]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sys.c
cfg80211: hold bss_lock while updating nontrans_list
[mirror_ubuntu-jammy-kernel.git] / kernel / sys.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
9984de1a 8#include <linux/export.h>
1da177e4
LT
9#include <linux/mm.h>
10#include <linux/utsname.h>
11#include <linux/mman.h>
1da177e4
LT
12#include <linux/reboot.h>
13#include <linux/prctl.h>
1da177e4
LT
14#include <linux/highuid.h>
15#include <linux/fs.h>
74da1ff7 16#include <linux/kmod.h>
cdd6c482 17#include <linux/perf_event.h>
3e88c553 18#include <linux/resource.h>
dc009d92 19#include <linux/kernel.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
1da177e4
LT
27#include <linux/suspend.h>
28#include <linux/tty.h>
7ed20e1a 29#include <linux/signal.h>
9f46080c 30#include <linux/cn_proc.h>
3cfc348b 31#include <linux/getcpu.h>
6eaeeaba 32#include <linux/task_io_accounting_ops.h>
1d9d02fe 33#include <linux/seccomp.h>
4047727e 34#include <linux/cpu.h>
e28cbf22 35#include <linux/personality.h>
e3d5a27d 36#include <linux/ptrace.h>
5ad4e53b 37#include <linux/fs_struct.h>
b32dfe37
CG
38#include <linux/file.h>
39#include <linux/mount.h>
5a0e3ad6 40#include <linux/gfp.h>
40dc166c 41#include <linux/syscore_ops.h>
be27425d
AK
42#include <linux/version.h>
43#include <linux/ctype.h>
1446e1df 44#include <linux/syscall_user_dispatch.h>
1da177e4
LT
45
46#include <linux/compat.h>
47#include <linux/syscalls.h>
00d7c05a 48#include <linux/kprobes.h>
acce292c 49#include <linux/user_namespace.h>
ecc421e0 50#include <linux/time_namespace.h>
7fe5e042 51#include <linux/binfmts.h>
1da177e4 52
4a22f166 53#include <linux/sched.h>
4eb5aaa3 54#include <linux/sched/autogroup.h>
4f17722c 55#include <linux/sched/loadavg.h>
03441a34 56#include <linux/sched/stat.h>
6e84f315 57#include <linux/sched/mm.h>
f7ccbae4 58#include <linux/sched/coredump.h>
29930025 59#include <linux/sched/task.h>
32ef5517 60#include <linux/sched/cputime.h>
4a22f166
SR
61#include <linux/rcupdate.h>
62#include <linux/uidgid.h>
63#include <linux/cred.h>
64
b617cfc8
TG
65#include <linux/nospec.h>
66
04c6862c 67#include <linux/kmsg_dump.h>
be27425d
AK
68/* Move somewhere else to avoid recompiling? */
69#include <generated/utsrelease.h>
04c6862c 70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4
LT
72#include <asm/io.h>
73#include <asm/unistd.h>
74
e530dca5
DB
75#include "uid16.h"
76
1da177e4 77#ifndef SET_UNALIGN_CTL
ec94fc3d 78# define SET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
79#endif
80#ifndef GET_UNALIGN_CTL
ec94fc3d 81# define GET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
82#endif
83#ifndef SET_FPEMU_CTL
ec94fc3d 84# define SET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
85#endif
86#ifndef GET_FPEMU_CTL
ec94fc3d 87# define GET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
88#endif
89#ifndef SET_FPEXC_CTL
ec94fc3d 90# define SET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4
LT
91#endif
92#ifndef GET_FPEXC_CTL
ec94fc3d 93# define GET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4 94#endif
651d765d 95#ifndef GET_ENDIAN
ec94fc3d 96# define GET_ENDIAN(a, b) (-EINVAL)
651d765d
AB
97#endif
98#ifndef SET_ENDIAN
ec94fc3d 99# define SET_ENDIAN(a, b) (-EINVAL)
651d765d 100#endif
8fb402bc
EB
101#ifndef GET_TSC_CTL
102# define GET_TSC_CTL(a) (-EINVAL)
103#endif
104#ifndef SET_TSC_CTL
105# define SET_TSC_CTL(a) (-EINVAL)
106#endif
9791554b
PB
107#ifndef GET_FP_MODE
108# define GET_FP_MODE(a) (-EINVAL)
109#endif
110#ifndef SET_FP_MODE
111# define SET_FP_MODE(a,b) (-EINVAL)
112#endif
2d2123bc
DM
113#ifndef SVE_SET_VL
114# define SVE_SET_VL(a) (-EINVAL)
115#endif
116#ifndef SVE_GET_VL
117# define SVE_GET_VL() (-EINVAL)
118#endif
ba830885
KM
119#ifndef PAC_RESET_KEYS
120# define PAC_RESET_KEYS(a, b) (-EINVAL)
121#endif
20169862
PC
122#ifndef PAC_SET_ENABLED_KEYS
123# define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
124#endif
125#ifndef PAC_GET_ENABLED_KEYS
126# define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
127#endif
63f0c603
CM
128#ifndef SET_TAGGED_ADDR_CTRL
129# define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
130#endif
131#ifndef GET_TAGGED_ADDR_CTRL
132# define GET_TAGGED_ADDR_CTRL() (-EINVAL)
133#endif
1da177e4
LT
134
135/*
136 * this is where the system-wide overflow UID and GID are defined, for
137 * architectures that now have 32-bit UID/GID but didn't in the past
138 */
139
140int overflowuid = DEFAULT_OVERFLOWUID;
141int overflowgid = DEFAULT_OVERFLOWGID;
142
1da177e4
LT
143EXPORT_SYMBOL(overflowuid);
144EXPORT_SYMBOL(overflowgid);
1da177e4
LT
145
146/*
147 * the same as above, but for filesystems which can only store a 16-bit
148 * UID and GID. as such, this is needed on all architectures
149 */
150
151int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
8b2770a4 152int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
1da177e4
LT
153
154EXPORT_SYMBOL(fs_overflowuid);
155EXPORT_SYMBOL(fs_overflowgid);
156
fc832ad3
SH
157/*
158 * Returns true if current's euid is same as p's uid or euid,
159 * or has CAP_SYS_NICE to p's user_ns.
160 *
161 * Called with rcu_read_lock, creds are safe
162 */
163static bool set_one_prio_perm(struct task_struct *p)
164{
165 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
166
5af66203
EB
167 if (uid_eq(pcred->uid, cred->euid) ||
168 uid_eq(pcred->euid, cred->euid))
fc832ad3 169 return true;
c4a4d603 170 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
171 return true;
172 return false;
173}
174
c69e8d9c
DH
175/*
176 * set the priority of a task
177 * - the caller must hold the RCU read lock
178 */
1da177e4
LT
179static int set_one_prio(struct task_struct *p, int niceval, int error)
180{
181 int no_nice;
182
fc832ad3 183 if (!set_one_prio_perm(p)) {
1da177e4
LT
184 error = -EPERM;
185 goto out;
186 }
e43379f1 187 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
188 error = -EACCES;
189 goto out;
190 }
191 no_nice = security_task_setnice(p, niceval);
192 if (no_nice) {
193 error = no_nice;
194 goto out;
195 }
196 if (error == -ESRCH)
197 error = 0;
198 set_user_nice(p, niceval);
199out:
200 return error;
201}
202
754fe8d2 203SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
204{
205 struct task_struct *g, *p;
206 struct user_struct *user;
86a264ab 207 const struct cred *cred = current_cred();
1da177e4 208 int error = -EINVAL;
41487c65 209 struct pid *pgrp;
7b44ab97 210 kuid_t uid;
1da177e4 211
3e88c553 212 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
213 goto out;
214
215 /* normalize: avoid signed division (rounding problems) */
216 error = -ESRCH;
c4a4d2f4
DY
217 if (niceval < MIN_NICE)
218 niceval = MIN_NICE;
219 if (niceval > MAX_NICE)
220 niceval = MAX_NICE;
1da177e4 221
d4581a23 222 rcu_read_lock();
1da177e4
LT
223 read_lock(&tasklist_lock);
224 switch (which) {
ec94fc3d 225 case PRIO_PROCESS:
226 if (who)
227 p = find_task_by_vpid(who);
228 else
229 p = current;
230 if (p)
231 error = set_one_prio(p, niceval, error);
232 break;
233 case PRIO_PGRP:
234 if (who)
235 pgrp = find_vpid(who);
236 else
237 pgrp = task_pgrp(current);
238 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
239 error = set_one_prio(p, niceval, error);
240 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
241 break;
242 case PRIO_USER:
243 uid = make_kuid(cred->user_ns, who);
244 user = cred->user;
245 if (!who)
246 uid = cred->uid;
247 else if (!uid_eq(uid, cred->uid)) {
248 user = find_user(uid);
249 if (!user)
86a264ab 250 goto out_unlock; /* No processes for this user */
ec94fc3d 251 }
252 do_each_thread(g, p) {
8639b461 253 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
ec94fc3d 254 error = set_one_prio(p, niceval, error);
255 } while_each_thread(g, p);
256 if (!uid_eq(uid, cred->uid))
257 free_uid(user); /* For find_user() */
258 break;
1da177e4
LT
259 }
260out_unlock:
261 read_unlock(&tasklist_lock);
d4581a23 262 rcu_read_unlock();
1da177e4
LT
263out:
264 return error;
265}
266
267/*
268 * Ugh. To avoid negative return values, "getpriority()" will
269 * not return the normal nice-value, but a negated value that
270 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
271 * to stay compatible.
272 */
754fe8d2 273SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
274{
275 struct task_struct *g, *p;
276 struct user_struct *user;
86a264ab 277 const struct cred *cred = current_cred();
1da177e4 278 long niceval, retval = -ESRCH;
41487c65 279 struct pid *pgrp;
7b44ab97 280 kuid_t uid;
1da177e4 281
3e88c553 282 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
283 return -EINVAL;
284
70118837 285 rcu_read_lock();
1da177e4
LT
286 read_lock(&tasklist_lock);
287 switch (which) {
ec94fc3d 288 case PRIO_PROCESS:
289 if (who)
290 p = find_task_by_vpid(who);
291 else
292 p = current;
293 if (p) {
294 niceval = nice_to_rlimit(task_nice(p));
295 if (niceval > retval)
296 retval = niceval;
297 }
298 break;
299 case PRIO_PGRP:
300 if (who)
301 pgrp = find_vpid(who);
302 else
303 pgrp = task_pgrp(current);
304 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
305 niceval = nice_to_rlimit(task_nice(p));
306 if (niceval > retval)
307 retval = niceval;
308 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
309 break;
310 case PRIO_USER:
311 uid = make_kuid(cred->user_ns, who);
312 user = cred->user;
313 if (!who)
314 uid = cred->uid;
315 else if (!uid_eq(uid, cred->uid)) {
316 user = find_user(uid);
317 if (!user)
318 goto out_unlock; /* No processes for this user */
319 }
320 do_each_thread(g, p) {
8639b461 321 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
7aa2c016 322 niceval = nice_to_rlimit(task_nice(p));
1da177e4
LT
323 if (niceval > retval)
324 retval = niceval;
325 }
ec94fc3d 326 } while_each_thread(g, p);
327 if (!uid_eq(uid, cred->uid))
328 free_uid(user); /* for find_user() */
329 break;
1da177e4
LT
330 }
331out_unlock:
332 read_unlock(&tasklist_lock);
70118837 333 rcu_read_unlock();
1da177e4
LT
334
335 return retval;
336}
337
1da177e4
LT
338/*
339 * Unprivileged users may change the real gid to the effective gid
340 * or vice versa. (BSD-style)
341 *
342 * If you set the real gid at all, or set the effective gid to a value not
343 * equal to the real gid, then the saved gid is set to the new effective gid.
344 *
345 * This makes it possible for a setgid program to completely drop its
346 * privileges, which is often a useful assertion to make when you are doing
347 * a security audit over a program.
