]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched_fair.c
timers: fix itimer/many thread hang
[mirror_ubuntu-artful-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
bf0f6f24
IM
76/**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
b758149c
PZ
80static inline struct task_struct *task_of(struct sched_entity *se)
81{
82 return container_of(se, struct task_struct, se);
83}
84
62160e3f 85#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 86
62160e3f 87/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
88static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89{
62160e3f 90 return cfs_rq->rq;
bf0f6f24
IM
91}
92
62160e3f
IM
93/* An entity is a task if it doesn't "own" a runqueue */
94#define entity_is_task(se) (!se->my_q)
bf0f6f24 95
b758149c
PZ
96/* Walk up scheduling entities hierarchy */
97#define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
99
100static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
101{
102 return p->se.cfs_rq;
103}
104
105/* runqueue on which this entity is (to be) queued */
106static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
107{
108 return se->cfs_rq;
109}
110
111/* runqueue "owned" by this group */
112static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
113{
114 return grp->my_q;
115}
116
117/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
119 */
120static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
121{
122 return cfs_rq->tg->cfs_rq[this_cpu];
123}
124
125/* Iterate thr' all leaf cfs_rq's on a runqueue */
126#define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
128
129/* Do the two (enqueued) entities belong to the same group ? */
130static inline int
131is_same_group(struct sched_entity *se, struct sched_entity *pse)
132{
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
135
136 return 0;
137}
138
139static inline struct sched_entity *parent_entity(struct sched_entity *se)
140{
141 return se->parent;
142}
143
62160e3f 144#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 145
62160e3f
IM
146static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
147{
148 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
149}
150
151#define entity_is_task(se) 1
152
b758149c
PZ
153#define for_each_sched_entity(se) \
154 for (; se; se = NULL)
bf0f6f24 155
b758149c 156static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 157{
b758149c 158 return &task_rq(p)->cfs;
bf0f6f24
IM
159}
160
b758149c
PZ
161static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
162{
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
165
166 return &rq->cfs;
167}
168
169/* runqueue "owned" by this group */
170static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
171{
172 return NULL;
173}
174
175static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
176{
177 return &cpu_rq(this_cpu)->cfs;
178}
179
180#define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
182
183static inline int
184is_same_group(struct sched_entity *se, struct sched_entity *pse)
185{
186 return 1;
187}
188
189static inline struct sched_entity *parent_entity(struct sched_entity *se)
190{
191 return NULL;
192}
193
194#endif /* CONFIG_FAIR_GROUP_SCHED */
195
bf0f6f24
IM
196
197/**************************************************************
198 * Scheduling class tree data structure manipulation methods:
199 */
200
0702e3eb 201static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 202{
368059a9
PZ
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
02e0431a
PZ
205 min_vruntime = vruntime;
206
207 return min_vruntime;
208}
209
0702e3eb 210static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
211{
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
215
216 return min_vruntime;
217}
218
0702e3eb 219static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 220{
30cfdcfc 221 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
222}
223
bf0f6f24
IM
224/*
225 * Enqueue an entity into the rb-tree:
226 */
0702e3eb 227static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
228{
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
9014623c 232 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
233 int leftmost = 1;
234
235 /*
236 * Find the right place in the rbtree:
237 */
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
241 /*
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
244 */
9014623c 245 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
250 }
251 }
252
253 /*
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
256 */
3fe69747 257 if (leftmost) {
57cb499d 258 cfs_rq->rb_leftmost = &se->run_node;
3fe69747
PZ
259 /*
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
262 */
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
265 }
bf0f6f24
IM
266
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
269}
270
0702e3eb 271static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 272{
3fe69747
PZ
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
276
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
279
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
286 }
287 }
e9acbff6 288
aa2ac252
PZ
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
291
bf0f6f24 292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
293}
294
295static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
296{
297 return cfs_rq->rb_leftmost;
298}
299
300static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
301{
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
303}
304
aeb73b04
PZ
305static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
306{
7eee3e67 307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 308
70eee74b
BS
309 if (!last)
310 return NULL;
7eee3e67
IM
311
312 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
313}
314
bf0f6f24
IM
315/**************************************************************
316 * Scheduling class statistics methods:
317 */
318
b2be5e96
PZ
319#ifdef CONFIG_SCHED_DEBUG
320int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
323{
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
325
326 if (ret || !write)
327 return ret;
328
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
331
332 return 0;
333}
334#endif
647e7cac 335
a7be37ac
PZ
336/*
337 * delta *= w / rw
338 */
339static inline unsigned long
340calc_delta_weight(unsigned long delta, struct sched_entity *se)
341{
342 for_each_sched_entity(se) {
343 delta = calc_delta_mine(delta,
344 se->load.weight, &cfs_rq_of(se)->load);
345 }
346
347 return delta;
348}
349
350/*
351 * delta *= rw / w
352 */
353static inline unsigned long
354calc_delta_fair(unsigned long delta, struct sched_entity *se)
355{
356 for_each_sched_entity(se) {
357 delta = calc_delta_mine(delta,
358 cfs_rq_of(se)->load.weight, &se->load);
359 }
360
361 return delta;
362}
363
647e7cac
IM
364/*
365 * The idea is to set a period in which each task runs once.
366 *
367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
368 * this period because otherwise the slices get too small.
369 *
370 * p = (nr <= nl) ? l : l*nr/nl
371 */
4d78e7b6
PZ
372static u64 __sched_period(unsigned long nr_running)
373{
374 u64 period = sysctl_sched_latency;
b2be5e96 375 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
376
377 if (unlikely(nr_running > nr_latency)) {
4bf0b771 378 period = sysctl_sched_min_granularity;
4d78e7b6 379 period *= nr_running;
4d78e7b6
PZ
380 }
381
382 return period;
383}
384
647e7cac
IM
385/*
386 * We calculate the wall-time slice from the period by taking a part
387 * proportional to the weight.
