]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sys.c
Merge tag 'Wimplicit-fallthrough-clang-5.14-rc2' of git://git.kernel.org/pub/scm...
[mirror_ubuntu-kernels.git] / kernel / sys.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
9984de1a 8#include <linux/export.h>
1da177e4
LT
9#include <linux/mm.h>
10#include <linux/utsname.h>
11#include <linux/mman.h>
1da177e4
LT
12#include <linux/reboot.h>
13#include <linux/prctl.h>
1da177e4
LT
14#include <linux/highuid.h>
15#include <linux/fs.h>
74da1ff7 16#include <linux/kmod.h>
cdd6c482 17#include <linux/perf_event.h>
3e88c553 18#include <linux/resource.h>
dc009d92 19#include <linux/kernel.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
1da177e4
LT
27#include <linux/suspend.h>
28#include <linux/tty.h>
7ed20e1a 29#include <linux/signal.h>
9f46080c 30#include <linux/cn_proc.h>
3cfc348b 31#include <linux/getcpu.h>
6eaeeaba 32#include <linux/task_io_accounting_ops.h>
1d9d02fe 33#include <linux/seccomp.h>
4047727e 34#include <linux/cpu.h>
e28cbf22 35#include <linux/personality.h>
e3d5a27d 36#include <linux/ptrace.h>
5ad4e53b 37#include <linux/fs_struct.h>
b32dfe37
CG
38#include <linux/file.h>
39#include <linux/mount.h>
5a0e3ad6 40#include <linux/gfp.h>
40dc166c 41#include <linux/syscore_ops.h>
be27425d
AK
42#include <linux/version.h>
43#include <linux/ctype.h>
1446e1df 44#include <linux/syscall_user_dispatch.h>
1da177e4
LT
45
46#include <linux/compat.h>
47#include <linux/syscalls.h>
00d7c05a 48#include <linux/kprobes.h>
acce292c 49#include <linux/user_namespace.h>
ecc421e0 50#include <linux/time_namespace.h>
7fe5e042 51#include <linux/binfmts.h>
1da177e4 52
4a22f166 53#include <linux/sched.h>
4eb5aaa3 54#include <linux/sched/autogroup.h>
4f17722c 55#include <linux/sched/loadavg.h>
03441a34 56#include <linux/sched/stat.h>
6e84f315 57#include <linux/sched/mm.h>
f7ccbae4 58#include <linux/sched/coredump.h>
29930025 59#include <linux/sched/task.h>
32ef5517 60#include <linux/sched/cputime.h>
4a22f166
SR
61#include <linux/rcupdate.h>
62#include <linux/uidgid.h>
63#include <linux/cred.h>
64
b617cfc8
TG
65#include <linux/nospec.h>
66
04c6862c 67#include <linux/kmsg_dump.h>
be27425d
AK
68/* Move somewhere else to avoid recompiling? */
69#include <generated/utsrelease.h>
04c6862c 70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4
LT
72#include <asm/io.h>
73#include <asm/unistd.h>
74
e530dca5
DB
75#include "uid16.h"
76
1da177e4 77#ifndef SET_UNALIGN_CTL
ec94fc3d 78# define SET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
79#endif
80#ifndef GET_UNALIGN_CTL
ec94fc3d 81# define GET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
82#endif
83#ifndef SET_FPEMU_CTL
ec94fc3d 84# define SET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
85#endif
86#ifndef GET_FPEMU_CTL
ec94fc3d 87# define GET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
88#endif
89#ifndef SET_FPEXC_CTL
ec94fc3d 90# define SET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4
LT
91#endif
92#ifndef GET_FPEXC_CTL
ec94fc3d 93# define GET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4 94#endif
651d765d 95#ifndef GET_ENDIAN
ec94fc3d 96# define GET_ENDIAN(a, b) (-EINVAL)
651d765d
AB
97#endif
98#ifndef SET_ENDIAN
ec94fc3d 99# define SET_ENDIAN(a, b) (-EINVAL)
651d765d 100#endif
8fb402bc
EB
101#ifndef GET_TSC_CTL
102# define GET_TSC_CTL(a) (-EINVAL)
103#endif
104#ifndef SET_TSC_CTL
105# define SET_TSC_CTL(a) (-EINVAL)
106#endif
9791554b
PB
107#ifndef GET_FP_MODE
108# define GET_FP_MODE(a) (-EINVAL)
109#endif
110#ifndef SET_FP_MODE
111# define SET_FP_MODE(a,b) (-EINVAL)
112#endif
2d2123bc
DM
113#ifndef SVE_SET_VL
114# define SVE_SET_VL(a) (-EINVAL)
115#endif
116#ifndef SVE_GET_VL
117# define SVE_GET_VL() (-EINVAL)
118#endif
ba830885
KM
119#ifndef PAC_RESET_KEYS
120# define PAC_RESET_KEYS(a, b) (-EINVAL)
121#endif
20169862
PC
122#ifndef PAC_SET_ENABLED_KEYS
123# define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
124#endif
125#ifndef PAC_GET_ENABLED_KEYS
126# define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
127#endif
63f0c603
CM
128#ifndef SET_TAGGED_ADDR_CTRL
129# define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
130#endif
131#ifndef GET_TAGGED_ADDR_CTRL
132# define GET_TAGGED_ADDR_CTRL() (-EINVAL)
133#endif
1da177e4
LT
134
135/*
136 * this is where the system-wide overflow UID and GID are defined, for
137 * architectures that now have 32-bit UID/GID but didn't in the past
138 */
139
140int overflowuid = DEFAULT_OVERFLOWUID;
141int overflowgid = DEFAULT_OVERFLOWGID;
142
1da177e4
LT
143EXPORT_SYMBOL(overflowuid);
144EXPORT_SYMBOL(overflowgid);
1da177e4
LT
145
146/*
147 * the same as above, but for filesystems which can only store a 16-bit
148 * UID and GID. as such, this is needed on all architectures
149 */
150
151int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
8b2770a4 152int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
1da177e4
LT
153
154EXPORT_SYMBOL(fs_overflowuid);
155EXPORT_SYMBOL(fs_overflowgid);
156
fc832ad3
SH
157/*
158 * Returns true if current's euid is same as p's uid or euid,
159 * or has CAP_SYS_NICE to p's user_ns.
160 *
161 * Called with rcu_read_lock, creds are safe
162 */
163static bool set_one_prio_perm(struct task_struct *p)
164{
165 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
166
5af66203
EB
167 if (uid_eq(pcred->uid, cred->euid) ||
168 uid_eq(pcred->euid, cred->euid))
fc832ad3 169 return true;
c4a4d603 170 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
171 return true;
172 return false;
173}
174
c69e8d9c
DH
175/*
176 * set the priority of a task
177 * - the caller must hold the RCU read lock
178 */
1da177e4
LT
179static int set_one_prio(struct task_struct *p, int niceval, int error)
180{
181 int no_nice;
182
fc832ad3 183 if (!set_one_prio_perm(p)) {
1da177e4
LT
184 error = -EPERM;
185 goto out;
186 }
e43379f1 187 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
188 error = -EACCES;
189 goto out;
190 }
191 no_nice = security_task_setnice(p, niceval);
192 if (no_nice) {
193 error = no_nice;
194 goto out;
195 }
196 if (error == -ESRCH)
197 error = 0;
198 set_user_nice(p, niceval);
199out:
200 return error;
201}
202
754fe8d2 203SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
204{
205 struct task_struct *g, *p;
206 struct user_struct *user;
86a264ab 207 const struct cred *cred = current_cred();
1da177e4 208 int error = -EINVAL;
41487c65 209 struct pid *pgrp;
7b44ab97 210 kuid_t uid;
1da177e4 211
3e88c553 212 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
213 goto out;
214
215 /* normalize: avoid signed division (rounding problems) */
216 error = -ESRCH;
c4a4d2f4
DY
217 if (niceval < MIN_NICE)
218 niceval = MIN_NICE;
219 if (niceval > MAX_NICE)
220 niceval = MAX_NICE;
1da177e4 221
d4581a23 222 rcu_read_lock();
1da177e4
LT
223 read_lock(&tasklist_lock);
224 switch (which) {
ec94fc3d 225 case PRIO_PROCESS:
226 if (who)
227 p = find_task_by_vpid(who);
228 else
229 p = current;
230 if (p)
231 error = set_one_prio(p, niceval, error);
232 break;
233 case PRIO_PGRP:
234 if (who)
235 pgrp = find_vpid(who);
236 else
237 pgrp = task_pgrp(current);
238 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
239 error = set_one_prio(p, niceval, error);
240 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
241 break;
242 case PRIO_USER:
243 uid = make_kuid(cred->user_ns, who);
244 user = cred->user;
245 if (!who)
246 uid = cred->uid;
247 else if (!uid_eq(uid, cred->uid)) {
248 user = find_user(uid);
249 if (!user)
86a264ab 250 goto out_unlock; /* No processes for this user */
ec94fc3d 251 }
252 do_each_thread(g, p) {
8639b461 253 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
ec94fc3d 254 error = set_one_prio(p, niceval, error);
255 } while_each_thread(g, p);
256 if (!uid_eq(uid, cred->uid))
257 free_uid(user); /* For find_user() */
258 break;
1da177e4
LT
259 }
260out_unlock:
261 read_unlock(&tasklist_lock);
d4581a23 262 rcu_read_unlock();
1da177e4
LT
263out:
264 return error;
265}
266
267/*
268 * Ugh. To avoid negative return values, "getpriority()" will
269 * not return the normal nice-value, but a negated value that
270 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
271 * to stay compatible.
272 */
754fe8d2 273SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
274{
275 struct task_struct *g, *p;
276 struct user_struct *user;
86a264ab 277 const struct cred *cred = current_cred();
1da177e4 278 long niceval, retval = -ESRCH;
41487c65 279 struct pid *pgrp;
7b44ab97 280 kuid_t uid;
1da177e4 281
3e88c553 282 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
283 return -EINVAL;
284
70118837 285 rcu_read_lock();
1da177e4
LT
286 read_lock(&tasklist_lock);
287 switch (which) {
ec94fc3d 288 case PRIO_PROCESS:
289 if (who)
290 p = find_task_by_vpid(who);
291 else
292 p = current;
293 if (p) {
294 niceval = nice_to_rlimit(task_nice(p));
295 if (niceval > retval)
296 retval = niceval;
297 }
298 break;
299 case PRIO_PGRP:
300 if (who)
301 pgrp = find_vpid(who);
302 else
303 pgrp = task_pgrp(current);
304 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
305 niceval = nice_to_rlimit(task_nice(p));
306 if (niceval > retval)
307 retval = niceval;
308 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
309 break;
310 case PRIO_USER:
311 uid = make_kuid(cred->user_ns, who);
312 user = cred->user;
313 if (!who)
314 uid = cred->uid;
315 else if (!uid_eq(uid, cred->uid)) {
316 user = find_user(uid);
317 if (!user)
318 goto out_unlock; /* No processes for this user */
319 }
320 do_each_thread(g, p) {
8639b461 321 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
7aa2c016 322 niceval = nice_to_rlimit(task_nice(p));
1da177e4
LT
323 if (niceval > retval)
324 retval = niceval;
325 }
ec94fc3d 326 } while_each_thread(g, p);
327 if (!uid_eq(uid, cred->uid))
328 free_uid(user); /* for find_user() */
329 break;
1da177e4
LT
330 }
331out_unlock:
332 read_unlock(&tasklist_lock);
70118837 333 rcu_read_unlock();
1da177e4
LT
334
335 return retval;
336}
337
1da177e4
LT
338/*
339 * Unprivileged users may change the real gid to the effective gid
340 * or vice versa. (BSD-style)
341 *
342 * If you set the real gid at all, or set the effective gid to a value not
343 * equal to the real gid, then the saved gid is set to the new effective gid.
344 *
345 * This makes it possible for a setgid program to completely drop its
346 * privileges, which is often a useful assertion to make when you are doing
347 * a security audit over a program.
