]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched_rt.c
Merge branch 'for-2.6.39' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
[mirror_ubuntu-bionic-kernel.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
8f48894f
PZ
6#ifdef CONFIG_RT_GROUP_SCHED
7
8#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
398a153b
GH
10static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11{
8f48894f
PZ
12#ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14#endif
398a153b
GH
15 return container_of(rt_se, struct task_struct, rt);
16}
17
398a153b
GH
18static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19{
20 return rt_rq->rq;
21}
22
23static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24{
25 return rt_se->rt_rq;
26}
27
28#else /* CONFIG_RT_GROUP_SCHED */
29
a1ba4d8b
PZ
30#define rt_entity_is_task(rt_se) (1)
31
8f48894f
PZ
32static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33{
34 return container_of(rt_se, struct task_struct, rt);
35}
36
398a153b
GH
37static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38{
39 return container_of(rt_rq, struct rq, rt);
40}
41
42static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43{
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
46
47 return &rq->rt;
48}
49
50#endif /* CONFIG_RT_GROUP_SCHED */
51
4fd29176 52#ifdef CONFIG_SMP
84de4274 53
637f5085 54static inline int rt_overloaded(struct rq *rq)
4fd29176 55{
637f5085 56 return atomic_read(&rq->rd->rto_count);
4fd29176 57}
84de4274 58
4fd29176
SR
59static inline void rt_set_overload(struct rq *rq)
60{
1f11eb6a
GH
61 if (!rq->online)
62 return;
63
c6c4927b 64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
65 /*
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
71 */
72 wmb();
637f5085 73 atomic_inc(&rq->rd->rto_count);
4fd29176 74}
84de4274 75
4fd29176
SR
76static inline void rt_clear_overload(struct rq *rq)
77{
1f11eb6a
GH
78 if (!rq->online)
79 return;
80
4fd29176 81 /* the order here really doesn't matter */
637f5085 82 atomic_dec(&rq->rd->rto_count);
c6c4927b 83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 84}
73fe6aae 85
398a153b 86static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 87{
a1ba4d8b 88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
cdc8eb98 92 }
398a153b
GH
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
637f5085 96 }
73fe6aae 97}
4fd29176 98
398a153b
GH
99static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100{
a1ba4d8b
PZ
101 if (!rt_entity_is_task(rt_se))
102 return;
103
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106 rt_rq->rt_nr_total++;
398a153b
GH
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
109
110 update_rt_migration(rt_rq);
111}
112
113static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114{
a1ba4d8b
PZ
115 if (!rt_entity_is_task(rt_se))
116 return;
117
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120 rt_rq->rt_nr_total--;
398a153b
GH
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
123
124 update_rt_migration(rt_rq);
125}
126
917b627d
GH
127static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
128{
129 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130 plist_node_init(&p->pushable_tasks, p->prio);
131 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
132}
133
134static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
135{
136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
137}
138
bcf08df3
IM
139static inline int has_pushable_tasks(struct rq *rq)
140{
141 return !plist_head_empty(&rq->rt.pushable_tasks);
142}
143
917b627d
GH
144#else
145
ceacc2c1 146static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 147{
6f505b16
PZ
148}
149
ceacc2c1
PZ
150static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
151{
152}
153
b07430ac 154static inline
ceacc2c1
PZ
155void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
156{
157}
158
398a153b 159static inline
ceacc2c1
PZ
160void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
161{
162}
917b627d 163
4fd29176
SR
164#endif /* CONFIG_SMP */
165
6f505b16
PZ
166static inline int on_rt_rq(struct sched_rt_entity *rt_se)
167{
168 return !list_empty(&rt_se->run_list);
169}
170
052f1dc7 171#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 172
9f0c1e56 173static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
174{
175 if (!rt_rq->tg)
9f0c1e56 176 return RUNTIME_INF;
6f505b16 177
ac086bc2
PZ
178 return rt_rq->rt_runtime;
179}
180
181static inline u64 sched_rt_period(struct rt_rq *rt_rq)
182{
183 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
184}
185
3d4b47b4
PZ
186static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
187{
188 list_add_rcu(&rt_rq->leaf_rt_rq_list,
189 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
190}
191
192static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
193{
194 list_del_rcu(&rt_rq->leaf_rt_rq_list);
195}
196
6f505b16 197#define for_each_leaf_rt_rq(rt_rq, rq) \
80f40ee4 198 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
6f505b16 199
6f505b16
PZ
200#define for_each_sched_rt_entity(rt_se) \
201 for (; rt_se; rt_se = rt_se->parent)
202
203static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
204{
205 return rt_se->my_q;
206}
207
37dad3fc 208static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
209static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
210
9f0c1e56 211static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 212{
f6121f4f 213 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
214 struct sched_rt_entity *rt_se;
215
0c3b9168
BS
216 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
217
218 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 219
f6121f4f
DF
220 if (rt_rq->rt_nr_running) {
221 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 222 enqueue_rt_entity(rt_se, false);
e864c499 223 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 224 resched_task(curr);
6f505b16
PZ
225 }
226}
227
9f0c1e56 228static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 229{
74b7eb58 230 struct sched_rt_entity *rt_se;
0c3b9168 231 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 232
0c3b9168 233 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
234
235 if (rt_se && on_rt_rq(rt_se))
236 dequeue_rt_entity(rt_se);
237}
238
23b0fdfc
PZ
239static inline int rt_rq_throttled(struct rt_rq *rt_rq)
240{
241 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
242}
243
244static int rt_se_boosted(struct sched_rt_entity *rt_se)
245{
246 struct rt_rq *rt_rq = group_rt_rq(rt_se);
247 struct task_struct *p;
248
249 if (rt_rq)
250 return !!rt_rq->rt_nr_boosted;
251
252 p = rt_task_of(rt_se);
253 return p->prio != p->normal_prio;
254}
255
d0b27fa7 256#ifdef CONFIG_SMP
c6c4927b 257static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
258{
259 return cpu_rq(smp_processor_id())->rd->span;
260}
6f505b16 261#else
c6c4927b 262static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 263{
c6c4927b 264 return cpu_online_mask;
d0b27fa7
PZ
265}
266#endif
6f505b16 267
d0b27fa7
PZ
268static inline
269struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 270{
d0b27fa7
PZ
271 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
272}
9f0c1e56 273
ac086bc2
PZ
274static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
275{
276 return &rt_rq->tg->rt_bandwidth;
277}
278
55e12e5e 279#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
280
281static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
282{
ac086bc2
PZ
283 return rt_rq->rt_runtime;
284}
285
286static inline u64 sched_rt_period(struct rt_rq *rt_rq)
287{
288 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
289}
290
3d4b47b4
PZ
291static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
292{
293}
294
295static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
296{
297}
298
6f505b16
PZ
299#define for_each_leaf_rt_rq(rt_rq, rq) \
300 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
301
6f505b16
PZ
302#define for_each_sched_rt_entity(rt_se) \
303 for (; rt_se; rt_se = NULL)
304
305static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
306{
307 return NULL;
308}
309
9f0c1e56 310static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 311{
f3ade837
JB
312 if (rt_rq->rt_nr_running)
313 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
314}
315
9f0c1e56 316static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
317{
318}
319
23b0fdfc
PZ
320static inline int rt_rq_throttled(struct rt_rq *rt_rq)
321{
322 return rt_rq->rt_throttled;
323}
d0b27fa7 324
c6c4927b 325static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 326{
c6c4927b 327 return cpu_online_mask;
d0b27fa7
PZ
328}
329
330static inline
331struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
332{
333 return &cpu_rq(cpu)->rt;
334}
335
ac086bc2
PZ
336static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
337{
338 return &def_rt_bandwidth;
339}
340
55e12e5e 341#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 342
ac086bc2 343#ifdef CONFIG_SMP
78333cdd
PZ
344/*
345 * We ran out of runtime, see if we can borrow some from our neighbours.