388 *
389 * s = p*w/rw
390 */
6d0f0ebd 391static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 392{
a7be37ac 393 return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
bf0f6f24
IM
394}
395
647e7cac 396/*
ac884dec 397 * We calculate the vruntime slice of a to be inserted task
647e7cac 398 *
a7be37ac 399 * vs = s*rw/w = p
647e7cac 400 */
ac884dec 401static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 402{
ac884dec 403 unsigned long nr_running = cfs_rq->nr_running;
67e9fb2a 404
ac884dec
PZ
405 if (!se->on_rq)
406 nr_running++;
67e9fb2a 407
a7be37ac
PZ
408 return __sched_period(nr_running);
409}
410
411/*
412 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
413 * that it favours >=0 over <0.
414 *
415 * -20 |
416 * |
417 * 0 --------+-------
418 * .'
419 * 19 .'
420 *
421 */
422static unsigned long
423calc_delta_asym(unsigned long delta, struct sched_entity *se)
424{
425 struct load_weight lw = {
426 .weight = NICE_0_LOAD,
427 .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
428 };
5f6d858e 429
ac884dec 430 for_each_sched_entity(se) {
a7be37ac 431 struct load_weight *se_lw = &se->load;
ced8aa16 432 unsigned long rw = cfs_rq_of(se)->load.weight;
ac884dec 433
c9c294a6
PZ
434#ifdef CONFIG_FAIR_SCHED_GROUP
435 struct cfs_rq *cfs_rq = se->my_q;
436 struct task_group *tg = NULL
437
438 if (cfs_rq)
439 tg = cfs_rq->tg;
440
441 if (tg && tg->shares < NICE_0_LOAD) {
442 /*
443 * scale shares to what it would have been had
444 * tg->weight been NICE_0_LOAD:
445 *
446 * weight = 1024 * shares / tg->weight
447 */
448 lw.weight *= se->load.weight;
449 lw.weight /= tg->shares;
450
451 lw.inv_weight = 0;
452
453 se_lw = &lw;
ced8aa16 454 rw += lw.weight - se->load.weight;
c9c294a6
PZ
455 } else
456#endif
ac884dec 457
ced8aa16 458 if (se->load.weight < NICE_0_LOAD) {
a7be37ac 459 se_lw = &lw;
ced8aa16
PZ
460 rw += NICE_0_LOAD - se->load.weight;
461 }
ac884dec 462
ced8aa16 463 delta = calc_delta_mine(delta, rw, se_lw);
ac884dec
PZ
464 }
465
a7be37ac 466 return delta;
67e9fb2a
PZ
467}
468
bf0f6f24
IM
469/*
470 * Update the current task's runtime statistics. Skip current tasks that
471 * are not in our scheduling class.
472 */
473static inline void
8ebc91d9
IM
474__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
475 unsigned long delta_exec)
bf0f6f24 476{
bbdba7c0 477 unsigned long delta_exec_weighted;
bf0f6f24 478
8179ca23 479 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
480
481 curr->sum_exec_runtime += delta_exec;
7a62eabc 482 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 483 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 484 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
485}
486
b7cc0896 487static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 488{
429d43bc 489 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 490 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
491 unsigned long delta_exec;
492
493 if (unlikely(!curr))
494 return;
495
496 /*
497 * Get the amount of time the current task was running
498 * since the last time we changed load (this cannot
499 * overflow on 32 bits):
500 */
8ebc91d9 501 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 502
8ebc91d9
IM
503 __update_curr(cfs_rq, curr, delta_exec);
504 curr->exec_start = now;
d842de87
SV
505
506 if (entity_is_task(curr)) {
507 struct task_struct *curtask = task_of(curr);
508
509 cpuacct_charge(curtask, delta_exec);
f06febc9 510 account_group_exec_runtime(curtask, delta_exec);
d842de87 511 }
bf0f6f24
IM
512}
513
514static inline void
5870db5b 515update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 516{
d281918d 517 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
518}
519
bf0f6f24
IM
520/*
521 * Task is being enqueued - update stats:
522 */
d2417e5a 523static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 524{
bf0f6f24
IM
525 /*
526 * Are we enqueueing a waiting task? (for current tasks
527 * a dequeue/enqueue event is a NOP)
528 */
429d43bc 529 if (se != cfs_rq->curr)
5870db5b 530 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
531}
532
bf0f6f24 533static void
9ef0a961 534update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 535{
bbdba7c0
IM
536 schedstat_set(se->wait_max, max(se->wait_max,
537 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
538 schedstat_set(se->wait_count, se->wait_count + 1);
539 schedstat_set(se->wait_sum, se->wait_sum +
540 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 541 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
542}
543
544static inline void
19b6a2e3 545update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 546{
bf0f6f24
IM
547 /*
548 * Mark the end of the wait period if dequeueing a
549 * waiting task:
550 */
429d43bc 551 if (se != cfs_rq->curr)
9ef0a961 552 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
553}
554
555/*
556 * We are picking a new current task - update its stats:
557 */
558static inline void
79303e9e 559update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
560{
561 /*
562 * We are starting a new run period:
563 */
d281918d 564 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
565}
566
bf0f6f24
IM
567/**************************************************
568 * Scheduling class queueing methods:
569 */
570
c09595f6
PZ
571#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
572static void
573add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
574{
575 cfs_rq->task_weight += weight;
576}
577#else
578static inline void
579add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
580{
581}
582#endif
583
30cfdcfc
DA
584static void
585account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
586{
587 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
588 if (!parent_entity(se))
589 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
590 if (entity_is_task(se))
591 add_cfs_task_weight(cfs_rq, se->load.weight);
30cfdcfc
DA
592 cfs_rq->nr_running++;
593 se->on_rq = 1;
4a55bd5e 594 list_add(&se->group_node, &cfs_rq->tasks);
30cfdcfc
DA
595}
596
597static void
598account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
599{
600 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
601 if (!parent_entity(se))
602 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
603 if (entity_is_task(se))
604 add_cfs_task_weight(cfs_rq, -se->load.weight);
30cfdcfc
DA
605 cfs_rq->nr_running--;
606 se->on_rq = 0;
4a55bd5e 607 list_del_init(&se->group_node);
30cfdcfc
DA
608}
609
2396af69 610static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 611{
bf0f6f24
IM
612#ifdef CONFIG_SCHEDSTATS
613 if (se->sleep_start) {
d281918d 614 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 615 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
616
617 if ((s64)delta < 0)
618 delta = 0;
619
620 if (unlikely(delta > se->sleep_max))
621 se->sleep_max = delta;
622
623 se->sleep_start = 0;
