]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sys.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
9984de1a 7#include <linux/export.h>
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/reboot.h>
12#include <linux/prctl.h>
1da177e4
LT
13#include <linux/highuid.h>
14#include <linux/fs.h>
74da1ff7 15#include <linux/kmod.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92 18#include <linux/kernel.h>
1da177e4 19#include <linux/workqueue.h>
c59ede7b 20#include <linux/capability.h>
1da177e4
LT
21#include <linux/device.h>
22#include <linux/key.h>
23#include <linux/times.h>
24#include <linux/posix-timers.h>
25#include <linux/security.h>
26#include <linux/dcookies.h>
27#include <linux/suspend.h>
28#include <linux/tty.h>
7ed20e1a 29#include <linux/signal.h>
9f46080c 30#include <linux/cn_proc.h>
3cfc348b 31#include <linux/getcpu.h>
6eaeeaba 32#include <linux/task_io_accounting_ops.h>
1d9d02fe 33#include <linux/seccomp.h>
4047727e 34#include <linux/cpu.h>
e28cbf22 35#include <linux/personality.h>
e3d5a27d 36#include <linux/ptrace.h>
5ad4e53b 37#include <linux/fs_struct.h>
b32dfe37
CG
38#include <linux/file.h>
39#include <linux/mount.h>
5a0e3ad6 40#include <linux/gfp.h>
40dc166c 41#include <linux/syscore_ops.h>
be27425d
AK
42#include <linux/version.h>
43#include <linux/ctype.h>
1da177e4
LT
44
45#include <linux/compat.h>
46#include <linux/syscalls.h>
00d7c05a 47#include <linux/kprobes.h>
acce292c 48#include <linux/user_namespace.h>
7fe5e042 49#include <linux/binfmts.h>
1da177e4 50
4a22f166
SR
51#include <linux/sched.h>
52#include <linux/rcupdate.h>
53#include <linux/uidgid.h>
54#include <linux/cred.h>
55
04c6862c 56#include <linux/kmsg_dump.h>
be27425d
AK
57/* Move somewhere else to avoid recompiling? */
58#include <generated/utsrelease.h>
04c6862c 59
1da177e4
LT
60#include <asm/uaccess.h>
61#include <asm/io.h>
62#include <asm/unistd.h>
63
64#ifndef SET_UNALIGN_CTL
ec94fc3d 65# define SET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
66#endif
67#ifndef GET_UNALIGN_CTL
ec94fc3d 68# define GET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
69#endif
70#ifndef SET_FPEMU_CTL
ec94fc3d 71# define SET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
72#endif
73#ifndef GET_FPEMU_CTL
ec94fc3d 74# define GET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
75#endif
76#ifndef SET_FPEXC_CTL
ec94fc3d 77# define SET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4
LT
78#endif
79#ifndef GET_FPEXC_CTL
ec94fc3d 80# define GET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4 81#endif
651d765d 82#ifndef GET_ENDIAN
ec94fc3d 83# define GET_ENDIAN(a, b) (-EINVAL)
651d765d
AB
84#endif
85#ifndef SET_ENDIAN
ec94fc3d 86# define SET_ENDIAN(a, b) (-EINVAL)
651d765d 87#endif
8fb402bc
EB
88#ifndef GET_TSC_CTL
89# define GET_TSC_CTL(a) (-EINVAL)
90#endif
91#ifndef SET_TSC_CTL
92# define SET_TSC_CTL(a) (-EINVAL)
93#endif
fe3d197f 94#ifndef MPX_ENABLE_MANAGEMENT
46a6e0cf 95# define MPX_ENABLE_MANAGEMENT() (-EINVAL)
fe3d197f
DH
96#endif
97#ifndef MPX_DISABLE_MANAGEMENT
46a6e0cf 98# define MPX_DISABLE_MANAGEMENT() (-EINVAL)
fe3d197f 99#endif
9791554b
PB
100#ifndef GET_FP_MODE
101# define GET_FP_MODE(a) (-EINVAL)
102#endif
103#ifndef SET_FP_MODE
104# define SET_FP_MODE(a,b) (-EINVAL)
105#endif
1da177e4
LT
106
107/*
108 * this is where the system-wide overflow UID and GID are defined, for
109 * architectures that now have 32-bit UID/GID but didn't in the past
110 */
111
112int overflowuid = DEFAULT_OVERFLOWUID;
113int overflowgid = DEFAULT_OVERFLOWGID;
114
1da177e4
LT
115EXPORT_SYMBOL(overflowuid);
116EXPORT_SYMBOL(overflowgid);
1da177e4
LT
117
118/*
119 * the same as above, but for filesystems which can only store a 16-bit
120 * UID and GID. as such, this is needed on all architectures
121 */
122
123int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
124int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
125
126EXPORT_SYMBOL(fs_overflowuid);
127EXPORT_SYMBOL(fs_overflowgid);
128
fc832ad3
SH
129/*
130 * Returns true if current's euid is same as p's uid or euid,
131 * or has CAP_SYS_NICE to p's user_ns.
132 *
133 * Called with rcu_read_lock, creds are safe
134 */
135static bool set_one_prio_perm(struct task_struct *p)
136{
137 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
138
5af66203
EB
139 if (uid_eq(pcred->uid, cred->euid) ||
140 uid_eq(pcred->euid, cred->euid))
fc832ad3 141 return true;
c4a4d603 142 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
143 return true;
144 return false;
145}
146
c69e8d9c
DH
147/*
148 * set the priority of a task
149 * - the caller must hold the RCU read lock
150 */
1da177e4
LT
151static int set_one_prio(struct task_struct *p, int niceval, int error)
152{
153 int no_nice;
154
fc832ad3 155 if (!set_one_prio_perm(p)) {
1da177e4
LT
156 error = -EPERM;
157 goto out;
158 }
e43379f1 159 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
160 error = -EACCES;
161 goto out;
162 }
163 no_nice = security_task_setnice(p, niceval);
164 if (no_nice) {
165 error = no_nice;
166 goto out;
167 }
168 if (error == -ESRCH)
169 error = 0;
170 set_user_nice(p, niceval);
171out:
172 return error;
173}
174
754fe8d2 175SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
176{
177 struct task_struct *g, *p;
178 struct user_struct *user;
86a264ab 179 const struct cred *cred = current_cred();
1da177e4 180 int error = -EINVAL;
41487c65 181 struct pid *pgrp;
7b44ab97 182 kuid_t uid;
1da177e4 183
3e88c553 184 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
185 goto out;
186
187 /* normalize: avoid signed division (rounding problems) */
188 error = -ESRCH;
c4a4d2f4
DY
189 if (niceval < MIN_NICE)
190 niceval = MIN_NICE;
191 if (niceval > MAX_NICE)
192 niceval = MAX_NICE;
1da177e4 193
d4581a23 194 rcu_read_lock();
1da177e4
LT
195 read_lock(&tasklist_lock);
196 switch (which) {
ec94fc3d 197 case PRIO_PROCESS:
198 if (who)
199 p = find_task_by_vpid(who);
200 else
201 p = current;
202 if (p)
203 error = set_one_prio(p, niceval, error);
204 break;
205 case PRIO_PGRP:
206 if (who)
207 pgrp = find_vpid(who);
208 else
209 pgrp = task_pgrp(current);
210 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
211 error = set_one_prio(p, niceval, error);
212 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
213 break;
214 case PRIO_USER:
215 uid = make_kuid(cred->user_ns, who);
216 user = cred->user;
217 if (!who)
218 uid = cred->uid;
219 else if (!uid_eq(uid, cred->uid)) {
220 user = find_user(uid);
221 if (!user)
86a264ab 222 goto out_unlock; /* No processes for this user */
ec94fc3d 223 }
224 do_each_thread(g, p) {
8639b461 225 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
ec94fc3d 226 error = set_one_prio(p, niceval, error);
227 } while_each_thread(g, p);
228 if (!uid_eq(uid, cred->uid))
229 free_uid(user); /* For find_user() */
230 break;
1da177e4
LT
231 }
232out_unlock:
233 read_unlock(&tasklist_lock);
d4581a23 234 rcu_read_unlock();
1da177e4
LT
235out:
236 return error;
237}
238
239/*
240 * Ugh. To avoid negative return values, "getpriority()" will
241 * not return the normal nice-value, but a negated value that
242 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
243 * to stay compatible.
244 */
754fe8d2 245SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
246{
247 struct task_struct *g, *p;
248 struct user_struct *user;
86a264ab 249 const struct cred *cred = current_cred();
1da177e4 250 long niceval, retval = -ESRCH;
41487c65 251 struct pid *pgrp;
7b44ab97 252 kuid_t uid;
1da177e4 253
3e88c553 254 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
255 return -EINVAL;
256
70118837 257 rcu_read_lock();
1da177e4
LT
258 read_lock(&tasklist_lock);
259 switch (which) {
ec94fc3d 260 case PRIO_PROCESS:
261 if (who)
262 p = find_task_by_vpid(who);
263 else
264 p = current;
265 if (p) {
266 niceval = nice_to_rlimit(task_nice(p));
267 if (niceval > retval)
268 retval = niceval;
269 }
270 break;
271 case PRIO_PGRP:
272 if (who)
273 pgrp = find_vpid(who);
274 else
275 pgrp = task_pgrp(current);
276 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
277 niceval = nice_to_rlimit(task_nice(p));
278 if (niceval > retval)
279 retval = niceval;
280 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
281 break;
282 case PRIO_USER:
283 uid = make_kuid(cred->user_ns, who);
284 user = cred->user;
285 if (!who)
286 uid = cred->uid;
287 else if (!uid_eq(uid, cred->uid)) {
288 user = find_user(uid);
289 if (!user)
290 goto out_unlock; /* No processes for this user */
291 }
292 do_each_thread(g, p) {
8639b461 293 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
7aa2c016 294 niceval = nice_to_rlimit(task_nice(p));
1da177e4
LT
295 if (niceval > retval)
296 retval = niceval;
297 }
ec94fc3d 298 } while_each_thread(g, p);
299 if (!uid_eq(uid, cred->uid))
300 free_uid(user); /* for find_user() */
301 break;
1da177e4
LT
302 }
303out_unlock:
304 read_unlock(&tasklist_lock);
70118837 305 rcu_read_unlock();
1da177e4
LT
306
307 return retval;
308}
309
1da177e4
LT
310/*
311 * Unprivileged users may change the real gid to the effective gid
312 * or vice versa. (BSD-style)
313 *
314 * If you set the real gid at all, or set the effective gid to a value not
315 * equal to the real gid, then the saved gid is set to the new effective gid.