346 */
b79f3833 347static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
348{
349 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
350 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
351 int i, weight, more = 0;
352 u64 rt_period;
353
c6c4927b 354 weight = cpumask_weight(rd->span);
ac086bc2 355
0986b11b 356 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 357 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 358 for_each_cpu(i, rd->span) {
ac086bc2
PZ
359 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
360 s64 diff;
361
362 if (iter == rt_rq)
363 continue;
364
0986b11b 365 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
366 /*
367 * Either all rqs have inf runtime and there's nothing to steal
368 * or __disable_runtime() below sets a specific rq to inf to
369 * indicate its been disabled and disalow stealing.
370 */
7def2be1
PZ
371 if (iter->rt_runtime == RUNTIME_INF)
372 goto next;
373
78333cdd
PZ
374 /*
375 * From runqueues with spare time, take 1/n part of their
376 * spare time, but no more than our period.
377 */
ac086bc2
PZ
378 diff = iter->rt_runtime - iter->rt_time;
379 if (diff > 0) {
58838cf3 380 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
381 if (rt_rq->rt_runtime + diff > rt_period)
382 diff = rt_period - rt_rq->rt_runtime;
383 iter->rt_runtime -= diff;
384 rt_rq->rt_runtime += diff;
385 more = 1;
386 if (rt_rq->rt_runtime == rt_period) {
0986b11b 387 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
388 break;
389 }
390 }
7def2be1 391next:
0986b11b 392 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 393 }
0986b11b 394 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
395
396 return more;
397}
7def2be1 398
78333cdd
PZ
399/*
400 * Ensure this RQ takes back all the runtime it lend to its neighbours.
401 */
7def2be1
PZ
402static void __disable_runtime(struct rq *rq)
403{
404 struct root_domain *rd = rq->rd;
405 struct rt_rq *rt_rq;
406
407 if (unlikely(!scheduler_running))
408 return;
409
410 for_each_leaf_rt_rq(rt_rq, rq) {
411 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
412 s64 want;
413 int i;
414
0986b11b
TG
415 raw_spin_lock(&rt_b->rt_runtime_lock);
416 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
417 /*
418 * Either we're all inf and nobody needs to borrow, or we're
419 * already disabled and thus have nothing to do, or we have
420 * exactly the right amount of runtime to take out.
421 */
7def2be1
PZ
422 if (rt_rq->rt_runtime == RUNTIME_INF ||
423 rt_rq->rt_runtime == rt_b->rt_runtime)
424 goto balanced;
0986b11b 425 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 426
78333cdd
PZ
427 /*
428 * Calculate the difference between what we started out with
429 * and what we current have, that's the amount of runtime
430 * we lend and now have to reclaim.
431 */
7def2be1
PZ
432 want = rt_b->rt_runtime - rt_rq->rt_runtime;
433
78333cdd
PZ
434 /*
435 * Greedy reclaim, take back as much as we can.
436 */
c6c4927b 437 for_each_cpu(i, rd->span) {
7def2be1
PZ
438 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
439 s64 diff;
440
78333cdd
PZ
441 /*
442 * Can't reclaim from ourselves or disabled runqueues.
443 */
f1679d08 444 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
445 continue;
446
0986b11b 447 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
448 if (want > 0) {
449 diff = min_t(s64, iter->rt_runtime, want);
450 iter->rt_runtime -= diff;
451 want -= diff;
452 } else {
453 iter->rt_runtime -= want;
454 want -= want;
455 }
0986b11b 456 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
457
458 if (!want)
459 break;
460 }
461
0986b11b 462 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
463 /*
464 * We cannot be left wanting - that would mean some runtime
465 * leaked out of the system.
466 */
7def2be1
PZ
467 BUG_ON(want);
468balanced:
78333cdd
PZ
469 /*
470 * Disable all the borrow logic by pretending we have inf
471 * runtime - in which case borrowing doesn't make sense.
