]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched_rt.c
Merge branch 'next/board' of git://git.linaro.org/people/arnd/arm-soc
[mirror_ubuntu-zesty-kernel.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
8f48894f
PZ
6#ifdef CONFIG_RT_GROUP_SCHED
7
8#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
398a153b
GH
10static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11{
8f48894f
PZ
12#ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14#endif
398a153b
GH
15 return container_of(rt_se, struct task_struct, rt);
16}
17
398a153b
GH
18static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19{
20 return rt_rq->rq;
21}
22
23static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24{
25 return rt_se->rt_rq;
26}
27
28#else /* CONFIG_RT_GROUP_SCHED */
29
a1ba4d8b
PZ
30#define rt_entity_is_task(rt_se) (1)
31
8f48894f
PZ
32static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33{
34 return container_of(rt_se, struct task_struct, rt);
35}
36
398a153b
GH
37static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38{
39 return container_of(rt_rq, struct rq, rt);
40}
41
42static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43{
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
46
47 return &rq->rt;
48}
49
50#endif /* CONFIG_RT_GROUP_SCHED */
51
4fd29176 52#ifdef CONFIG_SMP
84de4274 53
637f5085 54static inline int rt_overloaded(struct rq *rq)
4fd29176 55{
637f5085 56 return atomic_read(&rq->rd->rto_count);
4fd29176 57}
84de4274 58
4fd29176
SR
59static inline void rt_set_overload(struct rq *rq)
60{
1f11eb6a
GH
61 if (!rq->online)
62 return;
63
c6c4927b 64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
65 /*
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
71 */
72 wmb();
637f5085 73 atomic_inc(&rq->rd->rto_count);
4fd29176 74}
84de4274 75
4fd29176
SR
76static inline void rt_clear_overload(struct rq *rq)
77{
1f11eb6a
GH
78 if (!rq->online)
79 return;
80
4fd29176 81 /* the order here really doesn't matter */
637f5085 82 atomic_dec(&rq->rd->rto_count);
c6c4927b 83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 84}
73fe6aae 85
398a153b 86static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 87{
a1ba4d8b 88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
cdc8eb98 92 }
398a153b
GH
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
637f5085 96 }
73fe6aae 97}
4fd29176 98
398a153b
GH
99static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100{
a1ba4d8b
PZ
101 if (!rt_entity_is_task(rt_se))
102 return;
103
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106 rt_rq->rt_nr_total++;
398a153b
GH
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
109
110 update_rt_migration(rt_rq);
111}
112
113static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114{
a1ba4d8b
PZ
115 if (!rt_entity_is_task(rt_se))
116 return;
117
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120 rt_rq->rt_nr_total--;
398a153b
GH
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
123
124 update_rt_migration(rt_rq);
125}
126
5181f4a4
SR
127static inline int has_pushable_tasks(struct rq *rq)
128{
129 return !plist_head_empty(&rq->rt.pushable_tasks);
130}
131
917b627d
GH
132static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
133{
134 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
135 plist_node_init(&p->pushable_tasks, p->prio);
136 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
137
138 /* Update the highest prio pushable task */
139 if (p->prio < rq->rt.highest_prio.next)
140 rq->rt.highest_prio.next = p->prio;
917b627d
GH
141}
142
143static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
144{
145 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 146
5181f4a4
SR
147 /* Update the new highest prio pushable task */
148 if (has_pushable_tasks(rq)) {
149 p = plist_first_entry(&rq->rt.pushable_tasks,
150 struct task_struct, pushable_tasks);
151 rq->rt.highest_prio.next = p->prio;
152 } else
153 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
154}
155
917b627d
GH
156#else
157
ceacc2c1 158static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 159{
6f505b16
PZ
160}
161
ceacc2c1
PZ
162static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
163{
164}
165
b07430ac 166static inline
ceacc2c1
PZ
167void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
168{
169}
170
398a153b 171static inline
ceacc2c1
PZ
172void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
173{
174}
917b627d 175
4fd29176
SR
176#endif /* CONFIG_SMP */
177
6f505b16
PZ
178static inline int on_rt_rq(struct sched_rt_entity *rt_se)
179{
180 return !list_empty(&rt_se->run_list);
181}
182
052f1dc7 183#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 184
9f0c1e56 185static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
186{
187 if (!rt_rq->tg)
9f0c1e56 188 return RUNTIME_INF;
6f505b16 189
ac086bc2
PZ
190 return rt_rq->rt_runtime;
191}
192
193static inline u64 sched_rt_period(struct rt_rq *rt_rq)
194{
195 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
196}
197
ec514c48
CX
198typedef struct task_group *rt_rq_iter_t;
199
1c09ab0d
YZ
200static inline struct task_group *next_task_group(struct task_group *tg)
201{
202 do {
203 tg = list_entry_rcu(tg->list.next,
204 typeof(struct task_group), list);
205 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
206
207 if (&tg->list == &task_groups)
208 tg = NULL;
209
210 return tg;
211}
212
213#define for_each_rt_rq(rt_rq, iter, rq) \
214 for (iter = container_of(&task_groups, typeof(*iter), list); \
215 (iter = next_task_group(iter)) && \
216 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 217
3d4b47b4
PZ
218static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
219{
220 list_add_rcu(&rt_rq->leaf_rt_rq_list,
221 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
222}
223
224static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
225{
226 list_del_rcu(&rt_rq->leaf_rt_rq_list);
227}
228
6f505b16 229#define for_each_leaf_rt_rq(rt_rq, rq) \
80f40ee4 230 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
6f505b16 231
6f505b16
PZ
232#define for_each_sched_rt_entity(rt_se) \
233 for (; rt_se; rt_se = rt_se->parent)
234
235static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
236{
237 return rt_se->my_q;
238}
239
37dad3fc 240static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
241static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
242
9f0c1e56 243static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 244{
f6121f4f 245 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
246 struct sched_rt_entity *rt_se;
247
0c3b9168
BS
248 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
249
250 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 251
f6121f4f
DF
252 if (rt_rq->rt_nr_running) {
253 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 254 enqueue_rt_entity(rt_se, false);
e864c499 255 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 256 resched_task(curr);
6f505b16
PZ
257 }
258}
259
9f0c1e56 260static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 261{
74b7eb58 262 struct sched_rt_entity *rt_se;
0c3b9168 263 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 264
