]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/signal.c
[PATCH] fix cramfs making duplicate entries in inode cache
[mirror_ubuntu-bionic-kernel.git] / kernel / signal.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/config.h>
14#include <linux/slab.h>
15#include <linux/module.h>
16#include <linux/smp_lock.h>
17#include <linux/init.h>
18#include <linux/sched.h>
19#include <linux/fs.h>
20#include <linux/tty.h>
21#include <linux/binfmts.h>
22#include <linux/security.h>
23#include <linux/syscalls.h>
24#include <linux/ptrace.h>
25#include <linux/posix-timers.h>
7ed20e1a 26#include <linux/signal.h>
c2f0c7c3 27#include <linux/audit.h>
1da177e4
LT
28#include <asm/param.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/siginfo.h>
32
33/*
34 * SLAB caches for signal bits.
35 */
36
37static kmem_cache_t *sigqueue_cachep;
38
39/*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113#ifdef SIGEMT
114#define M_SIGEMT M(SIGEMT)
115#else
116#define M_SIGEMT 0
117#endif
118
119#if SIGRTMIN > BITS_PER_LONG
120#define M(sig) (1ULL << ((sig)-1))
121#else
122#define M(sig) (1UL << ((sig)-1))
123#endif
124#define T(sig, mask) (M(sig) & (mask))
125
126#define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129#define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132#define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137#define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140#define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142#define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144#define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146#define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149#define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153#define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157static int sig_ignored(struct task_struct *t, int sig)
158{
159 void __user * handler;
160
161 /*
162 * Tracers always want to know about signals..
163 */
164 if (t->ptrace & PT_PTRACED)
165 return 0;
166
167 /*
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
171 */
172 if (sigismember(&t->blocked, sig))
173 return 0;
174
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
179}
180
181/*
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
184 */
185static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186{
187 unsigned long ready;
188 long i;
189
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
195
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
201
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
205
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
207 }
208 return ready != 0;
209}
210
211#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213fastcall void recalc_sigpending_tsk(struct task_struct *t)
214{
215 if (t->signal->group_stop_count > 0 ||
3e1d1d28 216 (freezing(t)) ||
1da177e4
LT
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222}
223
224void recalc_sigpending(void)
225{
226 recalc_sigpending_tsk(current);
227}
228
229/* Given the mask, find the first available signal that should be serviced. */
230
231static int
232next_signal(struct sigpending *pending, sigset_t *mask)
233{
234 unsigned long i, *s, *m, x;
235 int sig = 0;
236
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
245 }
246 break;
247
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
256
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
260 }
261
262 return sig;
263}
264
265static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags,
266 int override_rlimit)
267{
268 struct sigqueue *q = NULL;
269
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
280 q->lock = NULL;
281 q->user = get_uid(t->user);
282 }
283 return(q);
284}
285
286static inline void __sigqueue_free(struct sigqueue *q)
287{
288 if (q->flags & SIGQUEUE_PREALLOC)
289 return;
290 atomic_dec(&q->user->sigpending);
291 free_uid(q->user);
292 kmem_cache_free(sigqueue_cachep, q);
293}
294
295static void flush_sigqueue(struct sigpending *queue)
296{
297 struct sigqueue *q;
298
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
303 __sigqueue_free(q);
304 }
305}
306
307/*
308 * Flush all pending signals for a task.
309 */
310
311void
312flush_signals(struct task_struct *t)
313{
314 unsigned long flags;
315
316 spin_lock_irqsave(&t->sighand->siglock, flags);
317 clear_tsk_thread_flag(t,TIF_SIGPENDING);
318 flush_sigqueue(&t->pending);
319 flush_sigqueue(&t->signal->shared_pending);
320 spin_unlock_irqrestore(&t->sighand->siglock, flags);
321}
322
323/*
324 * This function expects the tasklist_lock write-locked.
325 */
326void __exit_sighand(struct task_struct *tsk)
327{
328 struct sighand_struct * sighand = tsk->sighand;
329
330 /* Ok, we're done with the signal handlers */
331 tsk->sighand = NULL;
332 if (atomic_dec_and_test(&sighand->count))
333 kmem_cache_free(sighand_cachep, sighand);
334}
335
336void exit_sighand(struct task_struct *tsk)
337{
338 write_lock_irq(&tasklist_lock);
339 __exit_sighand(tsk);
340 write_unlock_irq(&tasklist_lock);
341}
342
343/*
344 * This function expects the tasklist_lock write-locked.
345 */
346void __exit_signal(struct task_struct *tsk)
347{
348 struct signal_struct * sig = tsk->signal;
349 struct sighand_struct * sighand = tsk->sighand;
350
351 if (!sig)
352 BUG();
353 if (!atomic_read(&sig->count))
354 BUG();
355 spin_lock(&sighand->siglock);
356 posix_cpu_timers_exit(tsk);
357 if (atomic_dec_and_test(&sig->count)) {
358 posix_cpu_timers_exit_group(tsk);
359 if (tsk == sig->curr_target)
360 sig->curr_target = next_thread(tsk);
361 tsk->signal = NULL;
362 spin_unlock(&sighand->siglock);
363 flush_sigqueue(&sig->shared_pending);
364 } else {
365 /*
366 * If there is any task waiting for the group exit
367 * then notify it:
368 */
369 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
370 wake_up_process(sig->group_exit_task);
371 sig->group_exit_task = NULL;
372 }
373 if (tsk == sig->curr_target)
374 sig->curr_target = next_thread(tsk);
375 tsk->signal = NULL;
376 /*
377 * Accumulate here the counters for all threads but the
378 * group leader as they die, so they can be added into
379 * the process-wide totals when those are taken.
380 * The group leader stays around as a zombie as long
381 * as there are other threads. When it gets reaped,
382 * the exit.c code will add its counts into these totals.
383 * We won't ever get here for the group leader, since it
384 * will have been the last reference on the signal_struct.
385 */
386 sig->utime = cputime_add(sig->utime, tsk->utime);
387 sig->stime = cputime_add(sig->stime, tsk->stime);
388 sig->min_flt += tsk->min_flt;
389 sig->maj_flt += tsk->maj_flt;
390 sig->nvcsw += tsk->nvcsw;
391 sig->nivcsw += tsk->nivcsw;
392 sig->sched_time += tsk->sched_time;
393 spin_unlock(&sighand->siglock);
394 sig = NULL; /* Marker for below. */
395 }
396 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
397 flush_sigqueue(&tsk->pending);
398 if (sig) {
399 /*
400 * We are cleaning up the signal_struct here. We delayed
401 * calling exit_itimers until after flush_sigqueue, just in
402 * case our thread-local pending queue contained a queued
403 * timer signal that would have been cleared in
404 * exit_itimers. When that called sigqueue_free, it would
405 * attempt to re-take the tasklist_lock and deadlock. This
406 * can never happen if we ensure that all queues the
407 * timer's signal might be queued on have been flushed
408 * first. The shared_pending queue, and our own pending
409 * queue are the only queues the timer could be on, since
410 * there are no other threads left in the group and timer
411 * signals are constrained to threads inside the group.
412 */
413 exit_itimers(sig);
414 exit_thread_group_keys(sig);
415 kmem_cache_free(signal_cachep, sig);
416 }
417}
418
419void exit_signal(struct task_struct *tsk)
420{
421 write_lock_irq(&tasklist_lock);
422 __exit_signal(tsk);
423 write_unlock_irq(&tasklist_lock);
424}
425
426/*
427 * Flush all handlers for a task.
428 */
429
430void
431flush_signal_handlers(struct task_struct *t, int force_default)
432{
433 int i;
434 struct k_sigaction *ka = &t->sighand->action[0];
435 for (i = _NSIG ; i != 0 ; i--) {
436 if (force_default || ka->sa.sa_handler != SIG_IGN)
437 ka->sa.sa_handler = SIG_DFL;
438 ka->sa.sa_flags = 0;
439 sigemptyset(&ka->sa.sa_mask);
440 ka++;
441 }
442}
443
444
445/* Notify the system that a driver wants to block all signals for this
446 * process, and wants to be notified if any signals at all were to be
447 * sent/acted upon. If the notifier routine returns non-zero, then the
448 * signal will be acted upon after all. If the notifier routine returns 0,
449 * then then signal will be blocked. Only one block per process is
450 * allowed. priv is a pointer to private data that the notifier routine
451 * can use to determine if the signal should be blocked or not. */
452
453void
454block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
455{
456 unsigned long flags;
457
458 spin_lock_irqsave(&current->sighand->siglock, flags);
459 current->notifier_mask = mask;
460 current->notifier_data = priv;
461 current->notifier = notifier;
462 spin_unlock_irqrestore(&current->sighand->siglock, flags);
463}
464
465/* Notify the system that blocking has ended. */
466
467void
468unblock_all_signals(void)
469{
470 unsigned long flags;
471
472 spin_lock_irqsave(&current->sighand->siglock, flags);
473 current->notifier = NULL;
474 current->notifier_data = NULL;
475 recalc_sigpending();
476 spin_unlock_irqrestore(&current->sighand->siglock, flags);
477}
478
479static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
480{
481 struct sigqueue *q, *first = NULL;
482 int still_pending = 0;
483
484 if (unlikely(!sigismember(&list->signal, sig)))
485 return 0;
486
487 /*
488 * Collect the siginfo appropriate to this signal. Check if
489 * there is another siginfo for the same signal.