316 *
317 * This makes it possible for a setgid program to completely drop its
318 * privileges, which is often a useful assertion to make when you are doing
319 * a security audit over a program.
320 *
321 * The general idea is that a program which uses just setregid() will be
322 * 100% compatible with BSD. A program which uses just setgid() will be
ec94fc3d 323 * 100% compatible with POSIX with saved IDs.
1da177e4
LT
324 *
325 * SMP: There are not races, the GIDs are checked only by filesystem
326 * operations (as far as semantic preservation is concerned).
327 */
2813893f 328#ifdef CONFIG_MULTIUSER
ae1251ab 329SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 330{
a29c33f4 331 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
332 const struct cred *old;
333 struct cred *new;
1da177e4 334 int retval;
a29c33f4
EB
335 kgid_t krgid, kegid;
336
337 krgid = make_kgid(ns, rgid);
338 kegid = make_kgid(ns, egid);
339
340 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
341 return -EINVAL;
342 if ((egid != (gid_t) -1) && !gid_valid(kegid))
343 return -EINVAL;
1da177e4 344
d84f4f99
DH
345 new = prepare_creds();
346 if (!new)
347 return -ENOMEM;
348 old = current_cred();
349
d84f4f99 350 retval = -EPERM;
1da177e4 351 if (rgid != (gid_t) -1) {
a29c33f4
EB
352 if (gid_eq(old->gid, krgid) ||
353 gid_eq(old->egid, krgid) ||
c7b96acf 354 ns_capable(old->user_ns, CAP_SETGID))
a29c33f4 355 new->gid = krgid;
1da177e4 356 else
d84f4f99 357 goto error;
1da177e4
LT
358 }
359 if (egid != (gid_t) -1) {
a29c33f4
EB
360 if (gid_eq(old->gid, kegid) ||
361 gid_eq(old->egid, kegid) ||
362 gid_eq(old->sgid, kegid) ||
c7b96acf 363 ns_capable(old->user_ns, CAP_SETGID))
a29c33f4 364 new->egid = kegid;
756184b7 365 else
d84f4f99 366 goto error;
1da177e4 367 }
d84f4f99 368
1da177e4 369 if (rgid != (gid_t) -1 ||
a29c33f4 370 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
d84f4f99
DH
371 new->sgid = new->egid;
372 new->fsgid = new->egid;
373
374 return commit_creds(new);
375
376error:
377 abort_creds(new);
378 return retval;
1da177e4
LT
379}
380
381/*
ec94fc3d 382 * setgid() is implemented like SysV w/ SAVED_IDS
1da177e4
LT
383 *
384 * SMP: Same implicit races as above.
385 */
ae1251ab 386SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 387{
a29c33f4 388 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
389 const struct cred *old;
390 struct cred *new;
1da177e4 391 int retval;
a29c33f4
EB
392 kgid_t kgid;
393
394 kgid = make_kgid(ns, gid);
395 if (!gid_valid(kgid))
396 return -EINVAL;
1da177e4 397
d84f4f99
DH
398 new = prepare_creds();
399 if (!new)
400 return -ENOMEM;
401 old = current_cred();
402
d84f4f99 403 retval = -EPERM;
c7b96acf 404 if (ns_capable(old->user_ns, CAP_SETGID))
a29c33f4
EB
405 new->gid = new->egid = new->sgid = new->fsgid = kgid;
406 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
407 new->egid = new->fsgid = kgid;
1da177e4 408 else
d84f4f99 409 goto error;
1da177e4 410
d84f4f99
DH
411 return commit_creds(new);
412
413error:
414 abort_creds(new);
415 return retval;
1da177e4 416}
54e99124 417
d84f4f99
DH
418/*
419 * change the user struct in a credentials set to match the new UID
420 */
421static int set_user(struct cred *new)
1da177e4
LT
422{
423 struct user_struct *new_user;
424
078de5f7 425 new_user = alloc_uid(new->uid);
1da177e4
LT
426 if (!new_user)
427 return -EAGAIN;
428
72fa5997
VK
429 /*
430 * We don't fail in case of NPROC limit excess here because too many
431 * poorly written programs don't check set*uid() return code, assuming
432 * it never fails if called by root. We may still enforce NPROC limit
433 * for programs doing set*uid()+execve() by harmlessly deferring the
434 * failure to the execve() stage.
435 */
78d7d407 436 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
72fa5997
VK
437 new_user != INIT_USER)
438 current->flags |= PF_NPROC_EXCEEDED;
439 else
440 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 441
d84f4f99
DH
442 free_uid(new->user);
443 new->user = new_user;
1da177e4
LT
444 return 0;
445}
446
447/*
448 * Unprivileged users may change the real uid to the effective uid
449 * or vice versa. (BSD-style)
450 *
451 * If you set the real uid at all, or set the effective uid to a value not
452 * equal to the real uid, then the saved uid is set to the new effective uid.
453 *
454 * This makes it possible for a setuid program to completely drop its
455 * privileges, which is often a useful assertion to make when you are doing
456 * a security audit over a program.
457 *
458 * The general idea is that a program which uses just setreuid() will be
459 * 100% compatible with BSD. A program which uses just setuid() will be
ec94fc3d 460 * 100% compatible with POSIX with saved IDs.
1da177e4 461 */
ae1251ab 462SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 463{
a29c33f4 464 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
465 const struct cred *old;
466 struct cred *new;
1da177e4 467 int retval;
a29c33f4
EB
468 kuid_t kruid, keuid;
469
470 kruid = make_kuid(ns, ruid);
471 keuid = make_kuid(ns, euid);
472
473 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
474 return -EINVAL;
475 if ((euid != (uid_t) -1) && !uid_valid(keuid))
476 return -EINVAL;
1da177e4 477
d84f4f99
DH
478 new = prepare_creds();
479 if (!new)
480 return -ENOMEM;
481 old = current_cred();
482
d84f4f99 483 retval = -EPERM;
1da177e4 484 if (ruid != (uid_t) -1) {
a29c33f4
EB
485 new->uid = kruid;
486 if (!uid_eq(old->uid, kruid) &&
487 !uid_eq(old->euid, kruid) &&
c7b96acf 488 !ns_capable(old->user_ns, CAP_SETUID))
d84f4f99 489 goto error;
1da177e4
LT
490 }
491
492 if (euid != (uid_t) -1) {
a29c33f4
EB
493 new->euid = keuid;
494 if (!uid_eq(old->uid, keuid) &&
495 !uid_eq(old->euid, keuid) &&
496 !uid_eq(old->suid, keuid) &&
c7b96acf 497 !ns_capable(old->user_ns, CAP_SETUID))
d84f4f99 498 goto error;
1da177e4
LT
499 }
500
a29c33f4 501 if (!uid_eq(new->uid, old->uid)) {
54e99124
DG
502 retval = set_user(new);
503 if (retval < 0)
504 goto error;
505 }
1da177e4 506 if (ruid != (uid_t) -1 ||
a29c33f4 507 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
d84f4f99
DH
508 new->suid = new->euid;
509 new->fsuid = new->euid;
1da177e4 510
d84f4f99
DH
511 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
512 if (retval < 0)
513 goto error;
1da177e4 514
d84f4f99 515 return commit_creds(new);
1da177e4 516
d84f4f99
DH
517error:
518 abort_creds(new);
519 return retval;
520}
ec94fc3d 521
1da177e4 522/*
ec94fc3d 523 * setuid() is implemented like SysV with SAVED_IDS
524 *
1da177e4 525 * Note that SAVED_ID's is deficient in that a setuid root program
ec94fc3d 526 * like sendmail, for example, cannot set its uid to be a normal
1da177e4
LT
527 * user and then switch back, because if you're root, setuid() sets
528 * the saved uid too. If you don't like this, blame the bright people
529 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
530 * will allow a root program to temporarily drop privileges and be able to
ec94fc3d 531 * regain them by swapping the real and effective uid.
1da177e4 532 */
ae1251ab 533SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 534{
a29c33f4 535 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
536 const struct cred *old;
537 struct cred *new;
1da177e4 538 int retval;
a29c33f4
EB
539 kuid_t kuid;
540
541 kuid = make_kuid(ns, uid);
542 if (!uid_valid(kuid))
543 return -EINVAL;
1da177e4 544
d84f4f99
DH
545 new = prepare_creds();
546 if (!new)
547 return -ENOMEM;
548 old = current_cred();
549
d84f4f99 550 retval = -EPERM;
c7b96acf 551 if (ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
552 new->suid = new->uid = kuid;
553 if (!uid_eq(kuid, old->uid)) {
54e99124
DG
554 retval = set_user(new);
555 if (retval < 0)
556 goto error;
d84f4f99 557 }
a29c33f4 558 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
d84f4f99 559 goto error;
1da177e4 560 }
1da177e4 561
a29c33f4 562 new->fsuid = new->euid = kuid;
d84f4f99
DH
563
564 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
565 if (retval < 0)
566 goto error;
1da177e4 567
d84f4f99 568 return commit_creds(new);
1da177e4 569
d84f4f99
DH
570error:
571 abort_creds(new);
572 return retval;
1da177e4
LT
573}
574
575
576/*
577 * This function implements a generic ability to update ruid, euid,
578 * and suid. This allows you to implement the 4.4 compatible seteuid().