0c3b9168 265 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
266
267 if (rt_se && on_rt_rq(rt_se))
268 dequeue_rt_entity(rt_se);
269}
270
23b0fdfc
PZ
271static inline int rt_rq_throttled(struct rt_rq *rt_rq)
272{
273 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
274}
275
276static int rt_se_boosted(struct sched_rt_entity *rt_se)
277{
278 struct rt_rq *rt_rq = group_rt_rq(rt_se);
279 struct task_struct *p;
280
281 if (rt_rq)
282 return !!rt_rq->rt_nr_boosted;
283
284 p = rt_task_of(rt_se);
285 return p->prio != p->normal_prio;
286}
287
d0b27fa7 288#ifdef CONFIG_SMP
c6c4927b 289static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
290{
291 return cpu_rq(smp_processor_id())->rd->span;
292}
6f505b16 293#else
c6c4927b 294static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 295{
c6c4927b 296 return cpu_online_mask;
d0b27fa7
PZ
297}
298#endif
6f505b16 299
d0b27fa7
PZ
300static inline
301struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 302{
d0b27fa7
PZ
303 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
304}
9f0c1e56 305
ac086bc2
PZ
306static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
307{
308 return &rt_rq->tg->rt_bandwidth;
309}
310
55e12e5e 311#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
312
313static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
314{
ac086bc2
PZ
315 return rt_rq->rt_runtime;
316}
317
318static inline u64 sched_rt_period(struct rt_rq *rt_rq)
319{
320 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
321}
322
ec514c48
CX
323typedef struct rt_rq *rt_rq_iter_t;
324
325#define for_each_rt_rq(rt_rq, iter, rq) \
326 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
327
3d4b47b4
PZ
328static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
329{
330}
331
332static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
333{
334}
335
6f505b16
PZ
336#define for_each_leaf_rt_rq(rt_rq, rq) \
337 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
338
6f505b16
PZ
339#define for_each_sched_rt_entity(rt_se) \
340 for (; rt_se; rt_se = NULL)
341
342static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
343{
344 return NULL;
345}
346
9f0c1e56 347static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 348{
f3ade837
JB
349 if (rt_rq->rt_nr_running)
350 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
351}
352
9f0c1e56 353static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
354{
355}
356
23b0fdfc
PZ
357static inline int rt_rq_throttled(struct rt_rq *rt_rq)
358{
359 return rt_rq->rt_throttled;
360}
d0b27fa7 361
c6c4927b 362static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 363{
c6c4927b 364 return cpu_online_mask;
d0b27fa7
PZ
365}
366
367static inline
368struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
369{
370 return &cpu_rq(cpu)->rt;
371}
372
ac086bc2
PZ
373static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
374{
375 return &def_rt_bandwidth;
376}
377
55e12e5e 378#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 379
ac086bc2 380#ifdef CONFIG_SMP
78333cdd
PZ
381/*
382 * We ran out of runtime, see if we can borrow some from our neighbours.
383 */
b79f3833 384static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
385{
386 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
387 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
388 int i, weight, more = 0;
389 u64 rt_period;
390
c6c4927b 391 weight = cpumask_weight(rd->span);
ac086bc2 392
0986b11b 393 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 394 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 395 for_each_cpu(i, rd->span) {
ac086bc2
PZ
396 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
397 s64 diff;
398
399 if (iter == rt_rq)
400 continue;
401
0986b11b 402 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
403 /*
404 * Either all rqs have inf runtime and there's nothing to steal
405 * or __disable_runtime() below sets a specific rq to inf to
406 * indicate its been disabled and disalow stealing.
407 */
7def2be1
PZ
408 if (iter->rt_runtime == RUNTIME_INF)
409 goto next;
410
78333cdd
PZ
411 /*
412 * From runqueues with spare time, take 1/n part of their
413 * spare time, but no more than our period.
414 */
ac086bc2
PZ
415 diff = iter->rt_runtime - iter->rt_time;
416 if (diff > 0) {
58838cf3 417 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
418 if (rt_rq->rt_runtime + diff > rt_period)
419 diff = rt_period - rt_rq->rt_runtime;
420 iter->rt_runtime -= diff;
421 rt_rq->rt_runtime += diff;
422 more = 1;
423 if (rt_rq->rt_runtime == rt_period) {
0986b11b 424 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
425 break;
426 }
427 }
7def2be1 428next:
0986b11b 429 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 430 }
0986b11b 431 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
432
433 return more;
434}
7def2be1 435
78333cdd
PZ
436/*
437 * Ensure this RQ takes back all the runtime it lend to its neighbours.
438 */
7def2be1
PZ
439static void __disable_runtime(struct rq *rq)
440{
441 struct root_domain *rd = rq->rd;
ec514c48 442 rt_rq_iter_t iter;
7def2be1
PZ
443 struct rt_rq *rt_rq;
444
445 if (unlikely(!scheduler_running))
446 return;
447
ec514c48 448 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
449 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
450 s64 want;
451 int i;
452
0986b11b
TG
453 raw_spin_lock(&rt_b->rt_runtime_lock);
454 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
455 /*
456 * Either we're all inf and nobody needs to borrow, or we're
457 * already disabled and thus have nothing to do, or we have
458 * exactly the right amount of runtime to take out.
459 */
7def2be1
PZ
460 if (rt_rq->rt_runtime == RUNTIME_INF ||
461 rt_rq->rt_runtime == rt_b->rt_runtime)
462 goto balanced;
0986b11b 463 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 464
78333cdd
PZ
465 /*
466 * Calculate the difference between what we started out with
467 * and what we current have, that's the amount of runtime
468 * we lend and now have to reclaim.
469 */
7def2be1
PZ
470 want = rt_b->rt_runtime - rt_rq->rt_runtime;
471
78333cdd
PZ
472 /*
473 * Greedy reclaim, take back as much as we can.
474 */
c6c4927b 475 for_each_cpu(i, rd->span) {
7def2be1
PZ
476 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
477 s64 diff;
478
78333cdd
PZ
479 /*
480 * Can't reclaim from ourselves or disabled runqueues.
481 */
f1679d08 482 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
483 continue;
484
0986b11b 485 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
486 if (want > 0) {
487 diff = min_t(s64, iter->rt_runtime, want);
488 iter->rt_runtime -= diff;
489 want -= diff;
490 } else {
491 iter->rt_runtime -= want;
492 want -= want;
493 }
0986b11b 494 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
495
496 if (!want)
497 break;
498 }
499
0986b11b 500 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
501 /*
502 * We cannot be left wanting - that would mean some runtime
503 * leaked out of the system.
504 */
7def2be1
PZ
505 BUG_ON(want);
506balanced:
78333cdd
PZ
507 /*
508 * Disable all the borrow logic by pretending we have inf
509 * runtime - in which case borrowing doesn't make sense.