348 *
349 * The general idea is that a program which uses just setregid() will be
350 * 100% compatible with BSD. A program which uses just setgid() will be
ec94fc3d 351 * 100% compatible with POSIX with saved IDs.
1da177e4
LT
352 *
353 * SMP: There are not races, the GIDs are checked only by filesystem
354 * operations (as far as semantic preservation is concerned).
355 */
2813893f 356#ifdef CONFIG_MULTIUSER
e530dca5 357long __sys_setregid(gid_t rgid, gid_t egid)
1da177e4 358{
a29c33f4 359 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
360 const struct cred *old;
361 struct cred *new;
1da177e4 362 int retval;
a29c33f4
EB
363 kgid_t krgid, kegid;
364
365 krgid = make_kgid(ns, rgid);
366 kegid = make_kgid(ns, egid);
367
368 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
369 return -EINVAL;
370 if ((egid != (gid_t) -1) && !gid_valid(kegid))
371 return -EINVAL;
1da177e4 372
d84f4f99
DH
373 new = prepare_creds();
374 if (!new)
375 return -ENOMEM;
376 old = current_cred();
377
d84f4f99 378 retval = -EPERM;
1da177e4 379 if (rgid != (gid_t) -1) {
a29c33f4
EB
380 if (gid_eq(old->gid, krgid) ||
381 gid_eq(old->egid, krgid) ||
111767c1 382 ns_capable_setid(old->user_ns, CAP_SETGID))
a29c33f4 383 new->gid = krgid;
1da177e4 384 else
d84f4f99 385 goto error;
1da177e4
LT
386 }
387 if (egid != (gid_t) -1) {
a29c33f4
EB
388 if (gid_eq(old->gid, kegid) ||
389 gid_eq(old->egid, kegid) ||
390 gid_eq(old->sgid, kegid) ||
111767c1 391 ns_capable_setid(old->user_ns, CAP_SETGID))
a29c33f4 392 new->egid = kegid;
756184b7 393 else
d84f4f99 394 goto error;
1da177e4 395 }
d84f4f99 396
1da177e4 397 if (rgid != (gid_t) -1 ||
a29c33f4 398 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
d84f4f99
DH
399 new->sgid = new->egid;
400 new->fsgid = new->egid;
401
39030e13
TC
402 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
403 if (retval < 0)
404 goto error;
405
d84f4f99
DH
406 return commit_creds(new);
407
408error:
409 abort_creds(new);
410 return retval;
1da177e4
LT
411}
412
e530dca5
DB
413SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
414{
415 return __sys_setregid(rgid, egid);
416}
417
1da177e4 418/*
ec94fc3d 419 * setgid() is implemented like SysV w/ SAVED_IDS
1da177e4
LT
420 *
421 * SMP: Same implicit races as above.
422 */
e530dca5 423long __sys_setgid(gid_t gid)
1da177e4 424{
a29c33f4 425 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
426 const struct cred *old;
427 struct cred *new;
1da177e4 428 int retval;
a29c33f4
EB
429 kgid_t kgid;
430
431 kgid = make_kgid(ns, gid);
432 if (!gid_valid(kgid))
433 return -EINVAL;
1da177e4 434
d84f4f99
DH
435 new = prepare_creds();
436 if (!new)
437 return -ENOMEM;
438 old = current_cred();
439
d84f4f99 440 retval = -EPERM;
111767c1 441 if (ns_capable_setid(old->user_ns, CAP_SETGID))
a29c33f4
EB
442 new->gid = new->egid = new->sgid = new->fsgid = kgid;
443 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
444 new->egid = new->fsgid = kgid;
1da177e4 445 else
d84f4f99 446 goto error;
1da177e4 447
39030e13
TC
448 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
449 if (retval < 0)
450 goto error;
451
d84f4f99
DH
452 return commit_creds(new);
453
454error:
455 abort_creds(new);
456 return retval;
1da177e4 457}
54e99124 458
e530dca5
DB
459SYSCALL_DEFINE1(setgid, gid_t, gid)
460{
461 return __sys_setgid(gid);
462}
463
d84f4f99
DH
464/*
465 * change the user struct in a credentials set to match the new UID
466 */
467static int set_user(struct cred *new)
1da177e4
LT
468{
469 struct user_struct *new_user;
470
078de5f7 471 new_user = alloc_uid(new->uid);
1da177e4
LT
472 if (!new_user)
473 return -EAGAIN;
474
a38965fc
EB
475 free_uid(new->user);
476 new->user = new_user;
477 return 0;
478}
479
480static void flag_nproc_exceeded(struct cred *new)
481{
482 if (new->ucounts == current_ucounts())
483 return;
484
72fa5997
VK
485 /*
486 * We don't fail in case of NPROC limit excess here because too many
487 * poorly written programs don't check set*uid() return code, assuming
488 * it never fails if called by root. We may still enforce NPROC limit
489 * for programs doing set*uid()+execve() by harmlessly deferring the
490 * failure to the execve() stage.
491 */
21d1c5e3 492 if (is_ucounts_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
a38965fc 493 new->user != INIT_USER)
72fa5997
VK
494 current->flags |= PF_NPROC_EXCEEDED;
495 else
496 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4
LT
497}
498
499/*
500 * Unprivileged users may change the real uid to the effective uid
501 * or vice versa. (BSD-style)
502 *
503 * If you set the real uid at all, or set the effective uid to a value not
504 * equal to the real uid, then the saved uid is set to the new effective uid.
505 *
506 * This makes it possible for a setuid program to completely drop its
507 * privileges, which is often a useful assertion to make when you are doing
508 * a security audit over a program.
509 *
510 * The general idea is that a program which uses just setreuid() will be
511 * 100% compatible with BSD. A program which uses just setuid() will be
ec94fc3d 512 * 100% compatible with POSIX with saved IDs.
1da177e4 513 */
e530dca5 514long __sys_setreuid(uid_t ruid, uid_t euid)
1da177e4 515{
a29c33f4 516 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
517 const struct cred *old;
518 struct cred *new;
1da177e4 519 int retval;
a29c33f4
EB
520 kuid_t kruid, keuid;
521
522 kruid = make_kuid(ns, ruid);
523 keuid = make_kuid(ns, euid);
524
525 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
526 return -EINVAL;
527 if ((euid != (uid_t) -1) && !uid_valid(keuid))
528 return -EINVAL;
1da177e4 529
d84f4f99
DH
530 new = prepare_creds();
531 if (!new)
532 return -ENOMEM;
533 old = current_cred();
534
d84f4f99 535 retval = -EPERM;
1da177e4 536 if (ruid != (uid_t) -1) {
a29c33f4
EB
537 new->uid = kruid;
538 if (!uid_eq(old->uid, kruid) &&
539 !uid_eq(old->euid, kruid) &&
40852275 540 !ns_capable_setid(old->user_ns, CAP_SETUID))
d84f4f99 541 goto error;
1da177e4
LT
542 }
543
544 if (euid != (uid_t) -1) {
a29c33f4
EB
545 new->euid = keuid;
546 if (!uid_eq(old->uid, keuid) &&
547 !uid_eq(old->euid, keuid) &&
548 !uid_eq(old->suid, keuid) &&
40852275 549 !ns_capable_setid(old->user_ns, CAP_SETUID))
d84f4f99 550 goto error;
1da177e4
LT
551 }
552
a29c33f4 553 if (!uid_eq(new->uid, old->uid)) {
54e99124
DG
554 retval = set_user(new);
555 if (retval < 0)
556 goto error;
557 }
1da177e4 558 if (ruid != (uid_t) -1 ||
a29c33f4 559 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
d84f4f99
DH
560 new->suid = new->euid;
561 new->fsuid = new->euid;
1da177e4 562
d84f4f99
DH
563 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
564 if (retval < 0)
565 goto error;
1da177e4 566
905ae01c
AG
567 retval = set_cred_ucounts(new);
568 if (retval < 0)
569 goto error;
570
a38965fc 571 flag_nproc_exceeded(new);
d84f4f99 572 return commit_creds(new);
1da177e4 573
d84f4f99
DH
574error:
575 abort_creds(new);
576 return retval;
577}
ec94fc3d 578
e530dca5
DB
579SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
580{
581 return __sys_setreuid(ruid, euid);
582}
583
1da177e4 584/*
ec94fc3d 585 * setuid() is implemented like SysV with SAVED_IDS
586 *
1da177e4 587 * Note that SAVED_ID's is deficient in that a setuid root program
ec94fc3d 588 * like sendmail, for example, cannot set its uid to be a normal
1da177e4
LT
589 * user and then switch back, because if you're root, setuid() sets
590 * the saved uid too. If you don't like this, blame the bright people
591 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
592 * will allow a root program to temporarily drop privileges and be able to
ec94fc3d 593 * regain them by swapping the real and effective uid.
1da177e4 594 */
e530dca5 595long __sys_setuid(uid_t uid)
1da177e4 596{
a29c33f4 597 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
598 const struct cred *old;
599 struct cred *new;
1da177e4 600 int retval;
a29c33f4
EB
601 kuid_t kuid;
602
603 kuid = make_kuid(ns, uid);
604 if (!uid_valid(kuid))
605 return -EINVAL;
1da177e4 606
d84f4f99
DH
607 new = prepare_creds();
608 if (!new)
609 return -ENOMEM;
610 old = current_cred();
611
d84f4f99 612 retval = -EPERM;
40852275 613 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
614 new->suid = new->uid = kuid;
615 if (!uid_eq(kuid, old->uid)) {
54e99124
DG
616 retval = set_user(new);
617 if (retval < 0)
618 goto error;
d84f4f99 619 }
a29c33f4 620 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
d84f4f99 621 goto error;
1da177e4 622 }
1da177e4 623
a29c33f4 624 new->fsuid = new->euid = kuid;
d84f4f99
DH
625
626 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
627 if (retval < 0)
628 goto error;
1da177e4 629
905ae01c
AG
630 retval = set_cred_ucounts(new);
631 if (retval < 0)
632 goto error;
633
a38965fc 634 flag_nproc_exceeded(new);
d84f4f99 635 return commit_creds(new);
1da177e4 636
d84f4f99
DH
637error:
638 abort_creds(new);
639 return retval;
1da177e4
LT
640}
641
e530dca5
DB
642SYSCALL_DEFINE1(setuid, uid_t, uid)
643{
644 return __sys_setuid(uid);
645}
646
1da177e4
LT
647
648/*
649 * This function implements a generic ability to update ruid, euid,
650 * and suid. This allows you to implement the 4.4 compatible seteuid().
651 */
e530dca5 652long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1da177e4 653{
a29c33f4 654 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
655 const struct cred *old;
656 struct cred *new;
1da177e4 657 int retval;
a29c33f4
EB
658 kuid_t kruid, keuid, ksuid;
659
660 kruid = make_kuid(ns, ruid);
661 keuid = make_kuid(ns, euid);
662 ksuid = make_kuid(ns, suid);
663
664 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
665 return -EINVAL;
666
667 if ((euid != (uid_t) -1) && !uid_valid(keuid))
668 return -EINVAL;
669
670 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
671 return -EINVAL;
1da177e4 672
d84f4f99
DH
673 new = prepare_creds();
674 if (!new)
675 return -ENOMEM;
676
d84f4f99 677 old = current_cred();
1da177e4 678
d84f4f99 679 retval = -EPERM;
40852275 680 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
681 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
682 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
d84f4f99 683 goto error;
a29c33f4
EB
684 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
685 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
d84f4f99 686 goto error;
a29c33f4
EB
687 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
688 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
d84f4f99 689 goto error;
1da177e4 690 }
d84f4f99 691
1da177e4 692 if (ruid != (uid_t) -1) {
a29c33f4
EB
693 new->uid = kruid;
694 if (!uid_eq(kruid, old->uid)) {
54e99124
DG
695 retval = set_user(new);
696 if (retval < 0)
697 goto error;
698 }
1da177e4 699 }
d84f4f99 700 if (euid != (uid_t) -1)
a29c33f4 701 new->euid = keuid;
1da177e4 702 if (suid != (uid_t) -1)
a29c33f4 703 new->suid = ksuid;
d84f4f99 704 new->fsuid = new->euid;
1da177e4 705
d84f4f99
DH
706 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
707 if (retval < 0)
708 goto error;
1da177e4 709
905ae01c
AG
710 retval = set_cred_ucounts(new);
711 if (retval < 0)
712 goto error;
713
a38965fc 714 flag_nproc_exceeded(new);
d84f4f99 715 return commit_creds(new);
1da177e4 716
d84f4f99
DH
717error:
718 abort_creds(new);
719 return retval;
1da177e4
LT
720}
721
e530dca5
DB
722SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
723{
724 return __sys_setresuid(ruid, euid, suid);
725}
726
a29c33f4 727SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
1da177e4 728{
86a264ab 729 const struct cred *cred = current_cred();
1da177e4 730 int retval;
a29c33f4
EB
731 uid_t ruid, euid, suid;
732
733 ruid = from_kuid_munged(cred->user_ns, cred->uid);
734 euid = from_kuid_munged(cred->user_ns, cred->euid);
735 suid = from_kuid_munged(cred->user_ns, cred->suid);
1da177e4 736
ec94fc3d 737 retval = put_user(ruid, ruidp);
738 if (!retval) {
739 retval = put_user(euid, euidp);
740 if (!retval)
741 return put_user(suid, suidp);
742 }
1da177e4
LT
743 return retval;
744}
745
746/*
747 * Same as above, but for rgid, egid, sgid.