348 *
349 * The general idea is that a program which uses just setregid() will be
350 * 100% compatible with BSD. A program which uses just setgid() will be
ec94fc3d 351 * 100% compatible with POSIX with saved IDs.
1da177e4
LT
352 *
353 * SMP: There are not races, the GIDs are checked only by filesystem
354 * operations (as far as semantic preservation is concerned).
355 */
2813893f 356#ifdef CONFIG_MULTIUSER
e530dca5 357long __sys_setregid(gid_t rgid, gid_t egid)
1da177e4 358{
a29c33f4 359 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
360 const struct cred *old;
361 struct cred *new;
1da177e4 362 int retval;
a29c33f4
EB
363 kgid_t krgid, kegid;
364
365 krgid = make_kgid(ns, rgid);
366 kegid = make_kgid(ns, egid);
367
368 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
369 return -EINVAL;
370 if ((egid != (gid_t) -1) && !gid_valid(kegid))
371 return -EINVAL;
1da177e4 372
d84f4f99
DH
373 new = prepare_creds();
374 if (!new)
375 return -ENOMEM;
376 old = current_cred();
377
d84f4f99 378 retval = -EPERM;
1da177e4 379 if (rgid != (gid_t) -1) {
a29c33f4
EB
380 if (gid_eq(old->gid, krgid) ||
381 gid_eq(old->egid, krgid) ||
111767c1 382 ns_capable_setid(old->user_ns, CAP_SETGID))
a29c33f4 383 new->gid = krgid;
1da177e4 384 else
d84f4f99 385 goto error;
1da177e4
LT
386 }
387 if (egid != (gid_t) -1) {
a29c33f4
EB
388 if (gid_eq(old->gid, kegid) ||
389 gid_eq(old->egid, kegid) ||
390 gid_eq(old->sgid, kegid) ||
111767c1 391 ns_capable_setid(old->user_ns, CAP_SETGID))
a29c33f4 392 new->egid = kegid;
756184b7 393 else
d84f4f99 394 goto error;
1da177e4 395 }
d84f4f99 396
1da177e4 397 if (rgid != (gid_t) -1 ||
a29c33f4 398 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
d84f4f99
DH
399 new->sgid = new->egid;
400 new->fsgid = new->egid;
401
39030e13
TC
402 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
403 if (retval < 0)
404 goto error;
405
d84f4f99
DH
406 return commit_creds(new);
407
408error:
409 abort_creds(new);
410 return retval;
1da177e4
LT
411}
412
e530dca5
DB
413SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
414{
415 return __sys_setregid(rgid, egid);
416}
417
1da177e4 418/*
ec94fc3d 419 * setgid() is implemented like SysV w/ SAVED_IDS
1da177e4
LT
420 *
421 * SMP: Same implicit races as above.
422 */
e530dca5 423long __sys_setgid(gid_t gid)
1da177e4 424{
a29c33f4 425 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
426 const struct cred *old;
427 struct cred *new;
1da177e4 428 int retval;
a29c33f4
EB
429 kgid_t kgid;
430
431 kgid = make_kgid(ns, gid);
432 if (!gid_valid(kgid))
433 return -EINVAL;
1da177e4 434
d84f4f99
DH
435 new = prepare_creds();
436 if (!new)
437 return -ENOMEM;
438 old = current_cred();
439
d84f4f99 440 retval = -EPERM;
111767c1 441 if (ns_capable_setid(old->user_ns, CAP_SETGID))
a29c33f4
EB
442 new->gid = new->egid = new->sgid = new->fsgid = kgid;
443 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
444 new->egid = new->fsgid = kgid;
1da177e4 445 else
d84f4f99 446 goto error;
1da177e4 447
39030e13
TC
448 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
449 if (retval < 0)
450 goto error;
451
d84f4f99
DH
452 return commit_creds(new);
453
454error:
455 abort_creds(new);
456 return retval;
1da177e4 457}
54e99124 458
e530dca5
DB
459SYSCALL_DEFINE1(setgid, gid_t, gid)
460{
461 return __sys_setgid(gid);
462}
463
d84f4f99
DH
464/*
465 * change the user struct in a credentials set to match the new UID
466 */
467static int set_user(struct cred *new)
1da177e4
LT
468{
469 struct user_struct *new_user;
470
078de5f7 471 new_user = alloc_uid(new->uid);
1da177e4
LT
472 if (!new_user)
473 return -EAGAIN;
474
72fa5997
VK
475 /*
476 * We don't fail in case of NPROC limit excess here because too many
477 * poorly written programs don't check set*uid() return code, assuming
478 * it never fails if called by root. We may still enforce NPROC limit
479 * for programs doing set*uid()+execve() by harmlessly deferring the
480 * failure to the execve() stage.
481 */
21d1c5e3 482 if (is_ucounts_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
72fa5997
VK
483 new_user != INIT_USER)
484 current->flags |= PF_NPROC_EXCEEDED;
485 else
486 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 487
d84f4f99
DH
488 free_uid(new->user);
489 new->user = new_user;
1da177e4
LT
490 return 0;
491}
492
493/*
494 * Unprivileged users may change the real uid to the effective uid
495 * or vice versa. (BSD-style)
496 *
497 * If you set the real uid at all, or set the effective uid to a value not
498 * equal to the real uid, then the saved uid is set to the new effective uid.
499 *
500 * This makes it possible for a setuid program to completely drop its
501 * privileges, which is often a useful assertion to make when you are doing
502 * a security audit over a program.
503 *
504 * The general idea is that a program which uses just setreuid() will be
505 * 100% compatible with BSD. A program which uses just setuid() will be
ec94fc3d 506 * 100% compatible with POSIX with saved IDs.
1da177e4 507 */
e530dca5 508long __sys_setreuid(uid_t ruid, uid_t euid)
1da177e4 509{
a29c33f4 510 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
511 const struct cred *old;
512 struct cred *new;
1da177e4 513 int retval;
a29c33f4
EB
514 kuid_t kruid, keuid;
515
516 kruid = make_kuid(ns, ruid);
517 keuid = make_kuid(ns, euid);
518
519 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
520 return -EINVAL;
521 if ((euid != (uid_t) -1) && !uid_valid(keuid))
522 return -EINVAL;
1da177e4 523
d84f4f99
DH
524 new = prepare_creds();
525 if (!new)
526 return -ENOMEM;
527 old = current_cred();
528
d84f4f99 529 retval = -EPERM;
1da177e4 530 if (ruid != (uid_t) -1) {
a29c33f4
EB
531 new->uid = kruid;
532 if (!uid_eq(old->uid, kruid) &&
533 !uid_eq(old->euid, kruid) &&
40852275 534 !ns_capable_setid(old->user_ns, CAP_SETUID))
d84f4f99 535 goto error;
1da177e4
LT
536 }
537
538 if (euid != (uid_t) -1) {
a29c33f4
EB
539 new->euid = keuid;
540 if (!uid_eq(old->uid, keuid) &&
541 !uid_eq(old->euid, keuid) &&
542 !uid_eq(old->suid, keuid) &&
40852275 543 !ns_capable_setid(old->user_ns, CAP_SETUID))
d84f4f99 544 goto error;
1da177e4
LT
545 }
546
a29c33f4 547 if (!uid_eq(new->uid, old->uid)) {
54e99124
DG
548 retval = set_user(new);
549 if (retval < 0)
550 goto error;
551 }
1da177e4 552 if (ruid != (uid_t) -1 ||
a29c33f4 553 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
d84f4f99
DH
554 new->suid = new->euid;
555 new->fsuid = new->euid;
1da177e4 556
d84f4f99
DH
557 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
558 if (retval < 0)
559 goto error;
1da177e4 560
905ae01c
AG
561 retval = set_cred_ucounts(new);
562 if (retval < 0)
563 goto error;
564
d84f4f99 565 return commit_creds(new);
1da177e4 566
d84f4f99
DH
567error:
568 abort_creds(new);
569 return retval;
570}
ec94fc3d 571
e530dca5
DB
572SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
573{
574 return __sys_setreuid(ruid, euid);
575}
576
1da177e4 577/*
ec94fc3d 578 * setuid() is implemented like SysV with SAVED_IDS
579 *
1da177e4 580 * Note that SAVED_ID's is deficient in that a setuid root program
ec94fc3d 581 * like sendmail, for example, cannot set its uid to be a normal
1da177e4
LT
582 * user and then switch back, because if you're root, setuid() sets
583 * the saved uid too. If you don't like this, blame the bright people
584 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
585 * will allow a root program to temporarily drop privileges and be able to
ec94fc3d 586 * regain them by swapping the real and effective uid.
1da177e4 587 */
e530dca5 588long __sys_setuid(uid_t uid)
1da177e4 589{
a29c33f4 590 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
591 const struct cred *old;
592 struct cred *new;
1da177e4 593 int retval;
a29c33f4
EB
594 kuid_t kuid;
595
596 kuid = make_kuid(ns, uid);
597 if (!uid_valid(kuid))
598 return -EINVAL;
1da177e4 599
d84f4f99
DH
600 new = prepare_creds();
601 if (!new)
602 return -ENOMEM;
603 old = current_cred();
604
d84f4f99 605 retval = -EPERM;
40852275 606 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
607 new->suid = new->uid = kuid;
608 if (!uid_eq(kuid, old->uid)) {
54e99124
DG
609 retval = set_user(new);
610 if (retval < 0)
611 goto error;
d84f4f99 612 }
a29c33f4 613 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
d84f4f99 614 goto error;
1da177e4 615 }
1da177e4 616
a29c33f4 617 new->fsuid = new->euid = kuid;
d84f4f99
DH
618
619 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
620 if (retval < 0)
621 goto error;
1da177e4 622
905ae01c
AG
623 retval = set_cred_ucounts(new);
624 if (retval < 0)
625 goto error;
626
d84f4f99 627 return commit_creds(new);
1da177e4 628
d84f4f99
DH
629error:
630 abort_creds(new);
631 return retval;
1da177e4
LT
632}
633
e530dca5
DB
634SYSCALL_DEFINE1(setuid, uid_t, uid)
635{
636 return __sys_setuid(uid);
637}
638
1da177e4
LT
639
640/*
641 * This function implements a generic ability to update ruid, euid,
642 * and suid. This allows you to implement the 4.4 compatible seteuid().
643 */
e530dca5 644long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1da177e4 645{
a29c33f4 646 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
647 const struct cred *old;
648 struct cred *new;
1da177e4 649 int retval;
a29c33f4
EB
650 kuid_t kruid, keuid, ksuid;
651
652 kruid = make_kuid(ns, ruid);
653 keuid = make_kuid(ns, euid);
654 ksuid = make_kuid(ns, suid);
655
656 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
657 return -EINVAL;
658
659 if ((euid != (uid_t) -1) && !uid_valid(keuid))
660 return -EINVAL;
661
662 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
663 return -EINVAL;
1da177e4 664
d84f4f99
DH
665 new = prepare_creds();
666 if (!new)
667 return -ENOMEM;
668
d84f4f99 669 old = current_cred();
1da177e4 670
d84f4f99 671 retval = -EPERM;
40852275 672 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
673 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
674 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
d84f4f99 675 goto error;
a29c33f4
EB
676 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
677 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
d84f4f99 678 goto error;
a29c33f4
EB
679 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
680 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
d84f4f99 681 goto error;
1da177e4 682 }
d84f4f99 683
1da177e4 684 if (ruid != (uid_t) -1) {
a29c33f4
EB
685 new->uid = kruid;
686 if (!uid_eq(kruid, old->uid)) {
54e99124
DG
687 retval = set_user(new);
688 if (retval < 0)
689 goto error;
690 }
1da177e4 691 }
d84f4f99 692 if (euid != (uid_t) -1)
a29c33f4 693 new->euid = keuid;
1da177e4 694 if (suid != (uid_t) -1)
a29c33f4 695 new->suid = ksuid;
d84f4f99 696 new->fsuid = new->euid;
1da177e4 697
d84f4f99
DH
698 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
699 if (retval < 0)
700 goto error;
1da177e4 701
905ae01c
AG
702 retval = set_cred_ucounts(new);
703 if (retval < 0)
704 goto error;
705
d84f4f99 706 return commit_creds(new);
1da177e4 707
d84f4f99
DH
708error:
709 abort_creds(new);
710 return retval;
1da177e4
LT
711}
712
e530dca5
DB
713SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
714{
715 return __sys_setresuid(ruid, euid, suid);
716}
717
a29c33f4 718SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
1da177e4 719{
86a264ab 720 const struct cred *cred = current_cred();
1da177e4 721 int retval;
a29c33f4
EB
722 uid_t ruid, euid, suid;
723
724 ruid = from_kuid_munged(cred->user_ns, cred->uid);
725 euid = from_kuid_munged(cred->user_ns, cred->euid);
726 suid = from_kuid_munged(cred->user_ns, cred->suid);
1da177e4 727
ec94fc3d 728 retval = put_user(ruid, ruidp);
729 if (!retval) {
730 retval = put_user(euid, euidp);
731 if (!retval)
732 return put_user(suid, suidp);
733 }
1da177e4
LT
734 return retval;
735}
736
737/*
738 * Same as above, but for rgid, egid, sgid.
