]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched_rt.c
sched: pre-route RT tasks on wakeup
[mirror_ubuntu-zesty-kernel.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176
SR
6#ifdef CONFIG_SMP
7static cpumask_t rt_overload_mask;
8static atomic_t rto_count;
9static inline int rt_overloaded(void)
10{
11 return atomic_read(&rto_count);
12}
13static inline cpumask_t *rt_overload(void)
14{
15 return &rt_overload_mask;
16}
17static inline void rt_set_overload(struct rq *rq)
18{
19 cpu_set(rq->cpu, rt_overload_mask);
20 /*
21 * Make sure the mask is visible before we set
22 * the overload count. That is checked to determine
23 * if we should look at the mask. It would be a shame
24 * if we looked at the mask, but the mask was not
25 * updated yet.
26 */
27 wmb();
28 atomic_inc(&rto_count);
29}
30static inline void rt_clear_overload(struct rq *rq)
31{
32 /* the order here really doesn't matter */
33 atomic_dec(&rto_count);
34 cpu_clear(rq->cpu, rt_overload_mask);
35}
73fe6aae
GH
36
37static void update_rt_migration(struct rq *rq)
38{
39 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
40 rt_set_overload(rq);
41 else
42 rt_clear_overload(rq);
43}
4fd29176
SR
44#endif /* CONFIG_SMP */
45
bb44e5d1
IM
46/*
47 * Update the current task's runtime statistics. Skip current tasks that
48 * are not in our scheduling class.
49 */
a9957449 50static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
51{
52 struct task_struct *curr = rq->curr;
53 u64 delta_exec;
54
55 if (!task_has_rt_policy(curr))
56 return;
57
d281918d 58 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
59 if (unlikely((s64)delta_exec < 0))
60 delta_exec = 0;
6cfb0d5d
IM
61
62 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
63
64 curr->se.sum_exec_runtime += delta_exec;
d281918d 65 curr->se.exec_start = rq->clock;
d842de87 66 cpuacct_charge(curr, delta_exec);
bb44e5d1
IM
67}
68
63489e45
SR
69static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
70{
71 WARN_ON(!rt_task(p));
72 rq->rt.rt_nr_running++;
764a9d6f
SR
73#ifdef CONFIG_SMP
74 if (p->prio < rq->rt.highest_prio)
75 rq->rt.highest_prio = p->prio;
73fe6aae
GH
76 if (p->nr_cpus_allowed > 1)
77 rq->rt.rt_nr_migratory++;
78
79 update_rt_migration(rq);
764a9d6f 80#endif /* CONFIG_SMP */
63489e45
SR
81}
82
83static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
84{
85 WARN_ON(!rt_task(p));
86 WARN_ON(!rq->rt.rt_nr_running);
87 rq->rt.rt_nr_running--;
764a9d6f
SR
88#ifdef CONFIG_SMP
89 if (rq->rt.rt_nr_running) {
90 struct rt_prio_array *array;
91
92 WARN_ON(p->prio < rq->rt.highest_prio);
93 if (p->prio == rq->rt.highest_prio) {
94 /* recalculate */
95 array = &rq->rt.active;
96 rq->rt.highest_prio =
97 sched_find_first_bit(array->bitmap);
98 } /* otherwise leave rq->highest prio alone */
99 } else
100 rq->rt.highest_prio = MAX_RT_PRIO;
73fe6aae
GH
101 if (p->nr_cpus_allowed > 1)
102 rq->rt.rt_nr_migratory--;
103
104 update_rt_migration(rq);
764a9d6f 105#endif /* CONFIG_SMP */
63489e45
SR
106}
107
fd390f6a 108static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
bb44e5d1
IM
109{
110 struct rt_prio_array *array = &rq->rt.active;
111
112 list_add_tail(&p->run_list, array->queue + p->prio);
113 __set_bit(p->prio, array->bitmap);
58e2d4ca 114 inc_cpu_load(rq, p->se.load.weight);
63489e45
SR
115
116 inc_rt_tasks(p, rq);
bb44e5d1
IM
117}
118
119/*
120 * Adding/removing a task to/from a priority array:
121 */
f02231e5 122static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1
IM
123{
124 struct rt_prio_array *array = &rq->rt.active;
125
f1e14ef6 126 update_curr_rt(rq);
bb44e5d1
IM
127
128 list_del(&p->run_list);
129 if (list_empty(array->queue + p->prio))
130 __clear_bit(p->prio, array->bitmap);
58e2d4ca 131 dec_cpu_load(rq, p->se.load.weight);
63489e45
SR
132
133 dec_rt_tasks(p, rq);
bb44e5d1
IM
134}
135
136/*
137 * Put task to the end of the run list without the overhead of dequeue
138 * followed by enqueue.
