]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/signal.c
[PATCH] remove hardcoded SEND_SIG_xxx constants
[mirror_ubuntu-zesty-kernel.git] / kernel / signal.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/config.h>
14#include <linux/slab.h>
15#include <linux/module.h>
16#include <linux/smp_lock.h>
17#include <linux/init.h>
18#include <linux/sched.h>
19#include <linux/fs.h>
20#include <linux/tty.h>
21#include <linux/binfmts.h>
22#include <linux/security.h>
23#include <linux/syscalls.h>
24#include <linux/ptrace.h>
25#include <linux/posix-timers.h>
7ed20e1a 26#include <linux/signal.h>
c2f0c7c3 27#include <linux/audit.h>
1da177e4
LT
28#include <asm/param.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/siginfo.h>
32
33/*
34 * SLAB caches for signal bits.
35 */
36
37static kmem_cache_t *sigqueue_cachep;
38
39/*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113#ifdef SIGEMT
114#define M_SIGEMT M(SIGEMT)
115#else
116#define M_SIGEMT 0
117#endif
118
119#if SIGRTMIN > BITS_PER_LONG
120#define M(sig) (1ULL << ((sig)-1))
121#else
122#define M(sig) (1UL << ((sig)-1))
123#endif
124#define T(sig, mask) (M(sig) & (mask))
125
126#define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129#define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132#define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137#define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140#define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142#define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144#define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146#define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149#define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153#define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157static int sig_ignored(struct task_struct *t, int sig)
158{
159 void __user * handler;
160
161 /*
162 * Tracers always want to know about signals..
163 */
164 if (t->ptrace & PT_PTRACED)
165 return 0;
166
167 /*
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
171 */
172 if (sigismember(&t->blocked, sig))
173 return 0;
174
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
179}
180
181/*
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
184 */
185static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186{
187 unsigned long ready;
188 long i;
189
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
195
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
201
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
205
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
207 }
208 return ready != 0;
209}
210
211#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213fastcall void recalc_sigpending_tsk(struct task_struct *t)
214{
215 if (t->signal->group_stop_count > 0 ||
3e1d1d28 216 (freezing(t)) ||
1da177e4
LT
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222}
223
224void recalc_sigpending(void)
225{
226 recalc_sigpending_tsk(current);
227}
228
229/* Given the mask, find the first available signal that should be serviced. */
230
231static int
232next_signal(struct sigpending *pending, sigset_t *mask)
233{
234 unsigned long i, *s, *m, x;
235 int sig = 0;
236
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
245 }
246 break;
247
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
256
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
260 }
261
262 return sig;
263}
264
dd0fc66f 265static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
1da177e4
LT
266 int override_rlimit)
267{
268 struct sigqueue *q = NULL;
269
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
1da177e4
LT
280 q->user = get_uid(t->user);
281 }
282 return(q);
283}
284
285static inline void __sigqueue_free(struct sigqueue *q)
286{
287 if (q->flags & SIGQUEUE_PREALLOC)
288 return;
289 atomic_dec(&q->user->sigpending);
290 free_uid(q->user);
291 kmem_cache_free(sigqueue_cachep, q);
292}
293
294static void flush_sigqueue(struct sigpending *queue)
295{
296 struct sigqueue *q;
297
298 sigemptyset(&queue->signal);
299 while (!list_empty(&queue->list)) {
300 q = list_entry(queue->list.next, struct sigqueue , list);
301 list_del_init(&q->list);
302 __sigqueue_free(q);
303 }
304}
305
306/*
307 * Flush all pending signals for a task.
308 */
309
310void
311flush_signals(struct task_struct *t)
312{
313 unsigned long flags;
314
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
320}
321
322/*
323 * This function expects the tasklist_lock write-locked.
324 */
325void __exit_sighand(struct task_struct *tsk)
326{
327 struct sighand_struct * sighand = tsk->sighand;
328
329 /* Ok, we're done with the signal handlers */
330 tsk->sighand = NULL;
331 if (atomic_dec_and_test(&sighand->count))
332 kmem_cache_free(sighand_cachep, sighand);
333}
334
335void exit_sighand(struct task_struct *tsk)
336{
337 write_lock_irq(&tasklist_lock);
338 __exit_sighand(tsk);
339 write_unlock_irq(&tasklist_lock);
340}
341
342/*
343 * This function expects the tasklist_lock write-locked.
344 */
345void __exit_signal(struct task_struct *tsk)
346{
347 struct signal_struct * sig = tsk->signal;
348 struct sighand_struct * sighand = tsk->sighand;
349
350 if (!sig)
351 BUG();
352 if (!atomic_read(&sig->count))
353 BUG();
354 spin_lock(&sighand->siglock);
355 posix_cpu_timers_exit(tsk);
356 if (atomic_dec_and_test(&sig->count)) {
357 posix_cpu_timers_exit_group(tsk);
358 if (tsk == sig->curr_target)
359 sig->curr_target = next_thread(tsk);
360 tsk->signal = NULL;
361 spin_unlock(&sighand->siglock);
362 flush_sigqueue(&sig->shared_pending);
363 } else {
364 /*
365 * If there is any task waiting for the group exit
366 * then notify it:
367 */
368 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
369 wake_up_process(sig->group_exit_task);
370 sig->group_exit_task = NULL;
371 }
372 if (tsk == sig->curr_target)
373 sig->curr_target = next_thread(tsk);
374 tsk->signal = NULL;
375 /*
376 * Accumulate here the counters for all threads but the
377 * group leader as they die, so they can be added into
378 * the process-wide totals when those are taken.
379 * The group leader stays around as a zombie as long
380 * as there are other threads. When it gets reaped,
381 * the exit.c code will add its counts into these totals.
382 * We won't ever get here for the group leader, since it
383 * will have been the last reference on the signal_struct.
384 */
385 sig->utime = cputime_add(sig->utime, tsk->utime);
386 sig->stime = cputime_add(sig->stime, tsk->stime);
387 sig->min_flt += tsk->min_flt;
388 sig->maj_flt += tsk->maj_flt;
389 sig->nvcsw += tsk->nvcsw;
390 sig->nivcsw += tsk->nivcsw;
391 sig->sched_time += tsk->sched_time;
392 spin_unlock(&sighand->siglock);
393 sig = NULL; /* Marker for below. */
394 }
395 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
396 flush_sigqueue(&tsk->pending);
397 if (sig) {
398 /*
25f407f0 399 * We are cleaning up the signal_struct here.
1da177e4 400 */
1da177e4
LT
401 exit_thread_group_keys(sig);
402 kmem_cache_free(signal_cachep, sig);
403 }
404}
405
406void exit_signal(struct task_struct *tsk)
407{
8d027de5
ON
408 atomic_dec(&tsk->signal->live);
409
1da177e4
LT
410 write_lock_irq(&tasklist_lock);
411 __exit_signal(tsk);
412 write_unlock_irq(&tasklist_lock);
413}
414
415/*
416 * Flush all handlers for a task.
417 */
418
419void
420flush_signal_handlers(struct task_struct *t, int force_default)
421{
422 int i;
423 struct k_sigaction *ka = &t->sighand->action[0];
424 for (i = _NSIG ; i != 0 ; i--) {
425 if (force_default || ka->sa.sa_handler != SIG_IGN)
426 ka->sa.sa_handler = SIG_DFL;
427 ka->sa.sa_flags = 0;
428 sigemptyset(&ka->sa.sa_mask);
429 ka++;
430 }
431}
432
433
434/* Notify the system that a driver wants to block all signals for this
435 * process, and wants to be notified if any signals at all were to be
436 * sent/acted upon. If the notifier routine returns non-zero, then the
437 * signal will be acted upon after all. If the notifier routine returns 0,
438 * then then signal will be blocked. Only one block per process is
439 * allowed. priv is a pointer to private data that the notifier routine
440 * can use to determine if the signal should be blocked or not. */
441
442void
443block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
444{
445 unsigned long flags;
446
447 spin_lock_irqsave(&current->sighand->siglock, flags);
448 current->notifier_mask = mask;
449 current->notifier_data = priv;
450 current->notifier = notifier;
451 spin_unlock_irqrestore(&current->sighand->siglock, flags);
452}
453
454/* Notify the system that blocking has ended. */
455
456void
457unblock_all_signals(void)
458{
459 unsigned long flags;
460
461 spin_lock_irqsave(&current->sighand->siglock, flags);
462 current->notifier = NULL;
463 current->notifier_data = NULL;
464 recalc_sigpending();
465 spin_unlock_irqrestore(&current->sighand->siglock, flags);
466}
467
468static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
469{
470 struct sigqueue *q, *first = NULL;
471 int still_pending = 0;
472
473 if (unlikely(!sigismember(&list->signal, sig)))
474 return 0;
475
476 /*
477 * Collect the siginfo appropriate to this signal. Check if
478 * there is another siginfo for the same signal.
479 */
480 list_for_each_entry(q, &list->list, list) {
481 if (q->info.si_signo == sig) {
482 if (first) {
483 still_pending = 1;
484 break;
485 }
486 first = q;
487 }
488 }
489 if (first) {
490 list_del_init(&first->list);
491 copy_siginfo(info, &first->info);
492 __sigqueue_free(first);
493 if (!still_pending)
494 sigdelset(&list->signal, sig);
495 } else {
496
497 /* Ok, it wasn't in the queue. This must be
498 a fast-pathed signal or we must have been
499 out of queue space. So zero out the info.
