resulting gran will be larger, therefore penalizing the
1370 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1371 * be smaller, again penalizing the lighter task.
1372 *
1373 * This is especially important for buddies when the leftmost
1374 * task is higher priority than the buddy.
1375 */
1376 if (unlikely(se->load.weight != NICE_0_LOAD))
1377 gran = calc_delta_fair(gran, se);
1378 } else {
1379 if (unlikely(curr->load.weight != NICE_0_LOAD))
1380 gran = calc_delta_fair(gran, curr);
1381 }
0bbd3336
PZ
1382
1383 return gran;
1384}
1385
464b7527
PZ
1386/*
1387 * Should 'se' preempt 'curr'.
1388 *
1389 * |s1
1390 * |s2
1391 * |s3
1392 * g
1393 * |<--->|c
1394 *
1395 * w(c, s1) = -1
1396 * w(c, s2) = 0
1397 * w(c, s3) = 1
1398 *
1399 */
1400static int
1401wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1402{
1403 s64 gran, vdiff = curr->vruntime - se->vruntime;
1404
1405 if (vdiff <= 0)
1406 return -1;
1407
e52fb7c0 1408 gran = wakeup_gran(curr, se);
464b7527
PZ
1409 if (vdiff > gran)
1410 return 1;
1411
1412 return 0;
1413}
1414
02479099
PZ
1415static void set_last_buddy(struct sched_entity *se)
1416{
6bc912b7
PZ
1417 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1418 for_each_sched_entity(se)
1419 cfs_rq_of(se)->last = se;
1420 }
02479099
PZ
1421}
1422
1423static void set_next_buddy(struct sched_entity *se)
1424{
6bc912b7
PZ
1425 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1426 for_each_sched_entity(se)
1427 cfs_rq_of(se)->next = se;
1428 }
02479099
PZ
1429}
1430
bf0f6f24
IM
1431/*
1432 * Preempt the current task with a newly woken task if needed:
1433 */
15afe09b 1434static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
bf0f6f24
IM
1435{
1436 struct task_struct *curr = rq->curr;
8651a86c 1437 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1438 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24 1439
03e89e45 1440 update_curr(cfs_rq);
4793241b 1441
03e89e45 1442 if (unlikely(rt_prio(p->prio))) {
bf0f6f24
IM
1443 resched_task(curr);
1444 return;
1445 }
aa2ac252 1446
d95f98d0
PZ
1447 if (unlikely(p->sched_class != &fair_sched_class))
1448 return;
1449
4ae7d5ce
IM
1450 if (unlikely(se == pse))
1451 return;
1452
4793241b
PZ
1453 /*
1454 * Only set the backward buddy when the current task is still on the
1455 * rq. This can happen when a wakeup gets interleaved with schedule on
1456 * the ->pre_schedule() or idle_balance() point, either of which can
1457 * drop the rq lock.
1458 *
1459 * Also, during early boot the idle thread is in the fair class, for
1460 * obvious reasons its a bad idea to schedule back to the idle thread.
1461 */
1462 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099
PZ
1463 set_last_buddy(se);
1464 set_next_buddy(pse);
57fdc26d 1465
aec0a514
BR
1466 /*
1467 * We can come here with TIF_NEED_RESCHED already set from new task
1468 * wake up path.
