]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sys.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
9984de1a 7#include <linux/export.h>
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/reboot.h>
12#include <linux/prctl.h>
1da177e4
LT
13#include <linux/highuid.h>
14#include <linux/fs.h>
74da1ff7 15#include <linux/kmod.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92 18#include <linux/kernel.h>
1da177e4 19#include <linux/workqueue.h>
c59ede7b 20#include <linux/capability.h>
1da177e4
LT
21#include <linux/device.h>
22#include <linux/key.h>
23#include <linux/times.h>
24#include <linux/posix-timers.h>
25#include <linux/security.h>
26#include <linux/dcookies.h>
27#include <linux/suspend.h>
28#include <linux/tty.h>
7ed20e1a 29#include <linux/signal.h>
9f46080c 30#include <linux/cn_proc.h>
3cfc348b 31#include <linux/getcpu.h>
6eaeeaba 32#include <linux/task_io_accounting_ops.h>
1d9d02fe 33#include <linux/seccomp.h>
4047727e 34#include <linux/cpu.h>
e28cbf22 35#include <linux/personality.h>
e3d5a27d 36#include <linux/ptrace.h>
5ad4e53b 37#include <linux/fs_struct.h>
b32dfe37
CG
38#include <linux/file.h>
39#include <linux/mount.h>
5a0e3ad6 40#include <linux/gfp.h>
40dc166c 41#include <linux/syscore_ops.h>
be27425d
AK
42#include <linux/version.h>
43#include <linux/ctype.h>
1da177e4
LT
44
45#include <linux/compat.h>
46#include <linux/syscalls.h>
00d7c05a 47#include <linux/kprobes.h>
acce292c 48#include <linux/user_namespace.h>
7fe5e042 49#include <linux/binfmts.h>
1da177e4 50
4a22f166 51#include <linux/sched.h>
4eb5aaa3 52#include <linux/sched/autogroup.h>
4f17722c 53#include <linux/sched/loadavg.h>
03441a34 54#include <linux/sched/stat.h>
6e84f315 55#include <linux/sched/mm.h>
f7ccbae4 56#include <linux/sched/coredump.h>
29930025 57#include <linux/sched/task.h>
32ef5517 58#include <linux/sched/cputime.h>
4a22f166
SR
59#include <linux/rcupdate.h>
60#include <linux/uidgid.h>
61#include <linux/cred.h>
62
f12a33c4
TG
63#include <linux/nospec.h>
64
04c6862c 65#include <linux/kmsg_dump.h>
be27425d
AK
66/* Move somewhere else to avoid recompiling? */
67#include <generated/utsrelease.h>
04c6862c 68
7c0f6ba6 69#include <linux/uaccess.h>
1da177e4
LT
70#include <asm/io.h>
71#include <asm/unistd.h>
72
73#ifndef SET_UNALIGN_CTL
ec94fc3d 74# define SET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
75#endif
76#ifndef GET_UNALIGN_CTL
ec94fc3d 77# define GET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
78#endif
79#ifndef SET_FPEMU_CTL
ec94fc3d 80# define SET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
81#endif
82#ifndef GET_FPEMU_CTL
ec94fc3d 83# define GET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
84#endif
85#ifndef SET_FPEXC_CTL
ec94fc3d 86# define SET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4
LT
87#endif
88#ifndef GET_FPEXC_CTL
ec94fc3d 89# define GET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4 90#endif
651d765d 91#ifndef GET_ENDIAN
ec94fc3d 92# define GET_ENDIAN(a, b) (-EINVAL)
651d765d
AB
93#endif
94#ifndef SET_ENDIAN
ec94fc3d 95# define SET_ENDIAN(a, b) (-EINVAL)
651d765d 96#endif
8fb402bc
EB
97#ifndef GET_TSC_CTL
98# define GET_TSC_CTL(a) (-EINVAL)
99#endif
100#ifndef SET_TSC_CTL
101# define SET_TSC_CTL(a) (-EINVAL)
102#endif
fe3d197f 103#ifndef MPX_ENABLE_MANAGEMENT
46a6e0cf 104# define MPX_ENABLE_MANAGEMENT() (-EINVAL)
fe3d197f
DH
105#endif
106#ifndef MPX_DISABLE_MANAGEMENT
46a6e0cf 107# define MPX_DISABLE_MANAGEMENT() (-EINVAL)
fe3d197f 108#endif
9791554b
PB
109#ifndef GET_FP_MODE
110# define GET_FP_MODE(a) (-EINVAL)
111#endif
112#ifndef SET_FP_MODE
113# define SET_FP_MODE(a,b) (-EINVAL)
114#endif
1da177e4
LT
115
116/*
117 * this is where the system-wide overflow UID and GID are defined, for
118 * architectures that now have 32-bit UID/GID but didn't in the past
119 */
120
121int overflowuid = DEFAULT_OVERFLOWUID;
122int overflowgid = DEFAULT_OVERFLOWGID;
123
1da177e4
LT
124EXPORT_SYMBOL(overflowuid);
125EXPORT_SYMBOL(overflowgid);
1da177e4
LT
126
127/*
128 * the same as above, but for filesystems which can only store a 16-bit
129 * UID and GID. as such, this is needed on all architectures
130 */
131
132int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
133int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
134
135EXPORT_SYMBOL(fs_overflowuid);
136EXPORT_SYMBOL(fs_overflowgid);
137
fc832ad3
SH
138/*
139 * Returns true if current's euid is same as p's uid or euid,
140 * or has CAP_SYS_NICE to p's user_ns.
141 *
142 * Called with rcu_read_lock, creds are safe
143 */
144static bool set_one_prio_perm(struct task_struct *p)
145{
146 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
147
5af66203
EB
148 if (uid_eq(pcred->uid, cred->euid) ||
149 uid_eq(pcred->euid, cred->euid))
fc832ad3 150 return true;
c4a4d603 151 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
152 return true;
153 return false;
154}
155
c69e8d9c
DH
156/*
157 * set the priority of a task
158 * - the caller must hold the RCU read lock
159 */
1da177e4
LT
160static int set_one_prio(struct task_struct *p, int niceval, int error)
161{
162 int no_nice;
163
fc832ad3 164 if (!set_one_prio_perm(p)) {
1da177e4
LT
165 error = -EPERM;
166 goto out;
167 }
e43379f1 168 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
169 error = -EACCES;
170 goto out;
171 }
172 no_nice = security_task_setnice(p, niceval);
173 if (no_nice) {
174 error = no_nice;
175 goto out;
176 }
177 if (error == -ESRCH)
178 error = 0;
179 set_user_nice(p, niceval);
180out:
181 return error;
182}
183
754fe8d2 184SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
185{
186 struct task_struct *g, *p;
187 struct user_struct *user;
86a264ab 188 const struct cred *cred = current_cred();
1da177e4 189 int error = -EINVAL;
41487c65 190 struct pid *pgrp;
7b44ab97 191 kuid_t uid;
1da177e4 192
3e88c553 193 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
194 goto out;
195
196 /* normalize: avoid signed division (rounding problems) */
197 error = -ESRCH;
c4a4d2f4
DY
198 if (niceval < MIN_NICE)
199 niceval = MIN_NICE;
200 if (niceval > MAX_NICE)
201 niceval = MAX_NICE;
1da177e4 202
d4581a23 203 rcu_read_lock();
1da177e4
LT
204 read_lock(&tasklist_lock);
205 switch (which) {
ec94fc3d 206 case PRIO_PROCESS:
207 if (who)
208 p = find_task_by_vpid(who);
209 else
210 p = current;
211 if (p)
212 error = set_one_prio(p, niceval, error);
213 break;
214 case PRIO_PGRP:
215 if (who)
216 pgrp = find_vpid(who);
217 else
218 pgrp = task_pgrp(current);
219 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
220 error = set_one_prio(p, niceval, error);
221 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
222 break;
223 case PRIO_USER:
224 uid = make_kuid(cred->user_ns, who);
225 user = cred->user;
226 if (!who)
227 uid = cred->uid;
228 else if (!uid_eq(uid, cred->uid)) {
229 user = find_user(uid);
230 if (!user)
86a264ab 231 goto out_unlock; /* No processes for this user */
ec94fc3d 232 }
233 do_each_thread(g, p) {
8639b461 234 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
ec94fc3d 235 error = set_one_prio(p, niceval, error);
236 } while_each_thread(g, p);
237 if (!uid_eq(uid, cred->uid))
238 free_uid(user); /* For find_user() */
239 break;
1da177e4
LT
240 }
241out_unlock:
242 read_unlock(&tasklist_lock);
d4581a23 243 rcu_read_unlock();
1da177e4
LT
244out:
245 return error;
246}
247
248/*
249 * Ugh. To avoid negative return values, "getpriority()" will
250 * not return the normal nice-value, but a negated value that
251 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
252 * to stay compatible.
253 */
754fe8d2 254SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
255{
256 struct task_struct *g, *p;
257 struct user_struct *user;
86a264ab 258 const struct cred *cred = current_cred();
1da177e4 259 long niceval, retval = -ESRCH;
41487c65 260 struct pid *pgrp;
7b44ab97 261 kuid_t uid;
1da177e4 262
3e88c553 263 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
264 return -EINVAL;
265
70118837 266 rcu_read_lock();
1da177e4
LT
267 read_lock(&tasklist_lock);
268 switch (which) {
ec94fc3d 269 case PRIO_PROCESS:
270 if (who)
271 p = find_task_by_vpid(who);
272 else
273 p = current;
274 if (p) {
275 niceval = nice_to_rlimit(task_nice(p));
276 if (niceval > retval)
277 retval = niceval;
278 }
279 break;
280 case PRIO_PGRP:
281 if (who)
282 pgrp = find_vpid(who);
283 else
284 pgrp = task_pgrp(current);
285 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
286 niceval = nice_to_rlimit(task_nice(p));
287 if (niceval > retval)
288 retval = niceval;
289 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
290 break;
291 case PRIO_USER:
292 uid = make_kuid(cred->user_ns, who);
293 user = cred->user;
294 if (!who)
295 uid = cred->uid;
296 else if (!uid_eq(uid, cred->uid)) {
297 user = find_user(uid);
298 if (!user)
299 goto out_unlock; /* No processes for this user */
300 }
301 do_each_thread(g, p) {
8639b461 302 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
7aa2c016 303 niceval = nice_to_rlimit(task_nice(p));
1da177e4
LT
304 if (niceval > retval)
305 retval = niceval;
306 }
ec94fc3d 307 } while_each_thread(g, p);
308 if (!uid_eq(uid, cred->uid))
309 free_uid(user); /* for find_user() */
310 break;
1da177e4
LT
311 }
312out_unlock:
313 read_unlock(&tasklist_lock);
70118837 314 rcu_read_unlock();
1da177e4
LT
315
316 return retval;
317}
318
1da177e4
LT
319/*
320 * Unprivileged users may change the real gid to the effective gid
321 * or vice versa. (BSD-style)
322 *
323 * If you set the real gid at all, or set the effective gid to a value not
324 * equal to the real gid, then the saved gid is set to the new effective gid.