139 */
140static void requeue_task_rt(struct rq *rq, struct task_struct *p)
141{
142 struct rt_prio_array *array = &rq->rt.active;
143
144 list_move_tail(&p->run_list, array->queue + p->prio);
145}
146
147static void
4530d7ab 148yield_task_rt(struct rq *rq)
bb44e5d1 149{
4530d7ab 150 requeue_task_rt(rq, rq->curr);
bb44e5d1
IM
151}
152
e7693a36 153#ifdef CONFIG_SMP
318e0893
GH
154static int find_lowest_rq(struct task_struct *task);
155
e7693a36
GH
156static int select_task_rq_rt(struct task_struct *p, int sync)
157{
318e0893
GH
158 struct rq *rq = task_rq(p);
159
160 /*
161 * If the task will not preempt the RQ, try to find a better RQ
162 * before we even activate the task
163 */
164 if ((p->prio >= rq->rt.highest_prio)
165 && (p->nr_cpus_allowed > 1)) {
166 int cpu = find_lowest_rq(p);
167
168 return (cpu == -1) ? task_cpu(p) : cpu;
169 }
170
171 /*
172 * Otherwise, just let it ride on the affined RQ and the
173 * post-schedule router will push the preempted task away
174 */
e7693a36
GH
175 return task_cpu(p);
176}
177#endif /* CONFIG_SMP */
178
bb44e5d1
IM
179/*
180 * Preempt the current task with a newly woken task if needed:
181 */
182static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
183{
184 if (p->prio < rq->curr->prio)
185 resched_task(rq->curr);
186}
187
fb8d4724 188static struct task_struct *pick_next_task_rt(struct rq *rq)
bb44e5d1
IM
189{
190 struct rt_prio_array *array = &rq->rt.active;
191 struct task_struct *next;
192 struct list_head *queue;
193 int idx;
194
195 idx = sched_find_first_bit(array->bitmap);
196 if (idx >= MAX_RT_PRIO)
197 return NULL;
198
199 queue = array->queue + idx;
200 next = list_entry(queue->next, struct task_struct, run_list);
201
d281918d 202 next->se.exec_start = rq->clock;
bb44e5d1
IM
203
204 return next;
205}
206
31ee529c 207static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 208{
f1e14ef6 209 update_curr_rt(rq);
bb44e5d1
IM
210 p->se.exec_start = 0;
211}
212
681f3e68 213#ifdef CONFIG_SMP
e8fa1362
SR
214/* Only try algorithms three times */
215#define RT_MAX_TRIES 3
216
217static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
218static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
219
f65eda4f
SR
220static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
221{
222 if (!task_running(rq, p) &&
73fe6aae
GH
223 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
224 (p->nr_cpus_allowed > 1))
f65eda4f
SR
225 return 1;
226 return 0;
227}
228
e8fa1362 229/* Return the second highest RT task, NULL otherwise */
f65eda4f
SR
230static struct task_struct *pick_next_highest_task_rt(struct rq *rq,
231 int cpu)
e8fa1362
SR
232{
233 struct rt_prio_array *array = &rq->rt.active;
234 struct task_struct *next;
235 struct list_head *queue;
236 int idx;
237
238 assert_spin_locked(&rq->lock);
239
240 if (likely(rq->rt.rt_nr_running < 2))
241 return NULL;
242
243 idx = sched_find_first_bit(array->bitmap);
244 if (unlikely(idx >= MAX_RT_PRIO)) {
245 WARN_ON(1); /* rt_nr_running is bad */
246 return NULL;
247 }
248
249 queue = array->queue + idx;
f65eda4f
SR
250 BUG_ON(list_empty(queue));
251
e8fa1362 252 next = list_entry(queue->next, struct task_struct, run_list);