472 */
7def2be1 473 rt_rq->rt_runtime = RUNTIME_INF;
0986b11b
TG
474 raw_spin_unlock(&rt_rq->rt_runtime_lock);
475 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
476 }
477}
478
479static void disable_runtime(struct rq *rq)
480{
481 unsigned long flags;
482
05fa785c 483 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 484 __disable_runtime(rq);
05fa785c 485 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
486}
487
488static void __enable_runtime(struct rq *rq)
489{
7def2be1
PZ
490 struct rt_rq *rt_rq;
491
492 if (unlikely(!scheduler_running))
493 return;
494
78333cdd
PZ
495 /*
496 * Reset each runqueue's bandwidth settings
497 */
7def2be1
PZ
498 for_each_leaf_rt_rq(rt_rq, rq) {
499 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
500
0986b11b
TG
501 raw_spin_lock(&rt_b->rt_runtime_lock);
502 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
503 rt_rq->rt_runtime = rt_b->rt_runtime;
504 rt_rq->rt_time = 0;
baf25731 505 rt_rq->rt_throttled = 0;
0986b11b
TG
506 raw_spin_unlock(&rt_rq->rt_runtime_lock);
507 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
508 }
509}
510
511static void enable_runtime(struct rq *rq)
512{
513 unsigned long flags;
514
05fa785c 515 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 516 __enable_runtime(rq);
05fa785c 517 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
518}
519
eff6549b
PZ
520static int balance_runtime(struct rt_rq *rt_rq)
521{
522 int more = 0;
523
524 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 525 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 526 more = do_balance_runtime(rt_rq);
0986b11b 527 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
528 }
529
530 return more;
531}
55e12e5e 532#else /* !CONFIG_SMP */
eff6549b
PZ
533static inline int balance_runtime(struct rt_rq *rt_rq)
534{
535 return 0;
536}
55e12e5e 537#endif /* CONFIG_SMP */
ac086bc2 538
eff6549b
PZ
539static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
540{
541 int i, idle = 1;
c6c4927b 542 const struct cpumask *span;
eff6549b 543
0b148fa0 544 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
545 return 1;
546
547 span = sched_rt_period_mask();
c6c4927b 548 for_each_cpu(i, span) {
eff6549b
PZ
549 int enqueue = 0;
550 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
551 struct rq *rq = rq_of_rt_rq(rt_rq);
552
05fa785c 553 raw_spin_lock(&rq->lock);
eff6549b
PZ
554 if (rt_rq->rt_time) {
555 u64 runtime;
556
0986b11b 557 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
558 if (rt_rq->rt_throttled)
559 balance_runtime(rt_rq);
560 runtime = rt_rq->rt_runtime;
561 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
562 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
563 rt_rq->rt_throttled = 0;
564 enqueue = 1;
565 }
566 if (rt_rq->rt_time || rt_rq->rt_nr_running)
567 idle = 0;
0986b11b 568 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 569 } else if (rt_rq->rt_nr_running) {
6c3df255 570 idle = 0;
0c3b9168
BS
571 if (!rt_rq_throttled(rt_rq))
572 enqueue = 1;
573 }
eff6549b
PZ
574
575 if (enqueue)
576 sched_rt_rq_enqueue(rt_rq);
05fa785c 577 raw_spin_unlock(&rq->lock);
eff6549b
PZ
578 }
579
580 return idle;
581}
ac086bc2 582
6f505b16
PZ
583static inline int rt_se_prio(struct sched_rt_entity *rt_se)
584{
052f1dc7 585#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
586 struct rt_rq *rt_rq = group_rt_rq(rt_se);
587
588 if (rt_rq)
e864c499 589 return rt_rq->highest_prio.curr;
6f505b16
PZ
590#endif
591
592 return rt_task_of(rt_se)->prio;
593}
594
9f0c1e56 595static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 596{
9f0c1e56 597 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 598
fa85ae24 599 if (rt_rq->rt_throttled)
23b0fdfc 600 return rt_rq_throttled(rt_rq);
fa85ae24 601
ac086bc2
PZ
602 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
603 return 0;
604
b79f3833
PZ
605 balance_runtime(rt_rq);
606 runtime = sched_rt_runtime(rt_rq);
607 if (runtime == RUNTIME_INF)
608 return 0;
ac086bc2 609
9f0c1e56 610 if (rt_rq->rt_time > runtime) {
6f505b16 611 rt_rq->rt_throttled = 1;
23b0fdfc 612 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 613 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
614 return 1;
615 }
fa85ae24
PZ
616 }
617
618 return 0;
619}
620
bb44e5d1
IM
621/*
622 * Update the current task's runtime statistics. Skip current tasks that
623 * are not in our scheduling class.
624 */
a9957449 625static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
626{
627 struct task_struct *curr = rq->curr;
6f505b16
PZ
628 struct sched_rt_entity *rt_se = &curr->rt;
629 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
630 u64 delta_exec;
631
06c3bc65 632 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
633 return;
634
305e6835 635 delta_exec = rq->clock_task - curr->se.exec_start;
bb44e5d1
IM
636 if (unlikely((s64)delta_exec < 0))
637 delta_exec = 0;
6cfb0d5d 638
41acab88 639 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
640
641 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
642 account_group_exec_runtime(curr, delta_exec);
643
305e6835 644 curr->se.exec_start = rq->clock_task;
d842de87 645 cpuacct_charge(curr, delta_exec);
fa85ae24 646
e9e9250b
PZ
647 sched_rt_avg_update(rq, delta_exec);
648
0b148fa0
PZ
649 if (!rt_bandwidth_enabled())
650 return;
651
354d60c2
DG
652 for_each_sched_rt_entity(rt_se) {
653 rt_rq = rt_rq_of_se(rt_se);
654
cc2991cf 655 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 656 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
657 rt_rq->rt_time += delta_exec;
658 if (sched_rt_runtime_exceeded(rt_rq))
659 resched_task(curr);
0986b11b 660 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 661 }
354d60c2 662 }
bb44e5d1
IM
663}
664
398a153b 665#if defined CONFIG_SMP
e864c499
GH
666
667static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
668
669static inline int next_prio(struct rq *rq)
63489e45 670{
e864c499
GH
671 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
672
673 if (next && rt_prio(next->prio))
674 return next->prio;
675 else
676 return MAX_RT_PRIO;
677}
e864c499 678
398a153b
GH
679static void
680inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 681{
4d984277 682 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 683
398a153b 684 if (prio < prev_prio) {
4d984277 685
e864c499
GH
686 /*
687 * If the new task is higher in priority than anything on the
398a153b
GH
688 * run-queue, we know that the previous high becomes our
689 * next-highest.
e864c499 690 */
398a153b 691 rt_rq->highest_prio.next = prev_prio;
1f11eb6a
GH
692
693 if (rq->online)
4d984277 694 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1100ac91 695
e864c499
GH
696 } else if (prio == rt_rq->highest_prio.curr)
697 /*
698 * If the next task is equal in priority to the highest on
699 * the run-queue, then we implicitly know that the next highest
700 * task cannot be any lower than current
701 */
702 rt_rq->highest_prio.next = prio;
703 else if (prio < rt_rq->highest_prio.next)
704 /*
705 * Otherwise, we need to recompute next-highest
706 */
707 rt_rq->highest_prio.next = next_prio(rq);
398a153b 708}
73fe6aae 709
398a153b
GH
710static void
711dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
712{
713 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 714
398a153b
GH
715 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
716 rt_rq->highest_prio.next = next_prio(rq);
717
718 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
719 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
720}
721
398a153b
GH
722#else /* CONFIG_SMP */
723
6f505b16 724static inline
398a153b
GH
725void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
726static inline
727void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
728
729#endif /* CONFIG_SMP */
6e0534f2 730
052f1dc7 731#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
732static void
733inc_rt_prio(struct rt_rq *rt_rq, int prio)
734{
735 int prev_prio = rt_rq->highest_prio.curr;
736
737 if (prio < prev_prio)
738 rt_rq->highest_prio.curr = prio;
739
740 inc_rt_prio_smp(rt_rq, prio, prev_prio);
741}
742
743static void
744dec_rt_prio(struct rt_rq *rt_rq, int prio)
745{
746 int prev_prio = rt_rq->highest_prio.curr;
747
6f505b16 748 if (rt_rq->rt_nr_running) {
764a9d6f 749
398a153b 750 WARN_ON(prio < prev_prio);
764a9d6f 751
e864c499 752 /*
398a153b
GH
753 * This may have been our highest task, and therefore
754 * we may have some recomputation to do
e864c499 755 */
398a153b 756 if (prio == prev_prio) {
e864c499
GH
757 struct rt_prio_array *array = &rt_rq->active;
758
759 rt_rq->highest_prio.curr =
764a9d6f 760 sched_find_first_bit(array->bitmap);
e864c499
GH
761 }
762
764a9d6f 763 } else
e864c499 764 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 765
398a153b
GH
766 dec_rt_prio_smp(rt_rq, prio, prev_prio);
767}
1f11eb6a 768
398a153b
GH
769#else
770
771static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
772static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
773
774#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 775
052f1dc7 776#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
777
778static void
779inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
780{
781 if (rt_se_boosted(rt_se))
782 rt_rq->rt_nr_boosted++;
783
784 if (rt_rq->tg)
785 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
786}
787
788static void
789dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
790{
23b0fdfc
PZ
791 if (rt_se_boosted(rt_se))
792 rt_rq->rt_nr_boosted--;
793
794 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
795}
796
797#else /* CONFIG_RT_GROUP_SCHED */
798
799static void
800inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
801{
802 start_rt_bandwidth(&def_rt_bandwidth);
803}
804
805static inline
806void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
807
808#endif /* CONFIG_RT_GROUP_SCHED */
809
810static inline
811void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
812{
813 int prio = rt_se_prio(rt_se);
814
815 WARN_ON(!rt_prio(prio));
816 rt_rq->rt_nr_running++;
817
818 inc_rt_prio(rt_rq, prio);
819 inc_rt_migration(rt_se, rt_rq);
820 inc_rt_group(rt_se, rt_rq);
821}
822
823static inline
824void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
825{
826 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
827 WARN_ON(!rt_rq->rt_nr_running);
828 rt_rq->rt_nr_running--;
829
830 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
831 dec_rt_migration(rt_se, rt_rq);
832 dec_rt_group(rt_se, rt_rq);
63489e45
SR
833}
834
37dad3fc 835static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 836{
6f505b16
PZ
837 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
838 struct rt_prio_array *array = &rt_rq->active;
839 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 840 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 841
ad2a3f13
PZ
842 /*
843 * Don't enqueue the group if its throttled, or when empty.