510 */
7def2be1 511 rt_rq->rt_runtime = RUNTIME_INF;
0986b11b
TG
512 raw_spin_unlock(&rt_rq->rt_runtime_lock);
513 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
514 }
515}
516
517static void disable_runtime(struct rq *rq)
518{
519 unsigned long flags;
520
05fa785c 521 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 522 __disable_runtime(rq);
05fa785c 523 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
524}
525
526static void __enable_runtime(struct rq *rq)
527{
ec514c48 528 rt_rq_iter_t iter;
7def2be1
PZ
529 struct rt_rq *rt_rq;
530
531 if (unlikely(!scheduler_running))
532 return;
533
78333cdd
PZ
534 /*
535 * Reset each runqueue's bandwidth settings
536 */
ec514c48 537 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
538 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
539
0986b11b
TG
540 raw_spin_lock(&rt_b->rt_runtime_lock);
541 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
542 rt_rq->rt_runtime = rt_b->rt_runtime;
543 rt_rq->rt_time = 0;
baf25731 544 rt_rq->rt_throttled = 0;
0986b11b
TG
545 raw_spin_unlock(&rt_rq->rt_runtime_lock);
546 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
547 }
548}
549
550static void enable_runtime(struct rq *rq)
551{
552 unsigned long flags;
553
05fa785c 554 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 555 __enable_runtime(rq);
05fa785c 556 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
557}
558
eff6549b
PZ
559static int balance_runtime(struct rt_rq *rt_rq)
560{
561 int more = 0;
562
563 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 564 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 565 more = do_balance_runtime(rt_rq);
0986b11b 566 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
567 }
568
569 return more;
570}
55e12e5e 571#else /* !CONFIG_SMP */
eff6549b
PZ
572static inline int balance_runtime(struct rt_rq *rt_rq)
573{
574 return 0;
575}
55e12e5e 576#endif /* CONFIG_SMP */
ac086bc2 577
eff6549b
PZ
578static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
579{
580 int i, idle = 1;
c6c4927b 581 const struct cpumask *span;
eff6549b 582
0b148fa0 583 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
584 return 1;
585
586 span = sched_rt_period_mask();
c6c4927b 587 for_each_cpu(i, span) {
eff6549b
PZ
588 int enqueue = 0;
589 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
590 struct rq *rq = rq_of_rt_rq(rt_rq);
591
05fa785c 592 raw_spin_lock(&rq->lock);
eff6549b
PZ
593 if (rt_rq->rt_time) {
594 u64 runtime;
595
0986b11b 596 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
597 if (rt_rq->rt_throttled)
598 balance_runtime(rt_rq);
599 runtime = rt_rq->rt_runtime;
600 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
601 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
602 rt_rq->rt_throttled = 0;
603 enqueue = 1;
61eadef6
MG
604
605 /*
606 * Force a clock update if the CPU was idle,
607 * lest wakeup -> unthrottle time accumulate.
608 */
609 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
610 rq->skip_clock_update = -1;
eff6549b
PZ
611 }
612 if (rt_rq->rt_time || rt_rq->rt_nr_running)
613 idle = 0;
0986b11b 614 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 615 } else if (rt_rq->rt_nr_running) {
6c3df255 616 idle = 0;
0c3b9168
BS
617 if (!rt_rq_throttled(rt_rq))
618 enqueue = 1;
619 }
eff6549b
PZ
620
621 if (enqueue)
622 sched_rt_rq_enqueue(rt_rq);
05fa785c 623 raw_spin_unlock(&rq->lock);
eff6549b
PZ
624 }
625
626 return idle;
627}
ac086bc2 628
6f505b16
PZ
629static inline int rt_se_prio(struct sched_rt_entity *rt_se)
630{
052f1dc7 631#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
632 struct rt_rq *rt_rq = group_rt_rq(rt_se);
633
634 if (rt_rq)
e864c499 635 return rt_rq->highest_prio.curr;
6f505b16
PZ
636#endif
637
638 return rt_task_of(rt_se)->prio;
639}
640
9f0c1e56 641static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 642{
9f0c1e56 643 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 644
fa85ae24 645 if (rt_rq->rt_throttled)
23b0fdfc 646 return rt_rq_throttled(rt_rq);
fa85ae24 647
ac086bc2
PZ
648 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
649 return 0;
650
b79f3833
PZ
651 balance_runtime(rt_rq);
652 runtime = sched_rt_runtime(rt_rq);
653 if (runtime == RUNTIME_INF)
654 return 0;
ac086bc2 655
9f0c1e56 656 if (rt_rq->rt_time > runtime) {
6f505b16 657 rt_rq->rt_throttled = 1;
1c83437e 658 printk_once(KERN_WARNING "sched: RT throttling activated\n");
23b0fdfc 659 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 660 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
661 return 1;
662 }
fa85ae24
PZ
663 }
664
665 return 0;
666}
667
bb44e5d1
IM
668/*
669 * Update the current task's runtime statistics. Skip current tasks that
670 * are not in our scheduling class.
671 */
a9957449 672static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
673{
674 struct task_struct *curr = rq->curr;
6f505b16
PZ
675 struct sched_rt_entity *rt_se = &curr->rt;
676 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
677 u64 delta_exec;
678
06c3bc65 679 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
680 return;
681
305e6835 682 delta_exec = rq->clock_task - curr->se.exec_start;
bb44e5d1
IM
683 if (unlikely((s64)delta_exec < 0))
684 delta_exec = 0;
6cfb0d5d 685
41acab88 686 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
687
688 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
689 account_group_exec_runtime(curr, delta_exec);
690
305e6835 691 curr->se.exec_start = rq->clock_task;
d842de87 692 cpuacct_charge(curr, delta_exec);
fa85ae24 693
e9e9250b
PZ
694 sched_rt_avg_update(rq, delta_exec);
695
0b148fa0
PZ
696 if (!rt_bandwidth_enabled())
697 return;
698
354d60c2
DG
699 for_each_sched_rt_entity(rt_se) {
700 rt_rq = rt_rq_of_se(rt_se);
701
cc2991cf 702 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 703 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
704 rt_rq->rt_time += delta_exec;
705 if (sched_rt_runtime_exceeded(rt_rq))
706 resched_task(curr);
0986b11b 707 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 708 }
354d60c2 709 }
bb44e5d1
IM
710}
711
398a153b 712#if defined CONFIG_SMP
e864c499 713
398a153b
GH
714static void
715inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 716{
4d984277 717 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 718
5181f4a4
SR
719 if (rq->online && prio < prev_prio)
720 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 721}
73fe6aae 722
398a153b
GH
723static void
724dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
725{
726 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 727
398a153b
GH
728 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
729 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
730}
731
398a153b
GH
732#else /* CONFIG_SMP */
733
6f505b16 734static inline
398a153b
GH
735void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
736static inline
737void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
738
739#endif /* CONFIG_SMP */
6e0534f2 740
052f1dc7 741#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
742static void
743inc_rt_prio(struct rt_rq *rt_rq, int prio)
744{
745 int prev_prio = rt_rq->highest_prio.curr;
746
747 if (prio < prev_prio)
748 rt_rq->highest_prio.curr = prio;
749
750 inc_rt_prio_smp(rt_rq, prio, prev_prio);
751}
752
753static void
754dec_rt_prio(struct rt_rq *rt_rq, int prio)
755{
756 int prev_prio = rt_rq->highest_prio.curr;
757
6f505b16 758 if (rt_rq->rt_nr_running) {
764a9d6f 759
398a153b 760 WARN_ON(prio < prev_prio);
764a9d6f 761
e864c499 762 /*
398a153b
GH
763 * This may have been our highest task, and therefore
764 * we may have some recomputation to do
e864c499 765 */
398a153b 766 if (prio == prev_prio) {
e864c499
GH
767 struct rt_prio_array *array = &rt_rq->active;
768
769 rt_rq->highest_prio.curr =
764a9d6f 770 sched_find_first_bit(array->bitmap);
e864c499
GH
771 }
772
764a9d6f 773 } else
e864c499 774 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 775
398a153b
GH
776 dec_rt_prio_smp(rt_rq, prio, prev_prio);
777}
1f11eb6a 778
398a153b
GH
779#else
780
781static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
782static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
783
784#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 785
052f1dc7 786#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
787
788static void
789inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
790{
791 if (rt_se_boosted(rt_se))
792 rt_rq->rt_nr_boosted++;
793
794 if (rt_rq->tg)
795 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
796}
797
798static void
799dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
800{
23b0fdfc
PZ
801 if (rt_se_boosted(rt_se))
802 rt_rq->rt_nr_boosted--;
803
804 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
805}
806
807#else /* CONFIG_RT_GROUP_SCHED */
808
809static void
810inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
811{
812 start_rt_bandwidth(&def_rt_bandwidth);
813}
814
815static inline
816void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
817
818#endif /* CONFIG_RT_GROUP_SCHED */
819
820static inline
821void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
822{
823 int prio = rt_se_prio(rt_se);
824
825 WARN_ON(!rt_prio(prio));
826 rt_rq->rt_nr_running++;
827
828 inc_rt_prio(rt_rq, prio);
829 inc_rt_migration(rt_se, rt_rq);
830 inc_rt_group(rt_se, rt_rq);
831}
832
833static inline
834void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
835{
836 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
837 WARN_ON(!rt_rq->rt_nr_running);
838 rt_rq->rt_nr_running--;
839
840 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
841 dec_rt_migration(rt_se, rt_rq);
842 dec_rt_group(rt_se, rt_rq);
63489e45
SR
843}
844
37dad3fc 845static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 846{
6f505b16
PZ
847 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
848 struct rt_prio_array *array = &rt_rq->active;
849 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 850 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 851
ad2a3f13
PZ
852 /*
853 * Don't enqueue the group if its throttled, or when empty.