325 *
326 * This makes it possible for a setgid program to completely drop its
327 * privileges, which is often a useful assertion to make when you are doing
328 * a security audit over a program.
329 *
330 * The general idea is that a program which uses just setregid() will be
331 * 100% compatible with BSD. A program which uses just setgid() will be
ec94fc3d 332 * 100% compatible with POSIX with saved IDs.
1da177e4
LT
333 *
334 * SMP: There are not races, the GIDs are checked only by filesystem
335 * operations (as far as semantic preservation is concerned).
336 */
2813893f 337#ifdef CONFIG_MULTIUSER
ae1251ab 338SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 339{
a29c33f4 340 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
341 const struct cred *old;
342 struct cred *new;
1da177e4 343 int retval;
a29c33f4
EB
344 kgid_t krgid, kegid;
345
346 krgid = make_kgid(ns, rgid);
347 kegid = make_kgid(ns, egid);
348
349 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
350 return -EINVAL;
351 if ((egid != (gid_t) -1) && !gid_valid(kegid))
352 return -EINVAL;
1da177e4 353
d84f4f99
DH
354 new = prepare_creds();
355 if (!new)
356 return -ENOMEM;
357 old = current_cred();
358
d84f4f99 359 retval = -EPERM;
1da177e4 360 if (rgid != (gid_t) -1) {
a29c33f4
EB
361 if (gid_eq(old->gid, krgid) ||
362 gid_eq(old->egid, krgid) ||
c7b96acf 363 ns_capable(old->user_ns, CAP_SETGID))
a29c33f4 364 new->gid = krgid;
1da177e4 365 else
d84f4f99 366 goto error;
1da177e4
LT
367 }
368 if (egid != (gid_t) -1) {
a29c33f4
EB
369 if (gid_eq(old->gid, kegid) ||
370 gid_eq(old->egid, kegid) ||
371 gid_eq(old->sgid, kegid) ||
c7b96acf 372 ns_capable(old->user_ns, CAP_SETGID))
a29c33f4 373 new->egid = kegid;
756184b7 374 else
d84f4f99 375 goto error;
1da177e4 376 }
d84f4f99 377
1da177e4 378 if (rgid != (gid_t) -1 ||
a29c33f4 379 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
d84f4f99
DH
380 new->sgid = new->egid;
381 new->fsgid = new->egid;
382
383 return commit_creds(new);
384
385error:
386 abort_creds(new);
387 return retval;
1da177e4
LT
388}
389
390/*
ec94fc3d 391 * setgid() is implemented like SysV w/ SAVED_IDS
1da177e4
LT
392 *
393 * SMP: Same implicit races as above.
394 */
ae1251ab 395SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 396{
a29c33f4 397 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
398 const struct cred *old;
399 struct cred *new;
1da177e4 400 int retval;
a29c33f4
EB
401 kgid_t kgid;
402
403 kgid = make_kgid(ns, gid);
404 if (!gid_valid(kgid))
405 return -EINVAL;
1da177e4 406
d84f4f99
DH
407 new = prepare_creds();
408 if (!new)
409 return -ENOMEM;
410 old = current_cred();
411
d84f4f99 412 retval = -EPERM;
c7b96acf 413 if (ns_capable(old->user_ns, CAP_SETGID))
a29c33f4
EB
414 new->gid = new->egid = new->sgid = new->fsgid = kgid;
415 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
416 new->egid = new->fsgid = kgid;
1da177e4 417 else
d84f4f99 418 goto error;
1da177e4 419
d84f4f99
DH
420 return commit_creds(new);
421
422error:
423 abort_creds(new);
424 return retval;
1da177e4 425}
54e99124 426
d84f4f99
DH
427/*
428 * change the user struct in a credentials set to match the new UID
429 */
430static int set_user(struct cred *new)
1da177e4
LT
431{
432 struct user_struct *new_user;
433
078de5f7 434 new_user = alloc_uid(new->uid);
1da177e4
LT
435 if (!new_user)
436 return -EAGAIN;
437
72fa5997
VK
438 /*
439 * We don't fail in case of NPROC limit excess here because too many
440 * poorly written programs don't check set*uid() return code, assuming
441 * it never fails if called by root. We may still enforce NPROC limit
442 * for programs doing set*uid()+execve() by harmlessly deferring the
443 * failure to the execve() stage.
444 */
78d7d407 445 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
72fa5997
VK
446 new_user != INIT_USER)
447 current->flags |= PF_NPROC_EXCEEDED;
448 else
449 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 450
d84f4f99
DH
451 free_uid(new->user);
452 new->user = new_user;
1da177e4
LT
453 return 0;
454}
455
456/*
457 * Unprivileged users may change the real uid to the effective uid
458 * or vice versa. (BSD-style)
459 *
460 * If you set the real uid at all, or set the effective uid to a value not
461 * equal to the real uid, then the saved uid is set to the new effective uid.
462 *
463 * This makes it possible for a setuid program to completely drop its
464 * privileges, which is often a useful assertion to make when you are doing
465 * a security audit over a program.
466 *
467 * The general idea is that a program which uses just setreuid() will be
468 * 100% compatible with BSD. A program which uses just setuid() will be
ec94fc3d 469 * 100% compatible with POSIX with saved IDs.
1da177e4 470 */
ae1251ab 471SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 472{
a29c33f4 473 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
474 const struct cred *old;
475 struct cred *new;
1da177e4 476 int retval;
a29c33f4
EB
477 kuid_t kruid, keuid;
478
479 kruid = make_kuid(ns, ruid);
480 keuid = make_kuid(ns, euid);
481
482 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
483 return -EINVAL;
484 if ((euid != (uid_t) -1) && !uid_valid(keuid))
485 return -EINVAL;
1da177e4 486
d84f4f99
DH
487 new = prepare_creds();
488 if (!new)
489 return -ENOMEM;
490 old = current_cred();
491
d84f4f99 492 retval = -EPERM;
1da177e4 493 if (ruid != (uid_t) -1) {
a29c33f4
EB
494 new->uid = kruid;
495 if (!uid_eq(old->uid, kruid) &&
496 !uid_eq(old->euid, kruid) &&
c7b96acf 497 !ns_capable(old->user_ns, CAP_SETUID))
d84f4f99 498 goto error;
1da177e4
LT
499 }
500
501 if (euid != (uid_t) -1) {
a29c33f4
EB
502 new->euid = keuid;
503 if (!uid_eq(old->uid, keuid) &&
504 !uid_eq(old->euid, keuid) &&
505 !uid_eq(old->suid, keuid) &&
c7b96acf 506 !ns_capable(old->user_ns, CAP_SETUID))
d84f4f99 507 goto error;
1da177e4
LT
508 }
509
a29c33f4 510 if (!uid_eq(new->uid, old->uid)) {
54e99124
DG
511 retval = set_user(new);
512 if (retval < 0)
513 goto error;
514 }
1da177e4 515 if (ruid != (uid_t) -1 ||
a29c33f4 516 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
d84f4f99
DH
517 new->suid = new->euid;
518 new->fsuid = new->euid;
1da177e4 519
d84f4f99
DH
520 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
521 if (retval < 0)
522 goto error;
1da177e4 523
d84f4f99 524 return commit_creds(new);
1da177e4 525
d84f4f99
DH
526error:
527 abort_creds(new);
528 return retval;
529}
ec94fc3d 530
1da177e4 531/*
ec94fc3d 532 * setuid() is implemented like SysV with SAVED_IDS
533 *
1da177e4 534 * Note that SAVED_ID's is deficient in that a setuid root program
ec94fc3d 535 * like sendmail, for example, cannot set its uid to be a normal
1da177e4
LT
536 * user and then switch back, because if you're root, setuid() sets
537 * the saved uid too. If you don't like this, blame the bright people
538 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
539 * will allow a root program to temporarily drop privileges and be able to
ec94fc3d 540 * regain them by swapping the real and effective uid.
1da177e4 541 */
ae1251ab 542SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 543{
a29c33f4 544 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
545 const struct cred *old;
546 struct cred *new;
1da177e4 547 int retval;
a29c33f4
EB
548 kuid_t kuid;
549
550 kuid = make_kuid(ns, uid);
551 if (!uid_valid(kuid))
552 return -EINVAL;
1da177e4 553
d84f4f99
DH
554 new = prepare_creds();
555 if (!new)
556 return -ENOMEM;
557 old = current_cred();
558
d84f4f99 559 retval = -EPERM;
c7b96acf 560 if (ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
561 new->suid = new->uid = kuid;
562 if (!uid_eq(kuid, old->uid)) {
54e99124
DG
563 retval = set_user(new);
564 if (retval < 0)
565 goto error;
d84f4f99 566 }
a29c33f4 567 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
d84f4f99 568 goto error;
1da177e4 569 }
1da177e4 570
a29c33f4 571 new->fsuid = new->euid = kuid;
d84f4f99
DH
572
573 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
574 if (retval < 0)
575 goto error;
1da177e4 576
d84f4f99 577 return commit_creds(new);
1da177e4 578
d84f4f99
DH
579error:
580 abort_creds(new);
581 return retval;
1da177e4
LT
582}
583
584
585/*
586 * This function implements a generic ability to update ruid, euid,
587 * and suid. This allows you to implement the 4.4 compatible seteuid().
588 */
ae1251ab 589SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 590{
a29c33f4 591 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
592 const struct cred *old;
593 struct cred *new;
1da177e4 594 int retval;
a29c33f4
EB
595 kuid_t kruid, keuid, ksuid;
596
597 kruid = make_kuid(ns, ruid);
598 keuid = make_kuid(ns, euid);
599 ksuid = make_kuid(ns, suid);
600
601 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
602 return -EINVAL;
603
604 if ((euid != (uid_t) -1) && !uid_valid(keuid))
605 return -EINVAL;
606
607 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
608 return -EINVAL;
1da177e4 609
d84f4f99
DH
610 new = prepare_creds();
611 if (!new)
612 return -ENOMEM;
613
d84f4f99 614 old = current_cred();
1da177e4 615
d84f4f99 616 retval = -EPERM;
c7b96acf 617 if (!ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
618 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
619 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
d84f4f99 620 goto error;
a29c33f4
EB
621 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
622 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
d84f4f99 623 goto error;
a29c33f4
EB
624 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
625 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
d84f4f99 626 goto error;
1da177e4 627 }
d84f4f99 628
1da177e4 629 if (ruid != (uid_t) -1) {
a29c33f4
EB
630 new->uid = kruid;
631 if (!uid_eq(kruid, old->uid)) {
54e99124
DG
632 retval = set_user(new);
633 if (retval < 0)
634 goto error;
635 }
1da177e4 636 }
d84f4f99 637 if (euid != (uid_t) -1)
a29c33f4 638 new->euid = keuid;
1da177e4 639 if (suid != (uid_t) -1)
a29c33f4 640 new->suid = ksuid;
d84f4f99 641 new->fsuid = new->euid;
1da177e4 642
d84f4f99
DH
643 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
644 if (retval < 0)
645 goto error;
1da177e4 646
d84f4f99 647 return commit_creds(new);
1da177e4 648
d84f4f99
DH
649error:
650 abort_creds(new);
651 return retval;
1da177e4
LT
652}
653
a29c33f4 654SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
1da177e4 655{
86a264ab 656 const struct cred *cred = current_cred();
1da177e4 657 int retval;
a29c33f4
EB
658 uid_t ruid, euid, suid;
659
660 ruid = from_kuid_munged(cred->user_ns, cred->uid);
661 euid = from_kuid_munged(cred->user_ns, cred->euid);
662 suid = from_kuid_munged(cred->user_ns, cred->suid);
1da177e4 663
ec94fc3d 664 retval = put_user(ruid, ruidp);
665 if (!retval) {
666 retval = put_user(euid, euidp);
667 if (!retval)
668 return put_user(suid, suidp);
669 }
1da177e4
LT
670 return retval;
671}
672
673/*
674 * Same as above, but for rgid, egid, sgid.