739 */
e530dca5 740long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1da177e4 741{
a29c33f4 742 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
743 const struct cred *old;
744 struct cred *new;
1da177e4 745 int retval;
a29c33f4
EB
746 kgid_t krgid, kegid, ksgid;
747
748 krgid = make_kgid(ns, rgid);
749 kegid = make_kgid(ns, egid);
750 ksgid = make_kgid(ns, sgid);
751
752 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
753 return -EINVAL;
754 if ((egid != (gid_t) -1) && !gid_valid(kegid))
755 return -EINVAL;
756 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
757 return -EINVAL;
1da177e4 758
d84f4f99
DH
759 new = prepare_creds();
760 if (!new)
761 return -ENOMEM;
762 old = current_cred();
763
d84f4f99 764 retval = -EPERM;
111767c1 765 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
766 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
767 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
d84f4f99 768 goto error;
a29c33f4
EB
769 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
770 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
d84f4f99 771 goto error;
a29c33f4
EB
772 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
773 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
d84f4f99 774 goto error;
1da177e4 775 }
d84f4f99 776
1da177e4 777 if (rgid != (gid_t) -1)
a29c33f4 778 new->gid = krgid;
d84f4f99 779 if (egid != (gid_t) -1)
a29c33f4 780 new->egid = kegid;
1da177e4 781 if (sgid != (gid_t) -1)
a29c33f4 782 new->sgid = ksgid;
d84f4f99 783 new->fsgid = new->egid;
1da177e4 784
39030e13
TC
785 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
786 if (retval < 0)
787 goto error;
788
d84f4f99
DH
789 return commit_creds(new);
790
791error:
792 abort_creds(new);
793 return retval;
1da177e4
LT
794}
795
e530dca5
DB
796SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
797{
798 return __sys_setresgid(rgid, egid, sgid);
799}
800
a29c33f4 801SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
1da177e4 802{
86a264ab 803 const struct cred *cred = current_cred();
1da177e4 804 int retval;
a29c33f4
EB
805 gid_t rgid, egid, sgid;
806
807 rgid = from_kgid_munged(cred->user_ns, cred->gid);
808 egid = from_kgid_munged(cred->user_ns, cred->egid);
809 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
1da177e4 810
ec94fc3d 811 retval = put_user(rgid, rgidp);
812 if (!retval) {
813 retval = put_user(egid, egidp);
814 if (!retval)
815 retval = put_user(sgid, sgidp);
816 }
1da177e4
LT
817
818 return retval;
819}
820
821
822/*
823 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
824 * is used for "access()" and for the NFS daemon (letting nfsd stay at
825 * whatever uid it wants to). It normally shadows "euid", except when
826 * explicitly set by setfsuid() or for access..
827 */
e530dca5 828long __sys_setfsuid(uid_t uid)
1da177e4 829{
d84f4f99
DH
830 const struct cred *old;
831 struct cred *new;
832 uid_t old_fsuid;
a29c33f4
EB
833 kuid_t kuid;
834
835 old = current_cred();
836 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
837
838 kuid = make_kuid(old->user_ns, uid);
839 if (!uid_valid(kuid))
840 return old_fsuid;
1da177e4 841
d84f4f99
DH
842 new = prepare_creds();
843 if (!new)
a29c33f4 844 return old_fsuid;
1da177e4 845
a29c33f4
EB
846 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
847 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
40852275 848 ns_capable_setid(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
849 if (!uid_eq(kuid, old->fsuid)) {
850 new->fsuid = kuid;
d84f4f99
DH
851 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
852 goto change_okay;
1da177e4 853 }
1da177e4
LT
854 }
855
d84f4f99
DH
856 abort_creds(new);
857 return old_fsuid;
1da177e4 858
d84f4f99
DH
859change_okay:
860 commit_creds(new);
1da177e4
LT
861 return old_fsuid;
862}
863
e530dca5
DB
864SYSCALL_DEFINE1(setfsuid, uid_t, uid)
865{
866 return __sys_setfsuid(uid);
867}
868
1da177e4 869/*
f42df9e6 870 * Samma på svenska..
1da177e4 871 */
e530dca5 872long __sys_setfsgid(gid_t gid)
1da177e4 873{
d84f4f99
DH
874 const struct cred *old;
875 struct cred *new;
876 gid_t old_fsgid;
a29c33f4
EB
877 kgid_t kgid;
878
879 old = current_cred();
880 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
881
882 kgid = make_kgid(old->user_ns, gid);
883 if (!gid_valid(kgid))
884 return old_fsgid;
d84f4f99
DH
885
886 new = prepare_creds();
887 if (!new)
a29c33f4 888 return old_fsgid;
1da177e4 889
a29c33f4
EB
890 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
891 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
111767c1 892 ns_capable_setid(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
893 if (!gid_eq(kgid, old->fsgid)) {
894 new->fsgid = kgid;
39030e13
TC
895 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
896 goto change_okay;
1da177e4 897 }
1da177e4 898 }
d84f4f99 899
d84f4f99
DH
900 abort_creds(new);
901 return old_fsgid;
902
903change_okay:
904 commit_creds(new);
1da177e4
LT
905 return old_fsgid;
906}
e530dca5
DB
907
908SYSCALL_DEFINE1(setfsgid, gid_t, gid)
909{
910 return __sys_setfsgid(gid);
911}
2813893f 912#endif /* CONFIG_MULTIUSER */
1da177e4 913
4a22f166
SR
914/**
915 * sys_getpid - return the thread group id of the current process
916 *
917 * Note, despite the name, this returns the tgid not the pid. The tgid and
918 * the pid are identical unless CLONE_THREAD was specified on clone() in
919 * which case the tgid is the same in all threads of the same group.
920 *
921 * This is SMP safe as current->tgid does not change.
922 */
923SYSCALL_DEFINE0(getpid)
924{
925 return task_tgid_vnr(current);
926}
927
928/* Thread ID - the internal kernel "pid" */
929SYSCALL_DEFINE0(gettid)
930{
931 return task_pid_vnr(current);
932}
933
934/*
935 * Accessing ->real_parent is not SMP-safe, it could
936 * change from under us. However, we can use a stale
937 * value of ->real_parent under rcu_read_lock(), see
938 * release_task()->call_rcu(delayed_put_task_struct).
939 */
940SYSCALL_DEFINE0(getppid)
941{
942 int pid;
943
944 rcu_read_lock();
945 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
946 rcu_read_unlock();
947
948 return pid;
949}
950
951SYSCALL_DEFINE0(getuid)
952{
953 /* Only we change this so SMP safe */
954 return from_kuid_munged(current_user_ns(), current_uid());
955}
956
957SYSCALL_DEFINE0(geteuid)
958{
959 /* Only we change this so SMP safe */
960 return from_kuid_munged(current_user_ns(), current_euid());
961}
962
963SYSCALL_DEFINE0(getgid)
964{
965 /* Only we change this so SMP safe */
966 return from_kgid_munged(current_user_ns(), current_gid());
967}
968
969SYSCALL_DEFINE0(getegid)
970{
971 /* Only we change this so SMP safe */
972 return from_kgid_munged(current_user_ns(), current_egid());
973}
974
ca2406ed 975static void do_sys_times(struct tms *tms)
f06febc9 976{
5613fda9 977 u64 tgutime, tgstime, cutime, cstime;
f06febc9 978
e80d0a1a 979 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
f06febc9
FM
980 cutime = current->signal->cutime;
981 cstime = current->signal->cstime;
5613fda9
FW
982 tms->tms_utime = nsec_to_clock_t(tgutime);
983 tms->tms_stime = nsec_to_clock_t(tgstime);
984 tms->tms_cutime = nsec_to_clock_t(cutime);
985 tms->tms_cstime = nsec_to_clock_t(cstime);
f06febc9
FM
986}
987
58fd3aa2 988SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 989{
1da177e4
LT
990 if (tbuf) {
991 struct tms tmp;
f06febc9
FM
992
993 do_sys_times(&tmp);
1da177e4
LT
994 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
995 return -EFAULT;
996 }
e3d5a27d 997 force_successful_syscall_return();
1da177e4
LT
998 return (long) jiffies_64_to_clock_t(get_jiffies_64());
999}
1000
ca2406ed
AV
1001#ifdef CONFIG_COMPAT
1002static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1003{
1004 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1005}
1006
1007COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1008{
1009 if (tbuf) {
1010 struct tms tms;
1011 struct compat_tms tmp;
1012
1013 do_sys_times(&tms);
1014 /* Convert our struct tms to the compat version. */
1015 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1016 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1017 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1018 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1019 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1020 return -EFAULT;
1021 }
1022 force_successful_syscall_return();
1023 return compat_jiffies_to_clock_t(jiffies);
1024}
1025#endif
1026
1da177e4
LT
1027/*
1028 * This needs some heavy checking ...
1029 * I just haven't the stomach for it. I also don't fully
1030 * understand sessions/pgrp etc. Let somebody who does explain it.
1031 *
1032 * OK, I think I have the protection semantics right.... this is really
1033 * only important on a multi-user system anyway, to make sure one user
1034 * can't send a signal to a process owned by another. -TYT, 12/12/91
1035 *
98611e4e 1036 * !PF_FORKNOEXEC check to conform completely to POSIX.