f65eda4f
SR
253 if (unlikely(pick_rt_task(rq, next, cpu)))
254 goto out;
e8fa1362
SR
255
256 if (queue->next->next != queue) {
257 /* same prio task */
258 next = list_entry(queue->next->next, struct task_struct, run_list);
f65eda4f
SR
259 if (pick_rt_task(rq, next, cpu))
260 goto out;
e8fa1362
SR
261 }
262
f65eda4f 263 retry:
e8fa1362
SR
264 /* slower, but more flexible */
265 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
f65eda4f 266 if (unlikely(idx >= MAX_RT_PRIO))
e8fa1362 267 return NULL;
e8fa1362
SR
268
269 queue = array->queue + idx;
f65eda4f
SR
270 BUG_ON(list_empty(queue));
271
272 list_for_each_entry(next, queue, run_list) {
273 if (pick_rt_task(rq, next, cpu))
274 goto out;
275 }
276
277 goto retry;
e8fa1362 278
f65eda4f 279 out:
e8fa1362
SR
280 return next;
281}
282
283static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
284
07b4032c 285static int find_lowest_rq(struct task_struct *task)
e8fa1362 286{
e8fa1362 287 int cpu;
e8fa1362 288 cpumask_t *cpu_mask = &__get_cpu_var(local_cpu_mask);
07b4032c 289 struct rq *lowest_rq = NULL;
e8fa1362
SR
290
291 cpus_and(*cpu_mask, cpu_online_map, task->cpus_allowed);
292
07b4032c
GH
293 /*
294 * Scan each rq for the lowest prio.
295 */
296 for_each_cpu_mask(cpu, *cpu_mask) {
297 struct rq *rq = cpu_rq(cpu);
e8fa1362 298
07b4032c
GH
299 /* We look for lowest RT prio or non-rt CPU */
300 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
301 lowest_rq = rq;
302 break;
303 }
304
305 /* no locking for now */
306 if (rq->rt.highest_prio > task->prio &&
307 (!lowest_rq || rq->rt.highest_prio > lowest_rq->rt.highest_prio)) {
308 lowest_rq = rq;
e8fa1362 309 }
07b4032c
GH
310 }
311
312 return lowest_rq ? lowest_rq->cpu : -1;
313}
314
315/* Will lock the rq it finds */
316static struct rq *find_lock_lowest_rq(struct task_struct *task,
317 struct rq *rq)
318{
319 struct rq *lowest_rq = NULL;
320 int cpu;
321 int tries;
e8fa1362 322
07b4032c
GH
323 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
324 cpu = find_lowest_rq(task);
325
2de0b463 326 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
327 break;
328
07b4032c
GH
329 lowest_rq = cpu_rq(cpu);
330
e8fa1362 331 /* if the prio of this runqueue changed, try again */
07b4032c 332 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
333 /*
334 * We had to unlock the run queue. In
335 * the mean time, task could have
336 * migrated already or had its affinity changed.
337 * Also make sure that it wasn't scheduled on its rq.
338 */
07b4032c 339 if (unlikely(task_rq(task) != rq ||
e8fa1362 340 !cpu_isset(lowest_rq->cpu, task->cpus_allowed) ||
07b4032c 341 task_running(rq, task) ||
e8fa1362
SR
342 !task->se.on_rq)) {
343 spin_unlock(&lowest_rq->lock);
344 lowest_rq = NULL;
345 break;
346 }
347 }
348
349 /* If this rq is still suitable use it. */
350 if (lowest_rq->rt.highest_prio > task->prio)
351 break;
352
353 /* try again */
354 spin_unlock(&lowest_rq->lock);
355 lowest_rq = NULL;
356 }
357
358 return lowest_rq;
359}
360
361/*
362 * If the current CPU has more than one RT task, see if the non
363 * running task can migrate over to a CPU that is running a task
364 * of lesser priority.