748 */
e530dca5 749long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1da177e4 750{
a29c33f4 751 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
752 const struct cred *old;
753 struct cred *new;
1da177e4 754 int retval;
a29c33f4
EB
755 kgid_t krgid, kegid, ksgid;
756
757 krgid = make_kgid(ns, rgid);
758 kegid = make_kgid(ns, egid);
759 ksgid = make_kgid(ns, sgid);
760
761 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
762 return -EINVAL;
763 if ((egid != (gid_t) -1) && !gid_valid(kegid))
764 return -EINVAL;
765 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
766 return -EINVAL;
1da177e4 767
d84f4f99
DH
768 new = prepare_creds();
769 if (!new)
770 return -ENOMEM;
771 old = current_cred();
772
d84f4f99 773 retval = -EPERM;
111767c1 774 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
775 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
776 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
d84f4f99 777 goto error;
a29c33f4
EB
778 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
779 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
d84f4f99 780 goto error;
a29c33f4
EB
781 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
782 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
d84f4f99 783 goto error;
1da177e4 784 }
d84f4f99 785
1da177e4 786 if (rgid != (gid_t) -1)
a29c33f4 787 new->gid = krgid;
d84f4f99 788 if (egid != (gid_t) -1)
a29c33f4 789 new->egid = kegid;
1da177e4 790 if (sgid != (gid_t) -1)
a29c33f4 791 new->sgid = ksgid;
d84f4f99 792 new->fsgid = new->egid;
1da177e4 793
39030e13
TC
794 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
795 if (retval < 0)
796 goto error;
797
d84f4f99
DH
798 return commit_creds(new);
799
800error:
801 abort_creds(new);
802 return retval;
1da177e4
LT
803}
804
e530dca5
DB
805SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
806{
807 return __sys_setresgid(rgid, egid, sgid);
808}
809
a29c33f4 810SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
1da177e4 811{
86a264ab 812 const struct cred *cred = current_cred();
1da177e4 813 int retval;
a29c33f4
EB
814 gid_t rgid, egid, sgid;
815
816 rgid = from_kgid_munged(cred->user_ns, cred->gid);
817 egid = from_kgid_munged(cred->user_ns, cred->egid);
818 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
1da177e4 819
ec94fc3d 820 retval = put_user(rgid, rgidp);
821 if (!retval) {
822 retval = put_user(egid, egidp);
823 if (!retval)
824 retval = put_user(sgid, sgidp);
825 }
1da177e4
LT
826
827 return retval;
828}
829
830
831/*
832 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
833 * is used for "access()" and for the NFS daemon (letting nfsd stay at
834 * whatever uid it wants to). It normally shadows "euid", except when
835 * explicitly set by setfsuid() or for access..
836 */
e530dca5 837long __sys_setfsuid(uid_t uid)
1da177e4 838{
d84f4f99
DH
839 const struct cred *old;
840 struct cred *new;
841 uid_t old_fsuid;
a29c33f4
EB
842 kuid_t kuid;
843
844 old = current_cred();
845 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
846
847 kuid = make_kuid(old->user_ns, uid);
848 if (!uid_valid(kuid))
849 return old_fsuid;
1da177e4 850
d84f4f99
DH
851 new = prepare_creds();
852 if (!new)
a29c33f4 853 return old_fsuid;
1da177e4 854
a29c33f4
EB
855 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
856 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
40852275 857 ns_capable_setid(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
858 if (!uid_eq(kuid, old->fsuid)) {
859 new->fsuid = kuid;
d84f4f99
DH
860 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
861 goto change_okay;
1da177e4 862 }
1da177e4
LT
863 }
864
d84f4f99
DH
865 abort_creds(new);
866 return old_fsuid;
1da177e4 867
d84f4f99
DH
868change_okay:
869 commit_creds(new);
1da177e4
LT
870 return old_fsuid;
871}
872
e530dca5
DB
873SYSCALL_DEFINE1(setfsuid, uid_t, uid)
874{
875 return __sys_setfsuid(uid);
876}
877
1da177e4 878/*
f42df9e6 879 * Samma på svenska..
1da177e4 880 */
e530dca5 881long __sys_setfsgid(gid_t gid)
1da177e4 882{
d84f4f99
DH
883 const struct cred *old;
884 struct cred *new;
885 gid_t old_fsgid;
a29c33f4
EB
886 kgid_t kgid;
887
888 old = current_cred();
889 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
890
891 kgid = make_kgid(old->user_ns, gid);
892 if (!gid_valid(kgid))
893 return old_fsgid;
d84f4f99
DH
894
895 new = prepare_creds();
896 if (!new)
a29c33f4 897 return old_fsgid;
1da177e4 898
a29c33f4
EB
899 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
900 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
111767c1 901 ns_capable_setid(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
902 if (!gid_eq(kgid, old->fsgid)) {
903 new->fsgid = kgid;
39030e13
TC
904 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
905 goto change_okay;
1da177e4 906 }
1da177e4 907 }
d84f4f99 908
d84f4f99
DH
909 abort_creds(new);
910 return old_fsgid;
911
912change_okay:
913 commit_creds(new);
1da177e4
LT
914 return old_fsgid;
915}
e530dca5
DB
916
917SYSCALL_DEFINE1(setfsgid, gid_t, gid)
918{
919 return __sys_setfsgid(gid);
920}
2813893f 921#endif /* CONFIG_MULTIUSER */
1da177e4 922
4a22f166
SR
923/**
924 * sys_getpid - return the thread group id of the current process
925 *
926 * Note, despite the name, this returns the tgid not the pid. The tgid and
927 * the pid are identical unless CLONE_THREAD was specified on clone() in
928 * which case the tgid is the same in all threads of the same group.
929 *
930 * This is SMP safe as current->tgid does not change.
931 */
932SYSCALL_DEFINE0(getpid)
933{
934 return task_tgid_vnr(current);
935}
936
937/* Thread ID - the internal kernel "pid" */
938SYSCALL_DEFINE0(gettid)
939{
940 return task_pid_vnr(current);
941}
942
943/*
944 * Accessing ->real_parent is not SMP-safe, it could
945 * change from under us. However, we can use a stale
946 * value of ->real_parent under rcu_read_lock(), see
947 * release_task()->call_rcu(delayed_put_task_struct).
948 */
949SYSCALL_DEFINE0(getppid)
950{
951 int pid;
952
953 rcu_read_lock();
954 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
955 rcu_read_unlock();
956
957 return pid;
958}
959
960SYSCALL_DEFINE0(getuid)
961{
962 /* Only we change this so SMP safe */
963 return from_kuid_munged(current_user_ns(), current_uid());
964}
965
966SYSCALL_DEFINE0(geteuid)
967{
968 /* Only we change this so SMP safe */
969 return from_kuid_munged(current_user_ns(), current_euid());
970}
971
972SYSCALL_DEFINE0(getgid)
973{
974 /* Only we change this so SMP safe */
975 return from_kgid_munged(current_user_ns(), current_gid());
976}
977
978SYSCALL_DEFINE0(getegid)
979{
980 /* Only we change this so SMP safe */
981 return from_kgid_munged(current_user_ns(), current_egid());
982}
983
ca2406ed 984static void do_sys_times(struct tms *tms)
f06febc9 985{
5613fda9 986 u64 tgutime, tgstime, cutime, cstime;
f06febc9 987
e80d0a1a 988 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
f06febc9
FM
989 cutime = current->signal->cutime;
990 cstime = current->signal->cstime;
5613fda9
FW
991 tms->tms_utime = nsec_to_clock_t(tgutime);
992 tms->tms_stime = nsec_to_clock_t(tgstime);
993 tms->tms_cutime = nsec_to_clock_t(cutime);
994 tms->tms_cstime = nsec_to_clock_t(cstime);
f06febc9
FM
995}
996
58fd3aa2 997SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 998{
1da177e4
LT
999 if (tbuf) {
1000 struct tms tmp;
f06febc9
FM
1001
1002 do_sys_times(&tmp);
1da177e4
LT
1003 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1004 return -EFAULT;
1005 }
e3d5a27d 1006 force_successful_syscall_return();
1da177e4
LT
1007 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1008}
1009
ca2406ed
AV
1010#ifdef CONFIG_COMPAT
1011static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1012{
1013 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1014}
1015
1016COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1017{
1018 if (tbuf) {
1019 struct tms tms;
1020 struct compat_tms tmp;
1021
1022 do_sys_times(&tms);
1023 /* Convert our struct tms to the compat version. */
1024 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1025 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1026 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1027 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1028 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1029 return -EFAULT;
1030 }
1031 force_successful_syscall_return();
1032 return compat_jiffies_to_clock_t(jiffies);
1033}
1034#endif
1035
1da177e4
LT
1036/*
1037 * This needs some heavy checking ...
1038 * I just haven't the stomach for it. I also don't fully
1039 * understand sessions/pgrp etc. Let somebody who does explain it.
1040 *
1041 * OK, I think I have the protection semantics right.... this is really
1042 * only important on a multi-user system anyway, to make sure one user
1043 * can't send a signal to a process owned by another. -TYT, 12/12/91
1044 *
98611e4e 1045 * !PF_FORKNOEXEC check to conform completely to POSIX.