1da177e4 1037 */
b290ebe2 1038SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
1039{
1040 struct task_struct *p;
ee0acf90 1041 struct task_struct *group_leader = current->group_leader;
4e021306
ON
1042 struct pid *pgrp;
1043 int err;
1da177e4
LT
1044
1045 if (!pid)
b488893a 1046 pid = task_pid_vnr(group_leader);
1da177e4
LT
1047 if (!pgid)
1048 pgid = pid;
1049 if (pgid < 0)
1050 return -EINVAL;
950eaaca 1051 rcu_read_lock();
1da177e4
LT
1052
1053 /* From this point forward we keep holding onto the tasklist lock
1054 * so that our parent does not change from under us. -DaveM
1055 */
1056 write_lock_irq(&tasklist_lock);
1057
1058 err = -ESRCH;
4e021306 1059 p = find_task_by_vpid(pid);
1da177e4
LT
1060 if (!p)
1061 goto out;
1062
1063 err = -EINVAL;
1064 if (!thread_group_leader(p))
1065 goto out;
1066
4e021306 1067 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 1068 err = -EPERM;
41487c65 1069 if (task_session(p) != task_session(group_leader))
1da177e4
LT
1070 goto out;
1071 err = -EACCES;
98611e4e 1072 if (!(p->flags & PF_FORKNOEXEC))
1da177e4
LT
1073 goto out;
1074 } else {
1075 err = -ESRCH;
ee0acf90 1076 if (p != group_leader)
1da177e4
LT
1077 goto out;
1078 }
1079
1080 err = -EPERM;
1081 if (p->signal->leader)
1082 goto out;
1083
4e021306 1084 pgrp = task_pid(p);
1da177e4 1085 if (pgid != pid) {
b488893a 1086 struct task_struct *g;
1da177e4 1087
4e021306
ON
1088 pgrp = find_vpid(pgid);
1089 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1090 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1091 goto out;
1da177e4
LT
1092 }
1093
1da177e4
LT
1094 err = security_task_setpgid(p, pgid);
1095 if (err)
1096 goto out;
1097
1b0f7ffd 1098 if (task_pgrp(p) != pgrp)
83beaf3c 1099 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1100
1101 err = 0;
1102out:
1103 /* All paths lead to here, thus we are safe. -DaveM */
1104 write_unlock_irq(&tasklist_lock);
950eaaca 1105 rcu_read_unlock();
1da177e4
LT
1106 return err;
1107}
1108
192c5807 1109static int do_getpgid(pid_t pid)
1da177e4 1110{
12a3de0a
ON
1111 struct task_struct *p;
1112 struct pid *grp;
1113 int retval;
1114
1115 rcu_read_lock();
756184b7 1116 if (!pid)
12a3de0a 1117 grp = task_pgrp(current);
756184b7 1118 else {
1da177e4 1119 retval = -ESRCH;
12a3de0a
ON
1120 p = find_task_by_vpid(pid);
1121 if (!p)
1122 goto out;
1123 grp = task_pgrp(p);
1124 if (!grp)
1125 goto out;
1126
1127 retval = security_task_getpgid(p);
1128 if (retval)
1129 goto out;
1da177e4 1130 }
12a3de0a
ON
1131 retval = pid_vnr(grp);
1132out:
1133 rcu_read_unlock();
1134 return retval;
1da177e4
LT
1135}
1136
192c5807
DB
1137SYSCALL_DEFINE1(getpgid, pid_t, pid)
1138{
1139 return do_getpgid(pid);
1140}
1141
1da177e4
LT
1142#ifdef __ARCH_WANT_SYS_GETPGRP
1143
dbf040d9 1144SYSCALL_DEFINE0(getpgrp)
1da177e4 1145{
192c5807 1146 return do_getpgid(0);
1da177e4
LT
1147}
1148
1149#endif
1150
dbf040d9 1151SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1152{
1dd768c0
ON
1153 struct task_struct *p;
1154 struct pid *sid;
1155 int retval;
1156
1157 rcu_read_lock();
756184b7 1158 if (!pid)
1dd768c0 1159 sid = task_session(current);
756184b7 1160 else {
1da177e4 1161 retval = -ESRCH;
1dd768c0
ON
1162 p = find_task_by_vpid(pid);
1163 if (!p)
1164 goto out;
1165 sid = task_session(p);
1166 if (!sid)
1167 goto out;
1168
1169 retval = security_task_getsid(p);
1170 if (retval)
1171 goto out;
1da177e4 1172 }
1dd768c0
ON
1173 retval = pid_vnr(sid);
1174out:
1175 rcu_read_unlock();
1176 return retval;
1da177e4
LT
1177}
1178
81dabb46
ON
1179static void set_special_pids(struct pid *pid)
1180{
1181 struct task_struct *curr = current->group_leader;
1182
1183 if (task_session(curr) != pid)
1184 change_pid(curr, PIDTYPE_SID, pid);
1185
1186 if (task_pgrp(curr) != pid)
1187 change_pid(curr, PIDTYPE_PGID, pid);
1188}
1189
e2aaa9f4 1190int ksys_setsid(void)
1da177e4 1191{
e19f247a 1192 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1193 struct pid *sid = task_pid(group_leader);
1194 pid_t session = pid_vnr(sid);
1da177e4
LT
1195 int err = -EPERM;
1196
1da177e4 1197 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1198 /* Fail if I am already a session leader */
1199 if (group_leader->signal->leader)
1200 goto out;
1201
430c6231
ON
1202 /* Fail if a process group id already exists that equals the
1203 * proposed session id.
390e2ff0 1204 */
6806aac6 1205 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1206 goto out;
1207
e19f247a 1208 group_leader->signal->leader = 1;
81dabb46 1209 set_special_pids(sid);
24ec839c 1210
9c9f4ded 1211 proc_clear_tty(group_leader);
24ec839c 1212
e4cc0a9c 1213 err = session;
1da177e4
LT
1214out:
1215 write_unlock_irq(&tasklist_lock);
5091faa4 1216 if (err > 0) {
0d0df599 1217 proc_sid_connector(group_leader);
5091faa4
MG
1218 sched_autogroup_create_attach(group_leader);
1219 }
1da177e4
LT
1220 return err;
1221}
1222
e2aaa9f4
DB
1223SYSCALL_DEFINE0(setsid)
1224{
1225 return ksys_setsid();
1226}
1227
1da177e4
LT
1228DECLARE_RWSEM(uts_sem);
1229
e28cbf22
CH
1230#ifdef COMPAT_UTS_MACHINE
1231#define override_architecture(name) \
46da2766 1232 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1233 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1234 sizeof(COMPAT_UTS_MACHINE)))
1235#else
1236#define override_architecture(name) 0
1237#endif
1238
be27425d
AK
1239/*
1240 * Work around broken programs that cannot handle "Linux 3.0".
1241 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
b7285b42
JN
1242 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1243 * 2.6.60.
be27425d 1244 */
2702b152 1245static int override_release(char __user *release, size_t len)
be27425d
AK
1246{
1247 int ret = 0;
be27425d
AK
1248
1249 if (current->personality & UNAME26) {
2702b152
KC
1250 const char *rest = UTS_RELEASE;
1251 char buf[65] = { 0 };
be27425d
AK
1252 int ndots = 0;
1253 unsigned v;
2702b152 1254 size_t copy;
be27425d
AK
1255
1256 while (*rest) {
1257 if (*rest == '.' && ++ndots >= 3)
1258 break;
1259 if (!isdigit(*rest) && *rest != '.')
1260 break;
1261 rest++;
1262 }
88a68672 1263 v = LINUX_VERSION_PATCHLEVEL + 60;
31fd84b9 1264 copy = clamp_t(size_t, len, 1, sizeof(buf));
2702b152
KC
1265 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1266 ret = copy_to_user(release, buf, copy + 1);
be27425d
AK
1267 }
1268 return ret;
1269}
1270
e48fbb69 1271SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4 1272{
42a0cc34 1273 struct new_utsname tmp;
1da177e4
LT
1274
1275 down_read(&uts_sem);
42a0cc34 1276 memcpy(&tmp, utsname(), sizeof(tmp));
1da177e4 1277 up_read(&uts_sem);
42a0cc34
JH
1278 if (copy_to_user(name, &tmp, sizeof(tmp)))
1279 return -EFAULT;
e28cbf22 1280
42a0cc34
JH
1281 if (override_release(name->release, sizeof(name->release)))
1282 return -EFAULT;
1283 if (override_architecture(name))
1284 return -EFAULT;
1285 return 0;
1da177e4
LT
1286}
1287
5cacdb4a
CH
1288#ifdef __ARCH_WANT_SYS_OLD_UNAME
1289/*
1290 * Old cruft
1291 */
1292SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1293{
42a0cc34 1294 struct old_utsname tmp;
5cacdb4a
CH
1295
1296 if (!name)
1297 return -EFAULT;
1298
1299 down_read(&uts_sem);
42a0cc34 1300 memcpy(&tmp, utsname(), sizeof(tmp));
5cacdb4a 1301 up_read(&uts_sem);
42a0cc34
JH
1302 if (copy_to_user(name, &tmp, sizeof(tmp)))
1303 return -EFAULT;
5cacdb4a 1304
42a0cc34
JH
1305 if (override_release(name->release, sizeof(name->release)))
1306 return -EFAULT;
1307 if (override_architecture(name))
1308 return -EFAULT;
1309 return 0;
5cacdb4a
CH
1310}
1311
1312SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1313{
5e1aada0 1314 struct oldold_utsname tmp;
5cacdb4a
CH
1315
1316 if (!name)
1317 return -EFAULT;
5cacdb4a 1318
5e1aada0
JP
1319 memset(&tmp, 0, sizeof(tmp));
1320
5cacdb4a 1321 down_read(&uts_sem);
42a0cc34
JH
1322 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1323 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1324 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1325 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1326 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
5cacdb4a 1327 up_read(&uts_sem);
42a0cc34
JH
1328 if (copy_to_user(name, &tmp, sizeof(tmp)))
1329 return -EFAULT;
5cacdb4a 1330
42a0cc34
JH
1331 if (override_architecture(name))
1332 return -EFAULT;
1333 if (override_release(name->release, sizeof(name->release)))
1334 return -EFAULT;
1335 return 0;
5cacdb4a
CH
1336}
1337#endif
1338
5a8a82b1 1339SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1340{
1341 int errno;
1342 char tmp[__NEW_UTS_LEN];
1343
bb96a6f5 1344 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1345 return -EPERM;
fc832ad3 1346
1da177e4
LT
1347 if (len < 0 || len > __NEW_UTS_LEN)
1348 return -EINVAL;
1da177e4
LT
1349 errno = -EFAULT;
1350 if (!copy_from_user(tmp, name, len)) {
42a0cc34 1351 struct new_utsname *u;
9679e4dd 1352
42a0cc34
JH
1353 down_write(&uts_sem);
1354 u = utsname();
9679e4dd
AM
1355 memcpy(u->nodename, tmp, len);
1356 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4 1357 errno = 0;
499eea6b 1358 uts_proc_notify(UTS_PROC_HOSTNAME);
42a0cc34 1359 up_write(&uts_sem);
1da177e4 1360 }
1da177e4
LT
1361 return errno;
1362}
1363
1364#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1365
5a8a82b1 1366SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4 1367{
42a0cc34 1368 int i;
9679e4dd 1369 struct new_utsname *u;
42a0cc34 1370 char tmp[__NEW_UTS_LEN + 1];
1da177e4
LT
1371
1372 if (len < 0)
1373 return -EINVAL;
1374 down_read(&uts_sem);
9679e4dd
AM
1375 u = utsname();
1376 i = 1 + strlen(u->nodename);
1da177e4
LT
1377 if (i > len)
1378 i = len;
42a0cc34 1379 memcpy(tmp, u->nodename, i);
1da177e4 1380 up_read(&uts_sem);
42a0cc34
JH
1381 if (copy_to_user(name, tmp, i))
1382 return -EFAULT;
1383 return 0;
1da177e4
LT
1384}
1385
1386#endif
1387
1388/*
1389 * Only setdomainname; getdomainname can be implemented by calling
1390 * uname()
1391 */
5a8a82b1 1392SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1393{
1394 int errno;
1395 char tmp[__NEW_UTS_LEN];
1396
fc832ad3 1397 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1398 return -EPERM;
1399 if (len < 0 || len > __NEW_UTS_LEN)
1400 return -EINVAL;
1401
1da177e4
LT
1402 errno = -EFAULT;
1403 if (!copy_from_user(tmp, name, len)) {
42a0cc34 1404 struct new_utsname *u;
9679e4dd 1405
42a0cc34
JH
1406 down_write(&uts_sem);
1407 u = utsname();
9679e4dd
AM
1408 memcpy(u->domainname, tmp, len);
1409 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4 1410 errno = 0;
499eea6b 1411 uts_proc_notify(UTS_PROC_DOMAINNAME);
42a0cc34 1412 up_write(&uts_sem);
1da177e4 1413 }
1da177e4
LT
1414 return errno;
1415}
1416
e48fbb69 1417SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1418{
b9518345
JS
1419 struct rlimit value;
1420 int ret;
1421
1422 ret = do_prlimit(current, resource, NULL, &value);
1423 if (!ret)
1424 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1425
1426 return ret;
1da177e4
LT
1427}
1428
d9e968cb
AV
1429#ifdef CONFIG_COMPAT
1430
1431COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1432 struct compat_rlimit __user *, rlim)
1433{
1434 struct rlimit r;
1435 struct compat_rlimit r32;
1436
1437 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1438 return -EFAULT;
1439
1440 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1441 r.rlim_cur = RLIM_INFINITY;
1442 else
1443 r.rlim_cur = r32.rlim_cur;
1444 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1445 r.rlim_max = RLIM_INFINITY;
1446 else
1447 r.rlim_max = r32.rlim_max;
1448 return do_prlimit(current, resource, &r, NULL);
1449}
1450
1451COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1452 struct compat_rlimit __user *, rlim)
1453{
1454 struct rlimit r;
1455 int ret;
1456
1457 ret = do_prlimit(current, resource, NULL, &r);
1458 if (!ret) {
58c7ffc0 1459 struct compat_rlimit r32;
d9e968cb
AV
1460 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1461 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1462 else
1463 r32.rlim_cur = r.rlim_cur;
1464 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1465 r32.rlim_max = COMPAT_RLIM_INFINITY;
1466 else
1467 r32.rlim_max = r.rlim_max;
1468
1469 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1470 return -EFAULT;
1471 }
1472 return ret;
1473}
1474
1475#endif
1476
1da177e4
LT
1477#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1478
1479/*
1480 * Back compatibility for getrlimit. Needed for some apps.