500 */
501 sigdelset(&list->signal, sig);
502 info->si_signo = sig;
503 info->si_errno = 0;
504 info->si_code = 0;
505 info->si_pid = 0;
506 info->si_uid = 0;
507 }
508 return 1;
509}
510
511static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
512 siginfo_t *info)
513{
514 int sig = 0;
515
c33880aa
KK
516 /* SIGKILL must have priority, otherwise it is quite easy
517 * to create an unkillable process, sending sig < SIGKILL
518 * to self */
519 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
520 if (!sigismember(mask, SIGKILL))
521 sig = SIGKILL;
522 }
523
524 if (likely(!sig))
525 sig = next_signal(pending, mask);
1da177e4
LT
526 if (sig) {
527 if (current->notifier) {
528 if (sigismember(current->notifier_mask, sig)) {
529 if (!(current->notifier)(current->notifier_data)) {
530 clear_thread_flag(TIF_SIGPENDING);
531 return 0;
532 }
533 }
534 }
535
536 if (!collect_signal(sig, pending, info))
537 sig = 0;
538
539 }
540 recalc_sigpending();
541
542 return sig;
543}
544
545/*
546 * Dequeue a signal and return the element to the caller, which is
547 * expected to free it.
548 *
549 * All callers have to hold the siglock.
550 */
551int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
552{
553 int signr = __dequeue_signal(&tsk->pending, mask, info);
554 if (!signr)
555 signr = __dequeue_signal(&tsk->signal->shared_pending,
556 mask, info);
557 if (signr && unlikely(sig_kernel_stop(signr))) {
558 /*
559 * Set a marker that we have dequeued a stop signal. Our
560 * caller might release the siglock and then the pending
561 * stop signal it is about to process is no longer in the
562 * pending bitmasks, but must still be cleared by a SIGCONT
563 * (and overruled by a SIGKILL). So those cases clear this
564 * shared flag after we've set it. Note that this flag may
565 * remain set after the signal we return is ignored or
566 * handled. That doesn't matter because its only purpose
567 * is to alert stop-signal processing code when another
568 * processor has come along and cleared the flag.
569 */
788e05a6
ON
570 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
571 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
1da177e4
LT
572 }
573 if ( signr &&
574 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
575 info->si_sys_private){
576 /*
577 * Release the siglock to ensure proper locking order
578 * of timer locks outside of siglocks. Note, we leave
579 * irqs disabled here, since the posix-timers code is
580 * about to disable them again anyway.
581 */
582 spin_unlock(&tsk->sighand->siglock);
583 do_schedule_next_timer(info);
584 spin_lock(&tsk->sighand->siglock);
585 }
586 return signr;
587}
588
589/*
590 * Tell a process that it has a new active signal..
591 *
592 * NOTE! we rely on the previous spin_lock to
593 * lock interrupts for us! We can only be called with
594 * "siglock" held, and the local interrupt must
595 * have been disabled when that got acquired!
596 *
597 * No need to set need_resched since signal event passing
598 * goes through ->blocked
599 */
600void signal_wake_up(struct task_struct *t, int resume)
601{
602 unsigned int mask;
603
604 set_tsk_thread_flag(t, TIF_SIGPENDING);
605
606 /*
607 * For SIGKILL, we want to wake it up in the stopped/traced case.
608 * We don't check t->state here because there is a race with it
609 * executing another processor and just now entering stopped state.
610 * By using wake_up_state, we ensure the process will wake up and
611 * handle its death signal.
612 */
613 mask = TASK_INTERRUPTIBLE;
614 if (resume)
615 mask |= TASK_STOPPED | TASK_TRACED;
616 if (!wake_up_state(t, mask))
617 kick_process(t);
618}
619
620/*
621 * Remove signals in mask from the pending set and queue.
622 * Returns 1 if any signals were found.
623 *
624 * All callers must be holding the siglock.
625 */
626static int rm_from_queue(unsigned long mask, struct sigpending *s)
627{
628 struct sigqueue *q, *n;
629
630 if (!sigtestsetmask(&s->signal, mask))
631 return 0;
632
633 sigdelsetmask(&s->signal, mask);
634 list_for_each_entry_safe(q, n, &s->list, list) {
635 if (q->info.si_signo < SIGRTMIN &&
636 (mask & sigmask(q->info.si_signo))) {
637 list_del_init(&q->list);
638 __sigqueue_free(q);
639 }
640 }
641 return 1;
642}
643
644/*
645 * Bad permissions for sending the signal
646 */
647static int check_kill_permission(int sig, struct siginfo *info,
648 struct task_struct *t)
649{
650 int error = -EINVAL;
7ed20e1a 651 if (!valid_signal(sig))
1da177e4
LT
652 return error;
653 error = -EPERM;
b67a1b9e
ON
654 if ((info == SEND_SIG_NOINFO ||
655 (info != SEND_SIG_PRIV && info != SEND_SIG_FORCED
656 && SI_FROMUSER(info)))
1da177e4
LT
657 && ((sig != SIGCONT) ||
658 (current->signal->session != t->signal->session))
659 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
660 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
661 && !capable(CAP_KILL))
662 return error;
c2f0c7c3
SG
663
664 error = security_task_kill(t, info, sig);
665 if (!error)
666 audit_signal_info(sig, t); /* Let audit system see the signal */
667 return error;
1da177e4
LT
668}
669
670/* forward decl */
671static void do_notify_parent_cldstop(struct task_struct *tsk,
bc505a47 672 int to_self,
1da177e4
LT
673 int why);
674
675/*
676 * Handle magic process-wide effects of stop/continue signals.
677 * Unlike the signal actions, these happen immediately at signal-generation
678 * time regardless of blocking, ignoring, or handling. This does the
679 * actual continuing for SIGCONT, but not the actual stopping for stop
680 * signals. The process stop is done as a signal action for SIG_DFL.
681 */
682static void handle_stop_signal(int sig, struct task_struct *p)
683{
684 struct task_struct *t;
685
dd12f48d 686 if (p->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
687 /*
688 * The process is in the middle of dying already.
689 */
690 return;
691
692 if (sig_kernel_stop(sig)) {
693 /*
694 * This is a stop signal. Remove SIGCONT from all queues.
695 */
696 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
697 t = p;
698 do {
699 rm_from_queue(sigmask(SIGCONT), &t->pending);
700 t = next_thread(t);
701 } while (t != p);
702 } else if (sig == SIGCONT) {
703 /*
704 * Remove all stop signals from all queues,
705 * and wake all threads.
706 */
707 if (unlikely(p->signal->group_stop_count > 0)) {
708 /*
709 * There was a group stop in progress. We'll
710 * pretend it finished before we got here. We are
711 * obliged to report it to the parent: if the
712 * SIGSTOP happened "after" this SIGCONT, then it
713 * would have cleared this pending SIGCONT. If it
714 * happened "before" this SIGCONT, then the parent
715 * got the SIGCHLD about the stop finishing before
716 * the continue happened. We do the notification
717 * now, and it's as if the stop had finished and
718 * the SIGCHLD was pending on entry to this kill.
719 */
720 p->signal->group_stop_count = 0;
721 p->signal->flags = SIGNAL_STOP_CONTINUED;
722 spin_unlock(&p->sighand->siglock);
bc505a47 723 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
1da177e4
LT
724 spin_lock(&p->sighand->siglock);
725 }
726 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
727 t = p;
728 do {
729 unsigned int state;
730 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
731
732 /*
733 * If there is a handler for SIGCONT, we must make
734 * sure that no thread returns to user mode before
735 * we post the signal, in case it was the only
736 * thread eligible to run the signal handler--then
737 * it must not do anything between resuming and
738 * running the handler. With the TIF_SIGPENDING
739 * flag set, the thread will pause and acquire the
740 * siglock that we hold now and until we've queued
741 * the pending signal.
742 *
743 * Wake up the stopped thread _after_ setting
744 * TIF_SIGPENDING
745 */
746 state = TASK_STOPPED;
747 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
748 set_tsk_thread_flag(t, TIF_SIGPENDING);
749 state |= TASK_INTERRUPTIBLE;
750 }
751 wake_up_state(t, state);
752
753 t = next_thread(t);
754 } while (t != p);
755
756 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
757 /*
758 * We were in fact stopped, and are now continued.
759 * Notify the parent with CLD_CONTINUED.
760 */
761 p->signal->flags = SIGNAL_STOP_CONTINUED;
762 p->signal->group_exit_code = 0;
763 spin_unlock(&p->sighand->siglock);
bc505a47 764 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
1da177e4
LT
765 spin_lock(&p->sighand->siglock);
766 } else {
767 /*
768 * We are not stopped, but there could be a stop
769 * signal in the middle of being processed after
770 * being removed from the queue. Clear that too.
771 */
772 p->signal->flags = 0;
773 }
774 } else if (sig == SIGKILL) {
775 /*
776 * Make sure that any pending stop signal already dequeued
777 * is undone by the wakeup for SIGKILL.
778 */
779 p->signal->flags = 0;
780 }
781}
782
783static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
784 struct sigpending *signals)
785{
786 struct sigqueue * q = NULL;
787 int ret = 0;
788
789 /*
790 * fast-pathed signals for kernel-internal things like SIGSTOP
791 * or SIGKILL.
792 */
b67a1b9e 793 if (info == SEND_SIG_FORCED)
1da177e4
LT
794 goto out_set;
795
796 /* Real-time signals must be queued if sent by sigqueue, or
797 some other real-time mechanism. It is implementation
798 defined whether kill() does so. We attempt to do so, on
799 the principle of least surprise, but since kill is not
800 allowed to fail with EAGAIN when low on memory we just
801 make sure at least one signal gets delivered and don't
802 pass on the info struct. */
803
804 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
b67a1b9e 805 (info < SEND_SIG_FORCED ||
1da177e4
LT
806 info->si_code >= 0)));
807 if (q) {
808 list_add_tail(&q->list, &signals->list);
809 switch ((unsigned long) info) {
b67a1b9e 810 case (unsigned long) SEND_SIG_NOINFO:
1da177e4
LT
811 q->info.si_signo = sig;
812 q->info.si_errno = 0;
813 q->info.si_code = SI_USER;
814 q->info.si_pid = current->pid;
815 q->info.si_uid = current->uid;
816 break;
b67a1b9e 817 case (unsigned long) SEND_SIG_PRIV:
1da177e4
LT
818 q->info.si_signo = sig;
819 q->info.si_errno = 0;
820 q->info.si_code = SI_KERNEL;
821 q->info.si_pid = 0;
822 q->info.si_uid = 0;
823 break;
824 default:
825 copy_siginfo(&q->info, info);
826 break;
827 }
828 } else {
b67a1b9e
ON
829 if (sig >= SIGRTMIN
830 && info != SEND_SIG_NOINFO && info != SEND_SIG_PRIV
1da177e4
LT
831 && info->si_code != SI_USER)
832 /*
833 * Queue overflow, abort. We may abort if the signal was rt
834 * and sent by user using something other than kill().