675 */
ae1251ab 676SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 677{
a29c33f4 678 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
679 const struct cred *old;
680 struct cred *new;
1da177e4 681 int retval;
a29c33f4
EB
682 kgid_t krgid, kegid, ksgid;
683
684 krgid = make_kgid(ns, rgid);
685 kegid = make_kgid(ns, egid);
686 ksgid = make_kgid(ns, sgid);
687
688 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
689 return -EINVAL;
690 if ((egid != (gid_t) -1) && !gid_valid(kegid))
691 return -EINVAL;
692 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
693 return -EINVAL;
1da177e4 694
d84f4f99
DH
695 new = prepare_creds();
696 if (!new)
697 return -ENOMEM;
698 old = current_cred();
699
d84f4f99 700 retval = -EPERM;
c7b96acf 701 if (!ns_capable(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
702 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
703 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
d84f4f99 704 goto error;
a29c33f4
EB
705 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
706 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
d84f4f99 707 goto error;
a29c33f4
EB
708 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
709 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
d84f4f99 710 goto error;
1da177e4 711 }
d84f4f99 712
1da177e4 713 if (rgid != (gid_t) -1)
a29c33f4 714 new->gid = krgid;
d84f4f99 715 if (egid != (gid_t) -1)
a29c33f4 716 new->egid = kegid;
1da177e4 717 if (sgid != (gid_t) -1)
a29c33f4 718 new->sgid = ksgid;
d84f4f99 719 new->fsgid = new->egid;
1da177e4 720
d84f4f99
DH
721 return commit_creds(new);
722
723error:
724 abort_creds(new);
725 return retval;
1da177e4
LT
726}
727
a29c33f4 728SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
1da177e4 729{
86a264ab 730 const struct cred *cred = current_cred();
1da177e4 731 int retval;
a29c33f4
EB
732 gid_t rgid, egid, sgid;
733
734 rgid = from_kgid_munged(cred->user_ns, cred->gid);
735 egid = from_kgid_munged(cred->user_ns, cred->egid);
736 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
1da177e4 737
ec94fc3d 738 retval = put_user(rgid, rgidp);
739 if (!retval) {
740 retval = put_user(egid, egidp);
741 if (!retval)
742 retval = put_user(sgid, sgidp);
743 }
1da177e4
LT
744
745 return retval;
746}
747
748
749/*
750 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
751 * is used for "access()" and for the NFS daemon (letting nfsd stay at
752 * whatever uid it wants to). It normally shadows "euid", except when
753 * explicitly set by setfsuid() or for access..
754 */
ae1251ab 755SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 756{
d84f4f99
DH
757 const struct cred *old;
758 struct cred *new;
759 uid_t old_fsuid;
a29c33f4
EB
760 kuid_t kuid;
761
762 old = current_cred();
763 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
764
765 kuid = make_kuid(old->user_ns, uid);
766 if (!uid_valid(kuid))
767 return old_fsuid;
1da177e4 768
d84f4f99
DH
769 new = prepare_creds();
770 if (!new)
a29c33f4 771 return old_fsuid;
1da177e4 772
a29c33f4
EB
773 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
774 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
c7b96acf 775 ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
776 if (!uid_eq(kuid, old->fsuid)) {
777 new->fsuid = kuid;
d84f4f99
DH
778 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
779 goto change_okay;
1da177e4 780 }
1da177e4
LT
781 }
782
d84f4f99
DH
783 abort_creds(new);
784 return old_fsuid;
1da177e4 785
d84f4f99
DH
786change_okay:
787 commit_creds(new);
1da177e4
LT
788 return old_fsuid;
789}
790
791/*
f42df9e6 792 * Samma på svenska..
1da177e4 793 */
ae1251ab 794SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 795{
d84f4f99
DH
796 const struct cred *old;
797 struct cred *new;
798 gid_t old_fsgid;
a29c33f4
EB
799 kgid_t kgid;
800
801 old = current_cred();
802 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
803
804 kgid = make_kgid(old->user_ns, gid);
805 if (!gid_valid(kgid))
806 return old_fsgid;
d84f4f99
DH
807
808 new = prepare_creds();
809 if (!new)
a29c33f4 810 return old_fsgid;
1da177e4 811
a29c33f4
EB
812 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
813 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
c7b96acf 814 ns_capable(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
815 if (!gid_eq(kgid, old->fsgid)) {
816 new->fsgid = kgid;
d84f4f99 817 goto change_okay;
1da177e4 818 }
1da177e4 819 }
d84f4f99 820
d84f4f99
DH
821 abort_creds(new);
822 return old_fsgid;
823
824change_okay:
825 commit_creds(new);
1da177e4
LT
826 return old_fsgid;
827}
2813893f 828#endif /* CONFIG_MULTIUSER */
1da177e4 829
4a22f166
SR
830/**
831 * sys_getpid - return the thread group id of the current process
832 *
833 * Note, despite the name, this returns the tgid not the pid. The tgid and
834 * the pid are identical unless CLONE_THREAD was specified on clone() in
835 * which case the tgid is the same in all threads of the same group.
836 *
837 * This is SMP safe as current->tgid does not change.
838 */
839SYSCALL_DEFINE0(getpid)
840{
841 return task_tgid_vnr(current);
842}
843
844/* Thread ID - the internal kernel "pid" */
845SYSCALL_DEFINE0(gettid)
846{
847 return task_pid_vnr(current);
848}
849
850/*
851 * Accessing ->real_parent is not SMP-safe, it could
852 * change from under us. However, we can use a stale
853 * value of ->real_parent under rcu_read_lock(), see
854 * release_task()->call_rcu(delayed_put_task_struct).
855 */
856SYSCALL_DEFINE0(getppid)
857{
858 int pid;
859
860 rcu_read_lock();
861 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
862 rcu_read_unlock();
863
864 return pid;
865}
866
867SYSCALL_DEFINE0(getuid)
868{
869 /* Only we change this so SMP safe */
870 return from_kuid_munged(current_user_ns(), current_uid());
871}
872
873SYSCALL_DEFINE0(geteuid)
874{
875 /* Only we change this so SMP safe */
876 return from_kuid_munged(current_user_ns(), current_euid());
877}
878
879SYSCALL_DEFINE0(getgid)
880{
881 /* Only we change this so SMP safe */
882 return from_kgid_munged(current_user_ns(), current_gid());
883}
884
885SYSCALL_DEFINE0(getegid)
886{
887 /* Only we change this so SMP safe */
888 return from_kgid_munged(current_user_ns(), current_egid());
889}
890
ca2406ed 891static void do_sys_times(struct tms *tms)
f06febc9 892{
5613fda9 893 u64 tgutime, tgstime, cutime, cstime;
f06febc9 894
e80d0a1a 895 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
f06febc9
FM
896 cutime = current->signal->cutime;
897 cstime = current->signal->cstime;
5613fda9
FW
898 tms->tms_utime = nsec_to_clock_t(tgutime);
899 tms->tms_stime = nsec_to_clock_t(tgstime);
900 tms->tms_cutime = nsec_to_clock_t(cutime);
901 tms->tms_cstime = nsec_to_clock_t(cstime);
f06febc9
FM
902}
903
58fd3aa2 904SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 905{
1da177e4
LT
906 if (tbuf) {
907 struct tms tmp;
f06febc9
FM
908
909 do_sys_times(&tmp);
1da177e4
LT
910 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
911 return -EFAULT;
912 }
e3d5a27d 913 force_successful_syscall_return();
1da177e4
LT
914 return (long) jiffies_64_to_clock_t(get_jiffies_64());
915}
916
ca2406ed
AV
917#ifdef CONFIG_COMPAT
918static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
919{
920 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
921}
922
923COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
924{
925 if (tbuf) {
926 struct tms tms;
927 struct compat_tms tmp;
928
929 do_sys_times(&tms);
930 /* Convert our struct tms to the compat version. */
931 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
932 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
933 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
934 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
935 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
936 return -EFAULT;
937 }
938 force_successful_syscall_return();
939 return compat_jiffies_to_clock_t(jiffies);
940}
941#endif
942
1da177e4
LT
943/*
944 * This needs some heavy checking ...
945 * I just haven't the stomach for it. I also don't fully
946 * understand sessions/pgrp etc. Let somebody who does explain it.
947 *
948 * OK, I think I have the protection semantics right.... this is really
949 * only important on a multi-user system anyway, to make sure one user
950 * can't send a signal to a process owned by another. -TYT, 12/12/91
951 *
98611e4e 952 * !PF_FORKNOEXEC check to conform completely to POSIX.