1481 */
e48fbb69
HC
1482SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1483 struct rlimit __user *, rlim)
1da177e4
LT
1484{
1485 struct rlimit x;
1486 if (resource >= RLIM_NLIMITS)
1487 return -EINVAL;
1488
23d6aef7 1489 resource = array_index_nospec(resource, RLIM_NLIMITS);
1da177e4
LT
1490 task_lock(current->group_leader);
1491 x = current->signal->rlim[resource];
1492 task_unlock(current->group_leader);
756184b7 1493 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1494 x.rlim_cur = 0x7FFFFFFF;
756184b7 1495 if (x.rlim_max > 0x7FFFFFFF)
1da177e4 1496 x.rlim_max = 0x7FFFFFFF;
ec94fc3d 1497 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1da177e4
LT
1498}
1499
613763a1
AV
1500#ifdef CONFIG_COMPAT
1501COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1502 struct compat_rlimit __user *, rlim)
1503{
1504 struct rlimit r;
1505
1506 if (resource >= RLIM_NLIMITS)
1507 return -EINVAL;
1508
23d6aef7 1509 resource = array_index_nospec(resource, RLIM_NLIMITS);
613763a1
AV
1510 task_lock(current->group_leader);
1511 r = current->signal->rlim[resource];
1512 task_unlock(current->group_leader);
1513 if (r.rlim_cur > 0x7FFFFFFF)
1514 r.rlim_cur = 0x7FFFFFFF;
1515 if (r.rlim_max > 0x7FFFFFFF)
1516 r.rlim_max = 0x7FFFFFFF;
1517
1518 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1519 put_user(r.rlim_max, &rlim->rlim_max))
1520 return -EFAULT;
1521 return 0;
1522}
1523#endif
1524
1da177e4
LT
1525#endif
1526
c022a0ac
JS
1527static inline bool rlim64_is_infinity(__u64 rlim64)
1528{
1529#if BITS_PER_LONG < 64
1530 return rlim64 >= ULONG_MAX;
1531#else
1532 return rlim64 == RLIM64_INFINITY;
1533#endif
1534}
1535
1536static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1537{
1538 if (rlim->rlim_cur == RLIM_INFINITY)
1539 rlim64->rlim_cur = RLIM64_INFINITY;
1540 else
1541 rlim64->rlim_cur = rlim->rlim_cur;
1542 if (rlim->rlim_max == RLIM_INFINITY)
1543 rlim64->rlim_max = RLIM64_INFINITY;
1544 else
1545 rlim64->rlim_max = rlim->rlim_max;
1546}
1547
1548static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1549{
1550 if (rlim64_is_infinity(rlim64->rlim_cur))
1551 rlim->rlim_cur = RLIM_INFINITY;
1552 else
1553 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1554 if (rlim64_is_infinity(rlim64->rlim_max))
1555 rlim->rlim_max = RLIM_INFINITY;
1556 else
1557 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1558}
1559
1c1e618d 1560/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1561int do_prlimit(struct task_struct *tsk, unsigned int resource,
1562 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1563{
5b41535a 1564 struct rlimit *rlim;
86f162f4 1565 int retval = 0;
1da177e4
LT
1566
1567 if (resource >= RLIM_NLIMITS)
1568 return -EINVAL;
5b41535a
JS
1569 if (new_rlim) {
1570 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1571 return -EINVAL;
1572 if (resource == RLIMIT_NOFILE &&
1573 new_rlim->rlim_max > sysctl_nr_open)
1574 return -EPERM;
1575 }
1da177e4 1576
1c1e618d
JS
1577 /* protect tsk->signal and tsk->sighand from disappearing */
1578 read_lock(&tasklist_lock);
1579 if (!tsk->sighand) {
1580 retval = -ESRCH;
1581 goto out;
1582 }
1583
5b41535a 1584 rlim = tsk->signal->rlim + resource;
86f162f4 1585 task_lock(tsk->group_leader);
5b41535a 1586 if (new_rlim) {
fc832ad3
SH
1587 /* Keep the capable check against init_user_ns until
1588 cgroups can contain all limits */
5b41535a
JS
1589 if (new_rlim->rlim_max > rlim->rlim_max &&
1590 !capable(CAP_SYS_RESOURCE))
1591 retval = -EPERM;
1592 if (!retval)
cad4ea54 1593 retval = security_task_setrlimit(tsk, resource, new_rlim);
5b41535a
JS
1594 }
1595 if (!retval) {
1596 if (old_rlim)
1597 *old_rlim = *rlim;
1598 if (new_rlim)
1599 *rlim = *new_rlim;
9926e4c7 1600 }
7855c35d 1601 task_unlock(tsk->group_leader);
1da177e4 1602
d3561f78 1603 /*
24db4dd9 1604 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
5afe69c2 1605 * infinite. In case of RLIM_INFINITY the posix CPU timer code
24db4dd9 1606 * ignores the rlimit.
d3561f78 1607 */
5b41535a 1608 if (!retval && new_rlim && resource == RLIMIT_CPU &&
baa73d9e
NP
1609 new_rlim->rlim_cur != RLIM_INFINITY &&
1610 IS_ENABLED(CONFIG_POSIX_TIMERS))
5b41535a 1611 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1612out:
1c1e618d 1613 read_unlock(&tasklist_lock);
2fb9d268 1614 return retval;
1da177e4
LT
1615}
1616
c022a0ac 1617/* rcu lock must be held */
791ec491
SS
1618static int check_prlimit_permission(struct task_struct *task,
1619 unsigned int flags)
c022a0ac
JS
1620{
1621 const struct cred *cred = current_cred(), *tcred;
791ec491 1622 bool id_match;
c022a0ac 1623
fc832ad3
SH
1624 if (current == task)
1625 return 0;
c022a0ac 1626
fc832ad3 1627 tcred = __task_cred(task);
791ec491
SS
1628 id_match = (uid_eq(cred->uid, tcred->euid) &&
1629 uid_eq(cred->uid, tcred->suid) &&
1630 uid_eq(cred->uid, tcred->uid) &&
1631 gid_eq(cred->gid, tcred->egid) &&
1632 gid_eq(cred->gid, tcred->sgid) &&
1633 gid_eq(cred->gid, tcred->gid));
1634 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1635 return -EPERM;
fc832ad3 1636
791ec491 1637 return security_task_prlimit(cred, tcred, flags);
c022a0ac
JS
1638}
1639
1640SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1641 const struct rlimit64 __user *, new_rlim,
1642 struct rlimit64 __user *, old_rlim)
1643{
1644 struct rlimit64 old64, new64;
1645 struct rlimit old, new;
1646 struct task_struct *tsk;
791ec491 1647 unsigned int checkflags = 0;
c022a0ac
JS
1648 int ret;
1649
791ec491
SS
1650 if (old_rlim)
1651 checkflags |= LSM_PRLIMIT_READ;
1652
c022a0ac
JS
1653 if (new_rlim) {
1654 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1655 return -EFAULT;
1656 rlim64_to_rlim(&new64, &new);
791ec491 1657 checkflags |= LSM_PRLIMIT_WRITE;
c022a0ac
JS
1658 }
1659
1660 rcu_read_lock();
1661 tsk = pid ? find_task_by_vpid(pid) : current;
1662 if (!tsk) {
1663 rcu_read_unlock();
1664 return -ESRCH;
1665 }
791ec491 1666 ret = check_prlimit_permission(tsk, checkflags);
c022a0ac
JS
1667 if (ret) {
1668 rcu_read_unlock();
1669 return ret;
1670 }
1671 get_task_struct(tsk);
1672 rcu_read_unlock();
1673
1674 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1675 old_rlim ? &old : NULL);
1676
1677 if (!ret && old_rlim) {
1678 rlim_to_rlim64(&old, &old64);
1679 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1680 ret = -EFAULT;
1681 }
1682
1683 put_task_struct(tsk);
1684 return ret;
1685}
1686
7855c35d
JS
1687SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1688{
1689 struct rlimit new_rlim;
1690
1691 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1692 return -EFAULT;
5b41535a 1693 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1694}
1695
1da177e4
LT
1696/*
1697 * It would make sense to put struct rusage in the task_struct,
1698 * except that would make the task_struct be *really big*. After
1699 * task_struct gets moved into malloc'ed memory, it would
1700 * make sense to do this. It will make moving the rest of the information
1701 * a lot simpler! (Which we're not doing right now because we're not
1702 * measuring them yet).
1703 *
1da177e4
LT
1704 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1705 * races with threads incrementing their own counters. But since word
1706 * reads are atomic, we either get new values or old values and we don't
1707 * care which for the sums. We always take the siglock to protect reading
1708 * the c* fields from p->signal from races with exit.c updating those
1709 * fields when reaping, so a sample either gets all the additions of a
1710 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1711 *
de047c1b
RT
1712 * Locking:
1713 * We need to take the siglock for CHILDEREN, SELF and BOTH
1714 * for the cases current multithreaded, non-current single threaded
1715 * non-current multithreaded. Thread traversal is now safe with
1716 * the siglock held.
1717 * Strictly speaking, we donot need to take the siglock if we are current and
1718 * single threaded, as no one else can take our signal_struct away, no one
1719 * else can reap the children to update signal->c* counters, and no one else
1720 * can race with the signal-> fields. If we do not take any lock, the
1721 * signal-> fields could be read out of order while another thread was just
1722 * exiting. So we should place a read memory barrier when we avoid the lock.