490 */
491 list_for_each_entry(q, &list->list, list) {
492 if (q->info.si_signo == sig) {
493 if (first) {
494 still_pending = 1;
495 break;
496 }
497 first = q;
498 }
499 }
500 if (first) {
501 list_del_init(&first->list);
502 copy_siginfo(info, &first->info);
503 __sigqueue_free(first);
504 if (!still_pending)
505 sigdelset(&list->signal, sig);
506 } else {
507
508 /* Ok, it wasn't in the queue. This must be
509 a fast-pathed signal or we must have been
510 out of queue space. So zero out the info.
511 */
512 sigdelset(&list->signal, sig);
513 info->si_signo = sig;
514 info->si_errno = 0;
515 info->si_code = 0;
516 info->si_pid = 0;
517 info->si_uid = 0;
518 }
519 return 1;
520}
521
522static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
523 siginfo_t *info)
524{
525 int sig = 0;
526
c33880aa
KK
527 /* SIGKILL must have priority, otherwise it is quite easy
528 * to create an unkillable process, sending sig < SIGKILL
529 * to self */
530 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
531 if (!sigismember(mask, SIGKILL))
532 sig = SIGKILL;
533 }
534
535 if (likely(!sig))
536 sig = next_signal(pending, mask);
1da177e4
LT
537 if (sig) {
538 if (current->notifier) {
539 if (sigismember(current->notifier_mask, sig)) {
540 if (!(current->notifier)(current->notifier_data)) {
541 clear_thread_flag(TIF_SIGPENDING);
542 return 0;
543 }
544 }
545 }
546
547 if (!collect_signal(sig, pending, info))
548 sig = 0;
549
550 }
551 recalc_sigpending();
552
553 return sig;
554}
555
556/*
557 * Dequeue a signal and return the element to the caller, which is
558 * expected to free it.
559 *
560 * All callers have to hold the siglock.
561 */
562int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
563{
564 int signr = __dequeue_signal(&tsk->pending, mask, info);
565 if (!signr)
566 signr = __dequeue_signal(&tsk->signal->shared_pending,
567 mask, info);
568 if (signr && unlikely(sig_kernel_stop(signr))) {
569 /*
570 * Set a marker that we have dequeued a stop signal. Our
571 * caller might release the siglock and then the pending
572 * stop signal it is about to process is no longer in the
573 * pending bitmasks, but must still be cleared by a SIGCONT
574 * (and overruled by a SIGKILL). So those cases clear this
575 * shared flag after we've set it. Note that this flag may
576 * remain set after the signal we return is ignored or
577 * handled. That doesn't matter because its only purpose
578 * is to alert stop-signal processing code when another
579 * processor has come along and cleared the flag.
580 */
581 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
582 }
583 if ( signr &&
584 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
585 info->si_sys_private){
586 /*
587 * Release the siglock to ensure proper locking order
588 * of timer locks outside of siglocks. Note, we leave
589 * irqs disabled here, since the posix-timers code is
590 * about to disable them again anyway.
591 */
592 spin_unlock(&tsk->sighand->siglock);
593 do_schedule_next_timer(info);
594 spin_lock(&tsk->sighand->siglock);
595 }
596 return signr;
597}
598
599/*
600 * Tell a process that it has a new active signal..
601 *
602 * NOTE! we rely on the previous spin_lock to
603 * lock interrupts for us! We can only be called with
604 * "siglock" held, and the local interrupt must
605 * have been disabled when that got acquired!
606 *
607 * No need to set need_resched since signal event passing
608 * goes through ->blocked
609 */
610void signal_wake_up(struct task_struct *t, int resume)
611{
612 unsigned int mask;
613
614 set_tsk_thread_flag(t, TIF_SIGPENDING);
615
616 /*
617 * For SIGKILL, we want to wake it up in the stopped/traced case.
618 * We don't check t->state here because there is a race with it
619 * executing another processor and just now entering stopped state.
620 * By using wake_up_state, we ensure the process will wake up and
621 * handle its death signal.
622 */
623 mask = TASK_INTERRUPTIBLE;
624 if (resume)
625 mask |= TASK_STOPPED | TASK_TRACED;
626 if (!wake_up_state(t, mask))
627 kick_process(t);
628}
629
630/*
631 * Remove signals in mask from the pending set and queue.
632 * Returns 1 if any signals were found.
633 *
634 * All callers must be holding the siglock.
635 */
636static int rm_from_queue(unsigned long mask, struct sigpending *s)
637{
638 struct sigqueue *q, *n;
639
640 if (!sigtestsetmask(&s->signal, mask))
641 return 0;
642
643 sigdelsetmask(&s->signal, mask);
644 list_for_each_entry_safe(q, n, &s->list, list) {
645 if (q->info.si_signo < SIGRTMIN &&
646 (mask & sigmask(q->info.si_signo))) {
647 list_del_init(&q->list);
648 __sigqueue_free(q);
649 }
650 }
651 return 1;
652}
653
654/*
655 * Bad permissions for sending the signal
656 */
657static int check_kill_permission(int sig, struct siginfo *info,
658 struct task_struct *t)
659{
660 int error = -EINVAL;
7ed20e1a 661 if (!valid_signal(sig))
1da177e4
LT
662 return error;
663 error = -EPERM;
664 if ((!info || ((unsigned long)info != 1 &&
665 (unsigned long)info != 2 && SI_FROMUSER(info)))
666 && ((sig != SIGCONT) ||
667 (current->signal->session != t->signal->session))
668 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
669 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
670 && !capable(CAP_KILL))
671 return error;
c2f0c7c3
SG
672
673 error = security_task_kill(t, info, sig);
674 if (!error)
675 audit_signal_info(sig, t); /* Let audit system see the signal */
676 return error;
1da177e4
LT
677}
678
679/* forward decl */
680static void do_notify_parent_cldstop(struct task_struct *tsk,
bc505a47 681 int to_self,
1da177e4
LT
682 int why);
683
684/*
685 * Handle magic process-wide effects of stop/continue signals.
686 * Unlike the signal actions, these happen immediately at signal-generation
687 * time regardless of blocking, ignoring, or handling. This does the
688 * actual continuing for SIGCONT, but not the actual stopping for stop
689 * signals. The process stop is done as a signal action for SIG_DFL.
690 */
691static void handle_stop_signal(int sig, struct task_struct *p)
692{
693 struct task_struct *t;
694
dd12f48d 695 if (p->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
696 /*
697 * The process is in the middle of dying already.
698 */
699 return;
700
701 if (sig_kernel_stop(sig)) {
702 /*
703 * This is a stop signal. Remove SIGCONT from all queues.
704 */
705 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
706 t = p;
707 do {
708 rm_from_queue(sigmask(SIGCONT), &t->pending);
709 t = next_thread(t);
710 } while (t != p);
711 } else if (sig == SIGCONT) {
712 /*
713 * Remove all stop signals from all queues,
714 * and wake all threads.
715 */
716 if (unlikely(p->signal->group_stop_count > 0)) {
717 /*
718 * There was a group stop in progress. We'll
719 * pretend it finished before we got here. We are
720 * obliged to report it to the parent: if the
721 * SIGSTOP happened "after" this SIGCONT, then it
722 * would have cleared this pending SIGCONT. If it
723 * happened "before" this SIGCONT, then the parent
724 * got the SIGCHLD about the stop finishing before
725 * the continue happened. We do the notification
726 * now, and it's as if the stop had finished and
727 * the SIGCHLD was pending on entry to this kill.
728 */
729 p->signal->group_stop_count = 0;
730 p->signal->flags = SIGNAL_STOP_CONTINUED;
731 spin_unlock(&p->sighand->siglock);
bc505a47 732 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
1da177e4
LT
733 spin_lock(&p->sighand->siglock);
734 }
735 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
736 t = p;
737 do {
738 unsigned int state;
739 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
740
741 /*
742 * If there is a handler for SIGCONT, we must make
743 * sure that no thread returns to user mode before
744 * we post the signal, in case it was the only
745 * thread eligible to run the signal handler--then
746 * it must not do anything between resuming and
747 * running the handler. With the TIF_SIGPENDING
748 * flag set, the thread will pause and acquire the
749 * siglock that we hold now and until we've queued
750 * the pending signal.
751 *
752 * Wake up the stopped thread _after_ setting
753 * TIF_SIGPENDING
754 */
755 state = TASK_STOPPED;
756 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
757 set_tsk_thread_flag(t, TIF_SIGPENDING);
758 state |= TASK_INTERRUPTIBLE;
759 }
760 wake_up_state(t, state);
761
762 t = next_thread(t);
763 } while (t != p);
764
765 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
766 /*
767 * We were in fact stopped, and are now continued.
768 * Notify the parent with CLD_CONTINUED.
769 */
770 p->signal->flags = SIGNAL_STOP_CONTINUED;
771 p->signal->group_exit_code = 0;
772 spin_unlock(&p->sighand->siglock);
bc505a47 773 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
1da177e4
LT
774 spin_lock(&p->sighand->siglock);
775 } else {
776 /*
777 * We are not stopped, but there could be a stop
778 * signal in the middle of being processed after
779 * being removed from the queue. Clear that too.
780 */
781 p->signal->flags = 0;
782 }
783 } else if (sig == SIGKILL) {
784 /*
785 * Make sure that any pending stop signal already dequeued
786 * is undone by the wakeup for SIGKILL.
787 */
788 p->signal->flags = 0;
789 }
790}
791
792static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
793 struct sigpending *signals)
794{
795 struct sigqueue * q = NULL;
796 int ret = 0;
797
798 /*
799 * fast-pathed signals for kernel-internal things like SIGSTOP
800 * or SIGKILL.