579 */
ae1251ab 580SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 581{
a29c33f4 582 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
583 const struct cred *old;
584 struct cred *new;
1da177e4 585 int retval;
a29c33f4
EB
586 kuid_t kruid, keuid, ksuid;
587
588 kruid = make_kuid(ns, ruid);
589 keuid = make_kuid(ns, euid);
590 ksuid = make_kuid(ns, suid);
591
592 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
593 return -EINVAL;
594
595 if ((euid != (uid_t) -1) && !uid_valid(keuid))
596 return -EINVAL;
597
598 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
599 return -EINVAL;
1da177e4 600
d84f4f99
DH
601 new = prepare_creds();
602 if (!new)
603 return -ENOMEM;
604
d84f4f99 605 old = current_cred();
1da177e4 606
d84f4f99 607 retval = -EPERM;
c7b96acf 608 if (!ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
609 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
610 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
d84f4f99 611 goto error;
a29c33f4
EB
612 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
613 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
d84f4f99 614 goto error;
a29c33f4
EB
615 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
616 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
d84f4f99 617 goto error;
1da177e4 618 }
d84f4f99 619
1da177e4 620 if (ruid != (uid_t) -1) {
a29c33f4
EB
621 new->uid = kruid;
622 if (!uid_eq(kruid, old->uid)) {
54e99124
DG
623 retval = set_user(new);
624 if (retval < 0)
625 goto error;
626 }
1da177e4 627 }
d84f4f99 628 if (euid != (uid_t) -1)
a29c33f4 629 new->euid = keuid;
1da177e4 630 if (suid != (uid_t) -1)
a29c33f4 631 new->suid = ksuid;
d84f4f99 632 new->fsuid = new->euid;
1da177e4 633
d84f4f99
DH
634 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
635 if (retval < 0)
636 goto error;
1da177e4 637
d84f4f99 638 return commit_creds(new);
1da177e4 639
d84f4f99
DH
640error:
641 abort_creds(new);
642 return retval;
1da177e4
LT
643}
644
a29c33f4 645SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
1da177e4 646{
86a264ab 647 const struct cred *cred = current_cred();
1da177e4 648 int retval;
a29c33f4
EB
649 uid_t ruid, euid, suid;
650
651 ruid = from_kuid_munged(cred->user_ns, cred->uid);
652 euid = from_kuid_munged(cred->user_ns, cred->euid);
653 suid = from_kuid_munged(cred->user_ns, cred->suid);
1da177e4 654
ec94fc3d 655 retval = put_user(ruid, ruidp);
656 if (!retval) {
657 retval = put_user(euid, euidp);
658 if (!retval)
659 return put_user(suid, suidp);
660 }
1da177e4
LT
661 return retval;
662}
663
664/*
665 * Same as above, but for rgid, egid, sgid.
666 */
ae1251ab 667SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 668{
a29c33f4 669 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
670 const struct cred *old;
671 struct cred *new;
1da177e4 672 int retval;
a29c33f4
EB
673 kgid_t krgid, kegid, ksgid;
674
675 krgid = make_kgid(ns, rgid);
676 kegid = make_kgid(ns, egid);
677 ksgid = make_kgid(ns, sgid);
678
679 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
680 return -EINVAL;
681 if ((egid != (gid_t) -1) && !gid_valid(kegid))
682 return -EINVAL;
683 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
684 return -EINVAL;
1da177e4 685
d84f4f99
DH
686 new = prepare_creds();
687 if (!new)
688 return -ENOMEM;
689 old = current_cred();
690
d84f4f99 691 retval = -EPERM;
c7b96acf 692 if (!ns_capable(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
693 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
694 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
d84f4f99 695 goto error;
a29c33f4
EB
696 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
697 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
d84f4f99 698 goto error;
a29c33f4
EB
699 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
700 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
d84f4f99 701 goto error;
1da177e4 702 }
d84f4f99 703
1da177e4 704 if (rgid != (gid_t) -1)
a29c33f4 705 new->gid = krgid;
d84f4f99 706 if (egid != (gid_t) -1)
a29c33f4 707 new->egid = kegid;
1da177e4 708 if (sgid != (gid_t) -1)
a29c33f4 709 new->sgid = ksgid;
d84f4f99 710 new->fsgid = new->egid;
1da177e4 711
d84f4f99
DH
712 return commit_creds(new);
713
714error:
715 abort_creds(new);
716 return retval;
1da177e4
LT
717}
718
a29c33f4 719SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
1da177e4 720{
86a264ab 721 const struct cred *cred = current_cred();
1da177e4 722 int retval;
a29c33f4
EB
723 gid_t rgid, egid, sgid;
724
725 rgid = from_kgid_munged(cred->user_ns, cred->gid);
726 egid = from_kgid_munged(cred->user_ns, cred->egid);
727 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
1da177e4 728
ec94fc3d 729 retval = put_user(rgid, rgidp);
730 if (!retval) {
731 retval = put_user(egid, egidp);
732 if (!retval)
733 retval = put_user(sgid, sgidp);
734 }
1da177e4
LT
735
736 return retval;
737}
738
739
740/*
741 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
742 * is used for "access()" and for the NFS daemon (letting nfsd stay at
743 * whatever uid it wants to). It normally shadows "euid", except when
744 * explicitly set by setfsuid() or for access..
745 */
ae1251ab 746SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 747{
d84f4f99
DH
748 const struct cred *old;
749 struct cred *new;
750 uid_t old_fsuid;
a29c33f4
EB
751 kuid_t kuid;
752
753 old = current_cred();
754 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
755
756 kuid = make_kuid(old->user_ns, uid);
757 if (!uid_valid(kuid))
758 return old_fsuid;
1da177e4 759
d84f4f99
DH
760 new = prepare_creds();
761 if (!new)
a29c33f4 762 return old_fsuid;
1da177e4 763
a29c33f4
EB
764 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
765 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
c7b96acf 766 ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
767 if (!uid_eq(kuid, old->fsuid)) {
768 new->fsuid = kuid;
d84f4f99
DH
769 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
770 goto change_okay;
1da177e4 771 }
1da177e4
LT
772 }
773
d84f4f99
DH
774 abort_creds(new);
775 return old_fsuid;
1da177e4 776
d84f4f99
DH
777change_okay:
778 commit_creds(new);
1da177e4
LT
779 return old_fsuid;
780}
781
782/*
f42df9e6 783 * Samma på svenska..
1da177e4 784 */
ae1251ab 785SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 786{
d84f4f99
DH
787 const struct cred *old;
788 struct cred *new;
789 gid_t old_fsgid;
a29c33f4
EB
790 kgid_t kgid;
791
792 old = current_cred();
793 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
794
795 kgid = make_kgid(old->user_ns, gid);
796 if (!gid_valid(kgid))
797 return old_fsgid;
d84f4f99
DH
798
799 new = prepare_creds();
800 if (!new)
a29c33f4 801 return old_fsgid;
1da177e4 802
a29c33f4
EB
803 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
804 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
c7b96acf 805 ns_capable(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
806 if (!gid_eq(kgid, old->fsgid)) {
807 new->fsgid = kgid;
d84f4f99 808 goto change_okay;
1da177e4 809 }
1da177e4 810 }
d84f4f99 811
d84f4f99
DH
812 abort_creds(new);
813 return old_fsgid;
814
815change_okay:
816 commit_creds(new);
1da177e4
LT
817 return old_fsgid;
818}
2813893f 819#endif /* CONFIG_MULTIUSER */
1da177e4 820
4a22f166
SR
821/**
822 * sys_getpid - return the thread group id of the current process
823 *
824 * Note, despite the name, this returns the tgid not the pid. The tgid and
825 * the pid are identical unless CLONE_THREAD was specified on clone() in
826 * which case the tgid is the same in all threads of the same group.
827 *
828 * This is SMP safe as current->tgid does not change.
829 */
830SYSCALL_DEFINE0(getpid)
831{
832 return task_tgid_vnr(current);
833}
834
835/* Thread ID - the internal kernel "pid" */
836SYSCALL_DEFINE0(gettid)
837{
838 return task_pid_vnr(current);
839}
840
841/*
842 * Accessing ->real_parent is not SMP-safe, it could
843 * change from under us. However, we can use a stale
844 * value of ->real_parent under rcu_read_lock(), see
845 * release_task()->call_rcu(delayed_put_task_struct).
846 */
847SYSCALL_DEFINE0(getppid)
848{
849 int pid;
850
851 rcu_read_lock();
852 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
853 rcu_read_unlock();
854
855 return pid;
856}
857
858SYSCALL_DEFINE0(getuid)
859{
860 /* Only we change this so SMP safe */
861 return from_kuid_munged(current_user_ns(), current_uid());
862}
863
864SYSCALL_DEFINE0(geteuid)
865{
866 /* Only we change this so SMP safe */
867 return from_kuid_munged(current_user_ns(), current_euid());
868}
869
870SYSCALL_DEFINE0(getgid)
871{
872 /* Only we change this so SMP safe */
873 return from_kgid_munged(current_user_ns(), current_gid());
874}
875
876SYSCALL_DEFINE0(getegid)
877{
878 /* Only we change this so SMP safe */
879 return from_kgid_munged(current_user_ns(), current_egid());
880}
881
f06febc9
FM
882void do_sys_times(struct tms *tms)
883{
0cf55e1e 884 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 885
e80d0a1a 886 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
f06febc9
FM
887 cutime = current->signal->cutime;
888 cstime = current->signal->cstime;
0cf55e1e
HS
889 tms->tms_utime = cputime_to_clock_t(tgutime);
890 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
891 tms->tms_cutime = cputime_to_clock_t(cutime);
892 tms->tms_cstime = cputime_to_clock_t(cstime);
893}
894
58fd3aa2 895SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 896{
1da177e4
LT
897 if (tbuf) {
898 struct tms tmp;
f06febc9
FM
899
900 do_sys_times(&tmp);
1da177e4
LT
901 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
902 return -EFAULT;
903 }
e3d5a27d 904 force_successful_syscall_return();
1da177e4
LT
905 return (long) jiffies_64_to_clock_t(get_jiffies_64());
906}
907
908/*
909 * This needs some heavy checking ...
910 * I just haven't the stomach for it. I also don't fully
911 * understand sessions/pgrp etc. Let somebody who does explain it.
912 *
913 * OK, I think I have the protection semantics right.... this is really
914 * only important on a multi-user system anyway, to make sure one user
915 * can't send a signal to a process owned by another. -TYT, 12/12/91
916 *
98611e4e 917 * !PF_FORKNOEXEC check to conform completely to POSIX.
