]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sys.c
c/r: procfs: add arg_start/end, env_start/end and exit_code members to /proc/$pid...
[mirror_ubuntu-bionic-kernel.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
9984de1a 7#include <linux/export.h>
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/reboot.h>
12#include <linux/prctl.h>
1da177e4
LT
13#include <linux/highuid.h>
14#include <linux/fs.h>
74da1ff7 15#include <linux/kmod.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e28cbf22 36#include <linux/personality.h>
e3d5a27d 37#include <linux/ptrace.h>
5ad4e53b 38#include <linux/fs_struct.h>
5a0e3ad6 39#include <linux/gfp.h>
40dc166c 40#include <linux/syscore_ops.h>
be27425d
AK
41#include <linux/version.h>
42#include <linux/ctype.h>
1da177e4
LT
43
44#include <linux/compat.h>
45#include <linux/syscalls.h>
00d7c05a 46#include <linux/kprobes.h>
acce292c 47#include <linux/user_namespace.h>
1da177e4 48
04c6862c 49#include <linux/kmsg_dump.h>
be27425d
AK
50/* Move somewhere else to avoid recompiling? */
51#include <generated/utsrelease.h>
04c6862c 52
1da177e4
LT
53#include <asm/uaccess.h>
54#include <asm/io.h>
55#include <asm/unistd.h>
56
57#ifndef SET_UNALIGN_CTL
58# define SET_UNALIGN_CTL(a,b) (-EINVAL)
59#endif
60#ifndef GET_UNALIGN_CTL
61# define GET_UNALIGN_CTL(a,b) (-EINVAL)
62#endif
63#ifndef SET_FPEMU_CTL
64# define SET_FPEMU_CTL(a,b) (-EINVAL)
65#endif
66#ifndef GET_FPEMU_CTL
67# define GET_FPEMU_CTL(a,b) (-EINVAL)
68#endif
69#ifndef SET_FPEXC_CTL
70# define SET_FPEXC_CTL(a,b) (-EINVAL)
71#endif
72#ifndef GET_FPEXC_CTL
73# define GET_FPEXC_CTL(a,b) (-EINVAL)
74#endif
651d765d
AB
75#ifndef GET_ENDIAN
76# define GET_ENDIAN(a,b) (-EINVAL)
77#endif
78#ifndef SET_ENDIAN
79# define SET_ENDIAN(a,b) (-EINVAL)
80#endif
8fb402bc
EB
81#ifndef GET_TSC_CTL
82# define GET_TSC_CTL(a) (-EINVAL)
83#endif
84#ifndef SET_TSC_CTL
85# define SET_TSC_CTL(a) (-EINVAL)
86#endif
1da177e4
LT
87
88/*
89 * this is where the system-wide overflow UID and GID are defined, for
90 * architectures that now have 32-bit UID/GID but didn't in the past
91 */
92
93int overflowuid = DEFAULT_OVERFLOWUID;
94int overflowgid = DEFAULT_OVERFLOWGID;
95
1da177e4
LT
96EXPORT_SYMBOL(overflowuid);
97EXPORT_SYMBOL(overflowgid);
1da177e4
LT
98
99/*
100 * the same as above, but for filesystems which can only store a 16-bit
101 * UID and GID. as such, this is needed on all architectures
102 */
103
104int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
105int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
106
107EXPORT_SYMBOL(fs_overflowuid);
108EXPORT_SYMBOL(fs_overflowgid);
109
110/*
111 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
112 */
113
114int C_A_D = 1;
9ec52099
CLG
115struct pid *cad_pid;
116EXPORT_SYMBOL(cad_pid);
1da177e4 117
bd804eba
RW
118/*
119 * If set, this is used for preparing the system to power off.
120 */
121
122void (*pm_power_off_prepare)(void);
bd804eba 123
fc832ad3
SH
124/*
125 * Returns true if current's euid is same as p's uid or euid,
126 * or has CAP_SYS_NICE to p's user_ns.
