]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sys.c
net/mlx5e: Prefetch skb data on RX
[mirror_ubuntu-bionic-kernel.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
9984de1a 7#include <linux/export.h>
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/reboot.h>
12#include <linux/prctl.h>
1da177e4
LT
13#include <linux/highuid.h>
14#include <linux/fs.h>
74da1ff7 15#include <linux/kmod.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92 18#include <linux/kernel.h>
1da177e4 19#include <linux/workqueue.h>
c59ede7b 20#include <linux/capability.h>
1da177e4
LT
21#include <linux/device.h>
22#include <linux/key.h>
23#include <linux/times.h>
24#include <linux/posix-timers.h>
25#include <linux/security.h>
26#include <linux/dcookies.h>
27#include <linux/suspend.h>
28#include <linux/tty.h>
7ed20e1a 29#include <linux/signal.h>
9f46080c 30#include <linux/cn_proc.h>
3cfc348b 31#include <linux/getcpu.h>
6eaeeaba 32#include <linux/task_io_accounting_ops.h>
1d9d02fe 33#include <linux/seccomp.h>
4047727e 34#include <linux/cpu.h>
e28cbf22 35#include <linux/personality.h>
e3d5a27d 36#include <linux/ptrace.h>
5ad4e53b 37#include <linux/fs_struct.h>
b32dfe37
CG
38#include <linux/file.h>
39#include <linux/mount.h>
5a0e3ad6 40#include <linux/gfp.h>
40dc166c 41#include <linux/syscore_ops.h>
be27425d
AK
42#include <linux/version.h>
43#include <linux/ctype.h>
1da177e4
LT
44
45#include <linux/compat.h>
46#include <linux/syscalls.h>
00d7c05a 47#include <linux/kprobes.h>
acce292c 48#include <linux/user_namespace.h>
7fe5e042 49#include <linux/binfmts.h>
1da177e4 50
4a22f166
SR
51#include <linux/sched.h>
52#include <linux/rcupdate.h>
53#include <linux/uidgid.h>
54#include <linux/cred.h>
55
04c6862c 56#include <linux/kmsg_dump.h>
be27425d
AK
57/* Move somewhere else to avoid recompiling? */
58#include <generated/utsrelease.h>
04c6862c 59
1da177e4
LT
60#include <asm/uaccess.h>
61#include <asm/io.h>
62#include <asm/unistd.h>
63
64#ifndef SET_UNALIGN_CTL
ec94fc3d 65# define SET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
66#endif
67#ifndef GET_UNALIGN_CTL
ec94fc3d 68# define GET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
69#endif
70#ifndef SET_FPEMU_CTL
ec94fc3d 71# define SET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
72#endif
73#ifndef GET_FPEMU_CTL
ec94fc3d 74# define GET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
75#endif
76#ifndef SET_FPEXC_CTL
ec94fc3d 77# define SET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4
LT
78#endif
79#ifndef GET_FPEXC_CTL
ec94fc3d 80# define GET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4 81#endif
651d765d 82#ifndef GET_ENDIAN
ec94fc3d 83# define GET_ENDIAN(a, b) (-EINVAL)
651d765d
AB
84#endif
85#ifndef SET_ENDIAN
ec94fc3d 86# define SET_ENDIAN(a, b) (-EINVAL)
651d765d 87#endif
8fb402bc
EB
88#ifndef GET_TSC_CTL
89# define GET_TSC_CTL(a) (-EINVAL)
90#endif
91#ifndef SET_TSC_CTL
92# define SET_TSC_CTL(a) (-EINVAL)
93#endif
fe3d197f
DH
94#ifndef MPX_ENABLE_MANAGEMENT
95# define MPX_ENABLE_MANAGEMENT(a) (-EINVAL)
96#endif
97#ifndef MPX_DISABLE_MANAGEMENT
98# define MPX_DISABLE_MANAGEMENT(a) (-EINVAL)
99#endif
9791554b
PB
100#ifndef GET_FP_MODE
101# define GET_FP_MODE(a) (-EINVAL)
102#endif
103#ifndef SET_FP_MODE
104# define SET_FP_MODE(a,b) (-EINVAL)
105#endif
1da177e4
LT
106
107/*
108 * this is where the system-wide overflow UID and GID are defined, for
109 * architectures that now have 32-bit UID/GID but didn't in the past
110 */
111
112int overflowuid = DEFAULT_OVERFLOWUID;
113int overflowgid = DEFAULT_OVERFLOWGID;
114
1da177e4
LT
115EXPORT_SYMBOL(overflowuid);
116EXPORT_SYMBOL(overflowgid);
1da177e4
LT
117
118/*
119 * the same as above, but for filesystems which can only store a 16-bit
120 * UID and GID. as such, this is needed on all architectures
121 */
122
123int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
124int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
125
126EXPORT_SYMBOL(fs_overflowuid);
127EXPORT_SYMBOL(fs_overflowgid);
128
fc832ad3
SH
129/*
130 * Returns true if current's euid is same as p's uid or euid,
131 * or has CAP_SYS_NICE to p's user_ns.
132 *
133 * Called with rcu_read_lock, creds are safe
134 */
135static bool set_one_prio_perm(struct task_struct *p)
136{
137 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
138
5af66203
EB
139 if (uid_eq(pcred->uid, cred->euid) ||
140 uid_eq(pcred->euid, cred->euid))
fc832ad3 141 return true;
c4a4d603 142 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
143 return true;
144 return false;
145}
146
c69e8d9c
DH
147/*
148 * set the priority of a task
149 * - the caller must hold the RCU read lock
150 */
1da177e4
LT
151static int set_one_prio(struct task_struct *p, int niceval, int error)
152{
153 int no_nice;
154
fc832ad3 155 if (!set_one_prio_perm(p)) {
1da177e4
LT
156 error = -EPERM;
157 goto out;
158 }
e43379f1 159 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
160 error = -EACCES;
161 goto out;
162 }
163 no_nice = security_task_setnice(p, niceval);
164 if (no_nice) {
165 error = no_nice;
166 goto out;
167 }
168 if (error == -ESRCH)
169 error = 0;
170 set_user_nice(p, niceval);
171out:
172 return error;
173}
174
754fe8d2 175SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
176{
177 struct task_struct *g, *p;
178 struct user_struct *user;
86a264ab 179 const struct cred *cred = current_cred();
1da177e4 180 int error = -EINVAL;
41487c65 181 struct pid *pgrp;
7b44ab97 182 kuid_t uid;
1da177e4 183
3e88c553 184 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
185 goto out;
186
187 /* normalize: avoid signed division (rounding problems) */
188 error = -ESRCH;
c4a4d2f4
DY
189 if (niceval < MIN_NICE)
190 niceval = MIN_NICE;
191 if (niceval > MAX_NICE)
192 niceval = MAX_NICE;
1da177e4 193
d4581a23 194 rcu_read_lock();
1da177e4
LT
195 read_lock(&tasklist_lock);
196 switch (which) {
ec94fc3d 197 case PRIO_PROCESS:
198 if (who)
199 p = find_task_by_vpid(who);
200 else
201 p = current;
202 if (p)
203 error = set_one_prio(p, niceval, error);
204 break;
205 case PRIO_PGRP:
206 if (who)
207 pgrp = find_vpid(who);
208 else
209 pgrp = task_pgrp(current);
210 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
211 error = set_one_prio(p, niceval, error);
212 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
213 break;
214 case PRIO_USER:
215 uid = make_kuid(cred->user_ns, who);
216 user = cred->user;
217 if (!who)
218 uid = cred->uid;
219 else if (!uid_eq(uid, cred->uid)) {
220 user = find_user(uid);
221 if (!user)
86a264ab 222 goto out_unlock; /* No processes for this user */
ec94fc3d 223 }
224 do_each_thread(g, p) {
225 if (uid_eq(task_uid(p), uid))
226 error = set_one_prio(p, niceval, error);
227 } while_each_thread(g, p);
228 if (!uid_eq(uid, cred->uid))
229 free_uid(user); /* For find_user() */
230 break;
1da177e4
LT
231 }
232out_unlock:
233 read_unlock(&tasklist_lock);
d4581a23 234 rcu_read_unlock();
1da177e4
LT
235out:
236 return error;
237}
238
239/*
240 * Ugh. To avoid negative return values, "getpriority()" will
241 * not return the normal nice-value, but a negated value that
242 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
243 * to stay compatible.
244 */
754fe8d2 245SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
246{
247 struct task_struct *g, *p;
248 struct user_struct *user;
86a264ab 249 const struct cred *cred = current_cred();
1da177e4 250 long niceval, retval = -ESRCH;
41487c65 251 struct pid *pgrp;
7b44ab97 252 kuid_t uid;
1da177e4 253
3e88c553 254 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
255 return -EINVAL;
256
70118837 257 rcu_read_lock();
1da177e4
LT
258 read_lock(&tasklist_lock);
259 switch (which) {
ec94fc3d 260 case PRIO_PROCESS:
261 if (who)
262 p = find_task_by_vpid(who);
263 else
264 p = current;
265 if (p) {
266 niceval = nice_to_rlimit(task_nice(p));
267 if (niceval > retval)
268 retval = niceval;
269 }
270 break;
271 case PRIO_PGRP:
272 if (who)
273 pgrp = find_vpid(who);
274 else
275 pgrp = task_pgrp(current);
276 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
277 niceval = nice_to_rlimit(task_nice(p));
278 if (niceval > retval)
279 retval = niceval;
280 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
281 break;
282 case PRIO_USER:
283 uid = make_kuid(cred->user_ns, who);
284 user = cred->user;
285 if (!who)
286 uid = cred->uid;
287 else if (!uid_eq(uid, cred->uid)) {
288 user = find_user(uid);
289 if (!user)
290 goto out_unlock; /* No processes for this user */
291 }
292 do_each_thread(g, p) {
293 if (uid_eq(task_uid(p), uid)) {
7aa2c016 294 niceval = nice_to_rlimit(task_nice(p));
1da177e4
LT
295 if (niceval > retval)
296 retval = niceval;
297 }
ec94fc3d 298 } while_each_thread(g, p);
299 if (!uid_eq(uid, cred->uid))
300 free_uid(user); /* for find_user() */
301 break;
1da177e4
LT
302 }
303out_unlock:
304 read_unlock(&tasklist_lock);
70118837 305 rcu_read_unlock();
1da177e4
LT
306
307 return retval;
308}
309
1da177e4
LT
310/*
311 * Unprivileged users may change the real gid to the effective gid
312 * or vice versa. (BSD-style)
313 *
314 * If you set the real gid at all, or set the effective gid to a value not
315 * equal to the real gid, then the saved gid is set to the new effective gid.