1da177e4 918 */
b290ebe2 919SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
920{
921 struct task_struct *p;
ee0acf90 922 struct task_struct *group_leader = current->group_leader;
4e021306
ON
923 struct pid *pgrp;
924 int err;
1da177e4
LT
925
926 if (!pid)
b488893a 927 pid = task_pid_vnr(group_leader);
1da177e4
LT
928 if (!pgid)
929 pgid = pid;
930 if (pgid < 0)
931 return -EINVAL;
950eaaca 932 rcu_read_lock();
1da177e4
LT
933
934 /* From this point forward we keep holding onto the tasklist lock
935 * so that our parent does not change from under us. -DaveM
936 */
937 write_lock_irq(&tasklist_lock);
938
939 err = -ESRCH;
4e021306 940 p = find_task_by_vpid(pid);
1da177e4
LT
941 if (!p)
942 goto out;
943
944 err = -EINVAL;
945 if (!thread_group_leader(p))
946 goto out;
947
4e021306 948 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 949 err = -EPERM;
41487c65 950 if (task_session(p) != task_session(group_leader))
1da177e4
LT
951 goto out;
952 err = -EACCES;
98611e4e 953 if (!(p->flags & PF_FORKNOEXEC))
1da177e4
LT
954 goto out;
955 } else {
956 err = -ESRCH;
ee0acf90 957 if (p != group_leader)
1da177e4
LT
958 goto out;
959 }
960
961 err = -EPERM;
962 if (p->signal->leader)
963 goto out;
964
4e021306 965 pgrp = task_pid(p);
1da177e4 966 if (pgid != pid) {
b488893a 967 struct task_struct *g;
1da177e4 968
4e021306
ON
969 pgrp = find_vpid(pgid);
970 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 971 if (!g || task_session(g) != task_session(group_leader))
f020bc46 972 goto out;
1da177e4
LT
973 }
974
1da177e4
LT
975 err = security_task_setpgid(p, pgid);
976 if (err)
977 goto out;
978
1b0f7ffd 979 if (task_pgrp(p) != pgrp)
83beaf3c 980 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
981
982 err = 0;
983out:
984 /* All paths lead to here, thus we are safe. -DaveM */
985 write_unlock_irq(&tasklist_lock);
950eaaca 986 rcu_read_unlock();
1da177e4
LT
987 return err;
988}
989
dbf040d9 990SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 991{
12a3de0a
ON
992 struct task_struct *p;
993 struct pid *grp;
994 int retval;
995
996 rcu_read_lock();
756184b7 997 if (!pid)
12a3de0a 998 grp = task_pgrp(current);
756184b7 999 else {
1da177e4 1000 retval = -ESRCH;
12a3de0a
ON
1001 p = find_task_by_vpid(pid);
1002 if (!p)
1003 goto out;
1004 grp = task_pgrp(p);
1005 if (!grp)
1006 goto out;
1007
1008 retval = security_task_getpgid(p);
1009 if (retval)
1010 goto out;
1da177e4 1011 }
12a3de0a
ON
1012 retval = pid_vnr(grp);
1013out:
1014 rcu_read_unlock();
1015 return retval;
1da177e4
LT
1016}
1017
1018#ifdef __ARCH_WANT_SYS_GETPGRP
1019
dbf040d9 1020SYSCALL_DEFINE0(getpgrp)
1da177e4 1021{
12a3de0a 1022 return sys_getpgid(0);
1da177e4
LT
1023}
1024
1025#endif
1026
dbf040d9 1027SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1028{
1dd768c0
ON
1029 struct task_struct *p;
1030 struct pid *sid;
1031 int retval;
1032
1033 rcu_read_lock();
756184b7 1034 if (!pid)
1dd768c0 1035 sid = task_session(current);
756184b7 1036 else {
1da177e4 1037 retval = -ESRCH;
1dd768c0
ON
1038 p = find_task_by_vpid(pid);
1039 if (!p)
1040 goto out;
1041 sid = task_session(p);
1042 if (!sid)
1043 goto out;
1044
1045 retval = security_task_getsid(p);
1046 if (retval)
1047 goto out;
1da177e4 1048 }
1dd768c0
ON
1049 retval = pid_vnr(sid);
1050out:
1051 rcu_read_unlock();
1052 return retval;
1da177e4
LT
1053}
1054
81dabb46
ON
1055static void set_special_pids(struct pid *pid)
1056{
1057 struct task_struct *curr = current->group_leader;
1058
1059 if (task_session(curr) != pid)
1060 change_pid(curr, PIDTYPE_SID, pid);
1061
1062 if (task_pgrp(curr) != pid)
1063 change_pid(curr, PIDTYPE_PGID, pid);
1064}
1065
b290ebe2 1066SYSCALL_DEFINE0(setsid)
1da177e4 1067{
e19f247a 1068 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1069 struct pid *sid = task_pid(group_leader);
1070 pid_t session = pid_vnr(sid);
1da177e4
LT
1071 int err = -EPERM;
1072
1da177e4 1073 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1074 /* Fail if I am already a session leader */
1075 if (group_leader->signal->leader)
1076 goto out;
1077
430c6231
ON
1078 /* Fail if a process group id already exists that equals the
1079 * proposed session id.
390e2ff0 1080 */
6806aac6 1081 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1082 goto out;
1083
e19f247a 1084 group_leader->signal->leader = 1;
81dabb46 1085 set_special_pids(sid);
24ec839c 1086
9c9f4ded 1087 proc_clear_tty(group_leader);
24ec839c 1088
e4cc0a9c 1089 err = session;
1da177e4
LT
1090out:
1091 write_unlock_irq(&tasklist_lock);
5091faa4 1092 if (err > 0) {
0d0df599 1093 proc_sid_connector(group_leader);
5091faa4
MG
1094 sched_autogroup_create_attach(group_leader);
1095 }
1da177e4
LT
1096 return err;
1097}
1098
1da177e4
LT
1099DECLARE_RWSEM(uts_sem);
1100
fff84367
AW
1101#ifdef COMPAT_UTS_MACHINE
1102static char compat_uts_machine[__OLD_UTS_LEN+1] = COMPAT_UTS_MACHINE;
1103
1104static int __init parse_compat_uts_machine(char *arg)
1105{
1106 strncpy(compat_uts_machine, arg, __OLD_UTS_LEN);
1107 compat_uts_machine[__OLD_UTS_LEN] = 0;
1108 return 0;
1109}
1110early_param("compat_uts_machine", parse_compat_uts_machine);
1111
1112#undef COMPAT_UTS_MACHINE
1113#define COMPAT_UTS_MACHINE compat_uts_machine
1114#endif
1115
e28cbf22
CH
1116#ifdef COMPAT_UTS_MACHINE
1117#define override_architecture(name) \
46da2766 1118 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1119 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1120 sizeof(COMPAT_UTS_MACHINE)))
1121#else
1122#define override_architecture(name) 0
1123#endif
1124
be27425d
AK
1125/*
1126 * Work around broken programs that cannot handle "Linux 3.0".
1127 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
39afb5ee 1128 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
be27425d 1129 */
2702b152 1130static int override_release(char __user *release, size_t len)
be27425d
AK
1131{
1132 int ret = 0;
be27425d
AK
1133
1134 if (current->personality & UNAME26) {
2702b152
KC
1135 const char *rest = UTS_RELEASE;
1136 char buf[65] = { 0 };
be27425d
AK
1137 int ndots = 0;
1138 unsigned v;
2702b152 1139 size_t copy;
be27425d
AK
1140
1141 while (*rest) {
1142 if (*rest == '.' && ++ndots >= 3)
1143 break;
1144 if (!isdigit(*rest) && *rest != '.')
1145 break;
1146 rest++;
1147 }
39afb5ee 1148 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
31fd84b9 1149 copy = clamp_t(size_t, len, 1, sizeof(buf));
2702b152
KC
1150 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1151 ret = copy_to_user(release, buf, copy + 1);
be27425d
AK
1152 }
1153 return ret;
1154}
1155
e48fbb69 1156SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1157{
1158 int errno = 0;
1159
1160 down_read(&uts_sem);
e9ff3990 1161 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1162 errno = -EFAULT;
1163 up_read(&uts_sem);
e28cbf22 1164
be27425d
AK
1165 if (!errno && override_release(name->release, sizeof(name->release)))
1166 errno = -EFAULT;
e28cbf22
CH
1167 if (!errno && override_architecture(name))
1168 errno = -EFAULT;
1da177e4
LT
1169 return errno;
1170}
1171
5cacdb4a
CH
1172#ifdef __ARCH_WANT_SYS_OLD_UNAME
1173/*
1174 * Old cruft
1175 */
1176SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1177{
1178 int error = 0;
1179
1180 if (!name)
1181 return -EFAULT;
1182
1183 down_read(&uts_sem);
1184 if (copy_to_user(name, utsname(), sizeof(*name)))
1185 error = -EFAULT;
1186 up_read(&uts_sem);
1187
be27425d
AK
1188 if (!error && override_release(name->release, sizeof(name->release)))
1189 error = -EFAULT;
5cacdb4a
CH
1190 if (!error && override_architecture(name))
1191 error = -EFAULT;
1192 return error;
1193}
1194
1195SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1196{
1197 int error;
1198
1199 if (!name)
1200 return -EFAULT;
1201 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1202 return -EFAULT;
1203
1204 down_read(&uts_sem);
1205 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1206 __OLD_UTS_LEN);
1207 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1208 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1209 __OLD_UTS_LEN);
1210 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1211 error |= __copy_to_user(&name->release, &utsname()->release,
1212 __OLD_UTS_LEN);
1213 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1214 error |= __copy_to_user(&name->version, &utsname()->version,
1215 __OLD_UTS_LEN);
1216 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1217 error |= __copy_to_user(&name->machine, &utsname()->machine,
1218 __OLD_UTS_LEN);
1219 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1220 up_read(&uts_sem);
1221
1222 if (!error && override_architecture(name))
1223 error = -EFAULT;
be27425d
AK
1224 if (!error && override_release(name->release, sizeof(name->release)))
1225 error = -EFAULT;
5cacdb4a
CH
1226 return error ? -EFAULT : 0;
1227}
1228#endif
1229
5a8a82b1 1230SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1231{
1232 int errno;
1233 char tmp[__NEW_UTS_LEN];
1234
bb96a6f5 1235 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1236 return -EPERM;
fc832ad3 1237
1da177e4
LT
1238 if (len < 0 || len > __NEW_UTS_LEN)
1239 return -EINVAL;
1240 down_write(&uts_sem);
1241 errno = -EFAULT;
1242 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1243 struct new_utsname *u = utsname();
1244
1245 memcpy(u->nodename, tmp, len);
1246 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4 1247 errno = 0;
499eea6b 1248 uts_proc_notify(UTS_PROC_HOSTNAME);
1da177e4
LT
1249 }
1250 up_write(&uts_sem);
1251 return errno;
1252}
1253
1254#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1255
5a8a82b1 1256SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1257{
1258 int i, errno;
9679e4dd 1259 struct new_utsname *u;
1da177e4
LT
1260
1261 if (len < 0)
1262 return -EINVAL;
1263 down_read(&uts_sem);
9679e4dd
AM
1264 u = utsname();
1265 i = 1 + strlen(u->nodename);
1da177e4
LT
1266 if (i > len)
1267 i = len;
1268 errno = 0;
9679e4dd 1269 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1270 errno = -EFAULT;
1271 up_read(&uts_sem);
1272 return errno;
1273}
1274
1275#endif
1276
1277/*
1278 * Only setdomainname; getdomainname can be implemented by calling
1279 * uname()
1280 */
5a8a82b1 1281SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1282{
1283 int errno;
1284 char tmp[__NEW_UTS_LEN];
1285
fc832ad3 1286 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1287 return -EPERM;
1288 if (len < 0 || len > __NEW_UTS_LEN)
1289 return -EINVAL;
1290
1291 down_write(&uts_sem);
1292 errno = -EFAULT;
1293 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1294 struct new_utsname *u = utsname();
1295
1296 memcpy(u->domainname, tmp, len);
1297 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4 1298 errno = 0;
499eea6b 1299 uts_proc_notify(UTS_PROC_DOMAINNAME);
1da177e4
LT
1300 }
1301 up_write(&uts_sem);
1302 return errno;
1303}
1304
e48fbb69 1305SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1306{
b9518345
JS
1307 struct rlimit value;
1308 int ret;
1309
1310 ret = do_prlimit(current, resource, NULL, &value);
1311 if (!ret)
1312 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1313
1314 return ret;
1da177e4
LT
1315}
1316
1317#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1318
1319/*
1320 * Back compatibility for getrlimit. Needed for some apps.