1da177e4 953 */
b290ebe2 954SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
955{
956 struct task_struct *p;
ee0acf90 957 struct task_struct *group_leader = current->group_leader;
4e021306
ON
958 struct pid *pgrp;
959 int err;
1da177e4
LT
960
961 if (!pid)
b488893a 962 pid = task_pid_vnr(group_leader);
1da177e4
LT
963 if (!pgid)
964 pgid = pid;
965 if (pgid < 0)
966 return -EINVAL;
950eaaca 967 rcu_read_lock();
1da177e4
LT
968
969 /* From this point forward we keep holding onto the tasklist lock
970 * so that our parent does not change from under us. -DaveM
971 */
972 write_lock_irq(&tasklist_lock);
973
974 err = -ESRCH;
4e021306 975 p = find_task_by_vpid(pid);
1da177e4
LT
976 if (!p)
977 goto out;
978
979 err = -EINVAL;
980 if (!thread_group_leader(p))
981 goto out;
982
4e021306 983 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 984 err = -EPERM;
41487c65 985 if (task_session(p) != task_session(group_leader))
1da177e4
LT
986 goto out;
987 err = -EACCES;
98611e4e 988 if (!(p->flags & PF_FORKNOEXEC))
1da177e4
LT
989 goto out;
990 } else {
991 err = -ESRCH;
ee0acf90 992 if (p != group_leader)
1da177e4
LT
993 goto out;
994 }
995
996 err = -EPERM;
997 if (p->signal->leader)
998 goto out;
999
4e021306 1000 pgrp = task_pid(p);
1da177e4 1001 if (pgid != pid) {
b488893a 1002 struct task_struct *g;
1da177e4 1003
4e021306
ON
1004 pgrp = find_vpid(pgid);
1005 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1006 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1007 goto out;
1da177e4
LT
1008 }
1009
1da177e4
LT
1010 err = security_task_setpgid(p, pgid);
1011 if (err)
1012 goto out;
1013
1b0f7ffd 1014 if (task_pgrp(p) != pgrp)
83beaf3c 1015 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1016
1017 err = 0;
1018out:
1019 /* All paths lead to here, thus we are safe. -DaveM */
1020 write_unlock_irq(&tasklist_lock);
950eaaca 1021 rcu_read_unlock();
1da177e4
LT
1022 return err;
1023}
1024
dbf040d9 1025SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 1026{
12a3de0a
ON
1027 struct task_struct *p;
1028 struct pid *grp;
1029 int retval;
1030
1031 rcu_read_lock();
756184b7 1032 if (!pid)
12a3de0a 1033 grp = task_pgrp(current);
756184b7 1034 else {
1da177e4 1035 retval = -ESRCH;
12a3de0a
ON
1036 p = find_task_by_vpid(pid);
1037 if (!p)
1038 goto out;
1039 grp = task_pgrp(p);
1040 if (!grp)
1041 goto out;
1042
1043 retval = security_task_getpgid(p);
1044 if (retval)
1045 goto out;
1da177e4 1046 }
12a3de0a
ON
1047 retval = pid_vnr(grp);
1048out:
1049 rcu_read_unlock();
1050 return retval;
1da177e4
LT
1051}
1052
1053#ifdef __ARCH_WANT_SYS_GETPGRP
1054
dbf040d9 1055SYSCALL_DEFINE0(getpgrp)
1da177e4 1056{
12a3de0a 1057 return sys_getpgid(0);
1da177e4
LT
1058}
1059
1060#endif
1061
dbf040d9 1062SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1063{
1dd768c0
ON
1064 struct task_struct *p;
1065 struct pid *sid;
1066 int retval;
1067
1068 rcu_read_lock();
756184b7 1069 if (!pid)
1dd768c0 1070 sid = task_session(current);
756184b7 1071 else {
1da177e4 1072 retval = -ESRCH;
1dd768c0
ON
1073 p = find_task_by_vpid(pid);
1074 if (!p)
1075 goto out;
1076 sid = task_session(p);
1077 if (!sid)
1078 goto out;
1079
1080 retval = security_task_getsid(p);
1081 if (retval)
1082 goto out;
1da177e4 1083 }
1dd768c0
ON
1084 retval = pid_vnr(sid);
1085out:
1086 rcu_read_unlock();
1087 return retval;
1da177e4
LT
1088}
1089
81dabb46
ON
1090static void set_special_pids(struct pid *pid)
1091{
1092 struct task_struct *curr = current->group_leader;
1093
1094 if (task_session(curr) != pid)
1095 change_pid(curr, PIDTYPE_SID, pid);
1096
1097 if (task_pgrp(curr) != pid)
1098 change_pid(curr, PIDTYPE_PGID, pid);
1099}
1100
b290ebe2 1101SYSCALL_DEFINE0(setsid)
1da177e4 1102{
e19f247a 1103 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1104 struct pid *sid = task_pid(group_leader);
1105 pid_t session = pid_vnr(sid);
1da177e4
LT
1106 int err = -EPERM;
1107
1da177e4 1108 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1109 /* Fail if I am already a session leader */
1110 if (group_leader->signal->leader)
1111 goto out;
1112
430c6231
ON
1113 /* Fail if a process group id already exists that equals the
1114 * proposed session id.
390e2ff0 1115 */
6806aac6 1116 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1117 goto out;
1118
e19f247a 1119 group_leader->signal->leader = 1;
81dabb46 1120 set_special_pids(sid);
24ec839c 1121
9c9f4ded 1122 proc_clear_tty(group_leader);
24ec839c 1123
e4cc0a9c 1124 err = session;
1da177e4
LT
1125out:
1126 write_unlock_irq(&tasklist_lock);
5091faa4 1127 if (err > 0) {
0d0df599 1128 proc_sid_connector(group_leader);
5091faa4
MG
1129 sched_autogroup_create_attach(group_leader);
1130 }
1da177e4
LT
1131 return err;
1132}
1133
1da177e4
LT
1134DECLARE_RWSEM(uts_sem);
1135
9e41d2a2
AW
1136#ifdef COMPAT_UTS_MACHINE
1137static char compat_uts_machine[__OLD_UTS_LEN+1] = COMPAT_UTS_MACHINE;
1138
1139static int __init parse_compat_uts_machine(char *arg)
1140{
1141 strncpy(compat_uts_machine, arg, __OLD_UTS_LEN);
1142 compat_uts_machine[__OLD_UTS_LEN] = 0;
1143 return 0;
1144}
1145early_param("compat_uts_machine", parse_compat_uts_machine);
1146
1147#undef COMPAT_UTS_MACHINE
1148#define COMPAT_UTS_MACHINE compat_uts_machine
1149#endif
1150
e28cbf22
CH
1151#ifdef COMPAT_UTS_MACHINE
1152#define override_architecture(name) \
46da2766 1153 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1154 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1155 sizeof(COMPAT_UTS_MACHINE)))
1156#else
1157#define override_architecture(name) 0
1158#endif
1159
be27425d
AK
1160/*
1161 * Work around broken programs that cannot handle "Linux 3.0".
1162 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
39afb5ee 1163 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
be27425d 1164 */
2702b152 1165static int override_release(char __user *release, size_t len)
be27425d
AK
1166{
1167 int ret = 0;
be27425d
AK
1168
1169 if (current->personality & UNAME26) {
2702b152
KC
1170 const char *rest = UTS_RELEASE;
1171 char buf[65] = { 0 };
be27425d
AK
1172 int ndots = 0;
1173 unsigned v;
2702b152 1174 size_t copy;
be27425d
AK
1175
1176 while (*rest) {
1177 if (*rest == '.' && ++ndots >= 3)
1178 break;
1179 if (!isdigit(*rest) && *rest != '.')
1180 break;
1181 rest++;
1182 }
39afb5ee 1183 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
31fd84b9 1184 copy = clamp_t(size_t, len, 1, sizeof(buf));
2702b152
KC
1185 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1186 ret = copy_to_user(release, buf, copy + 1);
be27425d
AK
1187 }
1188 return ret;
1189}
1190
e48fbb69 1191SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1192{
1193 int errno = 0;
1194
1195 down_read(&uts_sem);
e9ff3990 1196 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1197 errno = -EFAULT;
1198 up_read(&uts_sem);
e28cbf22 1199
be27425d
AK
1200 if (!errno && override_release(name->release, sizeof(name->release)))
1201 errno = -EFAULT;
e28cbf22
CH
1202 if (!errno && override_architecture(name))
1203 errno = -EFAULT;
1da177e4
LT
1204 return errno;
1205}
1206
5cacdb4a
CH
1207#ifdef __ARCH_WANT_SYS_OLD_UNAME
1208/*
1209 * Old cruft
1210 */
1211SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1212{
1213 int error = 0;
1214
1215 if (!name)
1216 return -EFAULT;
1217
1218 down_read(&uts_sem);
1219 if (copy_to_user(name, utsname(), sizeof(*name)))
1220 error = -EFAULT;
1221 up_read(&uts_sem);
1222
be27425d
AK
1223 if (!error && override_release(name->release, sizeof(name->release)))
1224 error = -EFAULT;
5cacdb4a
CH
1225 if (!error && override_architecture(name))
1226 error = -EFAULT;
1227 return error;
1228}
1229
1230SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1231{
1232 int error;
1233
1234 if (!name)
1235 return -EFAULT;
1236 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1237 return -EFAULT;
1238
1239 down_read(&uts_sem);
1240 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1241 __OLD_UTS_LEN);
1242 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1243 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1244 __OLD_UTS_LEN);
1245 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1246 error |= __copy_to_user(&name->release, &utsname()->release,
1247 __OLD_UTS_LEN);
1248 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1249 error |= __copy_to_user(&name->version, &utsname()->version,
1250 __OLD_UTS_LEN);
1251 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1252 error |= __copy_to_user(&name->machine, &utsname()->machine,
1253 __OLD_UTS_LEN);
1254 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1255 up_read(&uts_sem);
1256
1257 if (!error && override_architecture(name))
1258 error = -EFAULT;
be27425d
AK
1259 if (!error && override_release(name->release, sizeof(name->release)))
1260 error = -EFAULT;
5cacdb4a
CH
1261 return error ? -EFAULT : 0;
1262}
1263#endif
1264
5a8a82b1 1265SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1266{
1267 int errno;
1268 char tmp[__NEW_UTS_LEN];
1269
bb96a6f5 1270 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1271 return -EPERM;
fc832ad3 1272
1da177e4
LT
1273 if (len < 0 || len > __NEW_UTS_LEN)
1274 return -EINVAL;
1275 down_write(&uts_sem);
1276 errno = -EFAULT;
1277 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1278 struct new_utsname *u = utsname();
1279
1280 memcpy(u->nodename, tmp, len);
1281 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4 1282 errno = 0;
499eea6b 1283 uts_proc_notify(UTS_PROC_HOSTNAME);
1da177e4
LT
1284 }
1285 up_write(&uts_sem);
1286 return errno;
1287}
1288
1289#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1290
5a8a82b1 1291SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1292{
1293 int i, errno;
9679e4dd 1294 struct new_utsname *u;
1da177e4
LT
1295
1296 if (len < 0)
1297 return -EINVAL;
1298 down_read(&uts_sem);
9679e4dd
AM
1299 u = utsname();
1300 i = 1 + strlen(u->nodename);
1da177e4
LT
1301 if (i > len)
1302 i = len;
1303 errno = 0;
9679e4dd 1304 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1305 errno = -EFAULT;
1306 up_read(&uts_sem);
1307 return errno;
1308}
1309
1310#endif
1311
1312/*
1313 * Only setdomainname; getdomainname can be implemented by calling
1314 * uname()
1315 */
5a8a82b1 1316SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1317{
1318 int errno;
1319 char tmp[__NEW_UTS_LEN];
1320
fc832ad3 1321 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1322 return -EPERM;
1323 if (len < 0 || len > __NEW_UTS_LEN)
1324 return -EINVAL;
1325
1326 down_write(&uts_sem);
1327 errno = -EFAULT;
1328 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1329 struct new_utsname *u = utsname();
1330
1331 memcpy(u->domainname, tmp, len);
1332 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4 1333 errno = 0;
499eea6b 1334 uts_proc_notify(UTS_PROC_DOMAINNAME);
1da177e4
LT
1335 }
1336 up_write(&uts_sem);
1337 return errno;
1338}
1339
e48fbb69 1340SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1341{
b9518345
JS
1342 struct rlimit value;
1343 int ret;
1344
1345 ret = do_prlimit(current, resource, NULL, &value);
1346 if (!ret)
1347 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1348
1349 return ret;
1da177e4
LT
1350}
1351
d9e968cb
AV
1352#ifdef CONFIG_COMPAT
1353
1354COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1355 struct compat_rlimit __user *, rlim)
1356{
1357 struct rlimit r;
1358 struct compat_rlimit r32;
1359
1360 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1361 return -EFAULT;
1362
1363 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1364 r.rlim_cur = RLIM_INFINITY;
1365 else
1366 r.rlim_cur = r32.rlim_cur;
1367 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1368 r.rlim_max = RLIM_INFINITY;
1369 else
1370 r.rlim_max = r32.rlim_max;
1371 return do_prlimit(current, resource, &r, NULL);
1372}
1373
1374COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1375 struct compat_rlimit __user *, rlim)
1376{
1377 struct rlimit r;
1378 int ret;
1379
1380 ret = do_prlimit(current, resource, NULL, &r);
1381 if (!ret) {
58c7ffc0 1382 struct compat_rlimit r32;
d9e968cb
AV
1383 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1384 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1385 else
1386 r32.rlim_cur = r.rlim_cur;
1387 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1388 r32.rlim_max = COMPAT_RLIM_INFINITY;
1389 else
1390 r32.rlim_max = r.rlim_max;
1391
1392 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1393 return -EFAULT;
1394 }
1395 return ret;
1396}
1397
1398#endif
1399
1da177e4
LT
1400#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1401
1402/*
1403 * Back compatibility for getrlimit. Needed for some apps.