1da177e4 1046 */
b290ebe2 1047SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
1048{
1049 struct task_struct *p;
ee0acf90 1050 struct task_struct *group_leader = current->group_leader;
4e021306
ON
1051 struct pid *pgrp;
1052 int err;
1da177e4
LT
1053
1054 if (!pid)
b488893a 1055 pid = task_pid_vnr(group_leader);
1da177e4
LT
1056 if (!pgid)
1057 pgid = pid;
1058 if (pgid < 0)
1059 return -EINVAL;
950eaaca 1060 rcu_read_lock();
1da177e4
LT
1061
1062 /* From this point forward we keep holding onto the tasklist lock
1063 * so that our parent does not change from under us. -DaveM
1064 */
1065 write_lock_irq(&tasklist_lock);
1066
1067 err = -ESRCH;
4e021306 1068 p = find_task_by_vpid(pid);
1da177e4
LT
1069 if (!p)
1070 goto out;
1071
1072 err = -EINVAL;
1073 if (!thread_group_leader(p))
1074 goto out;
1075
4e021306 1076 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 1077 err = -EPERM;
41487c65 1078 if (task_session(p) != task_session(group_leader))
1da177e4
LT
1079 goto out;
1080 err = -EACCES;
98611e4e 1081 if (!(p->flags & PF_FORKNOEXEC))
1da177e4
LT
1082 goto out;
1083 } else {
1084 err = -ESRCH;
ee0acf90 1085 if (p != group_leader)
1da177e4
LT
1086 goto out;
1087 }
1088
1089 err = -EPERM;
1090 if (p->signal->leader)
1091 goto out;
1092
4e021306 1093 pgrp = task_pid(p);
1da177e4 1094 if (pgid != pid) {
b488893a 1095 struct task_struct *g;
1da177e4 1096
4e021306
ON
1097 pgrp = find_vpid(pgid);
1098 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1099 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1100 goto out;
1da177e4
LT
1101 }
1102
1da177e4
LT
1103 err = security_task_setpgid(p, pgid);
1104 if (err)
1105 goto out;
1106
1b0f7ffd 1107 if (task_pgrp(p) != pgrp)
83beaf3c 1108 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1109
1110 err = 0;
1111out:
1112 /* All paths lead to here, thus we are safe. -DaveM */
1113 write_unlock_irq(&tasklist_lock);
950eaaca 1114 rcu_read_unlock();
1da177e4
LT
1115 return err;
1116}
1117
192c5807 1118static int do_getpgid(pid_t pid)
1da177e4 1119{
12a3de0a
ON
1120 struct task_struct *p;
1121 struct pid *grp;
1122 int retval;
1123
1124 rcu_read_lock();
756184b7 1125 if (!pid)
12a3de0a 1126 grp = task_pgrp(current);
756184b7 1127 else {
1da177e4 1128 retval = -ESRCH;
12a3de0a
ON
1129 p = find_task_by_vpid(pid);
1130 if (!p)
1131 goto out;
1132 grp = task_pgrp(p);
1133 if (!grp)
1134 goto out;
1135
1136 retval = security_task_getpgid(p);
1137 if (retval)
1138 goto out;
1da177e4 1139 }
12a3de0a
ON
1140 retval = pid_vnr(grp);
1141out:
1142 rcu_read_unlock();
1143 return retval;
1da177e4
LT
1144}
1145
192c5807
DB
1146SYSCALL_DEFINE1(getpgid, pid_t, pid)
1147{
1148 return do_getpgid(pid);
1149}
1150
1da177e4
LT
1151#ifdef __ARCH_WANT_SYS_GETPGRP
1152
dbf040d9 1153SYSCALL_DEFINE0(getpgrp)
1da177e4 1154{
192c5807 1155 return do_getpgid(0);
1da177e4
LT
1156}
1157
1158#endif
1159
dbf040d9 1160SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1161{
1dd768c0
ON
1162 struct task_struct *p;
1163 struct pid *sid;
1164 int retval;
1165
1166 rcu_read_lock();
756184b7 1167 if (!pid)
1dd768c0 1168 sid = task_session(current);
756184b7 1169 else {
1da177e4 1170 retval = -ESRCH;
1dd768c0
ON
1171 p = find_task_by_vpid(pid);
1172 if (!p)
1173 goto out;
1174 sid = task_session(p);
1175 if (!sid)
1176 goto out;
1177
1178 retval = security_task_getsid(p);
1179 if (retval)
1180 goto out;
1da177e4 1181 }
1dd768c0
ON
1182 retval = pid_vnr(sid);
1183out:
1184 rcu_read_unlock();
1185 return retval;
1da177e4
LT
1186}
1187
81dabb46
ON
1188static void set_special_pids(struct pid *pid)
1189{
1190 struct task_struct *curr = current->group_leader;
1191
1192 if (task_session(curr) != pid)
1193 change_pid(curr, PIDTYPE_SID, pid);
1194
1195 if (task_pgrp(curr) != pid)
1196 change_pid(curr, PIDTYPE_PGID, pid);
1197}
1198
e2aaa9f4 1199int ksys_setsid(void)
1da177e4 1200{
e19f247a 1201 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1202 struct pid *sid = task_pid(group_leader);
1203 pid_t session = pid_vnr(sid);
1da177e4
LT
1204 int err = -EPERM;
1205
1da177e4 1206 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1207 /* Fail if I am already a session leader */
1208 if (group_leader->signal->leader)
1209 goto out;
1210
430c6231
ON
1211 /* Fail if a process group id already exists that equals the
1212 * proposed session id.
390e2ff0 1213 */
6806aac6 1214 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1215 goto out;
1216
e19f247a 1217 group_leader->signal->leader = 1;
81dabb46 1218 set_special_pids(sid);
24ec839c 1219
9c9f4ded 1220 proc_clear_tty(group_leader);
24ec839c 1221
e4cc0a9c 1222 err = session;
1da177e4
LT
1223out:
1224 write_unlock_irq(&tasklist_lock);
5091faa4 1225 if (err > 0) {
0d0df599 1226 proc_sid_connector(group_leader);
5091faa4
MG
1227 sched_autogroup_create_attach(group_leader);
1228 }
1da177e4
LT
1229 return err;
1230}
1231
e2aaa9f4
DB
1232SYSCALL_DEFINE0(setsid)
1233{
1234 return ksys_setsid();
1235}
1236
1da177e4
LT
1237DECLARE_RWSEM(uts_sem);
1238
c1da50fa
AW
1239#ifdef COMPAT_UTS_MACHINE
1240static char compat_uts_machine[__OLD_UTS_LEN+1] = COMPAT_UTS_MACHINE;
1241
1242static int __init parse_compat_uts_machine(char *arg)
1243{
1244 strncpy(compat_uts_machine, arg, __OLD_UTS_LEN);
1245 compat_uts_machine[__OLD_UTS_LEN] = 0;
1246 return 0;
1247}
1248early_param("compat_uts_machine", parse_compat_uts_machine);
1249
1250#undef COMPAT_UTS_MACHINE
1251#define COMPAT_UTS_MACHINE compat_uts_machine
1252#endif
1253
e28cbf22
CH
1254#ifdef COMPAT_UTS_MACHINE
1255#define override_architecture(name) \
46da2766 1256 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1257 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1258 sizeof(COMPAT_UTS_MACHINE)))
1259#else
1260#define override_architecture(name) 0
1261#endif
1262
be27425d
AK
1263/*
1264 * Work around broken programs that cannot handle "Linux 3.0".
1265 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
b7285b42
JN
1266 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1267 * 2.6.60.
be27425d 1268 */
2702b152 1269static int override_release(char __user *release, size_t len)
be27425d
AK
1270{
1271 int ret = 0;
be27425d
AK
1272
1273 if (current->personality & UNAME26) {
2702b152
KC
1274 const char *rest = UTS_RELEASE;
1275 char buf[65] = { 0 };
be27425d
AK
1276 int ndots = 0;
1277 unsigned v;
2702b152 1278 size_t copy;
be27425d
AK
1279
1280 while (*rest) {
1281 if (*rest == '.' && ++ndots >= 3)
1282 break;
1283 if (!isdigit(*rest) && *rest != '.')
1284 break;
1285 rest++;
1286 }
88a68672 1287 v = LINUX_VERSION_PATCHLEVEL + 60;
31fd84b9 1288 copy = clamp_t(size_t, len, 1, sizeof(buf));
2702b152
KC
1289 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1290 ret = copy_to_user(release, buf, copy + 1);
be27425d
AK
1291 }
1292 return ret;
1293}
1294
e48fbb69 1295SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4 1296{
42a0cc34 1297 struct new_utsname tmp;
1da177e4
LT
1298
1299 down_read(&uts_sem);
42a0cc34 1300 memcpy(&tmp, utsname(), sizeof(tmp));
1da177e4 1301 up_read(&uts_sem);
42a0cc34
JH
1302 if (copy_to_user(name, &tmp, sizeof(tmp)))
1303 return -EFAULT;
e28cbf22 1304
42a0cc34
JH
1305 if (override_release(name->release, sizeof(name->release)))
1306 return -EFAULT;
1307 if (override_architecture(name))
1308 return -EFAULT;
1309 return 0;
1da177e4
LT
1310}
1311
5cacdb4a
CH
1312#ifdef __ARCH_WANT_SYS_OLD_UNAME
1313/*
1314 * Old cruft
1315 */
1316SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1317{
42a0cc34 1318 struct old_utsname tmp;
5cacdb4a
CH
1319
1320 if (!name)
1321 return -EFAULT;
1322
1323 down_read(&uts_sem);
42a0cc34 1324 memcpy(&tmp, utsname(), sizeof(tmp));
5cacdb4a 1325 up_read(&uts_sem);
42a0cc34
JH
1326 if (copy_to_user(name, &tmp, sizeof(tmp)))
1327 return -EFAULT;
5cacdb4a 1328
42a0cc34
JH
1329 if (override_release(name->release, sizeof(name->release)))
1330 return -EFAULT;
1331 if (override_architecture(name))
1332 return -EFAULT;
1333 return 0;
5cacdb4a
CH
1334}
1335
1336SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1337{
5e1aada0 1338 struct oldold_utsname tmp;
5cacdb4a
CH
1339
1340 if (!name)
1341 return -EFAULT;
5cacdb4a 1342
5e1aada0
JP
1343 memset(&tmp, 0, sizeof(tmp));
1344
5cacdb4a 1345 down_read(&uts_sem);
42a0cc34
JH
1346 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1347 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1348 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1349 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1350 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
5cacdb4a 1351 up_read(&uts_sem);
42a0cc34
JH
1352 if (copy_to_user(name, &tmp, sizeof(tmp)))
1353 return -EFAULT;
5cacdb4a 1354
42a0cc34
JH
1355 if (override_architecture(name))
1356 return -EFAULT;
1357 if (override_release(name->release, sizeof(name->release)))
1358 return -EFAULT;
1359 return 0;
5cacdb4a
CH
1360}
1361#endif
1362
5a8a82b1 1363SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1364{
1365 int errno;
1366 char tmp[__NEW_UTS_LEN];
1367
bb96a6f5 1368 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1369 return -EPERM;
fc832ad3 1370
1da177e4
LT
1371 if (len < 0 || len > __NEW_UTS_LEN)
1372 return -EINVAL;
1da177e4
LT
1373 errno = -EFAULT;
1374 if (!copy_from_user(tmp, name, len)) {
42a0cc34 1375 struct new_utsname *u;
9679e4dd 1376
42a0cc34
JH
1377 down_write(&uts_sem);
1378 u = utsname();
9679e4dd
AM
1379 memcpy(u->nodename, tmp, len);
1380 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4 1381 errno = 0;
499eea6b 1382 uts_proc_notify(UTS_PROC_HOSTNAME);
42a0cc34 1383 up_write(&uts_sem);
1da177e4 1384 }
1da177e4
LT
1385 return errno;
1386}
1387
1388#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1389
5a8a82b1 1390SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4 1391{
42a0cc34 1392 int i;
9679e4dd 1393 struct new_utsname *u;
42a0cc34 1394 char tmp[__NEW_UTS_LEN + 1];
1da177e4
LT
1395
1396 if (len < 0)
1397 return -EINVAL;
1398 down_read(&uts_sem);
9679e4dd
AM
1399 u = utsname();
1400 i = 1 + strlen(u->nodename);
1da177e4
LT
1401 if (i > len)
1402 i = len;
42a0cc34 1403 memcpy(tmp, u->nodename, i);
1da177e4 1404 up_read(&uts_sem);
42a0cc34
JH
1405 if (copy_to_user(name, tmp, i))
1406 return -EFAULT;
1407 return 0;
1da177e4
LT
1408}
1409
1410#endif
1411
1412/*
1413 * Only setdomainname; getdomainname can be implemented by calling
1414 * uname()
1415 */
5a8a82b1 1416SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1417{
1418 int errno;
1419 char tmp[__NEW_UTS_LEN];
1420
fc832ad3 1421 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1422 return -EPERM;
1423 if (len < 0 || len > __NEW_UTS_LEN)
1424 return -EINVAL;
1425
1da177e4
LT
1426 errno = -EFAULT;
1427 if (!copy_from_user(tmp, name, len)) {
42a0cc34 1428 struct new_utsname *u;
9679e4dd 1429
42a0cc34
JH
1430 down_write(&uts_sem);
1431 u = utsname();
9679e4dd
AM
1432 memcpy(u->domainname, tmp, len);
1433 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4 1434 errno = 0;
499eea6b 1435 uts_proc_notify(UTS_PROC_DOMAINNAME);
42a0cc34 1436 up_write(&uts_sem);
1da177e4 1437 }
1da177e4
LT
1438 return errno;
1439}
1440
e48fbb69 1441SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1442{
b9518345
JS
1443 struct rlimit value;
1444 int ret;
1445
1446 ret = do_prlimit(current, resource, NULL, &value);
1447 if (!ret)
1448 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1449
1450 return ret;
1da177e4
LT
1451}
1452
d9e968cb
AV
1453#ifdef CONFIG_COMPAT
1454
1455COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1456 struct compat_rlimit __user *, rlim)
1457{
1458 struct rlimit r;
1459 struct compat_rlimit r32;
1460
1461 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1462 return -EFAULT;
1463
1464 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1465 r.rlim_cur = RLIM_INFINITY;
1466 else
1467 r.rlim_cur = r32.rlim_cur;
1468 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1469 r.rlim_max = RLIM_INFINITY;
1470 else
1471 r.rlim_max = r32.rlim_max;
1472 return do_prlimit(current, resource, &r, NULL);
1473}
1474
1475COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1476 struct compat_rlimit __user *, rlim)
1477{
1478 struct rlimit r;
1479 int ret;
1480
1481 ret = do_prlimit(current, resource, NULL, &r);
1482 if (!ret) {
58c7ffc0 1483 struct compat_rlimit r32;
d9e968cb
AV
1484 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1485 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1486 else
1487 r32.rlim_cur = r.rlim_cur;
1488 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1489 r32.rlim_max = COMPAT_RLIM_INFINITY;
1490 else
1491 r32.rlim_max = r.rlim_max;
1492
1493 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1494 return -EFAULT;
1495 }
1496 return ret;
1497}
1498
1499#endif
1500
1da177e4
LT
1501#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1502
1503/*
1504 * Back compatibility for getrlimit. Needed for some apps.