1321 */
e48fbb69
HC
1322SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1323 struct rlimit __user *, rlim)
1da177e4
LT
1324{
1325 struct rlimit x;
1326 if (resource >= RLIM_NLIMITS)
1327 return -EINVAL;
1328
1329 task_lock(current->group_leader);
1330 x = current->signal->rlim[resource];
1331 task_unlock(current->group_leader);
756184b7 1332 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1333 x.rlim_cur = 0x7FFFFFFF;
756184b7 1334 if (x.rlim_max > 0x7FFFFFFF)
1da177e4 1335 x.rlim_max = 0x7FFFFFFF;
ec94fc3d 1336 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1da177e4
LT
1337}
1338
1339#endif
1340
c022a0ac
JS
1341static inline bool rlim64_is_infinity(__u64 rlim64)
1342{
1343#if BITS_PER_LONG < 64
1344 return rlim64 >= ULONG_MAX;
1345#else
1346 return rlim64 == RLIM64_INFINITY;
1347#endif
1348}
1349
1350static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1351{
1352 if (rlim->rlim_cur == RLIM_INFINITY)
1353 rlim64->rlim_cur = RLIM64_INFINITY;
1354 else
1355 rlim64->rlim_cur = rlim->rlim_cur;
1356 if (rlim->rlim_max == RLIM_INFINITY)
1357 rlim64->rlim_max = RLIM64_INFINITY;
1358 else
1359 rlim64->rlim_max = rlim->rlim_max;
1360}
1361
1362static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1363{
1364 if (rlim64_is_infinity(rlim64->rlim_cur))
1365 rlim->rlim_cur = RLIM_INFINITY;
1366 else
1367 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1368 if (rlim64_is_infinity(rlim64->rlim_max))
1369 rlim->rlim_max = RLIM_INFINITY;
1370 else
1371 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1372}
1373
1c1e618d 1374/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1375int do_prlimit(struct task_struct *tsk, unsigned int resource,
1376 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1377{
5b41535a 1378 struct rlimit *rlim;
86f162f4 1379 int retval = 0;
1da177e4
LT
1380
1381 if (resource >= RLIM_NLIMITS)
1382 return -EINVAL;
5b41535a
JS
1383 if (new_rlim) {
1384 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1385 return -EINVAL;
1386 if (resource == RLIMIT_NOFILE &&
1387 new_rlim->rlim_max > sysctl_nr_open)
1388 return -EPERM;
1389 }
1da177e4 1390
1c1e618d
JS
1391 /* protect tsk->signal and tsk->sighand from disappearing */
1392 read_lock(&tasklist_lock);
1393 if (!tsk->sighand) {
1394 retval = -ESRCH;
1395 goto out;
1396 }
1397
5b41535a 1398 rlim = tsk->signal->rlim + resource;
86f162f4 1399 task_lock(tsk->group_leader);
5b41535a 1400 if (new_rlim) {
fc832ad3
SH
1401 /* Keep the capable check against init_user_ns until
1402 cgroups can contain all limits */
5b41535a
JS
1403 if (new_rlim->rlim_max > rlim->rlim_max &&
1404 !capable(CAP_SYS_RESOURCE))
1405 retval = -EPERM;
1406 if (!retval)
1407 retval = security_task_setrlimit(tsk->group_leader,
1408 resource, new_rlim);
1409 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1410 /*
1411 * The caller is asking for an immediate RLIMIT_CPU
1412 * expiry. But we use the zero value to mean "it was
1413 * never set". So let's cheat and make it one second
1414 * instead
1415 */
1416 new_rlim->rlim_cur = 1;
1417 }
1418 }
1419 if (!retval) {
1420 if (old_rlim)
1421 *old_rlim = *rlim;
1422 if (new_rlim)
1423 *rlim = *new_rlim;
9926e4c7 1424 }
7855c35d 1425 task_unlock(tsk->group_leader);
1da177e4 1426
d3561f78
AM
1427 /*
1428 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1429 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1430 * very long-standing error, and fixing it now risks breakage of
1431 * applications, so we live with it
1432 */
5b41535a
JS
1433 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1434 new_rlim->rlim_cur != RLIM_INFINITY)
1435 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1436out:
1c1e618d 1437 read_unlock(&tasklist_lock);
2fb9d268 1438 return retval;
1da177e4
LT
1439}
1440
c022a0ac
JS
1441/* rcu lock must be held */
1442static int check_prlimit_permission(struct task_struct *task)
1443{
1444 const struct cred *cred = current_cred(), *tcred;
1445
fc832ad3
SH
1446 if (current == task)
1447 return 0;
c022a0ac 1448
fc832ad3 1449 tcred = __task_cred(task);
5af66203
EB
1450 if (uid_eq(cred->uid, tcred->euid) &&
1451 uid_eq(cred->uid, tcred->suid) &&
1452 uid_eq(cred->uid, tcred->uid) &&
1453 gid_eq(cred->gid, tcred->egid) &&
1454 gid_eq(cred->gid, tcred->sgid) &&
1455 gid_eq(cred->gid, tcred->gid))
fc832ad3 1456 return 0;
c4a4d603 1457 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
fc832ad3
SH
1458 return 0;
1459
1460 return -EPERM;
c022a0ac
JS
1461}
1462
1463SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1464 const struct rlimit64 __user *, new_rlim,
1465 struct rlimit64 __user *, old_rlim)
1466{
1467 struct rlimit64 old64, new64;
1468 struct rlimit old, new;
1469 struct task_struct *tsk;
1470 int ret;
1471
1472 if (new_rlim) {
1473 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1474 return -EFAULT;
1475 rlim64_to_rlim(&new64, &new);
1476 }
1477
1478 rcu_read_lock();
1479 tsk = pid ? find_task_by_vpid(pid) : current;
1480 if (!tsk) {
1481 rcu_read_unlock();
1482 return -ESRCH;
1483 }
1484 ret = check_prlimit_permission(tsk);
1485 if (ret) {
1486 rcu_read_unlock();
1487 return ret;
1488 }
1489 get_task_struct(tsk);
1490 rcu_read_unlock();
1491
1492 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1493 old_rlim ? &old : NULL);
1494
1495 if (!ret && old_rlim) {
1496 rlim_to_rlim64(&old, &old64);
1497 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1498 ret = -EFAULT;
1499 }
1500
1501 put_task_struct(tsk);
1502 return ret;
1503}
1504
7855c35d
JS
1505SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1506{
1507 struct rlimit new_rlim;
1508
1509 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1510 return -EFAULT;
5b41535a 1511 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1512}
1513
1da177e4
LT
1514/*
1515 * It would make sense to put struct rusage in the task_struct,
1516 * except that would make the task_struct be *really big*. After
1517 * task_struct gets moved into malloc'ed memory, it would
1518 * make sense to do this. It will make moving the rest of the information
1519 * a lot simpler! (Which we're not doing right now because we're not
1520 * measuring them yet).
1521 *
1da177e4
LT
1522 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1523 * races with threads incrementing their own counters. But since word
1524 * reads are atomic, we either get new values or old values and we don't
1525 * care which for the sums. We always take the siglock to protect reading
1526 * the c* fields from p->signal from races with exit.c updating those
1527 * fields when reaping, so a sample either gets all the additions of a
1528 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1529 *
de047c1b
RT
1530 * Locking:
1531 * We need to take the siglock for CHILDEREN, SELF and BOTH
1532 * for the cases current multithreaded, non-current single threaded
1533 * non-current multithreaded. Thread traversal is now safe with
1534 * the siglock held.
1535 * Strictly speaking, we donot need to take the siglock if we are current and
1536 * single threaded, as no one else can take our signal_struct away, no one
1537 * else can reap the children to update signal->c* counters, and no one else
1538 * can race with the signal-> fields. If we do not take any lock, the
1539 * signal-> fields could be read out of order while another thread was just
1540 * exiting. So we should place a read memory barrier when we avoid the lock.