624 se->sum_sleep_runtime += delta;
9745512c
AV
625
626 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
627 }
628 if (se->block_start) {
d281918d 629 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 630 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
631
632 if ((s64)delta < 0)
633 delta = 0;
634
635 if (unlikely(delta > se->block_max))
636 se->block_max = delta;
637
638 se->block_start = 0;
639 se->sum_sleep_runtime += delta;
30084fbd
IM
640
641 /*
642 * Blocking time is in units of nanosecs, so shift by 20 to
643 * get a milliseconds-range estimation of the amount of
644 * time that the task spent sleeping:
645 */
646 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 647
30084fbd
IM
648 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
649 delta >> 20);
650 }
9745512c 651 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
652 }
653#endif
654}
655
ddc97297
PZ
656static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
657{
658#ifdef CONFIG_SCHED_DEBUG
659 s64 d = se->vruntime - cfs_rq->min_vruntime;
660
661 if (d < 0)
662 d = -d;
663
664 if (d > 3*sysctl_sched_latency)
665 schedstat_inc(cfs_rq, nr_spread_over);
666#endif
667}
668
aeb73b04
PZ
669static void
670place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
671{
67e9fb2a 672 u64 vruntime;
aeb73b04 673
3fe69747
PZ
674 if (first_fair(cfs_rq)) {
675 vruntime = min_vruntime(cfs_rq->min_vruntime,
676 __pick_next_entity(cfs_rq)->vruntime);
677 } else
678 vruntime = cfs_rq->min_vruntime;
94dfb5e7 679
2cb8600e
PZ
680 /*
681 * The 'current' period is already promised to the current tasks,
682 * however the extra weight of the new task will slow them down a
683 * little, place the new task so that it fits in the slot that
684 * stays open at the end.
685 */
94dfb5e7 686 if (initial && sched_feat(START_DEBIT))
647e7cac 687 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 688
8465e792 689 if (!initial) {
2cb8600e 690 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
691 if (sched_feat(NEW_FAIR_SLEEPERS)) {
692 unsigned long thresh = sysctl_sched_latency;
693
694 /*
695 * convert the sleeper threshold into virtual time
696 */
697 if (sched_feat(NORMALIZED_SLEEPER))
698 thresh = calc_delta_fair(thresh, se);
699
700 vruntime -= thresh;
701 }
94359f05 702
2cb8600e
PZ
703 /* ensure we never gain time by being placed backwards. */
704 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
705 }
706
67e9fb2a 707 se->vruntime = vruntime;
aeb73b04
PZ
708}
709
bf0f6f24 710static void
83b699ed 711enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
712{
713 /*
a2a2d680 714 * Update run-time statistics of the 'current'.
bf0f6f24 715 */
b7cc0896 716 update_curr(cfs_rq);
a992241d 717 account_entity_enqueue(cfs_rq, se);
bf0f6f24 718
e9acbff6 719 if (wakeup) {
aeb73b04 720 place_entity(cfs_rq, se, 0);
2396af69 721 enqueue_sleeper(cfs_rq, se);
e9acbff6 722 }
bf0f6f24 723
d2417e5a 724 update_stats_enqueue(cfs_rq, se);
ddc97297 725 check_spread(cfs_rq, se);
83b699ed
SV
726 if (se != cfs_rq->curr)
727 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
728}
729
730static void
525c2716 731dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 732{
a2a2d680
DA
733 /*
734 * Update run-time statistics of the 'current'.
735 */
736 update_curr(cfs_rq);
737
19b6a2e3 738 update_stats_dequeue(cfs_rq, se);
db36cc7d 739 if (sleep) {
67e9fb2a 740#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
741 if (entity_is_task(se)) {
742 struct task_struct *tsk = task_of(se);
743
744 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 745 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 746 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 747 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 748 }
db36cc7d 749#endif
67e9fb2a
PZ
750 }
751
83b699ed 752 if (se != cfs_rq->curr)
30cfdcfc
DA
753 __dequeue_entity(cfs_rq, se);
754 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
755}
756
757/*
758 * Preempt the current task with a newly woken task if needed:
759 */
7c92e54f 760static void
2e09bf55 761check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 762{
11697830
PZ
763 unsigned long ideal_runtime, delta_exec;
764
6d0f0ebd 765 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 766 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 767 if (delta_exec > ideal_runtime)
bf0f6f24
IM
768 resched_task(rq_of(cfs_rq)->curr);
769}
770
83b699ed 771static void
8494f412 772set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 773{
83b699ed
SV
774 /* 'current' is not kept within the tree. */
775 if (se->on_rq) {
776 /*
777 * Any task has to be enqueued before it get to execute on
778 * a CPU. So account for the time it spent waiting on the
779 * runqueue.
780 */
781 update_stats_wait_end(cfs_rq, se);
782 __dequeue_entity(cfs_rq, se);
783 }
784
79303e9e 785 update_stats_curr_start(cfs_rq, se);
429d43bc 786 cfs_rq->curr = se;
eba1ed4b
IM
787#ifdef CONFIG_SCHEDSTATS
788 /*
789 * Track our maximum slice length, if the CPU's load is at
790 * least twice that of our own weight (i.e. dont track it
791 * when there are only lesser-weight tasks around):
792 */
495eca49 793 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
794 se->slice_max = max(se->slice_max,
795 se->sum_exec_runtime - se->prev_sum_exec_runtime);
796 }
797#endif
4a55b450 798 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
799}
800
aa2ac252
PZ
801static struct sched_entity *
802pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
803{
103638d9
PZ
804 struct rq *rq = rq_of(cfs_rq);
805 u64 pair_slice = rq->clock - cfs_rq->pair_start;
aa2ac252 806
103638d9
PZ
807 if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
808 cfs_rq->pair_start = rq->clock;
aa2ac252 809 return se;
103638d9 810 }
aa2ac252
PZ
811
812 return cfs_rq->next;
813}
814
9948f4b2 815static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 816{
08ec3df5 817 struct sched_entity *se = NULL;
bf0f6f24 818
08ec3df5
DA
819 if (first_fair(cfs_rq)) {
820 se = __pick_next_entity(cfs_rq);
aa2ac252 821 se = pick_next(cfs_rq, se);
08ec3df5
DA
822 set_next_entity(cfs_rq, se);
823 }
bf0f6f24
IM
824
825 return se;
826}
827
ab6cde26 828static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
829{
830 /*
831 * If still on the runqueue then deactivate_task()
832 * was not called and update_curr() has to be done:
833 */
834 if (prev->on_rq)
b7cc0896 835 update_curr(cfs_rq);
bf0f6f24 836
ddc97297 837 check_spread(cfs_rq, prev);
30cfdcfc 838 if (prev->on_rq) {
5870db5b 839 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
840 /* Put 'current' back into the tree. */
841 __enqueue_entity(cfs_rq, prev);
842 }
429d43bc 843 cfs_rq->curr = NULL;
bf0f6f24
IM
844}
845
8f4d37ec
PZ
846static void
847entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 848{
bf0f6f24 849 /*
30cfdcfc 850 * Update run-time statistics of the 'current'.