854 * The latter is a consequence of the former when a child group
855 * get throttled and the current group doesn't have any other
856 * active members.
857 */
858 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 859 return;
63489e45 860
3d4b47b4
PZ
861 if (!rt_rq->rt_nr_running)
862 list_add_leaf_rt_rq(rt_rq);
863
37dad3fc
TG
864 if (head)
865 list_add(&rt_se->run_list, queue);
866 else
867 list_add_tail(&rt_se->run_list, queue);
6f505b16 868 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 869
6f505b16
PZ
870 inc_rt_tasks(rt_se, rt_rq);
871}
872
ad2a3f13 873static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
874{
875 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
876 struct rt_prio_array *array = &rt_rq->active;
877
878 list_del_init(&rt_se->run_list);
879 if (list_empty(array->queue + rt_se_prio(rt_se)))
880 __clear_bit(rt_se_prio(rt_se), array->bitmap);
881
882 dec_rt_tasks(rt_se, rt_rq);
3d4b47b4
PZ
883 if (!rt_rq->rt_nr_running)
884 list_del_leaf_rt_rq(rt_rq);
6f505b16
PZ
885}
886
887/*
888 * Because the prio of an upper entry depends on the lower
889 * entries, we must remove entries top - down.
6f505b16 890 */
ad2a3f13 891static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 892{
ad2a3f13 893 struct sched_rt_entity *back = NULL;
6f505b16 894
58d6c2d7
PZ
895 for_each_sched_rt_entity(rt_se) {
896 rt_se->back = back;
897 back = rt_se;
898 }
899
900 for (rt_se = back; rt_se; rt_se = rt_se->back) {
901 if (on_rt_rq(rt_se))
ad2a3f13
PZ
902 __dequeue_rt_entity(rt_se);
903 }
904}
905
37dad3fc 906static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
907{
908 dequeue_rt_stack(rt_se);
909 for_each_sched_rt_entity(rt_se)
37dad3fc 910 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
911}
912
913static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
914{
915 dequeue_rt_stack(rt_se);
916
917 for_each_sched_rt_entity(rt_se) {
918 struct rt_rq *rt_rq = group_rt_rq(rt_se);
919
920 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 921 __enqueue_rt_entity(rt_se, false);
58d6c2d7 922 }
bb44e5d1
IM
923}
924
925/*
926 * Adding/removing a task to/from a priority array:
927 */
ea87bb78 928static void
371fd7e7 929enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
930{
931 struct sched_rt_entity *rt_se = &p->rt;
932
371fd7e7 933 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
934 rt_se->timeout = 0;
935
371fd7e7 936 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 937
917b627d
GH
938 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
939 enqueue_pushable_task(rq, p);
953bfcd1
PT
940
941 inc_nr_running(rq);
6f505b16
PZ
942}
943
371fd7e7 944static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 945{
6f505b16 946 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 947
f1e14ef6 948 update_curr_rt(rq);
ad2a3f13 949 dequeue_rt_entity(rt_se);
c09595f6 950
917b627d 951 dequeue_pushable_task(rq, p);
953bfcd1
PT
952
953 dec_nr_running(rq);
bb44e5d1
IM
954}
955
956/*
957 * Put task to the end of the run list without the overhead of dequeue
958 * followed by enqueue.
959 */
7ebefa8c
DA
960static void
961requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 962{
1cdad715 963 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
964 struct rt_prio_array *array = &rt_rq->active;
965 struct list_head *queue = array->queue + rt_se_prio(rt_se);
966
967 if (head)
968 list_move(&rt_se->run_list, queue);
969 else
970 list_move_tail(&rt_se->run_list, queue);
1cdad715 971 }
6f505b16
PZ
972}
973
7ebefa8c 974static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 975{
6f505b16
PZ
976 struct sched_rt_entity *rt_se = &p->rt;
977 struct rt_rq *rt_rq;
bb44e5d1 978
6f505b16
PZ
979 for_each_sched_rt_entity(rt_se) {
980 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 981 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 982 }
bb44e5d1
IM
983}
984
6f505b16 985static void yield_task_rt(struct rq *rq)
bb44e5d1 986{
7ebefa8c 987 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
988}
989
e7693a36 990#ifdef CONFIG_SMP
318e0893
GH
991static int find_lowest_rq(struct task_struct *task);
992
0017d735 993static int
7608dec2 994select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
e7693a36 995{
7608dec2
PZ
996 struct task_struct *curr;
997 struct rq *rq;
998 int cpu;
999
7608dec2 1000 cpu = task_cpu(p);
c37495fd
SR
1001
1002 /* For anything but wake ups, just return the task_cpu */
1003 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1004 goto out;
1005
7608dec2
PZ
1006 rq = cpu_rq(cpu);
1007
1008 rcu_read_lock();
1009 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1010
318e0893 1011 /*
7608dec2 1012 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1013 * try to see if we can wake this RT task up on another
1014 * runqueue. Otherwise simply start this RT task
1015 * on its current runqueue.
1016 *
43fa5460
SR
1017 * We want to avoid overloading runqueues. If the woken
1018 * task is a higher priority, then it will stay on this CPU
1019 * and the lower prio task should be moved to another CPU.