1541 * On the writer side, write memory barrier is implied in __exit_signal
1542 * as __exit_signal releases the siglock spinlock after updating the signal->
1543 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1544 *
1da177e4
LT
1545 */
1546
f06febc9 1547static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1548{
679c9cd4
SK
1549 r->ru_nvcsw += t->nvcsw;
1550 r->ru_nivcsw += t->nivcsw;
1551 r->ru_minflt += t->min_flt;
1552 r->ru_majflt += t->maj_flt;
1553 r->ru_inblock += task_io_get_inblock(t);
1554 r->ru_oublock += task_io_get_oublock(t);
1555}
1556
1da177e4
LT
1557static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1558{
1559 struct task_struct *t;
1560 unsigned long flags;
0cf55e1e 1561 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1562 unsigned long maxrss = 0;
1da177e4 1563
ec94fc3d 1564 memset((char *)r, 0, sizeof (*r));
64861634 1565 utime = stime = 0;
1da177e4 1566
679c9cd4 1567 if (who == RUSAGE_THREAD) {
e80d0a1a 1568 task_cputime_adjusted(current, &utime, &stime);
f06febc9 1569 accumulate_thread_rusage(p, r);
1f10206c 1570 maxrss = p->signal->maxrss;
679c9cd4
SK
1571 goto out;
1572 }
1573
d6cf723a 1574 if (!lock_task_sighand(p, &flags))
de047c1b 1575 return;
0f59cc4a 1576
1da177e4 1577 switch (who) {
ec94fc3d 1578 case RUSAGE_BOTH:
1579 case RUSAGE_CHILDREN:
1580 utime = p->signal->cutime;
1581 stime = p->signal->cstime;
1582 r->ru_nvcsw = p->signal->cnvcsw;
1583 r->ru_nivcsw = p->signal->cnivcsw;
1584 r->ru_minflt = p->signal->cmin_flt;
1585 r->ru_majflt = p->signal->cmaj_flt;
1586 r->ru_inblock = p->signal->cinblock;
1587 r->ru_oublock = p->signal->coublock;
1588 maxrss = p->signal->cmaxrss;
1589
1590 if (who == RUSAGE_CHILDREN)
1da177e4 1591 break;
0f59cc4a 1592
ec94fc3d 1593 case RUSAGE_SELF:
1594 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1595 utime += tgutime;
1596 stime += tgstime;
1597 r->ru_nvcsw += p->signal->nvcsw;
1598 r->ru_nivcsw += p->signal->nivcsw;
1599 r->ru_minflt += p->signal->min_flt;
1600 r->ru_majflt += p->signal->maj_flt;
1601 r->ru_inblock += p->signal->inblock;
1602 r->ru_oublock += p->signal->oublock;
1603 if (maxrss < p->signal->maxrss)
1604 maxrss = p->signal->maxrss;
1605 t = p;
1606 do {
1607 accumulate_thread_rusage(t, r);
1608 } while_each_thread(p, t);
1609 break;
1610
1611 default:
1612 BUG();
1da177e4 1613 }
de047c1b 1614 unlock_task_sighand(p, &flags);
de047c1b 1615
679c9cd4 1616out:
0f59cc4a
ON
1617 cputime_to_timeval(utime, &r->ru_utime);
1618 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1619
1620 if (who != RUSAGE_CHILDREN) {
1621 struct mm_struct *mm = get_task_mm(p);
ec94fc3d 1622
1f10206c
JP
1623 if (mm) {
1624 setmax_mm_hiwater_rss(&maxrss, mm);
1625 mmput(mm);
1626 }
1627 }
1628 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1629}
1630
1631int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1632{
1633 struct rusage r;
ec94fc3d 1634
1da177e4 1635 k_getrusage(p, who, &r);
1da177e4
LT
1636 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1637}
1638
e48fbb69 1639SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1640{
679c9cd4
SK
1641 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1642 who != RUSAGE_THREAD)
1da177e4
LT
1643 return -EINVAL;
1644 return getrusage(current, who, ru);
1645}
1646
8d2d5c4a
AV
1647#ifdef CONFIG_COMPAT
1648COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1649{
1650 struct rusage r;
1651
1652 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1653 who != RUSAGE_THREAD)
1654 return -EINVAL;
1655
1656 k_getrusage(current, who, &r);
1657 return put_compat_rusage(&r, ru);
1658}
1659#endif
1660
e48fbb69 1661SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1662{
1663 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1664 return mask;
1665}
3b7391de 1666
6e399cd1 1667static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
b32dfe37 1668{
2903ff01 1669 struct fd exe;
6e399cd1 1670 struct file *old_exe, *exe_file;
496ad9aa 1671 struct inode *inode;
2903ff01 1672 int err;
b32dfe37 1673
2903ff01
AV
1674 exe = fdget(fd);
1675 if (!exe.file)
b32dfe37
CG
1676 return -EBADF;
1677
496ad9aa 1678 inode = file_inode(exe.file);
b32dfe37
CG
1679
1680 /*
1681 * Because the original mm->exe_file points to executable file, make
1682 * sure that this one is executable as well, to avoid breaking an
1683 * overall picture.
1684 */
1685 err = -EACCES;
90f8572b 1686 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
b32dfe37
CG
1687 goto exit;
1688
496ad9aa 1689 err = inode_permission(inode, MAY_EXEC);
b32dfe37
CG
1690 if (err)
1691 goto exit;
1692
bafb282d 1693 /*
4229fb1d 1694 * Forbid mm->exe_file change if old file still mapped.
bafb282d 1695 */
6e399cd1 1696 exe_file = get_mm_exe_file(mm);
bafb282d 1697 err = -EBUSY;
6e399cd1 1698 if (exe_file) {
4229fb1d
KK
1699 struct vm_area_struct *vma;
1700
6e399cd1
DB
1701 down_read(&mm->mmap_sem);
1702 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1703 if (!vma->vm_file)
1704 continue;
1705 if (path_equal(&vma->vm_file->f_path,
1706 &exe_file->f_path))
1707 goto exit_err;
1708 }
1709
1710 up_read(&mm->mmap_sem);
1711 fput(exe_file);
bafb282d
KK
1712 }
1713
b32dfe37
CG
1714 /*
1715 * The symlink can be changed only once, just to disallow arbitrary
1716 * transitions malicious software might bring in. This means one
1717 * could make a snapshot over all processes running and monitor
1718 * /proc/pid/exe changes to notice unusual activity if needed.
1719 */
bafb282d
KK
1720 err = -EPERM;
1721 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
71fe97e1 1722 goto exit;
bafb282d 1723
4229fb1d 1724 err = 0;
6e399cd1
DB
1725 /* set the new file, lockless */
1726 get_file(exe.file);
1727 old_exe = xchg(&mm->exe_file, exe.file);
1728 if (old_exe)
1729 fput(old_exe);
b32dfe37 1730exit:
2903ff01 1731 fdput(exe);
b32dfe37 1732 return err;
6e399cd1
DB
1733exit_err:
1734 up_read(&mm->mmap_sem);
1735 fput(exe_file);
1736 goto exit;
b32dfe37
CG
1737}
1738
f606b77f
CG
1739/*
1740 * WARNING: we don't require any capability here so be very careful
1741 * in what is allowed for modification from userspace.
1742 */
1743static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1744{
1745 unsigned long mmap_max_addr = TASK_SIZE;
1746 struct mm_struct *mm = current->mm;
1747 int error = -EINVAL, i;
1748
1749 static const unsigned char offsets[] = {
1750 offsetof(struct prctl_mm_map, start_code),
1751 offsetof(struct prctl_mm_map, end_code),
1752 offsetof(struct prctl_mm_map, start_data),
1753 offsetof(struct prctl_mm_map, end_data),
1754 offsetof(struct prctl_mm_map, start_brk),
1755 offsetof(struct prctl_mm_map, brk),
1756 offsetof(struct prctl_mm_map, start_stack),
1757 offsetof(struct prctl_mm_map, arg_start),
1758 offsetof(struct prctl_mm_map, arg_end),
1759 offsetof(struct prctl_mm_map, env_start),
1760 offsetof(struct prctl_mm_map, env_end),
1761 };
1762
1763 /*
1764 * Make sure the members are not somewhere outside
1765 * of allowed address space.
1766 */
1767 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1768 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1769
1770 if ((unsigned long)val >= mmap_max_addr ||
1771 (unsigned long)val < mmap_min_addr)
1772 goto out;
1773 }
1774
1775 /*
1776 * Make sure the pairs are ordered.
1777 */
1778#define __prctl_check_order(__m1, __op, __m2) \
1779 ((unsigned long)prctl_map->__m1 __op \
1780 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1781 error = __prctl_check_order(start_code, <, end_code);
1782 error |= __prctl_check_order(start_data, <, end_data);
1783 error |= __prctl_check_order(start_brk, <=, brk);
1784 error |= __prctl_check_order(arg_start, <=, arg_end);
1785 error |= __prctl_check_order(env_start, <=, env_end);
1786 if (error)
1787 goto out;
1788#undef __prctl_check_order
1789
1790 error = -EINVAL;
1791
1792 /*
1793 * @brk should be after @end_data in traditional maps.
1794 */
1795 if (prctl_map->start_brk <= prctl_map->end_data ||
1796 prctl_map->brk <= prctl_map->end_data)
1797 goto out;
1798
1799 /*
1800 * Neither we should allow to override limits if they set.
1801 */
1802 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1803 prctl_map->start_brk, prctl_map->end_data,
1804 prctl_map->start_data))
1805 goto out;
1806
1807 /*
1808 * Someone is trying to cheat the auxv vector.
1809 */
1810 if (prctl_map->auxv_size) {
1811 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1812 goto out;
1813 }
1814
1815 /*
1816 * Finally, make sure the caller has the rights to
1817 * change /proc/pid/exe link: only local root should
1818 * be allowed to.
1819 */
1820 if (prctl_map->exe_fd != (u32)-1) {
1821 struct user_namespace *ns = current_user_ns();
1822 const struct cred *cred = current_cred();
1823
1824 if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1825 !gid_eq(cred->gid, make_kgid(ns, 0)))
1826 goto out;
1827 }
1828
1829 error = 0;
1830out:
1831 return error;
1832}
1833
4a00e9df 1834#ifdef CONFIG_CHECKPOINT_RESTORE
f606b77f
CG
1835static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1836{
1837 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1838 unsigned long user_auxv[AT_VECTOR_SIZE];
1839 struct mm_struct *mm = current->mm;
1840 int error;
1841
1842 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1843 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1844
1845 if (opt == PR_SET_MM_MAP_SIZE)
1846 return put_user((unsigned int)sizeof(prctl_map),
1847 (unsigned int __user *)addr);
1848
1849 if (data_size != sizeof(prctl_map))
1850 return -EINVAL;
1851
1852 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1853 return -EFAULT;
1854
1855 error = validate_prctl_map(&prctl_map);
1856 if (error)
1857 return error;
1858
1859 if (prctl_map.auxv_size) {
1860 memset(user_auxv, 0, sizeof(user_auxv));
1861 if (copy_from_user(user_auxv,
1862 (const void __user *)prctl_map.auxv,
1863 prctl_map.auxv_size))
1864 return -EFAULT;
1865
1866 /* Last entry must be AT_NULL as specification requires */
1867 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1868 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1869 }
1870
e5e99792 1871 if (prctl_map.exe_fd != (u32)-1) {
6e399cd1 1872 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
e5e99792
MG
1873 if (error)
1874 return error;
1875 }
1876
1877 down_write(&mm->mmap_sem);
f606b77f
CG
1878
1879 /*
1880 * We don't validate if these members are pointing to
1881 * real present VMAs because application may have correspond
1882 * VMAs already unmapped and kernel uses these members for statistics
1883 * output in procfs mostly, except
1884 *
1885 * - @start_brk/@brk which are used in do_brk but kernel lookups
1886 * for VMAs when updating these memvers so anything wrong written
1887 * here cause kernel to swear at userspace program but won't lead
1888 * to any problem in kernel itself
1889 */
1890
1891 mm->start_code = prctl_map.start_code;
1892 mm->end_code = prctl_map.end_code;
1893 mm->start_data = prctl_map.start_data;
1894 mm->end_data = prctl_map.end_data;
1895 mm->start_brk = prctl_map.start_brk;
1896 mm->brk = prctl_map.brk;
1897 mm->start_stack = prctl_map.start_stack;
1898 mm->arg_start = prctl_map.arg_start;
1899 mm->arg_end = prctl_map.arg_end;
1900 mm->env_start = prctl_map.env_start;
1901 mm->env_end = prctl_map.env_end;
1902
1903 /*
1904 * Note this update of @saved_auxv is lockless thus
1905 * if someone reads this member in procfs while we're
1906 * updating -- it may get partly updated results. It's
1907 * known and acceptable trade off: we leave it as is to
1908 * not introduce additional locks here making the kernel
1909 * more complex.