127 *
128 * Called with rcu_read_lock, creds are safe
129 */
130static bool set_one_prio_perm(struct task_struct *p)
131{
132 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
133
5af66203
EB
134 if (uid_eq(pcred->uid, cred->euid) ||
135 uid_eq(pcred->euid, cred->euid))
fc832ad3 136 return true;
c4a4d603 137 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
138 return true;
139 return false;
140}
141
c69e8d9c
DH
142/*
143 * set the priority of a task
144 * - the caller must hold the RCU read lock
145 */
1da177e4
LT
146static int set_one_prio(struct task_struct *p, int niceval, int error)
147{
148 int no_nice;
149
fc832ad3 150 if (!set_one_prio_perm(p)) {
1da177e4
LT
151 error = -EPERM;
152 goto out;
153 }
e43379f1 154 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
155 error = -EACCES;
156 goto out;
157 }
158 no_nice = security_task_setnice(p, niceval);
159 if (no_nice) {
160 error = no_nice;
161 goto out;
162 }
163 if (error == -ESRCH)
164 error = 0;
165 set_user_nice(p, niceval);
166out:
167 return error;
168}
169
754fe8d2 170SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
171{
172 struct task_struct *g, *p;
173 struct user_struct *user;
86a264ab 174 const struct cred *cred = current_cred();
1da177e4 175 int error = -EINVAL;
41487c65 176 struct pid *pgrp;
7b44ab97 177 kuid_t uid;
1da177e4 178
3e88c553 179 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
180 goto out;
181
182 /* normalize: avoid signed division (rounding problems) */
183 error = -ESRCH;
184 if (niceval < -20)
185 niceval = -20;
186 if (niceval > 19)
187 niceval = 19;
188
d4581a23 189 rcu_read_lock();
1da177e4
LT
190 read_lock(&tasklist_lock);
191 switch (which) {
192 case PRIO_PROCESS:
41487c65 193 if (who)
228ebcbe 194 p = find_task_by_vpid(who);
41487c65
EB
195 else
196 p = current;
1da177e4
LT
197 if (p)
198 error = set_one_prio(p, niceval, error);
199 break;
200 case PRIO_PGRP:
41487c65 201 if (who)
b488893a 202 pgrp = find_vpid(who);
41487c65
EB
203 else
204 pgrp = task_pgrp(current);
2d70b68d 205 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 206 error = set_one_prio(p, niceval, error);
2d70b68d 207 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
208 break;
209 case PRIO_USER:
7b44ab97 210 uid = make_kuid(cred->user_ns, who);
74ba508f 211 user = cred->user;
1da177e4 212 if (!who)
078de5f7
EB
213 uid = cred->uid;
214 else if (!uid_eq(uid, cred->uid) &&
7b44ab97 215 !(user = find_user(uid)))
86a264ab 216 goto out_unlock; /* No processes for this user */
1da177e4 217
dfc6a736 218 do_each_thread(g, p) {
078de5f7 219 if (uid_eq(task_uid(p), uid))
1da177e4 220 error = set_one_prio(p, niceval, error);
dfc6a736 221 } while_each_thread(g, p);
078de5f7 222 if (!uid_eq(uid, cred->uid))
1da177e4
LT
223 free_uid(user); /* For find_user() */
224 break;
225 }
226out_unlock:
227 read_unlock(&tasklist_lock);
d4581a23 228 rcu_read_unlock();
1da177e4
LT
229out:
230 return error;
231}
232
233/*
234 * Ugh. To avoid negative return values, "getpriority()" will
235 * not return the normal nice-value, but a negated value that
236 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
237 * to stay compatible.
238 */
754fe8d2 239SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
240{
241 struct task_struct *g, *p;
242 struct user_struct *user;
86a264ab 243 const struct cred *cred = current_cred();
1da177e4 244 long niceval, retval = -ESRCH;
41487c65 245 struct pid *pgrp;
7b44ab97 246 kuid_t uid;
1da177e4 247
3e88c553 248 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
249 return -EINVAL;
250
70118837 251 rcu_read_lock();
1da177e4
LT
252 read_lock(&tasklist_lock);
253 switch (which) {
254 case PRIO_PROCESS:
41487c65 255 if (who)
228ebcbe 256 p = find_task_by_vpid(who);
41487c65
EB
257 else
258 p = current;
1da177e4
LT
259 if (p) {
260 niceval = 20 - task_nice(p);
261 if (niceval > retval)
262 retval = niceval;
263 }
264 break;
265 case PRIO_PGRP:
41487c65 266 if (who)
b488893a 267 pgrp = find_vpid(who);
41487c65
EB
268 else
269 pgrp = task_pgrp(current);
2d70b68d 270 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
271 niceval = 20 - task_nice(p);
272 if (niceval > retval)
273 retval = niceval;
2d70b68d 274 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
275 break;
276 case PRIO_USER:
7b44ab97 277 uid = make_kuid(cred->user_ns, who);
74ba508f 278 user = cred->user;
1da177e4 279 if (!who)
078de5f7
EB
280 uid = cred->uid;
281 else if (!uid_eq(uid, cred->uid) &&
7b44ab97 282 !(user = find_user(uid)))
86a264ab 283 goto out_unlock; /* No processes for this user */
1da177e4 284
dfc6a736 285 do_each_thread(g, p) {
078de5f7 286 if (uid_eq(task_uid(p), uid)) {
1da177e4
LT
287 niceval = 20 - task_nice(p);
288 if (niceval > retval)
289 retval = niceval;
290 }
dfc6a736 291 } while_each_thread(g, p);
078de5f7 292 if (!uid_eq(uid, cred->uid))
1da177e4
LT
293 free_uid(user); /* for find_user() */
294 break;
295 }
296out_unlock:
297 read_unlock(&tasklist_lock);
70118837 298 rcu_read_unlock();
1da177e4
LT
299
300 return retval;
301}
302
e4c94330
EB
303/**
304 * emergency_restart - reboot the system
305 *
306 * Without shutting down any hardware or taking any locks
307 * reboot the system. This is called when we know we are in
308 * trouble so this is our best effort to reboot. This is
309 * safe to call in interrupt context.