844 * The latter is a consequence of the former when a child group
845 * get throttled and the current group doesn't have any other
846 * active members.
847 */
848 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 849 return;
63489e45 850
3d4b47b4
PZ
851 if (!rt_rq->rt_nr_running)
852 list_add_leaf_rt_rq(rt_rq);
853
37dad3fc
TG
854 if (head)
855 list_add(&rt_se->run_list, queue);
856 else
857 list_add_tail(&rt_se->run_list, queue);
6f505b16 858 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 859
6f505b16
PZ
860 inc_rt_tasks(rt_se, rt_rq);
861}
862
ad2a3f13 863static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
864{
865 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
866 struct rt_prio_array *array = &rt_rq->active;
867
868 list_del_init(&rt_se->run_list);
869 if (list_empty(array->queue + rt_se_prio(rt_se)))
870 __clear_bit(rt_se_prio(rt_se), array->bitmap);
871
872 dec_rt_tasks(rt_se, rt_rq);
3d4b47b4
PZ
873 if (!rt_rq->rt_nr_running)
874 list_del_leaf_rt_rq(rt_rq);
6f505b16
PZ
875}
876
877/*
878 * Because the prio of an upper entry depends on the lower
879 * entries, we must remove entries top - down.
6f505b16 880 */
ad2a3f13 881static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 882{
ad2a3f13 883 struct sched_rt_entity *back = NULL;
6f505b16 884
58d6c2d7
PZ
885 for_each_sched_rt_entity(rt_se) {
886 rt_se->back = back;
887 back = rt_se;
888 }
889
890 for (rt_se = back; rt_se; rt_se = rt_se->back) {
891 if (on_rt_rq(rt_se))
ad2a3f13
PZ
892 __dequeue_rt_entity(rt_se);
893 }
894}
895
37dad3fc 896static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
897{
898 dequeue_rt_stack(rt_se);
899 for_each_sched_rt_entity(rt_se)
37dad3fc 900 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
901}
902
903static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
904{
905 dequeue_rt_stack(rt_se);
906
907 for_each_sched_rt_entity(rt_se) {
908 struct rt_rq *rt_rq = group_rt_rq(rt_se);
909
910 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 911 __enqueue_rt_entity(rt_se, false);
58d6c2d7 912 }
bb44e5d1
IM
913}
914
915/*
916 * Adding/removing a task to/from a priority array:
917 */
ea87bb78 918static void
371fd7e7 919enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
920{
921 struct sched_rt_entity *rt_se = &p->rt;
922
371fd7e7 923 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
924 rt_se->timeout = 0;
925
371fd7e7 926 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 927
917b627d
GH
928 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
929 enqueue_pushable_task(rq, p);
6f505b16
PZ
930}
931
371fd7e7 932static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 933{
6f505b16 934 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 935
f1e14ef6 936 update_curr_rt(rq);
ad2a3f13 937 dequeue_rt_entity(rt_se);
c09595f6 938
917b627d 939 dequeue_pushable_task(rq, p);
bb44e5d1
IM
940}
941
942/*
943 * Put task to the end of the run list without the overhead of dequeue
944 * followed by enqueue.
945 */
7ebefa8c
DA
946static void
947requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 948{
1cdad715 949 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
950 struct rt_prio_array *array = &rt_rq->active;
951 struct list_head *queue = array->queue + rt_se_prio(rt_se);
952
953 if (head)
954 list_move(&rt_se->run_list, queue);
955 else
956 list_move_tail(&rt_se->run_list, queue);
1cdad715 957 }
6f505b16
PZ
958}
959
7ebefa8c 960static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 961{
6f505b16
PZ
962 struct sched_rt_entity *rt_se = &p->rt;
963 struct rt_rq *rt_rq;
bb44e5d1 964
6f505b16
PZ
965 for_each_sched_rt_entity(rt_se) {
966 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 967 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 968 }
bb44e5d1
IM
969}
970
6f505b16 971static void yield_task_rt(struct rq *rq)
bb44e5d1 972{
7ebefa8c 973 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
974}
975
e7693a36 976#ifdef CONFIG_SMP
318e0893
GH
977static int find_lowest_rq(struct task_struct *task);
978
0017d735
PZ
979static int
980select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
e7693a36 981{
0763a660 982 if (sd_flag != SD_BALANCE_WAKE)
5f3edc1b
PZ
983 return smp_processor_id();
984
318e0893 985 /*
e1f47d89
SR
986 * If the current task is an RT task, then
987 * try to see if we can wake this RT task up on another
988 * runqueue. Otherwise simply start this RT task
989 * on its current runqueue.
990 *
43fa5460
SR
991 * We want to avoid overloading runqueues. If the woken
992 * task is a higher priority, then it will stay on this CPU
993 * and the lower prio task should be moved to another CPU.
994 * Even though this will probably make the lower prio task
995 * lose its cache, we do not want to bounce a higher task
996 * around just because it gave up its CPU, perhaps for a
997 * lock?