316 *
317 * This makes it possible for a setgid program to completely drop its
318 * privileges, which is often a useful assertion to make when you are doing
319 * a security audit over a program.
320 *
321 * The general idea is that a program which uses just setregid() will be
322 * 100% compatible with BSD. A program which uses just setgid() will be
ec94fc3d 323 * 100% compatible with POSIX with saved IDs.
1da177e4
LT
324 *
325 * SMP: There are not races, the GIDs are checked only by filesystem
326 * operations (as far as semantic preservation is concerned).
327 */
2813893f 328#ifdef CONFIG_MULTIUSER
ae1251ab 329SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 330{
a29c33f4 331 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
332 const struct cred *old;
333 struct cred *new;
1da177e4 334 int retval;
a29c33f4
EB
335 kgid_t krgid, kegid;
336
337 krgid = make_kgid(ns, rgid);
338 kegid = make_kgid(ns, egid);
339
340 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
341 return -EINVAL;
342 if ((egid != (gid_t) -1) && !gid_valid(kegid))
343 return -EINVAL;
1da177e4 344
d84f4f99
DH
345 new = prepare_creds();
346 if (!new)
347 return -ENOMEM;
348 old = current_cred();
349
d84f4f99 350 retval = -EPERM;
1da177e4 351 if (rgid != (gid_t) -1) {
a29c33f4
EB
352 if (gid_eq(old->gid, krgid) ||
353 gid_eq(old->egid, krgid) ||
c7b96acf 354 ns_capable(old->user_ns, CAP_SETGID))
a29c33f4 355 new->gid = krgid;
1da177e4 356 else
d84f4f99 357 goto error;
1da177e4
LT
358 }
359 if (egid != (gid_t) -1) {
a29c33f4
EB
360 if (gid_eq(old->gid, kegid) ||
361 gid_eq(old->egid, kegid) ||
362 gid_eq(old->sgid, kegid) ||
c7b96acf 363 ns_capable(old->user_ns, CAP_SETGID))
a29c33f4 364 new->egid = kegid;
756184b7 365 else
d84f4f99 366 goto error;
1da177e4 367 }
d84f4f99 368
1da177e4 369 if (rgid != (gid_t) -1 ||
a29c33f4 370 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
d84f4f99
DH
371 new->sgid = new->egid;
372 new->fsgid = new->egid;
373
374 return commit_creds(new);
375
376error:
377 abort_creds(new);
378 return retval;
1da177e4
LT
379}
380
381/*
ec94fc3d 382 * setgid() is implemented like SysV w/ SAVED_IDS
1da177e4
LT
383 *
384 * SMP: Same implicit races as above.
385 */
ae1251ab 386SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 387{
a29c33f4 388 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
389 const struct cred *old;
390 struct cred *new;
1da177e4 391 int retval;
a29c33f4
EB
392 kgid_t kgid;
393
394 kgid = make_kgid(ns, gid);
395 if (!gid_valid(kgid))
396 return -EINVAL;
1da177e4 397
d84f4f99
DH
398 new = prepare_creds();
399 if (!new)
400 return -ENOMEM;
401 old = current_cred();
402
d84f4f99 403 retval = -EPERM;
c7b96acf 404 if (ns_capable(old->user_ns, CAP_SETGID))
a29c33f4
EB
405 new->gid = new->egid = new->sgid = new->fsgid = kgid;
406 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
407 new->egid = new->fsgid = kgid;
1da177e4 408 else
d84f4f99 409 goto error;
1da177e4 410
d84f4f99
DH
411 return commit_creds(new);
412
413error:
414 abort_creds(new);
415 return retval;
1da177e4 416}
54e99124 417
d84f4f99
DH
418/*
419 * change the user struct in a credentials set to match the new UID
420 */
421static int set_user(struct cred *new)
1da177e4
LT
422{
423 struct user_struct *new_user;
424
078de5f7 425 new_user = alloc_uid(new->uid);
1da177e4
LT
426 if (!new_user)
427 return -EAGAIN;
428
72fa5997
VK
429 /*
430 * We don't fail in case of NPROC limit excess here because too many
431 * poorly written programs don't check set*uid() return code, assuming
432 * it never fails if called by root. We may still enforce NPROC limit
433 * for programs doing set*uid()+execve() by harmlessly deferring the
434 * failure to the execve() stage.
435 */
78d7d407 436 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
72fa5997
VK
437 new_user != INIT_USER)
438 current->flags |= PF_NPROC_EXCEEDED;
439 else
440 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 441
d84f4f99
DH
442 free_uid(new->user);
443 new->user = new_user;
1da177e4
LT
444 return 0;
445}
446
447/*
448 * Unprivileged users may change the real uid to the effective uid
449 * or vice versa. (BSD-style)
450 *
451 * If you set the real uid at all, or set the effective uid to a value not
452 * equal to the real uid, then the saved uid is set to the new effective uid.
453 *
454 * This makes it possible for a setuid program to completely drop its
455 * privileges, which is often a useful assertion to make when you are doing
456 * a security audit over a program.
457 *
458 * The general idea is that a program which uses just setreuid() will be
459 * 100% compatible with BSD. A program which uses just setuid() will be
ec94fc3d 460 * 100% compatible with POSIX with saved IDs.
1da177e4 461 */
ae1251ab 462SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 463{
a29c33f4 464 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
465 const struct cred *old;
466 struct cred *new;
1da177e4 467 int retval;
a29c33f4
EB
468 kuid_t kruid, keuid;
469
470 kruid = make_kuid(ns, ruid);
471 keuid = make_kuid(ns, euid);
472
473 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
474 return -EINVAL;
475 if ((euid != (uid_t) -1) && !uid_valid(keuid))
476 return -EINVAL;
1da177e4 477
d84f4f99
DH
478 new = prepare_creds();
479 if (!new)
480 return -ENOMEM;
481 old = current_cred();
482
d84f4f99 483 retval = -EPERM;
1da177e4 484 if (ruid != (uid_t) -1) {
a29c33f4
EB
485 new->uid = kruid;
486 if (!uid_eq(old->uid, kruid) &&
487 !uid_eq(old->euid, kruid) &&
c7b96acf 488 !ns_capable(old->user_ns, CAP_SETUID))
d84f4f99 489 goto error;
1da177e4
LT
490 }
491
492 if (euid != (uid_t) -1) {
a29c33f4
EB
493 new->euid = keuid;
494 if (!uid_eq(old->uid, keuid) &&
495 !uid_eq(old->euid, keuid) &&
496 !uid_eq(old->suid, keuid) &&
c7b96acf 497 !ns_capable(old->user_ns, CAP_SETUID))
d84f4f99 498 goto error;
1da177e4
LT
499 }
500
a29c33f4 501 if (!uid_eq(new->uid, old->uid)) {
54e99124
DG
502 retval = set_user(new);
503 if (retval < 0)
504 goto error;
505 }
1da177e4 506 if (ruid != (uid_t) -1 ||
a29c33f4 507 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
d84f4f99
DH
508 new->suid = new->euid;
509 new->fsuid = new->euid;
1da177e4 510
d84f4f99
DH
511 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
512 if (retval < 0)
513 goto error;
1da177e4 514
d84f4f99 515 return commit_creds(new);
1da177e4 516
d84f4f99
DH
517error:
518 abort_creds(new);
519 return retval;
520}
ec94fc3d 521
1da177e4 522/*
ec94fc3d 523 * setuid() is implemented like SysV with SAVED_IDS
524 *
1da177e4 525 * Note that SAVED_ID's is deficient in that a setuid root program
ec94fc3d 526 * like sendmail, for example, cannot set its uid to be a normal
1da177e4
LT
527 * user and then switch back, because if you're root, setuid() sets
528 * the saved uid too. If you don't like this, blame the bright people
529 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
530 * will allow a root program to temporarily drop privileges and be able to
ec94fc3d 531 * regain them by swapping the real and effective uid.
1da177e4 532 */
ae1251ab 533SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 534{
a29c33f4 535 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
536 const struct cred *old;
537 struct cred *new;
1da177e4 538 int retval;
a29c33f4
EB
539 kuid_t kuid;
540
541 kuid = make_kuid(ns, uid);
542 if (!uid_valid(kuid))
543 return -EINVAL;
1da177e4 544
d84f4f99
DH
545 new = prepare_creds();
546 if (!new)
547 return -ENOMEM;
548 old = current_cred();
549
d84f4f99 550 retval = -EPERM;
c7b96acf 551 if (ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
552 new->suid = new->uid = kuid;
553 if (!uid_eq(kuid, old->uid)) {
54e99124
DG
554 retval = set_user(new);
555 if (retval < 0)
556 goto error;
d84f4f99 557 }
a29c33f4 558 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
d84f4f99 559 goto error;
1da177e4 560 }
1da177e4 561
a29c33f4 562 new->fsuid = new->euid = kuid;
d84f4f99
DH
563
564 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
565 if (retval < 0)
566 goto error;
1da177e4 567
d84f4f99 568 return commit_creds(new);
1da177e4 569
d84f4f99
DH
570error:
571 abort_creds(new);
572 return retval;
1da177e4
LT
573}
574
575
576/*
577 * This function implements a generic ability to update ruid, euid,
578 * and suid. This allows you to implement the 4.4 compatible seteuid().