310 */
7c903473
EB
311void emergency_restart(void)
312{
04c6862c 313 kmsg_dump(KMSG_DUMP_EMERG);
7c903473
EB
314 machine_emergency_restart();
315}
316EXPORT_SYMBOL_GPL(emergency_restart);
317
ca195b7f 318void kernel_restart_prepare(char *cmd)
4a00ea1e 319{
e041c683 320 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 321 system_state = SYSTEM_RESTART;
b50fa7c8 322 usermodehelper_disable();
4a00ea1e 323 device_shutdown();
40dc166c 324 syscore_shutdown();
e4c94330 325}
1e5d5331 326
c5f41752
AW
327/**
328 * register_reboot_notifier - Register function to be called at reboot time
329 * @nb: Info about notifier function to be called
330 *
331 * Registers a function with the list of functions
332 * to be called at reboot time.
333 *
334 * Currently always returns zero, as blocking_notifier_chain_register()
335 * always returns zero.
336 */
337int register_reboot_notifier(struct notifier_block *nb)
338{
339 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
340}
341EXPORT_SYMBOL(register_reboot_notifier);
342
343/**
344 * unregister_reboot_notifier - Unregister previously registered reboot notifier
345 * @nb: Hook to be unregistered
346 *
347 * Unregisters a previously registered reboot
348 * notifier function.
349 *
350 * Returns zero on success, or %-ENOENT on failure.
351 */
352int unregister_reboot_notifier(struct notifier_block *nb)
353{
354 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
355}
356EXPORT_SYMBOL(unregister_reboot_notifier);
357
1e5d5331
RD
358/**
359 * kernel_restart - reboot the system
360 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 361 * or %NULL
1e5d5331
RD
362 *
363 * Shutdown everything and perform a clean reboot.
364 * This is not safe to call in interrupt context.
365 */
e4c94330
EB
366void kernel_restart(char *cmd)
367{
368 kernel_restart_prepare(cmd);
756184b7 369 if (!cmd)
4a00ea1e 370 printk(KERN_EMERG "Restarting system.\n");
756184b7 371 else
4a00ea1e 372 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
04c6862c 373 kmsg_dump(KMSG_DUMP_RESTART);
4a00ea1e
EB
374 machine_restart(cmd);
375}
376EXPORT_SYMBOL_GPL(kernel_restart);
377
4ef7229f 378static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 379{
e041c683 380 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
381 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
382 system_state = state;
b50fa7c8 383 usermodehelper_disable();
729b4d4c
AS
384 device_shutdown();
385}
e4c94330
EB
386/**
387 * kernel_halt - halt the system
388 *
389 * Shutdown everything and perform a clean system halt.
390 */
e4c94330
EB
391void kernel_halt(void)
392{
729b4d4c 393 kernel_shutdown_prepare(SYSTEM_HALT);
40dc166c 394 syscore_shutdown();
4a00ea1e 395 printk(KERN_EMERG "System halted.\n");
04c6862c 396 kmsg_dump(KMSG_DUMP_HALT);
4a00ea1e
EB
397 machine_halt();
398}
729b4d4c 399
4a00ea1e
EB
400EXPORT_SYMBOL_GPL(kernel_halt);
401
e4c94330
EB
402/**
403 * kernel_power_off - power_off the system
404 *
405 * Shutdown everything and perform a clean system power_off.
406 */
e4c94330
EB
407void kernel_power_off(void)
408{
729b4d4c 409 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
410 if (pm_power_off_prepare)
411 pm_power_off_prepare();
4047727e 412 disable_nonboot_cpus();
40dc166c 413 syscore_shutdown();
4a00ea1e 414 printk(KERN_EMERG "Power down.\n");
04c6862c 415 kmsg_dump(KMSG_DUMP_POWEROFF);
4a00ea1e
EB
416 machine_power_off();
417}
418EXPORT_SYMBOL_GPL(kernel_power_off);
6f15fa50
TG
419
420static DEFINE_MUTEX(reboot_mutex);
421
1da177e4
LT
422/*
423 * Reboot system call: for obvious reasons only root may call it,
424 * and even root needs to set up some magic numbers in the registers
425 * so that some mistake won't make this reboot the whole machine.
426 * You can also set the meaning of the ctrl-alt-del-key here.
427 *
428 * reboot doesn't sync: do that yourself before calling this.