1020 * Even though this will probably make the lower prio task
1021 * lose its cache, we do not want to bounce a higher task
1022 * around just because it gave up its CPU, perhaps for a
1023 * lock?
1024 *
1025 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1026 *
1027 * Otherwise, just let it ride on the affined RQ and the
1028 * post-schedule router will push the preempted task away
1029 *
1030 * This test is optimistic, if we get it wrong the load-balancer
1031 * will have to sort it out.
318e0893 1032 */
7608dec2
PZ
1033 if (curr && unlikely(rt_task(curr)) &&
1034 (curr->rt.nr_cpus_allowed < 2 ||
3be209a8 1035 curr->prio <= p->prio) &&
6f505b16 1036 (p->rt.nr_cpus_allowed > 1)) {
7608dec2 1037 int target = find_lowest_rq(p);
318e0893 1038
7608dec2
PZ
1039 if (target != -1)
1040 cpu = target;
318e0893 1041 }
7608dec2 1042 rcu_read_unlock();
318e0893 1043
c37495fd 1044out:
7608dec2 1045 return cpu;
e7693a36 1046}
7ebefa8c
DA
1047
1048static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1049{
7ebefa8c
DA
1050 if (rq->curr->rt.nr_cpus_allowed == 1)
1051 return;
1052
24600ce8 1053 if (p->rt.nr_cpus_allowed != 1
13b8bd0a
RR
1054 && cpupri_find(&rq->rd->cpupri, p, NULL))
1055 return;
24600ce8 1056
13b8bd0a
RR
1057 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1058 return;
7ebefa8c
DA
1059
1060 /*
1061 * There appears to be other cpus that can accept
1062 * current and none to run 'p', so lets reschedule
1063 * to try and push current away:
1064 */
1065 requeue_task_rt(rq, p, 1);
1066 resched_task(rq->curr);
1067}
1068
e7693a36
GH
1069#endif /* CONFIG_SMP */
1070
bb44e5d1
IM
1071/*
1072 * Preempt the current task with a newly woken task if needed:
1073 */
7d478721 1074static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1075{
45c01e82 1076 if (p->prio < rq->curr->prio) {
bb44e5d1 1077 resched_task(rq->curr);
45c01e82
GH
1078 return;
1079 }
1080
1081#ifdef CONFIG_SMP
1082 /*
1083 * If:
1084 *
1085 * - the newly woken task is of equal priority to the current task
1086 * - the newly woken task is non-migratable while current is migratable
1087 * - current will be preempted on the next reschedule
1088 *
1089 * we should check to see if current can readily move to a different
1090 * cpu. If so, we will reschedule to allow the push logic to try
1091 * to move current somewhere else, making room for our non-migratable
1092 * task.
1093 */
8dd0de8b 1094 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1095 check_preempt_equal_prio(rq, p);
45c01e82 1096#endif
bb44e5d1
IM
1097}
1098
6f505b16
PZ
1099static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1100 struct rt_rq *rt_rq)
bb44e5d1 1101{
6f505b16
PZ
1102 struct rt_prio_array *array = &rt_rq->active;
1103 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1104 struct list_head *queue;
1105 int idx;
1106
1107 idx = sched_find_first_bit(array->bitmap);
6f505b16 1108 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1109
1110 queue = array->queue + idx;
6f505b16 1111 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1112
6f505b16
PZ
1113 return next;
1114}
bb44e5d1 1115
917b627d 1116static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1117{
1118 struct sched_rt_entity *rt_se;
1119 struct task_struct *p;
1120 struct rt_rq *rt_rq;
bb44e5d1 1121
6f505b16
PZ
1122 rt_rq = &rq->rt;
1123
8e54a2c0 1124 if (!rt_rq->rt_nr_running)
6f505b16
PZ
1125 return NULL;
1126
23b0fdfc 1127 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1128 return NULL;
1129
1130 do {
1131 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1132 BUG_ON(!rt_se);
6f505b16
PZ
1133 rt_rq = group_rt_rq(rt_se);
1134 } while (rt_rq);
1135
1136 p = rt_task_of(rt_se);
305e6835 1137 p->se.exec_start = rq->clock_task;
917b627d
GH
1138
1139 return p;
1140}
1141
1142static struct task_struct *pick_next_task_rt(struct rq *rq)
1143{
1144 struct task_struct *p = _pick_next_task_rt(rq);
1145
1146 /* The running task is never eligible for pushing */
1147 if (p)
1148 dequeue_pushable_task(rq, p);
1149
bcf08df3 1150#ifdef CONFIG_SMP
3f029d3c
GH
1151 /*
1152 * We detect this state here so that we can avoid taking the RQ
1153 * lock again later if there is no need to push
1154 */
1155 rq->post_schedule = has_pushable_tasks(rq);
bcf08df3 1156#endif
3f029d3c 1157
6f505b16 1158 return p;
bb44e5d1
IM
1159}
1160
31ee529c 1161static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1162{
f1e14ef6 1163 update_curr_rt(rq);
917b627d
GH
1164
1165 /*
1166 * The previous task needs to be made eligible for pushing
1167 * if it is still active
1168 */
fd2f4419 1169 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
917b627d 1170 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1171}
1172
681f3e68 1173#ifdef CONFIG_SMP
6f505b16 1174
e8fa1362
SR
1175/* Only try algorithms three times */
1176#define RT_MAX_TRIES 3
1177
e8fa1362
SR
1178static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1179
f65eda4f
SR
1180static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1181{
1182 if (!task_running(rq, p) &&
fa17b507 1183 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
6f505b16 1184 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
1185 return 1;
1186 return 0;
1187}
1188
e8fa1362 1189/* Return the second highest RT task, NULL otherwise */
79064fbf 1190static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 1191{
6f505b16
PZ
1192 struct task_struct *next = NULL;
1193 struct sched_rt_entity *rt_se;
1194 struct rt_prio_array *array;
1195 struct rt_rq *rt_rq;
e8fa1362
SR
1196 int idx;
1197
6f505b16
PZ
1198 for_each_leaf_rt_rq(rt_rq, rq) {
1199 array = &rt_rq->active;
1200 idx = sched_find_first_bit(array->bitmap);
49246274 1201next_idx:
6f505b16
PZ
1202 if (idx >= MAX_RT_PRIO)
1203 continue;
1204 if (next && next->prio < idx)
1205 continue;
1206 list_for_each_entry(rt_se, array->queue + idx, run_list) {
3d07467b
PZ
1207 struct task_struct *p;
1208
1209 if (!rt_entity_is_task(rt_se))
1210 continue;
1211
1212 p = rt_task_of(rt_se);
6f505b16
PZ
1213 if (pick_rt_task(rq, p, cpu)) {
1214 next = p;
1215 break;
1216 }
1217 }
1218 if (!next) {
1219 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1220 goto next_idx;
1221 }
f65eda4f
SR
1222 }
1223
e8fa1362
SR
1224 return next;
1225}
1226
0e3900e6 1227static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1228
6e1254d2
GH
1229static int find_lowest_rq(struct task_struct *task)
1230{
1231 struct sched_domain *sd;
96f874e2 1232 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1233 int this_cpu = smp_processor_id();
1234 int cpu = task_cpu(task);
06f90dbd 1235
0da938c4
SR
1236 /* Make sure the mask is initialized first */
1237 if (unlikely(!lowest_mask))
1238 return -1;
1239
6e0534f2
GH
1240 if (task->rt.nr_cpus_allowed == 1)
1241 return -1; /* No other targets possible */
6e1254d2 1242
6e0534f2
GH
1243 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1244 return -1; /* No targets found */
6e1254d2
GH
1245
1246 /*
1247 * At this point we have built a mask of cpus representing the
1248 * lowest priority tasks in the system. Now we want to elect
1249 * the best one based on our affinity and topology.