1723 * On the writer side, write memory barrier is implied in __exit_signal
1724 * as __exit_signal releases the siglock spinlock after updating the signal->
1725 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1726 *
1da177e4
LT
1727 */
1728
f06febc9 1729static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1730{
679c9cd4
SK
1731 r->ru_nvcsw += t->nvcsw;
1732 r->ru_nivcsw += t->nivcsw;
1733 r->ru_minflt += t->min_flt;
1734 r->ru_majflt += t->maj_flt;
1735 r->ru_inblock += task_io_get_inblock(t);
1736 r->ru_oublock += task_io_get_oublock(t);
1737}
1738
ce72a16f 1739void getrusage(struct task_struct *p, int who, struct rusage *r)
1da177e4
LT
1740{
1741 struct task_struct *t;
1742 unsigned long flags;
5613fda9 1743 u64 tgutime, tgstime, utime, stime;
1f10206c 1744 unsigned long maxrss = 0;
1da177e4 1745
ec94fc3d 1746 memset((char *)r, 0, sizeof (*r));
64861634 1747 utime = stime = 0;
1da177e4 1748
679c9cd4 1749 if (who == RUSAGE_THREAD) {
e80d0a1a 1750 task_cputime_adjusted(current, &utime, &stime);
f06febc9 1751 accumulate_thread_rusage(p, r);
1f10206c 1752 maxrss = p->signal->maxrss;
679c9cd4
SK
1753 goto out;
1754 }
1755
d6cf723a 1756 if (!lock_task_sighand(p, &flags))
de047c1b 1757 return;
0f59cc4a 1758
1da177e4 1759 switch (who) {
ec94fc3d 1760 case RUSAGE_BOTH:
1761 case RUSAGE_CHILDREN:
1762 utime = p->signal->cutime;
1763 stime = p->signal->cstime;
1764 r->ru_nvcsw = p->signal->cnvcsw;
1765 r->ru_nivcsw = p->signal->cnivcsw;
1766 r->ru_minflt = p->signal->cmin_flt;
1767 r->ru_majflt = p->signal->cmaj_flt;
1768 r->ru_inblock = p->signal->cinblock;
1769 r->ru_oublock = p->signal->coublock;
1770 maxrss = p->signal->cmaxrss;
1771
1772 if (who == RUSAGE_CHILDREN)
1da177e4 1773 break;
df561f66 1774 fallthrough;
0f59cc4a 1775
ec94fc3d 1776 case RUSAGE_SELF:
1777 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1778 utime += tgutime;
1779 stime += tgstime;
1780 r->ru_nvcsw += p->signal->nvcsw;
1781 r->ru_nivcsw += p->signal->nivcsw;
1782 r->ru_minflt += p->signal->min_flt;
1783 r->ru_majflt += p->signal->maj_flt;
1784 r->ru_inblock += p->signal->inblock;
1785 r->ru_oublock += p->signal->oublock;
1786 if (maxrss < p->signal->maxrss)
1787 maxrss = p->signal->maxrss;
1788 t = p;
1789 do {
1790 accumulate_thread_rusage(t, r);
1791 } while_each_thread(p, t);
1792 break;
1793
1794 default:
1795 BUG();
1da177e4 1796 }
de047c1b 1797 unlock_task_sighand(p, &flags);
de047c1b 1798
679c9cd4 1799out:
bdd565f8
AB
1800 r->ru_utime = ns_to_kernel_old_timeval(utime);
1801 r->ru_stime = ns_to_kernel_old_timeval(stime);
1f10206c
JP
1802
1803 if (who != RUSAGE_CHILDREN) {
1804 struct mm_struct *mm = get_task_mm(p);
ec94fc3d 1805
1f10206c
JP
1806 if (mm) {
1807 setmax_mm_hiwater_rss(&maxrss, mm);
1808 mmput(mm);
1809 }
1810 }
1811 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1812}
1813
ce72a16f 1814SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4
LT
1815{
1816 struct rusage r;
ec94fc3d 1817
679c9cd4
SK
1818 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1819 who != RUSAGE_THREAD)
1da177e4 1820 return -EINVAL;
ce72a16f
AV
1821
1822 getrusage(current, who, &r);
1823 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1da177e4
LT
1824}
1825
8d2d5c4a
AV
1826#ifdef CONFIG_COMPAT
1827COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1828{
1829 struct rusage r;
1830
1831 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1832 who != RUSAGE_THREAD)
1833 return -EINVAL;
1834
ce72a16f 1835 getrusage(current, who, &r);
8d2d5c4a
AV
1836 return put_compat_rusage(&r, ru);
1837}
1838#endif
1839
e48fbb69 1840SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1841{
1842 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1843 return mask;
1844}
3b7391de 1845
6e399cd1 1846static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
b32dfe37 1847{
2903ff01 1848 struct fd exe;
6e399cd1 1849 struct file *old_exe, *exe_file;
496ad9aa 1850 struct inode *inode;
2903ff01 1851 int err;
b32dfe37 1852
2903ff01
AV
1853 exe = fdget(fd);
1854 if (!exe.file)
b32dfe37
CG
1855 return -EBADF;
1856
496ad9aa 1857 inode = file_inode(exe.file);
b32dfe37
CG
1858
1859 /*
1860 * Because the original mm->exe_file points to executable file, make
1861 * sure that this one is executable as well, to avoid breaking an
1862 * overall picture.
1863 */
1864 err = -EACCES;
90f8572b 1865 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
b32dfe37
CG
1866 goto exit;
1867
02f92b38 1868 err = file_permission(exe.file, MAY_EXEC);
b32dfe37
CG
1869 if (err)
1870 goto exit;
1871
bafb282d 1872 /*
4229fb1d 1873 * Forbid mm->exe_file change if old file still mapped.
bafb282d 1874 */
6e399cd1 1875 exe_file = get_mm_exe_file(mm);
bafb282d 1876 err = -EBUSY;
6e399cd1 1877 if (exe_file) {
4229fb1d
KK
1878 struct vm_area_struct *vma;
1879
d8ed45c5 1880 mmap_read_lock(mm);
6e399cd1
DB
1881 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1882 if (!vma->vm_file)
1883 continue;
1884 if (path_equal(&vma->vm_file->f_path,
1885 &exe_file->f_path))
1886 goto exit_err;
1887 }
1888
d8ed45c5 1889 mmap_read_unlock(mm);
6e399cd1 1890 fput(exe_file);
bafb282d
KK
1891 }
1892
4229fb1d 1893 err = 0;
6e399cd1
DB
1894 /* set the new file, lockless */
1895 get_file(exe.file);
1896 old_exe = xchg(&mm->exe_file, exe.file);
1897 if (old_exe)
1898 fput(old_exe);
b32dfe37 1899exit:
2903ff01 1900 fdput(exe);
b32dfe37 1901 return err;
6e399cd1 1902exit_err:
d8ed45c5 1903 mmap_read_unlock(mm);
6e399cd1
DB
1904 fput(exe_file);
1905 goto exit;
b32dfe37
CG
1906}
1907
f606b77f 1908/*
11bbd8b4
MK
1909 * Check arithmetic relations of passed addresses.
1910 *
f606b77f
CG
1911 * WARNING: we don't require any capability here so be very careful
1912 * in what is allowed for modification from userspace.
1913 */
11bbd8b4 1914static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
f606b77f
CG
1915{
1916 unsigned long mmap_max_addr = TASK_SIZE;
f606b77f
CG
1917 int error = -EINVAL, i;
1918
1919 static const unsigned char offsets[] = {
1920 offsetof(struct prctl_mm_map, start_code),
1921 offsetof(struct prctl_mm_map, end_code),
1922 offsetof(struct prctl_mm_map, start_data),
1923 offsetof(struct prctl_mm_map, end_data),
1924 offsetof(struct prctl_mm_map, start_brk),
1925 offsetof(struct prctl_mm_map, brk),
1926 offsetof(struct prctl_mm_map, start_stack),
1927 offsetof(struct prctl_mm_map, arg_start),
1928 offsetof(struct prctl_mm_map, arg_end),
1929 offsetof(struct prctl_mm_map, env_start),
1930 offsetof(struct prctl_mm_map, env_end),
1931 };
1932
1933 /*
1934 * Make sure the members are not somewhere outside
1935 * of allowed address space.
1936 */
1937 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1938 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1939
1940 if ((unsigned long)val >= mmap_max_addr ||
1941 (unsigned long)val < mmap_min_addr)
1942 goto out;
1943 }
1944
1945 /*
1946 * Make sure the pairs are ordered.
1947 */
1948#define __prctl_check_order(__m1, __op, __m2) \
1949 ((unsigned long)prctl_map->__m1 __op \
1950 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1951 error = __prctl_check_order(start_code, <, end_code);
a9e73998 1952 error |= __prctl_check_order(start_data,<=, end_data);
f606b77f
CG
1953 error |= __prctl_check_order(start_brk, <=, brk);
1954 error |= __prctl_check_order(arg_start, <=, arg_end);
1955 error |= __prctl_check_order(env_start, <=, env_end);
1956 if (error)
1957 goto out;
1958#undef __prctl_check_order
1959
1960 error = -EINVAL;
1961
1962 /*
1963 * @brk should be after @end_data in traditional maps.
1964 */
1965 if (prctl_map->start_brk <= prctl_map->end_data ||
1966 prctl_map->brk <= prctl_map->end_data)
1967 goto out;
1968
1969 /*
1970 * Neither we should allow to override limits if they set.
1971 */
1972 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1973 prctl_map->start_brk, prctl_map->end_data,
1974 prctl_map->start_data))
1975 goto out;
1976
f606b77f
CG
1977 error = 0;
1978out:
1979 return error;
1980}
1981
4a00e9df 1982#ifdef CONFIG_CHECKPOINT_RESTORE
f606b77f
CG
1983static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1984{
1985 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1986 unsigned long user_auxv[AT_VECTOR_SIZE];
1987 struct mm_struct *mm = current->mm;
1988 int error;
1989
1990 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1991 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1992
1993 if (opt == PR_SET_MM_MAP_SIZE)
1994 return put_user((unsigned int)sizeof(prctl_map),
1995 (unsigned int __user *)addr);
1996
1997 if (data_size != sizeof(prctl_map))
1998 return -EINVAL;
1999
2000 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2001 return -EFAULT;
2002
11bbd8b4 2003 error = validate_prctl_map_addr(&prctl_map);
f606b77f
CG
2004 if (error)
2005 return error;
2006
2007 if (prctl_map.auxv_size) {
11bbd8b4
MK
2008 /*
2009 * Someone is trying to cheat the auxv vector.
2010 */
2011 if (!prctl_map.auxv ||
2012 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2013 return -EINVAL;
2014
f606b77f
CG
2015 memset(user_auxv, 0, sizeof(user_auxv));
2016 if (copy_from_user(user_auxv,
2017 (const void __user *)prctl_map.auxv,
2018 prctl_map.auxv_size))
2019 return -EFAULT;
2020
2021 /* Last entry must be AT_NULL as specification requires */
2022 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2023 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2024 }
2025
ddf1d398 2026 if (prctl_map.exe_fd != (u32)-1) {
11bbd8b4 2027 /*
ebd6de68
NV
2028 * Check if the current user is checkpoint/restore capable.
2029 * At the time of this writing, it checks for CAP_SYS_ADMIN
2030 * or CAP_CHECKPOINT_RESTORE.
2031 * Note that a user with access to ptrace can masquerade an
2032 * arbitrary program as any executable, even setuid ones.
2033 * This may have implications in the tomoyo subsystem.
11bbd8b4 2034 */
ebd6de68 2035 if (!checkpoint_restore_ns_capable(current_user_ns()))
227175b2 2036 return -EPERM;
11bbd8b4 2037
6e399cd1 2038 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
ddf1d398
MG
2039 if (error)
2040 return error;
2041 }
2042
88aa7cc6 2043 /*
5afe69c2 2044 * arg_lock protects concurrent updates but we still need mmap_lock for
88aa7cc6
YS
2045 * read to exclude races with sys_brk.
2046 */
d8ed45c5 2047 mmap_read_lock(mm);
f606b77f
CG
2048
2049 /*
2050 * We don't validate if these members are pointing to
2051 * real present VMAs because application may have correspond
2052 * VMAs already unmapped and kernel uses these members for statistics
2053 * output in procfs mostly, except
2054 *
15ec0fcf 2055 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
5afe69c2 2056 * for VMAs when updating these members so anything wrong written
f606b77f
CG
2057 * here cause kernel to swear at userspace program but won't lead
2058 * to any problem in kernel itself
2059 */
2060
88aa7cc6 2061 spin_lock(&mm->arg_lock);
f606b77f
CG
2062 mm->start_code = prctl_map.start_code;
2063 mm->end_code = prctl_map.end_code;
2064 mm->start_data = prctl_map.start_data;
2065 mm->end_data = prctl_map.end_data;
2066 mm->start_brk = prctl_map.start_brk;
2067 mm->brk = prctl_map.brk;
2068 mm->start_stack = prctl_map.start_stack;
2069 mm->arg_start = prctl_map.arg_start;
2070 mm->arg_end = prctl_map.arg_end;
2071 mm->env_start = prctl_map.env_start;
2072 mm->env_end = prctl_map.env_end;
88aa7cc6 2073 spin_unlock(&mm->arg_lock);
f606b77f
CG
2074
2075 /*
2076 * Note this update of @saved_auxv is lockless thus
2077 * if someone reads this member in procfs while we're
2078 * updating -- it may get partly updated results. It's
2079 * known and acceptable trade off: we leave it as is to
2080 * not introduce additional locks here making the kernel
2081 * more complex.