579 */
ae1251ab 580SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 581{
a29c33f4 582 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
583 const struct cred *old;
584 struct cred *new;
1da177e4 585 int retval;
a29c33f4
EB
586 kuid_t kruid, keuid, ksuid;
587
588 kruid = make_kuid(ns, ruid);
589 keuid = make_kuid(ns, euid);
590 ksuid = make_kuid(ns, suid);
591
592 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
593 return -EINVAL;
594
595 if ((euid != (uid_t) -1) && !uid_valid(keuid))
596 return -EINVAL;
597
598 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
599 return -EINVAL;
1da177e4 600
d84f4f99
DH
601 new = prepare_creds();
602 if (!new)
603 return -ENOMEM;
604
d84f4f99 605 old = current_cred();
1da177e4 606
d84f4f99 607 retval = -EPERM;
c7b96acf 608 if (!ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
609 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
610 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
d84f4f99 611 goto error;
a29c33f4
EB
612 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
613 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
d84f4f99 614 goto error;
a29c33f4
EB
615 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
616 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
d84f4f99 617 goto error;
1da177e4 618 }
d84f4f99 619
1da177e4 620 if (ruid != (uid_t) -1) {
a29c33f4
EB
621 new->uid = kruid;
622 if (!uid_eq(kruid, old->uid)) {
54e99124
DG
623 retval = set_user(new);
624 if (retval < 0)
625 goto error;
626 }
1da177e4 627 }
d84f4f99 628 if (euid != (uid_t) -1)
a29c33f4 629 new->euid = keuid;
1da177e4 630 if (suid != (uid_t) -1)
a29c33f4 631 new->suid = ksuid;
d84f4f99 632 new->fsuid = new->euid;
1da177e4 633
d84f4f99
DH
634 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
635 if (retval < 0)
636 goto error;
1da177e4 637
d84f4f99 638 return commit_creds(new);
1da177e4 639
d84f4f99
DH
640error:
641 abort_creds(new);
642 return retval;
1da177e4
LT
643}
644
a29c33f4 645SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
1da177e4 646{
86a264ab 647 const struct cred *cred = current_cred();
1da177e4 648 int retval;
a29c33f4
EB
649 uid_t ruid, euid, suid;
650
651 ruid = from_kuid_munged(cred->user_ns, cred->uid);
652 euid = from_kuid_munged(cred->user_ns, cred->euid);
653 suid = from_kuid_munged(cred->user_ns, cred->suid);
1da177e4 654
ec94fc3d 655 retval = put_user(ruid, ruidp);
656 if (!retval) {
657 retval = put_user(euid, euidp);
658 if (!retval)
659 return put_user(suid, suidp);
660 }
1da177e4
LT
661 return retval;
662}
663
664/*
665 * Same as above, but for rgid, egid, sgid.
666 */
ae1251ab 667SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 668{
a29c33f4 669 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
670 const struct cred *old;
671 struct cred *new;
1da177e4 672 int retval;
a29c33f4
EB
673 kgid_t krgid, kegid, ksgid;
674
675 krgid = make_kgid(ns, rgid);
676 kegid = make_kgid(ns, egid);
677 ksgid = make_kgid(ns, sgid);
678
679 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
680 return -EINVAL;
681 if ((egid != (gid_t) -1) && !gid_valid(kegid))
682 return -EINVAL;
683 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
684 return -EINVAL;
1da177e4 685
d84f4f99
DH
686 new = prepare_creds();
687 if (!new)
688 return -ENOMEM;
689 old = current_cred();
690
d84f4f99 691 retval = -EPERM;
c7b96acf 692 if (!ns_capable(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
693 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
694 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
d84f4f99 695 goto error;
a29c33f4
EB
696 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
697 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
d84f4f99 698 goto error;
a29c33f4
EB
699 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
700 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
d84f4f99 701 goto error;
1da177e4 702 }
d84f4f99 703
1da177e4 704 if (rgid != (gid_t) -1)
a29c33f4 705 new->gid = krgid;
d84f4f99 706 if (egid != (gid_t) -1)
a29c33f4 707 new->egid = kegid;
1da177e4 708 if (sgid != (gid_t) -1)
a29c33f4 709 new->sgid = ksgid;
d84f4f99 710 new->fsgid = new->egid;
1da177e4 711
d84f4f99
DH
712 return commit_creds(new);
713
714error:
715 abort_creds(new);
716 return retval;
1da177e4
LT
717}
718
a29c33f4 719SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
1da177e4 720{
86a264ab 721 const struct cred *cred = current_cred();
1da177e4 722 int retval;
a29c33f4
EB
723 gid_t rgid, egid, sgid;
724
725 rgid = from_kgid_munged(cred->user_ns, cred->gid);
726 egid = from_kgid_munged(cred->user_ns, cred->egid);
727 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
1da177e4 728
ec94fc3d 729 retval = put_user(rgid, rgidp);
730 if (!retval) {
731 retval = put_user(egid, egidp);
732 if (!retval)
733 retval = put_user(sgid, sgidp);
734 }
1da177e4
LT
735
736 return retval;
737}
738
739
740/*
741 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
742 * is used for "access()" and for the NFS daemon (letting nfsd stay at
743 * whatever uid it wants to). It normally shadows "euid", except when
744 * explicitly set by setfsuid() or for access..
745 */
ae1251ab 746SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 747{
d84f4f99
DH
748 const struct cred *old;
749 struct cred *new;
750 uid_t old_fsuid;
a29c33f4
EB
751 kuid_t kuid;
752
753 old = current_cred();
754 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
755
756 kuid = make_kuid(old->user_ns, uid);
757 if (!uid_valid(kuid))
758 return old_fsuid;
1da177e4 759
d84f4f99
DH
760 new = prepare_creds();
761 if (!new)
a29c33f4 762 return old_fsuid;
1da177e4 763
a29c33f4
EB
764 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
765 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
c7b96acf 766 ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
767 if (!uid_eq(kuid, old->fsuid)) {
768 new->fsuid = kuid;
d84f4f99
DH
769 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
770 goto change_okay;
1da177e4 771 }
1da177e4
LT
772 }
773
d84f4f99
DH
774 abort_creds(new);
775 return old_fsuid;
1da177e4 776
d84f4f99
DH
777change_okay:
778 commit_creds(new);
1da177e4
LT
779 return old_fsuid;
780}
781
782/*
f42df9e6 783 * Samma på svenska..
1da177e4 784 */
ae1251ab 785SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 786{
d84f4f99
DH
787 const struct cred *old;
788 struct cred *new;
789 gid_t old_fsgid;
a29c33f4
EB
790 kgid_t kgid;
791
792 old = current_cred();
793 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
794
795 kgid = make_kgid(old->user_ns, gid);
796 if (!gid_valid(kgid))
797 return old_fsgid;
d84f4f99
DH
798
799 new = prepare_creds();
800 if (!new)
a29c33f4 801 return old_fsgid;
1da177e4 802
a29c33f4
EB
803 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
804 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
c7b96acf 805 ns_capable(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
806 if (!gid_eq(kgid, old->fsgid)) {
807 new->fsgid = kgid;
d84f4f99 808 goto change_okay;
1da177e4 809 }
1da177e4 810 }
d84f4f99 811
d84f4f99
DH
812 abort_creds(new);
813 return old_fsgid;
814
815change_okay:
816 commit_creds(new);
1da177e4
LT
817 return old_fsgid;
818}
2813893f 819#endif /* CONFIG_MULTIUSER */
1da177e4 820
4a22f166
SR
821/**
822 * sys_getpid - return the thread group id of the current process
823 *
824 * Note, despite the name, this returns the tgid not the pid. The tgid and
825 * the pid are identical unless CLONE_THREAD was specified on clone() in
826 * which case the tgid is the same in all threads of the same group.
827 *
828 * This is SMP safe as current->tgid does not change.
829 */
830SYSCALL_DEFINE0(getpid)
831{
832 return task_tgid_vnr(current);
833}
834
835/* Thread ID - the internal kernel "pid" */
836SYSCALL_DEFINE0(gettid)
837{
838 return task_pid_vnr(current);
839}
840
841/*
842 * Accessing ->real_parent is not SMP-safe, it could
843 * change from under us. However, we can use a stale
844 * value of ->real_parent under rcu_read_lock(), see
845 * release_task()->call_rcu(delayed_put_task_struct).
846 */
847SYSCALL_DEFINE0(getppid)
848{
849 int pid;
850
851 rcu_read_lock();
852 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
853 rcu_read_unlock();
854
855 return pid;
856}
857
858SYSCALL_DEFINE0(getuid)
859{
860 /* Only we change this so SMP safe */
861 return from_kuid_munged(current_user_ns(), current_uid());
862}
863
864SYSCALL_DEFINE0(geteuid)
865{
866 /* Only we change this so SMP safe */
867 return from_kuid_munged(current_user_ns(), current_euid());
868}
869
870SYSCALL_DEFINE0(getgid)
871{
872 /* Only we change this so SMP safe */
873 return from_kgid_munged(current_user_ns(), current_gid());
874}
875
876SYSCALL_DEFINE0(getegid)
877{
878 /* Only we change this so SMP safe */
879 return from_kgid_munged(current_user_ns(), current_egid());
880}
881
f06febc9
FM
882void do_sys_times(struct tms *tms)
883{
0cf55e1e 884 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 885
e80d0a1a 886 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
f06febc9
FM
887 cutime = current->signal->cutime;
888 cstime = current->signal->cstime;
0cf55e1e
HS
889 tms->tms_utime = cputime_to_clock_t(tgutime);
890 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
891 tms->tms_cutime = cputime_to_clock_t(cutime);
892 tms->tms_cstime = cputime_to_clock_t(cstime);
893}
894
58fd3aa2 895SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 896{
1da177e4
LT
897 if (tbuf) {
898 struct tms tmp;
f06febc9
FM
899
900 do_sys_times(&tmp);
1da177e4
LT
901 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
902 return -EFAULT;
903 }
e3d5a27d 904 force_successful_syscall_return();
1da177e4
LT
905 return (long) jiffies_64_to_clock_t(get_jiffies_64());
906}
907
908/*
909 * This needs some heavy checking ...
910 * I just haven't the stomach for it. I also don't fully
911 * understand sessions/pgrp etc. Let somebody who does explain it.
912 *
913 * OK, I think I have the protection semantics right.... this is really
914 * only important on a multi-user system anyway, to make sure one user
915 * can't send a signal to a process owned by another. -TYT, 12/12/91
916 *
98611e4e 917 * !PF_FORKNOEXEC check to conform completely to POSIX.