429 */
754fe8d2
HC
430SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
431 void __user *, arg)
1da177e4
LT
432{
433 char buffer[256];
3d26dcf7 434 int ret = 0;
1da177e4
LT
435
436 /* We only trust the superuser with rebooting the system. */
437 if (!capable(CAP_SYS_BOOT))
438 return -EPERM;
439
440 /* For safety, we require "magic" arguments. */
441 if (magic1 != LINUX_REBOOT_MAGIC1 ||
442 (magic2 != LINUX_REBOOT_MAGIC2 &&
443 magic2 != LINUX_REBOOT_MAGIC2A &&
444 magic2 != LINUX_REBOOT_MAGIC2B &&
445 magic2 != LINUX_REBOOT_MAGIC2C))
446 return -EINVAL;
447
cf3f8921
DL
448 /*
449 * If pid namespaces are enabled and the current task is in a child
450 * pid_namespace, the command is handled by reboot_pid_ns() which will
451 * call do_exit().
452 */
453 ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
454 if (ret)
455 return ret;
456
5e38291d
EB
457 /* Instead of trying to make the power_off code look like
458 * halt when pm_power_off is not set do it the easy way.
459 */
460 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
461 cmd = LINUX_REBOOT_CMD_HALT;
462
6f15fa50 463 mutex_lock(&reboot_mutex);
1da177e4
LT
464 switch (cmd) {
465 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 466 kernel_restart(NULL);
1da177e4
LT
467 break;
468
469 case LINUX_REBOOT_CMD_CAD_ON:
470 C_A_D = 1;
471 break;
472
473 case LINUX_REBOOT_CMD_CAD_OFF:
474 C_A_D = 0;
475 break;
476
477 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 478 kernel_halt();
1da177e4 479 do_exit(0);
3d26dcf7 480 panic("cannot halt");
1da177e4
LT
481
482 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 483 kernel_power_off();
1da177e4
LT
484 do_exit(0);
485 break;
486
487 case LINUX_REBOOT_CMD_RESTART2:
488 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
6f15fa50
TG
489 ret = -EFAULT;
490 break;
1da177e4
LT
491 }
492 buffer[sizeof(buffer) - 1] = '\0';
493
4a00ea1e 494 kernel_restart(buffer);
1da177e4
LT
495 break;
496
3ab83521 497#ifdef CONFIG_KEXEC
dc009d92 498 case LINUX_REBOOT_CMD_KEXEC:
3d26dcf7
AK
499 ret = kernel_kexec();
500 break;
3ab83521 501#endif
4a00ea1e 502
b0cb1a19 503#ifdef CONFIG_HIBERNATION
1da177e4 504 case LINUX_REBOOT_CMD_SW_SUSPEND:
3d26dcf7
AK
505 ret = hibernate();
506 break;
1da177e4
LT
507#endif
508
509 default:
3d26dcf7
AK
510 ret = -EINVAL;
511 break;
1da177e4 512 }
6f15fa50 513 mutex_unlock(&reboot_mutex);
3d26dcf7 514 return ret;
1da177e4
LT
515}
516
65f27f38 517static void deferred_cad(struct work_struct *dummy)
1da177e4 518{
abcd9e51 519 kernel_restart(NULL);
1da177e4
LT
520}
521
522/*
523 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
524 * As it's called within an interrupt, it may NOT sync: the only choice
525 * is whether to reboot at once, or just ignore the ctrl-alt-del.
526 */
527void ctrl_alt_del(void)
528{
65f27f38 529 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
530
531 if (C_A_D)
532 schedule_work(&cad_work);
533 else
9ec52099 534 kill_cad_pid(SIGINT, 1);
1da177e4
LT
535}
536
1da177e4
LT
537/*
538 * Unprivileged users may change the real gid to the effective gid
539 * or vice versa. (BSD-style)
540 *
541 * If you set the real gid at all, or set the effective gid to a value not
542 * equal to the real gid, then the saved gid is set to the new effective gid.
543 *
544 * This makes it possible for a setgid program to completely drop its
545 * privileges, which is often a useful assertion to make when you are doing
546 * a security audit over a program.
547 *
548 * The general idea is that a program which uses just setregid() will be
549 * 100% compatible with BSD. A program which uses just setgid() will be
550 * 100% compatible with POSIX with saved IDs.
551 *
552 * SMP: There are not races, the GIDs are checked only by filesystem
553 * operations (as far as semantic preservation is concerned).