801 */
802 if ((unsigned long)info == 2)
803 goto out_set;
804
805 /* Real-time signals must be queued if sent by sigqueue, or
806 some other real-time mechanism. It is implementation
807 defined whether kill() does so. We attempt to do so, on
808 the principle of least surprise, but since kill is not
809 allowed to fail with EAGAIN when low on memory we just
810 make sure at least one signal gets delivered and don't
811 pass on the info struct. */
812
813 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
814 ((unsigned long) info < 2 ||
815 info->si_code >= 0)));
816 if (q) {
817 list_add_tail(&q->list, &signals->list);
818 switch ((unsigned long) info) {
819 case 0:
820 q->info.si_signo = sig;
821 q->info.si_errno = 0;
822 q->info.si_code = SI_USER;
823 q->info.si_pid = current->pid;
824 q->info.si_uid = current->uid;
825 break;
826 case 1:
827 q->info.si_signo = sig;
828 q->info.si_errno = 0;
829 q->info.si_code = SI_KERNEL;
830 q->info.si_pid = 0;
831 q->info.si_uid = 0;
832 break;
833 default:
834 copy_siginfo(&q->info, info);
835 break;
836 }
837 } else {
838 if (sig >= SIGRTMIN && info && (unsigned long)info != 1
839 && info->si_code != SI_USER)
840 /*
841 * Queue overflow, abort. We may abort if the signal was rt
842 * and sent by user using something other than kill().
843 */
844 return -EAGAIN;
845 if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
846 /*
847 * Set up a return to indicate that we dropped
848 * the signal.
849 */
850 ret = info->si_sys_private;
851 }
852
853out_set:
854 sigaddset(&signals->signal, sig);
855 return ret;
856}
857
858#define LEGACY_QUEUE(sigptr, sig) \
859 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
860
861
862static int
863specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
864{
865 int ret = 0;
866
867 if (!irqs_disabled())
868 BUG();
869 assert_spin_locked(&t->sighand->siglock);
870
871 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
872 /*
873 * Set up a return to indicate that we dropped the signal.
874 */
875 ret = info->si_sys_private;
876
877 /* Short-circuit ignored signals. */
878 if (sig_ignored(t, sig))
879 goto out;
880
881 /* Support queueing exactly one non-rt signal, so that we
882 can get more detailed information about the cause of
883 the signal. */
884 if (LEGACY_QUEUE(&t->pending, sig))
885 goto out;
886
887 ret = send_signal(sig, info, t, &t->pending);
888 if (!ret && !sigismember(&t->blocked, sig))
889 signal_wake_up(t, sig == SIGKILL);
890out:
891 return ret;
892}
893
894/*
895 * Force a signal that the process can't ignore: if necessary
896 * we unblock the signal and change any SIG_IGN to SIG_DFL.
897 */
898
899int
900force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
901{
902 unsigned long int flags;
903 int ret;
904
905 spin_lock_irqsave(&t->sighand->siglock, flags);
906 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
907 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
908 sigdelset(&t->blocked, sig);
909 recalc_sigpending_tsk(t);
910 }
911 ret = specific_send_sig_info(sig, info, t);
912 spin_unlock_irqrestore(&t->sighand->siglock, flags);
913
914 return ret;
915}
916
917void
918force_sig_specific(int sig, struct task_struct *t)
919{
920 unsigned long int flags;
921
922 spin_lock_irqsave(&t->sighand->siglock, flags);
923 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
924 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
925 sigdelset(&t->blocked, sig);
926 recalc_sigpending_tsk(t);
927 specific_send_sig_info(sig, (void *)2, t);
928 spin_unlock_irqrestore(&t->sighand->siglock, flags);
929}
930
931/*
932 * Test if P wants to take SIG. After we've checked all threads with this,
933 * it's equivalent to finding no threads not blocking SIG. Any threads not
934 * blocking SIG were ruled out because they are not running and already
935 * have pending signals. Such threads will dequeue from the shared queue
936 * as soon as they're available, so putting the signal on the shared queue
937 * will be equivalent to sending it to one such thread.
938 */
939#define wants_signal(sig, p, mask) \
940 (!sigismember(&(p)->blocked, sig) \
941 && !((p)->state & mask) \
942 && !((p)->flags & PF_EXITING) \
943 && (task_curr(p) || !signal_pending(p)))
944
945
946static void
947__group_complete_signal(int sig, struct task_struct *p)
948{
949 unsigned int mask;
950 struct task_struct *t;
951
952 /*
953 * Don't bother traced and stopped tasks (but
954 * SIGKILL will punch through that).
955 */
956 mask = TASK_STOPPED | TASK_TRACED;
957 if (sig == SIGKILL)
958 mask = 0;
959
960 /*
961 * Now find a thread we can wake up to take the signal off the queue.
962 *
963 * If the main thread wants the signal, it gets first crack.
964 * Probably the least surprising to the average bear.
965 */
966 if (wants_signal(sig, p, mask))
967 t = p;
968 else if (thread_group_empty(p))
969 /*
970 * There is just one thread and it does not need to be woken.
971 * It will dequeue unblocked signals before it runs again.
972 */
973 return;
974 else {
975 /*
976 * Otherwise try to find a suitable thread.
977 */
978 t = p->signal->curr_target;
979 if (t == NULL)
980 /* restart balancing at this thread */
981 t = p->signal->curr_target = p;
982 BUG_ON(t->tgid != p->tgid);
983
984 while (!wants_signal(sig, t, mask)) {
985 t = next_thread(t);
986 if (t == p->signal->curr_target)
987 /*
988 * No thread needs to be woken.
989 * Any eligible threads will see
990 * the signal in the queue soon.
991 */
992 return;
993 }
994 p->signal->curr_target = t;
995 }
996
997 /*
998 * Found a killable thread. If the signal will be fatal,
999 * then start taking the whole group down immediately.
1000 */
1001 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
1002 !sigismember(&t->real_blocked, sig) &&
1003 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1004 /*
1005 * This signal will be fatal to the whole group.
1006 */
1007 if (!sig_kernel_coredump(sig)) {
1008 /*
1009 * Start a group exit and wake everybody up.
1010 * This way we don't have other threads
1011 * running and doing things after a slower
1012 * thread has the fatal signal pending.
1013 */
1014 p->signal->flags = SIGNAL_GROUP_EXIT;
1015 p->signal->group_exit_code = sig;
1016 p->signal->group_stop_count = 0;
1017 t = p;
1018 do {
1019 sigaddset(&t->pending.signal, SIGKILL);
1020 signal_wake_up(t, 1);
1021 t = next_thread(t);
1022 } while (t != p);
1023 return;
1024 }
1025
1026 /*
1027 * There will be a core dump. We make all threads other
1028 * than the chosen one go into a group stop so that nothing
1029 * happens until it gets scheduled, takes the signal off
1030 * the shared queue, and does the core dump. This is a
1031 * little more complicated than strictly necessary, but it
1032 * keeps the signal state that winds up in the core dump
1033 * unchanged from the death state, e.g. which thread had
1034 * the core-dump signal unblocked.
1035 */
1036 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1037 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1038 p->signal->group_stop_count = 0;
1039 p->signal->group_exit_task = t;
1040 t = p;
1041 do {
1042 p->signal->group_stop_count++;
1043 signal_wake_up(t, 0);
1044 t = next_thread(t);
1045 } while (t != p);
1046 wake_up_process(p->signal->group_exit_task);
1047 return;
1048 }
1049
1050 /*
1051 * The signal is already in the shared-pending queue.
1052 * Tell the chosen thread to wake up and dequeue it.
1053 */
1054 signal_wake_up(t, sig == SIGKILL);
1055 return;
1056}
1057
1058int
1059__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1060{
1061 int ret = 0;
1062
1063 assert_spin_locked(&p->sighand->siglock);
1064 handle_stop_signal(sig, p);
1065
1066 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1067 /*
1068 * Set up a return to indicate that we dropped the signal.
1069 */
1070 ret = info->si_sys_private;
1071
1072 /* Short-circuit ignored signals. */
1073 if (sig_ignored(p, sig))
1074 return ret;
1075
1076 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1077 /* This is a non-RT signal and we already have one queued. */
1078 return ret;
1079
1080 /*
1081 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1082 * We always use the shared queue for process-wide signals,
1083 * to avoid several races.
1084 */
1085 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1086 if (unlikely(ret))
1087 return ret;
1088
1089 __group_complete_signal(sig, p);
1090 return 0;
1091}
1092
1093/*
1094 * Nuke all other threads in the group.
1095 */
1096void zap_other_threads(struct task_struct *p)
1097{
1098 struct task_struct *t;
1099
1100 p->signal->flags = SIGNAL_GROUP_EXIT;
1101 p->signal->group_stop_count = 0;
1102
1103 if (thread_group_empty(p))
1104 return;
1105
1106 for (t = next_thread(p); t != p; t = next_thread(t)) {
1107 /*
1108 * Don't bother with already dead threads
1109 */
1110 if (t->exit_state)
1111 continue;
1112
1113 /*
1114 * We don't want to notify the parent, since we are
1115 * killed as part of a thread group due to another
1116 * thread doing an execve() or similar. So set the
1117 * exit signal to -1 to allow immediate reaping of
1118 * the process. But don't detach the thread group
1119 * leader.
1120 */
1121 if (t != p->group_leader)
1122 t->exit_signal = -1;
1123
1124 sigaddset(&t->pending.signal, SIGKILL);
1125 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1126 signal_wake_up(t, 1);
1127 }
1128}
1129
1130/*
1131 * Must be called with the tasklist_lock held for reading!