998 *
999 * For equal prio tasks, we just let the scheduler sort it out.
318e0893 1000 */
17b3279b 1001 if (unlikely(rt_task(rq->curr)) &&
b3bc211c
SR
1002 (rq->curr->rt.nr_cpus_allowed < 2 ||
1003 rq->curr->prio < p->prio) &&
6f505b16 1004 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
1005 int cpu = find_lowest_rq(p);
1006
1007 return (cpu == -1) ? task_cpu(p) : cpu;
1008 }
1009
1010 /*
1011 * Otherwise, just let it ride on the affined RQ and the
1012 * post-schedule router will push the preempted task away
1013 */
e7693a36
GH
1014 return task_cpu(p);
1015}
7ebefa8c
DA
1016
1017static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1018{
7ebefa8c
DA
1019 if (rq->curr->rt.nr_cpus_allowed == 1)
1020 return;
1021
24600ce8 1022 if (p->rt.nr_cpus_allowed != 1
13b8bd0a
RR
1023 && cpupri_find(&rq->rd->cpupri, p, NULL))
1024 return;
24600ce8 1025
13b8bd0a
RR
1026 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1027 return;
7ebefa8c
DA
1028
1029 /*
1030 * There appears to be other cpus that can accept
1031 * current and none to run 'p', so lets reschedule
1032 * to try and push current away:
1033 */
1034 requeue_task_rt(rq, p, 1);
1035 resched_task(rq->curr);
1036}
1037
e7693a36
GH
1038#endif /* CONFIG_SMP */
1039
bb44e5d1
IM
1040/*
1041 * Preempt the current task with a newly woken task if needed:
1042 */
7d478721 1043static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1044{
45c01e82 1045 if (p->prio < rq->curr->prio) {
bb44e5d1 1046 resched_task(rq->curr);
45c01e82
GH
1047 return;
1048 }
1049
1050#ifdef CONFIG_SMP
1051 /*
1052 * If:
1053 *
1054 * - the newly woken task is of equal priority to the current task
1055 * - the newly woken task is non-migratable while current is migratable
1056 * - current will be preempted on the next reschedule
1057 *
1058 * we should check to see if current can readily move to a different
1059 * cpu. If so, we will reschedule to allow the push logic to try
1060 * to move current somewhere else, making room for our non-migratable
1061 * task.
1062 */
7ebefa8c
DA
1063 if (p->prio == rq->curr->prio && !need_resched())
1064 check_preempt_equal_prio(rq, p);
45c01e82 1065#endif
bb44e5d1
IM
1066}
1067
6f505b16
PZ
1068static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1069 struct rt_rq *rt_rq)
bb44e5d1 1070{
6f505b16
PZ
1071 struct rt_prio_array *array = &rt_rq->active;
1072 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1073 struct list_head *queue;
1074 int idx;
1075
1076 idx = sched_find_first_bit(array->bitmap);
6f505b16 1077 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1078
1079 queue = array->queue + idx;
6f505b16 1080 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1081
6f505b16
PZ
1082 return next;
1083}
bb44e5d1 1084
917b627d 1085static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1086{
1087 struct sched_rt_entity *rt_se;
1088 struct task_struct *p;
1089 struct rt_rq *rt_rq;
bb44e5d1 1090
6f505b16
PZ
1091 rt_rq = &rq->rt;
1092
1093 if (unlikely(!rt_rq->rt_nr_running))
1094 return NULL;
1095
23b0fdfc 1096 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1097 return NULL;
1098
1099 do {
1100 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1101 BUG_ON(!rt_se);
6f505b16
PZ
1102 rt_rq = group_rt_rq(rt_se);
1103 } while (rt_rq);
1104
1105 p = rt_task_of(rt_se);
305e6835 1106 p->se.exec_start = rq->clock_task;
917b627d
GH
1107
1108 return p;
1109}
1110
1111static struct task_struct *pick_next_task_rt(struct rq *rq)
1112{
1113 struct task_struct *p = _pick_next_task_rt(rq);
1114
1115 /* The running task is never eligible for pushing */
1116 if (p)
1117 dequeue_pushable_task(rq, p);
1118
bcf08df3 1119#ifdef CONFIG_SMP
3f029d3c
GH
1120 /*
1121 * We detect this state here so that we can avoid taking the RQ
1122 * lock again later if there is no need to push
1123 */
1124 rq->post_schedule = has_pushable_tasks(rq);
bcf08df3 1125#endif
3f029d3c 1126
6f505b16 1127 return p;
bb44e5d1
IM
1128}
1129
31ee529c 1130static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1131{
f1e14ef6 1132 update_curr_rt(rq);
bb44e5d1 1133 p->se.exec_start = 0;
917b627d
GH
1134
1135 /*
1136 * The previous task needs to be made eligible for pushing
1137 * if it is still active
1138 */
1139 if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
1140 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1141}
1142
681f3e68 1143#ifdef CONFIG_SMP
6f505b16 1144
e8fa1362
SR
1145/* Only try algorithms three times */
1146#define RT_MAX_TRIES 3
1147
e8fa1362
SR
1148static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1149
f65eda4f
SR
1150static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1151{
1152 if (!task_running(rq, p) &&
96f874e2 1153 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
6f505b16 1154 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
1155 return 1;
1156 return 0;
1157}
1158
e8fa1362 1159/* Return the second highest RT task, NULL otherwise */
79064fbf 1160static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 1161{
6f505b16
PZ
1162 struct task_struct *next = NULL;
1163 struct sched_rt_entity *rt_se;
1164 struct rt_prio_array *array;
1165 struct rt_rq *rt_rq;
e8fa1362
SR
1166 int idx;
1167
6f505b16
PZ
1168 for_each_leaf_rt_rq(rt_rq, rq) {
1169 array = &rt_rq->active;
1170 idx = sched_find_first_bit(array->bitmap);
49246274 1171next_idx:
6f505b16
PZ
1172 if (idx >= MAX_RT_PRIO)
1173 continue;
1174 if (next && next->prio < idx)
1175 continue;
1176 list_for_each_entry(rt_se, array->queue + idx, run_list) {
3d07467b
PZ
1177 struct task_struct *p;
1178
1179 if (!rt_entity_is_task(rt_se))
1180 continue;
1181
1182 p = rt_task_of(rt_se);
6f505b16
PZ
1183 if (pick_rt_task(rq, p, cpu)) {
1184 next = p;
1185 break;
1186 }
1187 }
1188 if (!next) {
1189 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1190 goto next_idx;
1191 }
f65eda4f
SR
1192 }
1193
e8fa1362
SR
1194 return next;
1195}
1196
0e3900e6 1197static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1198
6e1254d2
GH
1199static int find_lowest_rq(struct task_struct *task)
1200{
1201 struct sched_domain *sd;
96f874e2 1202 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1203 int this_cpu = smp_processor_id();
1204 int cpu = task_cpu(task);
06f90dbd 1205
6e0534f2
GH
1206 if (task->rt.nr_cpus_allowed == 1)
1207 return -1; /* No other targets possible */
6e1254d2 1208
6e0534f2
GH
1209 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1210 return -1; /* No targets found */
6e1254d2
GH
1211
1212 /*
1213 * At this point we have built a mask of cpus representing the
1214 * lowest priority tasks in the system. Now we want to elect
1215 * the best one based on our affinity and topology.