bf0f6f24 851 */
30cfdcfc 852 update_curr(cfs_rq);
bf0f6f24 853
8f4d37ec
PZ
854#ifdef CONFIG_SCHED_HRTICK
855 /*
856 * queued ticks are scheduled to match the slice, so don't bother
857 * validating it and just reschedule.
858 */
983ed7a6
HH
859 if (queued) {
860 resched_task(rq_of(cfs_rq)->curr);
861 return;
862 }
8f4d37ec
PZ
863 /*
864 * don't let the period tick interfere with the hrtick preemption
865 */
866 if (!sched_feat(DOUBLE_TICK) &&
867 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
868 return;
869#endif
870
ce6c1311 871 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 872 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
873}
874
875/**************************************************
876 * CFS operations on tasks:
877 */
878
8f4d37ec
PZ
879#ifdef CONFIG_SCHED_HRTICK
880static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
881{
8f4d37ec
PZ
882 struct sched_entity *se = &p->se;
883 struct cfs_rq *cfs_rq = cfs_rq_of(se);
884
885 WARN_ON(task_rq(p) != rq);
886
887 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
888 u64 slice = sched_slice(cfs_rq, se);
889 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
890 s64 delta = slice - ran;
891
892 if (delta < 0) {
893 if (rq->curr == p)
894 resched_task(p);
895 return;
896 }
897
898 /*
899 * Don't schedule slices shorter than 10000ns, that just
900 * doesn't make sense. Rely on vruntime for fairness.
901 */
31656519 902 if (rq->curr != p)
157124c1 903 delta = max_t(s64, 10000LL, delta);
8f4d37ec 904
31656519 905 hrtick_start(rq, delta);
8f4d37ec
PZ
906 }
907}
55e12e5e 908#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
909static inline void
910hrtick_start_fair(struct rq *rq, struct task_struct *p)
911{
912}
913#endif
914
bf0f6f24
IM
915/*
916 * The enqueue_task method is called before nr_running is
917 * increased. Here we update the fair scheduling stats and
918 * then put the task into the rbtree:
919 */
fd390f6a 920static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
921{
922 struct cfs_rq *cfs_rq;
62fb1851 923 struct sched_entity *se = &p->se;
bf0f6f24
IM
924
925 for_each_sched_entity(se) {
62fb1851 926 if (se->on_rq)
bf0f6f24
IM
927 break;
928 cfs_rq = cfs_rq_of(se);
83b699ed 929 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 930 wakeup = 1;
bf0f6f24 931 }
8f4d37ec
PZ
932
933 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
934}
935
936/*
937 * The dequeue_task method is called before nr_running is
938 * decreased. We remove the task from the rbtree and
939 * update the fair scheduling stats:
940 */
f02231e5 941static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
942{
943 struct cfs_rq *cfs_rq;
62fb1851 944 struct sched_entity *se = &p->se;
bf0f6f24
IM
945
946 for_each_sched_entity(se) {
947 cfs_rq = cfs_rq_of(se);
525c2716 948 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 949 /* Don't dequeue parent if it has other entities besides us */
62fb1851 950 if (cfs_rq->load.weight)
bf0f6f24 951 break;
b9fa3df3 952 sleep = 1;
bf0f6f24 953 }
8f4d37ec
PZ
954
955 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
956}
957
958/*
1799e35d
IM
959 * sched_yield() support is very simple - we dequeue and enqueue.
960 *
961 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 962 */
4530d7ab 963static void yield_task_fair(struct rq *rq)
bf0f6f24 964{
db292ca3
IM
965 struct task_struct *curr = rq->curr;
966 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
967 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
968
969 /*
1799e35d
IM
970 * Are we the only task in the tree?
971 */
972 if (unlikely(cfs_rq->nr_running == 1))
973 return;
974
db292ca3 975 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 976 update_rq_clock(rq);
1799e35d 977 /*
a2a2d680 978 * Update run-time statistics of the 'current'.
1799e35d 979 */
2b1e315d 980 update_curr(cfs_rq);
1799e35d
IM
981
982 return;
983 }
984 /*
985 * Find the rightmost entry in the rbtree:
bf0f6f24 986 */
2b1e315d 987 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
988 /*
989 * Already in the rightmost position?
990 */
79b3feff 991 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
992 return;
993
994 /*
995 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
996 * Upon rescheduling, sched_class::put_prev_task() will place
997 * 'current' within the tree based on its new key value.
1799e35d 998 */
30cfdcfc 999 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1000}
1001
e7693a36
GH
1002/*
1003 * wake_idle() will wake a task on an idle cpu if task->cpu is
1004 * not idle and an idle cpu is available. The span of cpus to
1005 * search starts with cpus closest then further out as needed,
1006 * so we always favor a closer, idle cpu.
e761b772
MK
1007 * Domains may include CPUs that are not usable for migration,
1008 * hence we need to mask them out (cpu_active_map)
e7693a36
GH
1009 *
1010 * Returns the CPU we should wake onto.