1132 */
1133int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1134{
1135 unsigned long flags;
1136 int ret;
1137
1138 ret = check_kill_permission(sig, info, p);
1139 if (!ret && sig && p->sighand) {
1140 spin_lock_irqsave(&p->sighand->siglock, flags);
1141 ret = __group_send_sig_info(sig, info, p);
1142 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1143 }
1144
1145 return ret;
1146}
1147
1148/*
1149 * kill_pg_info() sends a signal to a process group: this is what the tty
1150 * control characters do (^C, ^Z etc)
1151 */
1152
1153int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1154{
1155 struct task_struct *p = NULL;
1156 int retval, success;
1157
1158 if (pgrp <= 0)
1159 return -EINVAL;
1160
1161 success = 0;
1162 retval = -ESRCH;
1163 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1164 int err = group_send_sig_info(sig, info, p);
1165 success |= !err;
1166 retval = err;
1167 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1168 return success ? 0 : retval;
1169}
1170
1171int
1172kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1173{
1174 int retval;
1175
1176 read_lock(&tasklist_lock);
1177 retval = __kill_pg_info(sig, info, pgrp);
1178 read_unlock(&tasklist_lock);
1179
1180 return retval;
1181}
1182
1183int
1184kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1185{
1186 int error;
1187 struct task_struct *p;
1188
1189 read_lock(&tasklist_lock);
1190 p = find_task_by_pid(pid);
1191 error = -ESRCH;
1192 if (p)
1193 error = group_send_sig_info(sig, info, p);
1194 read_unlock(&tasklist_lock);
1195 return error;
1196}
1197
1198
1199/*
1200 * kill_something_info() interprets pid in interesting ways just like kill(2).
1201 *
1202 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1203 * is probably wrong. Should make it like BSD or SYSV.
1204 */
1205
1206static int kill_something_info(int sig, struct siginfo *info, int pid)
1207{
1208 if (!pid) {
1209 return kill_pg_info(sig, info, process_group(current));
1210 } else if (pid == -1) {
1211 int retval = 0, count = 0;
1212 struct task_struct * p;
1213
1214 read_lock(&tasklist_lock);
1215 for_each_process(p) {
1216 if (p->pid > 1 && p->tgid != current->tgid) {
1217 int err = group_send_sig_info(sig, info, p);
1218 ++count;
1219 if (err != -EPERM)
1220 retval = err;
1221 }
1222 }
1223 read_unlock(&tasklist_lock);
1224 return count ? retval : -ESRCH;
1225 } else if (pid < 0) {
1226 return kill_pg_info(sig, info, -pid);
1227 } else {
1228 return kill_proc_info(sig, info, pid);
1229 }
1230}
1231
1232/*
1233 * These are for backward compatibility with the rest of the kernel source.
1234 */
1235
1236/*
1237 * These two are the most common entry points. They send a signal
1238 * just to the specific thread.
1239 */
1240int
1241send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1242{
1243 int ret;
1244 unsigned long flags;
1245
1246 /*
1247 * Make sure legacy kernel users don't send in bad values
1248 * (normal paths check this in check_kill_permission).
1249 */
7ed20e1a 1250 if (!valid_signal(sig))
1da177e4
LT
1251 return -EINVAL;
1252
1253 /*
1254 * We need the tasklist lock even for the specific
1255 * thread case (when we don't need to follow the group
1256 * lists) in order to avoid races with "p->sighand"
1257 * going away or changing from under us.
1258 */
1259 read_lock(&tasklist_lock);
1260 spin_lock_irqsave(&p->sighand->siglock, flags);
1261 ret = specific_send_sig_info(sig, info, p);
1262 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1263 read_unlock(&tasklist_lock);
1264 return ret;
1265}
1266
1267int
1268send_sig(int sig, struct task_struct *p, int priv)
1269{
1270 return send_sig_info(sig, (void*)(long)(priv != 0), p);
1271}
1272
1273/*
1274 * This is the entry point for "process-wide" signals.
1275 * They will go to an appropriate thread in the thread group.
1276 */
1277int
1278send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1279{
1280 int ret;
1281 read_lock(&tasklist_lock);
1282 ret = group_send_sig_info(sig, info, p);
1283 read_unlock(&tasklist_lock);
1284 return ret;
1285}
1286
1287void
1288force_sig(int sig, struct task_struct *p)
1289{
1290 force_sig_info(sig, (void*)1L, p);
1291}
1292
1293/*
1294 * When things go south during signal handling, we
1295 * will force a SIGSEGV. And if the signal that caused
1296 * the problem was already a SIGSEGV, we'll want to
1297 * make sure we don't even try to deliver the signal..
1298 */
1299int
1300force_sigsegv(int sig, struct task_struct *p)
1301{
1302 if (sig == SIGSEGV) {
1303 unsigned long flags;
1304 spin_lock_irqsave(&p->sighand->siglock, flags);
1305 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1306 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1307 }
1308 force_sig(SIGSEGV, p);
1309 return 0;
1310}
1311
1312int
1313kill_pg(pid_t pgrp, int sig, int priv)
1314{
1315 return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1316}
1317
1318int
1319kill_proc(pid_t pid, int sig, int priv)
1320{
1321 return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1322}
1323
1324/*
1325 * These functions support sending signals using preallocated sigqueue
1326 * structures. This is needed "because realtime applications cannot
1327 * afford to lose notifications of asynchronous events, like timer
1328 * expirations or I/O completions". In the case of Posix Timers
1329 * we allocate the sigqueue structure from the timer_create. If this
1330 * allocation fails we are able to report the failure to the application
1331 * with an EAGAIN error.
1332 */
1333
1334struct sigqueue *sigqueue_alloc(void)
1335{
1336 struct sigqueue *q;
1337
1338 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1339 q->flags |= SIGQUEUE_PREALLOC;
1340 return(q);
1341}
1342
1343void sigqueue_free(struct sigqueue *q)
1344{
1345 unsigned long flags;
1346 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1347 /*
1348 * If the signal is still pending remove it from the
1349 * pending queue.
1350 */
1351 if (unlikely(!list_empty(&q->list))) {
1352 read_lock(&tasklist_lock);
1353 spin_lock_irqsave(q->lock, flags);
1354 if (!list_empty(&q->list))
1355 list_del_init(&q->list);
1356 spin_unlock_irqrestore(q->lock, flags);
1357 read_unlock(&tasklist_lock);
1358 }
1359 q->flags &= ~SIGQUEUE_PREALLOC;
1360 __sigqueue_free(q);
1361}
1362
1363int
1364send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1365{
1366 unsigned long flags;
1367 int ret = 0;
1368
1369 /*
1370 * We need the tasklist lock even for the specific
1371 * thread case (when we don't need to follow the group
1372 * lists) in order to avoid races with "p->sighand"
1373 * going away or changing from under us.
1374 */
1375 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1376 read_lock(&tasklist_lock);
1377 spin_lock_irqsave(&p->sighand->siglock, flags);
1378
1379 if (unlikely(!list_empty(&q->list))) {
1380 /*
1381 * If an SI_TIMER entry is already queue just increment
1382 * the overrun count.
1383 */
1384 if (q->info.si_code != SI_TIMER)
1385 BUG();
1386 q->info.si_overrun++;
1387 goto out;
1388 }
1389 /* Short-circuit ignored signals. */
1390 if (sig_ignored(p, sig)) {
1391 ret = 1;
1392 goto out;
1393 }
1394
1395 q->lock = &p->sighand->siglock;
1396 list_add_tail(&q->list, &p->pending.list);
1397 sigaddset(&p->pending.signal, sig);
1398 if (!sigismember(&p->blocked, sig))
1399 signal_wake_up(p, sig == SIGKILL);
1400
1401out:
1402 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1403 read_unlock(&tasklist_lock);
1404 return(ret);
1405}
1406
1407int
1408send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1409{
1410 unsigned long flags;
1411 int ret = 0;
1412
1413 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1414 read_lock(&tasklist_lock);
1415 spin_lock_irqsave(&p->sighand->siglock, flags);
1416 handle_stop_signal(sig, p);
1417
1418 /* Short-circuit ignored signals. */
1419 if (sig_ignored(p, sig)) {
1420 ret = 1;
1421 goto out;
1422 }
1423
1424 if (unlikely(!list_empty(&q->list))) {
1425 /*
1426 * If an SI_TIMER entry is already queue just increment
1427 * the overrun count. Other uses should not try to
1428 * send the signal multiple times.
1429 */
1430 if (q->info.si_code != SI_TIMER)
1431 BUG();
1432 q->info.si_overrun++;
1433 goto out;
1434 }
1435
1436 /*
1437 * Put this signal on the shared-pending queue.
1438 * We always use the shared queue for process-wide signals,
1439 * to avoid several races.
1440 */
1441 q->lock = &p->sighand->siglock;
1442 list_add_tail(&q->list, &p->signal->shared_pending.list);
1443 sigaddset(&p->signal->shared_pending.signal, sig);
1444
1445 __group_complete_signal(sig, p);
1446out:
1447 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1448 read_unlock(&tasklist_lock);
1449 return(ret);
1450}
1451
1452/*
1453 * Wake up any threads in the parent blocked in wait* syscalls.
1454 */
1455static inline void __wake_up_parent(struct task_struct *p,
1456 struct task_struct *parent)
1457{
1458 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1459}
1460
1461/*
1462 * Let a parent know about the death of a child.