1250 *
1251 * We prioritize the last cpu that the task executed on since
1252 * it is most likely cache-hot in that location.
1253 */
96f874e2 1254 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1255 return cpu;
1256
1257 /*
1258 * Otherwise, we consult the sched_domains span maps to figure
1259 * out which cpu is logically closest to our hot cache data.
1260 */
e2c88063
RR
1261 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1262 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1263
cd4ae6ad 1264 rcu_read_lock();
e2c88063
RR
1265 for_each_domain(cpu, sd) {
1266 if (sd->flags & SD_WAKE_AFFINE) {
1267 int best_cpu;
6e1254d2 1268
e2c88063
RR
1269 /*
1270 * "this_cpu" is cheaper to preempt than a
1271 * remote processor.
1272 */
1273 if (this_cpu != -1 &&
cd4ae6ad
XF
1274 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1275 rcu_read_unlock();
e2c88063 1276 return this_cpu;
cd4ae6ad 1277 }
e2c88063
RR
1278
1279 best_cpu = cpumask_first_and(lowest_mask,
1280 sched_domain_span(sd));
cd4ae6ad
XF
1281 if (best_cpu < nr_cpu_ids) {
1282 rcu_read_unlock();
e2c88063 1283 return best_cpu;
cd4ae6ad 1284 }
6e1254d2
GH
1285 }
1286 }
cd4ae6ad 1287 rcu_read_unlock();
6e1254d2
GH
1288
1289 /*
1290 * And finally, if there were no matches within the domains
1291 * just give the caller *something* to work with from the compatible
1292 * locations.
1293 */
e2c88063
RR
1294 if (this_cpu != -1)
1295 return this_cpu;
1296
1297 cpu = cpumask_any(lowest_mask);
1298 if (cpu < nr_cpu_ids)
1299 return cpu;
1300 return -1;
07b4032c
GH
1301}
1302
1303/* Will lock the rq it finds */
4df64c0b 1304static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1305{
1306 struct rq *lowest_rq = NULL;
07b4032c 1307 int tries;
4df64c0b 1308 int cpu;
e8fa1362 1309
07b4032c
GH
1310 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1311 cpu = find_lowest_rq(task);
1312
2de0b463 1313 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1314 break;
1315
07b4032c
GH
1316 lowest_rq = cpu_rq(cpu);
1317
e8fa1362 1318 /* if the prio of this runqueue changed, try again */
07b4032c 1319 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1320 /*
1321 * We had to unlock the run queue. In
1322 * the mean time, task could have
1323 * migrated already or had its affinity changed.
1324 * Also make sure that it wasn't scheduled on its rq.
1325 */
07b4032c 1326 if (unlikely(task_rq(task) != rq ||
96f874e2 1327 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1328 tsk_cpus_allowed(task)) ||
07b4032c 1329 task_running(rq, task) ||
fd2f4419 1330 !task->on_rq)) {
4df64c0b 1331
05fa785c 1332 raw_spin_unlock(&lowest_rq->lock);
e8fa1362
SR
1333 lowest_rq = NULL;
1334 break;
1335 }
1336 }
1337
1338 /* If this rq is still suitable use it. */
e864c499 1339 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1340 break;
1341
1342 /* try again */
1b12bbc7 1343 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1344 lowest_rq = NULL;
1345 }
1346
1347 return lowest_rq;
1348}
1349
917b627d
GH
1350static struct task_struct *pick_next_pushable_task(struct rq *rq)
1351{
1352 struct task_struct *p;
1353
1354 if (!has_pushable_tasks(rq))
1355 return NULL;
1356
1357 p = plist_first_entry(&rq->rt.pushable_tasks,
1358 struct task_struct, pushable_tasks);
1359
1360 BUG_ON(rq->cpu != task_cpu(p));
1361 BUG_ON(task_current(rq, p));
1362 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1363
fd2f4419 1364 BUG_ON(!p->on_rq);
917b627d
GH
1365 BUG_ON(!rt_task(p));
1366
1367 return p;
1368}
1369
e8fa1362
SR
1370/*
1371 * If the current CPU has more than one RT task, see if the non
1372 * running task can migrate over to a CPU that is running a task
1373 * of lesser priority.
1374 */
697f0a48 1375static int push_rt_task(struct rq *rq)
e8fa1362
SR
1376{
1377 struct task_struct *next_task;
1378 struct rq *lowest_rq;
311e800e 1379 int ret = 0;
e8fa1362 1380
a22d7fc1
GH
1381 if (!rq->rt.overloaded)
1382 return 0;
1383
917b627d 1384 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1385 if (!next_task)
1386 return 0;
1387
49246274 1388retry:
697f0a48 1389 if (unlikely(next_task == rq->curr)) {
f65eda4f 1390 WARN_ON(1);
e8fa1362 1391 return 0;
f65eda4f 1392 }
e8fa1362
SR
1393
1394 /*
1395 * It's possible that the next_task slipped in of
1396 * higher priority than current. If that's the case
1397 * just reschedule current.
1398 */
697f0a48
GH
1399 if (unlikely(next_task->prio < rq->curr->prio)) {
1400 resched_task(rq->curr);
e8fa1362
SR
1401 return 0;
1402 }
1403
697f0a48 1404 /* We might release rq lock */
e8fa1362
SR
1405 get_task_struct(next_task);
1406
1407 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1408 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1409 if (!lowest_rq) {
1410 struct task_struct *task;
1411 /*
311e800e 1412 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1413 * so it is possible that next_task has migrated.
1414 *
1415 * We need to make sure that the task is still on the same
1416 * run-queue and is also still the next task eligible for
1417 * pushing.
e8fa1362 1418 */
917b627d 1419 task = pick_next_pushable_task(rq);
1563513d
GH
1420 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1421 /*
311e800e
HD
1422 * The task hasn't migrated, and is still the next
1423 * eligible task, but we failed to find a run-queue
1424 * to push it to. Do not retry in this case, since
1425 * other cpus will pull from us when ready.
1563513d 1426 */
1563513d 1427 goto out;
e8fa1362 1428 }
917b627d 1429
1563513d
GH
1430 if (!task)
1431 /* No more tasks, just exit */
1432 goto out;
1433
917b627d 1434 /*
1563513d 1435 * Something has shifted, try again.