835 */
836 return -EAGAIN;
b67a1b9e 837 if ((info > SEND_SIG_PRIV) && (info->si_code == SI_TIMER))
1da177e4
LT
838 /*
839 * Set up a return to indicate that we dropped
840 * the signal.
841 */
842 ret = info->si_sys_private;
843 }
844
845out_set:
846 sigaddset(&signals->signal, sig);
847 return ret;
848}
849
850#define LEGACY_QUEUE(sigptr, sig) \
851 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
852
853
854static int
855specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
856{
857 int ret = 0;
858
859 if (!irqs_disabled())
860 BUG();
861 assert_spin_locked(&t->sighand->siglock);
862
b67a1b9e 863 if ((info > SEND_SIG_FORCED) && (info->si_code == SI_TIMER))
1da177e4
LT
864 /*
865 * Set up a return to indicate that we dropped the signal.
866 */
867 ret = info->si_sys_private;
868
869 /* Short-circuit ignored signals. */
870 if (sig_ignored(t, sig))
871 goto out;
872
873 /* Support queueing exactly one non-rt signal, so that we
874 can get more detailed information about the cause of
875 the signal. */
876 if (LEGACY_QUEUE(&t->pending, sig))
877 goto out;
878
879 ret = send_signal(sig, info, t, &t->pending);
880 if (!ret && !sigismember(&t->blocked, sig))
881 signal_wake_up(t, sig == SIGKILL);
882out:
883 return ret;
884}
885
886/*
887 * Force a signal that the process can't ignore: if necessary
888 * we unblock the signal and change any SIG_IGN to SIG_DFL.
889 */
890
891int
892force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
893{
894 unsigned long int flags;
895 int ret;
896
897 spin_lock_irqsave(&t->sighand->siglock, flags);
898 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
899 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
900 sigdelset(&t->blocked, sig);
901 recalc_sigpending_tsk(t);
902 }
903 ret = specific_send_sig_info(sig, info, t);
904 spin_unlock_irqrestore(&t->sighand->siglock, flags);
905
906 return ret;
907}
908
909void
910force_sig_specific(int sig, struct task_struct *t)
911{
912 unsigned long int flags;
913
914 spin_lock_irqsave(&t->sighand->siglock, flags);
915 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
916 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
917 sigdelset(&t->blocked, sig);
918 recalc_sigpending_tsk(t);
b67a1b9e 919 specific_send_sig_info(sig, SEND_SIG_FORCED, t);
1da177e4
LT
920 spin_unlock_irqrestore(&t->sighand->siglock, flags);
921}
922
923/*
924 * Test if P wants to take SIG. After we've checked all threads with this,
925 * it's equivalent to finding no threads not blocking SIG. Any threads not
926 * blocking SIG were ruled out because they are not running and already
927 * have pending signals. Such threads will dequeue from the shared queue
928 * as soon as they're available, so putting the signal on the shared queue
929 * will be equivalent to sending it to one such thread.
930 */
188a1eaf
LT
931static inline int wants_signal(int sig, struct task_struct *p)
932{
933 if (sigismember(&p->blocked, sig))
934 return 0;
935 if (p->flags & PF_EXITING)
936 return 0;
937 if (sig == SIGKILL)
938 return 1;
939 if (p->state & (TASK_STOPPED | TASK_TRACED))
940 return 0;
941 return task_curr(p) || !signal_pending(p);
942}
1da177e4
LT
943
944static void
945__group_complete_signal(int sig, struct task_struct *p)
946{
1da177e4
LT
947 struct task_struct *t;
948
1da177e4
LT
949 /*
950 * Now find a thread we can wake up to take the signal off the queue.
951 *
952 * If the main thread wants the signal, it gets first crack.
953 * Probably the least surprising to the average bear.
954 */
188a1eaf 955 if (wants_signal(sig, p))
1da177e4
LT
956 t = p;
957 else if (thread_group_empty(p))
958 /*
959 * There is just one thread and it does not need to be woken.
960 * It will dequeue unblocked signals before it runs again.
961 */
962 return;
963 else {
964 /*
965 * Otherwise try to find a suitable thread.
966 */
967 t = p->signal->curr_target;
968 if (t == NULL)
969 /* restart balancing at this thread */
970 t = p->signal->curr_target = p;
971 BUG_ON(t->tgid != p->tgid);
972
188a1eaf 973 while (!wants_signal(sig, t)) {
1da177e4
LT
974 t = next_thread(t);
975 if (t == p->signal->curr_target)
976 /*
977 * No thread needs to be woken.
978 * Any eligible threads will see
979 * the signal in the queue soon.
980 */
981 return;
982 }
983 p->signal->curr_target = t;
984 }
985
986 /*
987 * Found a killable thread. If the signal will be fatal,
988 * then start taking the whole group down immediately.
989 */
990 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
991 !sigismember(&t->real_blocked, sig) &&
992 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
993 /*
994 * This signal will be fatal to the whole group.
995 */
996 if (!sig_kernel_coredump(sig)) {
997 /*
998 * Start a group exit and wake everybody up.
999 * This way we don't have other threads
1000 * running and doing things after a slower
1001 * thread has the fatal signal pending.
1002 */
1003 p->signal->flags = SIGNAL_GROUP_EXIT;
1004 p->signal->group_exit_code = sig;
1005 p->signal->group_stop_count = 0;
1006 t = p;
1007 do {
1008 sigaddset(&t->pending.signal, SIGKILL);
1009 signal_wake_up(t, 1);
1010 t = next_thread(t);
1011 } while (t != p);
1012 return;
1013 }
1014
1015 /*
1016 * There will be a core dump. We make all threads other
1017 * than the chosen one go into a group stop so that nothing
1018 * happens until it gets scheduled, takes the signal off
1019 * the shared queue, and does the core dump. This is a
1020 * little more complicated than strictly necessary, but it
1021 * keeps the signal state that winds up in the core dump
1022 * unchanged from the death state, e.g. which thread had
1023 * the core-dump signal unblocked.
1024 */
1025 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1026 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1027 p->signal->group_stop_count = 0;
1028 p->signal->group_exit_task = t;
1029 t = p;
1030 do {
1031 p->signal->group_stop_count++;
1032 signal_wake_up(t, 0);
1033 t = next_thread(t);
1034 } while (t != p);
1035 wake_up_process(p->signal->group_exit_task);
1036 return;
1037 }
1038
1039 /*
1040 * The signal is already in the shared-pending queue.
1041 * Tell the chosen thread to wake up and dequeue it.
1042 */
1043 signal_wake_up(t, sig == SIGKILL);
1044 return;
1045}
1046
1047int
1048__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1049{
1050 int ret = 0;
1051
1052 assert_spin_locked(&p->sighand->siglock);
1053 handle_stop_signal(sig, p);
1054
b67a1b9e 1055 if ((info > SEND_SIG_FORCED) && (info->si_code == SI_TIMER))
1da177e4
LT
1056 /*
1057 * Set up a return to indicate that we dropped the signal.
1058 */
1059 ret = info->si_sys_private;
1060
1061 /* Short-circuit ignored signals. */
1062 if (sig_ignored(p, sig))
1063 return ret;
1064
1065 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1066 /* This is a non-RT signal and we already have one queued. */
1067 return ret;
1068
1069 /*
1070 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1071 * We always use the shared queue for process-wide signals,
1072 * to avoid several races.
1073 */
1074 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1075 if (unlikely(ret))
1076 return ret;
1077
1078 __group_complete_signal(sig, p);
1079 return 0;
1080}
1081
1082/*
1083 * Nuke all other threads in the group.
1084 */
1085void zap_other_threads(struct task_struct *p)
1086{
1087 struct task_struct *t;
1088
1089 p->signal->flags = SIGNAL_GROUP_EXIT;
1090 p->signal->group_stop_count = 0;
1091
1092 if (thread_group_empty(p))
1093 return;
1094
1095 for (t = next_thread(p); t != p; t = next_thread(t)) {
1096 /*
1097 * Don't bother with already dead threads
1098 */
1099 if (t->exit_state)
1100 continue;
1101
1102 /*
1103 * We don't want to notify the parent, since we are
1104 * killed as part of a thread group due to another
1105 * thread doing an execve() or similar. So set the
1106 * exit signal to -1 to allow immediate reaping of
1107 * the process. But don't detach the thread group
1108 * leader.
1109 */
1110 if (t != p->group_leader)
1111 t->exit_signal = -1;
1112
30e0fca6 1113 /* SIGKILL will be handled before any pending SIGSTOP */
1da177e4 1114 sigaddset(&t->pending.signal, SIGKILL);
1da177e4
LT
1115 signal_wake_up(t, 1);
1116 }
1117}
1118
1119/*
1120 * Must be called with the tasklist_lock held for reading!