1463 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1464 */
1465
1466void do_notify_parent(struct task_struct *tsk, int sig)
1467{
1468 struct siginfo info;
1469 unsigned long flags;
1470 struct sighand_struct *psig;
1471
1472 BUG_ON(sig == -1);
1473
1474 /* do_notify_parent_cldstop should have been called instead. */
1475 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1476
1477 BUG_ON(!tsk->ptrace &&
1478 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1479
1480 info.si_signo = sig;
1481 info.si_errno = 0;
1482 info.si_pid = tsk->pid;
1483 info.si_uid = tsk->uid;
1484
1485 /* FIXME: find out whether or not this is supposed to be c*time. */
1486 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1487 tsk->signal->utime));
1488 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1489 tsk->signal->stime));
1490
1491 info.si_status = tsk->exit_code & 0x7f;
1492 if (tsk->exit_code & 0x80)
1493 info.si_code = CLD_DUMPED;
1494 else if (tsk->exit_code & 0x7f)
1495 info.si_code = CLD_KILLED;
1496 else {
1497 info.si_code = CLD_EXITED;
1498 info.si_status = tsk->exit_code >> 8;
1499 }
1500
1501 psig = tsk->parent->sighand;
1502 spin_lock_irqsave(&psig->siglock, flags);
1503 if (sig == SIGCHLD &&
1504 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1505 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1506 /*
1507 * We are exiting and our parent doesn't care. POSIX.1
1508 * defines special semantics for setting SIGCHLD to SIG_IGN
1509 * or setting the SA_NOCLDWAIT flag: we should be reaped
1510 * automatically and not left for our parent's wait4 call.
1511 * Rather than having the parent do it as a magic kind of
1512 * signal handler, we just set this to tell do_exit that we
1513 * can be cleaned up without becoming a zombie. Note that
1514 * we still call __wake_up_parent in this case, because a
1515 * blocked sys_wait4 might now return -ECHILD.
1516 *
1517 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1518 * is implementation-defined: we do (if you don't want
1519 * it, just use SIG_IGN instead).
1520 */
1521 tsk->exit_signal = -1;
1522 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1523 sig = 0;
1524 }
7ed20e1a 1525 if (valid_signal(sig) && sig > 0)
1da177e4
LT
1526 __group_send_sig_info(sig, &info, tsk->parent);
1527 __wake_up_parent(tsk, tsk->parent);
1528 spin_unlock_irqrestore(&psig->siglock, flags);
1529}
1530
bc505a47 1531static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1da177e4
LT
1532{
1533 struct siginfo info;
1534 unsigned long flags;
bc505a47 1535 struct task_struct *parent;
1da177e4
LT
1536 struct sighand_struct *sighand;
1537
bc505a47
ON
1538 if (to_self)
1539 parent = tsk->parent;
1540 else {
1541 tsk = tsk->group_leader;
1542 parent = tsk->real_parent;
1543 }
1544
1da177e4
LT
1545 info.si_signo = SIGCHLD;
1546 info.si_errno = 0;
1547 info.si_pid = tsk->pid;
1548 info.si_uid = tsk->uid;
1549
1550 /* FIXME: find out whether or not this is supposed to be c*time. */
1551 info.si_utime = cputime_to_jiffies(tsk->utime);
1552 info.si_stime = cputime_to_jiffies(tsk->stime);
1553
1554 info.si_code = why;
1555 switch (why) {
1556 case CLD_CONTINUED:
1557 info.si_status = SIGCONT;
1558 break;
1559 case CLD_STOPPED:
1560 info.si_status = tsk->signal->group_exit_code & 0x7f;
1561 break;
1562 case CLD_TRAPPED:
1563 info.si_status = tsk->exit_code & 0x7f;
1564 break;
1565 default:
1566 BUG();
1567 }
1568
1569 sighand = parent->sighand;
1570 spin_lock_irqsave(&sighand->siglock, flags);
1571 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1572 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1573 __group_send_sig_info(SIGCHLD, &info, parent);
1574 /*
1575 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1576 */
1577 __wake_up_parent(tsk, parent);
1578 spin_unlock_irqrestore(&sighand->siglock, flags);
1579}
1580
1581/*
1582 * This must be called with current->sighand->siglock held.
1583 *
1584 * This should be the path for all ptrace stops.
1585 * We always set current->last_siginfo while stopped here.
1586 * That makes it a way to test a stopped process for
1587 * being ptrace-stopped vs being job-control-stopped.
1588 *
1589 * If we actually decide not to stop at all because the tracer is gone,
1590 * we leave nostop_code in current->exit_code.
1591 */
1592static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1593{
1594 /*
1595 * If there is a group stop in progress,
1596 * we must participate in the bookkeeping.
1597 */
1598 if (current->signal->group_stop_count > 0)
1599 --current->signal->group_stop_count;
1600
1601 current->last_siginfo = info;
1602 current->exit_code = exit_code;
1603
1604 /* Let the debugger run. */
1605 set_current_state(TASK_TRACED);
1606 spin_unlock_irq(&current->sighand->siglock);
1607 read_lock(&tasklist_lock);
1608 if (likely(current->ptrace & PT_PTRACED) &&
1609 likely(current->parent != current->real_parent ||
1610 !(current->ptrace & PT_ATTACHED)) &&
1611 (likely(current->parent->signal != current->signal) ||
1612 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
bc505a47 1613 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1da177e4
LT
1614 read_unlock(&tasklist_lock);
1615 schedule();
1616 } else {
1617 /*
1618 * By the time we got the lock, our tracer went away.
1619 * Don't stop here.
1620 */
1621 read_unlock(&tasklist_lock);
1622 set_current_state(TASK_RUNNING);
1623 current->exit_code = nostop_code;
1624 }
1625
1626 /*
1627 * We are back. Now reacquire the siglock before touching
1628 * last_siginfo, so that we are sure to have synchronized with
1629 * any signal-sending on another CPU that wants to examine it.
1630 */
1631 spin_lock_irq(&current->sighand->siglock);
1632 current->last_siginfo = NULL;
1633
1634 /*
1635 * Queued signals ignored us while we were stopped for tracing.
1636 * So check for any that we should take before resuming user mode.
1637 */
1638 recalc_sigpending();
1639}
1640
1641void ptrace_notify(int exit_code)
1642{
1643 siginfo_t info;
1644
1645 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1646
1647 memset(&info, 0, sizeof info);
1648 info.si_signo = SIGTRAP;
1649 info.si_code = exit_code;
1650 info.si_pid = current->pid;
1651 info.si_uid = current->uid;
1652
1653 /* Let the debugger run. */
1654 spin_lock_irq(&current->sighand->siglock);
1655 ptrace_stop(exit_code, 0, &info);
1656 spin_unlock_irq(&current->sighand->siglock);
1657}
1658
1da177e4
LT
1659static void
1660finish_stop(int stop_count)
1661{
bc505a47
ON
1662 int to_self;
1663
1da177e4
LT
1664 /*
1665 * If there are no other threads in the group, or if there is
1666 * a group stop in progress and we are the last to stop,
1667 * report to the parent. When ptraced, every thread reports itself.
1668 */
bc505a47
ON
1669 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1670 to_self = 1;
1671 else if (stop_count == 0)
1672 to_self = 0;
1673 else
1674 goto out;
1da177e4 1675
bc505a47
ON
1676 read_lock(&tasklist_lock);
1677 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1678 read_unlock(&tasklist_lock);
1679
1680out:
1da177e4
LT
1681 schedule();
1682 /*
1683 * Now we don't run again until continued.
1684 */
1685 current->exit_code = 0;
1686}
1687
1688/*
1689 * This performs the stopping for SIGSTOP and other stop signals.
1690 * We have to stop all threads in the thread group.
1691 * Returns nonzero if we've actually stopped and released the siglock.
1692 * Returns zero if we didn't stop and still hold the siglock.
1693 */
1694static int
1695do_signal_stop(int signr)
1696{
1697 struct signal_struct *sig = current->signal;
1698 struct sighand_struct *sighand = current->sighand;
1699 int stop_count = -1;
1700
1701 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1702 return 0;
1703
1704 if (sig->group_stop_count > 0) {
1705 /*
1706 * There is a group stop in progress. We don't need to
1707 * start another one.
1708 */
1709 signr = sig->group_exit_code;
1710 stop_count = --sig->group_stop_count;
1711 current->exit_code = signr;
1712 set_current_state(TASK_STOPPED);
1713 if (stop_count == 0)
1714 sig->flags = SIGNAL_STOP_STOPPED;
1715 spin_unlock_irq(&sighand->siglock);
1716 }
1717 else if (thread_group_empty(current)) {
1718 /*
1719 * Lock must be held through transition to stopped state.
1720 */
1721 current->exit_code = current->signal->group_exit_code = signr;
1722 set_current_state(TASK_STOPPED);
1723 sig->flags = SIGNAL_STOP_STOPPED;
1724 spin_unlock_irq(&sighand->siglock);
1725 }
1726 else {
1727 /*
1728 * There is no group stop already in progress.
1729 * We must initiate one now, but that requires
1730 * dropping siglock to get both the tasklist lock
1731 * and siglock again in the proper order. Note that
1732 * this allows an intervening SIGCONT to be posted.
1733 * We need to check for that and bail out if necessary.
1734 */
1735 struct task_struct *t;
1736
1737 spin_unlock_irq(&sighand->siglock);
1738
1739 /* signals can be posted during this window */
1740
1741 read_lock(&tasklist_lock);
1742 spin_lock_irq(&sighand->siglock);
1743
1744 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1745 /*
1746 * Another stop or continue happened while we
1747 * didn't have the lock. We can just swallow this
1748 * signal now. If we raced with a SIGCONT, that
1749 * should have just cleared it now. If we raced
1750 * with another processor delivering a stop signal,
1751 * then the SIGCONT that wakes us up should clear it.