1216 *
1217 * We prioritize the last cpu that the task executed on since
1218 * it is most likely cache-hot in that location.
1219 */
96f874e2 1220 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1221 return cpu;
1222
1223 /*
1224 * Otherwise, we consult the sched_domains span maps to figure
1225 * out which cpu is logically closest to our hot cache data.
1226 */
e2c88063
RR
1227 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1228 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1229
e2c88063
RR
1230 for_each_domain(cpu, sd) {
1231 if (sd->flags & SD_WAKE_AFFINE) {
1232 int best_cpu;
6e1254d2 1233
e2c88063
RR
1234 /*
1235 * "this_cpu" is cheaper to preempt than a
1236 * remote processor.
1237 */
1238 if (this_cpu != -1 &&
1239 cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
1240 return this_cpu;
1241
1242 best_cpu = cpumask_first_and(lowest_mask,
1243 sched_domain_span(sd));
1244 if (best_cpu < nr_cpu_ids)
1245 return best_cpu;
6e1254d2
GH
1246 }
1247 }
1248
1249 /*
1250 * And finally, if there were no matches within the domains
1251 * just give the caller *something* to work with from the compatible
1252 * locations.
1253 */
e2c88063
RR
1254 if (this_cpu != -1)
1255 return this_cpu;
1256
1257 cpu = cpumask_any(lowest_mask);
1258 if (cpu < nr_cpu_ids)
1259 return cpu;
1260 return -1;
07b4032c
GH
1261}
1262
1263/* Will lock the rq it finds */
4df64c0b 1264static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1265{
1266 struct rq *lowest_rq = NULL;
07b4032c 1267 int tries;
4df64c0b 1268 int cpu;
e8fa1362 1269
07b4032c
GH
1270 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1271 cpu = find_lowest_rq(task);
1272
2de0b463 1273 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1274 break;
1275
07b4032c
GH
1276 lowest_rq = cpu_rq(cpu);
1277
e8fa1362 1278 /* if the prio of this runqueue changed, try again */
07b4032c 1279 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1280 /*
1281 * We had to unlock the run queue. In
1282 * the mean time, task could have
1283 * migrated already or had its affinity changed.
1284 * Also make sure that it wasn't scheduled on its rq.
1285 */
07b4032c 1286 if (unlikely(task_rq(task) != rq ||
96f874e2
RR
1287 !cpumask_test_cpu(lowest_rq->cpu,
1288 &task->cpus_allowed) ||
07b4032c 1289 task_running(rq, task) ||
e8fa1362 1290 !task->se.on_rq)) {
4df64c0b 1291
05fa785c 1292 raw_spin_unlock(&lowest_rq->lock);
e8fa1362
SR
1293 lowest_rq = NULL;
1294 break;
1295 }
1296 }
1297
1298 /* If this rq is still suitable use it. */
e864c499 1299 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1300 break;
1301
1302 /* try again */
1b12bbc7 1303 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1304 lowest_rq = NULL;
1305 }
1306
1307 return lowest_rq;
1308}
1309
917b627d
GH
1310static struct task_struct *pick_next_pushable_task(struct rq *rq)
1311{
1312 struct task_struct *p;
1313
1314 if (!has_pushable_tasks(rq))
1315 return NULL;
1316
1317 p = plist_first_entry(&rq->rt.pushable_tasks,
1318 struct task_struct, pushable_tasks);
1319
1320 BUG_ON(rq->cpu != task_cpu(p));
1321 BUG_ON(task_current(rq, p));
1322 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1323
1324 BUG_ON(!p->se.on_rq);
1325 BUG_ON(!rt_task(p));
1326
1327 return p;
1328}
1329
e8fa1362
SR
1330/*
1331 * If the current CPU has more than one RT task, see if the non
1332 * running task can migrate over to a CPU that is running a task
1333 * of lesser priority.
1334 */
697f0a48 1335static int push_rt_task(struct rq *rq)
e8fa1362
SR
1336{
1337 struct task_struct *next_task;
1338 struct rq *lowest_rq;
e8fa1362 1339
a22d7fc1
GH
1340 if (!rq->rt.overloaded)
1341 return 0;
1342
917b627d 1343 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1344 if (!next_task)
1345 return 0;
1346
49246274 1347retry:
697f0a48 1348 if (unlikely(next_task == rq->curr)) {
f65eda4f 1349 WARN_ON(1);
e8fa1362 1350 return 0;
f65eda4f 1351 }
e8fa1362
SR
1352
1353 /*
1354 * It's possible that the next_task slipped in of
1355 * higher priority than current. If that's the case
1356 * just reschedule current.
1357 */
697f0a48
GH
1358 if (unlikely(next_task->prio < rq->curr->prio)) {
1359 resched_task(rq->curr);
e8fa1362
SR
1360 return 0;
1361 }
1362
697f0a48 1363 /* We might release rq lock */
e8fa1362
SR
1364 get_task_struct(next_task);
1365
1366 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1367 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1368 if (!lowest_rq) {
1369 struct task_struct *task;
1370 /*
697f0a48 1371 * find lock_lowest_rq releases rq->lock
1563513d
GH
1372 * so it is possible that next_task has migrated.
1373 *
1374 * We need to make sure that the task is still on the same
1375 * run-queue and is also still the next task eligible for
1376 * pushing.
e8fa1362 1377 */
917b627d 1378 task = pick_next_pushable_task(rq);
1563513d
GH
1379 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1380 /*
1381 * If we get here, the task hasnt moved at all, but
1382 * it has failed to push. We will not try again,
1383 * since the other cpus will pull from us when they
1384 * are ready.
1385 */
1386 dequeue_pushable_task(rq, next_task);
1387 goto out;
e8fa1362 1388 }
917b627d 1389
1563513d
GH
1390 if (!task)
1391 /* No more tasks, just exit */
1392 goto out;
1393
917b627d 1394 /*
1563513d 1395 * Something has shifted, try again.