917b627d 1436 */
1563513d
GH
1437 put_task_struct(next_task);
1438 next_task = task;
1439 goto retry;
e8fa1362
SR
1440 }
1441
697f0a48 1442 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1443 set_task_cpu(next_task, lowest_rq->cpu);
1444 activate_task(lowest_rq, next_task, 0);
311e800e 1445 ret = 1;
e8fa1362
SR
1446
1447 resched_task(lowest_rq->curr);
1448
1b12bbc7 1449 double_unlock_balance(rq, lowest_rq);
e8fa1362 1450
e8fa1362
SR
1451out:
1452 put_task_struct(next_task);
1453
311e800e 1454 return ret;
e8fa1362
SR
1455}
1456
e8fa1362
SR
1457static void push_rt_tasks(struct rq *rq)
1458{
1459 /* push_rt_task will return true if it moved an RT */
1460 while (push_rt_task(rq))
1461 ;
1462}
1463
f65eda4f
SR
1464static int pull_rt_task(struct rq *this_rq)
1465{
80bf3171 1466 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1467 struct task_struct *p;
f65eda4f 1468 struct rq *src_rq;
f65eda4f 1469
637f5085 1470 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1471 return 0;
1472
c6c4927b 1473 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1474 if (this_cpu == cpu)
1475 continue;
1476
1477 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1478
1479 /*
1480 * Don't bother taking the src_rq->lock if the next highest
1481 * task is known to be lower-priority than our current task.
1482 * This may look racy, but if this value is about to go
1483 * logically higher, the src_rq will push this task away.
1484 * And if its going logically lower, we do not care
1485 */
1486 if (src_rq->rt.highest_prio.next >=
1487 this_rq->rt.highest_prio.curr)
1488 continue;
1489
f65eda4f
SR
1490 /*
1491 * We can potentially drop this_rq's lock in
1492 * double_lock_balance, and another CPU could
a8728944 1493 * alter this_rq
f65eda4f 1494 */
a8728944 1495 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1496
1497 /*
1498 * Are there still pullable RT tasks?
1499 */
614ee1f6
MG
1500 if (src_rq->rt.rt_nr_running <= 1)
1501 goto skip;
f65eda4f 1502
f65eda4f
SR
1503 p = pick_next_highest_task_rt(src_rq, this_cpu);
1504
1505 /*
1506 * Do we have an RT task that preempts
1507 * the to-be-scheduled task?
1508 */
a8728944 1509 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1510 WARN_ON(p == src_rq->curr);
fd2f4419 1511 WARN_ON(!p->on_rq);
f65eda4f
SR
1512
1513 /*
1514 * There's a chance that p is higher in priority
1515 * than what's currently running on its cpu.
1516 * This is just that p is wakeing up and hasn't
1517 * had a chance to schedule. We only pull
1518 * p if it is lower in priority than the
a8728944 1519 * current task on the run queue
f65eda4f 1520 */
a8728944 1521 if (p->prio < src_rq->curr->prio)
614ee1f6 1522 goto skip;
f65eda4f
SR
1523
1524 ret = 1;
1525
1526 deactivate_task(src_rq, p, 0);
1527 set_task_cpu(p, this_cpu);
1528 activate_task(this_rq, p, 0);
1529 /*
1530 * We continue with the search, just in
1531 * case there's an even higher prio task
25985edc 1532 * in another runqueue. (low likelihood
f65eda4f 1533 * but possible)
f65eda4f 1534 */
f65eda4f 1535 }
49246274 1536skip:
1b12bbc7 1537 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1538 }
1539
1540 return ret;
1541}
1542
9a897c5a 1543static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1544{
1545 /* Try to pull RT tasks here if we lower this rq's prio */
33c3d6c6 1546 if (rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1547 pull_rt_task(rq);
1548}
1549
9a897c5a 1550static void post_schedule_rt(struct rq *rq)
e8fa1362 1551{
967fc046 1552 push_rt_tasks(rq);
e8fa1362
SR
1553}
1554
8ae121ac
GH
1555/*
1556 * If we are not running and we are not going to reschedule soon, we should
1557 * try to push tasks away now
1558 */
efbbd05a 1559static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1560{
9a897c5a 1561 if (!task_running(rq, p) &&
8ae121ac 1562 !test_tsk_need_resched(rq->curr) &&
917b627d 1563 has_pushable_tasks(rq) &&
b3bc211c 1564 p->rt.nr_cpus_allowed > 1 &&
43fa5460 1565 rt_task(rq->curr) &&
b3bc211c 1566 (rq->curr->rt.nr_cpus_allowed < 2 ||
3be209a8 1567 rq->curr->prio <= p->prio))
4642dafd
SR
1568 push_rt_tasks(rq);
1569}
1570
cd8ba7cd 1571static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1572 const struct cpumask *new_mask)
73fe6aae 1573{
96f874e2 1574 int weight = cpumask_weight(new_mask);
73fe6aae
GH
1575
1576 BUG_ON(!rt_task(p));
1577
1578 /*
1579 * Update the migration status of the RQ if we have an RT task
1580 * which is running AND changing its weight value.
1581 */
fd2f4419 1582 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1583 struct rq *rq = task_rq(p);
1584
917b627d
GH
1585 if (!task_current(rq, p)) {
1586 /*
1587 * Make sure we dequeue this task from the pushable list
1588 * before going further. It will either remain off of
1589 * the list because we are no longer pushable, or it
1590 * will be requeued.
1591 */
1592 if (p->rt.nr_cpus_allowed > 1)
1593 dequeue_pushable_task(rq, p);
1594
1595 /*
1596 * Requeue if our weight is changing and still > 1
1597 */
1598 if (weight > 1)
1599 enqueue_pushable_task(rq, p);
1600
1601 }
1602
6f505b16 1603 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1604 rq->rt.rt_nr_migratory++;
6f505b16 1605 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1606 BUG_ON(!rq->rt.rt_nr_migratory);
1607 rq->rt.rt_nr_migratory--;
1608 }
1609
398a153b 1610 update_rt_migration(&rq->rt);
73fe6aae 1611 }
73fe6aae 1612}
deeeccd4 1613
bdd7c81b 1614/* Assumes rq->lock is held */
1f11eb6a 1615static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1616{
1617 if (rq->rt.overloaded)
1618 rt_set_overload(rq);
6e0534f2 1619
7def2be1
PZ
1620 __enable_runtime(rq);
1621
e864c499 1622 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1623}
1624
1625/* Assumes rq->lock is held */
1f11eb6a 1626static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1627{
1628 if (rq->rt.overloaded)
1629 rt_clear_overload(rq);
6e0534f2 1630
7def2be1
PZ
1631 __disable_runtime(rq);
1632
6e0534f2 1633 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1634}
cb469845
SR
1635
1636/*
1637 * When switch from the rt queue, we bring ourselves to a position
1638 * that we might want to pull RT tasks from other runqueues.
1639 */
da7a735e 1640static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1641{
1642 /*
1643 * If there are other RT tasks then we will reschedule
1644 * and the scheduling of the other RT tasks will handle
1645 * the balancing. But if we are the last RT task
1646 * we may need to handle the pulling of RT tasks
1647 * now.