1910 */
1911 if (prctl_map.auxv_size)
1912 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1913
e5e99792
MG
1914 up_write(&mm->mmap_sem);
1915 return 0;
f606b77f
CG
1916}
1917#endif /* CONFIG_CHECKPOINT_RESTORE */
1918
4a00e9df
AD
1919static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
1920 unsigned long len)
1921{
1922 /*
1923 * This doesn't move the auxiliary vector itself since it's pinned to
1924 * mm_struct, but it permits filling the vector with new values. It's
1925 * up to the caller to provide sane values here, otherwise userspace
1926 * tools which use this vector might be unhappy.
1927 */
1928 unsigned long user_auxv[AT_VECTOR_SIZE];
1929
1930 if (len > sizeof(user_auxv))
1931 return -EINVAL;
1932
1933 if (copy_from_user(user_auxv, (const void __user *)addr, len))
1934 return -EFAULT;
1935
1936 /* Make sure the last entry is always AT_NULL */
1937 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1938 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1939
1940 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1941
1942 task_lock(current);
1943 memcpy(mm->saved_auxv, user_auxv, len);
1944 task_unlock(current);
1945
1946 return 0;
1947}
1948
028ee4be
CG
1949static int prctl_set_mm(int opt, unsigned long addr,
1950 unsigned long arg4, unsigned long arg5)
1951{
028ee4be 1952 struct mm_struct *mm = current->mm;
4a00e9df 1953 struct prctl_mm_map prctl_map;
fe8c7f5c
CG
1954 struct vm_area_struct *vma;
1955 int error;
028ee4be 1956
f606b77f
CG
1957 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1958 opt != PR_SET_MM_MAP &&
1959 opt != PR_SET_MM_MAP_SIZE)))
028ee4be
CG
1960 return -EINVAL;
1961
f606b77f
CG
1962#ifdef CONFIG_CHECKPOINT_RESTORE
1963 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1964 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1965#endif
1966
79f0713d 1967 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
1968 return -EPERM;
1969
6e399cd1
DB
1970 if (opt == PR_SET_MM_EXE_FILE)
1971 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
b32dfe37 1972
4a00e9df
AD
1973 if (opt == PR_SET_MM_AUXV)
1974 return prctl_set_auxv(mm, addr, arg4);
1975
1ad75b9e 1976 if (addr >= TASK_SIZE || addr < mmap_min_addr)
028ee4be
CG
1977 return -EINVAL;
1978
fe8c7f5c
CG
1979 error = -EINVAL;
1980
e5e99792 1981 down_write(&mm->mmap_sem);
028ee4be
CG
1982 vma = find_vma(mm, addr);
1983
4a00e9df
AD
1984 prctl_map.start_code = mm->start_code;
1985 prctl_map.end_code = mm->end_code;
1986 prctl_map.start_data = mm->start_data;
1987 prctl_map.end_data = mm->end_data;
1988 prctl_map.start_brk = mm->start_brk;
1989 prctl_map.brk = mm->brk;
1990 prctl_map.start_stack = mm->start_stack;
1991 prctl_map.arg_start = mm->arg_start;
1992 prctl_map.arg_end = mm->arg_end;
1993 prctl_map.env_start = mm->env_start;
1994 prctl_map.env_end = mm->env_end;
1995 prctl_map.auxv = NULL;
1996 prctl_map.auxv_size = 0;
1997 prctl_map.exe_fd = -1;
1998
028ee4be
CG
1999 switch (opt) {
2000 case PR_SET_MM_START_CODE:
4a00e9df 2001 prctl_map.start_code = addr;
fe8c7f5c 2002 break;
028ee4be 2003 case PR_SET_MM_END_CODE:
4a00e9df 2004 prctl_map.end_code = addr;
028ee4be 2005 break;
028ee4be 2006 case PR_SET_MM_START_DATA:
4a00e9df 2007 prctl_map.start_data = addr;
028ee4be 2008 break;
fe8c7f5c 2009 case PR_SET_MM_END_DATA:
4a00e9df
AD
2010 prctl_map.end_data = addr;
2011 break;
2012 case PR_SET_MM_START_STACK:
2013 prctl_map.start_stack = addr;
028ee4be 2014 break;
028ee4be 2015 case PR_SET_MM_START_BRK:
4a00e9df 2016 prctl_map.start_brk = addr;
028ee4be 2017 break;
028ee4be 2018 case PR_SET_MM_BRK:
4a00e9df 2019 prctl_map.brk = addr;
028ee4be 2020 break;
4a00e9df
AD
2021 case PR_SET_MM_ARG_START:
2022 prctl_map.arg_start = addr;
2023 break;
2024 case PR_SET_MM_ARG_END:
2025 prctl_map.arg_end = addr;
2026 break;
2027 case PR_SET_MM_ENV_START:
2028 prctl_map.env_start = addr;
2029 break;
2030 case PR_SET_MM_ENV_END:
2031 prctl_map.env_end = addr;
2032 break;
2033 default:
2034 goto out;
2035 }
2036
2037 error = validate_prctl_map(&prctl_map);
2038 if (error)
2039 goto out;
028ee4be 2040
4a00e9df 2041 switch (opt) {
fe8c7f5c
CG
2042 /*
2043 * If command line arguments and environment
2044 * are placed somewhere else on stack, we can
2045 * set them up here, ARG_START/END to setup
2046 * command line argumets and ENV_START/END
2047 * for environment.
2048 */
2049 case PR_SET_MM_START_STACK:
2050 case PR_SET_MM_ARG_START:
2051 case PR_SET_MM_ARG_END:
2052 case PR_SET_MM_ENV_START:
2053 case PR_SET_MM_ENV_END:
2054 if (!vma) {
2055 error = -EFAULT;
2056 goto out;
2057 }
028ee4be
CG
2058 }
2059
4a00e9df
AD
2060 mm->start_code = prctl_map.start_code;
2061 mm->end_code = prctl_map.end_code;
2062 mm->start_data = prctl_map.start_data;
2063 mm->end_data = prctl_map.end_data;
2064 mm->start_brk = prctl_map.start_brk;
2065 mm->brk = prctl_map.brk;
2066 mm->start_stack = prctl_map.start_stack;
2067 mm->arg_start = prctl_map.arg_start;
2068 mm->arg_end = prctl_map.arg_end;
2069 mm->env_start = prctl_map.env_start;
2070 mm->env_end = prctl_map.env_end;
2071
028ee4be 2072 error = 0;
028ee4be 2073out:
e5e99792 2074 up_write(&mm->mmap_sem);
028ee4be
CG
2075 return error;
2076}
300f786b 2077
52b36941 2078#ifdef CONFIG_CHECKPOINT_RESTORE
300f786b
CG
2079static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2080{
2081 return put_user(me->clear_child_tid, tid_addr);
2082}
52b36941 2083#else
300f786b
CG
2084static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2085{
2086 return -EINVAL;
2087}
028ee4be
CG
2088#endif
2089
c4ea37c2
HC
2090SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2091 unsigned long, arg4, unsigned long, arg5)
1da177e4 2092{
b6dff3ec
DH
2093 struct task_struct *me = current;
2094 unsigned char comm[sizeof(me->comm)];
2095 long error;
1da177e4 2096
d84f4f99
DH
2097 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2098 if (error != -ENOSYS)
1da177e4
LT
2099 return error;
2100
d84f4f99 2101 error = 0;
1da177e4 2102 switch (option) {
f3cbd435
AM
2103 case PR_SET_PDEATHSIG:
2104 if (!valid_signal(arg2)) {
2105 error = -EINVAL;
1da177e4 2106 break;
f3cbd435
AM
2107 }
2108 me->pdeath_signal = arg2;
2109 break;
2110 case PR_GET_PDEATHSIG:
2111 error = put_user(me->pdeath_signal, (int __user *)arg2);
2112 break;
2113 case PR_GET_DUMPABLE:
2114 error = get_dumpable(me->mm);
2115 break;
2116 case PR_SET_DUMPABLE:
2117 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2118 error = -EINVAL;
1da177e4 2119 break;
f3cbd435
AM
2120 }
2121 set_dumpable(me->mm, arg2);
2122 break;
1da177e4 2123
f3cbd435
AM
2124 case PR_SET_UNALIGN:
2125 error = SET_UNALIGN_CTL(me, arg2);
2126 break;
2127 case PR_GET_UNALIGN:
2128 error = GET_UNALIGN_CTL(me, arg2);
2129 break;
2130 case PR_SET_FPEMU:
2131 error = SET_FPEMU_CTL(me, arg2);
2132 break;
2133 case PR_GET_FPEMU:
2134 error = GET_FPEMU_CTL(me, arg2);
2135 break;
2136 case PR_SET_FPEXC:
2137 error = SET_FPEXC_CTL(me, arg2);
2138 break;
2139 case PR_GET_FPEXC:
2140 error = GET_FPEXC_CTL(me, arg2);
2141 break;
2142 case PR_GET_TIMING:
2143 error = PR_TIMING_STATISTICAL;
2144 break;
2145 case PR_SET_TIMING:
2146 if (arg2 != PR_TIMING_STATISTICAL)
2147 error = -EINVAL;
2148 break;
2149 case PR_SET_NAME:
2150 comm[sizeof(me->comm) - 1] = 0;
2151 if (strncpy_from_user(comm, (char __user *)arg2,
2152 sizeof(me->comm) - 1) < 0)
2153 return -EFAULT;
2154 set_task_comm(me, comm);
2155 proc_comm_connector(me);
2156 break;
2157 case PR_GET_NAME:
2158 get_task_comm(comm, me);
2159 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2160 return -EFAULT;
2161 break;
2162 case PR_GET_ENDIAN:
2163 error = GET_ENDIAN(me, arg2);
2164 break;
2165 case PR_SET_ENDIAN:
2166 error = SET_ENDIAN(me, arg2);
2167 break;
2168 case PR_GET_SECCOMP:
2169 error = prctl_get_seccomp();
2170 break;
2171 case PR_SET_SECCOMP:
2172 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2173 break;
2174 case PR_GET_TSC:
2175 error = GET_TSC_CTL(arg2);
2176 break;
2177 case PR_SET_TSC:
2178 error = SET_TSC_CTL(arg2);
2179 break;
2180 case PR_TASK_PERF_EVENTS_DISABLE:
2181 error = perf_event_task_disable();
2182 break;
2183 case PR_TASK_PERF_EVENTS_ENABLE:
2184 error = perf_event_task_enable();
2185 break;
2186 case PR_GET_TIMERSLACK:
2187 error = current->timer_slack_ns;
2188 break;
2189 case PR_SET_TIMERSLACK:
2190 if (arg2 <= 0)
2191 current->timer_slack_ns =
6976675d 2192 current->default_timer_slack_ns;
f3cbd435
AM
2193 else
2194 current->timer_slack_ns = arg2;
2195 break;
2196 case PR_MCE_KILL:
2197 if (arg4 | arg5)
2198 return -EINVAL;
2199 switch (arg2) {
2200 case PR_MCE_KILL_CLEAR:
2201 if (arg3 != 0)
4db96cf0 2202 return -EINVAL;
f3cbd435 2203 current->flags &= ~PF_MCE_PROCESS;
4db96cf0 2204 break;
f3cbd435
AM
2205 case PR_MCE_KILL_SET:
2206 current->flags |= PF_MCE_PROCESS;
2207 if (arg3 == PR_MCE_KILL_EARLY)
2208 current->flags |= PF_MCE_EARLY;
2209 else if (arg3 == PR_MCE_KILL_LATE)
2210 current->flags &= ~PF_MCE_EARLY;
2211 else if (arg3 == PR_MCE_KILL_DEFAULT)
2212 current->flags &=
2213 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1087e9b4 2214 else
259e5e6c 2215 return -EINVAL;
259e5e6c 2216 break;
1da177e4 2217 default:
f3cbd435
AM
2218 return -EINVAL;
2219 }
2220 break;
2221 case PR_MCE_KILL_GET:
2222 if (arg2 | arg3 | arg4 | arg5)
2223 return -EINVAL;
2224 if (current->flags & PF_MCE_PROCESS)
2225 error = (current->flags & PF_MCE_EARLY) ?