1011 */
1012#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1013static int wake_idle(int cpu, struct task_struct *p)
1014{
1015 cpumask_t tmp;
1016 struct sched_domain *sd;
1017 int i;
1018
1019 /*
1020 * If it is idle, then it is the best cpu to run this task.
1021 *
1022 * This cpu is also the best, if it has more than one task already.
1023 * Siblings must be also busy(in most cases) as they didn't already
1024 * pickup the extra load from this cpu and hence we need not check
1025 * sibling runqueue info. This will avoid the checks and cache miss
1026 * penalities associated with that.
1027 */
104f6454 1028 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1029 return cpu;
1030
1031 for_each_domain(cpu, sd) {
1d3504fc
HS
1032 if ((sd->flags & SD_WAKE_IDLE)
1033 || ((sd->flags & SD_WAKE_IDLE_FAR)
1034 && !task_hot(p, task_rq(p)->clock, sd))) {
e7693a36 1035 cpus_and(tmp, sd->span, p->cpus_allowed);
e761b772 1036 cpus_and(tmp, tmp, cpu_active_map);
363ab6f1 1037 for_each_cpu_mask_nr(i, tmp) {
e7693a36
GH
1038 if (idle_cpu(i)) {
1039 if (i != task_cpu(p)) {
1040 schedstat_inc(p,
1041 se.nr_wakeups_idle);
1042 }
1043 return i;
1044 }
1045 }
1046 } else {
1047 break;
1048 }
1049 }
1050 return cpu;
1051}
55e12e5e 1052#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
1053static inline int wake_idle(int cpu, struct task_struct *p)
1054{
1055 return cpu;
1056}
1057#endif
1058
1059#ifdef CONFIG_SMP
098fb9db 1060
4ae7d5ce
IM
1061static const struct sched_class fair_sched_class;
1062
bb3469ac 1063#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1064/*
1065 * effective_load() calculates the load change as seen from the root_task_group
1066 *
1067 * Adding load to a group doesn't make a group heavier, but can cause movement
1068 * of group shares between cpus. Assuming the shares were perfectly aligned one
1069 * can calculate the shift in shares.
1070 *
1071 * The problem is that perfectly aligning the shares is rather expensive, hence
1072 * we try to avoid doing that too often - see update_shares(), which ratelimits
1073 * this change.
1074 *
1075 * We compensate this by not only taking the current delta into account, but
1076 * also considering the delta between when the shares were last adjusted and
1077 * now.
1078 *
1079 * We still saw a performance dip, some tracing learned us that between
1080 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1081 * significantly. Therefore try to bias the error in direction of failing
1082 * the affine wakeup.
1083 *
1084 */
f1d239f7
PZ
1085static long effective_load(struct task_group *tg, int cpu,
1086 long wl, long wg)
bb3469ac 1087{
4be9daaa 1088 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1089 long more_w;
1090
1091 if (!tg->parent)
1092 return wl;
1093
f5bfb7d9
PZ
1094 /*
1095 * By not taking the decrease of shares on the other cpu into
1096 * account our error leans towards reducing the affine wakeups.
1097 */
1098 if (!wl && sched_feat(ASYM_EFF_LOAD))
1099 return wl;
1100
f1d239f7
PZ
1101 /*
1102 * Instead of using this increment, also add the difference
1103 * between when the shares were last updated and now.
1104 */
1105 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1106 wl += more_w;
1107 wg += more_w;
bb3469ac 1108
4be9daaa
PZ
1109 for_each_sched_entity(se) {
1110#define D(n) (likely(n) ? (n) : 1)
1111
cb5ef42a 1112 long S, rw, s, a, b;
4be9daaa
PZ
1113
1114 S = se->my_q->tg->shares;
1115 s = se->my_q->shares;
f1d239f7 1116 rw = se->my_q->rq_weight;
bb3469ac 1117
cb5ef42a
PZ
1118 a = S*(rw + wl);
1119 b = S*rw + s*wg;
4be9daaa 1120
cb5ef42a 1121 wl = s*(a-b)/D(b);
83378269
PZ
1122 /*
1123 * Assume the group is already running and will
1124 * thus already be accounted for in the weight.
1125 *
1126 * That is, moving shares between CPUs, does not
1127 * alter the group weight.
1128 */
4be9daaa
PZ
1129 wg = 0;
1130#undef D
1131 }
bb3469ac 1132
4be9daaa 1133 return wl;
bb3469ac 1134}
4be9daaa 1135
bb3469ac 1136#else
4be9daaa 1137
83378269
PZ
1138static inline unsigned long effective_load(struct task_group *tg, int cpu,
1139 unsigned long wl, unsigned long wg)
4be9daaa 1140{
83378269 1141 return wl;
bb3469ac 1142}
4be9daaa 1143
bb3469ac
PZ
1144#endif
1145
098fb9db 1146static int
4ae7d5ce
IM
1147wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1148 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1149 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1150 unsigned int imbalance)
1151{
4ae7d5ce 1152 struct task_struct *curr = this_rq->curr;
83378269 1153 struct task_group *tg;
098fb9db
IM
1154 unsigned long tl = this_load;
1155 unsigned long tl_per_task;
83378269 1156 unsigned long weight;
b3137bc8 1157 int balanced;
098fb9db 1158
b3137bc8 1159 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1160 return 0;
1161
b3137bc8
MG
1162 /*
1163 * If sync wakeup then subtract the (maximum possible)
1164 * effect of the currently running task from the load
1165 * of the current CPU:
1166 */
83378269
PZ
1167 if (sync) {
1168 tg = task_group(current);
1169 weight = current->se.load.weight;
1170
1171 tl += effective_load(tg, this_cpu, -weight, -weight);
1172 load += effective_load(tg, prev_cpu, 0, -weight);
1173 }
b3137bc8 1174
83378269
PZ
1175 tg = task_group(p);
1176 weight = p->se.load.weight;
b3137bc8 1177
83378269
PZ
1178 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1179 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1180
098fb9db 1181 /*
4ae7d5ce
IM
1182 * If the currently running task will sleep within
1183 * a reasonable amount of time then attract this newly
1184 * woken task:
098fb9db 1185 */
2087a1ad 1186 if (sync && balanced) {
4ae7d5ce 1187 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
2087a1ad 1188 p->se.avg_overlap < sysctl_sched_migration_cost)
4ae7d5ce
IM
1189 return 1;
1190 }
098fb9db
IM
1191
1192 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1193 tl_per_task = cpu_avg_load_per_task(this_cpu);
1194
ac192d39 1195 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
b3137bc8 1196 balanced) {
098fb9db
IM
1197 /*
1198 * This domain has SD_WAKE_AFFINE and
1199 * p is cache cold in this domain, and
1200 * there is no bad imbalance.