1505 */
e48fbb69
HC
1506SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1507 struct rlimit __user *, rlim)
1da177e4
LT
1508{
1509 struct rlimit x;
1510 if (resource >= RLIM_NLIMITS)
1511 return -EINVAL;
1512
23d6aef7 1513 resource = array_index_nospec(resource, RLIM_NLIMITS);
1da177e4
LT
1514 task_lock(current->group_leader);
1515 x = current->signal->rlim[resource];
1516 task_unlock(current->group_leader);
756184b7 1517 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1518 x.rlim_cur = 0x7FFFFFFF;
756184b7 1519 if (x.rlim_max > 0x7FFFFFFF)
1da177e4 1520 x.rlim_max = 0x7FFFFFFF;
ec94fc3d 1521 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1da177e4
LT
1522}
1523
613763a1
AV
1524#ifdef CONFIG_COMPAT
1525COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1526 struct compat_rlimit __user *, rlim)
1527{
1528 struct rlimit r;
1529
1530 if (resource >= RLIM_NLIMITS)
1531 return -EINVAL;
1532
23d6aef7 1533 resource = array_index_nospec(resource, RLIM_NLIMITS);
613763a1
AV
1534 task_lock(current->group_leader);
1535 r = current->signal->rlim[resource];
1536 task_unlock(current->group_leader);
1537 if (r.rlim_cur > 0x7FFFFFFF)
1538 r.rlim_cur = 0x7FFFFFFF;
1539 if (r.rlim_max > 0x7FFFFFFF)
1540 r.rlim_max = 0x7FFFFFFF;
1541
1542 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1543 put_user(r.rlim_max, &rlim->rlim_max))
1544 return -EFAULT;
1545 return 0;
1546}
1547#endif
1548
1da177e4
LT
1549#endif
1550
c022a0ac
JS
1551static inline bool rlim64_is_infinity(__u64 rlim64)
1552{
1553#if BITS_PER_LONG < 64
1554 return rlim64 >= ULONG_MAX;
1555#else
1556 return rlim64 == RLIM64_INFINITY;
1557#endif
1558}
1559
1560static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1561{
1562 if (rlim->rlim_cur == RLIM_INFINITY)
1563 rlim64->rlim_cur = RLIM64_INFINITY;
1564 else
1565 rlim64->rlim_cur = rlim->rlim_cur;
1566 if (rlim->rlim_max == RLIM_INFINITY)
1567 rlim64->rlim_max = RLIM64_INFINITY;
1568 else
1569 rlim64->rlim_max = rlim->rlim_max;
1570}
1571
1572static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1573{
1574 if (rlim64_is_infinity(rlim64->rlim_cur))
1575 rlim->rlim_cur = RLIM_INFINITY;
1576 else
1577 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1578 if (rlim64_is_infinity(rlim64->rlim_max))
1579 rlim->rlim_max = RLIM_INFINITY;
1580 else
1581 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1582}
1583
1c1e618d 1584/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1585int do_prlimit(struct task_struct *tsk, unsigned int resource,
1586 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1587{
5b41535a 1588 struct rlimit *rlim;
86f162f4 1589 int retval = 0;
1da177e4
LT
1590
1591 if (resource >= RLIM_NLIMITS)
1592 return -EINVAL;
5b41535a
JS
1593 if (new_rlim) {
1594 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1595 return -EINVAL;
1596 if (resource == RLIMIT_NOFILE &&
1597 new_rlim->rlim_max > sysctl_nr_open)
1598 return -EPERM;
1599 }
1da177e4 1600
1c1e618d
JS
1601 /* protect tsk->signal and tsk->sighand from disappearing */
1602 read_lock(&tasklist_lock);
1603 if (!tsk->sighand) {
1604 retval = -ESRCH;
1605 goto out;
1606 }
1607
5b41535a 1608 rlim = tsk->signal->rlim + resource;
86f162f4 1609 task_lock(tsk->group_leader);
5b41535a 1610 if (new_rlim) {
fc832ad3
SH
1611 /* Keep the capable check against init_user_ns until
1612 cgroups can contain all limits */
5b41535a
JS
1613 if (new_rlim->rlim_max > rlim->rlim_max &&
1614 !capable(CAP_SYS_RESOURCE))
1615 retval = -EPERM;
1616 if (!retval)
cad4ea54 1617 retval = security_task_setrlimit(tsk, resource, new_rlim);
5b41535a
JS
1618 }
1619 if (!retval) {
1620 if (old_rlim)
1621 *old_rlim = *rlim;
1622 if (new_rlim)
1623 *rlim = *new_rlim;
9926e4c7 1624 }
7855c35d 1625 task_unlock(tsk->group_leader);
1da177e4 1626
d3561f78 1627 /*
24db4dd9 1628 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
5afe69c2 1629 * infinite. In case of RLIM_INFINITY the posix CPU timer code
24db4dd9 1630 * ignores the rlimit.
d3561f78 1631 */
5b41535a 1632 if (!retval && new_rlim && resource == RLIMIT_CPU &&
baa73d9e
NP
1633 new_rlim->rlim_cur != RLIM_INFINITY &&
1634 IS_ENABLED(CONFIG_POSIX_TIMERS))
5b41535a 1635 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1636out:
1c1e618d 1637 read_unlock(&tasklist_lock);
2fb9d268 1638 return retval;
1da177e4
LT
1639}
1640
c022a0ac 1641/* rcu lock must be held */
791ec491
SS
1642static int check_prlimit_permission(struct task_struct *task,
1643 unsigned int flags)
c022a0ac
JS
1644{
1645 const struct cred *cred = current_cred(), *tcred;
791ec491 1646 bool id_match;
c022a0ac 1647
fc832ad3
SH
1648 if (current == task)
1649 return 0;
c022a0ac 1650
fc832ad3 1651 tcred = __task_cred(task);
791ec491
SS
1652 id_match = (uid_eq(cred->uid, tcred->euid) &&
1653 uid_eq(cred->uid, tcred->suid) &&
1654 uid_eq(cred->uid, tcred->uid) &&
1655 gid_eq(cred->gid, tcred->egid) &&
1656 gid_eq(cred->gid, tcred->sgid) &&
1657 gid_eq(cred->gid, tcred->gid));
1658 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1659 return -EPERM;
fc832ad3 1660
791ec491 1661 return security_task_prlimit(cred, tcred, flags);
c022a0ac
JS
1662}
1663
1664SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1665 const struct rlimit64 __user *, new_rlim,
1666 struct rlimit64 __user *, old_rlim)
1667{
1668 struct rlimit64 old64, new64;
1669 struct rlimit old, new;
1670 struct task_struct *tsk;
791ec491 1671 unsigned int checkflags = 0;
c022a0ac
JS
1672 int ret;
1673
791ec491
SS
1674 if (old_rlim)
1675 checkflags |= LSM_PRLIMIT_READ;
1676
c022a0ac
JS
1677 if (new_rlim) {
1678 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1679 return -EFAULT;
1680 rlim64_to_rlim(&new64, &new);
791ec491 1681 checkflags |= LSM_PRLIMIT_WRITE;
c022a0ac
JS
1682 }
1683
1684 rcu_read_lock();
1685 tsk = pid ? find_task_by_vpid(pid) : current;
1686 if (!tsk) {
1687 rcu_read_unlock();
1688 return -ESRCH;
1689 }
791ec491 1690 ret = check_prlimit_permission(tsk, checkflags);
c022a0ac
JS
1691 if (ret) {
1692 rcu_read_unlock();
1693 return ret;
1694 }
1695 get_task_struct(tsk);
1696 rcu_read_unlock();
1697
1698 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1699 old_rlim ? &old : NULL);
1700
1701 if (!ret && old_rlim) {
1702 rlim_to_rlim64(&old, &old64);
1703 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1704 ret = -EFAULT;
1705 }
1706
1707 put_task_struct(tsk);
1708 return ret;
1709}
1710
7855c35d
JS
1711SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1712{
1713 struct rlimit new_rlim;
1714
1715 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1716 return -EFAULT;
5b41535a 1717 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1718}
1719
1da177e4
LT
1720/*
1721 * It would make sense to put struct rusage in the task_struct,
1722 * except that would make the task_struct be *really big*. After
1723 * task_struct gets moved into malloc'ed memory, it would
1724 * make sense to do this. It will make moving the rest of the information
1725 * a lot simpler! (Which we're not doing right now because we're not
1726 * measuring them yet).
1727 *
1da177e4
LT
1728 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1729 * races with threads incrementing their own counters. But since word
1730 * reads are atomic, we either get new values or old values and we don't
1731 * care which for the sums. We always take the siglock to protect reading
1732 * the c* fields from p->signal from races with exit.c updating those
1733 * fields when reaping, so a sample either gets all the additions of a
1734 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1735 *
de047c1b
RT
1736 * Locking:
1737 * We need to take the siglock for CHILDEREN, SELF and BOTH
1738 * for the cases current multithreaded, non-current single threaded
1739 * non-current multithreaded. Thread traversal is now safe with
1740 * the siglock held.
1741 * Strictly speaking, we donot need to take the siglock if we are current and
1742 * single threaded, as no one else can take our signal_struct away, no one
1743 * else can reap the children to update signal->c* counters, and no one else
1744 * can race with the signal-> fields. If we do not take any lock, the
1745 * signal-> fields could be read out of order while another thread was just
1746 * exiting. So we should place a read memory barrier when we avoid the lock.