1da177e4 918 */
b290ebe2 919SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
920{
921 struct task_struct *p;
ee0acf90 922 struct task_struct *group_leader = current->group_leader;
4e021306
ON
923 struct pid *pgrp;
924 int err;
1da177e4
LT
925
926 if (!pid)
b488893a 927 pid = task_pid_vnr(group_leader);
1da177e4
LT
928 if (!pgid)
929 pgid = pid;
930 if (pgid < 0)
931 return -EINVAL;
950eaaca 932 rcu_read_lock();
1da177e4
LT
933
934 /* From this point forward we keep holding onto the tasklist lock
935 * so that our parent does not change from under us. -DaveM
936 */
937 write_lock_irq(&tasklist_lock);
938
939 err = -ESRCH;
4e021306 940 p = find_task_by_vpid(pid);
1da177e4
LT
941 if (!p)
942 goto out;
943
944 err = -EINVAL;
945 if (!thread_group_leader(p))
946 goto out;
947
4e021306 948 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 949 err = -EPERM;
41487c65 950 if (task_session(p) != task_session(group_leader))
1da177e4
LT
951 goto out;
952 err = -EACCES;
98611e4e 953 if (!(p->flags & PF_FORKNOEXEC))
1da177e4
LT
954 goto out;
955 } else {
956 err = -ESRCH;
ee0acf90 957 if (p != group_leader)
1da177e4
LT
958 goto out;
959 }
960
961 err = -EPERM;
962 if (p->signal->leader)
963 goto out;
964
4e021306 965 pgrp = task_pid(p);
1da177e4 966 if (pgid != pid) {
b488893a 967 struct task_struct *g;
1da177e4 968
4e021306
ON
969 pgrp = find_vpid(pgid);
970 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 971 if (!g || task_session(g) != task_session(group_leader))
f020bc46 972 goto out;
1da177e4
LT
973 }
974
1da177e4
LT
975 err = security_task_setpgid(p, pgid);
976 if (err)
977 goto out;
978
1b0f7ffd 979 if (task_pgrp(p) != pgrp)
83beaf3c 980 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
981
982 err = 0;
983out:
984 /* All paths lead to here, thus we are safe. -DaveM */
985 write_unlock_irq(&tasklist_lock);
950eaaca 986 rcu_read_unlock();
1da177e4
LT
987 return err;
988}
989
dbf040d9 990SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 991{
12a3de0a
ON
992 struct task_struct *p;
993 struct pid *grp;
994 int retval;
995
996 rcu_read_lock();
756184b7 997 if (!pid)
12a3de0a 998 grp = task_pgrp(current);
756184b7 999 else {
1da177e4 1000 retval = -ESRCH;
12a3de0a
ON
1001 p = find_task_by_vpid(pid);
1002 if (!p)
1003 goto out;
1004 grp = task_pgrp(p);
1005 if (!grp)
1006 goto out;
1007
1008 retval = security_task_getpgid(p);
1009 if (retval)
1010 goto out;
1da177e4 1011 }
12a3de0a
ON
1012 retval = pid_vnr(grp);
1013out:
1014 rcu_read_unlock();
1015 return retval;
1da177e4
LT
1016}
1017
1018#ifdef __ARCH_WANT_SYS_GETPGRP
1019
dbf040d9 1020SYSCALL_DEFINE0(getpgrp)
1da177e4 1021{
12a3de0a 1022 return sys_getpgid(0);
1da177e4
LT
1023}
1024
1025#endif
1026
dbf040d9 1027SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1028{
1dd768c0
ON
1029 struct task_struct *p;
1030 struct pid *sid;
1031 int retval;
1032
1033 rcu_read_lock();
756184b7 1034 if (!pid)
1dd768c0 1035 sid = task_session(current);
756184b7 1036 else {
1da177e4 1037 retval = -ESRCH;
1dd768c0
ON
1038 p = find_task_by_vpid(pid);
1039 if (!p)
1040 goto out;
1041 sid = task_session(p);
1042 if (!sid)
1043 goto out;
1044
1045 retval = security_task_getsid(p);
1046 if (retval)
1047 goto out;
1da177e4 1048 }
1dd768c0
ON
1049 retval = pid_vnr(sid);
1050out:
1051 rcu_read_unlock();
1052 return retval;
1da177e4
LT
1053}
1054
81dabb46
ON
1055static void set_special_pids(struct pid *pid)
1056{
1057 struct task_struct *curr = current->group_leader;
1058
1059 if (task_session(curr) != pid)
1060 change_pid(curr, PIDTYPE_SID, pid);
1061
1062 if (task_pgrp(curr) != pid)
1063 change_pid(curr, PIDTYPE_PGID, pid);
1064}
1065
b290ebe2 1066SYSCALL_DEFINE0(setsid)
1da177e4 1067{
e19f247a 1068 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1069 struct pid *sid = task_pid(group_leader);
1070 pid_t session = pid_vnr(sid);
1da177e4
LT
1071 int err = -EPERM;
1072
1da177e4 1073 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1074 /* Fail if I am already a session leader */
1075 if (group_leader->signal->leader)
1076 goto out;
1077
430c6231
ON
1078 /* Fail if a process group id already exists that equals the
1079 * proposed session id.
390e2ff0 1080 */
6806aac6 1081 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1082 goto out;
1083
e19f247a 1084 group_leader->signal->leader = 1;
81dabb46 1085 set_special_pids(sid);
24ec839c 1086
9c9f4ded 1087 proc_clear_tty(group_leader);
24ec839c 1088
e4cc0a9c 1089 err = session;
1da177e4
LT
1090out:
1091 write_unlock_irq(&tasklist_lock);
5091faa4 1092 if (err > 0) {
0d0df599 1093 proc_sid_connector(group_leader);
5091faa4
MG
1094 sched_autogroup_create_attach(group_leader);
1095 }
1da177e4
LT
1096 return err;
1097}
1098
1da177e4
LT
1099DECLARE_RWSEM(uts_sem);
1100
e28cbf22
CH
1101#ifdef COMPAT_UTS_MACHINE
1102#define override_architecture(name) \
46da2766 1103 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1104 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1105 sizeof(COMPAT_UTS_MACHINE)))
1106#else
1107#define override_architecture(name) 0
1108#endif
1109
be27425d
AK
1110/*
1111 * Work around broken programs that cannot handle "Linux 3.0".
1112 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
39afb5ee 1113 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
be27425d 1114 */
2702b152 1115static int override_release(char __user *release, size_t len)
be27425d
AK
1116{
1117 int ret = 0;
be27425d
AK
1118
1119 if (current->personality & UNAME26) {
2702b152
KC
1120 const char *rest = UTS_RELEASE;
1121 char buf[65] = { 0 };
be27425d
AK
1122 int ndots = 0;
1123 unsigned v;
2702b152 1124 size_t copy;
be27425d
AK
1125
1126 while (*rest) {
1127 if (*rest == '.' && ++ndots >= 3)
1128 break;
1129 if (!isdigit(*rest) && *rest != '.')
1130 break;
1131 rest++;
1132 }
39afb5ee 1133 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
31fd84b9 1134 copy = clamp_t(size_t, len, 1, sizeof(buf));
2702b152
KC
1135 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1136 ret = copy_to_user(release, buf, copy + 1);
be27425d
AK
1137 }
1138 return ret;
1139}
1140
e48fbb69 1141SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1142{
1143 int errno = 0;
1144
1145 down_read(&uts_sem);
e9ff3990 1146 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1147 errno = -EFAULT;
1148 up_read(&uts_sem);
e28cbf22 1149
be27425d
AK
1150 if (!errno && override_release(name->release, sizeof(name->release)))
1151 errno = -EFAULT;
e28cbf22
CH
1152 if (!errno && override_architecture(name))
1153 errno = -EFAULT;
1da177e4
LT
1154 return errno;
1155}
1156
5cacdb4a
CH
1157#ifdef __ARCH_WANT_SYS_OLD_UNAME
1158/*
1159 * Old cruft
1160 */
1161SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1162{
1163 int error = 0;
1164
1165 if (!name)
1166 return -EFAULT;
1167
1168 down_read(&uts_sem);
1169 if (copy_to_user(name, utsname(), sizeof(*name)))
1170 error = -EFAULT;
1171 up_read(&uts_sem);
1172
be27425d
AK
1173 if (!error && override_release(name->release, sizeof(name->release)))
1174 error = -EFAULT;
5cacdb4a
CH
1175 if (!error && override_architecture(name))
1176 error = -EFAULT;
1177 return error;
1178}
1179
1180SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1181{
1182 int error;
1183
1184 if (!name)
1185 return -EFAULT;
1186 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1187 return -EFAULT;
1188
1189 down_read(&uts_sem);
1190 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1191 __OLD_UTS_LEN);
1192 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1193 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1194 __OLD_UTS_LEN);
1195 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1196 error |= __copy_to_user(&name->release, &utsname()->release,
1197 __OLD_UTS_LEN);
1198 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1199 error |= __copy_to_user(&name->version, &utsname()->version,
1200 __OLD_UTS_LEN);
1201 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1202 error |= __copy_to_user(&name->machine, &utsname()->machine,
1203 __OLD_UTS_LEN);
1204 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1205 up_read(&uts_sem);
1206
1207 if (!error && override_architecture(name))
1208 error = -EFAULT;
be27425d
AK
1209 if (!error && override_release(name->release, sizeof(name->release)))
1210 error = -EFAULT;
5cacdb4a
CH
1211 return error ? -EFAULT : 0;
1212}
1213#endif
1214
5a8a82b1 1215SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1216{
1217 int errno;
1218 char tmp[__NEW_UTS_LEN];
1219
bb96a6f5 1220 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1221 return -EPERM;
fc832ad3 1222
1da177e4
LT
1223 if (len < 0 || len > __NEW_UTS_LEN)
1224 return -EINVAL;
1225 down_write(&uts_sem);
1226 errno = -EFAULT;
1227 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1228 struct new_utsname *u = utsname();
1229
1230 memcpy(u->nodename, tmp, len);
1231 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4 1232 errno = 0;
499eea6b 1233 uts_proc_notify(UTS_PROC_HOSTNAME);
1da177e4
LT
1234 }
1235 up_write(&uts_sem);
1236 return errno;
1237}
1238
1239#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1240
5a8a82b1 1241SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1242{
1243 int i, errno;
9679e4dd 1244 struct new_utsname *u;
1da177e4
LT
1245
1246 if (len < 0)
1247 return -EINVAL;
1248 down_read(&uts_sem);
9679e4dd
AM
1249 u = utsname();
1250 i = 1 + strlen(u->nodename);
1da177e4
LT
1251 if (i > len)
1252 i = len;
1253 errno = 0;
9679e4dd 1254 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1255 errno = -EFAULT;
1256 up_read(&uts_sem);
1257 return errno;
1258}
1259
1260#endif
1261
1262/*
1263 * Only setdomainname; getdomainname can be implemented by calling
1264 * uname()
1265 */
5a8a82b1 1266SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1267{
1268 int errno;
1269 char tmp[__NEW_UTS_LEN];
1270
fc832ad3 1271 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1272 return -EPERM;
1273 if (len < 0 || len > __NEW_UTS_LEN)
1274 return -EINVAL;
1275
1276 down_write(&uts_sem);
1277 errno = -EFAULT;
1278 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1279 struct new_utsname *u = utsname();
1280
1281 memcpy(u->domainname, tmp, len);
1282 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4 1283 errno = 0;
499eea6b 1284 uts_proc_notify(UTS_PROC_DOMAINNAME);
1da177e4
LT
1285 }
1286 up_write(&uts_sem);
1287 return errno;
1288}
1289
e48fbb69 1290SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1291{
b9518345
JS
1292 struct rlimit value;
1293 int ret;
1294
1295 ret = do_prlimit(current, resource, NULL, &value);
1296 if (!ret)
1297 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1298
1299 return ret;
1da177e4
LT
1300}
1301
1302#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1303
1304/*
1305 * Back compatibility for getrlimit. Needed for some apps.
