]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched_rt.c
sched: high-res preemption tick
[mirror_ubuntu-bionic-kernel.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
637f5085 15 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
16 /*
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
22 */
23 wmb();
637f5085 24 atomic_inc(&rq->rd->rto_count);
4fd29176 25}
84de4274 26
4fd29176
SR
27static inline void rt_clear_overload(struct rq *rq)
28{
29 /* the order here really doesn't matter */
637f5085
GH
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 32}
73fe6aae
GH
33
34static void update_rt_migration(struct rq *rq)
35{
637f5085 36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
37 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
40 }
41 } else if (rq->rt.overloaded) {
73fe6aae 42 rt_clear_overload(rq);
637f5085
GH
43 rq->rt.overloaded = 0;
44 }
73fe6aae 45}
4fd29176
SR
46#endif /* CONFIG_SMP */
47
bb44e5d1
IM
48/*
49 * Update the current task's runtime statistics. Skip current tasks that
50 * are not in our scheduling class.
51 */
a9957449 52static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
53{
54 struct task_struct *curr = rq->curr;
55 u64 delta_exec;
56
57 if (!task_has_rt_policy(curr))
58 return;
59
d281918d 60 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
61 if (unlikely((s64)delta_exec < 0))
62 delta_exec = 0;
6cfb0d5d
IM
63
64 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
65
66 curr->se.sum_exec_runtime += delta_exec;
d281918d 67 curr->se.exec_start = rq->clock;
d842de87 68 cpuacct_charge(curr, delta_exec);
bb44e5d1
IM
69}
70
63489e45
SR
71static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
72{
73 WARN_ON(!rt_task(p));
74 rq->rt.rt_nr_running++;
764a9d6f
SR
75#ifdef CONFIG_SMP
76 if (p->prio < rq->rt.highest_prio)
77 rq->rt.highest_prio = p->prio;
73fe6aae
GH
78 if (p->nr_cpus_allowed > 1)
79 rq->rt.rt_nr_migratory++;
80
81 update_rt_migration(rq);
764a9d6f 82#endif /* CONFIG_SMP */
63489e45
SR
83}
84
85static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
86{
87 WARN_ON(!rt_task(p));
88 WARN_ON(!rq->rt.rt_nr_running);
89 rq->rt.rt_nr_running--;
764a9d6f
SR
90#ifdef CONFIG_SMP
91 if (rq->rt.rt_nr_running) {
92 struct rt_prio_array *array;
93
94 WARN_ON(p->prio < rq->rt.highest_prio);
95 if (p->prio == rq->rt.highest_prio) {
96 /* recalculate */
97 array = &rq->rt.active;
98 rq->rt.highest_prio =
99 sched_find_first_bit(array->bitmap);
100 } /* otherwise leave rq->highest prio alone */
101 } else
102 rq->rt.highest_prio = MAX_RT_PRIO;
73fe6aae
GH
103 if (p->nr_cpus_allowed > 1)
104 rq->rt.rt_nr_migratory--;
105
106 update_rt_migration(rq);
764a9d6f 107#endif /* CONFIG_SMP */
63489e45
SR
108}
109
fd390f6a 110static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
bb44e5d1
IM
111{
112 struct rt_prio_array *array = &rq->rt.active;
113
fa717060 114 list_add_tail(&p->rt.run_list, array->queue + p->prio);
bb44e5d1 115 __set_bit(p->prio, array->bitmap);
58e2d4ca 116 inc_cpu_load(rq, p->se.load.weight);
63489e45
SR
117
118 inc_rt_tasks(p, rq);
78f2c7db
PZ
119
120 if (wakeup)
121 p->rt.timeout = 0;
bb44e5d1
IM
122}
123
124/*
125 * Adding/removing a task to/from a priority array:
126 */
f02231e5 127static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1
IM
128{
129 struct rt_prio_array *array = &rq->rt.active;
130
f1e14ef6 131 update_curr_rt(rq);
bb44e5d1 132
fa717060 133 list_del(&p->rt.run_list);
bb44e5d1
IM
134 if (list_empty(array->queue + p->prio))
135 __clear_bit(p->prio, array->bitmap);
58e2d4ca 136 dec_cpu_load(rq, p->se.load.weight);
63489e45
SR
137
138 dec_rt_tasks(p, rq);
bb44e5d1
IM
139}
140
141/*
142 * Put task to the end of the run list without the overhead of dequeue
143 * followed by enqueue.