1121 */
1122int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1123{
1124 unsigned long flags;
1125 int ret;
1126
1127 ret = check_kill_permission(sig, info, p);
1128 if (!ret && sig && p->sighand) {
1129 spin_lock_irqsave(&p->sighand->siglock, flags);
1130 ret = __group_send_sig_info(sig, info, p);
1131 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1132 }
1133
1134 return ret;
1135}
1136
1137/*
1138 * kill_pg_info() sends a signal to a process group: this is what the tty
1139 * control characters do (^C, ^Z etc)
1140 */
1141
1142int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1143{
1144 struct task_struct *p = NULL;
1145 int retval, success;
1146
1147 if (pgrp <= 0)
1148 return -EINVAL;
1149
1150 success = 0;
1151 retval = -ESRCH;
1152 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1153 int err = group_send_sig_info(sig, info, p);
1154 success |= !err;
1155 retval = err;
1156 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1157 return success ? 0 : retval;
1158}
1159
1160int
1161kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1162{
1163 int retval;
1164
1165 read_lock(&tasklist_lock);
1166 retval = __kill_pg_info(sig, info, pgrp);
1167 read_unlock(&tasklist_lock);
1168
1169 return retval;
1170}
1171
1172int
1173kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1174{
1175 int error;
1176 struct task_struct *p;
1177
1178 read_lock(&tasklist_lock);
1179 p = find_task_by_pid(pid);
1180 error = -ESRCH;
1181 if (p)
1182 error = group_send_sig_info(sig, info, p);
1183 read_unlock(&tasklist_lock);
1184 return error;
1185}
1186
46113830
HW
1187/* like kill_proc_info(), but doesn't use uid/euid of "current" */
1188int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1189 uid_t uid, uid_t euid)
1190{
1191 int ret = -EINVAL;
1192 struct task_struct *p;
1193
1194 if (!valid_signal(sig))
1195 return ret;
1196
1197 read_lock(&tasklist_lock);
1198 p = find_task_by_pid(pid);
1199 if (!p) {
1200 ret = -ESRCH;
1201 goto out_unlock;
1202 }
1203 if ((!info || ((unsigned long)info != 1 &&
1204 (unsigned long)info != 2 && SI_FROMUSER(info)))
1205 && (euid != p->suid) && (euid != p->uid)
1206 && (uid != p->suid) && (uid != p->uid)) {
1207 ret = -EPERM;
1208 goto out_unlock;
1209 }
1210 if (sig && p->sighand) {
1211 unsigned long flags;
1212 spin_lock_irqsave(&p->sighand->siglock, flags);
1213 ret = __group_send_sig_info(sig, info, p);
1214 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1215 }
1216out_unlock:
1217 read_unlock(&tasklist_lock);
1218 return ret;
1219}
1220EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1da177e4
LT
1221
1222/*
1223 * kill_something_info() interprets pid in interesting ways just like kill(2).
1224 *
1225 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1226 * is probably wrong. Should make it like BSD or SYSV.
1227 */
1228
1229static int kill_something_info(int sig, struct siginfo *info, int pid)
1230{
1231 if (!pid) {
1232 return kill_pg_info(sig, info, process_group(current));
1233 } else if (pid == -1) {
1234 int retval = 0, count = 0;
1235 struct task_struct * p;
1236
1237 read_lock(&tasklist_lock);
1238 for_each_process(p) {
1239 if (p->pid > 1 && p->tgid != current->tgid) {
1240 int err = group_send_sig_info(sig, info, p);
1241 ++count;
1242 if (err != -EPERM)
1243 retval = err;
1244 }
1245 }
1246 read_unlock(&tasklist_lock);
1247 return count ? retval : -ESRCH;
1248 } else if (pid < 0) {
1249 return kill_pg_info(sig, info, -pid);
1250 } else {
1251 return kill_proc_info(sig, info, pid);
1252 }
1253}
1254
1255/*
1256 * These are for backward compatibility with the rest of the kernel source.
1257 */
1258
1259/*
1260 * These two are the most common entry points. They send a signal
1261 * just to the specific thread.
1262 */
1263int
1264send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1265{
1266 int ret;
1267 unsigned long flags;
1268
1269 /*
1270 * Make sure legacy kernel users don't send in bad values
1271 * (normal paths check this in check_kill_permission).
1272 */
7ed20e1a 1273 if (!valid_signal(sig))
1da177e4
LT
1274 return -EINVAL;
1275
1276 /*
1277 * We need the tasklist lock even for the specific
1278 * thread case (when we don't need to follow the group
1279 * lists) in order to avoid races with "p->sighand"
1280 * going away or changing from under us.
1281 */
1282 read_lock(&tasklist_lock);
1283 spin_lock_irqsave(&p->sighand->siglock, flags);
1284 ret = specific_send_sig_info(sig, info, p);
1285 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1286 read_unlock(&tasklist_lock);
1287 return ret;
1288}
1289
b67a1b9e
ON
1290#define __si_special(priv) \
1291 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1292
1da177e4
LT
1293int
1294send_sig(int sig, struct task_struct *p, int priv)
1295{
b67a1b9e 1296 return send_sig_info(sig, __si_special(priv), p);
1da177e4
LT
1297}
1298
1299/*
1300 * This is the entry point for "process-wide" signals.
1301 * They will go to an appropriate thread in the thread group.
1302 */
1303int
1304send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1305{
1306 int ret;
1307 read_lock(&tasklist_lock);
1308 ret = group_send_sig_info(sig, info, p);
1309 read_unlock(&tasklist_lock);
1310 return ret;
1311}
1312
1313void
1314force_sig(int sig, struct task_struct *p)
1315{
b67a1b9e 1316 force_sig_info(sig, SEND_SIG_PRIV, p);
1da177e4
LT
1317}
1318
1319/*
1320 * When things go south during signal handling, we
1321 * will force a SIGSEGV. And if the signal that caused
1322 * the problem was already a SIGSEGV, we'll want to
1323 * make sure we don't even try to deliver the signal..
1324 */
1325int
1326force_sigsegv(int sig, struct task_struct *p)
1327{
1328 if (sig == SIGSEGV) {
1329 unsigned long flags;
1330 spin_lock_irqsave(&p->sighand->siglock, flags);
1331 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1332 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1333 }
1334 force_sig(SIGSEGV, p);
1335 return 0;
1336}
1337
1338int
1339kill_pg(pid_t pgrp, int sig, int priv)
1340{
b67a1b9e 1341 return kill_pg_info(sig, __si_special(priv), pgrp);
1da177e4
LT
1342}
1343
1344int
1345kill_proc(pid_t pid, int sig, int priv)
1346{
b67a1b9e 1347 return kill_proc_info(sig, __si_special(priv), pid);
1da177e4
LT
1348}
1349
1350/*
1351 * These functions support sending signals using preallocated sigqueue
1352 * structures. This is needed "because realtime applications cannot
1353 * afford to lose notifications of asynchronous events, like timer
1354 * expirations or I/O completions". In the case of Posix Timers
1355 * we allocate the sigqueue structure from the timer_create. If this
1356 * allocation fails we are able to report the failure to the application
1357 * with an EAGAIN error.
1358 */
1359
1360struct sigqueue *sigqueue_alloc(void)
1361{
1362 struct sigqueue *q;
1363
1364 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1365 q->flags |= SIGQUEUE_PREALLOC;
1366 return(q);
1367}
1368
1369void sigqueue_free(struct sigqueue *q)
1370{
1371 unsigned long flags;
1372 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1373 /*
1374 * If the signal is still pending remove it from the
1375 * pending queue.
1376 */
1377 if (unlikely(!list_empty(&q->list))) {
19a4fcb5
ON
1378 spinlock_t *lock = &current->sighand->siglock;
1379 read_lock(&tasklist_lock);
1380 spin_lock_irqsave(lock, flags);
1da177e4
LT
1381 if (!list_empty(&q->list))
1382 list_del_init(&q->list);
19a4fcb5 1383 spin_unlock_irqrestore(lock, flags);
1da177e4
LT
1384 read_unlock(&tasklist_lock);
1385 }
1386 q->flags &= ~SIGQUEUE_PREALLOC;
1387 __sigqueue_free(q);
1388}
1389
1390int
1391send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1392{
1393 unsigned long flags;
1394 int ret = 0;
1395
1da177e4 1396 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
e752dd6c
ON
1397 read_lock(&tasklist_lock);
1398
1399 if (unlikely(p->flags & PF_EXITING)) {
1400 ret = -1;
1401 goto out_err;
1402 }
1403
1da177e4 1404 spin_lock_irqsave(&p->sighand->siglock, flags);
e752dd6c 1405
1da177e4
LT
1406 if (unlikely(!list_empty(&q->list))) {
1407 /*
1408 * If an SI_TIMER entry is already queue just increment
1409 * the overrun count.
1410 */
1411 if (q->info.si_code != SI_TIMER)
1412 BUG();
1413 q->info.si_overrun++;
1414 goto out;
e752dd6c 1415 }
1da177e4
LT
1416 /* Short-circuit ignored signals. */
1417 if (sig_ignored(p, sig)) {
1418 ret = 1;
1419 goto out;
1420 }
1421
1da177e4
LT
1422 list_add_tail(&q->list, &p->pending.list);
1423 sigaddset(&p->pending.signal, sig);
1424 if (!sigismember(&p->blocked, sig))
1425 signal_wake_up(p, sig == SIGKILL);
1426
1427out:
1428 spin_unlock_irqrestore(&p->sighand->siglock, flags);
e752dd6c 1429out_err:
1da177e4 1430 read_unlock(&tasklist_lock);
e752dd6c
ON
1431
1432 return ret;
1da177e4
LT
1433}
1434
1435int
1436send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1437{
1438 unsigned long flags;
1439 int ret = 0;
1440
1441 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1442 read_lock(&tasklist_lock);
1443 spin_lock_irqsave(&p->sighand->siglock, flags);
1444 handle_stop_signal(sig, p);
1445
1446 /* Short-circuit ignored signals. */
1447 if (sig_ignored(p, sig)) {
1448 ret = 1;
1449 goto out;
1450 }
1451
1452 if (unlikely(!list_empty(&q->list))) {
1453 /*
1454 * If an SI_TIMER entry is already queue just increment
1455 * the overrun count. Other uses should not try to
1456 * send the signal multiple times.