1747 * On the writer side, write memory barrier is implied in __exit_signal
1748 * as __exit_signal releases the siglock spinlock after updating the signal->
1749 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1750 *
1da177e4
LT
1751 */
1752
f06febc9 1753static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1754{
679c9cd4
SK
1755 r->ru_nvcsw += t->nvcsw;
1756 r->ru_nivcsw += t->nivcsw;
1757 r->ru_minflt += t->min_flt;
1758 r->ru_majflt += t->maj_flt;
1759 r->ru_inblock += task_io_get_inblock(t);
1760 r->ru_oublock += task_io_get_oublock(t);
1761}
1762
ce72a16f 1763void getrusage(struct task_struct *p, int who, struct rusage *r)
1da177e4
LT
1764{
1765 struct task_struct *t;
1766 unsigned long flags;
5613fda9 1767 u64 tgutime, tgstime, utime, stime;
1f10206c 1768 unsigned long maxrss = 0;
1da177e4 1769
ec94fc3d 1770 memset((char *)r, 0, sizeof (*r));
64861634 1771 utime = stime = 0;
1da177e4 1772
679c9cd4 1773 if (who == RUSAGE_THREAD) {
e80d0a1a 1774 task_cputime_adjusted(current, &utime, &stime);
f06febc9 1775 accumulate_thread_rusage(p, r);
1f10206c 1776 maxrss = p->signal->maxrss;
679c9cd4
SK
1777 goto out;
1778 }
1779
d6cf723a 1780 if (!lock_task_sighand(p, &flags))
de047c1b 1781 return;
0f59cc4a 1782
1da177e4 1783 switch (who) {
ec94fc3d 1784 case RUSAGE_BOTH:
1785 case RUSAGE_CHILDREN:
1786 utime = p->signal->cutime;
1787 stime = p->signal->cstime;
1788 r->ru_nvcsw = p->signal->cnvcsw;
1789 r->ru_nivcsw = p->signal->cnivcsw;
1790 r->ru_minflt = p->signal->cmin_flt;
1791 r->ru_majflt = p->signal->cmaj_flt;
1792 r->ru_inblock = p->signal->cinblock;
1793 r->ru_oublock = p->signal->coublock;
1794 maxrss = p->signal->cmaxrss;
1795
1796 if (who == RUSAGE_CHILDREN)
1da177e4 1797 break;
df561f66 1798 fallthrough;
0f59cc4a 1799
ec94fc3d 1800 case RUSAGE_SELF:
1801 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1802 utime += tgutime;
1803 stime += tgstime;
1804 r->ru_nvcsw += p->signal->nvcsw;
1805 r->ru_nivcsw += p->signal->nivcsw;
1806 r->ru_minflt += p->signal->min_flt;
1807 r->ru_majflt += p->signal->maj_flt;
1808 r->ru_inblock += p->signal->inblock;
1809 r->ru_oublock += p->signal->oublock;
1810 if (maxrss < p->signal->maxrss)
1811 maxrss = p->signal->maxrss;
1812 t = p;
1813 do {
1814 accumulate_thread_rusage(t, r);
1815 } while_each_thread(p, t);
1816 break;
1817
1818 default:
1819 BUG();
1da177e4 1820 }
de047c1b 1821 unlock_task_sighand(p, &flags);
de047c1b 1822
679c9cd4 1823out:
bdd565f8
AB
1824 r->ru_utime = ns_to_kernel_old_timeval(utime);
1825 r->ru_stime = ns_to_kernel_old_timeval(stime);
1f10206c
JP
1826
1827 if (who != RUSAGE_CHILDREN) {
1828 struct mm_struct *mm = get_task_mm(p);
ec94fc3d 1829
1f10206c
JP
1830 if (mm) {
1831 setmax_mm_hiwater_rss(&maxrss, mm);
1832 mmput(mm);
1833 }
1834 }
1835 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1836}
1837
ce72a16f 1838SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4
LT
1839{
1840 struct rusage r;
ec94fc3d 1841
679c9cd4
SK
1842 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1843 who != RUSAGE_THREAD)
1da177e4 1844 return -EINVAL;
ce72a16f
AV
1845
1846 getrusage(current, who, &r);
1847 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1da177e4
LT
1848}
1849
8d2d5c4a
AV
1850#ifdef CONFIG_COMPAT
1851COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1852{
1853 struct rusage r;
1854
1855 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1856 who != RUSAGE_THREAD)
1857 return -EINVAL;
1858
ce72a16f 1859 getrusage(current, who, &r);
8d2d5c4a
AV
1860 return put_compat_rusage(&r, ru);
1861}
1862#endif
1863
e48fbb69 1864SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1865{
1866 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1867 return mask;
1868}
3b7391de 1869
6e399cd1 1870static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
b32dfe37 1871{
2903ff01 1872 struct fd exe;
496ad9aa 1873 struct inode *inode;
2903ff01 1874 int err;
b32dfe37 1875
2903ff01
AV
1876 exe = fdget(fd);
1877 if (!exe.file)
b32dfe37
CG
1878 return -EBADF;
1879
496ad9aa 1880 inode = file_inode(exe.file);
b32dfe37
CG
1881
1882 /*
1883 * Because the original mm->exe_file points to executable file, make
1884 * sure that this one is executable as well, to avoid breaking an
1885 * overall picture.
1886 */
1887 err = -EACCES;
90f8572b 1888 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
b32dfe37
CG
1889 goto exit;
1890
02f92b38 1891 err = file_permission(exe.file, MAY_EXEC);
b32dfe37
CG
1892 if (err)
1893 goto exit;
1894
35d7bdc8 1895 err = replace_mm_exe_file(mm, exe.file);
b32dfe37 1896exit:
2903ff01 1897 fdput(exe);
b32dfe37
CG
1898 return err;
1899}
1900
f606b77f 1901/*
11bbd8b4
MK
1902 * Check arithmetic relations of passed addresses.
1903 *
f606b77f
CG
1904 * WARNING: we don't require any capability here so be very careful
1905 * in what is allowed for modification from userspace.
1906 */
11bbd8b4 1907static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
f606b77f
CG
1908{
1909 unsigned long mmap_max_addr = TASK_SIZE;
f606b77f
CG
1910 int error = -EINVAL, i;
1911
1912 static const unsigned char offsets[] = {
1913 offsetof(struct prctl_mm_map, start_code),
1914 offsetof(struct prctl_mm_map, end_code),
1915 offsetof(struct prctl_mm_map, start_data),
1916 offsetof(struct prctl_mm_map, end_data),
1917 offsetof(struct prctl_mm_map, start_brk),
1918 offsetof(struct prctl_mm_map, brk),
1919 offsetof(struct prctl_mm_map, start_stack),
1920 offsetof(struct prctl_mm_map, arg_start),
1921 offsetof(struct prctl_mm_map, arg_end),
1922 offsetof(struct prctl_mm_map, env_start),
1923 offsetof(struct prctl_mm_map, env_end),
1924 };
1925
1926 /*
1927 * Make sure the members are not somewhere outside
1928 * of allowed address space.
1929 */
1930 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1931 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1932
1933 if ((unsigned long)val >= mmap_max_addr ||
1934 (unsigned long)val < mmap_min_addr)
1935 goto out;
1936 }
1937
1938 /*
1939 * Make sure the pairs are ordered.
1940 */
1941#define __prctl_check_order(__m1, __op, __m2) \
1942 ((unsigned long)prctl_map->__m1 __op \
1943 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1944 error = __prctl_check_order(start_code, <, end_code);
a9e73998 1945 error |= __prctl_check_order(start_data,<=, end_data);
f606b77f
CG
1946 error |= __prctl_check_order(start_brk, <=, brk);
1947 error |= __prctl_check_order(arg_start, <=, arg_end);
1948 error |= __prctl_check_order(env_start, <=, env_end);
1949 if (error)
1950 goto out;
1951#undef __prctl_check_order
1952
1953 error = -EINVAL;
1954
f606b77f
CG
1955 /*
1956 * Neither we should allow to override limits if they set.
1957 */
1958 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1959 prctl_map->start_brk, prctl_map->end_data,
1960 prctl_map->start_data))
1961 goto out;
1962
f606b77f
CG
1963 error = 0;
1964out:
1965 return error;
1966}
1967
4a00e9df 1968#ifdef CONFIG_CHECKPOINT_RESTORE
f606b77f
CG
1969static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1970{
1971 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1972 unsigned long user_auxv[AT_VECTOR_SIZE];
1973 struct mm_struct *mm = current->mm;
1974 int error;
1975
1976 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1977 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1978
1979 if (opt == PR_SET_MM_MAP_SIZE)
1980 return put_user((unsigned int)sizeof(prctl_map),
1981 (unsigned int __user *)addr);
1982
1983 if (data_size != sizeof(prctl_map))
1984 return -EINVAL;
1985
1986 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1987 return -EFAULT;
1988
11bbd8b4 1989 error = validate_prctl_map_addr(&prctl_map);
f606b77f
CG
1990 if (error)
1991 return error;
1992
1993 if (prctl_map.auxv_size) {
11bbd8b4
MK
1994 /*
1995 * Someone is trying to cheat the auxv vector.
1996 */
1997 if (!prctl_map.auxv ||
1998 prctl_map.auxv_size > sizeof(mm->saved_auxv))
1999 return -EINVAL;
2000
f606b77f
CG
2001 memset(user_auxv, 0, sizeof(user_auxv));
2002 if (copy_from_user(user_auxv,
2003 (const void __user *)prctl_map.auxv,
2004 prctl_map.auxv_size))
2005 return -EFAULT;
2006
2007 /* Last entry must be AT_NULL as specification requires */
2008 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2009 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2010 }
2011
ddf1d398 2012 if (prctl_map.exe_fd != (u32)-1) {
11bbd8b4 2013 /*
ebd6de68
NV
2014 * Check if the current user is checkpoint/restore capable.
2015 * At the time of this writing, it checks for CAP_SYS_ADMIN
2016 * or CAP_CHECKPOINT_RESTORE.
2017 * Note that a user with access to ptrace can masquerade an
2018 * arbitrary program as any executable, even setuid ones.
2019 * This may have implications in the tomoyo subsystem.
11bbd8b4 2020 */
ebd6de68 2021 if (!checkpoint_restore_ns_capable(current_user_ns()))
227175b2 2022 return -EPERM;
11bbd8b4 2023
6e399cd1 2024 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
ddf1d398
MG
2025 if (error)
2026 return error;
2027 }
2028
88aa7cc6 2029 /*
5afe69c2 2030 * arg_lock protects concurrent updates but we still need mmap_lock for
88aa7cc6
YS
2031 * read to exclude races with sys_brk.
2032 */
d8ed45c5 2033 mmap_read_lock(mm);
f606b77f
CG
2034
2035 /*
2036 * We don't validate if these members are pointing to
2037 * real present VMAs because application may have correspond
2038 * VMAs already unmapped and kernel uses these members for statistics
2039 * output in procfs mostly, except
2040 *
15ec0fcf 2041 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
5afe69c2 2042 * for VMAs when updating these members so anything wrong written
f606b77f
CG
2043 * here cause kernel to swear at userspace program but won't lead
2044 * to any problem in kernel itself
2045 */
2046
88aa7cc6 2047 spin_lock(&mm->arg_lock);
f606b77f
CG
2048 mm->start_code = prctl_map.start_code;
2049 mm->end_code = prctl_map.end_code;
2050 mm->start_data = prctl_map.start_data;
2051 mm->end_data = prctl_map.end_data;
2052 mm->start_brk = prctl_map.start_brk;
2053 mm->brk = prctl_map.brk;
2054 mm->start_stack = prctl_map.start_stack;
2055 mm->arg_start = prctl_map.arg_start;
2056 mm->arg_end = prctl_map.arg_end;
2057 mm->env_start = prctl_map.env_start;
2058 mm->env_end = prctl_map.env_end;
88aa7cc6 2059 spin_unlock(&mm->arg_lock);
f606b77f
CG
2060
2061 /*
2062 * Note this update of @saved_auxv is lockless thus
2063 * if someone reads this member in procfs while we're
2064 * updating -- it may get partly updated results. It's
2065 * known and acceptable trade off: we leave it as is to
2066 * not introduce additional locks here making the kernel
2067 * more complex.
2068 */
2069 if (prctl_map.auxv_size)
2070 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2071
d8ed45c5 2072 mmap_read_unlock(mm);
ddf1d398 2073 return 0;
f606b77f
CG
2074}
2075#endif /* CONFIG_CHECKPOINT_RESTORE */
2076
4a00e9df
AD
2077static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2078 unsigned long len)
2079{
2080 /*
2081 * This doesn't move the auxiliary vector itself since it's pinned to
2082 * mm_struct, but it permits filling the vector with new values. It's
2083 * up to the caller to provide sane values here, otherwise userspace
2084 * tools which use this vector might be unhappy.