365 */
697f0a48 366static int push_rt_task(struct rq *rq)
e8fa1362
SR
367{
368 struct task_struct *next_task;
369 struct rq *lowest_rq;
370 int ret = 0;
371 int paranoid = RT_MAX_TRIES;
372
697f0a48 373 assert_spin_locked(&rq->lock);
e8fa1362 374
697f0a48 375 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
376 if (!next_task)
377 return 0;
378
379 retry:
697f0a48 380 if (unlikely(next_task == rq->curr)) {
f65eda4f 381 WARN_ON(1);
e8fa1362 382 return 0;
f65eda4f 383 }
e8fa1362
SR
384
385 /*
386 * It's possible that the next_task slipped in of
387 * higher priority than current. If that's the case
388 * just reschedule current.
389 */
697f0a48
GH
390 if (unlikely(next_task->prio < rq->curr->prio)) {
391 resched_task(rq->curr);
e8fa1362
SR
392 return 0;
393 }
394
697f0a48 395 /* We might release rq lock */
e8fa1362
SR
396 get_task_struct(next_task);
397
398 /* find_lock_lowest_rq locks the rq if found */
697f0a48 399 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
400 if (!lowest_rq) {
401 struct task_struct *task;
402 /*
697f0a48 403 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
404 * so it is possible that next_task has changed.
405 * If it has, then try again.
406 */
697f0a48 407 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
408 if (unlikely(task != next_task) && task && paranoid--) {
409 put_task_struct(next_task);
410 next_task = task;
411 goto retry;
412 }
413 goto out;
414 }
415
416 assert_spin_locked(&lowest_rq->lock);
417
697f0a48 418 deactivate_task(rq, next_task, 0);
e8fa1362
SR
419 set_task_cpu(next_task, lowest_rq->cpu);
420 activate_task(lowest_rq, next_task, 0);
421
422 resched_task(lowest_rq->curr);
423
424 spin_unlock(&lowest_rq->lock);
425
426 ret = 1;
427out:
428 put_task_struct(next_task);
429
430 return ret;
431}
432
433/*
434 * TODO: Currently we just use the second highest prio task on
435 * the queue, and stop when it can't migrate (or there's
436 * no more RT tasks). There may be a case where a lower
437 * priority RT task has a different affinity than the
438 * higher RT task. In this case the lower RT task could
439 * possibly be able to migrate where as the higher priority
440 * RT task could not. We currently ignore this issue.
441 * Enhancements are welcome!
442 */
443static void push_rt_tasks(struct rq *rq)
444{
445 /* push_rt_task will return true if it moved an RT */
446 while (push_rt_task(rq))
447 ;
448}
449
f65eda4f
SR
450static int pull_rt_task(struct rq *this_rq)
451{
452 struct task_struct *next;
453 struct task_struct *p;
454 struct rq *src_rq;
455 cpumask_t *rto_cpumask;
456 int this_cpu = this_rq->cpu;
457 int cpu;
458 int ret = 0;
459
460 assert_spin_locked(&this_rq->lock);
461
462 /*
463 * If cpusets are used, and we have overlapping
464 * run queue cpusets, then this algorithm may not catch all.
465 * This is just the price you pay on trying to keep
466 * dirtying caches down on large SMP machines.
467 */
468 if (likely(!rt_overloaded()))
469 return 0;
470
471 next = pick_next_task_rt(this_rq);
472
473 rto_cpumask = rt_overload();
474
475 for_each_cpu_mask(cpu, *rto_cpumask) {
476 if (this_cpu == cpu)
477 continue;
478
479 src_rq = cpu_rq(cpu);
480 if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
481 /*
482 * It is possible that overlapping cpusets
483 * will miss clearing a non overloaded runqueue.