1457 */
1458 if (q->info.si_code != SI_TIMER)
1459 BUG();
1460 q->info.si_overrun++;
1461 goto out;
1462 }
1463
1464 /*
1465 * Put this signal on the shared-pending queue.
1466 * We always use the shared queue for process-wide signals,
1467 * to avoid several races.
1468 */
1da177e4
LT
1469 list_add_tail(&q->list, &p->signal->shared_pending.list);
1470 sigaddset(&p->signal->shared_pending.signal, sig);
1471
1472 __group_complete_signal(sig, p);
1473out:
1474 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1475 read_unlock(&tasklist_lock);
1476 return(ret);
1477}
1478
1479/*
1480 * Wake up any threads in the parent blocked in wait* syscalls.
1481 */
1482static inline void __wake_up_parent(struct task_struct *p,
1483 struct task_struct *parent)
1484{
1485 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1486}
1487
1488/*
1489 * Let a parent know about the death of a child.
1490 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1491 */
1492
1493void do_notify_parent(struct task_struct *tsk, int sig)
1494{
1495 struct siginfo info;
1496 unsigned long flags;
1497 struct sighand_struct *psig;
1498
1499 BUG_ON(sig == -1);
1500
1501 /* do_notify_parent_cldstop should have been called instead. */
1502 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1503
1504 BUG_ON(!tsk->ptrace &&
1505 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1506
1507 info.si_signo = sig;
1508 info.si_errno = 0;
1509 info.si_pid = tsk->pid;
1510 info.si_uid = tsk->uid;
1511
1512 /* FIXME: find out whether or not this is supposed to be c*time. */
1513 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1514 tsk->signal->utime));
1515 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1516 tsk->signal->stime));
1517
1518 info.si_status = tsk->exit_code & 0x7f;
1519 if (tsk->exit_code & 0x80)
1520 info.si_code = CLD_DUMPED;
1521 else if (tsk->exit_code & 0x7f)
1522 info.si_code = CLD_KILLED;
1523 else {
1524 info.si_code = CLD_EXITED;
1525 info.si_status = tsk->exit_code >> 8;
1526 }
1527
1528 psig = tsk->parent->sighand;
1529 spin_lock_irqsave(&psig->siglock, flags);
1530 if (sig == SIGCHLD &&
1531 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1532 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1533 /*
1534 * We are exiting and our parent doesn't care. POSIX.1
1535 * defines special semantics for setting SIGCHLD to SIG_IGN
1536 * or setting the SA_NOCLDWAIT flag: we should be reaped
1537 * automatically and not left for our parent's wait4 call.
1538 * Rather than having the parent do it as a magic kind of
1539 * signal handler, we just set this to tell do_exit that we
1540 * can be cleaned up without becoming a zombie. Note that
1541 * we still call __wake_up_parent in this case, because a
1542 * blocked sys_wait4 might now return -ECHILD.
1543 *
1544 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1545 * is implementation-defined: we do (if you don't want
1546 * it, just use SIG_IGN instead).
1547 */
1548 tsk->exit_signal = -1;
1549 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1550 sig = 0;
1551 }
7ed20e1a 1552 if (valid_signal(sig) && sig > 0)
1da177e4
LT
1553 __group_send_sig_info(sig, &info, tsk->parent);
1554 __wake_up_parent(tsk, tsk->parent);
1555 spin_unlock_irqrestore(&psig->siglock, flags);
1556}
1557
bc505a47 1558static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1da177e4
LT
1559{
1560 struct siginfo info;
1561 unsigned long flags;
bc505a47 1562 struct task_struct *parent;
1da177e4
LT
1563 struct sighand_struct *sighand;
1564
bc505a47
ON
1565 if (to_self)
1566 parent = tsk->parent;
1567 else {
1568 tsk = tsk->group_leader;
1569 parent = tsk->real_parent;
1570 }
1571
1da177e4
LT
1572 info.si_signo = SIGCHLD;
1573 info.si_errno = 0;
1574 info.si_pid = tsk->pid;
1575 info.si_uid = tsk->uid;
1576
1577 /* FIXME: find out whether or not this is supposed to be c*time. */
1578 info.si_utime = cputime_to_jiffies(tsk->utime);
1579 info.si_stime = cputime_to_jiffies(tsk->stime);
1580
1581 info.si_code = why;
1582 switch (why) {
1583 case CLD_CONTINUED:
1584 info.si_status = SIGCONT;
1585 break;
1586 case CLD_STOPPED:
1587 info.si_status = tsk->signal->group_exit_code & 0x7f;
1588 break;
1589 case CLD_TRAPPED:
1590 info.si_status = tsk->exit_code & 0x7f;
1591 break;
1592 default:
1593 BUG();
1594 }
1595
1596 sighand = parent->sighand;
1597 spin_lock_irqsave(&sighand->siglock, flags);
1598 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1599 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1600 __group_send_sig_info(SIGCHLD, &info, parent);
1601 /*
1602 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1603 */
1604 __wake_up_parent(tsk, parent);
1605 spin_unlock_irqrestore(&sighand->siglock, flags);
1606}
1607
1608/*
1609 * This must be called with current->sighand->siglock held.
1610 *
1611 * This should be the path for all ptrace stops.
1612 * We always set current->last_siginfo while stopped here.
1613 * That makes it a way to test a stopped process for
1614 * being ptrace-stopped vs being job-control-stopped.
1615 *
1616 * If we actually decide not to stop at all because the tracer is gone,
1617 * we leave nostop_code in current->exit_code.
1618 */
1619static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1620{
1621 /*
1622 * If there is a group stop in progress,
1623 * we must participate in the bookkeeping.
1624 */
1625 if (current->signal->group_stop_count > 0)
1626 --current->signal->group_stop_count;
1627
1628 current->last_siginfo = info;
1629 current->exit_code = exit_code;
1630
1631 /* Let the debugger run. */
1632 set_current_state(TASK_TRACED);
1633 spin_unlock_irq(&current->sighand->siglock);
1634 read_lock(&tasklist_lock);
1635 if (likely(current->ptrace & PT_PTRACED) &&
1636 likely(current->parent != current->real_parent ||
1637 !(current->ptrace & PT_ATTACHED)) &&
1638 (likely(current->parent->signal != current->signal) ||
1639 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
bc505a47 1640 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1da177e4
LT
1641 read_unlock(&tasklist_lock);
1642 schedule();
1643 } else {
1644 /*
1645 * By the time we got the lock, our tracer went away.
1646 * Don't stop here.
1647 */
1648 read_unlock(&tasklist_lock);
1649 set_current_state(TASK_RUNNING);
1650 current->exit_code = nostop_code;
1651 }
1652
1653 /*
1654 * We are back. Now reacquire the siglock before touching
1655 * last_siginfo, so that we are sure to have synchronized with
1656 * any signal-sending on another CPU that wants to examine it.
1657 */
1658 spin_lock_irq(&current->sighand->siglock);
1659 current->last_siginfo = NULL;
1660
1661 /*
1662 * Queued signals ignored us while we were stopped for tracing.
1663 * So check for any that we should take before resuming user mode.
1664 */
1665 recalc_sigpending();
1666}
1667
1668void ptrace_notify(int exit_code)
1669{
1670 siginfo_t info;
1671
1672 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1673
1674 memset(&info, 0, sizeof info);
1675 info.si_signo = SIGTRAP;
1676 info.si_code = exit_code;
1677 info.si_pid = current->pid;
1678 info.si_uid = current->uid;
1679
1680 /* Let the debugger run. */
1681 spin_lock_irq(&current->sighand->siglock);
1682 ptrace_stop(exit_code, 0, &info);
1683 spin_unlock_irq(&current->sighand->siglock);
1684}
1685
1da177e4
LT
1686static void
1687finish_stop(int stop_count)
1688{
bc505a47
ON
1689 int to_self;
1690
1da177e4
LT
1691 /*
1692 * If there are no other threads in the group, or if there is
1693 * a group stop in progress and we are the last to stop,
1694 * report to the parent. When ptraced, every thread reports itself.
1695 */
bc505a47
ON
1696 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1697 to_self = 1;
1698 else if (stop_count == 0)
1699 to_self = 0;
1700 else
1701 goto out;
1da177e4 1702
bc505a47
ON
1703 read_lock(&tasklist_lock);
1704 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1705 read_unlock(&tasklist_lock);
1706
1707out:
1da177e4
LT
1708 schedule();
1709 /*
1710 * Now we don't run again until continued.
1711 */
1712 current->exit_code = 0;
1713}
1714
1715/*
1716 * This performs the stopping for SIGSTOP and other stop signals.
1717 * We have to stop all threads in the thread group.
1718 * Returns nonzero if we've actually stopped and released the siglock.
1719 * Returns zero if we didn't stop and still hold the siglock.
1720 */
1721static int
1722do_signal_stop(int signr)
1723{
1724 struct signal_struct *sig = current->signal;
1725 struct sighand_struct *sighand = current->sighand;
1726 int stop_count = -1;
1727
1728 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1729 return 0;
1730
1731 if (sig->group_stop_count > 0) {
1732 /*
1733 * There is a group stop in progress. We don't need to
1734 * start another one.
1735 */
1736 signr = sig->group_exit_code;
1737 stop_count = --sig->group_stop_count;
1738 current->exit_code = signr;
1739 set_current_state(TASK_STOPPED);
1740 if (stop_count == 0)
1741 sig->flags = SIGNAL_STOP_STOPPED;
1742 spin_unlock_irq(&sighand->siglock);
1743 }
1744 else if (thread_group_empty(current)) {
1745 /*
1746 * Lock must be held through transition to stopped state.