1404 */
e48fbb69
HC
1405SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1406 struct rlimit __user *, rlim)
1da177e4
LT
1407{
1408 struct rlimit x;
1409 if (resource >= RLIM_NLIMITS)
1410 return -EINVAL;
1411
1412 task_lock(current->group_leader);
1413 x = current->signal->rlim[resource];
1414 task_unlock(current->group_leader);
756184b7 1415 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1416 x.rlim_cur = 0x7FFFFFFF;
756184b7 1417 if (x.rlim_max > 0x7FFFFFFF)
1da177e4 1418 x.rlim_max = 0x7FFFFFFF;
ec94fc3d 1419 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1da177e4
LT
1420}
1421
613763a1
AV
1422#ifdef CONFIG_COMPAT
1423COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1424 struct compat_rlimit __user *, rlim)
1425{
1426 struct rlimit r;
1427
1428 if (resource >= RLIM_NLIMITS)
1429 return -EINVAL;
1430
1431 task_lock(current->group_leader);
1432 r = current->signal->rlim[resource];
1433 task_unlock(current->group_leader);
1434 if (r.rlim_cur > 0x7FFFFFFF)
1435 r.rlim_cur = 0x7FFFFFFF;
1436 if (r.rlim_max > 0x7FFFFFFF)
1437 r.rlim_max = 0x7FFFFFFF;
1438
1439 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1440 put_user(r.rlim_max, &rlim->rlim_max))
1441 return -EFAULT;
1442 return 0;
1443}
1444#endif
1445
1da177e4
LT
1446#endif
1447
c022a0ac
JS
1448static inline bool rlim64_is_infinity(__u64 rlim64)
1449{
1450#if BITS_PER_LONG < 64
1451 return rlim64 >= ULONG_MAX;
1452#else
1453 return rlim64 == RLIM64_INFINITY;
1454#endif
1455}
1456
1457static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1458{
1459 if (rlim->rlim_cur == RLIM_INFINITY)
1460 rlim64->rlim_cur = RLIM64_INFINITY;
1461 else
1462 rlim64->rlim_cur = rlim->rlim_cur;
1463 if (rlim->rlim_max == RLIM_INFINITY)
1464 rlim64->rlim_max = RLIM64_INFINITY;
1465 else
1466 rlim64->rlim_max = rlim->rlim_max;
1467}
1468
1469static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1470{
1471 if (rlim64_is_infinity(rlim64->rlim_cur))
1472 rlim->rlim_cur = RLIM_INFINITY;
1473 else
1474 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1475 if (rlim64_is_infinity(rlim64->rlim_max))
1476 rlim->rlim_max = RLIM_INFINITY;
1477 else
1478 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1479}
1480
1c1e618d 1481/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1482int do_prlimit(struct task_struct *tsk, unsigned int resource,
1483 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1484{
5b41535a 1485 struct rlimit *rlim;
86f162f4 1486 int retval = 0;
1da177e4
LT
1487
1488 if (resource >= RLIM_NLIMITS)
1489 return -EINVAL;
5b41535a
JS
1490 if (new_rlim) {
1491 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1492 return -EINVAL;
1493 if (resource == RLIMIT_NOFILE &&
1494 new_rlim->rlim_max > sysctl_nr_open)
1495 return -EPERM;
1496 }
1da177e4 1497
1c1e618d
JS
1498 /* protect tsk->signal and tsk->sighand from disappearing */
1499 read_lock(&tasklist_lock);
1500 if (!tsk->sighand) {
1501 retval = -ESRCH;
1502 goto out;
1503 }
1504
5b41535a 1505 rlim = tsk->signal->rlim + resource;
86f162f4 1506 task_lock(tsk->group_leader);
5b41535a 1507 if (new_rlim) {
fc832ad3
SH
1508 /* Keep the capable check against init_user_ns until
1509 cgroups can contain all limits */
5b41535a
JS
1510 if (new_rlim->rlim_max > rlim->rlim_max &&
1511 !capable(CAP_SYS_RESOURCE))
1512 retval = -EPERM;
1513 if (!retval)
cad4ea54 1514 retval = security_task_setrlimit(tsk, resource, new_rlim);
5b41535a
JS
1515 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1516 /*
1517 * The caller is asking for an immediate RLIMIT_CPU
1518 * expiry. But we use the zero value to mean "it was
1519 * never set". So let's cheat and make it one second
1520 * instead
1521 */
1522 new_rlim->rlim_cur = 1;
1523 }
1524 }
1525 if (!retval) {
1526 if (old_rlim)
1527 *old_rlim = *rlim;
1528 if (new_rlim)
1529 *rlim = *new_rlim;
9926e4c7 1530 }
7855c35d 1531 task_unlock(tsk->group_leader);
1da177e4 1532
d3561f78
AM
1533 /*
1534 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1535 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1536 * very long-standing error, and fixing it now risks breakage of
1537 * applications, so we live with it
1538 */
5b41535a 1539 if (!retval && new_rlim && resource == RLIMIT_CPU &&
baa73d9e
NP
1540 new_rlim->rlim_cur != RLIM_INFINITY &&
1541 IS_ENABLED(CONFIG_POSIX_TIMERS))
5b41535a 1542 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1543out:
1c1e618d 1544 read_unlock(&tasklist_lock);
2fb9d268 1545 return retval;
1da177e4
LT
1546}
1547
c022a0ac 1548/* rcu lock must be held */
791ec491
SS
1549static int check_prlimit_permission(struct task_struct *task,
1550 unsigned int flags)
c022a0ac
JS
1551{
1552 const struct cred *cred = current_cred(), *tcred;
791ec491 1553 bool id_match;
c022a0ac 1554
fc832ad3
SH
1555 if (current == task)
1556 return 0;
c022a0ac 1557
fc832ad3 1558 tcred = __task_cred(task);
791ec491
SS
1559 id_match = (uid_eq(cred->uid, tcred->euid) &&
1560 uid_eq(cred->uid, tcred->suid) &&
1561 uid_eq(cred->uid, tcred->uid) &&
1562 gid_eq(cred->gid, tcred->egid) &&
1563 gid_eq(cred->gid, tcred->sgid) &&
1564 gid_eq(cred->gid, tcred->gid));
1565 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1566 return -EPERM;
fc832ad3 1567
791ec491 1568 return security_task_prlimit(cred, tcred, flags);
c022a0ac
JS
1569}
1570
1571SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1572 const struct rlimit64 __user *, new_rlim,
1573 struct rlimit64 __user *, old_rlim)
1574{
1575 struct rlimit64 old64, new64;
1576 struct rlimit old, new;
1577 struct task_struct *tsk;
791ec491 1578 unsigned int checkflags = 0;
c022a0ac
JS
1579 int ret;
1580
791ec491
SS
1581 if (old_rlim)
1582 checkflags |= LSM_PRLIMIT_READ;
1583
c022a0ac
JS
1584 if (new_rlim) {
1585 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1586 return -EFAULT;
1587 rlim64_to_rlim(&new64, &new);
791ec491 1588 checkflags |= LSM_PRLIMIT_WRITE;
c022a0ac
JS
1589 }
1590
1591 rcu_read_lock();
1592 tsk = pid ? find_task_by_vpid(pid) : current;
1593 if (!tsk) {
1594 rcu_read_unlock();
1595 return -ESRCH;
1596 }
791ec491 1597 ret = check_prlimit_permission(tsk, checkflags);
c022a0ac
JS
1598 if (ret) {
1599 rcu_read_unlock();
1600 return ret;
1601 }
1602 get_task_struct(tsk);
1603 rcu_read_unlock();
1604
1605 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1606 old_rlim ? &old : NULL);
1607
1608 if (!ret && old_rlim) {
1609 rlim_to_rlim64(&old, &old64);
1610 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1611 ret = -EFAULT;
1612 }
1613
1614 put_task_struct(tsk);
1615 return ret;
1616}
1617
7855c35d
JS
1618SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1619{
1620 struct rlimit new_rlim;
1621
1622 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1623 return -EFAULT;
5b41535a 1624 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1625}
1626
1da177e4
LT
1627/*
1628 * It would make sense to put struct rusage in the task_struct,
1629 * except that would make the task_struct be *really big*. After
1630 * task_struct gets moved into malloc'ed memory, it would
1631 * make sense to do this. It will make moving the rest of the information
1632 * a lot simpler! (Which we're not doing right now because we're not
1633 * measuring them yet).
1634 *
1da177e4
LT
1635 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1636 * races with threads incrementing their own counters. But since word
1637 * reads are atomic, we either get new values or old values and we don't
1638 * care which for the sums. We always take the siglock to protect reading
1639 * the c* fields from p->signal from races with exit.c updating those
1640 * fields when reaping, so a sample either gets all the additions of a
1641 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1642 *
de047c1b
RT
1643 * Locking:
1644 * We need to take the siglock for CHILDEREN, SELF and BOTH
1645 * for the cases current multithreaded, non-current single threaded
1646 * non-current multithreaded. Thread traversal is now safe with
1647 * the siglock held.
1648 * Strictly speaking, we donot need to take the siglock if we are current and
1649 * single threaded, as no one else can take our signal_struct away, no one
1650 * else can reap the children to update signal->c* counters, and no one else
1651 * can race with the signal-> fields. If we do not take any lock, the
1652 * signal-> fields could be read out of order while another thread was just
1653 * exiting. So we should place a read memory barrier when we avoid the lock.