917b627d 1396 */
1563513d
GH
1397 put_task_struct(next_task);
1398 next_task = task;
1399 goto retry;
e8fa1362
SR
1400 }
1401
697f0a48 1402 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1403 set_task_cpu(next_task, lowest_rq->cpu);
1404 activate_task(lowest_rq, next_task, 0);
1405
1406 resched_task(lowest_rq->curr);
1407
1b12bbc7 1408 double_unlock_balance(rq, lowest_rq);
e8fa1362 1409
e8fa1362
SR
1410out:
1411 put_task_struct(next_task);
1412
917b627d 1413 return 1;
e8fa1362
SR
1414}
1415
e8fa1362
SR
1416static void push_rt_tasks(struct rq *rq)
1417{
1418 /* push_rt_task will return true if it moved an RT */
1419 while (push_rt_task(rq))
1420 ;
1421}
1422
f65eda4f
SR
1423static int pull_rt_task(struct rq *this_rq)
1424{
80bf3171 1425 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1426 struct task_struct *p;
f65eda4f 1427 struct rq *src_rq;
f65eda4f 1428
637f5085 1429 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1430 return 0;
1431
c6c4927b 1432 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1433 if (this_cpu == cpu)
1434 continue;
1435
1436 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1437
1438 /*
1439 * Don't bother taking the src_rq->lock if the next highest
1440 * task is known to be lower-priority than our current task.
1441 * This may look racy, but if this value is about to go
1442 * logically higher, the src_rq will push this task away.
1443 * And if its going logically lower, we do not care
1444 */
1445 if (src_rq->rt.highest_prio.next >=
1446 this_rq->rt.highest_prio.curr)
1447 continue;
1448
f65eda4f
SR
1449 /*
1450 * We can potentially drop this_rq's lock in
1451 * double_lock_balance, and another CPU could
a8728944 1452 * alter this_rq
f65eda4f 1453 */
a8728944 1454 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1455
1456 /*
1457 * Are there still pullable RT tasks?
1458 */
614ee1f6
MG
1459 if (src_rq->rt.rt_nr_running <= 1)
1460 goto skip;
f65eda4f 1461
f65eda4f
SR
1462 p = pick_next_highest_task_rt(src_rq, this_cpu);
1463
1464 /*
1465 * Do we have an RT task that preempts
1466 * the to-be-scheduled task?
1467 */
a8728944 1468 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f
SR
1469 WARN_ON(p == src_rq->curr);
1470 WARN_ON(!p->se.on_rq);
1471
1472 /*
1473 * There's a chance that p is higher in priority
1474 * than what's currently running on its cpu.
1475 * This is just that p is wakeing up and hasn't
1476 * had a chance to schedule. We only pull
1477 * p if it is lower in priority than the
a8728944 1478 * current task on the run queue
f65eda4f 1479 */
a8728944 1480 if (p->prio < src_rq->curr->prio)
614ee1f6 1481 goto skip;
f65eda4f
SR
1482
1483 ret = 1;
1484
1485 deactivate_task(src_rq, p, 0);
1486 set_task_cpu(p, this_cpu);
1487 activate_task(this_rq, p, 0);
1488 /*
1489 * We continue with the search, just in
1490 * case there's an even higher prio task
1491 * in another runqueue. (low likelyhood
1492 * but possible)
f65eda4f 1493 */
f65eda4f 1494 }
49246274 1495skip:
1b12bbc7 1496 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1497 }
1498
1499 return ret;
1500}
1501
9a897c5a 1502static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1503{
1504 /* Try to pull RT tasks here if we lower this rq's prio */
e864c499 1505 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1506 pull_rt_task(rq);
1507}
1508
9a897c5a 1509static void post_schedule_rt(struct rq *rq)
e8fa1362 1510{
967fc046 1511 push_rt_tasks(rq);
e8fa1362
SR
1512}
1513
8ae121ac
GH
1514/*
1515 * If we are not running and we are not going to reschedule soon, we should
1516 * try to push tasks away now
1517 */
efbbd05a 1518static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1519{
9a897c5a 1520 if (!task_running(rq, p) &&
8ae121ac 1521 !test_tsk_need_resched(rq->curr) &&
917b627d 1522 has_pushable_tasks(rq) &&
b3bc211c 1523 p->rt.nr_cpus_allowed > 1 &&
43fa5460 1524 rt_task(rq->curr) &&
b3bc211c
SR
1525 (rq->curr->rt.nr_cpus_allowed < 2 ||
1526 rq->curr->prio < p->prio))
4642dafd
SR
1527 push_rt_tasks(rq);
1528}
1529
cd8ba7cd 1530static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1531 const struct cpumask *new_mask)
73fe6aae 1532{
96f874e2 1533 int weight = cpumask_weight(new_mask);
73fe6aae
GH
1534
1535 BUG_ON(!rt_task(p));
1536
1537 /*
1538 * Update the migration status of the RQ if we have an RT task
1539 * which is running AND changing its weight value.
1540 */
6f505b16 1541 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1542 struct rq *rq = task_rq(p);
1543
917b627d
GH
1544 if (!task_current(rq, p)) {
1545 /*
1546 * Make sure we dequeue this task from the pushable list
1547 * before going further. It will either remain off of
1548 * the list because we are no longer pushable, or it
1549 * will be requeued.
1550 */
1551 if (p->rt.nr_cpus_allowed > 1)
1552 dequeue_pushable_task(rq, p);
1553
1554 /*
1555 * Requeue if our weight is changing and still > 1
1556 */
1557 if (weight > 1)
1558 enqueue_pushable_task(rq, p);
1559
1560 }
1561
6f505b16 1562 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1563 rq->rt.rt_nr_migratory++;
6f505b16 1564 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1565 BUG_ON(!rq->rt.rt_nr_migratory);
1566 rq->rt.rt_nr_migratory--;
1567 }
1568
398a153b 1569 update_rt_migration(&rq->rt);
73fe6aae
GH
1570 }
1571
96f874e2 1572 cpumask_copy(&p->cpus_allowed, new_mask);
6f505b16 1573 p->rt.nr_cpus_allowed = weight;
73fe6aae 1574}
deeeccd4 1575
bdd7c81b 1576/* Assumes rq->lock is held */
1f11eb6a 1577static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1578{
1579 if (rq->rt.overloaded)
1580 rt_set_overload(rq);
6e0534f2 1581
7def2be1
PZ
1582 __enable_runtime(rq);
1583
e864c499 1584 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1585}
1586
1587/* Assumes rq->lock is held */
1f11eb6a 1588static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1589{
1590 if (rq->rt.overloaded)
1591 rt_clear_overload(rq);
6e0534f2 1592
7def2be1
PZ
1593 __disable_runtime(rq);
1594
6e0534f2 1595 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1596}
cb469845
SR
1597
1598/*
1599 * When switch from the rt queue, we bring ourselves to a position
1600 * that we might want to pull RT tasks from other runqueues.
1601 */
da7a735e 1602static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1603{
1604 /*
1605 * If there are other RT tasks then we will reschedule
1606 * and the scheduling of the other RT tasks will handle
1607 * the balancing. But if we are the last RT task
1608 * we may need to handle the pulling of RT tasks
1609 * now.