484 * Clear it now.
485 */
486 if (double_lock_balance(this_rq, src_rq)) {
487 /* unlocked our runqueue lock */
488 struct task_struct *old_next = next;
489 next = pick_next_task_rt(this_rq);
490 if (next != old_next)
491 ret = 1;
492 }
493 if (likely(src_rq->rt.rt_nr_running <= 1))
494 /*
495 * Small chance that this_rq->curr changed
496 * but it's really harmless here.
497 */
498 rt_clear_overload(this_rq);
499 else
500 /*
501 * Heh, the src_rq is now overloaded, since
502 * we already have the src_rq lock, go straight
503 * to pulling tasks from it.
504 */
505 goto try_pulling;
506 spin_unlock(&src_rq->lock);
507 continue;
508 }
509
510 /*
511 * We can potentially drop this_rq's lock in
512 * double_lock_balance, and another CPU could
513 * steal our next task - hence we must cause
514 * the caller to recalculate the next task
515 * in that case:
516 */
517 if (double_lock_balance(this_rq, src_rq)) {
518 struct task_struct *old_next = next;
519 next = pick_next_task_rt(this_rq);
520 if (next != old_next)
521 ret = 1;
522 }
523
524 /*
525 * Are there still pullable RT tasks?
526 */
527 if (src_rq->rt.rt_nr_running <= 1) {
528 spin_unlock(&src_rq->lock);
529 continue;
530 }
531
532 try_pulling:
533 p = pick_next_highest_task_rt(src_rq, this_cpu);
534
535 /*
536 * Do we have an RT task that preempts
537 * the to-be-scheduled task?
538 */
539 if (p && (!next || (p->prio < next->prio))) {
540 WARN_ON(p == src_rq->curr);
541 WARN_ON(!p->se.on_rq);
542
543 /*
544 * There's a chance that p is higher in priority
545 * than what's currently running on its cpu.
546 * This is just that p is wakeing up and hasn't
547 * had a chance to schedule. We only pull
548 * p if it is lower in priority than the
549 * current task on the run queue or
550 * this_rq next task is lower in prio than
551 * the current task on that rq.
552 */
553 if (p->prio < src_rq->curr->prio ||
554 (next && next->prio < src_rq->curr->prio))
555 goto bail;
556
557 ret = 1;
558
559 deactivate_task(src_rq, p, 0);
560 set_task_cpu(p, this_cpu);
561 activate_task(this_rq, p, 0);
562 /*
563 * We continue with the search, just in
564 * case there's an even higher prio task
565 * in another runqueue. (low likelyhood
566 * but possible)
567 */
568
569 /*
570 * Update next so that we won't pick a task
571 * on another cpu with a priority lower (or equal)
572 * than the one we just picked.
573 */
574 next = p;
575
576 }
577 bail:
578 spin_unlock(&src_rq->lock);
579 }
580
581 return ret;
582}
583
584static void schedule_balance_rt(struct rq *rq,
585 struct task_struct *prev)
586{
587 /* Try to pull RT tasks here if we lower this rq's prio */
588 if (unlikely(rt_task(prev)) &&
589 rq->rt.highest_prio > prev->prio)
590 pull_rt_task(rq);
591}
592
e8fa1362
SR
593static void schedule_tail_balance_rt(struct rq *rq)
594{
595 /*
596 * If we have more than one rt_task queued, then
597 * see if we can push the other rt_tasks off to other CPUS.
598 * Note we may release the rq lock, and since
599 * the lock was owned by prev, we need to release it
600 * first via finish_lock_switch and then reaquire it here.