1654 * On the writer side, write memory barrier is implied in __exit_signal
1655 * as __exit_signal releases the siglock spinlock after updating the signal->
1656 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1657 *
1da177e4
LT
1658 */
1659
f06febc9 1660static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1661{
679c9cd4
SK
1662 r->ru_nvcsw += t->nvcsw;
1663 r->ru_nivcsw += t->nivcsw;
1664 r->ru_minflt += t->min_flt;
1665 r->ru_majflt += t->maj_flt;
1666 r->ru_inblock += task_io_get_inblock(t);
1667 r->ru_oublock += task_io_get_oublock(t);
1668}
1669
ce72a16f 1670void getrusage(struct task_struct *p, int who, struct rusage *r)
1da177e4
LT
1671{
1672 struct task_struct *t;
1673 unsigned long flags;
5613fda9 1674 u64 tgutime, tgstime, utime, stime;
1f10206c 1675 unsigned long maxrss = 0;
1da177e4 1676
ec94fc3d 1677 memset((char *)r, 0, sizeof (*r));
64861634 1678 utime = stime = 0;
1da177e4 1679
679c9cd4 1680 if (who == RUSAGE_THREAD) {
e80d0a1a 1681 task_cputime_adjusted(current, &utime, &stime);
f06febc9 1682 accumulate_thread_rusage(p, r);
1f10206c 1683 maxrss = p->signal->maxrss;
679c9cd4
SK
1684 goto out;
1685 }
1686
d6cf723a 1687 if (!lock_task_sighand(p, &flags))
de047c1b 1688 return;
0f59cc4a 1689
1da177e4 1690 switch (who) {
ec94fc3d 1691 case RUSAGE_BOTH:
1692 case RUSAGE_CHILDREN:
1693 utime = p->signal->cutime;
1694 stime = p->signal->cstime;
1695 r->ru_nvcsw = p->signal->cnvcsw;
1696 r->ru_nivcsw = p->signal->cnivcsw;
1697 r->ru_minflt = p->signal->cmin_flt;
1698 r->ru_majflt = p->signal->cmaj_flt;
1699 r->ru_inblock = p->signal->cinblock;
1700 r->ru_oublock = p->signal->coublock;
1701 maxrss = p->signal->cmaxrss;
1702
1703 if (who == RUSAGE_CHILDREN)
1da177e4 1704 break;
0f59cc4a 1705
ec94fc3d 1706 case RUSAGE_SELF:
1707 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1708 utime += tgutime;
1709 stime += tgstime;
1710 r->ru_nvcsw += p->signal->nvcsw;
1711 r->ru_nivcsw += p->signal->nivcsw;
1712 r->ru_minflt += p->signal->min_flt;
1713 r->ru_majflt += p->signal->maj_flt;
1714 r->ru_inblock += p->signal->inblock;
1715 r->ru_oublock += p->signal->oublock;
1716 if (maxrss < p->signal->maxrss)
1717 maxrss = p->signal->maxrss;
1718 t = p;
1719 do {
1720 accumulate_thread_rusage(t, r);
1721 } while_each_thread(p, t);
1722 break;
1723
1724 default:
1725 BUG();
1da177e4 1726 }
de047c1b 1727 unlock_task_sighand(p, &flags);
de047c1b 1728
679c9cd4 1729out:
5613fda9
FW
1730 r->ru_utime = ns_to_timeval(utime);
1731 r->ru_stime = ns_to_timeval(stime);
1f10206c
JP
1732
1733 if (who != RUSAGE_CHILDREN) {
1734 struct mm_struct *mm = get_task_mm(p);
ec94fc3d 1735
1f10206c
JP
1736 if (mm) {
1737 setmax_mm_hiwater_rss(&maxrss, mm);
1738 mmput(mm);
1739 }
1740 }
1741 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1742}
1743
ce72a16f 1744SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4
LT
1745{
1746 struct rusage r;
ec94fc3d 1747
679c9cd4
SK
1748 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1749 who != RUSAGE_THREAD)
1da177e4 1750 return -EINVAL;
ce72a16f
AV
1751
1752 getrusage(current, who, &r);
1753 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1da177e4
LT
1754}
1755
8d2d5c4a
AV
1756#ifdef CONFIG_COMPAT
1757COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1758{
1759 struct rusage r;
1760
1761 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1762 who != RUSAGE_THREAD)
1763 return -EINVAL;
1764
ce72a16f 1765 getrusage(current, who, &r);
8d2d5c4a
AV
1766 return put_compat_rusage(&r, ru);
1767}
1768#endif
1769
e48fbb69 1770SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1771{
1772 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1773 return mask;
1774}
3b7391de 1775
6e399cd1 1776static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
b32dfe37 1777{
2903ff01 1778 struct fd exe;
6e399cd1 1779 struct file *old_exe, *exe_file;
496ad9aa 1780 struct inode *inode;
2903ff01 1781 int err;
b32dfe37 1782
2903ff01
AV
1783 exe = fdget(fd);
1784 if (!exe.file)
b32dfe37
CG
1785 return -EBADF;
1786
496ad9aa 1787 inode = file_inode(exe.file);
b32dfe37
CG
1788
1789 /*
1790 * Because the original mm->exe_file points to executable file, make
1791 * sure that this one is executable as well, to avoid breaking an
1792 * overall picture.
1793 */
1794 err = -EACCES;
90f8572b 1795 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
b32dfe37
CG
1796 goto exit;
1797
496ad9aa 1798 err = inode_permission(inode, MAY_EXEC);
b32dfe37
CG
1799 if (err)
1800 goto exit;
1801
bafb282d 1802 /*
4229fb1d 1803 * Forbid mm->exe_file change if old file still mapped.
bafb282d 1804 */
6e399cd1 1805 exe_file = get_mm_exe_file(mm);
bafb282d 1806 err = -EBUSY;
6e399cd1 1807 if (exe_file) {
4229fb1d
KK
1808 struct vm_area_struct *vma;
1809
6e399cd1
DB
1810 down_read(&mm->mmap_sem);
1811 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1812 if (!vma->vm_file)
1813 continue;
1814 if (path_equal(&vma->vm_file->f_path,
1815 &exe_file->f_path))
1816 goto exit_err;
1817 }
1818
1819 up_read(&mm->mmap_sem);
1820 fput(exe_file);
bafb282d
KK
1821 }
1822
4229fb1d 1823 err = 0;
6e399cd1
DB
1824 /* set the new file, lockless */
1825 get_file(exe.file);
1826 old_exe = xchg(&mm->exe_file, exe.file);
1827 if (old_exe)
1828 fput(old_exe);
b32dfe37 1829exit:
2903ff01 1830 fdput(exe);
b32dfe37 1831 return err;
6e399cd1
DB
1832exit_err:
1833 up_read(&mm->mmap_sem);
1834 fput(exe_file);
1835 goto exit;
b32dfe37
CG
1836}
1837
f606b77f
CG
1838/*
1839 * WARNING: we don't require any capability here so be very careful
1840 * in what is allowed for modification from userspace.
1841 */
1842static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1843{
1844 unsigned long mmap_max_addr = TASK_SIZE;
1845 struct mm_struct *mm = current->mm;
1846 int error = -EINVAL, i;
1847
1848 static const unsigned char offsets[] = {
1849 offsetof(struct prctl_mm_map, start_code),
1850 offsetof(struct prctl_mm_map, end_code),
1851 offsetof(struct prctl_mm_map, start_data),
1852 offsetof(struct prctl_mm_map, end_data),
1853 offsetof(struct prctl_mm_map, start_brk),
1854 offsetof(struct prctl_mm_map, brk),
1855 offsetof(struct prctl_mm_map, start_stack),
1856 offsetof(struct prctl_mm_map, arg_start),
1857 offsetof(struct prctl_mm_map, arg_end),
1858 offsetof(struct prctl_mm_map, env_start),
1859 offsetof(struct prctl_mm_map, env_end),
1860 };
1861
1862 /*
1863 * Make sure the members are not somewhere outside
1864 * of allowed address space.
1865 */
1866 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1867 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1868
1869 if ((unsigned long)val >= mmap_max_addr ||
1870 (unsigned long)val < mmap_min_addr)
1871 goto out;
1872 }
1873
1874 /*
1875 * Make sure the pairs are ordered.
1876 */
1877#define __prctl_check_order(__m1, __op, __m2) \
1878 ((unsigned long)prctl_map->__m1 __op \
1879 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1880 error = __prctl_check_order(start_code, <, end_code);
1881 error |= __prctl_check_order(start_data, <, end_data);
1882 error |= __prctl_check_order(start_brk, <=, brk);
1883 error |= __prctl_check_order(arg_start, <=, arg_end);
1884 error |= __prctl_check_order(env_start, <=, env_end);
1885 if (error)
1886 goto out;
1887#undef __prctl_check_order
1888
1889 error = -EINVAL;
1890
1891 /*
1892 * @brk should be after @end_data in traditional maps.
1893 */
1894 if (prctl_map->start_brk <= prctl_map->end_data ||
1895 prctl_map->brk <= prctl_map->end_data)
1896 goto out;
1897
1898 /*
1899 * Neither we should allow to override limits if they set.
1900 */
1901 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1902 prctl_map->start_brk, prctl_map->end_data,
1903 prctl_map->start_data))
1904 goto out;
1905
1906 /*
1907 * Someone is trying to cheat the auxv vector.
1908 */
1909 if (prctl_map->auxv_size) {
1910 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1911 goto out;
1912 }
1913
1914 /*
1915 * Finally, make sure the caller has the rights to
1916 * change /proc/pid/exe link: only local root should
1917 * be allowed to.
1918 */
1919 if (prctl_map->exe_fd != (u32)-1) {
1920 struct user_namespace *ns = current_user_ns();
1921 const struct cred *cred = current_cred();
1922
1923 if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1924 !gid_eq(cred->gid, make_kgid(ns, 0)))
1925 goto out;
1926 }
1927
1928 error = 0;
1929out:
1930 return error;
1931}
1932
4a00e9df 1933#ifdef CONFIG_CHECKPOINT_RESTORE
f606b77f
CG
1934static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1935{
1936 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1937 unsigned long user_auxv[AT_VECTOR_SIZE];
1938 struct mm_struct *mm = current->mm;
1939 int error;
1940
1941 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1942 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1943
1944 if (opt == PR_SET_MM_MAP_SIZE)
1945 return put_user((unsigned int)sizeof(prctl_map),
1946 (unsigned int __user *)addr);
1947
1948 if (data_size != sizeof(prctl_map))
1949 return -EINVAL;
1950
1951 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1952 return -EFAULT;
1953
1954 error = validate_prctl_map(&prctl_map);
1955 if (error)
1956 return error;
1957
1958 if (prctl_map.auxv_size) {
1959 memset(user_auxv, 0, sizeof(user_auxv));
1960 if (copy_from_user(user_auxv,
1961 (const void __user *)prctl_map.auxv,
1962 prctl_map.auxv_size))
1963 return -EFAULT;
1964
1965 /* Last entry must be AT_NULL as specification requires */
1966 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1967 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1968 }
1969
ddf1d398 1970 if (prctl_map.exe_fd != (u32)-1) {
6e399cd1 1971 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
ddf1d398
MG
1972 if (error)
1973 return error;
1974 }
1975
1976 down_write(&mm->mmap_sem);
f606b77f
CG
1977
1978 /*
1979 * We don't validate if these members are pointing to
1980 * real present VMAs because application may have correspond
1981 * VMAs already unmapped and kernel uses these members for statistics
1982 * output in procfs mostly, except
1983 *
1984 * - @start_brk/@brk which are used in do_brk but kernel lookups
1985 * for VMAs when updating these memvers so anything wrong written
1986 * here cause kernel to swear at userspace program but won't lead
1987 * to any problem in kernel itself
1988 */
1989
1990 mm->start_code = prctl_map.start_code;
1991 mm->end_code = prctl_map.end_code;
1992 mm->start_data = prctl_map.start_data;
1993 mm->end_data = prctl_map.end_data;
1994 mm->start_brk = prctl_map.start_brk;
1995 mm->brk = prctl_map.brk;
1996 mm->start_stack = prctl_map.start_stack;
1997 mm->arg_start = prctl_map.arg_start;
1998 mm->arg_end = prctl_map.arg_end;
1999 mm->env_start = prctl_map.env_start;
2000 mm->env_end = prctl_map.env_end;
2001
2002 /*
2003 * Note this update of @saved_auxv is lockless thus
2004 * if someone reads this member in procfs while we're
2005 * updating -- it may get partly updated results. It's
2006 * known and acceptable trade off: we leave it as is to
2007 * not introduce additional locks here making the kernel
2008 * more complex.