2082 */
2083 if (prctl_map.auxv_size)
2084 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2085
d8ed45c5 2086 mmap_read_unlock(mm);
ddf1d398 2087 return 0;
f606b77f
CG
2088}
2089#endif /* CONFIG_CHECKPOINT_RESTORE */
2090
4a00e9df
AD
2091static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2092 unsigned long len)
2093{
2094 /*
2095 * This doesn't move the auxiliary vector itself since it's pinned to
2096 * mm_struct, but it permits filling the vector with new values. It's
2097 * up to the caller to provide sane values here, otherwise userspace
2098 * tools which use this vector might be unhappy.
2099 */
c995f12a 2100 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
4a00e9df
AD
2101
2102 if (len > sizeof(user_auxv))
2103 return -EINVAL;
2104
2105 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2106 return -EFAULT;
2107
2108 /* Make sure the last entry is always AT_NULL */
2109 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2110 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2111
2112 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2113
2114 task_lock(current);
2115 memcpy(mm->saved_auxv, user_auxv, len);
2116 task_unlock(current);
2117
2118 return 0;
2119}
2120
028ee4be
CG
2121static int prctl_set_mm(int opt, unsigned long addr,
2122 unsigned long arg4, unsigned long arg5)
2123{
028ee4be 2124 struct mm_struct *mm = current->mm;
11bbd8b4
MK
2125 struct prctl_mm_map prctl_map = {
2126 .auxv = NULL,
2127 .auxv_size = 0,
2128 .exe_fd = -1,
2129 };
fe8c7f5c
CG
2130 struct vm_area_struct *vma;
2131 int error;
028ee4be 2132
f606b77f
CG
2133 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2134 opt != PR_SET_MM_MAP &&
2135 opt != PR_SET_MM_MAP_SIZE)))
028ee4be
CG
2136 return -EINVAL;
2137
f606b77f
CG
2138#ifdef CONFIG_CHECKPOINT_RESTORE
2139 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2140 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2141#endif
2142
79f0713d 2143 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
2144 return -EPERM;
2145
6e399cd1
DB
2146 if (opt == PR_SET_MM_EXE_FILE)
2147 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
b32dfe37 2148
4a00e9df
AD
2149 if (opt == PR_SET_MM_AUXV)
2150 return prctl_set_auxv(mm, addr, arg4);
2151
1ad75b9e 2152 if (addr >= TASK_SIZE || addr < mmap_min_addr)
028ee4be
CG
2153 return -EINVAL;
2154
fe8c7f5c
CG
2155 error = -EINVAL;
2156
bc81426f 2157 /*
5afe69c2 2158 * arg_lock protects concurrent updates of arg boundaries, we need
c1e8d7c6 2159 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
bc81426f
MK
2160 * validation.
2161 */
d8ed45c5 2162 mmap_read_lock(mm);
028ee4be
CG
2163 vma = find_vma(mm, addr);
2164
bc81426f 2165 spin_lock(&mm->arg_lock);
4a00e9df
AD
2166 prctl_map.start_code = mm->start_code;
2167 prctl_map.end_code = mm->end_code;
2168 prctl_map.start_data = mm->start_data;
2169 prctl_map.end_data = mm->end_data;
2170 prctl_map.start_brk = mm->start_brk;
2171 prctl_map.brk = mm->brk;
2172 prctl_map.start_stack = mm->start_stack;
2173 prctl_map.arg_start = mm->arg_start;
2174 prctl_map.arg_end = mm->arg_end;
2175 prctl_map.env_start = mm->env_start;
2176 prctl_map.env_end = mm->env_end;
4a00e9df 2177
028ee4be
CG
2178 switch (opt) {
2179 case PR_SET_MM_START_CODE:
4a00e9df 2180 prctl_map.start_code = addr;
fe8c7f5c 2181 break;
028ee4be 2182 case PR_SET_MM_END_CODE:
4a00e9df 2183 prctl_map.end_code = addr;
028ee4be 2184 break;
028ee4be 2185 case PR_SET_MM_START_DATA:
4a00e9df 2186 prctl_map.start_data = addr;
028ee4be 2187 break;
fe8c7f5c 2188 case PR_SET_MM_END_DATA:
4a00e9df
AD
2189 prctl_map.end_data = addr;
2190 break;
2191 case PR_SET_MM_START_STACK:
2192 prctl_map.start_stack = addr;
028ee4be 2193 break;
028ee4be 2194 case PR_SET_MM_START_BRK:
4a00e9df 2195 prctl_map.start_brk = addr;
028ee4be 2196 break;
028ee4be 2197 case PR_SET_MM_BRK:
4a00e9df 2198 prctl_map.brk = addr;
028ee4be 2199 break;
4a00e9df
AD
2200 case PR_SET_MM_ARG_START:
2201 prctl_map.arg_start = addr;
2202 break;
2203 case PR_SET_MM_ARG_END:
2204 prctl_map.arg_end = addr;
2205 break;
2206 case PR_SET_MM_ENV_START:
2207 prctl_map.env_start = addr;
2208 break;
2209 case PR_SET_MM_ENV_END:
2210 prctl_map.env_end = addr;
2211 break;
2212 default:
2213 goto out;
2214 }
2215
11bbd8b4 2216 error = validate_prctl_map_addr(&prctl_map);
4a00e9df
AD
2217 if (error)
2218 goto out;
028ee4be 2219
4a00e9df 2220 switch (opt) {
fe8c7f5c
CG
2221 /*
2222 * If command line arguments and environment
2223 * are placed somewhere else on stack, we can
2224 * set them up here, ARG_START/END to setup
5afe69c2 2225 * command line arguments and ENV_START/END
fe8c7f5c
CG
2226 * for environment.
2227 */
2228 case PR_SET_MM_START_STACK:
2229 case PR_SET_MM_ARG_START:
2230 case PR_SET_MM_ARG_END:
2231 case PR_SET_MM_ENV_START:
2232 case PR_SET_MM_ENV_END:
2233 if (!vma) {
2234 error = -EFAULT;
2235 goto out;
2236 }
028ee4be
CG
2237 }
2238
4a00e9df
AD
2239 mm->start_code = prctl_map.start_code;
2240 mm->end_code = prctl_map.end_code;
2241 mm->start_data = prctl_map.start_data;
2242 mm->end_data = prctl_map.end_data;
2243 mm->start_brk = prctl_map.start_brk;
2244 mm->brk = prctl_map.brk;
2245 mm->start_stack = prctl_map.start_stack;
2246 mm->arg_start = prctl_map.arg_start;
2247 mm->arg_end = prctl_map.arg_end;
2248 mm->env_start = prctl_map.env_start;
2249 mm->env_end = prctl_map.env_end;
2250
028ee4be 2251 error = 0;
028ee4be 2252out:
bc81426f 2253 spin_unlock(&mm->arg_lock);
d8ed45c5 2254 mmap_read_unlock(mm);
028ee4be
CG
2255 return error;
2256}
300f786b 2257
52b36941 2258#ifdef CONFIG_CHECKPOINT_RESTORE
986b9eac 2259static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
300f786b
CG
2260{
2261 return put_user(me->clear_child_tid, tid_addr);
2262}
52b36941 2263#else
986b9eac 2264static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
300f786b
CG
2265{
2266 return -EINVAL;
2267}
028ee4be
CG
2268#endif
2269
749860ce
PT
2270static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2271{
2272 /*
5afe69c2
XC
2273 * If task has has_child_subreaper - all its descendants
2274 * already have these flag too and new descendants will
749860ce
PT
2275 * inherit it on fork, skip them.
2276 *
2277 * If we've found child_reaper - skip descendants in
2278 * it's subtree as they will never get out pidns.
2279 */
2280 if (p->signal->has_child_subreaper ||
2281 is_child_reaper(task_pid(p)))
2282 return 0;
2283
2284 p->signal->has_child_subreaper = 1;
2285 return 1;
2286}
2287
7bbf1373 2288int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
b617cfc8
TG
2289{
2290 return -EINVAL;
2291}
2292
7bbf1373
KC
2293int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2294 unsigned long ctrl)
b617cfc8
TG
2295{
2296 return -EINVAL;
2297}
2298
a37b0715 2299#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
8d19f1c8 2300
c4ea37c2
HC
2301SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2302 unsigned long, arg4, unsigned long, arg5)
1da177e4 2303{
b6dff3ec
DH
2304 struct task_struct *me = current;
2305 unsigned char comm[sizeof(me->comm)];
2306 long error;
1da177e4 2307
d84f4f99
DH
2308 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2309 if (error != -ENOSYS)
1da177e4
LT
2310 return error;
2311
d84f4f99 2312 error = 0;
1da177e4 2313 switch (option) {
f3cbd435
AM
2314 case PR_SET_PDEATHSIG:
2315 if (!valid_signal(arg2)) {
2316 error = -EINVAL;
1da177e4 2317 break;
f3cbd435
AM
2318 }
2319 me->pdeath_signal = arg2;
2320 break;
2321 case PR_GET_PDEATHSIG:
2322 error = put_user(me->pdeath_signal, (int __user *)arg2);
2323 break;
2324 case PR_GET_DUMPABLE:
2325 error = get_dumpable(me->mm);
2326 break;
2327 case PR_SET_DUMPABLE:
2328 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2329 error = -EINVAL;
1da177e4 2330 break;
f3cbd435
AM
2331 }
2332 set_dumpable(me->mm, arg2);
2333 break;
1da177e4 2334
f3cbd435
AM
2335 case PR_SET_UNALIGN:
2336 error = SET_UNALIGN_CTL(me, arg2);
2337 break;
2338 case PR_GET_UNALIGN:
2339 error = GET_UNALIGN_CTL(me, arg2);
2340 break;
2341 case PR_SET_FPEMU:
2342 error = SET_FPEMU_CTL(me, arg2);
2343 break;
2344 case PR_GET_FPEMU:
2345 error = GET_FPEMU_CTL(me, arg2);
2346 break;
2347 case PR_SET_FPEXC:
2348 error = SET_FPEXC_CTL(me, arg2);
2349 break;
2350 case PR_GET_FPEXC:
2351 error = GET_FPEXC_CTL(me, arg2);
2352 break;
2353 case PR_GET_TIMING:
2354 error = PR_TIMING_STATISTICAL;
2355 break;
2356 case PR_SET_TIMING:
2357 if (arg2 != PR_TIMING_STATISTICAL)
2358 error = -EINVAL;
2359 break;
2360 case PR_SET_NAME:
2361 comm[sizeof(me->comm) - 1] = 0;
2362 if (strncpy_from_user(comm, (char __user *)arg2,
2363 sizeof(me->comm) - 1) < 0)
2364 return -EFAULT;
2365 set_task_comm(me, comm);
2366 proc_comm_connector(me);
2367 break;
2368 case PR_GET_NAME:
2369 get_task_comm(comm, me);
2370 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2371 return -EFAULT;
2372 break;
2373 case PR_GET_ENDIAN:
2374 error = GET_ENDIAN(me, arg2);
2375 break;
2376 case PR_SET_ENDIAN:
2377 error = SET_ENDIAN(me, arg2);
2378 break;
2379 case PR_GET_SECCOMP:
2380 error = prctl_get_seccomp();
2381 break;
2382 case PR_SET_SECCOMP:
2383 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2384 break;
2385 case PR_GET_TSC:
2386 error = GET_TSC_CTL(arg2);
2387 break;
2388 case PR_SET_TSC:
2389 error = SET_TSC_CTL(arg2);
2390 break;
2391 case PR_TASK_PERF_EVENTS_DISABLE:
2392 error = perf_event_task_disable();
2393 break;
2394 case PR_TASK_PERF_EVENTS_ENABLE:
2395 error = perf_event_task_enable();
2396 break;
2397 case PR_GET_TIMERSLACK:
da8b44d5
JS
2398 if (current->timer_slack_ns > ULONG_MAX)
2399 error = ULONG_MAX;
2400 else
2401 error = current->timer_slack_ns;
f3cbd435
AM
2402 break;
2403 case PR_SET_TIMERSLACK:
2404 if (arg2 <= 0)
2405 current->timer_slack_ns =
6976675d 2406 current->default_timer_slack_ns;
f3cbd435
AM
2407 else
2408 current->timer_slack_ns = arg2;
2409 break;
2410 case PR_MCE_KILL:
2411 if (arg4 | arg5)
2412 return -EINVAL;
2413 switch (arg2) {
2414 case PR_MCE_KILL_CLEAR:
2415 if (arg3 != 0)
4db96cf0 2416 return -EINVAL;
f3cbd435 2417 current->flags &= ~PF_MCE_PROCESS;
4db96cf0 2418 break;
f3cbd435
AM
2419 case PR_MCE_KILL_SET:
2420 current->flags |= PF_MCE_PROCESS;
2421 if (arg3 == PR_MCE_KILL_EARLY)
2422 current->flags |= PF_MCE_EARLY;
2423 else if (arg3 == PR_MCE_KILL_LATE)
2424 current->flags &= ~PF_MCE_EARLY;
2425 else if (arg3 == PR_MCE_KILL_DEFAULT)
2426 current->flags &=
2427 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1087e9b4 2428 else
259e5e6c 2429 return -EINVAL;
259e5e6c 2430 break;
1da177e4 2431 default:
f3cbd435
AM
2432 return -EINVAL;
2433 }
2434 break;
2435 case PR_MCE_KILL_GET:
2436 if (arg2 | arg3 | arg4 | arg5)
2437 return -EINVAL;
2438 if (current->flags & PF_MCE_PROCESS)
2439 error = (current->flags & PF_MCE_EARLY) ?