2085 */
c995f12a 2086 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
4a00e9df
AD
2087
2088 if (len > sizeof(user_auxv))
2089 return -EINVAL;
2090
2091 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2092 return -EFAULT;
2093
2094 /* Make sure the last entry is always AT_NULL */
2095 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2096 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2097
2098 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2099
2100 task_lock(current);
2101 memcpy(mm->saved_auxv, user_auxv, len);
2102 task_unlock(current);
2103
2104 return 0;
2105}
2106
028ee4be
CG
2107static int prctl_set_mm(int opt, unsigned long addr,
2108 unsigned long arg4, unsigned long arg5)
2109{
028ee4be 2110 struct mm_struct *mm = current->mm;
11bbd8b4
MK
2111 struct prctl_mm_map prctl_map = {
2112 .auxv = NULL,
2113 .auxv_size = 0,
2114 .exe_fd = -1,
2115 };
fe8c7f5c
CG
2116 struct vm_area_struct *vma;
2117 int error;
028ee4be 2118
f606b77f
CG
2119 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2120 opt != PR_SET_MM_MAP &&
2121 opt != PR_SET_MM_MAP_SIZE)))
028ee4be
CG
2122 return -EINVAL;
2123
f606b77f
CG
2124#ifdef CONFIG_CHECKPOINT_RESTORE
2125 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2126 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2127#endif
2128
79f0713d 2129 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
2130 return -EPERM;
2131
6e399cd1
DB
2132 if (opt == PR_SET_MM_EXE_FILE)
2133 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
b32dfe37 2134
4a00e9df
AD
2135 if (opt == PR_SET_MM_AUXV)
2136 return prctl_set_auxv(mm, addr, arg4);
2137
1ad75b9e 2138 if (addr >= TASK_SIZE || addr < mmap_min_addr)
028ee4be
CG
2139 return -EINVAL;
2140
fe8c7f5c
CG
2141 error = -EINVAL;
2142
bc81426f 2143 /*
5afe69c2 2144 * arg_lock protects concurrent updates of arg boundaries, we need
c1e8d7c6 2145 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
bc81426f
MK
2146 * validation.
2147 */
d8ed45c5 2148 mmap_read_lock(mm);
028ee4be
CG
2149 vma = find_vma(mm, addr);
2150
bc81426f 2151 spin_lock(&mm->arg_lock);
4a00e9df
AD
2152 prctl_map.start_code = mm->start_code;
2153 prctl_map.end_code = mm->end_code;
2154 prctl_map.start_data = mm->start_data;
2155 prctl_map.end_data = mm->end_data;
2156 prctl_map.start_brk = mm->start_brk;
2157 prctl_map.brk = mm->brk;
2158 prctl_map.start_stack = mm->start_stack;
2159 prctl_map.arg_start = mm->arg_start;
2160 prctl_map.arg_end = mm->arg_end;
2161 prctl_map.env_start = mm->env_start;
2162 prctl_map.env_end = mm->env_end;
4a00e9df 2163
028ee4be
CG
2164 switch (opt) {
2165 case PR_SET_MM_START_CODE:
4a00e9df 2166 prctl_map.start_code = addr;
fe8c7f5c 2167 break;
028ee4be 2168 case PR_SET_MM_END_CODE:
4a00e9df 2169 prctl_map.end_code = addr;
028ee4be 2170 break;
028ee4be 2171 case PR_SET_MM_START_DATA:
4a00e9df 2172 prctl_map.start_data = addr;
028ee4be 2173 break;
fe8c7f5c 2174 case PR_SET_MM_END_DATA:
4a00e9df
AD
2175 prctl_map.end_data = addr;
2176 break;
2177 case PR_SET_MM_START_STACK:
2178 prctl_map.start_stack = addr;
028ee4be 2179 break;
028ee4be 2180 case PR_SET_MM_START_BRK:
4a00e9df 2181 prctl_map.start_brk = addr;
028ee4be 2182 break;
028ee4be 2183 case PR_SET_MM_BRK:
4a00e9df 2184 prctl_map.brk = addr;
028ee4be 2185 break;
4a00e9df
AD
2186 case PR_SET_MM_ARG_START:
2187 prctl_map.arg_start = addr;
2188 break;
2189 case PR_SET_MM_ARG_END:
2190 prctl_map.arg_end = addr;
2191 break;
2192 case PR_SET_MM_ENV_START:
2193 prctl_map.env_start = addr;
2194 break;
2195 case PR_SET_MM_ENV_END:
2196 prctl_map.env_end = addr;
2197 break;
2198 default:
2199 goto out;
2200 }
2201
11bbd8b4 2202 error = validate_prctl_map_addr(&prctl_map);
4a00e9df
AD
2203 if (error)
2204 goto out;
028ee4be 2205
4a00e9df 2206 switch (opt) {
fe8c7f5c
CG
2207 /*
2208 * If command line arguments and environment
2209 * are placed somewhere else on stack, we can
2210 * set them up here, ARG_START/END to setup
5afe69c2 2211 * command line arguments and ENV_START/END
fe8c7f5c
CG
2212 * for environment.
2213 */
2214 case PR_SET_MM_START_STACK:
2215 case PR_SET_MM_ARG_START:
2216 case PR_SET_MM_ARG_END:
2217 case PR_SET_MM_ENV_START:
2218 case PR_SET_MM_ENV_END:
2219 if (!vma) {
2220 error = -EFAULT;
2221 goto out;
2222 }
028ee4be
CG
2223 }
2224
4a00e9df
AD
2225 mm->start_code = prctl_map.start_code;
2226 mm->end_code = prctl_map.end_code;
2227 mm->start_data = prctl_map.start_data;
2228 mm->end_data = prctl_map.end_data;
2229 mm->start_brk = prctl_map.start_brk;
2230 mm->brk = prctl_map.brk;
2231 mm->start_stack = prctl_map.start_stack;
2232 mm->arg_start = prctl_map.arg_start;
2233 mm->arg_end = prctl_map.arg_end;
2234 mm->env_start = prctl_map.env_start;
2235 mm->env_end = prctl_map.env_end;
2236
028ee4be 2237 error = 0;
028ee4be 2238out:
bc81426f 2239 spin_unlock(&mm->arg_lock);
d8ed45c5 2240 mmap_read_unlock(mm);
028ee4be
CG
2241 return error;
2242}
300f786b 2243
52b36941 2244#ifdef CONFIG_CHECKPOINT_RESTORE
986b9eac 2245static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
300f786b
CG
2246{
2247 return put_user(me->clear_child_tid, tid_addr);
2248}
52b36941 2249#else
986b9eac 2250static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
300f786b
CG
2251{
2252 return -EINVAL;
2253}
028ee4be
CG
2254#endif
2255
749860ce
PT
2256static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2257{
2258 /*
5afe69c2
XC
2259 * If task has has_child_subreaper - all its descendants
2260 * already have these flag too and new descendants will
749860ce
PT
2261 * inherit it on fork, skip them.
2262 *
2263 * If we've found child_reaper - skip descendants in
2264 * it's subtree as they will never get out pidns.
2265 */
2266 if (p->signal->has_child_subreaper ||
2267 is_child_reaper(task_pid(p)))
2268 return 0;
2269
2270 p->signal->has_child_subreaper = 1;
2271 return 1;
2272}
2273
7bbf1373 2274int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
b617cfc8
TG
2275{
2276 return -EINVAL;
2277}
2278
7bbf1373
KC
2279int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2280 unsigned long ctrl)
b617cfc8
TG
2281{
2282 return -EINVAL;
2283}
2284
a37b0715 2285#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
8d19f1c8 2286
c4ea37c2
HC
2287SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2288 unsigned long, arg4, unsigned long, arg5)
1da177e4 2289{
b6dff3ec
DH
2290 struct task_struct *me = current;
2291 unsigned char comm[sizeof(me->comm)];
2292 long error;
1da177e4 2293
d84f4f99
DH
2294 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2295 if (error != -ENOSYS)
1da177e4
LT
2296 return error;
2297
d84f4f99 2298 error = 0;
1da177e4 2299 switch (option) {
f3cbd435
AM
2300 case PR_SET_PDEATHSIG:
2301 if (!valid_signal(arg2)) {
2302 error = -EINVAL;
1da177e4 2303 break;
f3cbd435
AM
2304 }
2305 me->pdeath_signal = arg2;
2306 break;
2307 case PR_GET_PDEATHSIG:
2308 error = put_user(me->pdeath_signal, (int __user *)arg2);
2309 break;
2310 case PR_GET_DUMPABLE:
2311 error = get_dumpable(me->mm);
2312 break;
2313 case PR_SET_DUMPABLE:
2314 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2315 error = -EINVAL;
1da177e4 2316 break;
f3cbd435
AM
2317 }
2318 set_dumpable(me->mm, arg2);
2319 break;
1da177e4 2320
f3cbd435
AM
2321 case PR_SET_UNALIGN:
2322 error = SET_UNALIGN_CTL(me, arg2);
2323 break;
2324 case PR_GET_UNALIGN:
2325 error = GET_UNALIGN_CTL(me, arg2);
2326 break;
2327 case PR_SET_FPEMU:
2328 error = SET_FPEMU_CTL(me, arg2);
2329 break;
2330 case PR_GET_FPEMU:
2331 error = GET_FPEMU_CTL(me, arg2);
2332 break;
2333 case PR_SET_FPEXC:
2334 error = SET_FPEXC_CTL(me, arg2);
2335 break;
2336 case PR_GET_FPEXC:
2337 error = GET_FPEXC_CTL(me, arg2);
2338 break;
2339 case PR_GET_TIMING:
2340 error = PR_TIMING_STATISTICAL;
2341 break;
2342 case PR_SET_TIMING:
2343 if (arg2 != PR_TIMING_STATISTICAL)
2344 error = -EINVAL;
2345 break;
2346 case PR_SET_NAME:
2347 comm[sizeof(me->comm) - 1] = 0;
2348 if (strncpy_from_user(comm, (char __user *)arg2,
2349 sizeof(me->comm) - 1) < 0)
2350 return -EFAULT;
2351 set_task_comm(me, comm);
2352 proc_comm_connector(me);
2353 break;
2354 case PR_GET_NAME:
2355 get_task_comm(comm, me);
2356 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2357 return -EFAULT;
2358 break;
2359 case PR_GET_ENDIAN:
2360 error = GET_ENDIAN(me, arg2);
2361 break;
2362 case PR_SET_ENDIAN:
2363 error = SET_ENDIAN(me, arg2);
2364 break;
2365 case PR_GET_SECCOMP:
2366 error = prctl_get_seccomp();
2367 break;
2368 case PR_SET_SECCOMP:
2369 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2370 break;
2371 case PR_GET_TSC:
2372 error = GET_TSC_CTL(arg2);
2373 break;
2374 case PR_SET_TSC:
2375 error = SET_TSC_CTL(arg2);
2376 break;
2377 case PR_TASK_PERF_EVENTS_DISABLE:
2378 error = perf_event_task_disable();
2379 break;
2380 case PR_TASK_PERF_EVENTS_ENABLE:
2381 error = perf_event_task_enable();
2382 break;
2383 case PR_GET_TIMERSLACK:
da8b44d5
JS
2384 if (current->timer_slack_ns > ULONG_MAX)
2385 error = ULONG_MAX;
2386 else
2387 error = current->timer_slack_ns;
f3cbd435
AM
2388 break;
2389 case PR_SET_TIMERSLACK:
2390 if (arg2 <= 0)
2391 current->timer_slack_ns =
6976675d 2392 current->default_timer_slack_ns;
f3cbd435
AM
2393 else
2394 current->timer_slack_ns = arg2;
2395 break;
2396 case PR_MCE_KILL:
2397 if (arg4 | arg5)
2398 return -EINVAL;
2399 switch (arg2) {
2400 case PR_MCE_KILL_CLEAR:
2401 if (arg3 != 0)
4db96cf0 2402 return -EINVAL;
f3cbd435 2403 current->flags &= ~PF_MCE_PROCESS;
4db96cf0 2404 break;
f3cbd435
AM
2405 case PR_MCE_KILL_SET:
2406 current->flags |= PF_MCE_PROCESS;
2407 if (arg3 == PR_MCE_KILL_EARLY)
2408 current->flags |= PF_MCE_EARLY;
2409 else if (arg3 == PR_MCE_KILL_LATE)
2410 current->flags &= ~PF_MCE_EARLY;
2411 else if (arg3 == PR_MCE_KILL_DEFAULT)
2412 current->flags &=
2413 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1087e9b4 2414 else
259e5e6c 2415 return -EINVAL;
259e5e6c 2416 break;
1da177e4 2417 default:
f3cbd435
AM
2418 return -EINVAL;
2419 }
2420 break;
2421 case PR_MCE_KILL_GET:
2422 if (arg2 | arg3 | arg4 | arg5)
2423 return -EINVAL;
2424 if (current->flags & PF_MCE_PROCESS)
2425 error = (current->flags & PF_MCE_EARLY) ?