144 */
145static void requeue_task_rt(struct rq *rq, struct task_struct *p)
146{
147 struct rt_prio_array *array = &rq->rt.active;
148
fa717060 149 list_move_tail(&p->rt.run_list, array->queue + p->prio);
bb44e5d1
IM
150}
151
152static void
4530d7ab 153yield_task_rt(struct rq *rq)
bb44e5d1 154{
4530d7ab 155 requeue_task_rt(rq, rq->curr);
bb44e5d1
IM
156}
157
e7693a36 158#ifdef CONFIG_SMP
318e0893
GH
159static int find_lowest_rq(struct task_struct *task);
160
e7693a36
GH
161static int select_task_rq_rt(struct task_struct *p, int sync)
162{
318e0893
GH
163 struct rq *rq = task_rq(p);
164
165 /*
e1f47d89
SR
166 * If the current task is an RT task, then
167 * try to see if we can wake this RT task up on another
168 * runqueue. Otherwise simply start this RT task
169 * on its current runqueue.
170 *
171 * We want to avoid overloading runqueues. Even if
172 * the RT task is of higher priority than the current RT task.
173 * RT tasks behave differently than other tasks. If
174 * one gets preempted, we try to push it off to another queue.
175 * So trying to keep a preempting RT task on the same
176 * cache hot CPU will force the running RT task to
177 * a cold CPU. So we waste all the cache for the lower
178 * RT task in hopes of saving some of a RT task
179 * that is just being woken and probably will have
180 * cold cache anyway.
318e0893 181 */
17b3279b
GH
182 if (unlikely(rt_task(rq->curr)) &&
183 (p->nr_cpus_allowed > 1)) {
318e0893
GH
184 int cpu = find_lowest_rq(p);
185
186 return (cpu == -1) ? task_cpu(p) : cpu;
187 }
188
189 /*
190 * Otherwise, just let it ride on the affined RQ and the
191 * post-schedule router will push the preempted task away
192 */
e7693a36
GH
193 return task_cpu(p);
194}
195#endif /* CONFIG_SMP */
196
bb44e5d1
IM
197/*
198 * Preempt the current task with a newly woken task if needed:
199 */
200static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
201{
202 if (p->prio < rq->curr->prio)
203 resched_task(rq->curr);
204}
205
fb8d4724 206static struct task_struct *pick_next_task_rt(struct rq *rq)
bb44e5d1
IM
207{
208 struct rt_prio_array *array = &rq->rt.active;
209 struct task_struct *next;
210 struct list_head *queue;
211 int idx;
212
213 idx = sched_find_first_bit(array->bitmap);
214 if (idx >= MAX_RT_PRIO)
215 return NULL;
216
217 queue = array->queue + idx;
fa717060 218 next = list_entry(queue->next, struct task_struct, rt.run_list);
bb44e5d1 219
d281918d 220 next->se.exec_start = rq->clock;
bb44e5d1
IM
221
222 return next;
223}
224
31ee529c 225static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 226{
f1e14ef6 227 update_curr_rt(rq);
bb44e5d1
IM
228 p->se.exec_start = 0;
229}
230
681f3e68 231#ifdef CONFIG_SMP
e8fa1362
SR
232/* Only try algorithms three times */
233#define RT_MAX_TRIES 3
234
235static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
236static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
237
f65eda4f
SR
238static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
239{
240 if (!task_running(rq, p) &&
73fe6aae
GH
241 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
242 (p->nr_cpus_allowed > 1))
f65eda4f
SR
243 return 1;
244 return 0;
245}
246
e8fa1362 247/* Return the second highest RT task, NULL otherwise */
79064fbf 248static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362
SR
249{
250 struct rt_prio_array *array = &rq->rt.active;
251 struct task_struct *next;
252 struct list_head *queue;
253 int idx;
254
e8fa1362
SR
255 if (likely(rq->rt.rt_nr_running < 2))
256 return NULL;
257
258 idx = sched_find_first_bit(array->bitmap);
259 if (unlikely(idx >= MAX_RT_PRIO)) {
260 WARN_ON(1); /* rt_nr_running is bad */
261 return NULL;
262 }
263
264 queue = array->queue + idx;
f65eda4f
SR
265 BUG_ON(list_empty(queue));
266