1747 */
1748 current->exit_code = current->signal->group_exit_code = signr;
1749 set_current_state(TASK_STOPPED);
1750 sig->flags = SIGNAL_STOP_STOPPED;
1751 spin_unlock_irq(&sighand->siglock);
1752 }
1753 else {
1754 /*
1755 * There is no group stop already in progress.
1756 * We must initiate one now, but that requires
1757 * dropping siglock to get both the tasklist lock
1758 * and siglock again in the proper order. Note that
1759 * this allows an intervening SIGCONT to be posted.
1760 * We need to check for that and bail out if necessary.
1761 */
1762 struct task_struct *t;
1763
1764 spin_unlock_irq(&sighand->siglock);
1765
1766 /* signals can be posted during this window */
1767
1768 read_lock(&tasklist_lock);
1769 spin_lock_irq(&sighand->siglock);
1770
1771 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1772 /*
1773 * Another stop or continue happened while we
1774 * didn't have the lock. We can just swallow this
1775 * signal now. If we raced with a SIGCONT, that
1776 * should have just cleared it now. If we raced
1777 * with another processor delivering a stop signal,
1778 * then the SIGCONT that wakes us up should clear it.
1779 */
1780 read_unlock(&tasklist_lock);
1781 return 0;
1782 }
1783
1784 if (sig->group_stop_count == 0) {
1785 sig->group_exit_code = signr;
1786 stop_count = 0;
1787 for (t = next_thread(current); t != current;
1788 t = next_thread(t))
1789 /*
1790 * Setting state to TASK_STOPPED for a group
1791 * stop is always done with the siglock held,
1792 * so this check has no races.
1793 */
5acbc5cb
RM
1794 if (!t->exit_state &&
1795 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1da177e4
LT
1796 stop_count++;
1797 signal_wake_up(t, 0);
1798 }
1799 sig->group_stop_count = stop_count;
1800 }
1801 else {
1802 /* A race with another thread while unlocked. */
1803 signr = sig->group_exit_code;
1804 stop_count = --sig->group_stop_count;
1805 }
1806
1807 current->exit_code = signr;
1808 set_current_state(TASK_STOPPED);
1809 if (stop_count == 0)
1810 sig->flags = SIGNAL_STOP_STOPPED;
1811
1812 spin_unlock_irq(&sighand->siglock);
1813 read_unlock(&tasklist_lock);
1814 }
1815
1816 finish_stop(stop_count);
1817 return 1;
1818}
1819
1820/*
1821 * Do appropriate magic when group_stop_count > 0.
1822 * We return nonzero if we stopped, after releasing the siglock.
1823 * We return zero if we still hold the siglock and should look
1824 * for another signal without checking group_stop_count again.
1825 */
1826static inline int handle_group_stop(void)
1827{
1828 int stop_count;
1829
1830 if (current->signal->group_exit_task == current) {
1831 /*
1832 * Group stop is so we can do a core dump,
1833 * We are the initiating thread, so get on with it.
1834 */
1835 current->signal->group_exit_task = NULL;
1836 return 0;
1837 }
1838
1839 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1840 /*
1841 * Group stop is so another thread can do a core dump,
1842 * or else we are racing against a death signal.
1843 * Just punt the stop so we can get the next signal.
1844 */
1845 return 0;
1846
1847 /*
1848 * There is a group stop in progress. We stop
1849 * without any associated signal being in our queue.
1850 */
1851 stop_count = --current->signal->group_stop_count;
1852 if (stop_count == 0)
1853 current->signal->flags = SIGNAL_STOP_STOPPED;
1854 current->exit_code = current->signal->group_exit_code;
1855 set_current_state(TASK_STOPPED);
1856 spin_unlock_irq(&current->sighand->siglock);
1857 finish_stop(stop_count);
1858 return 1;
1859}
1860
1861int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1862 struct pt_regs *regs, void *cookie)
1863{
1864 sigset_t *mask = &current->blocked;
1865 int signr = 0;
1866
1867relock:
1868 spin_lock_irq(&current->sighand->siglock);
1869 for (;;) {
1870 struct k_sigaction *ka;
1871
1872 if (unlikely(current->signal->group_stop_count > 0) &&
1873 handle_group_stop())
1874 goto relock;
1875
1876 signr = dequeue_signal(current, mask, info);
1877
1878 if (!signr)
1879 break; /* will return 0 */
1880
1881 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1882 ptrace_signal_deliver(regs, cookie);
1883
1884 /* Let the debugger run. */
1885 ptrace_stop(signr, signr, info);
1886
30e0fca6 1887 /* We're back. Did the debugger cancel the sig or group_exit? */
1da177e4 1888 signr = current->exit_code;
30e0fca6 1889 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
1890 continue;
1891
1892 current->exit_code = 0;
1893
1894 /* Update the siginfo structure if the signal has
1895 changed. If the debugger wanted something
1896 specific in the siginfo structure then it should
1897 have updated *info via PTRACE_SETSIGINFO. */
1898 if (signr != info->si_signo) {
1899 info->si_signo = signr;
1900 info->si_errno = 0;
1901 info->si_code = SI_USER;
1902 info->si_pid = current->parent->pid;
1903 info->si_uid = current->parent->uid;
1904 }
1905
1906 /* If the (new) signal is now blocked, requeue it. */
1907 if (sigismember(&current->blocked, signr)) {
1908 specific_send_sig_info(signr, info, current);
1909 continue;
1910 }
1911 }
1912
1913 ka = &current->sighand->action[signr-1];
1914 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1915 continue;
1916 if (ka->sa.sa_handler != SIG_DFL) {
1917 /* Run the handler. */
1918 *return_ka = *ka;
1919
1920 if (ka->sa.sa_flags & SA_ONESHOT)
1921 ka->sa.sa_handler = SIG_DFL;
1922
1923 break; /* will return non-zero "signr" value */
1924 }
1925
1926 /*
1927 * Now we are doing the default action for this signal.
1928 */
1929 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1930 continue;
1931
1932 /* Init gets no signals it doesn't want. */
1933 if (current->pid == 1)
1934 continue;
1935
1936 if (sig_kernel_stop(signr)) {
1937 /*
1938 * The default action is to stop all threads in
1939 * the thread group. The job control signals
1940 * do nothing in an orphaned pgrp, but SIGSTOP
1941 * always works. Note that siglock needs to be
1942 * dropped during the call to is_orphaned_pgrp()
1943 * because of lock ordering with tasklist_lock.
1944 * This allows an intervening SIGCONT to be posted.
1945 * We need to check for that and bail out if necessary.
1946 */
1947 if (signr != SIGSTOP) {
1948 spin_unlock_irq(&current->sighand->siglock);
1949
1950 /* signals can be posted during this window */
1951
1952 if (is_orphaned_pgrp(process_group(current)))
1953 goto relock;
1954
1955 spin_lock_irq(&current->sighand->siglock);
1956 }
1957
1958 if (likely(do_signal_stop(signr))) {
1959 /* It released the siglock. */
1960 goto relock;
1961 }
1962
1963 /*
1964 * We didn't actually stop, due to a race
1965 * with SIGCONT or something like that.
1966 */
1967 continue;
1968 }
1969
1970 spin_unlock_irq(&current->sighand->siglock);
1971
1972 /*
1973 * Anything else is fatal, maybe with a core dump.
1974 */
1975 current->flags |= PF_SIGNALED;
1976 if (sig_kernel_coredump(signr)) {
1977 /*
1978 * If it was able to dump core, this kills all
1979 * other threads in the group and synchronizes with
1980 * their demise. If we lost the race with another
1981 * thread getting here, it set group_exit_code
1982 * first and our do_group_exit call below will use
1983 * that value and ignore the one we pass it.
1984 */
1985 do_coredump((long)signr, signr, regs);
1986 }
1987
1988 /*
1989 * Death signals, no core dump.
1990 */
1991 do_group_exit(signr);
1992 /* NOTREACHED */
1993 }
1994 spin_unlock_irq(&current->sighand->siglock);
1995 return signr;
1996}
1997
1da177e4
LT
1998EXPORT_SYMBOL(recalc_sigpending);
1999EXPORT_SYMBOL_GPL(dequeue_signal);
2000EXPORT_SYMBOL(flush_signals);
2001EXPORT_SYMBOL(force_sig);
2002EXPORT_SYMBOL(kill_pg);
2003EXPORT_SYMBOL(kill_proc);
2004EXPORT_SYMBOL(ptrace_notify);
2005EXPORT_SYMBOL(send_sig);
2006EXPORT_SYMBOL(send_sig_info);
2007EXPORT_SYMBOL(sigprocmask);
2008EXPORT_SYMBOL(block_all_signals);
2009EXPORT_SYMBOL(unblock_all_signals);
2010
2011
2012/*
2013 * System call entry points.
2014 */
2015
2016asmlinkage long sys_restart_syscall(void)
2017{
2018 struct restart_block *restart = &current_thread_info()->restart_block;
2019 return restart->fn(restart);
2020}
2021
2022long do_no_restart_syscall(struct restart_block *param)
2023{
2024 return -EINTR;
2025}
2026
2027/*
2028 * We don't need to get the kernel lock - this is all local to this
2029 * particular thread.. (and that's good, because this is _heavily_
2030 * used by various programs)
2031 */
2032
2033/*
2034 * This is also useful for kernel threads that want to temporarily
2035 * (or permanently) block certain signals.
2036 *
2037 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2038 * interface happily blocks "unblockable" signals like SIGKILL
2039 * and friends.