2440 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2441 else
2442 error = PR_MCE_KILL_DEFAULT;
2443 break;
2444 case PR_SET_MM:
2445 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2446 break;
2447 case PR_GET_TID_ADDRESS:
986b9eac 2448 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
f3cbd435
AM
2449 break;
2450 case PR_SET_CHILD_SUBREAPER:
2451 me->signal->is_child_subreaper = !!arg2;
749860ce
PT
2452 if (!arg2)
2453 break;
2454
2455 walk_process_tree(me, propagate_has_child_subreaper, NULL);
f3cbd435
AM
2456 break;
2457 case PR_GET_CHILD_SUBREAPER:
2458 error = put_user(me->signal->is_child_subreaper,
2459 (int __user *)arg2);
2460 break;
2461 case PR_SET_NO_NEW_PRIVS:
2462 if (arg2 != 1 || arg3 || arg4 || arg5)
2463 return -EINVAL;
2464
1d4457f9 2465 task_set_no_new_privs(current);
f3cbd435
AM
2466 break;
2467 case PR_GET_NO_NEW_PRIVS:
2468 if (arg2 || arg3 || arg4 || arg5)
2469 return -EINVAL;
1d4457f9 2470 return task_no_new_privs(current) ? 1 : 0;
a0715cc2
AT
2471 case PR_GET_THP_DISABLE:
2472 if (arg2 || arg3 || arg4 || arg5)
2473 return -EINVAL;
18600332 2474 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2
AT
2475 break;
2476 case PR_SET_THP_DISABLE:
2477 if (arg3 || arg4 || arg5)
2478 return -EINVAL;
d8ed45c5 2479 if (mmap_write_lock_killable(me->mm))
17b0573d 2480 return -EINTR;
a0715cc2 2481 if (arg2)
18600332 2482 set_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2 2483 else
18600332 2484 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
d8ed45c5 2485 mmap_write_unlock(me->mm);
a0715cc2 2486 break;
fe3d197f 2487 case PR_MPX_ENABLE_MANAGEMENT:
fe3d197f 2488 case PR_MPX_DISABLE_MANAGEMENT:
f240652b
DH
2489 /* No longer implemented: */
2490 return -EINVAL;
9791554b
PB
2491 case PR_SET_FP_MODE:
2492 error = SET_FP_MODE(me, arg2);
2493 break;
2494 case PR_GET_FP_MODE:
2495 error = GET_FP_MODE(me);
2496 break;
2d2123bc
DM
2497 case PR_SVE_SET_VL:
2498 error = SVE_SET_VL(arg2);
2499 break;
2500 case PR_SVE_GET_VL:
2501 error = SVE_GET_VL();
2502 break;
b617cfc8
TG
2503 case PR_GET_SPECULATION_CTRL:
2504 if (arg3 || arg4 || arg5)
2505 return -EINVAL;
7bbf1373 2506 error = arch_prctl_spec_ctrl_get(me, arg2);
b617cfc8
TG
2507 break;
2508 case PR_SET_SPECULATION_CTRL:
2509 if (arg4 || arg5)
2510 return -EINVAL;
7bbf1373 2511 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
b617cfc8 2512 break;
ba830885
KM
2513 case PR_PAC_RESET_KEYS:
2514 if (arg3 || arg4 || arg5)
2515 return -EINVAL;
2516 error = PAC_RESET_KEYS(me, arg2);
2517 break;
20169862
PC
2518 case PR_PAC_SET_ENABLED_KEYS:
2519 if (arg4 || arg5)
2520 return -EINVAL;
2521 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2522 break;
2523 case PR_PAC_GET_ENABLED_KEYS:
2524 if (arg2 || arg3 || arg4 || arg5)
2525 return -EINVAL;
2526 error = PAC_GET_ENABLED_KEYS(me);
2527 break;
63f0c603 2528 case PR_SET_TAGGED_ADDR_CTRL:
3e91ec89
CM
2529 if (arg3 || arg4 || arg5)
2530 return -EINVAL;
63f0c603
CM
2531 error = SET_TAGGED_ADDR_CTRL(arg2);
2532 break;
2533 case PR_GET_TAGGED_ADDR_CTRL:
3e91ec89
CM
2534 if (arg2 || arg3 || arg4 || arg5)
2535 return -EINVAL;
63f0c603
CM
2536 error = GET_TAGGED_ADDR_CTRL();
2537 break;
8d19f1c8
MC
2538 case PR_SET_IO_FLUSHER:
2539 if (!capable(CAP_SYS_RESOURCE))
2540 return -EPERM;
2541
2542 if (arg3 || arg4 || arg5)
2543 return -EINVAL;
2544
2545 if (arg2 == 1)
2546 current->flags |= PR_IO_FLUSHER;
2547 else if (!arg2)
2548 current->flags &= ~PR_IO_FLUSHER;
2549 else
2550 return -EINVAL;
2551 break;
2552 case PR_GET_IO_FLUSHER:
2553 if (!capable(CAP_SYS_RESOURCE))
2554 return -EPERM;
2555
2556 if (arg2 || arg3 || arg4 || arg5)
2557 return -EINVAL;
2558
2559 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2560 break;
1446e1df
GKB
2561 case PR_SET_SYSCALL_USER_DISPATCH:
2562 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2563 (char __user *) arg5);
2564 break;
7ac592aa
CH
2565#ifdef CONFIG_SCHED_CORE
2566 case PR_SCHED_CORE:
2567 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2568 break;
2569#endif
f3cbd435
AM
2570 default:
2571 error = -EINVAL;
2572 break;
1da177e4
LT
2573 }
2574 return error;
2575}
3cfc348b 2576
836f92ad
HC
2577SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2578 struct getcpu_cache __user *, unused)
3cfc348b
AK
2579{
2580 int err = 0;
2581 int cpu = raw_smp_processor_id();
ec94fc3d 2582
3cfc348b
AK
2583 if (cpup)
2584 err |= put_user(cpu, cpup);
2585 if (nodep)
2586 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2587 return err ? -EFAULT : 0;
2588}
10a0a8d4 2589
4a22f166
SR
2590/**
2591 * do_sysinfo - fill in sysinfo struct
2592 * @info: pointer to buffer to fill
2593 */
2594static int do_sysinfo(struct sysinfo *info)
2595{
2596 unsigned long mem_total, sav_total;
2597 unsigned int mem_unit, bitcount;
dc1b7b6c 2598 struct timespec64 tp;
4a22f166
SR
2599
2600 memset(info, 0, sizeof(struct sysinfo));
2601
dc1b7b6c 2602 ktime_get_boottime_ts64(&tp);
ecc421e0 2603 timens_add_boottime(&tp);
4a22f166
SR
2604 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2605
2606 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2607
2608 info->procs = nr_threads;
2609
2610 si_meminfo(info);
2611 si_swapinfo(info);
2612
2613 /*
2614 * If the sum of all the available memory (i.e. ram + swap)
2615 * is less than can be stored in a 32 bit unsigned long then
2616 * we can be binary compatible with 2.2.x kernels. If not,
2617 * well, in that case 2.2.x was broken anyways...
2618 *
2619 * -Erik Andersen <andersee@debian.org>
2620 */
2621
2622 mem_total = info->totalram + info->totalswap;
2623 if (mem_total < info->totalram || mem_total < info->totalswap)
2624 goto out;
2625 bitcount = 0;
2626 mem_unit = info->mem_unit;
2627 while (mem_unit > 1) {
2628 bitcount++;
2629 mem_unit >>= 1;
2630 sav_total = mem_total;
2631 mem_total <<= 1;
2632 if (mem_total < sav_total)
2633 goto out;
2634 }
2635
2636 /*
2637 * If mem_total did not overflow, multiply all memory values by
2638 * info->mem_unit and set it to 1. This leaves things compatible
2639 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2640 * kernels...
2641 */
2642
2643 info->mem_unit = 1;
2644 info->totalram <<= bitcount;
2645 info->freeram <<= bitcount;
2646 info->sharedram <<= bitcount;
2647 info->bufferram <<= bitcount;
2648 info->totalswap <<= bitcount;
2649 info->freeswap <<= bitcount;
2650 info->totalhigh <<= bitcount;
2651 info->freehigh <<= bitcount;
2652
2653out:
2654 return 0;
2655}
2656
2657SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2658{
2659 struct sysinfo val;
2660
2661 do_sysinfo(&val);
2662
2663 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2664 return -EFAULT;
2665
2666 return 0;
2667}
2668
2669#ifdef CONFIG_COMPAT
2670struct compat_sysinfo {
2671 s32 uptime;
2672 u32 loads[3];
2673 u32 totalram;
2674 u32 freeram;
2675 u32 sharedram;
2676 u32 bufferram;
2677 u32 totalswap;
2678 u32 freeswap;
2679 u16 procs;
2680 u16 pad;
2681 u32 totalhigh;
2682 u32 freehigh;
2683 u32 mem_unit;
2684 char _f[20-2*sizeof(u32)-sizeof(int)];
2685};
2686
2687COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2688{
2689 struct sysinfo s;
ce5155c4 2690 struct compat_sysinfo s_32;
4a22f166
SR
2691
2692 do_sysinfo(&s);
2693
2694 /* Check to see if any memory value is too large for 32-bit and scale
2695 * down if needed
2696 */
0baae41e 2697 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
4a22f166
SR
2698 int bitcount = 0;
2699
2700 while (s.mem_unit < PAGE_SIZE) {
2701 s.mem_unit <<= 1;
2702 bitcount++;
2703 }
2704
2705 s.totalram >>= bitcount;
2706 s.freeram >>= bitcount;
2707 s.sharedram >>= bitcount;
2708 s.bufferram >>= bitcount;
2709 s.totalswap >>= bitcount;
2710 s.freeswap >>= bitcount;
2711 s.totalhigh >>= bitcount;
2712 s.freehigh >>= bitcount;
2713 }
2714
ce5155c4
AV
2715 memset(&s_32, 0, sizeof(s_32));
2716 s_32.uptime = s.uptime;
2717 s_32.loads[0] = s.loads[0];
2718 s_32.loads[1] = s.loads[1];
2719 s_32.loads[2] = s.loads[2];
2720 s_32.totalram = s.totalram;
2721 s_32.freeram = s.freeram;
2722 s_32.sharedram = s.sharedram;
2723 s_32.bufferram = s.bufferram;
2724 s_32.totalswap = s.totalswap;
2725 s_32.freeswap = s.freeswap;
2726 s_32.procs = s.procs;
2727 s_32.totalhigh = s.totalhigh;
2728 s_32.freehigh = s.freehigh;
2729 s_32.mem_unit = s.mem_unit;
2730 if (copy_to_user(info, &s_32, sizeof(s_32)))
4a22f166 2731 return -EFAULT;
4a22f166
SR
2732 return 0;
2733}
2734#endif /* CONFIG_COMPAT */