1752 */
1753 read_unlock(&tasklist_lock);
1754 return 0;
1755 }
1756
1757 if (sig->group_stop_count == 0) {
1758 sig->group_exit_code = signr;
1759 stop_count = 0;
1760 for (t = next_thread(current); t != current;
1761 t = next_thread(t))
1762 /*
1763 * Setting state to TASK_STOPPED for a group
1764 * stop is always done with the siglock held,
1765 * so this check has no races.
1766 */
1767 if (t->state < TASK_STOPPED) {
1768 stop_count++;
1769 signal_wake_up(t, 0);
1770 }
1771 sig->group_stop_count = stop_count;
1772 }
1773 else {
1774 /* A race with another thread while unlocked. */
1775 signr = sig->group_exit_code;
1776 stop_count = --sig->group_stop_count;
1777 }
1778
1779 current->exit_code = signr;
1780 set_current_state(TASK_STOPPED);
1781 if (stop_count == 0)
1782 sig->flags = SIGNAL_STOP_STOPPED;
1783
1784 spin_unlock_irq(&sighand->siglock);
1785 read_unlock(&tasklist_lock);
1786 }
1787
1788 finish_stop(stop_count);
1789 return 1;
1790}
1791
1792/*
1793 * Do appropriate magic when group_stop_count > 0.
1794 * We return nonzero if we stopped, after releasing the siglock.
1795 * We return zero if we still hold the siglock and should look
1796 * for another signal without checking group_stop_count again.
1797 */
1798static inline int handle_group_stop(void)
1799{
1800 int stop_count;
1801
1802 if (current->signal->group_exit_task == current) {
1803 /*
1804 * Group stop is so we can do a core dump,
1805 * We are the initiating thread, so get on with it.
1806 */
1807 current->signal->group_exit_task = NULL;
1808 return 0;
1809 }
1810
1811 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1812 /*
1813 * Group stop is so another thread can do a core dump,
1814 * or else we are racing against a death signal.
1815 * Just punt the stop so we can get the next signal.
1816 */
1817 return 0;
1818
1819 /*
1820 * There is a group stop in progress. We stop
1821 * without any associated signal being in our queue.
1822 */
1823 stop_count = --current->signal->group_stop_count;
1824 if (stop_count == 0)
1825 current->signal->flags = SIGNAL_STOP_STOPPED;
1826 current->exit_code = current->signal->group_exit_code;
1827 set_current_state(TASK_STOPPED);
1828 spin_unlock_irq(&current->sighand->siglock);
1829 finish_stop(stop_count);
1830 return 1;
1831}
1832
1833int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1834 struct pt_regs *regs, void *cookie)
1835{
1836 sigset_t *mask = &current->blocked;
1837 int signr = 0;
1838
1839relock:
1840 spin_lock_irq(&current->sighand->siglock);
1841 for (;;) {
1842 struct k_sigaction *ka;
1843
1844 if (unlikely(current->signal->group_stop_count > 0) &&
1845 handle_group_stop())
1846 goto relock;
1847
1848 signr = dequeue_signal(current, mask, info);
1849
1850 if (!signr)
1851 break; /* will return 0 */
1852
1853 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1854 ptrace_signal_deliver(regs, cookie);
1855
1856 /* Let the debugger run. */
1857 ptrace_stop(signr, signr, info);
1858
1859 /* We're back. Did the debugger cancel the sig? */
1860 signr = current->exit_code;
1861 if (signr == 0)
1862 continue;
1863
1864 current->exit_code = 0;
1865
1866 /* Update the siginfo structure if the signal has
1867 changed. If the debugger wanted something
1868 specific in the siginfo structure then it should
1869 have updated *info via PTRACE_SETSIGINFO. */
1870 if (signr != info->si_signo) {
1871 info->si_signo = signr;
1872 info->si_errno = 0;
1873 info->si_code = SI_USER;
1874 info->si_pid = current->parent->pid;
1875 info->si_uid = current->parent->uid;
1876 }
1877
1878 /* If the (new) signal is now blocked, requeue it. */
1879 if (sigismember(&current->blocked, signr)) {
1880 specific_send_sig_info(signr, info, current);
1881 continue;
1882 }
1883 }
1884
1885 ka = &current->sighand->action[signr-1];
1886 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1887 continue;
1888 if (ka->sa.sa_handler != SIG_DFL) {
1889 /* Run the handler. */
1890 *return_ka = *ka;
1891
1892 if (ka->sa.sa_flags & SA_ONESHOT)
1893 ka->sa.sa_handler = SIG_DFL;
1894
1895 break; /* will return non-zero "signr" value */
1896 }
1897
1898 /*
1899 * Now we are doing the default action for this signal.
1900 */
1901 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1902 continue;
1903
1904 /* Init gets no signals it doesn't want. */
1905 if (current->pid == 1)
1906 continue;
1907
1908 if (sig_kernel_stop(signr)) {
1909 /*
1910 * The default action is to stop all threads in
1911 * the thread group. The job control signals
1912 * do nothing in an orphaned pgrp, but SIGSTOP
1913 * always works. Note that siglock needs to be
1914 * dropped during the call to is_orphaned_pgrp()
1915 * because of lock ordering with tasklist_lock.
1916 * This allows an intervening SIGCONT to be posted.
1917 * We need to check for that and bail out if necessary.
1918 */
1919 if (signr != SIGSTOP) {
1920 spin_unlock_irq(&current->sighand->siglock);
1921
1922 /* signals can be posted during this window */
1923
1924 if (is_orphaned_pgrp(process_group(current)))
1925 goto relock;
1926
1927 spin_lock_irq(&current->sighand->siglock);
1928 }
1929
1930 if (likely(do_signal_stop(signr))) {
1931 /* It released the siglock. */
1932 goto relock;
1933 }
1934
1935 /*
1936 * We didn't actually stop, due to a race
1937 * with SIGCONT or something like that.
1938 */
1939 continue;
1940 }
1941
1942 spin_unlock_irq(&current->sighand->siglock);
1943
1944 /*
1945 * Anything else is fatal, maybe with a core dump.
1946 */
1947 current->flags |= PF_SIGNALED;
1948 if (sig_kernel_coredump(signr)) {
1949 /*
1950 * If it was able to dump core, this kills all
1951 * other threads in the group and synchronizes with
1952 * their demise. If we lost the race with another
1953 * thread getting here, it set group_exit_code
1954 * first and our do_group_exit call below will use
1955 * that value and ignore the one we pass it.
1956 */
1957 do_coredump((long)signr, signr, regs);
1958 }
1959
1960 /*
1961 * Death signals, no core dump.
1962 */
1963 do_group_exit(signr);
1964 /* NOTREACHED */
1965 }
1966 spin_unlock_irq(&current->sighand->siglock);
1967 return signr;
1968}
1969
1da177e4
LT
1970EXPORT_SYMBOL(recalc_sigpending);
1971EXPORT_SYMBOL_GPL(dequeue_signal);
1972EXPORT_SYMBOL(flush_signals);
1973EXPORT_SYMBOL(force_sig);
1974EXPORT_SYMBOL(kill_pg);
1975EXPORT_SYMBOL(kill_proc);
1976EXPORT_SYMBOL(ptrace_notify);
1977EXPORT_SYMBOL(send_sig);
1978EXPORT_SYMBOL(send_sig_info);
1979EXPORT_SYMBOL(sigprocmask);
1980EXPORT_SYMBOL(block_all_signals);
1981EXPORT_SYMBOL(unblock_all_signals);
1982
1983
1984/*
1985 * System call entry points.
1986 */
1987
1988asmlinkage long sys_restart_syscall(void)
1989{
1990 struct restart_block *restart = &current_thread_info()->restart_block;
1991 return restart->fn(restart);
1992}
1993
1994long do_no_restart_syscall(struct restart_block *param)
1995{
1996 return -EINTR;
1997}
1998
1999/*
2000 * We don't need to get the kernel lock - this is all local to this
2001 * particular thread.. (and that's good, because this is _heavily_
2002 * used by various programs)
2003 */
2004
2005/*
2006 * This is also useful for kernel threads that want to temporarily
2007 * (or permanently) block certain signals.
2008 *
2009 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2010 * interface happily blocks "unblockable" signals like SIGKILL
2011 * and friends.