2040 */
2041int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2042{
2043 int error;
2044 sigset_t old_block;
2045
2046 spin_lock_irq(&current->sighand->siglock);
2047 old_block = current->blocked;
2048 error = 0;
2049 switch (how) {
2050 case SIG_BLOCK:
2051 sigorsets(&current->blocked, &current->blocked, set);
2052 break;
2053 case SIG_UNBLOCK:
2054 signandsets(&current->blocked, &current->blocked, set);
2055 break;
2056 case SIG_SETMASK:
2057 current->blocked = *set;
2058 break;
2059 default:
2060 error = -EINVAL;
2061 }
2062 recalc_sigpending();
2063 spin_unlock_irq(&current->sighand->siglock);
2064 if (oldset)
2065 *oldset = old_block;
2066 return error;
2067}
2068
2069asmlinkage long
2070sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2071{
2072 int error = -EINVAL;
2073 sigset_t old_set, new_set;
2074
2075 /* XXX: Don't preclude handling different sized sigset_t's. */
2076 if (sigsetsize != sizeof(sigset_t))
2077 goto out;
2078
2079 if (set) {
2080 error = -EFAULT;
2081 if (copy_from_user(&new_set, set, sizeof(*set)))
2082 goto out;
2083 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2084
2085 error = sigprocmask(how, &new_set, &old_set);
2086 if (error)
2087 goto out;
2088 if (oset)
2089 goto set_old;
2090 } else if (oset) {
2091 spin_lock_irq(&current->sighand->siglock);
2092 old_set = current->blocked;
2093 spin_unlock_irq(&current->sighand->siglock);
2094
2095 set_old:
2096 error = -EFAULT;
2097 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2098 goto out;
2099 }
2100 error = 0;
2101out:
2102 return error;
2103}
2104
2105long do_sigpending(void __user *set, unsigned long sigsetsize)
2106{
2107 long error = -EINVAL;
2108 sigset_t pending;
2109
2110 if (sigsetsize > sizeof(sigset_t))
2111 goto out;
2112
2113 spin_lock_irq(&current->sighand->siglock);
2114 sigorsets(&pending, &current->pending.signal,
2115 &current->signal->shared_pending.signal);
2116 spin_unlock_irq(&current->sighand->siglock);
2117
2118 /* Outside the lock because only this thread touches it. */
2119 sigandsets(&pending, &current->blocked, &pending);
2120
2121 error = -EFAULT;
2122 if (!copy_to_user(set, &pending, sigsetsize))
2123 error = 0;
2124
2125out:
2126 return error;
2127}
2128
2129asmlinkage long
2130sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2131{
2132 return do_sigpending(set, sigsetsize);
2133}
2134
2135#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2136
2137int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2138{
2139 int err;
2140
2141 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2142 return -EFAULT;
2143 if (from->si_code < 0)
2144 return __copy_to_user(to, from, sizeof(siginfo_t))
2145 ? -EFAULT : 0;
2146 /*
2147 * If you change siginfo_t structure, please be sure
2148 * this code is fixed accordingly.
2149 * It should never copy any pad contained in the structure
2150 * to avoid security leaks, but must copy the generic
2151 * 3 ints plus the relevant union member.
2152 */
2153 err = __put_user(from->si_signo, &to->si_signo);
2154 err |= __put_user(from->si_errno, &to->si_errno);
2155 err |= __put_user((short)from->si_code, &to->si_code);
2156 switch (from->si_code & __SI_MASK) {
2157 case __SI_KILL:
2158 err |= __put_user(from->si_pid, &to->si_pid);
2159 err |= __put_user(from->si_uid, &to->si_uid);
2160 break;
2161 case __SI_TIMER:
2162 err |= __put_user(from->si_tid, &to->si_tid);
2163 err |= __put_user(from->si_overrun, &to->si_overrun);
2164 err |= __put_user(from->si_ptr, &to->si_ptr);
2165 break;
2166 case __SI_POLL:
2167 err |= __put_user(from->si_band, &to->si_band);
2168 err |= __put_user(from->si_fd, &to->si_fd);
2169 break;
2170 case __SI_FAULT:
2171 err |= __put_user(from->si_addr, &to->si_addr);
2172#ifdef __ARCH_SI_TRAPNO
2173 err |= __put_user(from->si_trapno, &to->si_trapno);
2174#endif
2175 break;
2176 case __SI_CHLD:
2177 err |= __put_user(from->si_pid, &to->si_pid);
2178 err |= __put_user(from->si_uid, &to->si_uid);
2179 err |= __put_user(from->si_status, &to->si_status);
2180 err |= __put_user(from->si_utime, &to->si_utime);
2181 err |= __put_user(from->si_stime, &to->si_stime);
2182 break;
2183 case __SI_RT: /* This is not generated by the kernel as of now. */
2184 case __SI_MESGQ: /* But this is */
2185 err |= __put_user(from->si_pid, &to->si_pid);
2186 err |= __put_user(from->si_uid, &to->si_uid);
2187 err |= __put_user(from->si_ptr, &to->si_ptr);
2188 break;
2189 default: /* this is just in case for now ... */
2190 err |= __put_user(from->si_pid, &to->si_pid);
2191 err |= __put_user(from->si_uid, &to->si_uid);
2192 break;
2193 }
2194 return err;
2195}
2196
2197#endif
2198
2199asmlinkage long
2200sys_rt_sigtimedwait(const sigset_t __user *uthese,
2201 siginfo_t __user *uinfo,
2202 const struct timespec __user *uts,
2203 size_t sigsetsize)
2204{
2205 int ret, sig;
2206 sigset_t these;
2207 struct timespec ts;
2208 siginfo_t info;
2209 long timeout = 0;
2210
2211 /* XXX: Don't preclude handling different sized sigset_t's. */
2212 if (sigsetsize != sizeof(sigset_t))
2213 return -EINVAL;
2214
2215 if (copy_from_user(&these, uthese, sizeof(these)))
2216 return -EFAULT;
2217
2218 /*
2219 * Invert the set of allowed signals to get those we
2220 * want to block.
2221 */
2222 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2223 signotset(&these);
2224
2225 if (uts) {
2226 if (copy_from_user(&ts, uts, sizeof(ts)))
2227 return -EFAULT;
2228 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2229 || ts.tv_sec < 0)
2230 return -EINVAL;
2231 }
2232
2233 spin_lock_irq(&current->sighand->siglock);
2234 sig = dequeue_signal(current, &these, &info);
2235 if (!sig) {
2236 timeout = MAX_SCHEDULE_TIMEOUT;
2237 if (uts)
2238 timeout = (timespec_to_jiffies(&ts)
2239 + (ts.tv_sec || ts.tv_nsec));
2240
2241 if (timeout) {
2242 /* None ready -- temporarily unblock those we're
2243 * interested while we are sleeping in so that we'll
2244 * be awakened when they arrive. */
2245 current->real_blocked = current->blocked;
2246 sigandsets(&current->blocked, &current->blocked, &these);
2247 recalc_sigpending();
2248 spin_unlock_irq(&current->sighand->siglock);
2249
75bcc8c5 2250 timeout = schedule_timeout_interruptible(timeout);
1da177e4 2251
3e1d1d28 2252 try_to_freeze();
1da177e4
LT
2253 spin_lock_irq(&current->sighand->siglock);
2254 sig = dequeue_signal(current, &these, &info);
2255 current->blocked = current->real_blocked;
2256 siginitset(&current->real_blocked, 0);
2257 recalc_sigpending();
2258 }
2259 }
2260 spin_unlock_irq(&current->sighand->siglock);
2261
2262 if (sig) {
2263 ret = sig;
2264 if (uinfo) {
2265 if (copy_siginfo_to_user(uinfo, &info))
2266 ret = -EFAULT;
2267 }
2268 } else {
2269 ret = -EAGAIN;
2270 if (timeout)
2271 ret = -EINTR;
2272 }
2273
2274 return ret;
2275}
2276
2277asmlinkage long
2278sys_kill(int pid, int sig)
2279{
2280 struct siginfo info;
2281
2282 info.si_signo = sig;
2283 info.si_errno = 0;
2284 info.si_code = SI_USER;
2285 info.si_pid = current->tgid;
2286 info.si_uid = current->uid;
2287
2288 return kill_something_info(sig, &info, pid);
2289}
2290
6dd69f10 2291static int do_tkill(int tgid, int pid, int sig)
1da177e4 2292{
1da177e4 2293 int error;
6dd69f10 2294 struct siginfo info;
1da177e4
LT
2295 struct task_struct *p;
2296
6dd69f10 2297 error = -ESRCH;
1da177e4
LT
2298 info.si_signo = sig;
2299 info.si_errno = 0;
2300 info.si_code = SI_TKILL;
2301 info.si_pid = current->tgid;
2302 info.si_uid = current->uid;
2303
2304 read_lock(&tasklist_lock);
2305 p = find_task_by_pid(pid);
6dd69f10 2306 if (p && (tgid <= 0 || p->tgid == tgid)) {
1da177e4
LT
2307 error = check_kill_permission(sig, &info, p);
2308 /*
2309 * The null signal is a permissions and process existence
2310 * probe. No signal is actually delivered.
2311 */
2312 if (!error && sig && p->sighand) {
2313 spin_lock_irq(&p->sighand->siglock);
2314 handle_stop_signal(sig, p);
2315 error = specific_send_sig_info(sig, &info, p);
2316 spin_unlock_irq(&p->sighand->siglock);
2317 }
2318 }
2319 read_unlock(&tasklist_lock);
6dd69f10 2320
1da177e4
LT
2321 return error;
2322}
2323
6dd69f10
VL
2324/**
2325 * sys_tgkill - send signal to one specific thread
2326 * @tgid: the thread group ID of the thread
2327 * @pid: the PID of the thread
2328 * @sig: signal to be sent
2329 *
2330 * This syscall also checks the tgid and returns -ESRCH even if the PID
2331 * exists but it's not belonging to the target process anymore. This
2332 * method solves the problem of threads exiting and PIDs getting reused.