1469 */
1470 if (test_tsk_need_resched(curr))
1471 return;
1472
91c234b4 1473 /*
6bc912b7 1474 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1475 * the tick):
1476 */
6bc912b7 1477 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1478 return;
bf0f6f24 1479
6bc912b7
PZ
1480 /* Idle tasks are by definition preempted by everybody. */
1481 if (unlikely(curr->policy == SCHED_IDLE)) {
1482 resched_task(curr);
91c234b4 1483 return;
6bc912b7 1484 }
bf0f6f24 1485
77d9cc44
IM
1486 if (!sched_feat(WAKEUP_PREEMPT))
1487 return;
8651a86c 1488
fc631c82
PZ
1489 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1490 (se->avg_overlap < sysctl_sched_migration_cost &&
1491 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1492 resched_task(curr);
1493 return;
1494 }
1495
464b7527
PZ
1496 find_matching_se(&se, &pse);
1497
002f128b 1498 BUG_ON(!pse);
464b7527 1499
002f128b
PT
1500 if (wakeup_preempt_entity(se, pse) == 1)
1501 resched_task(curr);
bf0f6f24
IM
1502}
1503
fb8d4724 1504static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1505{
8f4d37ec 1506 struct task_struct *p;
bf0f6f24
IM
1507 struct cfs_rq *cfs_rq = &rq->cfs;
1508 struct sched_entity *se;
1509
1510 if (unlikely(!cfs_rq->nr_running))
1511 return NULL;
1512
1513 do {
9948f4b2 1514 se = pick_next_entity(cfs_rq);
a9f3e2b5
MG
1515 /*
1516 * If se was a buddy, clear it so that it will have to earn
1517 * the favour again.
1518 */
a571bbea 1519 __clear_buddies(cfs_rq, se);
f4b6755f 1520 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1521 cfs_rq = group_cfs_rq(se);
1522 } while (cfs_rq);
1523
8f4d37ec
PZ
1524 p = task_of(se);
1525 hrtick_start_fair(rq, p);
1526
1527 return p;
bf0f6f24
IM
1528}
1529
1530/*
1531 * Account for a descheduled task:
1532 */
31ee529c 1533static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1534{
1535 struct sched_entity *se = &prev->se;
1536 struct cfs_rq *cfs_rq;
1537
1538 for_each_sched_entity(se) {
1539 cfs_rq = cfs_rq_of(se);
ab6cde26 1540 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1541 }
1542}
1543
681f3e68 1544#ifdef CONFIG_SMP
bf0f6f24
IM
1545/**************************************************
1546 * Fair scheduling class load-balancing methods:
1547 */
1548
1549/*
1550 * Load-balancing iterator. Note: while the runqueue stays locked
1551 * during the whole iteration, the current task might be
1552 * dequeued so the iterator has to be dequeue-safe. Here we
1553 * achieve that by always pre-iterating before returning
1554 * the current task:
1555 */
a9957449 1556static struct task_struct *
4a55bd5e 1557__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1558{
354d60c2
DG
1559 struct task_struct *p = NULL;
1560 struct sched_entity *se;
bf0f6f24 1561
77ae6513
MG
1562 if (next == &cfs_rq->tasks)
1563 return NULL;
1564
b87f1724
BR
1565 se = list_entry(next, struct sched_entity, group_node);
1566 p = task_of(se);
1567 cfs_rq->balance_iterator = next->next;
77ae6513 1568
bf0f6f24
IM
1569 return p;
1570}
1571
1572static struct task_struct *load_balance_start_fair(void *arg)
1573{
1574 struct cfs_rq *cfs_rq = arg;
1575
4a55bd5e 1576 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1577}
1578
1579static struct task_struct *load_balance_next_fair(void *arg)
1580{
1581 struct cfs_rq *cfs_rq = arg;
1582
4a55bd5e 1583 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1584}
1585
c09595f6
PZ
1586static unsigned long
1587__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1588 unsigned long max_load_move, struct sched_domain *sd,
1589 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1590 struct cfs_rq *cfs_rq)
62fb1851 1591{
c09595f6 1592 struct rq_iterator cfs_rq_iterator;
62fb1851 1593
c09595f6
PZ
1594 cfs_rq_iterator.start = load_balance_start_fair;
1595 cfs_rq_iterator.next = load_balance_next_fair;
1596 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1597
c09595f6
PZ
1598 return balance_tasks(this_rq, this_cpu, busiest,
1599 max_load_move, sd, idle, all_pinned,
1600 this_best_prio, &cfs_rq_iterator);
62fb1851 1601}
62fb1851 1602
c09595f6 1603#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1604static unsigned long