fa717060 267 next = list_entry(queue->next, struct task_struct, rt.run_list);
f65eda4f
SR
268 if (unlikely(pick_rt_task(rq, next, cpu)))
269 goto out;
e8fa1362
SR
270
271 if (queue->next->next != queue) {
272 /* same prio task */
79064fbf 273 next = list_entry(queue->next->next, struct task_struct,
fa717060 274 rt.run_list);
f65eda4f
SR
275 if (pick_rt_task(rq, next, cpu))
276 goto out;
e8fa1362
SR
277 }
278
f65eda4f 279 retry:
e8fa1362
SR
280 /* slower, but more flexible */
281 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
f65eda4f 282 if (unlikely(idx >= MAX_RT_PRIO))
e8fa1362 283 return NULL;
e8fa1362
SR
284
285 queue = array->queue + idx;
f65eda4f
SR
286 BUG_ON(list_empty(queue));
287
fa717060 288 list_for_each_entry(next, queue, rt.run_list) {
f65eda4f
SR
289 if (pick_rt_task(rq, next, cpu))
290 goto out;
291 }
292
293 goto retry;
e8fa1362 294
f65eda4f 295 out:
e8fa1362
SR
296 return next;
297}
298
299static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
300
6e1254d2 301static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
e8fa1362 302{
6e1254d2 303 int lowest_prio = -1;
610bf056 304 int lowest_cpu = -1;
06f90dbd 305 int count = 0;
610bf056 306 int cpu;
e8fa1362 307
637f5085 308 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
e8fa1362 309
07b4032c
GH
310 /*
311 * Scan each rq for the lowest prio.
312 */
610bf056 313 for_each_cpu_mask(cpu, *lowest_mask) {
07b4032c 314 struct rq *rq = cpu_rq(cpu);
e8fa1362 315
07b4032c
GH
316 /* We look for lowest RT prio or non-rt CPU */
317 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
610bf056
SR
318 /*
319 * if we already found a low RT queue
320 * and now we found this non-rt queue
321 * clear the mask and set our bit.
322 * Otherwise just return the queue as is
323 * and the count==1 will cause the algorithm
324 * to use the first bit found.
325 */
326 if (lowest_cpu != -1) {
6e1254d2 327 cpus_clear(*lowest_mask);
610bf056
SR
328 cpu_set(rq->cpu, *lowest_mask);
329 }
6e1254d2 330 return 1;
07b4032c
GH
331 }
332
333 /* no locking for now */
6e1254d2
GH
334 if ((rq->rt.highest_prio > task->prio)
335 && (rq->rt.highest_prio >= lowest_prio)) {
336 if (rq->rt.highest_prio > lowest_prio) {
337 /* new low - clear old data */
338 lowest_prio = rq->rt.highest_prio;
610bf056
SR
339 lowest_cpu = cpu;
340 count = 0;
6e1254d2 341 }
06f90dbd 342 count++;
610bf056
SR
343 } else
344 cpu_clear(cpu, *lowest_mask);
345 }
346
347 /*
348 * Clear out all the set bits that represent
349 * runqueues that were of higher prio than
350 * the lowest_prio.
351 */
352 if (lowest_cpu > 0) {
353 /*
354 * Perhaps we could add another cpumask op to
355 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
356 * Then that could be optimized to use memset and such.
357 */
358 for_each_cpu_mask(cpu, *lowest_mask) {
359 if (cpu >= lowest_cpu)
360 break;
361 cpu_clear(cpu, *lowest_mask);
e8fa1362 362 }
07b4032c
GH
363 }
364
06f90dbd 365 return count;
6e1254d2
GH
366}
367
368static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
369{
370 int first;
371
372 /* "this_cpu" is cheaper to preempt than a remote processor */
373 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
374 return this_cpu;
375
376 first = first_cpu(*mask);
377 if (first != NR_CPUS)
378 return first;
379
380 return -1;
381}
382
383static int find_lowest_rq(struct task_struct *task)
384{
385 struct sched_domain *sd;
386 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
387 int this_cpu = smp_processor_id();
388 int cpu = task_cpu(task);
06f90dbd
GH
389 int count = find_lowest_cpus(task, lowest_mask);
390
391 if (!count)
392 return -1; /* No targets found */
6e1254d2 393
06f90dbd
GH
394 /*
395 * There is no sense in performing an optimal search if only one
396 * target is found.