2333 */
2334asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2335{
2336 /* This is only valid for single tasks */
2337 if (pid <= 0 || tgid <= 0)
2338 return -EINVAL;
2339
2340 return do_tkill(tgid, pid, sig);
2341}
2342
1da177e4
LT
2343/*
2344 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2345 */
2346asmlinkage long
2347sys_tkill(int pid, int sig)
2348{
1da177e4
LT
2349 /* This is only valid for single tasks */
2350 if (pid <= 0)
2351 return -EINVAL;
2352
6dd69f10 2353 return do_tkill(0, pid, sig);
1da177e4
LT
2354}
2355
2356asmlinkage long
2357sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2358{
2359 siginfo_t info;
2360
2361 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2362 return -EFAULT;
2363
2364 /* Not even root can pretend to send signals from the kernel.
2365 Nor can they impersonate a kill(), which adds source info. */
2366 if (info.si_code >= 0)
2367 return -EPERM;
2368 info.si_signo = sig;
2369
2370 /* POSIX.1b doesn't mention process groups. */
2371 return kill_proc_info(sig, &info, pid);
2372}
2373
2374int
2375do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2376{
2377 struct k_sigaction *k;
2378
7ed20e1a 2379 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
1da177e4
LT
2380 return -EINVAL;
2381
2382 k = &current->sighand->action[sig-1];
2383
2384 spin_lock_irq(&current->sighand->siglock);
2385 if (signal_pending(current)) {
2386 /*
2387 * If there might be a fatal signal pending on multiple
2388 * threads, make sure we take it before changing the action.
2389 */
2390 spin_unlock_irq(&current->sighand->siglock);
2391 return -ERESTARTNOINTR;
2392 }
2393
2394 if (oact)
2395 *oact = *k;
2396
2397 if (act) {
2398 /*
2399 * POSIX 3.3.1.3:
2400 * "Setting a signal action to SIG_IGN for a signal that is
2401 * pending shall cause the pending signal to be discarded,
2402 * whether or not it is blocked."
2403 *
2404 * "Setting a signal action to SIG_DFL for a signal that is
2405 * pending and whose default action is to ignore the signal
2406 * (for example, SIGCHLD), shall cause the pending signal to
2407 * be discarded, whether or not it is blocked"
2408 */
2409 if (act->sa.sa_handler == SIG_IGN ||
2410 (act->sa.sa_handler == SIG_DFL &&
2411 sig_kernel_ignore(sig))) {
2412 /*
2413 * This is a fairly rare case, so we only take the
2414 * tasklist_lock once we're sure we'll need it.
2415 * Now we must do this little unlock and relock
2416 * dance to maintain the lock hierarchy.
2417 */
2418 struct task_struct *t = current;
2419 spin_unlock_irq(&t->sighand->siglock);
2420 read_lock(&tasklist_lock);
2421 spin_lock_irq(&t->sighand->siglock);
2422 *k = *act;
2423 sigdelsetmask(&k->sa.sa_mask,
2424 sigmask(SIGKILL) | sigmask(SIGSTOP));
2425 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2426 do {
2427 rm_from_queue(sigmask(sig), &t->pending);
2428 recalc_sigpending_tsk(t);
2429 t = next_thread(t);
2430 } while (t != current);
2431 spin_unlock_irq(&current->sighand->siglock);
2432 read_unlock(&tasklist_lock);
2433 return 0;
2434 }
2435
2436 *k = *act;
2437 sigdelsetmask(&k->sa.sa_mask,
2438 sigmask(SIGKILL) | sigmask(SIGSTOP));
2439 }
2440
2441 spin_unlock_irq(&current->sighand->siglock);
2442 return 0;
2443}
2444
2445int
2446do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2447{
2448 stack_t oss;
2449 int error;
2450
2451 if (uoss) {
2452 oss.ss_sp = (void __user *) current->sas_ss_sp;
2453 oss.ss_size = current->sas_ss_size;
2454 oss.ss_flags = sas_ss_flags(sp);
2455 }
2456
2457 if (uss) {
2458 void __user *ss_sp;
2459 size_t ss_size;
2460 int ss_flags;
2461
2462 error = -EFAULT;
2463 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2464 || __get_user(ss_sp, &uss->ss_sp)
2465 || __get_user(ss_flags, &uss->ss_flags)
2466 || __get_user(ss_size, &uss->ss_size))
2467 goto out;
2468
2469 error = -EPERM;
2470 if (on_sig_stack(sp))
2471 goto out;
2472
2473 error = -EINVAL;
2474 /*
2475 *
2476 * Note - this code used to test ss_flags incorrectly
2477 * old code may have been written using ss_flags==0
2478 * to mean ss_flags==SS_ONSTACK (as this was the only
2479 * way that worked) - this fix preserves that older
2480 * mechanism
2481 */
2482 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2483 goto out;
2484
2485 if (ss_flags == SS_DISABLE) {
2486 ss_size = 0;
2487 ss_sp = NULL;
2488 } else {
2489 error = -ENOMEM;
2490 if (ss_size < MINSIGSTKSZ)
2491 goto out;
2492 }
2493
2494 current->sas_ss_sp = (unsigned long) ss_sp;
2495 current->sas_ss_size = ss_size;
2496 }
2497
2498 if (uoss) {
2499 error = -EFAULT;
2500 if (copy_to_user(uoss, &oss, sizeof(oss)))
2501 goto out;
2502 }
2503
2504 error = 0;
2505out:
2506 return error;
2507}
2508
2509#ifdef __ARCH_WANT_SYS_SIGPENDING
2510
2511asmlinkage long
2512sys_sigpending(old_sigset_t __user *set)
2513{
2514 return do_sigpending(set, sizeof(*set));
2515}
2516
2517#endif
2518
2519#ifdef __ARCH_WANT_SYS_SIGPROCMASK
2520/* Some platforms have their own version with special arguments others
2521 support only sys_rt_sigprocmask. */
2522
2523asmlinkage long
2524sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2525{
2526 int error;
2527 old_sigset_t old_set, new_set;
2528
2529 if (set) {
2530 error = -EFAULT;
2531 if (copy_from_user(&new_set, set, sizeof(*set)))
2532 goto out;
2533 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2534
2535 spin_lock_irq(&current->sighand->siglock);
2536 old_set = current->blocked.sig[0];
2537
2538 error = 0;
2539 switch (how) {
2540 default:
2541 error = -EINVAL;
2542 break;
2543 case SIG_BLOCK:
2544 sigaddsetmask(&current->blocked, new_set);
2545 break;
2546 case SIG_UNBLOCK:
2547 sigdelsetmask(&current->blocked, new_set);
2548 break;
2549 case SIG_SETMASK:
2550 current->blocked.sig[0] = new_set;
2551 break;
2552 }
2553
2554 recalc_sigpending();
2555 spin_unlock_irq(&current->sighand->siglock);
2556 if (error)
2557 goto out;
2558 if (oset)
2559 goto set_old;
2560 } else if (oset) {
2561 old_set = current->blocked.sig[0];
2562 set_old:
2563 error = -EFAULT;
2564 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2565 goto out;
2566 }
2567 error = 0;
2568out:
2569 return error;
2570}
2571#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2572
2573#ifdef __ARCH_WANT_SYS_RT_SIGACTION
2574asmlinkage long
2575sys_rt_sigaction(int sig,
2576 const struct sigaction __user *act,
2577 struct sigaction __user *oact,
2578 size_t sigsetsize)
2579{
2580 struct k_sigaction new_sa, old_sa;
2581 int ret = -EINVAL;
2582
2583 /* XXX: Don't preclude handling different sized sigset_t's. */
2584 if (sigsetsize != sizeof(sigset_t))
2585 goto out;
2586
2587 if (act) {
2588 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2589 return -EFAULT;
2590 }
2591
2592 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2593
2594 if (!ret && oact) {
2595 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2596 return -EFAULT;
2597 }
2598out:
2599 return ret;
2600}
2601#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2602
2603#ifdef __ARCH_WANT_SYS_SGETMASK
2604
2605/*
2606 * For backwards compatibility. Functionality superseded by sigprocmask.
2607 */
2608asmlinkage long
2609sys_sgetmask(void)
2610{
2611 /* SMP safe */
2612 return current->blocked.sig[0];
2613}
2614
2615asmlinkage long
2616sys_ssetmask(int newmask)
2617{
2618 int old;
2619
2620 spin_lock_irq(&current->sighand->siglock);
2621 old = current->blocked.sig[0];
2622
2623 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2624 sigmask(SIGSTOP)));
2625 recalc_sigpending();
2626 spin_unlock_irq(&current->sighand->siglock);
2627
2628 return old;
2629}
2630#endif /* __ARCH_WANT_SGETMASK */
2631
2632#ifdef __ARCH_WANT_SYS_SIGNAL
2633/*
2634 * For backwards compatibility. Functionality superseded by sigaction.
2635 */
2636asmlinkage unsigned long
2637sys_signal(int sig, __sighandler_t handler)
2638{
2639 struct k_sigaction new_sa, old_sa;
2640 int ret;
2641
2642 new_sa.sa.sa_handler = handler;
2643 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2644
2645 ret = do_sigaction(sig, &new_sa, &old_sa);
2646
2647 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2648}
2649#endif /* __ARCH_WANT_SYS_SIGNAL */
2650
2651#ifdef __ARCH_WANT_SYS_PAUSE
2652
2653asmlinkage long
2654sys_pause(void)
2655{
2656 current->state = TASK_INTERRUPTIBLE;
2657 schedule();
2658 return -ERESTARTNOHAND;
2659}
2660
2661#endif
2662
2663void __init signals_init(void)
2664{
2665 sigqueue_cachep =
2666 kmem_cache_create("sigqueue",
2667 sizeof(struct sigqueue),
2668 __alignof__(struct sigqueue),
2669 SLAB_PANIC, NULL, NULL);
2670}