554 */
ae1251ab 555SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 556{
a29c33f4 557 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
558 const struct cred *old;
559 struct cred *new;
1da177e4 560 int retval;
a29c33f4
EB
561 kgid_t krgid, kegid;
562
563 krgid = make_kgid(ns, rgid);
564 kegid = make_kgid(ns, egid);
565
566 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
567 return -EINVAL;
568 if ((egid != (gid_t) -1) && !gid_valid(kegid))
569 return -EINVAL;
1da177e4 570
d84f4f99
DH
571 new = prepare_creds();
572 if (!new)
573 return -ENOMEM;
574 old = current_cred();
575
d84f4f99 576 retval = -EPERM;
1da177e4 577 if (rgid != (gid_t) -1) {
a29c33f4
EB
578 if (gid_eq(old->gid, krgid) ||
579 gid_eq(old->egid, krgid) ||
fc832ad3 580 nsown_capable(CAP_SETGID))
a29c33f4 581 new->gid = krgid;
1da177e4 582 else
d84f4f99 583 goto error;
1da177e4
LT
584 }
585 if (egid != (gid_t) -1) {
a29c33f4
EB
586 if (gid_eq(old->gid, kegid) ||
587 gid_eq(old->egid, kegid) ||
588 gid_eq(old->sgid, kegid) ||
fc832ad3 589 nsown_capable(CAP_SETGID))
a29c33f4 590 new->egid = kegid;
756184b7 591 else
d84f4f99 592 goto error;
1da177e4 593 }
d84f4f99 594
1da177e4 595 if (rgid != (gid_t) -1 ||
a29c33f4 596 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
d84f4f99
DH
597 new->sgid = new->egid;
598 new->fsgid = new->egid;
599
600 return commit_creds(new);
601
602error:
603 abort_creds(new);
604 return retval;
1da177e4
LT
605}
606
607/*
608 * setgid() is implemented like SysV w/ SAVED_IDS
609 *
610 * SMP: Same implicit races as above.
611 */
ae1251ab 612SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 613{
a29c33f4 614 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
615 const struct cred *old;
616 struct cred *new;
1da177e4 617 int retval;
a29c33f4
EB
618 kgid_t kgid;
619
620 kgid = make_kgid(ns, gid);
621 if (!gid_valid(kgid))
622 return -EINVAL;
1da177e4 623
d84f4f99
DH
624 new = prepare_creds();
625 if (!new)
626 return -ENOMEM;
627 old = current_cred();
628
d84f4f99 629 retval = -EPERM;
fc832ad3 630 if (nsown_capable(CAP_SETGID))
a29c33f4
EB
631 new->gid = new->egid = new->sgid = new->fsgid = kgid;
632 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
633 new->egid = new->fsgid = kgid;
1da177e4 634 else
d84f4f99 635 goto error;
1da177e4 636
d84f4f99
DH
637 return commit_creds(new);
638
639error:
640 abort_creds(new);
641 return retval;
1da177e4 642}
54e99124 643
d84f4f99
DH
644/*
645 * change the user struct in a credentials set to match the new UID
646 */
647static int set_user(struct cred *new)
1da177e4
LT
648{
649 struct user_struct *new_user;
650
078de5f7 651 new_user = alloc_uid(new->uid);
1da177e4
LT
652 if (!new_user)
653 return -EAGAIN;
654
72fa5997
VK
655 /*
656 * We don't fail in case of NPROC limit excess here because too many
657 * poorly written programs don't check set*uid() return code, assuming
658 * it never fails if called by root. We may still enforce NPROC limit
659 * for programs doing set*uid()+execve() by harmlessly deferring the
660 * failure to the execve() stage.
661 */
78d7d407 662 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
72fa5997
VK
663 new_user != INIT_USER)
664 current->flags |= PF_NPROC_EXCEEDED;
665 else
666 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 667
d84f4f99
DH
668 free_uid(new->user);
669 new->user = new_user;
1da177e4
LT
670 return 0;
671}
672
673/*
674 * Unprivileged users may change the real uid to the effective uid
675 * or vice versa. (BSD-style)
676 *
677 * If you set the real uid at all, or set the effective uid to a value not
678 * equal to the real uid, then the saved uid is set to the new effective uid.
679 *
680 * This makes it possible for a setuid program to completely drop its
681 * privileges, which is often a useful assertion to make when you are doing
682 * a security audit over a program.
683 *
684 * The general idea is that a program which uses just setreuid() will be
685 * 100% compatible with BSD. A program which uses just setuid() will be
686 * 100% compatible with POSIX with saved IDs.