2009 */
2010 if (prctl_map.auxv_size)
2011 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2012
ddf1d398
MG
2013 up_write(&mm->mmap_sem);
2014 return 0;
f606b77f
CG
2015}
2016#endif /* CONFIG_CHECKPOINT_RESTORE */
2017
4a00e9df
AD
2018static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2019 unsigned long len)
2020{
2021 /*
2022 * This doesn't move the auxiliary vector itself since it's pinned to
2023 * mm_struct, but it permits filling the vector with new values. It's
2024 * up to the caller to provide sane values here, otherwise userspace
2025 * tools which use this vector might be unhappy.
2026 */
2027 unsigned long user_auxv[AT_VECTOR_SIZE];
2028
2029 if (len > sizeof(user_auxv))
2030 return -EINVAL;
2031
2032 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2033 return -EFAULT;
2034
2035 /* Make sure the last entry is always AT_NULL */
2036 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2037 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2038
2039 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2040
2041 task_lock(current);
2042 memcpy(mm->saved_auxv, user_auxv, len);
2043 task_unlock(current);
2044
2045 return 0;
2046}
2047
028ee4be
CG
2048static int prctl_set_mm(int opt, unsigned long addr,
2049 unsigned long arg4, unsigned long arg5)
2050{
028ee4be 2051 struct mm_struct *mm = current->mm;
4a00e9df 2052 struct prctl_mm_map prctl_map;
fe8c7f5c
CG
2053 struct vm_area_struct *vma;
2054 int error;
028ee4be 2055
f606b77f
CG
2056 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2057 opt != PR_SET_MM_MAP &&
2058 opt != PR_SET_MM_MAP_SIZE)))
028ee4be
CG
2059 return -EINVAL;
2060
f606b77f
CG
2061#ifdef CONFIG_CHECKPOINT_RESTORE
2062 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2063 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2064#endif
2065
79f0713d 2066 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
2067 return -EPERM;
2068
6e399cd1
DB
2069 if (opt == PR_SET_MM_EXE_FILE)
2070 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
b32dfe37 2071
4a00e9df
AD
2072 if (opt == PR_SET_MM_AUXV)
2073 return prctl_set_auxv(mm, addr, arg4);
2074
1ad75b9e 2075 if (addr >= TASK_SIZE || addr < mmap_min_addr)
028ee4be
CG
2076 return -EINVAL;
2077
fe8c7f5c
CG
2078 error = -EINVAL;
2079
ddf1d398 2080 down_write(&mm->mmap_sem);
028ee4be
CG
2081 vma = find_vma(mm, addr);
2082
4a00e9df
AD
2083 prctl_map.start_code = mm->start_code;
2084 prctl_map.end_code = mm->end_code;
2085 prctl_map.start_data = mm->start_data;
2086 prctl_map.end_data = mm->end_data;
2087 prctl_map.start_brk = mm->start_brk;
2088 prctl_map.brk = mm->brk;
2089 prctl_map.start_stack = mm->start_stack;
2090 prctl_map.arg_start = mm->arg_start;
2091 prctl_map.arg_end = mm->arg_end;
2092 prctl_map.env_start = mm->env_start;
2093 prctl_map.env_end = mm->env_end;
2094 prctl_map.auxv = NULL;
2095 prctl_map.auxv_size = 0;
2096 prctl_map.exe_fd = -1;
2097
028ee4be
CG
2098 switch (opt) {
2099 case PR_SET_MM_START_CODE:
4a00e9df 2100 prctl_map.start_code = addr;
fe8c7f5c 2101 break;
028ee4be 2102 case PR_SET_MM_END_CODE:
4a00e9df 2103 prctl_map.end_code = addr;
028ee4be 2104 break;
028ee4be 2105 case PR_SET_MM_START_DATA:
4a00e9df 2106 prctl_map.start_data = addr;
028ee4be 2107 break;
fe8c7f5c 2108 case PR_SET_MM_END_DATA:
4a00e9df
AD
2109 prctl_map.end_data = addr;
2110 break;
2111 case PR_SET_MM_START_STACK:
2112 prctl_map.start_stack = addr;
028ee4be 2113 break;
028ee4be 2114 case PR_SET_MM_START_BRK:
4a00e9df 2115 prctl_map.start_brk = addr;
028ee4be 2116 break;
028ee4be 2117 case PR_SET_MM_BRK:
4a00e9df 2118 prctl_map.brk = addr;
028ee4be 2119 break;
4a00e9df
AD
2120 case PR_SET_MM_ARG_START:
2121 prctl_map.arg_start = addr;
2122 break;
2123 case PR_SET_MM_ARG_END:
2124 prctl_map.arg_end = addr;
2125 break;
2126 case PR_SET_MM_ENV_START:
2127 prctl_map.env_start = addr;
2128 break;
2129 case PR_SET_MM_ENV_END:
2130 prctl_map.env_end = addr;
2131 break;
2132 default:
2133 goto out;
2134 }
2135
2136 error = validate_prctl_map(&prctl_map);
2137 if (error)
2138 goto out;
028ee4be 2139
4a00e9df 2140 switch (opt) {
fe8c7f5c
CG
2141 /*
2142 * If command line arguments and environment
2143 * are placed somewhere else on stack, we can
2144 * set them up here, ARG_START/END to setup
2145 * command line argumets and ENV_START/END
2146 * for environment.
2147 */
2148 case PR_SET_MM_START_STACK:
2149 case PR_SET_MM_ARG_START:
2150 case PR_SET_MM_ARG_END:
2151 case PR_SET_MM_ENV_START:
2152 case PR_SET_MM_ENV_END:
2153 if (!vma) {
2154 error = -EFAULT;
2155 goto out;
2156 }
028ee4be
CG
2157 }
2158
4a00e9df
AD
2159 mm->start_code = prctl_map.start_code;
2160 mm->end_code = prctl_map.end_code;
2161 mm->start_data = prctl_map.start_data;
2162 mm->end_data = prctl_map.end_data;
2163 mm->start_brk = prctl_map.start_brk;
2164 mm->brk = prctl_map.brk;
2165 mm->start_stack = prctl_map.start_stack;
2166 mm->arg_start = prctl_map.arg_start;
2167 mm->arg_end = prctl_map.arg_end;
2168 mm->env_start = prctl_map.env_start;
2169 mm->env_end = prctl_map.env_end;
2170
028ee4be 2171 error = 0;
028ee4be 2172out:
ddf1d398 2173 up_write(&mm->mmap_sem);
028ee4be
CG
2174 return error;
2175}
300f786b 2176
52b36941 2177#ifdef CONFIG_CHECKPOINT_RESTORE
300f786b
CG
2178static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2179{
2180 return put_user(me->clear_child_tid, tid_addr);
2181}
52b36941 2182#else
300f786b
CG
2183static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2184{
2185 return -EINVAL;
2186}
028ee4be
CG
2187#endif
2188
749860ce
PT
2189static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2190{
2191 /*
2192 * If task has has_child_subreaper - all its decendants
2193 * already have these flag too and new decendants will
2194 * inherit it on fork, skip them.
2195 *
2196 * If we've found child_reaper - skip descendants in
2197 * it's subtree as they will never get out pidns.
2198 */
2199 if (p->signal->has_child_subreaper ||
2200 is_child_reaper(task_pid(p)))
2201 return 0;
2202
2203 p->signal->has_child_subreaper = 1;
2204 return 1;
2205}
2206
bd90e222 2207int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
f12a33c4
TG
2208{
2209 return -EINVAL;
2210}
2211
bd90e222
KC
2212int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2213 unsigned long ctrl)
f12a33c4
TG
2214{
2215 return -EINVAL;
2216}
2217
c4ea37c2
HC
2218SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2219 unsigned long, arg4, unsigned long, arg5)
1da177e4 2220{
b6dff3ec
DH
2221 struct task_struct *me = current;
2222 unsigned char comm[sizeof(me->comm)];
2223 long error;
1da177e4 2224
d84f4f99
DH
2225 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2226 if (error != -ENOSYS)
1da177e4
LT
2227 return error;
2228
d84f4f99 2229 error = 0;
1da177e4 2230 switch (option) {
f3cbd435
AM
2231 case PR_SET_PDEATHSIG:
2232 if (!valid_signal(arg2)) {
2233 error = -EINVAL;
1da177e4 2234 break;
f3cbd435
AM
2235 }
2236 me->pdeath_signal = arg2;
2237 break;
2238 case PR_GET_PDEATHSIG:
2239 error = put_user(me->pdeath_signal, (int __user *)arg2);
2240 break;
2241 case PR_GET_DUMPABLE:
2242 error = get_dumpable(me->mm);
2243 break;
2244 case PR_SET_DUMPABLE:
2245 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2246 error = -EINVAL;
1da177e4 2247 break;
f3cbd435
AM
2248 }
2249 set_dumpable(me->mm, arg2);
2250 break;
1da177e4 2251
f3cbd435
AM
2252 case PR_SET_UNALIGN:
2253 error = SET_UNALIGN_CTL(me, arg2);
2254 break;
2255 case PR_GET_UNALIGN:
2256 error = GET_UNALIGN_CTL(me, arg2);
2257 break;
2258 case PR_SET_FPEMU:
2259 error = SET_FPEMU_CTL(me, arg2);
2260 break;
2261 case PR_GET_FPEMU:
2262 error = GET_FPEMU_CTL(me, arg2);
2263 break;
2264 case PR_SET_FPEXC:
2265 error = SET_FPEXC_CTL(me, arg2);
2266 break;
2267 case PR_GET_FPEXC:
2268 error = GET_FPEXC_CTL(me, arg2);
2269 break;
2270 case PR_GET_TIMING:
2271 error = PR_TIMING_STATISTICAL;
2272 break;
2273 case PR_SET_TIMING:
2274 if (arg2 != PR_TIMING_STATISTICAL)
2275 error = -EINVAL;
2276 break;
2277 case PR_SET_NAME:
2278 comm[sizeof(me->comm) - 1] = 0;
2279 if (strncpy_from_user(comm, (char __user *)arg2,
2280 sizeof(me->comm) - 1) < 0)
2281 return -EFAULT;
2282 set_task_comm(me, comm);
2283 proc_comm_connector(me);
2284 break;
2285 case PR_GET_NAME:
2286 get_task_comm(comm, me);
2287 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2288 return -EFAULT;
2289 break;
2290 case PR_GET_ENDIAN:
2291 error = GET_ENDIAN(me, arg2);
2292 break;
2293 case PR_SET_ENDIAN:
2294 error = SET_ENDIAN(me, arg2);
2295 break;
2296 case PR_GET_SECCOMP:
2297 error = prctl_get_seccomp();
2298 break;
2299 case PR_SET_SECCOMP:
2300 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2301 break;
2302 case PR_GET_TSC:
2303 error = GET_TSC_CTL(arg2);
2304 break;
2305 case PR_SET_TSC:
2306 error = SET_TSC_CTL(arg2);
2307 break;
2308 case PR_TASK_PERF_EVENTS_DISABLE:
2309 error = perf_event_task_disable();
2310 break;
2311 case PR_TASK_PERF_EVENTS_ENABLE:
2312 error = perf_event_task_enable();
2313 break;
2314 case PR_GET_TIMERSLACK:
da8b44d5
JS
2315 if (current->timer_slack_ns > ULONG_MAX)
2316 error = ULONG_MAX;
2317 else
2318 error = current->timer_slack_ns;
f3cbd435
AM
2319 break;
2320 case PR_SET_TIMERSLACK:
2321 if (arg2 <= 0)
2322 current->timer_slack_ns =
6976675d 2323 current->default_timer_slack_ns;
f3cbd435
AM
2324 else
2325 current->timer_slack_ns = arg2;
2326 break;
2327 case PR_MCE_KILL:
2328 if (arg4 | arg5)
2329 return -EINVAL;
2330 switch (arg2) {
2331 case PR_MCE_KILL_CLEAR:
2332 if (arg3 != 0)
4db96cf0 2333 return -EINVAL;
f3cbd435 2334 current->flags &= ~PF_MCE_PROCESS;
4db96cf0 2335 break;
f3cbd435
AM
2336 case PR_MCE_KILL_SET:
2337 current->flags |= PF_MCE_PROCESS;
2338 if (arg3 == PR_MCE_KILL_EARLY)
2339 current->flags |= PF_MCE_EARLY;
2340 else if (arg3 == PR_MCE_KILL_LATE)
2341 current->flags &= ~PF_MCE_EARLY;
2342 else if (arg3 == PR_MCE_KILL_DEFAULT)
2343 current->flags &=
2344 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1087e9b4 2345 else
259e5e6c 2346 return -EINVAL;
259e5e6c 2347 break;
1da177e4 2348 default:
f3cbd435
AM
2349 return -EINVAL;
2350 }
2351 break;
2352 case PR_MCE_KILL_GET:
2353 if (arg2 | arg3 | arg4 | arg5)
2354 return -EINVAL;
2355 if (current->flags & PF_MCE_PROCESS)
2356 error = (current->flags & PF_MCE_EARLY) ?