397 */
398 if (count == 1)
399 return first_cpu(*lowest_mask);
6e1254d2
GH
400
401 /*
402 * At this point we have built a mask of cpus representing the
403 * lowest priority tasks in the system. Now we want to elect
404 * the best one based on our affinity and topology.
405 *
406 * We prioritize the last cpu that the task executed on since
407 * it is most likely cache-hot in that location.
408 */
409 if (cpu_isset(cpu, *lowest_mask))
410 return cpu;
411
412 /*
413 * Otherwise, we consult the sched_domains span maps to figure
414 * out which cpu is logically closest to our hot cache data.
415 */
416 if (this_cpu == cpu)
417 this_cpu = -1; /* Skip this_cpu opt if the same */
418
419 for_each_domain(cpu, sd) {
420 if (sd->flags & SD_WAKE_AFFINE) {
421 cpumask_t domain_mask;
422 int best_cpu;
423
424 cpus_and(domain_mask, sd->span, *lowest_mask);
425
426 best_cpu = pick_optimal_cpu(this_cpu,
427 &domain_mask);
428 if (best_cpu != -1)
429 return best_cpu;
430 }
431 }
432
433 /*
434 * And finally, if there were no matches within the domains
435 * just give the caller *something* to work with from the compatible
436 * locations.
437 */
438 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
439}
440
441/* Will lock the rq it finds */
4df64c0b 442static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
443{
444 struct rq *lowest_rq = NULL;
07b4032c 445 int tries;
4df64c0b 446 int cpu;
e8fa1362 447
07b4032c
GH
448 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
449 cpu = find_lowest_rq(task);
450
2de0b463 451 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
452 break;
453
07b4032c
GH
454 lowest_rq = cpu_rq(cpu);
455
e8fa1362 456 /* if the prio of this runqueue changed, try again */
07b4032c 457 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
458 /*
459 * We had to unlock the run queue. In
460 * the mean time, task could have
461 * migrated already or had its affinity changed.
462 * Also make sure that it wasn't scheduled on its rq.
463 */
07b4032c 464 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
465 !cpu_isset(lowest_rq->cpu,
466 task->cpus_allowed) ||
07b4032c 467 task_running(rq, task) ||
e8fa1362 468 !task->se.on_rq)) {
4df64c0b 469
e8fa1362
SR
470 spin_unlock(&lowest_rq->lock);
471 lowest_rq = NULL;
472 break;
473 }
474 }
475
476 /* If this rq is still suitable use it. */
477 if (lowest_rq->rt.highest_prio > task->prio)
478 break;
479
480 /* try again */
481 spin_unlock(&lowest_rq->lock);
482 lowest_rq = NULL;
483 }
484
485 return lowest_rq;
486}
487
488/*
489 * If the current CPU has more than one RT task, see if the non
490 * running task can migrate over to a CPU that is running a task
491 * of lesser priority.
492 */
697f0a48 493static int push_rt_task(struct rq *rq)
e8fa1362
SR
494{
495 struct task_struct *next_task;
496 struct rq *lowest_rq;
497 int ret = 0;
498 int paranoid = RT_MAX_TRIES;
499
a22d7fc1
GH
500 if (!rq->rt.overloaded)
501 return 0;
502
697f0a48 503 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
504 if (!next_task)
505 return 0;
506
507 retry:
697f0a48 508 if (unlikely(next_task == rq->curr)) {
f65eda4f 509 WARN_ON(1);
e8fa1362 510 return 0;
f65eda4f 511 }
e8fa1362
SR
512
513 /*
514 * It's possible that the next_task slipped in of
515 * higher priority than current. If that's the case
516 * just reschedule current.
517 */
697f0a48
GH
518 if (unlikely(next_task->prio < rq->curr->prio)) {
519 resched_task(rq->curr);
e8fa1362
SR
520 return 0;
521 }
522
697f0a48 523 /* We might release rq lock */
e8fa1362
SR
524 get_task_struct(next_task);
525
526 /* find_lock_lowest_rq locks the rq if found */
697f0a48 527 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
528 if (!lowest_rq) {
529 struct task_struct *task;
530 /*
697f0a48 531 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
532 * so it is possible that next_task has changed.