2012 */
2013int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2014{
2015 int error;
2016 sigset_t old_block;
2017
2018 spin_lock_irq(&current->sighand->siglock);
2019 old_block = current->blocked;
2020 error = 0;
2021 switch (how) {
2022 case SIG_BLOCK:
2023 sigorsets(&current->blocked, &current->blocked, set);
2024 break;
2025 case SIG_UNBLOCK:
2026 signandsets(&current->blocked, &current->blocked, set);
2027 break;
2028 case SIG_SETMASK:
2029 current->blocked = *set;
2030 break;
2031 default:
2032 error = -EINVAL;
2033 }
2034 recalc_sigpending();
2035 spin_unlock_irq(&current->sighand->siglock);
2036 if (oldset)
2037 *oldset = old_block;
2038 return error;
2039}
2040
2041asmlinkage long
2042sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2043{
2044 int error = -EINVAL;
2045 sigset_t old_set, new_set;
2046
2047 /* XXX: Don't preclude handling different sized sigset_t's. */
2048 if (sigsetsize != sizeof(sigset_t))
2049 goto out;
2050
2051 if (set) {
2052 error = -EFAULT;
2053 if (copy_from_user(&new_set, set, sizeof(*set)))
2054 goto out;
2055 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2056
2057 error = sigprocmask(how, &new_set, &old_set);
2058 if (error)
2059 goto out;
2060 if (oset)
2061 goto set_old;
2062 } else if (oset) {
2063 spin_lock_irq(&current->sighand->siglock);
2064 old_set = current->blocked;
2065 spin_unlock_irq(&current->sighand->siglock);
2066
2067 set_old:
2068 error = -EFAULT;
2069 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2070 goto out;
2071 }
2072 error = 0;
2073out:
2074 return error;
2075}
2076
2077long do_sigpending(void __user *set, unsigned long sigsetsize)
2078{
2079 long error = -EINVAL;
2080 sigset_t pending;
2081
2082 if (sigsetsize > sizeof(sigset_t))
2083 goto out;
2084
2085 spin_lock_irq(&current->sighand->siglock);
2086 sigorsets(&pending, &current->pending.signal,
2087 &current->signal->shared_pending.signal);
2088 spin_unlock_irq(&current->sighand->siglock);
2089
2090 /* Outside the lock because only this thread touches it. */
2091 sigandsets(&pending, &current->blocked, &pending);
2092
2093 error = -EFAULT;
2094 if (!copy_to_user(set, &pending, sigsetsize))
2095 error = 0;
2096
2097out:
2098 return error;
2099}
2100
2101asmlinkage long
2102sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2103{
2104 return do_sigpending(set, sigsetsize);
2105}
2106
2107#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2108
2109int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2110{
2111 int err;
2112
2113 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2114 return -EFAULT;
2115 if (from->si_code < 0)
2116 return __copy_to_user(to, from, sizeof(siginfo_t))
2117 ? -EFAULT : 0;
2118 /*
2119 * If you change siginfo_t structure, please be sure
2120 * this code is fixed accordingly.
2121 * It should never copy any pad contained in the structure
2122 * to avoid security leaks, but must copy the generic
2123 * 3 ints plus the relevant union member.
2124 */
2125 err = __put_user(from->si_signo, &to->si_signo);
2126 err |= __put_user(from->si_errno, &to->si_errno);
2127 err |= __put_user((short)from->si_code, &to->si_code);
2128 switch (from->si_code & __SI_MASK) {
2129 case __SI_KILL:
2130 err |= __put_user(from->si_pid, &to->si_pid);
2131 err |= __put_user(from->si_uid, &to->si_uid);
2132 break;
2133 case __SI_TIMER:
2134 err |= __put_user(from->si_tid, &to->si_tid);
2135 err |= __put_user(from->si_overrun, &to->si_overrun);
2136 err |= __put_user(from->si_ptr, &to->si_ptr);
2137 break;
2138 case __SI_POLL:
2139 err |= __put_user(from->si_band, &to->si_band);
2140 err |= __put_user(from->si_fd, &to->si_fd);
2141 break;
2142 case __SI_FAULT:
2143 err |= __put_user(from->si_addr, &to->si_addr);
2144#ifdef __ARCH_SI_TRAPNO
2145 err |= __put_user(from->si_trapno, &to->si_trapno);
2146#endif
2147 break;
2148 case __SI_CHLD:
2149 err |= __put_user(from->si_pid, &to->si_pid);
2150 err |= __put_user(from->si_uid, &to->si_uid);
2151 err |= __put_user(from->si_status, &to->si_status);
2152 err |= __put_user(from->si_utime, &to->si_utime);
2153 err |= __put_user(from->si_stime, &to->si_stime);
2154 break;
2155 case __SI_RT: /* This is not generated by the kernel as of now. */
2156 case __SI_MESGQ: /* But this is */
2157 err |= __put_user(from->si_pid, &to->si_pid);
2158 err |= __put_user(from->si_uid, &to->si_uid);
2159 err |= __put_user(from->si_ptr, &to->si_ptr);
2160 break;
2161 default: /* this is just in case for now ... */
2162 err |= __put_user(from->si_pid, &to->si_pid);
2163 err |= __put_user(from->si_uid, &to->si_uid);
2164 break;
2165 }
2166 return err;
2167}
2168
2169#endif
2170
2171asmlinkage long
2172sys_rt_sigtimedwait(const sigset_t __user *uthese,
2173 siginfo_t __user *uinfo,
2174 const struct timespec __user *uts,
2175 size_t sigsetsize)
2176{
2177 int ret, sig;
2178 sigset_t these;
2179 struct timespec ts;
2180 siginfo_t info;
2181 long timeout = 0;
2182
2183 /* XXX: Don't preclude handling different sized sigset_t's. */
2184 if (sigsetsize != sizeof(sigset_t))
2185 return -EINVAL;
2186
2187 if (copy_from_user(&these, uthese, sizeof(these)))
2188 return -EFAULT;
2189
2190 /*
2191 * Invert the set of allowed signals to get those we
2192 * want to block.
2193 */
2194 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2195 signotset(&these);
2196
2197 if (uts) {
2198 if (copy_from_user(&ts, uts, sizeof(ts)))
2199 return -EFAULT;
2200 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2201 || ts.tv_sec < 0)
2202 return -EINVAL;
2203 }
2204
2205 spin_lock_irq(&current->sighand->siglock);
2206 sig = dequeue_signal(current, &these, &info);
2207 if (!sig) {
2208 timeout = MAX_SCHEDULE_TIMEOUT;
2209 if (uts)
2210 timeout = (timespec_to_jiffies(&ts)
2211 + (ts.tv_sec || ts.tv_nsec));
2212
2213 if (timeout) {
2214 /* None ready -- temporarily unblock those we're
2215 * interested while we are sleeping in so that we'll
2216 * be awakened when they arrive. */
2217 current->real_blocked = current->blocked;
2218 sigandsets(&current->blocked, &current->blocked, &these);
2219 recalc_sigpending();
2220 spin_unlock_irq(&current->sighand->siglock);
2221
2222 current->state = TASK_INTERRUPTIBLE;
2223 timeout = schedule_timeout(timeout);
2224
3e1d1d28 2225 try_to_freeze();
1da177e4
LT
2226 spin_lock_irq(&current->sighand->siglock);
2227 sig = dequeue_signal(current, &these, &info);
2228 current->blocked = current->real_blocked;
2229 siginitset(&current->real_blocked, 0);
2230 recalc_sigpending();
2231 }
2232 }
2233 spin_unlock_irq(&current->sighand->siglock);
2234
2235 if (sig) {
2236 ret = sig;
2237 if (uinfo) {
2238 if (copy_siginfo_to_user(uinfo, &info))
2239 ret = -EFAULT;
2240 }
2241 } else {
2242 ret = -EAGAIN;
2243 if (timeout)
2244 ret = -EINTR;
2245 }
2246
2247 return ret;
2248}
2249
2250asmlinkage long
2251sys_kill(int pid, int sig)
2252{
2253 struct siginfo info;
2254
2255 info.si_signo = sig;
2256 info.si_errno = 0;
2257 info.si_code = SI_USER;
2258 info.si_pid = current->tgid;
2259 info.si_uid = current->uid;
2260
2261 return kill_something_info(sig, &info, pid);
2262}
2263
2264/**
2265 * sys_tgkill - send signal to one specific thread
2266 * @tgid: the thread group ID of the thread
2267 * @pid: the PID of the thread
2268 * @sig: signal to be sent
2269 *
2270 * This syscall also checks the tgid and returns -ESRCH even if the PID
2271 * exists but it's not belonging to the target process anymore. This
2272 * method solves the problem of threads exiting and PIDs getting reused.
2273 */
2274asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2275{
2276 struct siginfo info;
2277 int error;
2278 struct task_struct *p;
2279
2280 /* This is only valid for single tasks */
2281 if (pid <= 0 || tgid <= 0)
2282 return -EINVAL;
2283
2284 info.si_signo = sig;
2285 info.si_errno = 0;
2286 info.si_code = SI_TKILL;
2287 info.si_pid = current->tgid;
2288 info.si_uid = current->uid;
2289
2290 read_lock(&tasklist_lock);
2291 p = find_task_by_pid(pid);
2292 error = -ESRCH;
2293 if (p && (p->tgid == tgid)) {
2294 error = check_kill_permission(sig, &info, p);
2295 /*
2296 * The null signal is a permissions and process existence
2297 * probe. No signal is actually delivered.
2298 */
2299 if (!error && sig && p->sighand) {
2300 spin_lock_irq(&p->sighand->siglock);
2301 handle_stop_signal(sig, p);
2302 error = specific_send_sig_info(sig, &info, p);
2303 spin_unlock_irq(&p->sighand->siglock);
2304 }
2305 }
2306 read_unlock(&tasklist_lock);
2307 return error;
2308}
2309
2310/*
2311 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2312 */
2313asmlinkage long
2314sys_tkill(int pid, int sig)
2315{
2316 struct siginfo info;
2317 int error;
2318 struct task_struct *p;
2319
2320 /* This is only valid for single tasks */
2321 if (pid <= 0)
2322 return -EINVAL;
2323
2324 info.si_signo = sig;
2325 info.si_errno = 0;
2326 info.si_code = SI_TKILL;
2327 info.si_pid = current->tgid;
2328 info.si_uid = current->uid;
2329
2330 read_lock(&tasklist_lock);
2331 p = find_task_by_pid(pid);
2332 error = -ESRCH;
2333 if (p) {
2334 error = check_kill_permission(sig, &info, p);
2335 /*
2336 * The null signal is a permissions and process existence
2337 * probe. No signal is actually delivered.