bf0f6f24 1605load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1606 unsigned long max_load_move,
a4ac01c3
PW
1607 struct sched_domain *sd, enum cpu_idle_type idle,
1608 int *all_pinned, int *this_best_prio)
bf0f6f24 1609{
bf0f6f24 1610 long rem_load_move = max_load_move;
c09595f6
PZ
1611 int busiest_cpu = cpu_of(busiest);
1612 struct task_group *tg;
18d95a28 1613
c09595f6 1614 rcu_read_lock();
c8cba857 1615 update_h_load(busiest_cpu);
18d95a28 1616
caea8a03 1617 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1618 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1619 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1620 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1621 u64 rem_load, moved_load;
18d95a28 1622
c09595f6
PZ
1623 /*
1624 * empty group
1625 */
c8cba857 1626 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1627 continue;
1628
243e0e7b
SV
1629 rem_load = (u64)rem_load_move * busiest_weight;
1630 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1631
c09595f6 1632 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1633 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1634 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1635
c09595f6 1636 if (!moved_load)
bf0f6f24
IM
1637 continue;
1638
42a3ac7d 1639 moved_load *= busiest_h_load;
243e0e7b 1640 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1641
c09595f6
PZ
1642 rem_load_move -= moved_load;
1643 if (rem_load_move < 0)
bf0f6f24
IM
1644 break;
1645 }
c09595f6 1646 rcu_read_unlock();
bf0f6f24 1647
43010659 1648 return max_load_move - rem_load_move;
bf0f6f24 1649}
c09595f6
PZ
1650#else
1651static unsigned long
1652load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1653 unsigned long max_load_move,
1654 struct sched_domain *sd, enum cpu_idle_type idle,
1655 int *all_pinned, int *this_best_prio)
1656{
1657 return __load_balance_fair(this_rq, this_cpu, busiest,
1658 max_load_move, sd, idle, all_pinned,
1659 this_best_prio, &busiest->cfs);
1660}
1661#endif
bf0f6f24 1662
e1d1484f
PW
1663static int
1664move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1665 struct sched_domain *sd, enum cpu_idle_type idle)
1666{
1667 struct cfs_rq *busy_cfs_rq;
1668 struct rq_iterator cfs_rq_iterator;
1669
1670 cfs_rq_iterator.start = load_balance_start_fair;
1671 cfs_rq_iterator.next = load_balance_next_fair;
1672
1673 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1674 /*
1675 * pass busy_cfs_rq argument into
1676 * load_balance_[start|next]_fair iterators
1677 */
1678 cfs_rq_iterator.arg = busy_cfs_rq;
1679 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1680 &cfs_rq_iterator))
1681 return 1;
1682 }
1683
1684 return 0;
1685}
55e12e5e 1686#endif /* CONFIG_SMP */
e1d1484f 1687
bf0f6f24
IM
1688/*
1689 * scheduler tick hitting a task of our scheduling class:
1690 */
8f4d37ec 1691static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1692{
1693 struct cfs_rq *cfs_rq;
1694 struct sched_entity *se = &curr->se;
1695
1696 for_each_sched_entity(se) {
1697 cfs_rq = cfs_rq_of(se);
8f4d37ec 1698 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1699 }
1700}
1701
1702/*
1703 * Share the fairness runtime between parent and child, thus the
1704 * total amount of pressure for CPU stays equal - new tasks
1705 * get a chance to run but frequent forkers are not allowed to
1706 * monopolize the CPU. Note: the parent runqueue is locked,
1707 * the child is not running yet.
1708 */
ee0827d8 1709static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1710{
1711 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1712 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1713 int this_cpu = smp_processor_id();
bf0f6f24
IM
1714
1715 sched_info_queued(p);
1716
7109c442 1717 update_curr(cfs_rq);
aeb73b04 1718 place_entity(cfs_rq, se, 1);
4d78e7b6 1719
3c90e6e9 1720 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1721 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
54fdc581 1722 curr && entity_before(curr, se)) {
87fefa38 1723 /*
edcb60a3
IM
1724 * Upon rescheduling, sched_class::put_prev_task() will place
1725 * 'current' within the tree based on its new key value.