533 * If it has, then try again.
534 */
697f0a48 535 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
536 if (unlikely(task != next_task) && task && paranoid--) {
537 put_task_struct(next_task);
538 next_task = task;
539 goto retry;
540 }
541 goto out;
542 }
543
697f0a48 544 deactivate_task(rq, next_task, 0);
e8fa1362
SR
545 set_task_cpu(next_task, lowest_rq->cpu);
546 activate_task(lowest_rq, next_task, 0);
547
548 resched_task(lowest_rq->curr);
549
550 spin_unlock(&lowest_rq->lock);
551
552 ret = 1;
553out:
554 put_task_struct(next_task);
555
556 return ret;
557}
558
559/*
560 * TODO: Currently we just use the second highest prio task on
561 * the queue, and stop when it can't migrate (or there's
562 * no more RT tasks). There may be a case where a lower
563 * priority RT task has a different affinity than the
564 * higher RT task. In this case the lower RT task could
565 * possibly be able to migrate where as the higher priority
566 * RT task could not. We currently ignore this issue.
567 * Enhancements are welcome!
568 */
569static void push_rt_tasks(struct rq *rq)
570{
571 /* push_rt_task will return true if it moved an RT */
572 while (push_rt_task(rq))
573 ;
574}
575
f65eda4f
SR
576static int pull_rt_task(struct rq *this_rq)
577{
80bf3171
IM
578 int this_cpu = this_rq->cpu, ret = 0, cpu;
579 struct task_struct *p, *next;
f65eda4f 580 struct rq *src_rq;
f65eda4f 581
637f5085 582 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
583 return 0;
584
585 next = pick_next_task_rt(this_rq);
586
637f5085 587 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
588 if (this_cpu == cpu)
589 continue;
590
591 src_rq = cpu_rq(cpu);
f65eda4f
SR
592 /*
593 * We can potentially drop this_rq's lock in
594 * double_lock_balance, and another CPU could
595 * steal our next task - hence we must cause
596 * the caller to recalculate the next task
597 * in that case:
598 */
599 if (double_lock_balance(this_rq, src_rq)) {
600 struct task_struct *old_next = next;
80bf3171 601
f65eda4f
SR
602 next = pick_next_task_rt(this_rq);
603 if (next != old_next)
604 ret = 1;
605 }
606
607 /*
608 * Are there still pullable RT tasks?
609 */
610 if (src_rq->rt.rt_nr_running <= 1) {
611 spin_unlock(&src_rq->lock);
612 continue;
613 }
614
f65eda4f
SR
615 p = pick_next_highest_task_rt(src_rq, this_cpu);
616
617 /*
618 * Do we have an RT task that preempts
619 * the to-be-scheduled task?
620 */
621 if (p && (!next || (p->prio < next->prio))) {
622 WARN_ON(p == src_rq->curr);
623 WARN_ON(!p->se.on_rq);
624
625 /*
626 * There's a chance that p is higher in priority
627 * than what's currently running on its cpu.
628 * This is just that p is wakeing up and hasn't
629 * had a chance to schedule. We only pull
630 * p if it is lower in priority than the
631 * current task on the run queue or
632 * this_rq next task is lower in prio than
633 * the current task on that rq.
634 */
635 if (p->prio < src_rq->curr->prio ||
636 (next && next->prio < src_rq->curr->prio))
80bf3171 637 goto out;
f65eda4f
SR
638
639 ret = 1;
640
641 deactivate_task(src_rq, p, 0);
642 set_task_cpu(p, this_cpu);
643 activate_task(this_rq, p, 0);
644 /*
645 * We continue with the search, just in
646 * case there's an even higher prio task
647 * in another runqueue. (low likelyhood
648 * but possible)
80bf3171 649 *
f65eda4f
SR
650 * Update next so that we won't pick a task
651 * on another cpu with a priority lower (or equal)
652 * than the one we just picked.
653 */
654 next = p;
655
656 }
80bf3171 657 out:
f65eda4f
SR
658 spin_unlock(&src_rq->lock);
659 }
660
661 return ret;
662}
663
9a897c5a 664static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
665{
666 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 667 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
668 pull_rt_task(rq);
669}
670
9a897c5a 671static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
672{
673 /*
674 * If we have more than one rt_task queued, then
675 * see if we can push the other rt_tasks off to other CPUS.