1201 */
1202 schedstat_inc(this_sd, ttwu_move_affine);
1203 schedstat_inc(p, se.nr_wakeups_affine);
1204
1205 return 1;
1206 }
1207 return 0;
1208}
1209
e7693a36
GH
1210static int select_task_rq_fair(struct task_struct *p, int sync)
1211{
e7693a36 1212 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1213 int prev_cpu, this_cpu, new_cpu;
098fb9db 1214 unsigned long load, this_load;
4ae7d5ce 1215 struct rq *rq, *this_rq;
098fb9db 1216 unsigned int imbalance;
098fb9db 1217 int idx;
e7693a36 1218
ac192d39
IM
1219 prev_cpu = task_cpu(p);
1220 rq = task_rq(p);
1221 this_cpu = smp_processor_id();
4ae7d5ce 1222 this_rq = cpu_rq(this_cpu);
ac192d39 1223 new_cpu = prev_cpu;
e7693a36 1224
ac192d39
IM
1225 /*
1226 * 'this_sd' is the first domain that both
1227 * this_cpu and prev_cpu are present in:
1228 */
e7693a36 1229 for_each_domain(this_cpu, sd) {
ac192d39 1230 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1231 this_sd = sd;
1232 break;
1233 }
1234 }
1235
1236 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
f4827386 1237 goto out;
e7693a36
GH
1238
1239 /*
1240 * Check for affine wakeup and passive balancing possibilities.
1241 */
098fb9db 1242 if (!this_sd)
f4827386 1243 goto out;
e7693a36 1244
098fb9db
IM
1245 idx = this_sd->wake_idx;
1246
1247 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1248
ac192d39 1249 load = source_load(prev_cpu, idx);
098fb9db
IM
1250 this_load = target_load(this_cpu, idx);
1251
4ae7d5ce
IM
1252 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1253 load, this_load, imbalance))
1254 return this_cpu;
1255
1256 if (prev_cpu == this_cpu)
f4827386 1257 goto out;
098fb9db
IM
1258
1259 /*
1260 * Start passive balancing when half the imbalance_pct
1261 * limit is reached.
1262 */
1263 if (this_sd->flags & SD_WAKE_BALANCE) {
1264 if (imbalance*this_load <= 100*load) {
1265 schedstat_inc(this_sd, ttwu_move_balance);
1266 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1267 return this_cpu;
e7693a36
GH
1268 }
1269 }
1270
f4827386 1271out:
e7693a36
GH
1272 return wake_idle(new_cpu, p);
1273}
1274#endif /* CONFIG_SMP */
1275
0bbd3336
PZ
1276static unsigned long wakeup_gran(struct sched_entity *se)
1277{
1278 unsigned long gran = sysctl_sched_wakeup_granularity;
1279
1280 /*
a7be37ac
PZ
1281 * More easily preempt - nice tasks, while not making it harder for
1282 * + nice tasks.
0bbd3336 1283 */
c9c294a6
PZ
1284 if (sched_feat(ASYM_GRAN))
1285 gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
1286 else
1287 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
0bbd3336
PZ
1288
1289 return gran;
1290}
1291
1292/*
1293 * Should 'se' preempt 'curr'.
1294 *
1295 * |s1
1296 * |s2
1297 * |s3
1298 * g
1299 * |<--->|c
1300 *
1301 * w(c, s1) = -1
1302 * w(c, s2) = 0
1303 * w(c, s3) = 1
1304 *
1305 */
1306static int
1307wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1308{
1309 s64 gran, vdiff = curr->vruntime - se->vruntime;
1310
1311 if (vdiff < 0)
1312 return -1;
1313
1314 gran = wakeup_gran(curr);
1315 if (vdiff > gran)
1316 return 1;
1317
1318 return 0;
1319}
e7693a36 1320
354d60c2
DG
1321/* return depth at which a sched entity is present in the hierarchy */
1322static inline int depth_se(struct sched_entity *se)
1323{
1324 int depth = 0;
1325
1326 for_each_sched_entity(se)
1327 depth++;
1328
1329 return depth;
1330}
1331
bf0f6f24
IM
1332/*
1333 * Preempt the current task with a newly woken task if needed:
1334 */
2e09bf55 1335static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1336{
1337 struct task_struct *curr = rq->curr;
fad095a7 1338 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1339 struct sched_entity *se = &curr->se, *pse = &p->se;
354d60c2 1340 int se_depth, pse_depth;
bf0f6f24
IM
1341
1342 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1343 update_rq_clock(rq);
b7cc0896 1344 update_curr(cfs_rq);
bf0f6f24
IM
1345 resched_task(curr);
1346 return;
1347 }
aa2ac252 1348
4ae7d5ce
IM
1349 if (unlikely(se == pse))
1350 return;
1351
aa2ac252
PZ
1352 cfs_rq_of(pse)->next = pse;
1353
91c234b4
IM
1354 /*
1355 * Batch tasks do not preempt (their preemption is driven by
1356 * the tick):
1357 */
1358 if (unlikely(p->policy == SCHED_BATCH))
1359 return;
bf0f6f24 1360
77d9cc44
IM
1361 if (!sched_feat(WAKEUP_PREEMPT))
1362 return;
8651a86c 1363
354d60c2
DG
1364 /*
1365 * preemption test can be made between sibling entities who are in the
1366 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1367 * both tasks until we find their ancestors who are siblings of common
1368 * parent.