687 */
ae1251ab 688SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 689{
a29c33f4 690 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
691 const struct cred *old;
692 struct cred *new;
1da177e4 693 int retval;
a29c33f4
EB
694 kuid_t kruid, keuid;
695
696 kruid = make_kuid(ns, ruid);
697 keuid = make_kuid(ns, euid);
698
699 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
700 return -EINVAL;
701 if ((euid != (uid_t) -1) && !uid_valid(keuid))
702 return -EINVAL;
1da177e4 703
d84f4f99
DH
704 new = prepare_creds();
705 if (!new)
706 return -ENOMEM;
707 old = current_cred();
708
d84f4f99 709 retval = -EPERM;
1da177e4 710 if (ruid != (uid_t) -1) {
a29c33f4
EB
711 new->uid = kruid;
712 if (!uid_eq(old->uid, kruid) &&
713 !uid_eq(old->euid, kruid) &&
fc832ad3 714 !nsown_capable(CAP_SETUID))
d84f4f99 715 goto error;
1da177e4
LT
716 }
717
718 if (euid != (uid_t) -1) {
a29c33f4
EB
719 new->euid = keuid;
720 if (!uid_eq(old->uid, keuid) &&
721 !uid_eq(old->euid, keuid) &&
722 !uid_eq(old->suid, keuid) &&
fc832ad3 723 !nsown_capable(CAP_SETUID))
d84f4f99 724 goto error;
1da177e4
LT
725 }
726
a29c33f4 727 if (!uid_eq(new->uid, old->uid)) {
54e99124
DG
728 retval = set_user(new);
729 if (retval < 0)
730 goto error;
731 }
1da177e4 732 if (ruid != (uid_t) -1 ||
a29c33f4 733 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
d84f4f99
DH
734 new->suid = new->euid;
735 new->fsuid = new->euid;
1da177e4 736
d84f4f99
DH
737 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
738 if (retval < 0)
739 goto error;
1da177e4 740
d84f4f99 741 return commit_creds(new);
1da177e4 742
d84f4f99
DH
743error:
744 abort_creds(new);
745 return retval;
746}
1da177e4
LT
747
748/*
749 * setuid() is implemented like SysV with SAVED_IDS
750 *
751 * Note that SAVED_ID's is deficient in that a setuid root program
752 * like sendmail, for example, cannot set its uid to be a normal
753 * user and then switch back, because if you're root, setuid() sets
754 * the saved uid too. If you don't like this, blame the bright people
755 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
756 * will allow a root program to temporarily drop privileges and be able to
757 * regain them by swapping the real and effective uid.
758 */
ae1251ab 759SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 760{
a29c33f4 761 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
762 const struct cred *old;
763 struct cred *new;
1da177e4 764 int retval;
a29c33f4
EB
765 kuid_t kuid;
766
767 kuid = make_kuid(ns, uid);
768 if (!uid_valid(kuid))
769 return -EINVAL;
1da177e4 770
d84f4f99
DH
771 new = prepare_creds();
772 if (!new)
773 return -ENOMEM;
774 old = current_cred();
775
d84f4f99 776 retval = -EPERM;
fc832ad3 777 if (nsown_capable(CAP_SETUID)) {
a29c33f4
EB
778 new->suid = new->uid = kuid;
779 if (!uid_eq(kuid, old->uid)) {
54e99124
DG
780 retval = set_user(new);
781 if (retval < 0)
782 goto error;
d84f4f99 783 }
a29c33f4 784 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
d84f4f99 785 goto error;
1da177e4 786 }
1da177e4 787
a29c33f4 788 new->fsuid = new->euid = kuid;
d84f4f99
DH
789
790 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
791 if (retval < 0)
792 goto error;
1da177e4 793
d84f4f99 794 return commit_creds(new);
1da177e4 795
d84f4f99
DH
796error:
797 abort_creds(new);
798 return retval;
1da177e4
LT
799}
800
801
802/*
803 * This function implements a generic ability to update ruid, euid,
804 * and suid. This allows you to implement the 4.4 compatible seteuid().
805 */
ae1251ab 806SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 807{
a29c33f4 808 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
809 const struct cred *old;
810 struct cred *new;
1da177e4 811 int retval;
a29c33f4
EB
812 kuid_t kruid, keuid, ksuid;
813
814 kruid = make_kuid(ns, ruid);
815 keuid = make_kuid(ns, euid);
816 ksuid = make_kuid(ns, suid);
817
818 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
819 return -EINVAL;
820
821 if ((euid != (uid_t) -1) && !uid_valid(keuid))
822 return -EINVAL;
823
824 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
825 return -EINVAL;
1da177e4 826
d84f4f99
DH
827 new = prepare_creds();
828 if (!new)
829 return -ENOMEM;
830
d84f4f99 831 old = current_cred();
1da177e4 832
d84f4f99 833 retval = -EPERM;
fc832ad3 834 if (!nsown_capable(CAP_SETUID)) {
a29c33f4
EB
835 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
836 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
d84f4f99 837 goto error;
a29c33f4
EB
838 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
839 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
d84f4f99 840 goto error;
a29c33f4
EB
841 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
842 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
d84f4f99 843 goto error;
1da177e4 844 }
d84f4f99 845
1da177e4 846 if (ruid != (uid_t) -1) {
a29c33f4
EB
847 new->uid = kruid;
848 if (!uid_eq(kruid, old->uid)) {
54e99124
DG
849 retval = set_user(new);
850 if (retval < 0)
851 goto error;
852 }
1da177e4 853 }
d84f4f99 854 if (euid != (uid_t) -1)
a29c33f4 855 new->euid = keuid;
1da177e4 856 if (suid != (uid_t) -1)
a29c33f4 857 new->suid = ksuid;
d84f4f99 858 new->fsuid = new->euid;
1da177e4 859
d84f4f99
DH
860 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
861 if (retval < 0)
862 goto error;
1da177e4 863
d84f4f99 864 return commit_creds(new);
1da177e4 865
d84f4f99
DH
866error:
867 abort_creds(new);
868 return retval;
1da177e4
LT
869}
870
a29c33f4 871SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
1da177e4 872{
86a264ab 873 const struct cred *cred = current_cred();
1da177e4 874 int retval;
a29c33f4
EB
875 uid_t ruid, euid, suid;
876
877 ruid = from_kuid_munged(cred->user_ns, cred->uid);
878 euid = from_kuid_munged(cred->user_ns, cred->euid);
879 suid = from_kuid_munged(cred->user_ns, cred->suid);
1da177e4 880
a29c33f4
EB
881 if (!(retval = put_user(ruid, ruidp)) &&
882 !(retval = put_user(euid, euidp)))
883 retval = put_user(suid, suidp);
1da177e4
LT
884
885 return retval;
886}
887
888/*
889 * Same as above, but for rgid, egid, sgid.