676 * Note we may release the rq lock, and since
677 * the lock was owned by prev, we need to release it
678 * first via finish_lock_switch and then reaquire it here.
679 */
a22d7fc1 680 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
681 spin_lock_irq(&rq->lock);
682 push_rt_tasks(rq);
683 spin_unlock_irq(&rq->lock);
684 }
685}
686
4642dafd 687
9a897c5a 688static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 689{
9a897c5a 690 if (!task_running(rq, p) &&
a22d7fc1
GH
691 (p->prio >= rq->rt.highest_prio) &&
692 rq->rt.overloaded)
4642dafd
SR
693 push_rt_tasks(rq);
694}
695
43010659 696static unsigned long
bb44e5d1 697load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
698 unsigned long max_load_move,
699 struct sched_domain *sd, enum cpu_idle_type idle,
700 int *all_pinned, int *this_best_prio)
bb44e5d1 701{
c7a1e46a
SR
702 /* don't touch RT tasks */
703 return 0;
e1d1484f
PW
704}
705
706static int
707move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
708 struct sched_domain *sd, enum cpu_idle_type idle)
709{
c7a1e46a
SR
710 /* don't touch RT tasks */
711 return 0;
bb44e5d1 712}
deeeccd4 713
73fe6aae
GH
714static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
715{
716 int weight = cpus_weight(*new_mask);
717
718 BUG_ON(!rt_task(p));
719
720 /*
721 * Update the migration status of the RQ if we have an RT task
722 * which is running AND changing its weight value.
723 */
724 if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
725 struct rq *rq = task_rq(p);
726
deeeccd4 727 if ((p->nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 728 rq->rt.rt_nr_migratory++;
deeeccd4 729 } else if ((p->nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
730 BUG_ON(!rq->rt.rt_nr_migratory);
731 rq->rt.rt_nr_migratory--;
732 }
733
734 update_rt_migration(rq);
735 }
736
737 p->cpus_allowed = *new_mask;
738 p->nr_cpus_allowed = weight;
739}
deeeccd4 740
bdd7c81b
IM
741/* Assumes rq->lock is held */
742static void join_domain_rt(struct rq *rq)
743{
744 if (rq->rt.overloaded)
745 rt_set_overload(rq);
746}
747
748/* Assumes rq->lock is held */
749static void leave_domain_rt(struct rq *rq)
750{
751 if (rq->rt.overloaded)
752 rt_clear_overload(rq);
753}
cb469845
SR
754
755/*
756 * When switch from the rt queue, we bring ourselves to a position
757 * that we might want to pull RT tasks from other runqueues.
758 */
759static void switched_from_rt(struct rq *rq, struct task_struct *p,
760 int running)
761{
762 /*
763 * If there are other RT tasks then we will reschedule
764 * and the scheduling of the other RT tasks will handle
765 * the balancing. But if we are the last RT task
766 * we may need to handle the pulling of RT tasks
767 * now.
768 */
769 if (!rq->rt.rt_nr_running)
770 pull_rt_task(rq);
771}
772#endif /* CONFIG_SMP */
773
774/*
775 * When switching a task to RT, we may overload the runqueue
776 * with RT tasks. In this case we try to push them off to
777 * other runqueues.
778 */
779static void switched_to_rt(struct rq *rq, struct task_struct *p,
780 int running)
781{
782 int check_resched = 1;
783
784 /*
785 * If we are already running, then there's nothing
786 * that needs to be done. But if we are not running
787 * we may need to preempt the current running task.
788 * If that current running task is also an RT task
789 * then see if we can move to another run queue.
790 */
791 if (!running) {
792#ifdef CONFIG_SMP
793 if (rq->rt.overloaded && push_rt_task(rq) &&
794 /* Don't resched if we changed runqueues */
795 rq != task_rq(p))
796 check_resched = 0;
797#endif /* CONFIG_SMP */
798 if (check_resched && p->prio < rq->curr->prio)
799 resched_task(rq->curr);
800 }
801}
802
803/*
804 * Priority of the task has changed. This may cause
805 * us to initiate a push or pull.