2357 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2358 else
2359 error = PR_MCE_KILL_DEFAULT;
2360 break;
2361 case PR_SET_MM:
2362 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2363 break;
2364 case PR_GET_TID_ADDRESS:
2365 error = prctl_get_tid_address(me, (int __user **)arg2);
2366 break;
2367 case PR_SET_CHILD_SUBREAPER:
2368 me->signal->is_child_subreaper = !!arg2;
749860ce
PT
2369 if (!arg2)
2370 break;
2371
2372 walk_process_tree(me, propagate_has_child_subreaper, NULL);
f3cbd435
AM
2373 break;
2374 case PR_GET_CHILD_SUBREAPER:
2375 error = put_user(me->signal->is_child_subreaper,
2376 (int __user *)arg2);
2377 break;
2378 case PR_SET_NO_NEW_PRIVS:
2379 if (arg2 != 1 || arg3 || arg4 || arg5)
2380 return -EINVAL;
2381
1d4457f9 2382 task_set_no_new_privs(current);
f3cbd435
AM
2383 break;
2384 case PR_GET_NO_NEW_PRIVS:
2385 if (arg2 || arg3 || arg4 || arg5)
2386 return -EINVAL;
1d4457f9 2387 return task_no_new_privs(current) ? 1 : 0;
a0715cc2
AT
2388 case PR_GET_THP_DISABLE:
2389 if (arg2 || arg3 || arg4 || arg5)
2390 return -EINVAL;
18600332 2391 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2
AT
2392 break;
2393 case PR_SET_THP_DISABLE:
2394 if (arg3 || arg4 || arg5)
2395 return -EINVAL;
17b0573d
MH
2396 if (down_write_killable(&me->mm->mmap_sem))
2397 return -EINTR;
a0715cc2 2398 if (arg2)
18600332 2399 set_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2 2400 else
18600332 2401 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2
AT
2402 up_write(&me->mm->mmap_sem);
2403 break;
fe3d197f 2404 case PR_MPX_ENABLE_MANAGEMENT:
e9d1b4f3
DH
2405 if (arg2 || arg3 || arg4 || arg5)
2406 return -EINVAL;
46a6e0cf 2407 error = MPX_ENABLE_MANAGEMENT();
fe3d197f
DH
2408 break;
2409 case PR_MPX_DISABLE_MANAGEMENT:
e9d1b4f3
DH
2410 if (arg2 || arg3 || arg4 || arg5)
2411 return -EINVAL;
46a6e0cf 2412 error = MPX_DISABLE_MANAGEMENT();
fe3d197f 2413 break;
9791554b
PB
2414 case PR_SET_FP_MODE:
2415 error = SET_FP_MODE(me, arg2);
2416 break;
2417 case PR_GET_FP_MODE:
2418 error = GET_FP_MODE(me);
2419 break;
f12a33c4
TG
2420 case PR_GET_SPECULATION_CTRL:
2421 if (arg3 || arg4 || arg5)
2422 return -EINVAL;
bd90e222 2423 error = arch_prctl_spec_ctrl_get(me, arg2);
f12a33c4
TG
2424 break;
2425 case PR_SET_SPECULATION_CTRL:
2426 if (arg4 || arg5)
2427 return -EINVAL;
bd90e222 2428 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
f12a33c4 2429 break;
f3cbd435
AM
2430 default:
2431 error = -EINVAL;
2432 break;
1da177e4
LT
2433 }
2434 return error;
2435}
3cfc348b 2436
836f92ad
HC
2437SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2438 struct getcpu_cache __user *, unused)
3cfc348b
AK
2439{
2440 int err = 0;
2441 int cpu = raw_smp_processor_id();
ec94fc3d 2442
3cfc348b
AK
2443 if (cpup)
2444 err |= put_user(cpu, cpup);
2445 if (nodep)
2446 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2447 return err ? -EFAULT : 0;
2448}
10a0a8d4 2449
4a22f166
SR
2450/**
2451 * do_sysinfo - fill in sysinfo struct
2452 * @info: pointer to buffer to fill
2453 */
2454static int do_sysinfo(struct sysinfo *info)
2455{
2456 unsigned long mem_total, sav_total;
2457 unsigned int mem_unit, bitcount;
2458 struct timespec tp;
2459
2460 memset(info, 0, sizeof(struct sysinfo));
2461
45c64940 2462 get_monotonic_boottime(&tp);
4a22f166
SR
2463 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2464
2465 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2466
2467 info->procs = nr_threads;
2468
2469 si_meminfo(info);
2470 si_swapinfo(info);
2471
2472 /*
2473 * If the sum of all the available memory (i.e. ram + swap)
2474 * is less than can be stored in a 32 bit unsigned long then
2475 * we can be binary compatible with 2.2.x kernels. If not,
2476 * well, in that case 2.2.x was broken anyways...
2477 *
2478 * -Erik Andersen <andersee@debian.org>
2479 */
2480
2481 mem_total = info->totalram + info->totalswap;
2482 if (mem_total < info->totalram || mem_total < info->totalswap)
2483 goto out;
2484 bitcount = 0;
2485 mem_unit = info->mem_unit;
2486 while (mem_unit > 1) {
2487 bitcount++;
2488 mem_unit >>= 1;
2489 sav_total = mem_total;
2490 mem_total <<= 1;
2491 if (mem_total < sav_total)
2492 goto out;
2493 }
2494
2495 /*
2496 * If mem_total did not overflow, multiply all memory values by
2497 * info->mem_unit and set it to 1. This leaves things compatible
2498 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2499 * kernels...
2500 */
2501
2502 info->mem_unit = 1;
2503 info->totalram <<= bitcount;
2504 info->freeram <<= bitcount;
2505 info->sharedram <<= bitcount;
2506 info->bufferram <<= bitcount;
2507 info->totalswap <<= bitcount;
2508 info->freeswap <<= bitcount;
2509 info->totalhigh <<= bitcount;
2510 info->freehigh <<= bitcount;
2511
2512out:
2513 return 0;
2514}
2515
2516SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2517{
2518 struct sysinfo val;
2519
2520 do_sysinfo(&val);
2521
2522 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2523 return -EFAULT;
2524
2525 return 0;
2526}
2527
2528#ifdef CONFIG_COMPAT
2529struct compat_sysinfo {
2530 s32 uptime;
2531 u32 loads[3];
2532 u32 totalram;
2533 u32 freeram;
2534 u32 sharedram;
2535 u32 bufferram;
2536 u32 totalswap;
2537 u32 freeswap;
2538 u16 procs;
2539 u16 pad;
2540 u32 totalhigh;
2541 u32 freehigh;
2542 u32 mem_unit;
2543 char _f[20-2*sizeof(u32)-sizeof(int)];
2544};
2545
2546COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2547{
2548 struct sysinfo s;
2549
2550 do_sysinfo(&s);
2551
2552 /* Check to see if any memory value is too large for 32-bit and scale
2553 * down if needed
2554 */
0baae41e 2555 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
4a22f166
SR
2556 int bitcount = 0;
2557
2558 while (s.mem_unit < PAGE_SIZE) {
2559 s.mem_unit <<= 1;
2560 bitcount++;
2561 }
2562
2563 s.totalram >>= bitcount;
2564 s.freeram >>= bitcount;
2565 s.sharedram >>= bitcount;
2566 s.bufferram >>= bitcount;
2567 s.totalswap >>= bitcount;
2568 s.freeswap >>= bitcount;
2569 s.totalhigh >>= bitcount;
2570 s.freehigh >>= bitcount;
2571 }
2572
2573 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2574 __put_user(s.uptime, &info->uptime) ||
2575 __put_user(s.loads[0], &info->loads[0]) ||
2576 __put_user(s.loads[1], &info->loads[1]) ||
2577 __put_user(s.loads[2], &info->loads[2]) ||
2578 __put_user(s.totalram, &info->totalram) ||
2579 __put_user(s.freeram, &info->freeram) ||
2580 __put_user(s.sharedram, &info->sharedram) ||
2581 __put_user(s.bufferram, &info->bufferram) ||
2582 __put_user(s.totalswap, &info->totalswap) ||
2583 __put_user(s.freeswap, &info->freeswap) ||
2584 __put_user(s.procs, &info->procs) ||
2585 __put_user(s.totalhigh, &info->totalhigh) ||
2586 __put_user(s.freehigh, &info->freehigh) ||
2587 __put_user(s.mem_unit, &info->mem_unit))
2588 return -EFAULT;
2589
2590 return 0;
2591}
2592#endif /* CONFIG_COMPAT */