890 */
ae1251ab 891SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 892{
a29c33f4 893 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
894 const struct cred *old;
895 struct cred *new;
1da177e4 896 int retval;
a29c33f4
EB
897 kgid_t krgid, kegid, ksgid;
898
899 krgid = make_kgid(ns, rgid);
900 kegid = make_kgid(ns, egid);
901 ksgid = make_kgid(ns, sgid);
902
903 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
904 return -EINVAL;
905 if ((egid != (gid_t) -1) && !gid_valid(kegid))
906 return -EINVAL;
907 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
908 return -EINVAL;
1da177e4 909
d84f4f99
DH
910 new = prepare_creds();
911 if (!new)
912 return -ENOMEM;
913 old = current_cred();
914
d84f4f99 915 retval = -EPERM;
fc832ad3 916 if (!nsown_capable(CAP_SETGID)) {
a29c33f4
EB
917 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
918 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
d84f4f99 919 goto error;
a29c33f4
EB
920 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
921 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
d84f4f99 922 goto error;
a29c33f4
EB
923 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
924 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
d84f4f99 925 goto error;
1da177e4 926 }
d84f4f99 927
1da177e4 928 if (rgid != (gid_t) -1)
a29c33f4 929 new->gid = krgid;
d84f4f99 930 if (egid != (gid_t) -1)
a29c33f4 931 new->egid = kegid;
1da177e4 932 if (sgid != (gid_t) -1)
a29c33f4 933 new->sgid = ksgid;
d84f4f99 934 new->fsgid = new->egid;
1da177e4 935
d84f4f99
DH
936 return commit_creds(new);
937
938error:
939 abort_creds(new);
940 return retval;
1da177e4
LT
941}
942
a29c33f4 943SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
1da177e4 944{
86a264ab 945 const struct cred *cred = current_cred();
1da177e4 946 int retval;
a29c33f4
EB
947 gid_t rgid, egid, sgid;
948
949 rgid = from_kgid_munged(cred->user_ns, cred->gid);
950 egid = from_kgid_munged(cred->user_ns, cred->egid);
951 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
1da177e4 952
a29c33f4
EB
953 if (!(retval = put_user(rgid, rgidp)) &&
954 !(retval = put_user(egid, egidp)))
955 retval = put_user(sgid, sgidp);
1da177e4
LT
956
957 return retval;
958}
959
960
961/*
962 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
963 * is used for "access()" and for the NFS daemon (letting nfsd stay at
964 * whatever uid it wants to). It normally shadows "euid", except when
965 * explicitly set by setfsuid() or for access..
966 */
ae1251ab 967SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 968{
d84f4f99
DH
969 const struct cred *old;
970 struct cred *new;
971 uid_t old_fsuid;
a29c33f4
EB
972 kuid_t kuid;
973
974 old = current_cred();
975 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
976
977 kuid = make_kuid(old->user_ns, uid);
978 if (!uid_valid(kuid))
979 return old_fsuid;
1da177e4 980
d84f4f99
DH
981 new = prepare_creds();
982 if (!new)
a29c33f4 983 return old_fsuid;
1da177e4 984
a29c33f4
EB
985 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
986 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
fc832ad3 987 nsown_capable(CAP_SETUID)) {
a29c33f4
EB
988 if (!uid_eq(kuid, old->fsuid)) {
989 new->fsuid = kuid;
d84f4f99
DH
990 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
991 goto change_okay;
1da177e4 992 }
1da177e4
LT
993 }
994
d84f4f99
DH
995 abort_creds(new);
996 return old_fsuid;
1da177e4 997
d84f4f99
DH
998change_okay:
999 commit_creds(new);
1da177e4
LT
1000 return old_fsuid;
1001}
1002
1003/*
f42df9e6 1004 * Samma på svenska..