1726 */
4d78e7b6 1727 swap(curr->vruntime, se->vruntime);
aec0a514 1728 resched_task(rq->curr);
4d78e7b6 1729 }
bf0f6f24 1730
b9dca1e0 1731 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1732}
1733
cb469845
SR
1734/*
1735 * Priority of the task has changed. Check to see if we preempt
1736 * the current task.
1737 */
1738static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1739 int oldprio, int running)
1740{
1741 /*
1742 * Reschedule if we are currently running on this runqueue and
1743 * our priority decreased, or if we are not currently running on
1744 * this runqueue and our priority is higher than the current's
1745 */
1746 if (running) {
1747 if (p->prio > oldprio)
1748 resched_task(rq->curr);
1749 } else
15afe09b 1750 check_preempt_curr(rq, p, 0);
cb469845
SR
1751}
1752
1753/*
1754 * We switched to the sched_fair class.
1755 */
1756static void switched_to_fair(struct rq *rq, struct task_struct *p,
1757 int running)
1758{
1759 /*
1760 * We were most likely switched from sched_rt, so
1761 * kick off the schedule if running, otherwise just see
1762 * if we can still preempt the current task.
1763 */
1764 if (running)
1765 resched_task(rq->curr);
1766 else
15afe09b 1767 check_preempt_curr(rq, p, 0);
cb469845
SR
1768}
1769
83b699ed
SV
1770/* Account for a task changing its policy or group.
1771 *
1772 * This routine is mostly called to set cfs_rq->curr field when a task
1773 * migrates between groups/classes.
1774 */
1775static void set_curr_task_fair(struct rq *rq)
1776{
1777 struct sched_entity *se = &rq->curr->se;
1778
1779 for_each_sched_entity(se)
1780 set_next_entity(cfs_rq_of(se), se);
1781}
1782
810b3817
PZ
1783#ifdef CONFIG_FAIR_GROUP_SCHED
1784static void moved_group_fair(struct task_struct *p)
1785{
1786 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1787
1788 update_curr(cfs_rq);
1789 place_entity(cfs_rq, &p->se, 1);
1790}
1791#endif
1792
bf0f6f24
IM
1793/*
1794 * All the scheduling class methods:
1795 */
5522d5d5
IM
1796static const struct sched_class fair_sched_class = {
1797 .next = &idle_sched_class,
bf0f6f24
IM
1798 .enqueue_task = enqueue_task_fair,
1799 .dequeue_task = dequeue_task_fair,
1800 .yield_task = yield_task_fair,
1801
2e09bf55 1802 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1803
1804 .pick_next_task = pick_next_task_fair,
1805 .put_prev_task = put_prev_task_fair,
1806
681f3e68 1807#ifdef CONFIG_SMP
4ce72a2c
LZ
1808 .select_task_rq = select_task_rq_fair,
1809
bf0f6f24 1810 .load_balance = load_balance_fair,
e1d1484f 1811 .move_one_task = move_one_task_fair,
681f3e68 1812#endif
bf0f6f24 1813
83b699ed 1814 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1815 .task_tick = task_tick_fair,
1816 .task_new = task_new_fair,
cb469845
SR
1817
1818 .prio_changed = prio_changed_fair,
1819 .switched_to = switched_to_fair,
810b3817
PZ
1820
1821#ifdef CONFIG_FAIR_GROUP_SCHED
1822 .moved_group = moved_group_fair,
1823#endif
bf0f6f24
IM
1824};
1825
1826#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1827static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1828{
bf0f6f24
IM
1829 struct cfs_rq *cfs_rq;
1830
5973e5b9 1831 rcu_read_lock();
c3b64f1e 1832 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1833 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1834 rcu_read_unlock();
bf0f6f24
IM
1835}
1836#endif