806 */
807static void prio_changed_rt(struct rq *rq, struct task_struct *p,
808 int oldprio, int running)
809{
810 if (running) {
811#ifdef CONFIG_SMP
812 /*
813 * If our priority decreases while running, we
814 * may need to pull tasks to this runqueue.
815 */
816 if (oldprio < p->prio)
817 pull_rt_task(rq);
818 /*
819 * If there's a higher priority task waiting to run
820 * then reschedule.
821 */
822 if (p->prio > rq->rt.highest_prio)
823 resched_task(p);
824#else
825 /* For UP simply resched on drop of prio */
826 if (oldprio < p->prio)
827 resched_task(p);
e8fa1362 828#endif /* CONFIG_SMP */
cb469845
SR
829 } else {
830 /*
831 * This task is not running, but if it is
832 * greater than the current running task
833 * then reschedule.
834 */
835 if (p->prio < rq->curr->prio)
836 resched_task(rq->curr);
837 }
838}
839
78f2c7db
PZ
840static void watchdog(struct rq *rq, struct task_struct *p)
841{
842 unsigned long soft, hard;
843
844 if (!p->signal)
845 return;
846
847 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
848 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
849
850 if (soft != RLIM_INFINITY) {
851 unsigned long next;
852
853 p->rt.timeout++;
854 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
855 if (next > p->rt.timeout) {
856 u64 next_time = p->se.sum_exec_runtime;
857
858 next_time += next * (NSEC_PER_SEC/HZ);
859 if (p->it_sched_expires > next_time)
860 p->it_sched_expires = next_time;
861 } else
862 p->it_sched_expires = p->se.sum_exec_runtime;
863 }
864}
bb44e5d1 865
8f4d37ec 866static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 867{
67e2be02
PZ
868 update_curr_rt(rq);
869
78f2c7db
PZ
870 watchdog(rq, p);
871
bb44e5d1
IM
872 /*
873 * RR tasks need a special form of timeslice management.
874 * FIFO tasks have no timeslices.
875 */
876 if (p->policy != SCHED_RR)
877 return;
878
fa717060 879 if (--p->rt.time_slice)
bb44e5d1
IM
880 return;
881
fa717060 882 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 883
98fbc798
DA
884 /*
885 * Requeue to the end of queue if we are not the only element
886 * on the queue:
887 */
fa717060 888 if (p->rt.run_list.prev != p->rt.run_list.next) {
98fbc798
DA
889 requeue_task_rt(rq, p);
890 set_tsk_need_resched(p);
891 }
bb44e5d1
IM
892}
893
83b699ed
SV
894static void set_curr_task_rt(struct rq *rq)
895{
896 struct task_struct *p = rq->curr;
897
898 p->se.exec_start = rq->clock;
899}
900
5522d5d5
IM
901const struct sched_class rt_sched_class = {
902 .next = &fair_sched_class,
bb44e5d1
IM
903 .enqueue_task = enqueue_task_rt,
904 .dequeue_task = dequeue_task_rt,
905 .yield_task = yield_task_rt,
e7693a36
GH
906#ifdef CONFIG_SMP
907 .select_task_rq = select_task_rq_rt,
908#endif /* CONFIG_SMP */
bb44e5d1
IM
909
910 .check_preempt_curr = check_preempt_curr_rt,
911
912 .pick_next_task = pick_next_task_rt,
913 .put_prev_task = put_prev_task_rt,
914
681f3e68 915#ifdef CONFIG_SMP
bb44e5d1 916 .load_balance = load_balance_rt,
e1d1484f 917 .move_one_task = move_one_task_rt,
73fe6aae 918 .set_cpus_allowed = set_cpus_allowed_rt,
bdd7c81b
IM
919 .join_domain = join_domain_rt,
920 .leave_domain = leave_domain_rt,
9a897c5a
SR
921 .pre_schedule = pre_schedule_rt,
922 .post_schedule = post_schedule_rt,
923 .task_wake_up = task_wake_up_rt,
cb469845 924 .switched_from = switched_from_rt,
681f3e68 925#endif
bb44e5d1 926
83b699ed 927 .set_curr_task = set_curr_task_rt,
bb44e5d1 928 .task_tick = task_tick_rt,
cb469845
SR
929
930 .prio_changed = prio_changed_rt,
931 .switched_to = switched_to_rt,
bb44e5d1 932};