1648 */
fd2f4419 1649 if (p->on_rq && !rq->rt.rt_nr_running)
cb469845
SR
1650 pull_rt_task(rq);
1651}
3d8cbdf8
RR
1652
1653static inline void init_sched_rt_class(void)
1654{
1655 unsigned int i;
1656
1657 for_each_possible_cpu(i)
eaa95840 1658 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1659 GFP_KERNEL, cpu_to_node(i));
3d8cbdf8 1660}
cb469845
SR
1661#endif /* CONFIG_SMP */
1662
1663/*
1664 * When switching a task to RT, we may overload the runqueue
1665 * with RT tasks. In this case we try to push them off to
1666 * other runqueues.
1667 */
da7a735e 1668static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1669{
1670 int check_resched = 1;
1671
1672 /*
1673 * If we are already running, then there's nothing
1674 * that needs to be done. But if we are not running
1675 * we may need to preempt the current running task.
1676 * If that current running task is also an RT task
1677 * then see if we can move to another run queue.
1678 */
fd2f4419 1679 if (p->on_rq && rq->curr != p) {
cb469845
SR
1680#ifdef CONFIG_SMP
1681 if (rq->rt.overloaded && push_rt_task(rq) &&
1682 /* Don't resched if we changed runqueues */
1683 rq != task_rq(p))
1684 check_resched = 0;
1685#endif /* CONFIG_SMP */
1686 if (check_resched && p->prio < rq->curr->prio)
1687 resched_task(rq->curr);
1688 }
1689}
1690
1691/*
1692 * Priority of the task has changed. This may cause
1693 * us to initiate a push or pull.
1694 */
da7a735e
PZ
1695static void
1696prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1697{
fd2f4419 1698 if (!p->on_rq)
da7a735e
PZ
1699 return;
1700
1701 if (rq->curr == p) {
cb469845
SR
1702#ifdef CONFIG_SMP
1703 /*
1704 * If our priority decreases while running, we
1705 * may need to pull tasks to this runqueue.
1706 */
1707 if (oldprio < p->prio)
1708 pull_rt_task(rq);
1709 /*
1710 * If there's a higher priority task waiting to run
6fa46fa5
SR
1711 * then reschedule. Note, the above pull_rt_task
1712 * can release the rq lock and p could migrate.
1713 * Only reschedule if p is still on the same runqueue.
cb469845 1714 */
e864c499 1715 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1716 resched_task(p);
1717#else
1718 /* For UP simply resched on drop of prio */
1719 if (oldprio < p->prio)
1720 resched_task(p);
e8fa1362 1721#endif /* CONFIG_SMP */
cb469845
SR
1722 } else {
1723 /*
1724 * This task is not running, but if it is
1725 * greater than the current running task
1726 * then reschedule.
1727 */
1728 if (p->prio < rq->curr->prio)
1729 resched_task(rq->curr);
1730 }
1731}
1732
78f2c7db
PZ
1733static void watchdog(struct rq *rq, struct task_struct *p)
1734{
1735 unsigned long soft, hard;
1736
78d7d407
JS
1737 /* max may change after cur was read, this will be fixed next tick */
1738 soft = task_rlimit(p, RLIMIT_RTTIME);
1739 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1740
1741 if (soft != RLIM_INFINITY) {
1742 unsigned long next;
1743
1744 p->rt.timeout++;
1745 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1746 if (p->rt.timeout > next)
f06febc9 1747 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1748 }
1749}
bb44e5d1 1750
8f4d37ec 1751static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1752{
67e2be02
PZ
1753 update_curr_rt(rq);
1754
78f2c7db
PZ
1755 watchdog(rq, p);
1756
bb44e5d1
IM
1757 /*
1758 * RR tasks need a special form of timeslice management.
1759 * FIFO tasks have no timeslices.
1760 */
1761 if (p->policy != SCHED_RR)
1762 return;
1763
fa717060 1764 if (--p->rt.time_slice)
bb44e5d1
IM
1765 return;
1766
fa717060 1767 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1768
98fbc798
DA
1769 /*
1770 * Requeue to the end of queue if we are not the only element
1771 * on the queue:
1772 */
fa717060 1773 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1774 requeue_task_rt(rq, p, 0);
98fbc798
DA
1775 set_tsk_need_resched(p);
1776 }
bb44e5d1
IM
1777}
1778
83b699ed
SV
1779static void set_curr_task_rt(struct rq *rq)
1780{
1781 struct task_struct *p = rq->curr;
1782
305e6835 1783 p->se.exec_start = rq->clock_task;
917b627d
GH
1784
1785 /* The running task is never eligible for pushing */
1786 dequeue_pushable_task(rq, p);
83b699ed
SV
1787}
1788
6d686f45 1789static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
1790{
1791 /*
1792 * Time slice is 0 for SCHED_FIFO tasks
1793 */
1794 if (task->policy == SCHED_RR)
1795 return DEF_TIMESLICE;
1796 else
1797 return 0;
1798}
1799
2abdad0a 1800static const struct sched_class rt_sched_class = {
5522d5d5 1801 .next = &fair_sched_class,
bb44e5d1
IM
1802 .enqueue_task = enqueue_task_rt,
1803 .dequeue_task = dequeue_task_rt,
1804 .yield_task = yield_task_rt,
1805
1806 .check_preempt_curr = check_preempt_curr_rt,
1807
1808 .pick_next_task = pick_next_task_rt,
1809 .put_prev_task = put_prev_task_rt,
1810
681f3e68 1811#ifdef CONFIG_SMP
4ce72a2c
LZ
1812 .select_task_rq = select_task_rq_rt,
1813
73fe6aae 1814 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1815 .rq_online = rq_online_rt,
1816 .rq_offline = rq_offline_rt,
9a897c5a
SR
1817 .pre_schedule = pre_schedule_rt,
1818 .post_schedule = post_schedule_rt,
efbbd05a 1819 .task_woken = task_woken_rt,
cb469845 1820 .switched_from = switched_from_rt,
681f3e68 1821#endif
bb44e5d1 1822
83b699ed 1823 .set_curr_task = set_curr_task_rt,
bb44e5d1 1824 .task_tick = task_tick_rt,
cb469845 1825
0d721cea
PW
1826 .get_rr_interval = get_rr_interval_rt,
1827
cb469845
SR
1828 .prio_changed = prio_changed_rt,
1829 .switched_to = switched_to_rt,
bb44e5d1 1830};
ada18de2
PZ
1831
1832#ifdef CONFIG_SCHED_DEBUG
1833extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1834
1835static void print_rt_stats(struct seq_file *m, int cpu)
1836{
ec514c48 1837 rt_rq_iter_t iter;
ada18de2
PZ
1838 struct rt_rq *rt_rq;
1839
1840 rcu_read_lock();
ec514c48 1841 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
1842 print_rt_rq(m, cpu, rt_rq);
1843 rcu_read_unlock();
1844}
55e12e5e 1845#endif /* CONFIG_SCHED_DEBUG */