1369 */
1370
1371 /* First walk up until both entities are at same depth */
1372 se_depth = depth_se(se);
1373 pse_depth = depth_se(pse);
1374
1375 while (se_depth > pse_depth) {
1376 se_depth--;
1377 se = parent_entity(se);
1378 }
1379
1380 while (pse_depth > se_depth) {
1381 pse_depth--;
1382 pse = parent_entity(pse);
1383 }
1384
77d9cc44
IM
1385 while (!is_same_group(se, pse)) {
1386 se = parent_entity(se);
1387 pse = parent_entity(pse);
ce6c1311 1388 }
77d9cc44 1389
0bbd3336 1390 if (wakeup_preempt_entity(se, pse) == 1)
77d9cc44 1391 resched_task(curr);
bf0f6f24
IM
1392}
1393
fb8d4724 1394static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1395{
8f4d37ec 1396 struct task_struct *p;
bf0f6f24
IM
1397 struct cfs_rq *cfs_rq = &rq->cfs;
1398 struct sched_entity *se;
1399
1400 if (unlikely(!cfs_rq->nr_running))
1401 return NULL;
1402
1403 do {
9948f4b2 1404 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1405 cfs_rq = group_cfs_rq(se);
1406 } while (cfs_rq);
1407
8f4d37ec
PZ
1408 p = task_of(se);
1409 hrtick_start_fair(rq, p);
1410
1411 return p;
bf0f6f24
IM
1412}
1413
1414/*
1415 * Account for a descheduled task:
1416 */
31ee529c 1417static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1418{
1419 struct sched_entity *se = &prev->se;
1420 struct cfs_rq *cfs_rq;
1421
1422 for_each_sched_entity(se) {
1423 cfs_rq = cfs_rq_of(se);
ab6cde26 1424 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1425 }
1426}
1427
681f3e68 1428#ifdef CONFIG_SMP
bf0f6f24
IM
1429/**************************************************
1430 * Fair scheduling class load-balancing methods:
1431 */
1432
1433/*
1434 * Load-balancing iterator. Note: while the runqueue stays locked
1435 * during the whole iteration, the current task might be
1436 * dequeued so the iterator has to be dequeue-safe. Here we
1437 * achieve that by always pre-iterating before returning
1438 * the current task:
1439 */
a9957449 1440static struct task_struct *
4a55bd5e 1441__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1442{
354d60c2
DG
1443 struct task_struct *p = NULL;
1444 struct sched_entity *se;
bf0f6f24 1445
77ae6513
MG
1446 if (next == &cfs_rq->tasks)
1447 return NULL;
1448
1449 /* Skip over entities that are not tasks */
1450 do {
4a55bd5e
PZ
1451 se = list_entry(next, struct sched_entity, group_node);
1452 next = next->next;
77ae6513 1453 } while (next != &cfs_rq->tasks && !entity_is_task(se));
354d60c2 1454
77ae6513
MG
1455 if (next == &cfs_rq->tasks)
1456 return NULL;
4a55bd5e
PZ
1457
1458 cfs_rq->balance_iterator = next;
77ae6513
MG
1459
1460 if (entity_is_task(se))
1461 p = task_of(se);
1462
bf0f6f24
IM
1463 return p;
1464}
1465
1466static struct task_struct *load_balance_start_fair(void *arg)
1467{
1468 struct cfs_rq *cfs_rq = arg;
1469
4a55bd5e 1470 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1471}
1472
1473static struct task_struct *load_balance_next_fair(void *arg)
1474{
1475 struct cfs_rq *cfs_rq = arg;
1476
4a55bd5e 1477 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1478}
1479
c09595f6
PZ
1480static unsigned long
1481__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1482 unsigned long max_load_move, struct sched_domain *sd,
1483 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1484 struct cfs_rq *cfs_rq)
62fb1851 1485{
c09595f6 1486 struct rq_iterator cfs_rq_iterator;
62fb1851 1487
c09595f6
PZ
1488 cfs_rq_iterator.start = load_balance_start_fair;
1489 cfs_rq_iterator.next = load_balance_next_fair;
1490 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1491
c09595f6
PZ
1492 return balance_tasks(this_rq, this_cpu, busiest,
1493 max_load_move, sd, idle, all_pinned,
1494 this_best_prio, &cfs_rq_iterator);
62fb1851 1495}
62fb1851 1496
c09595f6 1497#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1498static unsigned long
bf0f6f24 1499load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1500 unsigned long max_load_move,
a4ac01c3
PW
1501 struct sched_domain *sd, enum cpu_idle_type idle,
1502 int *all_pinned, int *this_best_prio)
bf0f6f24 1503{
bf0f6f24 1504 long rem_load_move = max_load_move;
c09595f6
PZ
1505 int busiest_cpu = cpu_of(busiest);
1506 struct task_group *tg;
18d95a28 1507
c09595f6 1508 rcu_read_lock();
c8cba857 1509 update_h_load(busiest_cpu);
18d95a28 1510
c09595f6 1511 list_for_each_entry(tg, &task_groups, list) {
c8cba857 1512 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1513 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1514 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1515 u64 rem_load, moved_load;
18d95a28 1516
c09595f6
PZ
1517 /*
1518 * empty group
1519 */
c8cba857 1520 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1521 continue;
1522
243e0e7b
SV
1523 rem_load = (u64)rem_load_move * busiest_weight;
1524 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1525
c09595f6 1526 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1527 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1528 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1529
c09595f6 1530 if (!moved_load)
bf0f6f24
IM
1531 continue;
1532
42a3ac7d 1533 moved_load *= busiest_h_load;
243e0e7b 1534 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1535
c09595f6
PZ
1536 rem_load_move -= moved_load;
1537 if (rem_load_move < 0)
bf0f6f24
IM
1538 break;
1539 }
c09595f6 1540 rcu_read_unlock();
bf0f6f24 1541
43010659 1542 return max_load_move - rem_load_move;
bf0f6f24 1543}
c09595f6
PZ
1544#else
1545static unsigned long
1546load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1547 unsigned long max_load_move,
1548 struct sched_domain *sd, enum cpu_idle_type idle,
1549 int *all_pinned, int *this_best_prio)
1550{
1551 return __load_balance_fair(this_rq, this_cpu, busiest,
1552 max_load_move, sd, idle, all_pinned,
1553 this_best_prio, &busiest->cfs);
1554}
1555#endif
bf0f6f24 1556
e1d1484f
PW
1557static int
1558move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1559 struct sched_domain *sd, enum cpu_idle_type idle)
1560{
1561 struct cfs_rq *busy_cfs_rq;
1562 struct rq_iterator cfs_rq_iterator;
1563
1564 cfs_rq_iterator.start = load_balance_start_fair;
1565 cfs_rq_iterator.next = load_balance_next_fair;
1566
1567 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1568 /*
1569 * pass busy_cfs_rq argument into
1570 * load_balance_[start|next]_fair iterators
1571 */
1572 cfs_rq_iterator.arg = busy_cfs_rq;
1573 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1574 &cfs_rq_iterator))
1575 return 1;
1576 }
1577
1578 return 0;
1579}
55e12e5e 1580#endif /* CONFIG_SMP */
e1d1484f 1581
bf0f6f24
IM
1582/*
1583 * scheduler tick hitting a task of our scheduling class:
1584 */
8f4d37ec 1585static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1586{
1587 struct cfs_rq *cfs_rq;
1588 struct sched_entity *se = &curr->se;
1589
1590 for_each_sched_entity(se) {
1591 cfs_rq = cfs_rq_of(se);
8f4d37ec 1592 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1593 }
1594}
1595
8eb172d9 1596#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1597
bf0f6f24
IM
1598/*
1599 * Share the fairness runtime between parent and child, thus the
1600 * total amount of pressure for CPU stays equal - new tasks
1601 * get a chance to run but frequent forkers are not allowed to
1602 * monopolize the CPU. Note: the parent runqueue is locked,
1603 * the child is not running yet.