2338 */
2339 if (!error && sig && p->sighand) {
2340 spin_lock_irq(&p->sighand->siglock);
2341 handle_stop_signal(sig, p);
2342 error = specific_send_sig_info(sig, &info, p);
2343 spin_unlock_irq(&p->sighand->siglock);
2344 }
2345 }
2346 read_unlock(&tasklist_lock);
2347 return error;
2348}
2349
2350asmlinkage long
2351sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2352{
2353 siginfo_t info;
2354
2355 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2356 return -EFAULT;
2357
2358 /* Not even root can pretend to send signals from the kernel.
2359 Nor can they impersonate a kill(), which adds source info. */
2360 if (info.si_code >= 0)
2361 return -EPERM;
2362 info.si_signo = sig;
2363
2364 /* POSIX.1b doesn't mention process groups. */
2365 return kill_proc_info(sig, &info, pid);
2366}
2367
2368int
2369do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2370{
2371 struct k_sigaction *k;
2372
7ed20e1a 2373 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
1da177e4
LT
2374 return -EINVAL;
2375
2376 k = &current->sighand->action[sig-1];
2377
2378 spin_lock_irq(&current->sighand->siglock);
2379 if (signal_pending(current)) {
2380 /*
2381 * If there might be a fatal signal pending on multiple
2382 * threads, make sure we take it before changing the action.
2383 */
2384 spin_unlock_irq(&current->sighand->siglock);
2385 return -ERESTARTNOINTR;
2386 }
2387
2388 if (oact)
2389 *oact = *k;
2390
2391 if (act) {
2392 /*
2393 * POSIX 3.3.1.3:
2394 * "Setting a signal action to SIG_IGN for a signal that is
2395 * pending shall cause the pending signal to be discarded,
2396 * whether or not it is blocked."
2397 *
2398 * "Setting a signal action to SIG_DFL for a signal that is
2399 * pending and whose default action is to ignore the signal
2400 * (for example, SIGCHLD), shall cause the pending signal to
2401 * be discarded, whether or not it is blocked"
2402 */
2403 if (act->sa.sa_handler == SIG_IGN ||
2404 (act->sa.sa_handler == SIG_DFL &&
2405 sig_kernel_ignore(sig))) {
2406 /*
2407 * This is a fairly rare case, so we only take the
2408 * tasklist_lock once we're sure we'll need it.
2409 * Now we must do this little unlock and relock
2410 * dance to maintain the lock hierarchy.
2411 */
2412 struct task_struct *t = current;
2413 spin_unlock_irq(&t->sighand->siglock);
2414 read_lock(&tasklist_lock);
2415 spin_lock_irq(&t->sighand->siglock);
2416 *k = *act;
2417 sigdelsetmask(&k->sa.sa_mask,
2418 sigmask(SIGKILL) | sigmask(SIGSTOP));
2419 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2420 do {
2421 rm_from_queue(sigmask(sig), &t->pending);
2422 recalc_sigpending_tsk(t);
2423 t = next_thread(t);
2424 } while (t != current);
2425 spin_unlock_irq(&current->sighand->siglock);
2426 read_unlock(&tasklist_lock);
2427 return 0;
2428 }
2429
2430 *k = *act;
2431 sigdelsetmask(&k->sa.sa_mask,
2432 sigmask(SIGKILL) | sigmask(SIGSTOP));
2433 }
2434
2435 spin_unlock_irq(&current->sighand->siglock);
2436 return 0;
2437}
2438
2439int
2440do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2441{
2442 stack_t oss;
2443 int error;
2444
2445 if (uoss) {
2446 oss.ss_sp = (void __user *) current->sas_ss_sp;
2447 oss.ss_size = current->sas_ss_size;
2448 oss.ss_flags = sas_ss_flags(sp);
2449 }
2450
2451 if (uss) {
2452 void __user *ss_sp;
2453 size_t ss_size;
2454 int ss_flags;
2455
2456 error = -EFAULT;
2457 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2458 || __get_user(ss_sp, &uss->ss_sp)
2459 || __get_user(ss_flags, &uss->ss_flags)
2460 || __get_user(ss_size, &uss->ss_size))
2461 goto out;
2462
2463 error = -EPERM;
2464 if (on_sig_stack(sp))
2465 goto out;
2466
2467 error = -EINVAL;
2468 /*
2469 *
2470 * Note - this code used to test ss_flags incorrectly
2471 * old code may have been written using ss_flags==0
2472 * to mean ss_flags==SS_ONSTACK (as this was the only
2473 * way that worked) - this fix preserves that older
2474 * mechanism
2475 */
2476 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2477 goto out;
2478
2479 if (ss_flags == SS_DISABLE) {
2480 ss_size = 0;
2481 ss_sp = NULL;
2482 } else {
2483 error = -ENOMEM;
2484 if (ss_size < MINSIGSTKSZ)
2485 goto out;
2486 }
2487
2488 current->sas_ss_sp = (unsigned long) ss_sp;
2489 current->sas_ss_size = ss_size;
2490 }
2491
2492 if (uoss) {
2493 error = -EFAULT;
2494 if (copy_to_user(uoss, &oss, sizeof(oss)))
2495 goto out;
2496 }
2497
2498 error = 0;
2499out:
2500 return error;
2501}
2502
2503#ifdef __ARCH_WANT_SYS_SIGPENDING
2504
2505asmlinkage long
2506sys_sigpending(old_sigset_t __user *set)
2507{
2508 return do_sigpending(set, sizeof(*set));
2509}
2510
2511#endif
2512
2513#ifdef __ARCH_WANT_SYS_SIGPROCMASK
2514/* Some platforms have their own version with special arguments others
2515 support only sys_rt_sigprocmask. */
2516
2517asmlinkage long
2518sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2519{
2520 int error;
2521 old_sigset_t old_set, new_set;
2522
2523 if (set) {
2524 error = -EFAULT;
2525 if (copy_from_user(&new_set, set, sizeof(*set)))
2526 goto out;
2527 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2528
2529 spin_lock_irq(&current->sighand->siglock);
2530 old_set = current->blocked.sig[0];
2531
2532 error = 0;
2533 switch (how) {
2534 default:
2535 error = -EINVAL;
2536 break;
2537 case SIG_BLOCK:
2538 sigaddsetmask(&current->blocked, new_set);
2539 break;
2540 case SIG_UNBLOCK:
2541 sigdelsetmask(&current->blocked, new_set);
2542 break;
2543 case SIG_SETMASK:
2544 current->blocked.sig[0] = new_set;
2545 break;
2546 }
2547
2548 recalc_sigpending();
2549 spin_unlock_irq(&current->sighand->siglock);
2550 if (error)
2551 goto out;
2552 if (oset)
2553 goto set_old;
2554 } else if (oset) {
2555 old_set = current->blocked.sig[0];
2556 set_old:
2557 error = -EFAULT;
2558 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2559 goto out;
2560 }
2561 error = 0;
2562out:
2563 return error;
2564}
2565#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2566
2567#ifdef __ARCH_WANT_SYS_RT_SIGACTION
2568asmlinkage long
2569sys_rt_sigaction(int sig,
2570 const struct sigaction __user *act,
2571 struct sigaction __user *oact,
2572 size_t sigsetsize)
2573{
2574 struct k_sigaction new_sa, old_sa;
2575 int ret = -EINVAL;
2576
2577 /* XXX: Don't preclude handling different sized sigset_t's. */
2578 if (sigsetsize != sizeof(sigset_t))
2579 goto out;
2580
2581 if (act) {
2582 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2583 return -EFAULT;
2584 }
2585
2586 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2587
2588 if (!ret && oact) {
2589 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2590 return -EFAULT;
2591 }
2592out:
2593 return ret;
2594}
2595#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2596
2597#ifdef __ARCH_WANT_SYS_SGETMASK
2598
2599/*
2600 * For backwards compatibility. Functionality superseded by sigprocmask.
2601 */
2602asmlinkage long
2603sys_sgetmask(void)
2604{
2605 /* SMP safe */
2606 return current->blocked.sig[0];
2607}
2608
2609asmlinkage long
2610sys_ssetmask(int newmask)
2611{
2612 int old;
2613
2614 spin_lock_irq(&current->sighand->siglock);
2615 old = current->blocked.sig[0];
2616
2617 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2618 sigmask(SIGSTOP)));
2619 recalc_sigpending();
2620 spin_unlock_irq(&current->sighand->siglock);
2621
2622 return old;
2623}
2624#endif /* __ARCH_WANT_SGETMASK */
2625
2626#ifdef __ARCH_WANT_SYS_SIGNAL
2627/*
2628 * For backwards compatibility. Functionality superseded by sigaction.
2629 */
2630asmlinkage unsigned long
2631sys_signal(int sig, __sighandler_t handler)
2632{
2633 struct k_sigaction new_sa, old_sa;
2634 int ret;
2635
2636 new_sa.sa.sa_handler = handler;
2637 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2638
2639 ret = do_sigaction(sig, &new_sa, &old_sa);
2640
2641 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2642}
2643#endif /* __ARCH_WANT_SYS_SIGNAL */
2644
2645#ifdef __ARCH_WANT_SYS_PAUSE
2646
2647asmlinkage long
2648sys_pause(void)
2649{
2650 current->state = TASK_INTERRUPTIBLE;
2651 schedule();
2652 return -ERESTARTNOHAND;
2653}
2654
2655#endif
2656
2657void __init signals_init(void)
2658{
2659 sigqueue_cachep =
2660 kmem_cache_create("sigqueue",
2661 sizeof(struct sigqueue),
2662 __alignof__(struct sigqueue),
2663 SLAB_PANIC, NULL, NULL);
2664}