1306 */
e48fbb69
HC
1307SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1308 struct rlimit __user *, rlim)
1da177e4
LT
1309{
1310 struct rlimit x;
1311 if (resource >= RLIM_NLIMITS)
1312 return -EINVAL;
1313
1314 task_lock(current->group_leader);
1315 x = current->signal->rlim[resource];
1316 task_unlock(current->group_leader);
756184b7 1317 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1318 x.rlim_cur = 0x7FFFFFFF;
756184b7 1319 if (x.rlim_max > 0x7FFFFFFF)
1da177e4 1320 x.rlim_max = 0x7FFFFFFF;
ec94fc3d 1321 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1da177e4
LT
1322}
1323
1324#endif
1325
c022a0ac
JS
1326static inline bool rlim64_is_infinity(__u64 rlim64)
1327{
1328#if BITS_PER_LONG < 64
1329 return rlim64 >= ULONG_MAX;
1330#else
1331 return rlim64 == RLIM64_INFINITY;
1332#endif
1333}
1334
1335static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1336{
1337 if (rlim->rlim_cur == RLIM_INFINITY)
1338 rlim64->rlim_cur = RLIM64_INFINITY;
1339 else
1340 rlim64->rlim_cur = rlim->rlim_cur;
1341 if (rlim->rlim_max == RLIM_INFINITY)
1342 rlim64->rlim_max = RLIM64_INFINITY;
1343 else
1344 rlim64->rlim_max = rlim->rlim_max;
1345}
1346
1347static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1348{
1349 if (rlim64_is_infinity(rlim64->rlim_cur))
1350 rlim->rlim_cur = RLIM_INFINITY;
1351 else
1352 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1353 if (rlim64_is_infinity(rlim64->rlim_max))
1354 rlim->rlim_max = RLIM_INFINITY;
1355 else
1356 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1357}
1358
1c1e618d 1359/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1360int do_prlimit(struct task_struct *tsk, unsigned int resource,
1361 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1362{
5b41535a 1363 struct rlimit *rlim;
86f162f4 1364 int retval = 0;
1da177e4
LT
1365
1366 if (resource >= RLIM_NLIMITS)
1367 return -EINVAL;
5b41535a
JS
1368 if (new_rlim) {
1369 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1370 return -EINVAL;
1371 if (resource == RLIMIT_NOFILE &&
1372 new_rlim->rlim_max > sysctl_nr_open)
1373 return -EPERM;
1374 }
1da177e4 1375
1c1e618d
JS
1376 /* protect tsk->signal and tsk->sighand from disappearing */
1377 read_lock(&tasklist_lock);
1378 if (!tsk->sighand) {
1379 retval = -ESRCH;
1380 goto out;
1381 }
1382
5b41535a 1383 rlim = tsk->signal->rlim + resource;
86f162f4 1384 task_lock(tsk->group_leader);
5b41535a 1385 if (new_rlim) {
fc832ad3
SH
1386 /* Keep the capable check against init_user_ns until
1387 cgroups can contain all limits */
5b41535a
JS
1388 if (new_rlim->rlim_max > rlim->rlim_max &&
1389 !capable(CAP_SYS_RESOURCE))
1390 retval = -EPERM;
1391 if (!retval)
1392 retval = security_task_setrlimit(tsk->group_leader,
1393 resource, new_rlim);
1394 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1395 /*
1396 * The caller is asking for an immediate RLIMIT_CPU
1397 * expiry. But we use the zero value to mean "it was
1398 * never set". So let's cheat and make it one second
1399 * instead
1400 */
1401 new_rlim->rlim_cur = 1;
1402 }
1403 }
1404 if (!retval) {
1405 if (old_rlim)
1406 *old_rlim = *rlim;
1407 if (new_rlim)
1408 *rlim = *new_rlim;
9926e4c7 1409 }
7855c35d 1410 task_unlock(tsk->group_leader);
1da177e4 1411
d3561f78
AM
1412 /*
1413 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1414 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1415 * very long-standing error, and fixing it now risks breakage of
1416 * applications, so we live with it
1417 */
5b41535a
JS
1418 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1419 new_rlim->rlim_cur != RLIM_INFINITY)
1420 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1421out:
1c1e618d 1422 read_unlock(&tasklist_lock);
2fb9d268 1423 return retval;
1da177e4
LT
1424}
1425
c022a0ac
JS
1426/* rcu lock must be held */
1427static int check_prlimit_permission(struct task_struct *task)
1428{
1429 const struct cred *cred = current_cred(), *tcred;
1430
fc832ad3
SH
1431 if (current == task)
1432 return 0;
c022a0ac 1433
fc832ad3 1434 tcred = __task_cred(task);
5af66203
EB
1435 if (uid_eq(cred->uid, tcred->euid) &&
1436 uid_eq(cred->uid, tcred->suid) &&
1437 uid_eq(cred->uid, tcred->uid) &&
1438 gid_eq(cred->gid, tcred->egid) &&
1439 gid_eq(cred->gid, tcred->sgid) &&
1440 gid_eq(cred->gid, tcred->gid))
fc832ad3 1441 return 0;
c4a4d603 1442 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
fc832ad3
SH
1443 return 0;
1444
1445 return -EPERM;
c022a0ac
JS
1446}
1447
1448SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1449 const struct rlimit64 __user *, new_rlim,
1450 struct rlimit64 __user *, old_rlim)
1451{
1452 struct rlimit64 old64, new64;
1453 struct rlimit old, new;
1454 struct task_struct *tsk;
1455 int ret;
1456
1457 if (new_rlim) {
1458 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1459 return -EFAULT;
1460 rlim64_to_rlim(&new64, &new);
1461 }
1462
1463 rcu_read_lock();
1464 tsk = pid ? find_task_by_vpid(pid) : current;
1465 if (!tsk) {
1466 rcu_read_unlock();
1467 return -ESRCH;
1468 }
1469 ret = check_prlimit_permission(tsk);
1470 if (ret) {
1471 rcu_read_unlock();
1472 return ret;
1473 }
1474 get_task_struct(tsk);
1475 rcu_read_unlock();
1476
1477 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1478 old_rlim ? &old : NULL);
1479
1480 if (!ret && old_rlim) {
1481 rlim_to_rlim64(&old, &old64);
1482 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1483 ret = -EFAULT;
1484 }
1485
1486 put_task_struct(tsk);
1487 return ret;
1488}
1489
7855c35d
JS
1490SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1491{
1492 struct rlimit new_rlim;
1493
1494 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1495 return -EFAULT;
5b41535a 1496 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1497}
1498
1da177e4
LT
1499/*
1500 * It would make sense to put struct rusage in the task_struct,
1501 * except that would make the task_struct be *really big*. After
1502 * task_struct gets moved into malloc'ed memory, it would
1503 * make sense to do this. It will make moving the rest of the information
1504 * a lot simpler! (Which we're not doing right now because we're not
1505 * measuring them yet).
1506 *
1da177e4
LT
1507 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1508 * races with threads incrementing their own counters. But since word
1509 * reads are atomic, we either get new values or old values and we don't
1510 * care which for the sums. We always take the siglock to protect reading
1511 * the c* fields from p->signal from races with exit.c updating those
1512 * fields when reaping, so a sample either gets all the additions of a
1513 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1514 *
de047c1b
RT
1515 * Locking:
1516 * We need to take the siglock for CHILDEREN, SELF and BOTH
1517 * for the cases current multithreaded, non-current single threaded
1518 * non-current multithreaded. Thread traversal is now safe with
1519 * the siglock held.
1520 * Strictly speaking, we donot need to take the siglock if we are current and
1521 * single threaded, as no one else can take our signal_struct away, no one
1522 * else can reap the children to update signal->c* counters, and no one else
1523 * can race with the signal-> fields. If we do not take any lock, the
1524 * signal-> fields could be read out of order while another thread was just
1525 * exiting. So we should place a read memory barrier when we avoid the lock.