1604 */
ee0827d8 1605static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1606{
1607 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1608 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1609 int this_cpu = smp_processor_id();
bf0f6f24
IM
1610
1611 sched_info_queued(p);
1612
7109c442 1613 update_curr(cfs_rq);
aeb73b04 1614 place_entity(cfs_rq, se, 1);
4d78e7b6 1615
3c90e6e9 1616 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1617 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1618 curr && curr->vruntime < se->vruntime) {
87fefa38 1619 /*
edcb60a3
IM
1620 * Upon rescheduling, sched_class::put_prev_task() will place
1621 * 'current' within the tree based on its new key value.
1622 */
4d78e7b6 1623 swap(curr->vruntime, se->vruntime);
4d78e7b6 1624 }
bf0f6f24 1625
b9dca1e0 1626 enqueue_task_fair(rq, p, 0);
bb61c210 1627 resched_task(rq->curr);
bf0f6f24
IM
1628}
1629
cb469845
SR
1630/*
1631 * Priority of the task has changed. Check to see if we preempt
1632 * the current task.
1633 */
1634static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1635 int oldprio, int running)
1636{
1637 /*
1638 * Reschedule if we are currently running on this runqueue and
1639 * our priority decreased, or if we are not currently running on
1640 * this runqueue and our priority is higher than the current's
1641 */
1642 if (running) {
1643 if (p->prio > oldprio)
1644 resched_task(rq->curr);
1645 } else
1646 check_preempt_curr(rq, p);
1647}
1648
1649/*
1650 * We switched to the sched_fair class.
1651 */
1652static void switched_to_fair(struct rq *rq, struct task_struct *p,
1653 int running)
1654{
1655 /*
1656 * We were most likely switched from sched_rt, so
1657 * kick off the schedule if running, otherwise just see
1658 * if we can still preempt the current task.
1659 */
1660 if (running)
1661 resched_task(rq->curr);
1662 else
1663 check_preempt_curr(rq, p);
1664}
1665
83b699ed
SV
1666/* Account for a task changing its policy or group.
1667 *
1668 * This routine is mostly called to set cfs_rq->curr field when a task
1669 * migrates between groups/classes.
1670 */
1671static void set_curr_task_fair(struct rq *rq)
1672{
1673 struct sched_entity *se = &rq->curr->se;
1674
1675 for_each_sched_entity(se)
1676 set_next_entity(cfs_rq_of(se), se);
1677}
1678
810b3817
PZ
1679#ifdef CONFIG_FAIR_GROUP_SCHED
1680static void moved_group_fair(struct task_struct *p)
1681{
1682 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1683
1684 update_curr(cfs_rq);
1685 place_entity(cfs_rq, &p->se, 1);
1686}
1687#endif
1688
bf0f6f24
IM
1689/*
1690 * All the scheduling class methods:
1691 */
5522d5d5
IM
1692static const struct sched_class fair_sched_class = {
1693 .next = &idle_sched_class,
bf0f6f24
IM
1694 .enqueue_task = enqueue_task_fair,
1695 .dequeue_task = dequeue_task_fair,
1696 .yield_task = yield_task_fair,
e7693a36
GH
1697#ifdef CONFIG_SMP
1698 .select_task_rq = select_task_rq_fair,
1699#endif /* CONFIG_SMP */
bf0f6f24 1700
2e09bf55 1701 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1702
1703 .pick_next_task = pick_next_task_fair,
1704 .put_prev_task = put_prev_task_fair,
1705
681f3e68 1706#ifdef CONFIG_SMP
bf0f6f24 1707 .load_balance = load_balance_fair,
e1d1484f 1708 .move_one_task = move_one_task_fair,
681f3e68 1709#endif
bf0f6f24 1710
83b699ed 1711 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1712 .task_tick = task_tick_fair,
1713 .task_new = task_new_fair,
cb469845
SR
1714
1715 .prio_changed = prio_changed_fair,
1716 .switched_to = switched_to_fair,
810b3817
PZ
1717
1718#ifdef CONFIG_FAIR_GROUP_SCHED
1719 .moved_group = moved_group_fair,
1720#endif
bf0f6f24
IM
1721};
1722
1723#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1724static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1725{
bf0f6f24
IM
1726 struct cfs_rq *cfs_rq;
1727
5973e5b9 1728 rcu_read_lock();
c3b64f1e 1729 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1730 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1731 rcu_read_unlock();
bf0f6f24
IM
1732}
1733#endif