601 */
602 if (unlikely(rq->rt.rt_nr_running > 1)) {
603 spin_lock_irq(&rq->lock);
604 push_rt_tasks(rq);
605 spin_unlock_irq(&rq->lock);
606 }
607}
608
4642dafd
SR
609
610static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
611{
612 if (unlikely(rt_task(p)) &&
613 !task_running(rq, p) &&
614 (p->prio >= rq->curr->prio))
615 push_rt_tasks(rq);
616}
617
43010659 618static unsigned long
bb44e5d1 619load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
620 unsigned long max_load_move,
621 struct sched_domain *sd, enum cpu_idle_type idle,
622 int *all_pinned, int *this_best_prio)
bb44e5d1 623{
c7a1e46a
SR
624 /* don't touch RT tasks */
625 return 0;
e1d1484f
PW
626}
627
628static int
629move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
630 struct sched_domain *sd, enum cpu_idle_type idle)
631{
c7a1e46a
SR
632 /* don't touch RT tasks */
633 return 0;
bb44e5d1 634}
73fe6aae
GH
635static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
636{
637 int weight = cpus_weight(*new_mask);
638
639 BUG_ON(!rt_task(p));
640
641 /*
642 * Update the migration status of the RQ if we have an RT task
643 * which is running AND changing its weight value.
644 */
645 if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
646 struct rq *rq = task_rq(p);
647
648 if ((p->nr_cpus_allowed <= 1) && (weight > 1))
649 rq->rt.rt_nr_migratory++;
650 else if((p->nr_cpus_allowed > 1) && (weight <= 1)) {
651 BUG_ON(!rq->rt.rt_nr_migratory);
652 rq->rt.rt_nr_migratory--;
653 }
654
655 update_rt_migration(rq);
656 }
657
658 p->cpus_allowed = *new_mask;
659 p->nr_cpus_allowed = weight;
660}
e8fa1362
SR
661#else /* CONFIG_SMP */
662# define schedule_tail_balance_rt(rq) do { } while (0)
f65eda4f 663# define schedule_balance_rt(rq, prev) do { } while (0)
4642dafd 664# define wakeup_balance_rt(rq, p) do { } while (0)
e8fa1362 665#endif /* CONFIG_SMP */
bb44e5d1
IM
666
667static void task_tick_rt(struct rq *rq, struct task_struct *p)
668{
67e2be02
PZ
669 update_curr_rt(rq);
670
bb44e5d1
IM
671 /*
672 * RR tasks need a special form of timeslice management.
673 * FIFO tasks have no timeslices.
674 */
675 if (p->policy != SCHED_RR)
676 return;
677
678 if (--p->time_slice)
679 return;
680
a4ec24b4 681 p->time_slice = DEF_TIMESLICE;
bb44e5d1 682
98fbc798
DA
683 /*
684 * Requeue to the end of queue if we are not the only element
685 * on the queue:
686 */
687 if (p->run_list.prev != p->run_list.next) {
688 requeue_task_rt(rq, p);
689 set_tsk_need_resched(p);
690 }
bb44e5d1
IM
691}
692
83b699ed
SV
693static void set_curr_task_rt(struct rq *rq)
694{
695 struct task_struct *p = rq->curr;
696
697 p->se.exec_start = rq->clock;
698}
699
5522d5d5
IM
700const struct sched_class rt_sched_class = {
701 .next = &fair_sched_class,
bb44e5d1
IM
702 .enqueue_task = enqueue_task_rt,
703 .dequeue_task = dequeue_task_rt,
704 .yield_task = yield_task_rt,
e7693a36
GH
705#ifdef CONFIG_SMP
706 .select_task_rq = select_task_rq_rt,
707#endif /* CONFIG_SMP */
bb44e5d1
IM
708
709 .check_preempt_curr = check_preempt_curr_rt,
710
711 .pick_next_task = pick_next_task_rt,
712 .put_prev_task = put_prev_task_rt,
713
681f3e68 714#ifdef CONFIG_SMP
bb44e5d1 715 .load_balance = load_balance_rt,
e1d1484f 716 .move_one_task = move_one_task_rt,
73fe6aae 717 .set_cpus_allowed = set_cpus_allowed_rt,
681f3e68 718#endif
bb44e5d1 719
83b699ed 720 .set_curr_task = set_curr_task_rt,
bb44e5d1 721 .task_tick = task_tick_rt,
bb44e5d1 722};