1526 * On the writer side, write memory barrier is implied in __exit_signal
1527 * as __exit_signal releases the siglock spinlock after updating the signal->
1528 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1529 *
1da177e4
LT
1530 */
1531
f06febc9 1532static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1533{
679c9cd4
SK
1534 r->ru_nvcsw += t->nvcsw;
1535 r->ru_nivcsw += t->nivcsw;
1536 r->ru_minflt += t->min_flt;
1537 r->ru_majflt += t->maj_flt;
1538 r->ru_inblock += task_io_get_inblock(t);
1539 r->ru_oublock += task_io_get_oublock(t);
1540}
1541
1da177e4
LT
1542static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1543{
1544 struct task_struct *t;
1545 unsigned long flags;
0cf55e1e 1546 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1547 unsigned long maxrss = 0;
1da177e4 1548
ec94fc3d 1549 memset((char *)r, 0, sizeof (*r));
64861634 1550 utime = stime = 0;
1da177e4 1551
679c9cd4 1552 if (who == RUSAGE_THREAD) {
e80d0a1a 1553 task_cputime_adjusted(current, &utime, &stime);
f06febc9 1554 accumulate_thread_rusage(p, r);
1f10206c 1555 maxrss = p->signal->maxrss;
679c9cd4
SK
1556 goto out;
1557 }
1558
d6cf723a 1559 if (!lock_task_sighand(p, &flags))
de047c1b 1560 return;
0f59cc4a 1561
1da177e4 1562 switch (who) {
ec94fc3d 1563 case RUSAGE_BOTH:
1564 case RUSAGE_CHILDREN:
1565 utime = p->signal->cutime;
1566 stime = p->signal->cstime;
1567 r->ru_nvcsw = p->signal->cnvcsw;
1568 r->ru_nivcsw = p->signal->cnivcsw;
1569 r->ru_minflt = p->signal->cmin_flt;
1570 r->ru_majflt = p->signal->cmaj_flt;
1571 r->ru_inblock = p->signal->cinblock;
1572 r->ru_oublock = p->signal->coublock;
1573 maxrss = p->signal->cmaxrss;
1574
1575 if (who == RUSAGE_CHILDREN)
1da177e4 1576 break;
0f59cc4a 1577
ec94fc3d 1578 case RUSAGE_SELF:
1579 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1580 utime += tgutime;
1581 stime += tgstime;
1582 r->ru_nvcsw += p->signal->nvcsw;
1583 r->ru_nivcsw += p->signal->nivcsw;
1584 r->ru_minflt += p->signal->min_flt;
1585 r->ru_majflt += p->signal->maj_flt;
1586 r->ru_inblock += p->signal->inblock;
1587 r->ru_oublock += p->signal->oublock;
1588 if (maxrss < p->signal->maxrss)
1589 maxrss = p->signal->maxrss;
1590 t = p;
1591 do {
1592 accumulate_thread_rusage(t, r);
1593 } while_each_thread(p, t);
1594 break;
1595
1596 default:
1597 BUG();
1da177e4 1598 }
de047c1b 1599 unlock_task_sighand(p, &flags);
de047c1b 1600
679c9cd4 1601out:
0f59cc4a
ON
1602 cputime_to_timeval(utime, &r->ru_utime);
1603 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1604
1605 if (who != RUSAGE_CHILDREN) {
1606 struct mm_struct *mm = get_task_mm(p);
ec94fc3d 1607
1f10206c
JP
1608 if (mm) {
1609 setmax_mm_hiwater_rss(&maxrss, mm);
1610 mmput(mm);
1611 }
1612 }
1613 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1614}
1615
1616int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1617{
1618 struct rusage r;
ec94fc3d 1619
1da177e4 1620 k_getrusage(p, who, &r);
1da177e4
LT
1621 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1622}
1623
e48fbb69 1624SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1625{
679c9cd4
SK
1626 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1627 who != RUSAGE_THREAD)
1da177e4
LT
1628 return -EINVAL;
1629 return getrusage(current, who, ru);
1630}
1631
8d2d5c4a
AV
1632#ifdef CONFIG_COMPAT
1633COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1634{
1635 struct rusage r;
1636
1637 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1638 who != RUSAGE_THREAD)
1639 return -EINVAL;
1640
1641 k_getrusage(current, who, &r);
1642 return put_compat_rusage(&r, ru);
1643}
1644#endif
1645
e48fbb69 1646SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1647{
1648 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1649 return mask;
1650}
3b7391de 1651
6e399cd1 1652static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
b32dfe37 1653{
2903ff01 1654 struct fd exe;
6e399cd1 1655 struct file *old_exe, *exe_file;
496ad9aa 1656 struct inode *inode;
2903ff01 1657 int err;
b32dfe37 1658
2903ff01
AV
1659 exe = fdget(fd);
1660 if (!exe.file)
b32dfe37
CG
1661 return -EBADF;
1662
496ad9aa 1663 inode = file_inode(exe.file);
b32dfe37
CG
1664
1665 /*
1666 * Because the original mm->exe_file points to executable file, make
1667 * sure that this one is executable as well, to avoid breaking an
1668 * overall picture.
1669 */
1670 err = -EACCES;
496ad9aa 1671 if (!S_ISREG(inode->i_mode) ||
2903ff01 1672 exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
b32dfe37
CG
1673 goto exit;
1674
496ad9aa 1675 err = inode_permission(inode, MAY_EXEC);
b32dfe37
CG
1676 if (err)
1677 goto exit;
1678
bafb282d 1679 /*
4229fb1d 1680 * Forbid mm->exe_file change if old file still mapped.
bafb282d 1681 */
6e399cd1 1682 exe_file = get_mm_exe_file(mm);
bafb282d 1683 err = -EBUSY;
6e399cd1 1684 if (exe_file) {
4229fb1d
KK
1685 struct vm_area_struct *vma;
1686
6e399cd1
DB
1687 down_read(&mm->mmap_sem);
1688 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1689 if (!vma->vm_file)
1690 continue;
1691 if (path_equal(&vma->vm_file->f_path,
1692 &exe_file->f_path))
1693 goto exit_err;
1694 }
1695
1696 up_read(&mm->mmap_sem);
1697 fput(exe_file);
bafb282d
KK
1698 }
1699
b32dfe37
CG
1700 /*
1701 * The symlink can be changed only once, just to disallow arbitrary
1702 * transitions malicious software might bring in. This means one
1703 * could make a snapshot over all processes running and monitor
1704 * /proc/pid/exe changes to notice unusual activity if needed.
1705 */
bafb282d
KK
1706 err = -EPERM;
1707 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
71fe97e1 1708 goto exit;
bafb282d 1709
4229fb1d 1710 err = 0;
6e399cd1
DB
1711 /* set the new file, lockless */
1712 get_file(exe.file);
1713 old_exe = xchg(&mm->exe_file, exe.file);
1714 if (old_exe)
1715 fput(old_exe);
b32dfe37 1716exit:
2903ff01 1717 fdput(exe);
b32dfe37 1718 return err;
6e399cd1
DB
1719exit_err:
1720 up_read(&mm->mmap_sem);
1721 fput(exe_file);
1722 goto exit;
b32dfe37
CG
1723}
1724
f606b77f
CG
1725#ifdef CONFIG_CHECKPOINT_RESTORE
1726/*
1727 * WARNING: we don't require any capability here so be very careful
1728 * in what is allowed for modification from userspace.
1729 */
1730static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1731{
1732 unsigned long mmap_max_addr = TASK_SIZE;
1733 struct mm_struct *mm = current->mm;
1734 int error = -EINVAL, i;
1735
1736 static const unsigned char offsets[] = {
1737 offsetof(struct prctl_mm_map, start_code),
1738 offsetof(struct prctl_mm_map, end_code),
1739 offsetof(struct prctl_mm_map, start_data),
1740 offsetof(struct prctl_mm_map, end_data),
1741 offsetof(struct prctl_mm_map, start_brk),
1742 offsetof(struct prctl_mm_map, brk),
1743 offsetof(struct prctl_mm_map, start_stack),
1744 offsetof(struct prctl_mm_map, arg_start),
1745 offsetof(struct prctl_mm_map, arg_end),
1746 offsetof(struct prctl_mm_map, env_start),
1747 offsetof(struct prctl_mm_map, env_end),
1748 };
1749
1750 /*
1751 * Make sure the members are not somewhere outside
1752 * of allowed address space.
1753 */
1754 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1755 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1756
1757 if ((unsigned long)val >= mmap_max_addr ||
1758 (unsigned long)val < mmap_min_addr)
1759 goto out;
1760 }
1761
1762 /*
1763 * Make sure the pairs are ordered.
1764 */
1765#define __prctl_check_order(__m1, __op, __m2) \
1766 ((unsigned long)prctl_map->__m1 __op \
1767 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1768 error = __prctl_check_order(start_code, <, end_code);
1769 error |= __prctl_check_order(start_data, <, end_data);
1770 error |= __prctl_check_order(start_brk, <=, brk);
1771 error |= __prctl_check_order(arg_start, <=, arg_end);
1772 error |= __prctl_check_order(env_start, <=, env_end);
1773 if (error)
1774 goto out;
1775#undef __prctl_check_order
1776
1777 error = -EINVAL;
1778
1779 /*
1780 * @brk should be after @end_data in traditional maps.
1781 */
1782 if (prctl_map->start_brk <= prctl_map->end_data ||
1783 prctl_map->brk <= prctl_map->end_data)
1784 goto out;
1785
1786 /*
1787 * Neither we should allow to override limits if they set.
1788 */
1789 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1790 prctl_map->start_brk, prctl_map->end_data,
1791 prctl_map->start_data))
1792 goto out;
1793
1794 /*
1795 * Someone is trying to cheat the auxv vector.
1796 */
1797 if (prctl_map->auxv_size) {
1798 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1799 goto out;
1800 }
1801
1802 /*
1803 * Finally, make sure the caller has the rights to
1804 * change /proc/pid/exe link: only local root should
1805 * be allowed to.