2226 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2227 else
2228 error = PR_MCE_KILL_DEFAULT;
2229 break;
2230 case PR_SET_MM:
2231 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2232 break;
2233 case PR_GET_TID_ADDRESS:
2234 error = prctl_get_tid_address(me, (int __user **)arg2);
2235 break;
2236 case PR_SET_CHILD_SUBREAPER:
2237 me->signal->is_child_subreaper = !!arg2;
2238 break;
2239 case PR_GET_CHILD_SUBREAPER:
2240 error = put_user(me->signal->is_child_subreaper,
2241 (int __user *)arg2);
2242 break;
2243 case PR_SET_NO_NEW_PRIVS:
2244 if (arg2 != 1 || arg3 || arg4 || arg5)
2245 return -EINVAL;
2246
1d4457f9 2247 task_set_no_new_privs(current);
f3cbd435
AM
2248 break;
2249 case PR_GET_NO_NEW_PRIVS:
2250 if (arg2 || arg3 || arg4 || arg5)
2251 return -EINVAL;
1d4457f9 2252 return task_no_new_privs(current) ? 1 : 0;
a0715cc2
AT
2253 case PR_GET_THP_DISABLE:
2254 if (arg2 || arg3 || arg4 || arg5)
2255 return -EINVAL;
2256 error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2257 break;
2258 case PR_SET_THP_DISABLE:
2259 if (arg3 || arg4 || arg5)
2260 return -EINVAL;
2261 down_write(&me->mm->mmap_sem);
2262 if (arg2)
2263 me->mm->def_flags |= VM_NOHUGEPAGE;
2264 else
2265 me->mm->def_flags &= ~VM_NOHUGEPAGE;
2266 up_write(&me->mm->mmap_sem);
2267 break;
fe3d197f 2268 case PR_MPX_ENABLE_MANAGEMENT:
e9d1b4f3
DH
2269 if (arg2 || arg3 || arg4 || arg5)
2270 return -EINVAL;
46a6e0cf 2271 error = MPX_ENABLE_MANAGEMENT();
fe3d197f
DH
2272 break;
2273 case PR_MPX_DISABLE_MANAGEMENT:
e9d1b4f3
DH
2274 if (arg2 || arg3 || arg4 || arg5)
2275 return -EINVAL;
46a6e0cf 2276 error = MPX_DISABLE_MANAGEMENT();
fe3d197f 2277 break;
9791554b
PB
2278 case PR_SET_FP_MODE:
2279 error = SET_FP_MODE(me, arg2);
2280 break;
2281 case PR_GET_FP_MODE:
2282 error = GET_FP_MODE(me);
2283 break;
f3cbd435
AM
2284 default:
2285 error = -EINVAL;
2286 break;
1da177e4
LT
2287 }
2288 return error;
2289}
3cfc348b 2290
836f92ad
HC
2291SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2292 struct getcpu_cache __user *, unused)
3cfc348b
AK
2293{
2294 int err = 0;
2295 int cpu = raw_smp_processor_id();
ec94fc3d 2296
3cfc348b
AK
2297 if (cpup)
2298 err |= put_user(cpu, cpup);
2299 if (nodep)
2300 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2301 return err ? -EFAULT : 0;
2302}
10a0a8d4 2303
4a22f166
SR
2304/**
2305 * do_sysinfo - fill in sysinfo struct
2306 * @info: pointer to buffer to fill
2307 */
2308static int do_sysinfo(struct sysinfo *info)
2309{
2310 unsigned long mem_total, sav_total;
2311 unsigned int mem_unit, bitcount;
2312 struct timespec tp;
2313
2314 memset(info, 0, sizeof(struct sysinfo));
2315
45c64940 2316 get_monotonic_boottime(&tp);
4a22f166
SR
2317 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2318
2319 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2320
2321 info->procs = nr_threads;
2322
2323 si_meminfo(info);
2324 si_swapinfo(info);
2325
2326 /*
2327 * If the sum of all the available memory (i.e. ram + swap)
2328 * is less than can be stored in a 32 bit unsigned long then
2329 * we can be binary compatible with 2.2.x kernels. If not,
2330 * well, in that case 2.2.x was broken anyways...
2331 *
2332 * -Erik Andersen <andersee@debian.org>
2333 */
2334
2335 mem_total = info->totalram + info->totalswap;
2336 if (mem_total < info->totalram || mem_total < info->totalswap)
2337 goto out;
2338 bitcount = 0;
2339 mem_unit = info->mem_unit;
2340 while (mem_unit > 1) {
2341 bitcount++;
2342 mem_unit >>= 1;
2343 sav_total = mem_total;
2344 mem_total <<= 1;
2345 if (mem_total < sav_total)
2346 goto out;
2347 }
2348
2349 /*
2350 * If mem_total did not overflow, multiply all memory values by
2351 * info->mem_unit and set it to 1. This leaves things compatible
2352 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2353 * kernels...
2354 */
2355
2356 info->mem_unit = 1;
2357 info->totalram <<= bitcount;
2358 info->freeram <<= bitcount;
2359 info->sharedram <<= bitcount;
2360 info->bufferram <<= bitcount;
2361 info->totalswap <<= bitcount;
2362 info->freeswap <<= bitcount;
2363 info->totalhigh <<= bitcount;
2364 info->freehigh <<= bitcount;
2365
2366out:
2367 return 0;
2368}
2369
2370SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2371{
2372 struct sysinfo val;
2373
2374 do_sysinfo(&val);
2375
2376 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2377 return -EFAULT;
2378
2379 return 0;
2380}
2381
2382#ifdef CONFIG_COMPAT
2383struct compat_sysinfo {
2384 s32 uptime;
2385 u32 loads[3];
2386 u32 totalram;
2387 u32 freeram;
2388 u32 sharedram;
2389 u32 bufferram;
2390 u32 totalswap;
2391 u32 freeswap;
2392 u16 procs;
2393 u16 pad;
2394 u32 totalhigh;
2395 u32 freehigh;
2396 u32 mem_unit;
2397 char _f[20-2*sizeof(u32)-sizeof(int)];
2398};
2399
2400COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2401{
2402 struct sysinfo s;
2403
2404 do_sysinfo(&s);
2405
2406 /* Check to see if any memory value is too large for 32-bit and scale
2407 * down if needed
2408 */
0baae41e 2409 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
4a22f166
SR
2410 int bitcount = 0;
2411
2412 while (s.mem_unit < PAGE_SIZE) {
2413 s.mem_unit <<= 1;
2414 bitcount++;
2415 }
2416
2417 s.totalram >>= bitcount;
2418 s.freeram >>= bitcount;
2419 s.sharedram >>= bitcount;
2420 s.bufferram >>= bitcount;
2421 s.totalswap >>= bitcount;
2422 s.freeswap >>= bitcount;
2423 s.totalhigh >>= bitcount;
2424 s.freehigh >>= bitcount;
2425 }
2426
2427 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2428 __put_user(s.uptime, &info->uptime) ||
2429 __put_user(s.loads[0], &info->loads[0]) ||
2430 __put_user(s.loads[1], &info->loads[1]) ||
2431 __put_user(s.loads[2], &info->loads[2]) ||
2432 __put_user(s.totalram, &info->totalram) ||
2433 __put_user(s.freeram, &info->freeram) ||
2434 __put_user(s.sharedram, &info->sharedram) ||
2435 __put_user(s.bufferram, &info->bufferram) ||
2436 __put_user(s.totalswap, &info->totalswap) ||
2437 __put_user(s.freeswap, &info->freeswap) ||
2438 __put_user(s.procs, &info->procs) ||
2439 __put_user(s.totalhigh, &info->totalhigh) ||
2440 __put_user(s.freehigh, &info->freehigh) ||
2441 __put_user(s.mem_unit, &info->mem_unit))
2442 return -EFAULT;
2443
2444 return 0;
2445}
2446#endif /* CONFIG_COMPAT */