2426 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2427 else
2428 error = PR_MCE_KILL_DEFAULT;
2429 break;
2430 case PR_SET_MM:
2431 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2432 break;
2433 case PR_GET_TID_ADDRESS:
986b9eac 2434 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
f3cbd435
AM
2435 break;
2436 case PR_SET_CHILD_SUBREAPER:
2437 me->signal->is_child_subreaper = !!arg2;
749860ce
PT
2438 if (!arg2)
2439 break;
2440
2441 walk_process_tree(me, propagate_has_child_subreaper, NULL);
f3cbd435
AM
2442 break;
2443 case PR_GET_CHILD_SUBREAPER:
2444 error = put_user(me->signal->is_child_subreaper,
2445 (int __user *)arg2);
2446 break;
2447 case PR_SET_NO_NEW_PRIVS:
2448 if (arg2 != 1 || arg3 || arg4 || arg5)
2449 return -EINVAL;
2450
1d4457f9 2451 task_set_no_new_privs(current);
f3cbd435
AM
2452 break;
2453 case PR_GET_NO_NEW_PRIVS:
2454 if (arg2 || arg3 || arg4 || arg5)
2455 return -EINVAL;
1d4457f9 2456 return task_no_new_privs(current) ? 1 : 0;
a0715cc2
AT
2457 case PR_GET_THP_DISABLE:
2458 if (arg2 || arg3 || arg4 || arg5)
2459 return -EINVAL;
18600332 2460 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2
AT
2461 break;
2462 case PR_SET_THP_DISABLE:
2463 if (arg3 || arg4 || arg5)
2464 return -EINVAL;
d8ed45c5 2465 if (mmap_write_lock_killable(me->mm))
17b0573d 2466 return -EINTR;
a0715cc2 2467 if (arg2)
18600332 2468 set_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2 2469 else
18600332 2470 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
d8ed45c5 2471 mmap_write_unlock(me->mm);
a0715cc2 2472 break;
fe3d197f 2473 case PR_MPX_ENABLE_MANAGEMENT:
fe3d197f 2474 case PR_MPX_DISABLE_MANAGEMENT:
f240652b
DH
2475 /* No longer implemented: */
2476 return -EINVAL;
9791554b
PB
2477 case PR_SET_FP_MODE:
2478 error = SET_FP_MODE(me, arg2);
2479 break;
2480 case PR_GET_FP_MODE:
2481 error = GET_FP_MODE(me);
2482 break;
2d2123bc
DM
2483 case PR_SVE_SET_VL:
2484 error = SVE_SET_VL(arg2);
2485 break;
2486 case PR_SVE_GET_VL:
2487 error = SVE_GET_VL();
2488 break;
b617cfc8
TG
2489 case PR_GET_SPECULATION_CTRL:
2490 if (arg3 || arg4 || arg5)
2491 return -EINVAL;
7bbf1373 2492 error = arch_prctl_spec_ctrl_get(me, arg2);
b617cfc8
TG
2493 break;
2494 case PR_SET_SPECULATION_CTRL:
2495 if (arg4 || arg5)
2496 return -EINVAL;
7bbf1373 2497 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
b617cfc8 2498 break;
ba830885
KM
2499 case PR_PAC_RESET_KEYS:
2500 if (arg3 || arg4 || arg5)
2501 return -EINVAL;
2502 error = PAC_RESET_KEYS(me, arg2);
2503 break;
20169862
PC
2504 case PR_PAC_SET_ENABLED_KEYS:
2505 if (arg4 || arg5)
2506 return -EINVAL;
2507 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2508 break;
2509 case PR_PAC_GET_ENABLED_KEYS:
2510 if (arg2 || arg3 || arg4 || arg5)
2511 return -EINVAL;
2512 error = PAC_GET_ENABLED_KEYS(me);
2513 break;
63f0c603 2514 case PR_SET_TAGGED_ADDR_CTRL:
3e91ec89
CM
2515 if (arg3 || arg4 || arg5)
2516 return -EINVAL;
63f0c603
CM
2517 error = SET_TAGGED_ADDR_CTRL(arg2);
2518 break;
2519 case PR_GET_TAGGED_ADDR_CTRL:
3e91ec89
CM
2520 if (arg2 || arg3 || arg4 || arg5)
2521 return -EINVAL;
63f0c603
CM
2522 error = GET_TAGGED_ADDR_CTRL();
2523 break;
8d19f1c8
MC
2524 case PR_SET_IO_FLUSHER:
2525 if (!capable(CAP_SYS_RESOURCE))
2526 return -EPERM;
2527
2528 if (arg3 || arg4 || arg5)
2529 return -EINVAL;
2530
2531 if (arg2 == 1)
2532 current->flags |= PR_IO_FLUSHER;
2533 else if (!arg2)
2534 current->flags &= ~PR_IO_FLUSHER;
2535 else
2536 return -EINVAL;
2537 break;
2538 case PR_GET_IO_FLUSHER:
2539 if (!capable(CAP_SYS_RESOURCE))
2540 return -EPERM;
2541
2542 if (arg2 || arg3 || arg4 || arg5)
2543 return -EINVAL;
2544
2545 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2546 break;
1446e1df
GKB
2547 case PR_SET_SYSCALL_USER_DISPATCH:
2548 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2549 (char __user *) arg5);
2550 break;
7ac592aa
CH
2551#ifdef CONFIG_SCHED_CORE
2552 case PR_SCHED_CORE:
2553 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2554 break;
2555#endif
f3cbd435
AM
2556 default:
2557 error = -EINVAL;
2558 break;
1da177e4
LT
2559 }
2560 return error;
2561}
3cfc348b 2562
836f92ad
HC
2563SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2564 struct getcpu_cache __user *, unused)
3cfc348b
AK
2565{
2566 int err = 0;
2567 int cpu = raw_smp_processor_id();
ec94fc3d 2568
3cfc348b
AK
2569 if (cpup)
2570 err |= put_user(cpu, cpup);
2571 if (nodep)
2572 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2573 return err ? -EFAULT : 0;
2574}
10a0a8d4 2575
4a22f166
SR
2576/**
2577 * do_sysinfo - fill in sysinfo struct
2578 * @info: pointer to buffer to fill
2579 */
2580static int do_sysinfo(struct sysinfo *info)
2581{
2582 unsigned long mem_total, sav_total;
2583 unsigned int mem_unit, bitcount;
dc1b7b6c 2584 struct timespec64 tp;
4a22f166
SR
2585
2586 memset(info, 0, sizeof(struct sysinfo));
2587
dc1b7b6c 2588 ktime_get_boottime_ts64(&tp);
ecc421e0 2589 timens_add_boottime(&tp);
4a22f166
SR
2590 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2591
2592 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2593
2594 info->procs = nr_threads;
2595
2596 si_meminfo(info);
2597 si_swapinfo(info);
2598
2599 /*
2600 * If the sum of all the available memory (i.e. ram + swap)
2601 * is less than can be stored in a 32 bit unsigned long then
2602 * we can be binary compatible with 2.2.x kernels. If not,
2603 * well, in that case 2.2.x was broken anyways...
2604 *
2605 * -Erik Andersen <andersee@debian.org>
2606 */
2607
2608 mem_total = info->totalram + info->totalswap;
2609 if (mem_total < info->totalram || mem_total < info->totalswap)
2610 goto out;
2611 bitcount = 0;
2612 mem_unit = info->mem_unit;
2613 while (mem_unit > 1) {
2614 bitcount++;
2615 mem_unit >>= 1;
2616 sav_total = mem_total;
2617 mem_total <<= 1;
2618 if (mem_total < sav_total)
2619 goto out;
2620 }
2621
2622 /*
2623 * If mem_total did not overflow, multiply all memory values by
2624 * info->mem_unit and set it to 1. This leaves things compatible
2625 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2626 * kernels...
2627 */
2628
2629 info->mem_unit = 1;
2630 info->totalram <<= bitcount;
2631 info->freeram <<= bitcount;
2632 info->sharedram <<= bitcount;
2633 info->bufferram <<= bitcount;
2634 info->totalswap <<= bitcount;
2635 info->freeswap <<= bitcount;
2636 info->totalhigh <<= bitcount;
2637 info->freehigh <<= bitcount;
2638
2639out:
2640 return 0;
2641}
2642
2643SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2644{
2645 struct sysinfo val;
2646
2647 do_sysinfo(&val);
2648
2649 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2650 return -EFAULT;
2651
2652 return 0;
2653}
2654
2655#ifdef CONFIG_COMPAT
2656struct compat_sysinfo {
2657 s32 uptime;
2658 u32 loads[3];
2659 u32 totalram;
2660 u32 freeram;
2661 u32 sharedram;
2662 u32 bufferram;
2663 u32 totalswap;
2664 u32 freeswap;
2665 u16 procs;
2666 u16 pad;
2667 u32 totalhigh;
2668 u32 freehigh;
2669 u32 mem_unit;
2670 char _f[20-2*sizeof(u32)-sizeof(int)];
2671};
2672
2673COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2674{
2675 struct sysinfo s;
ce5155c4 2676 struct compat_sysinfo s_32;
4a22f166
SR
2677
2678 do_sysinfo(&s);
2679
2680 /* Check to see if any memory value is too large for 32-bit and scale
2681 * down if needed
2682 */
0baae41e 2683 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
4a22f166
SR
2684 int bitcount = 0;
2685
2686 while (s.mem_unit < PAGE_SIZE) {
2687 s.mem_unit <<= 1;
2688 bitcount++;
2689 }
2690
2691 s.totalram >>= bitcount;
2692 s.freeram >>= bitcount;
2693 s.sharedram >>= bitcount;
2694 s.bufferram >>= bitcount;
2695 s.totalswap >>= bitcount;
2696 s.freeswap >>= bitcount;
2697 s.totalhigh >>= bitcount;
2698 s.freehigh >>= bitcount;
2699 }
2700
ce5155c4
AV
2701 memset(&s_32, 0, sizeof(s_32));
2702 s_32.uptime = s.uptime;
2703 s_32.loads[0] = s.loads[0];
2704 s_32.loads[1] = s.loads[1];
2705 s_32.loads[2] = s.loads[2];
2706 s_32.totalram = s.totalram;
2707 s_32.freeram = s.freeram;
2708 s_32.sharedram = s.sharedram;
2709 s_32.bufferram = s.bufferram;
2710 s_32.totalswap = s.totalswap;
2711 s_32.freeswap = s.freeswap;
2712 s_32.procs = s.procs;
2713 s_32.totalhigh = s.totalhigh;
2714 s_32.freehigh = s.freehigh;
2715 s_32.mem_unit = s.mem_unit;
2716 if (copy_to_user(info, &s_32, sizeof(s_32)))
4a22f166 2717 return -EFAULT;
4a22f166
SR
2718 return 0;
2719}
2720#endif /* CONFIG_COMPAT */