1806 */
1807 if (prctl_map->exe_fd != (u32)-1) {
1808 struct user_namespace *ns = current_user_ns();
1809 const struct cred *cred = current_cred();
1810
1811 if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1812 !gid_eq(cred->gid, make_kgid(ns, 0)))
1813 goto out;
1814 }
1815
1816 error = 0;
1817out:
1818 return error;
1819}
1820
1821static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1822{
1823 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1824 unsigned long user_auxv[AT_VECTOR_SIZE];
1825 struct mm_struct *mm = current->mm;
1826 int error;
1827
1828 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1829 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1830
1831 if (opt == PR_SET_MM_MAP_SIZE)
1832 return put_user((unsigned int)sizeof(prctl_map),
1833 (unsigned int __user *)addr);
1834
1835 if (data_size != sizeof(prctl_map))
1836 return -EINVAL;
1837
1838 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1839 return -EFAULT;
1840
1841 error = validate_prctl_map(&prctl_map);
1842 if (error)
1843 return error;
1844
1845 if (prctl_map.auxv_size) {
1846 memset(user_auxv, 0, sizeof(user_auxv));
1847 if (copy_from_user(user_auxv,
1848 (const void __user *)prctl_map.auxv,
1849 prctl_map.auxv_size))
1850 return -EFAULT;
1851
1852 /* Last entry must be AT_NULL as specification requires */
1853 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1854 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1855 }
1856
f606b77f 1857 if (prctl_map.exe_fd != (u32)-1)
6e399cd1
DB
1858 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1859 down_read(&mm->mmap_sem);
f606b77f
CG
1860 if (error)
1861 goto out;
1862
1863 /*
1864 * We don't validate if these members are pointing to
1865 * real present VMAs because application may have correspond
1866 * VMAs already unmapped and kernel uses these members for statistics
1867 * output in procfs mostly, except
1868 *
1869 * - @start_brk/@brk which are used in do_brk but kernel lookups
1870 * for VMAs when updating these memvers so anything wrong written
1871 * here cause kernel to swear at userspace program but won't lead
1872 * to any problem in kernel itself
1873 */
1874
1875 mm->start_code = prctl_map.start_code;
1876 mm->end_code = prctl_map.end_code;
1877 mm->start_data = prctl_map.start_data;
1878 mm->end_data = prctl_map.end_data;
1879 mm->start_brk = prctl_map.start_brk;
1880 mm->brk = prctl_map.brk;
1881 mm->start_stack = prctl_map.start_stack;
1882 mm->arg_start = prctl_map.arg_start;
1883 mm->arg_end = prctl_map.arg_end;
1884 mm->env_start = prctl_map.env_start;
1885 mm->env_end = prctl_map.env_end;
1886
1887 /*
1888 * Note this update of @saved_auxv is lockless thus
1889 * if someone reads this member in procfs while we're
1890 * updating -- it may get partly updated results. It's
1891 * known and acceptable trade off: we leave it as is to
1892 * not introduce additional locks here making the kernel
1893 * more complex.
1894 */
1895 if (prctl_map.auxv_size)
1896 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1897
1898 error = 0;
1899out:
1900 up_read(&mm->mmap_sem);
1901 return error;
1902}
1903#endif /* CONFIG_CHECKPOINT_RESTORE */
1904
028ee4be
CG
1905static int prctl_set_mm(int opt, unsigned long addr,
1906 unsigned long arg4, unsigned long arg5)
1907{
028ee4be 1908 struct mm_struct *mm = current->mm;
fe8c7f5c
CG
1909 struct vm_area_struct *vma;
1910 int error;
028ee4be 1911
f606b77f
CG
1912 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1913 opt != PR_SET_MM_MAP &&
1914 opt != PR_SET_MM_MAP_SIZE)))
028ee4be
CG
1915 return -EINVAL;
1916
f606b77f
CG
1917#ifdef CONFIG_CHECKPOINT_RESTORE
1918 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1919 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1920#endif
1921
79f0713d 1922 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
1923 return -EPERM;
1924
6e399cd1
DB
1925 if (opt == PR_SET_MM_EXE_FILE)
1926 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
b32dfe37 1927
1ad75b9e 1928 if (addr >= TASK_SIZE || addr < mmap_min_addr)
028ee4be
CG
1929 return -EINVAL;
1930
fe8c7f5c
CG
1931 error = -EINVAL;
1932
028ee4be
CG
1933 down_read(&mm->mmap_sem);
1934 vma = find_vma(mm, addr);
1935
028ee4be
CG
1936 switch (opt) {
1937 case PR_SET_MM_START_CODE:
fe8c7f5c
CG
1938 mm->start_code = addr;
1939 break;
028ee4be 1940 case PR_SET_MM_END_CODE:
fe8c7f5c 1941 mm->end_code = addr;
028ee4be 1942 break;
028ee4be 1943 case PR_SET_MM_START_DATA:
fe8c7f5c 1944 mm->start_data = addr;
028ee4be 1945 break;
fe8c7f5c
CG
1946 case PR_SET_MM_END_DATA:
1947 mm->end_data = addr;
028ee4be
CG
1948 break;
1949
1950 case PR_SET_MM_START_BRK:
1951 if (addr <= mm->end_data)
1952 goto out;
1953
8764b338
CG
1954 if (check_data_rlimit(rlimit(RLIMIT_DATA), mm->brk, addr,
1955 mm->end_data, mm->start_data))
028ee4be
CG
1956 goto out;
1957
1958 mm->start_brk = addr;
1959 break;
1960
1961 case PR_SET_MM_BRK:
1962 if (addr <= mm->end_data)
1963 goto out;
1964
8764b338
CG
1965 if (check_data_rlimit(rlimit(RLIMIT_DATA), addr, mm->start_brk,
1966 mm->end_data, mm->start_data))
028ee4be
CG
1967 goto out;
1968
1969 mm->brk = addr;
1970 break;
1971
fe8c7f5c
CG
1972 /*
1973 * If command line arguments and environment
1974 * are placed somewhere else on stack, we can
1975 * set them up here, ARG_START/END to setup
1976 * command line argumets and ENV_START/END
1977 * for environment.
1978 */
1979 case PR_SET_MM_START_STACK:
1980 case PR_SET_MM_ARG_START:
1981 case PR_SET_MM_ARG_END:
1982 case PR_SET_MM_ENV_START:
1983 case PR_SET_MM_ENV_END:
1984 if (!vma) {
1985 error = -EFAULT;
1986 goto out;
1987 }
fe8c7f5c
CG
1988 if (opt == PR_SET_MM_START_STACK)
1989 mm->start_stack = addr;
1990 else if (opt == PR_SET_MM_ARG_START)
1991 mm->arg_start = addr;
1992 else if (opt == PR_SET_MM_ARG_END)
1993 mm->arg_end = addr;
1994 else if (opt == PR_SET_MM_ENV_START)
1995 mm->env_start = addr;
1996 else if (opt == PR_SET_MM_ENV_END)
1997 mm->env_end = addr;
1998 break;
1999
2000 /*
2001 * This doesn't move auxiliary vector itself
2002 * since it's pinned to mm_struct, but allow
2003 * to fill vector with new values. It's up
2004 * to a caller to provide sane values here
2005 * otherwise user space tools which use this
2006 * vector might be unhappy.
2007 */
2008 case PR_SET_MM_AUXV: {
2009 unsigned long user_auxv[AT_VECTOR_SIZE];
2010
2011 if (arg4 > sizeof(user_auxv))
2012 goto out;
2013 up_read(&mm->mmap_sem);
2014
2015 if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
2016 return -EFAULT;
2017
2018 /* Make sure the last entry is always AT_NULL */
2019 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2020 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2021
2022 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2023
2024 task_lock(current);
2025 memcpy(mm->saved_auxv, user_auxv, arg4);
2026 task_unlock(current);
2027
2028 return 0;
2029 }
028ee4be 2030 default:
028ee4be
CG
2031 goto out;
2032 }
2033
2034 error = 0;
028ee4be
CG
2035out:
2036 up_read(&mm->mmap_sem);
028ee4be
CG
2037 return error;
2038}
300f786b 2039
52b36941 2040#ifdef CONFIG_CHECKPOINT_RESTORE
300f786b
CG
2041static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2042{
2043 return put_user(me->clear_child_tid, tid_addr);
2044}
52b36941 2045#else
300f786b
CG
2046static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2047{
2048 return -EINVAL;
2049}
028ee4be
CG
2050#endif
2051
c4ea37c2
HC
2052SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2053 unsigned long, arg4, unsigned long, arg5)
1da177e4 2054{
b6dff3ec
DH
2055 struct task_struct *me = current;
2056 unsigned char comm[sizeof(me->comm)];
2057 long error;
1da177e4 2058
d84f4f99
DH
2059 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2060 if (error != -ENOSYS)
1da177e4
LT
2061 return error;
2062
d84f4f99 2063 error = 0;
1da177e4 2064 switch (option) {
f3cbd435
AM
2065 case PR_SET_PDEATHSIG:
2066 if (!valid_signal(arg2)) {
2067 error = -EINVAL;
1da177e4 2068 break;
f3cbd435
AM
2069 }
2070 me->pdeath_signal = arg2;
2071 break;
2072 case PR_GET_PDEATHSIG:
2073 error = put_user(me->pdeath_signal, (int __user *)arg2);
2074 break;
2075 case PR_GET_DUMPABLE:
2076 error = get_dumpable(me->mm);
2077 break;
2078 case PR_SET_DUMPABLE:
2079 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2080 error = -EINVAL;
1da177e4 2081 break;
f3cbd435
AM
2082 }
2083 set_dumpable(me->mm, arg2);
2084 break;
1da177e4 2085
f3cbd435
AM
2086 case PR_SET_UNALIGN:
2087 error = SET_UNALIGN_CTL(me, arg2);
2088 break;
2089 case PR_GET_UNALIGN:
2090 error = GET_UNALIGN_CTL(me, arg2);
2091 break;
2092 case PR_SET_FPEMU:
2093 error = SET_FPEMU_CTL(me, arg2);
2094 break;
2095 case PR_GET_FPEMU:
2096 error = GET_FPEMU_CTL(me, arg2);
2097 break;
2098 case PR_SET_FPEXC:
2099 error = SET_FPEXC_CTL(me, arg2);
2100 break;
2101 case PR_GET_FPEXC:
2102 error = GET_FPEXC_CTL(me, arg2);
2103 break;
2104 case PR_GET_TIMING:
2105 error = PR_TIMING_STATISTICAL;
2106 break;
2107 case PR_SET_TIMING:
2108 if (arg2 != PR_TIMING_STATISTICAL)
2109 error = -EINVAL;
2110 break;
2111 case PR_SET_NAME:
2112 comm[sizeof(me->comm) - 1] = 0;
2113 if (strncpy_from_user(comm, (char __user *)arg2,
2114 sizeof(me->comm) - 1) < 0)
2115 return -EFAULT;
2116 set_task_comm(me, comm);
2117 proc_comm_connector(me);
2118 break;
2119 case PR_GET_NAME:
2120 get_task_comm(comm, me);
2121 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2122 return -EFAULT;
2123 break;
2124 case PR_GET_ENDIAN:
2125 error = GET_ENDIAN(me, arg2);
2126 break;
2127 case PR_SET_ENDIAN:
2128 error = SET_ENDIAN(me, arg2);
2129 break;
2130 case PR_GET_SECCOMP:
2131 error = prctl_get_seccomp();
2132 break;
2133 case PR_SET_SECCOMP:
2134 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2135 break;
2136 case PR_GET_TSC:
2137 error = GET_TSC_CTL(arg2);
2138 break;
2139 case PR_SET_TSC:
2140 error = SET_TSC_CTL(arg2);
2141 break;
2142 case PR_TASK_PERF_EVENTS_DISABLE:
2143 error = perf_event_task_disable();
2144 break;
2145 case PR_TASK_PERF_EVENTS_ENABLE:
2146 error = perf_event_task_enable();
2147 break;
2148 case PR_GET_TIMERSLACK:
2149 error = current->timer_slack_ns;
2150 break;
2151 case PR_SET_TIMERSLACK:
2152 if (arg2 <= 0)
2153 current->timer_slack_ns =
6976675d 2154 current->default_timer_slack_ns;
f3cbd435
AM
2155 else
2156 current->timer_slack_ns = arg2;
2157 break;
2158 case PR_MCE_KILL:
2159 if (arg4 | arg5)
2160 return -EINVAL;
2161 switch (arg2) {
2162 case PR_MCE_KILL_CLEAR:
2163 if (arg3 != 0)
4db96cf0 2164 return -EINVAL;
f3cbd435 2165 current->flags &= ~PF_MCE_PROCESS;
4db96cf0 2166 break;
f3cbd435
AM
2167 case PR_MCE_KILL_SET:
2168 current->flags |= PF_MCE_PROCESS;
2169 if (arg3 == PR_MCE_KILL_EARLY)
2170 current->flags |= PF_MCE_EARLY;
2171 else if (arg3 == PR_MCE_KILL_LATE)
2172 current->flags &= ~PF_MCE_EARLY;
2173 else if (arg3 == PR_MCE_KILL_DEFAULT)
2174 current->flags &=
2175 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1087e9b4 2176 else
259e5e6c 2177 return -EINVAL;
259e5e6c 2178 break;
1da177e4 2179 default:
f3cbd435
AM
2180 return -EINVAL;
2181 }
2182 break;
2183 case PR_MCE_KILL_GET:
2184 if (arg2 | arg3 | arg4 | arg5)
2185 return -EINVAL;
2186 if (current->flags & PF_MCE_PROCESS)
2187 error = (current->flags & PF_MCE_EARLY) ?