1610 */
da7a735e 1611 if (p->se.on_rq && !rq->rt.rt_nr_running)
cb469845
SR
1612 pull_rt_task(rq);
1613}
3d8cbdf8
RR
1614
1615static inline void init_sched_rt_class(void)
1616{
1617 unsigned int i;
1618
1619 for_each_possible_cpu(i)
eaa95840 1620 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1621 GFP_KERNEL, cpu_to_node(i));
3d8cbdf8 1622}
cb469845
SR
1623#endif /* CONFIG_SMP */
1624
1625/*
1626 * When switching a task to RT, we may overload the runqueue
1627 * with RT tasks. In this case we try to push them off to
1628 * other runqueues.
1629 */
da7a735e 1630static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1631{
1632 int check_resched = 1;
1633
1634 /*
1635 * If we are already running, then there's nothing
1636 * that needs to be done. But if we are not running
1637 * we may need to preempt the current running task.
1638 * If that current running task is also an RT task
1639 * then see if we can move to another run queue.
1640 */
da7a735e 1641 if (p->se.on_rq && rq->curr != p) {
cb469845
SR
1642#ifdef CONFIG_SMP
1643 if (rq->rt.overloaded && push_rt_task(rq) &&
1644 /* Don't resched if we changed runqueues */
1645 rq != task_rq(p))
1646 check_resched = 0;
1647#endif /* CONFIG_SMP */
1648 if (check_resched && p->prio < rq->curr->prio)
1649 resched_task(rq->curr);
1650 }
1651}
1652
1653/*
1654 * Priority of the task has changed. This may cause
1655 * us to initiate a push or pull.
1656 */
da7a735e
PZ
1657static void
1658prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1659{
da7a735e
PZ
1660 if (!p->se.on_rq)
1661 return;
1662
1663 if (rq->curr == p) {
cb469845
SR
1664#ifdef CONFIG_SMP
1665 /*
1666 * If our priority decreases while running, we
1667 * may need to pull tasks to this runqueue.
1668 */
1669 if (oldprio < p->prio)
1670 pull_rt_task(rq);
1671 /*
1672 * If there's a higher priority task waiting to run
6fa46fa5
SR
1673 * then reschedule. Note, the above pull_rt_task
1674 * can release the rq lock and p could migrate.
1675 * Only reschedule if p is still on the same runqueue.
cb469845 1676 */
e864c499 1677 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1678 resched_task(p);
1679#else
1680 /* For UP simply resched on drop of prio */
1681 if (oldprio < p->prio)
1682 resched_task(p);
e8fa1362 1683#endif /* CONFIG_SMP */
cb469845
SR
1684 } else {
1685 /*
1686 * This task is not running, but if it is
1687 * greater than the current running task
1688 * then reschedule.
1689 */
1690 if (p->prio < rq->curr->prio)
1691 resched_task(rq->curr);
1692 }
1693}
1694
78f2c7db
PZ
1695static void watchdog(struct rq *rq, struct task_struct *p)
1696{
1697 unsigned long soft, hard;
1698
78d7d407
JS
1699 /* max may change after cur was read, this will be fixed next tick */
1700 soft = task_rlimit(p, RLIMIT_RTTIME);
1701 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1702
1703 if (soft != RLIM_INFINITY) {
1704 unsigned long next;
1705
1706 p->rt.timeout++;
1707 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1708 if (p->rt.timeout > next)
f06febc9 1709 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1710 }
1711}
bb44e5d1 1712
8f4d37ec 1713static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1714{
67e2be02
PZ
1715 update_curr_rt(rq);
1716
78f2c7db
PZ
1717 watchdog(rq, p);
1718
bb44e5d1
IM
1719 /*
1720 * RR tasks need a special form of timeslice management.
1721 * FIFO tasks have no timeslices.
1722 */
1723 if (p->policy != SCHED_RR)
1724 return;
1725
fa717060 1726 if (--p->rt.time_slice)
bb44e5d1
IM
1727 return;
1728
fa717060 1729 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1730
98fbc798
DA
1731 /*
1732 * Requeue to the end of queue if we are not the only element
1733 * on the queue:
1734 */
fa717060 1735 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1736 requeue_task_rt(rq, p, 0);
98fbc798
DA
1737 set_tsk_need_resched(p);
1738 }
bb44e5d1
IM
1739}
1740
83b699ed
SV
1741static void set_curr_task_rt(struct rq *rq)
1742{
1743 struct task_struct *p = rq->curr;
1744
305e6835 1745 p->se.exec_start = rq->clock_task;
917b627d
GH
1746
1747 /* The running task is never eligible for pushing */
1748 dequeue_pushable_task(rq, p);
83b699ed
SV
1749}
1750
6d686f45 1751static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
1752{
1753 /*
1754 * Time slice is 0 for SCHED_FIFO tasks
1755 */
1756 if (task->policy == SCHED_RR)
1757 return DEF_TIMESLICE;
1758 else
1759 return 0;
1760}
1761
2abdad0a 1762static const struct sched_class rt_sched_class = {
5522d5d5 1763 .next = &fair_sched_class,
bb44e5d1
IM
1764 .enqueue_task = enqueue_task_rt,
1765 .dequeue_task = dequeue_task_rt,
1766 .yield_task = yield_task_rt,
1767
1768 .check_preempt_curr = check_preempt_curr_rt,
1769
1770 .pick_next_task = pick_next_task_rt,
1771 .put_prev_task = put_prev_task_rt,
1772
681f3e68 1773#ifdef CONFIG_SMP
4ce72a2c
LZ
1774 .select_task_rq = select_task_rq_rt,
1775
73fe6aae 1776 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1777 .rq_online = rq_online_rt,
1778 .rq_offline = rq_offline_rt,
9a897c5a
SR
1779 .pre_schedule = pre_schedule_rt,
1780 .post_schedule = post_schedule_rt,
efbbd05a 1781 .task_woken = task_woken_rt,
cb469845 1782 .switched_from = switched_from_rt,
681f3e68 1783#endif
bb44e5d1 1784
83b699ed 1785 .set_curr_task = set_curr_task_rt,
bb44e5d1 1786 .task_tick = task_tick_rt,
cb469845 1787
0d721cea
PW
1788 .get_rr_interval = get_rr_interval_rt,
1789
cb469845
SR
1790 .prio_changed = prio_changed_rt,
1791 .switched_to = switched_to_rt,
bb44e5d1 1792};
ada18de2
PZ
1793
1794#ifdef CONFIG_SCHED_DEBUG
1795extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1796
1797static void print_rt_stats(struct seq_file *m, int cpu)
1798{
1799 struct rt_rq *rt_rq;
1800
1801 rcu_read_lock();
1802 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1803 print_rt_rq(m, cpu, rt_rq);
1804 rcu_read_unlock();
1805}
55e12e5e 1806#endif /* CONFIG_SCHED_DEBUG */
0e3900e6 1807