2188 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2189 else
2190 error = PR_MCE_KILL_DEFAULT;
2191 break;
2192 case PR_SET_MM:
2193 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2194 break;
2195 case PR_GET_TID_ADDRESS:
2196 error = prctl_get_tid_address(me, (int __user **)arg2);
2197 break;
2198 case PR_SET_CHILD_SUBREAPER:
2199 me->signal->is_child_subreaper = !!arg2;
2200 break;
2201 case PR_GET_CHILD_SUBREAPER:
2202 error = put_user(me->signal->is_child_subreaper,
2203 (int __user *)arg2);
2204 break;
2205 case PR_SET_NO_NEW_PRIVS:
2206 if (arg2 != 1 || arg3 || arg4 || arg5)
2207 return -EINVAL;
2208
1d4457f9 2209 task_set_no_new_privs(current);
f3cbd435
AM
2210 break;
2211 case PR_GET_NO_NEW_PRIVS:
2212 if (arg2 || arg3 || arg4 || arg5)
2213 return -EINVAL;
1d4457f9 2214 return task_no_new_privs(current) ? 1 : 0;
a0715cc2
AT
2215 case PR_GET_THP_DISABLE:
2216 if (arg2 || arg3 || arg4 || arg5)
2217 return -EINVAL;
2218 error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2219 break;
2220 case PR_SET_THP_DISABLE:
2221 if (arg3 || arg4 || arg5)
2222 return -EINVAL;
2223 down_write(&me->mm->mmap_sem);
2224 if (arg2)
2225 me->mm->def_flags |= VM_NOHUGEPAGE;
2226 else
2227 me->mm->def_flags &= ~VM_NOHUGEPAGE;
2228 up_write(&me->mm->mmap_sem);
2229 break;
fe3d197f 2230 case PR_MPX_ENABLE_MANAGEMENT:
e9d1b4f3
DH
2231 if (arg2 || arg3 || arg4 || arg5)
2232 return -EINVAL;
fe3d197f
DH
2233 error = MPX_ENABLE_MANAGEMENT(me);
2234 break;
2235 case PR_MPX_DISABLE_MANAGEMENT:
e9d1b4f3
DH
2236 if (arg2 || arg3 || arg4 || arg5)
2237 return -EINVAL;
fe3d197f
DH
2238 error = MPX_DISABLE_MANAGEMENT(me);
2239 break;
9791554b
PB
2240 case PR_SET_FP_MODE:
2241 error = SET_FP_MODE(me, arg2);
2242 break;
2243 case PR_GET_FP_MODE:
2244 error = GET_FP_MODE(me);
2245 break;
f3cbd435
AM
2246 default:
2247 error = -EINVAL;
2248 break;
1da177e4
LT
2249 }
2250 return error;
2251}
3cfc348b 2252
836f92ad
HC
2253SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2254 struct getcpu_cache __user *, unused)
3cfc348b
AK
2255{
2256 int err = 0;
2257 int cpu = raw_smp_processor_id();
ec94fc3d 2258
3cfc348b
AK
2259 if (cpup)
2260 err |= put_user(cpu, cpup);
2261 if (nodep)
2262 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2263 return err ? -EFAULT : 0;
2264}
10a0a8d4 2265
4a22f166
SR
2266/**
2267 * do_sysinfo - fill in sysinfo struct
2268 * @info: pointer to buffer to fill
2269 */
2270static int do_sysinfo(struct sysinfo *info)
2271{
2272 unsigned long mem_total, sav_total;
2273 unsigned int mem_unit, bitcount;
2274 struct timespec tp;
2275
2276 memset(info, 0, sizeof(struct sysinfo));
2277
45c64940 2278 get_monotonic_boottime(&tp);
4a22f166
SR
2279 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2280
2281 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2282
2283 info->procs = nr_threads;
2284
2285 si_meminfo(info);
2286 si_swapinfo(info);
2287
2288 /*
2289 * If the sum of all the available memory (i.e. ram + swap)
2290 * is less than can be stored in a 32 bit unsigned long then
2291 * we can be binary compatible with 2.2.x kernels. If not,
2292 * well, in that case 2.2.x was broken anyways...
2293 *
2294 * -Erik Andersen <andersee@debian.org>
2295 */
2296
2297 mem_total = info->totalram + info->totalswap;
2298 if (mem_total < info->totalram || mem_total < info->totalswap)
2299 goto out;
2300 bitcount = 0;
2301 mem_unit = info->mem_unit;
2302 while (mem_unit > 1) {
2303 bitcount++;
2304 mem_unit >>= 1;
2305 sav_total = mem_total;
2306 mem_total <<= 1;
2307 if (mem_total < sav_total)
2308 goto out;
2309 }
2310
2311 /*
2312 * If mem_total did not overflow, multiply all memory values by
2313 * info->mem_unit and set it to 1. This leaves things compatible
2314 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2315 * kernels...
2316 */
2317
2318 info->mem_unit = 1;
2319 info->totalram <<= bitcount;
2320 info->freeram <<= bitcount;
2321 info->sharedram <<= bitcount;
2322 info->bufferram <<= bitcount;
2323 info->totalswap <<= bitcount;
2324 info->freeswap <<= bitcount;
2325 info->totalhigh <<= bitcount;
2326 info->freehigh <<= bitcount;
2327
2328out:
2329 return 0;
2330}
2331
2332SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2333{
2334 struct sysinfo val;
2335
2336 do_sysinfo(&val);
2337
2338 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2339 return -EFAULT;
2340
2341 return 0;
2342}
2343
2344#ifdef CONFIG_COMPAT
2345struct compat_sysinfo {
2346 s32 uptime;
2347 u32 loads[3];
2348 u32 totalram;
2349 u32 freeram;
2350 u32 sharedram;
2351 u32 bufferram;
2352 u32 totalswap;
2353 u32 freeswap;
2354 u16 procs;
2355 u16 pad;
2356 u32 totalhigh;
2357 u32 freehigh;
2358 u32 mem_unit;
2359 char _f[20-2*sizeof(u32)-sizeof(int)];
2360};
2361
2362COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2363{
2364 struct sysinfo s;
2365
2366 do_sysinfo(&s);
2367
2368 /* Check to see if any memory value is too large for 32-bit and scale
2369 * down if needed
2370 */
0baae41e 2371 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
4a22f166
SR
2372 int bitcount = 0;
2373
2374 while (s.mem_unit < PAGE_SIZE) {
2375 s.mem_unit <<= 1;
2376 bitcount++;
2377 }
2378
2379 s.totalram >>= bitcount;
2380 s.freeram >>= bitcount;
2381 s.sharedram >>= bitcount;
2382 s.bufferram >>= bitcount;
2383 s.totalswap >>= bitcount;
2384 s.freeswap >>= bitcount;
2385 s.totalhigh >>= bitcount;
2386 s.freehigh >>= bitcount;
2387 }
2388
2389 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2390 __put_user(s.uptime, &info->uptime) ||
2391 __put_user(s.loads[0], &info->loads[0]) ||
2392 __put_user(s.loads[1], &info->loads[1]) ||
2393 __put_user(s.loads[2], &info->loads[2]) ||
2394 __put_user(s.totalram, &info->totalram) ||
2395 __put_user(s.freeram, &info->freeram) ||
2396 __put_user(s.sharedram, &info->sharedram) ||
2397 __put_user(s.bufferram, &info->bufferram) ||
2398 __put_user(s.totalswap, &info->totalswap) ||
2399 __put_user(s.freeswap, &info->freeswap) ||
2400 __put_user(s.procs, &info->procs) ||
2401 __put_user(s.totalhigh, &info->totalhigh) ||
2402 __put_user(s.freehigh, &info->freehigh) ||
2403 __put_user(s.mem_unit, &info->mem_unit))
2404 return -EFAULT;
2405
2406 return 0;
2407}
2408#endif /* CONFIG_COMPAT */