1da177e4 1005 */
ae1251ab 1006SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 1007{
d84f4f99
DH
1008 const struct cred *old;
1009 struct cred *new;
1010 gid_t old_fsgid;
a29c33f4
EB
1011 kgid_t kgid;
1012
1013 old = current_cred();
1014 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1015
1016 kgid = make_kgid(old->user_ns, gid);
1017 if (!gid_valid(kgid))
1018 return old_fsgid;
d84f4f99
DH
1019
1020 new = prepare_creds();
1021 if (!new)
a29c33f4 1022 return old_fsgid;
1da177e4 1023
a29c33f4
EB
1024 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
1025 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
fc832ad3 1026 nsown_capable(CAP_SETGID)) {
a29c33f4
EB
1027 if (!gid_eq(kgid, old->fsgid)) {
1028 new->fsgid = kgid;
d84f4f99 1029 goto change_okay;
1da177e4 1030 }
1da177e4 1031 }
d84f4f99 1032
d84f4f99
DH
1033 abort_creds(new);
1034 return old_fsgid;
1035
1036change_okay:
1037 commit_creds(new);
1da177e4
LT
1038 return old_fsgid;
1039}
1040
f06febc9
FM
1041void do_sys_times(struct tms *tms)
1042{
0cf55e1e 1043 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 1044
2b5fe6de 1045 spin_lock_irq(&current->sighand->siglock);
0cf55e1e 1046 thread_group_times(current, &tgutime, &tgstime);
f06febc9
FM
1047 cutime = current->signal->cutime;
1048 cstime = current->signal->cstime;
1049 spin_unlock_irq(&current->sighand->siglock);
0cf55e1e
HS
1050 tms->tms_utime = cputime_to_clock_t(tgutime);
1051 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
1052 tms->tms_cutime = cputime_to_clock_t(cutime);
1053 tms->tms_cstime = cputime_to_clock_t(cstime);
1054}
1055
58fd3aa2 1056SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 1057{
1da177e4
LT
1058 if (tbuf) {
1059 struct tms tmp;
f06febc9
FM
1060
1061 do_sys_times(&tmp);
1da177e4
LT
1062 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1063 return -EFAULT;
1064 }
e3d5a27d 1065 force_successful_syscall_return();
1da177e4
LT
1066 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1067}
1068
1069/*
1070 * This needs some heavy checking ...
1071 * I just haven't the stomach for it. I also don't fully
1072 * understand sessions/pgrp etc. Let somebody who does explain it.
1073 *
1074 * OK, I think I have the protection semantics right.... this is really
1075 * only important on a multi-user system anyway, to make sure one user
1076 * can't send a signal to a process owned by another. -TYT, 12/12/91
1077 *
1078 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1079 * LBT 04.03.94
1080 */
b290ebe2 1081SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
1082{
1083 struct task_struct *p;
ee0acf90 1084 struct task_struct *group_leader = current->group_leader;
4e021306
ON
1085 struct pid *pgrp;
1086 int err;
1da177e4
LT
1087
1088 if (!pid)
b488893a 1089 pid = task_pid_vnr(group_leader);
1da177e4
LT
1090 if (!pgid)
1091 pgid = pid;
1092 if (pgid < 0)
1093 return -EINVAL;
950eaaca 1094 rcu_read_lock();
1da177e4
LT
1095
1096 /* From this point forward we keep holding onto the tasklist lock
1097 * so that our parent does not change from under us. -DaveM
1098 */
1099 write_lock_irq(&tasklist_lock);
1100
1101 err = -ESRCH;
4e021306 1102 p = find_task_by_vpid(pid);
1da177e4
LT
1103 if (!p)
1104 goto out;
1105
1106 err = -EINVAL;
1107 if (!thread_group_leader(p))
1108 goto out;
1109
4e021306 1110 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 1111 err = -EPERM;
41487c65 1112 if (task_session(p) != task_session(group_leader))
1da177e4
LT
1113 goto out;
1114 err = -EACCES;
1115 if (p->did_exec)
1116 goto out;
1117 } else {
1118 err = -ESRCH;
ee0acf90 1119 if (p != group_leader)
1da177e4
LT
1120 goto out;
1121 }
1122
1123 err = -EPERM;
1124 if (p->signal->leader)
1125 goto out;
1126
4e021306 1127 pgrp = task_pid(p);
1da177e4 1128 if (pgid != pid) {
b488893a 1129 struct task_struct *g;
1da177e4 1130
4e021306
ON
1131 pgrp = find_vpid(pgid);
1132 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1133 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1134 goto out;
1da177e4
LT
1135 }
1136
1da177e4
LT
1137 err = security_task_setpgid(p, pgid);
1138 if (err)
1139 goto out;
1140
1b0f7ffd 1141 if (task_pgrp(p) != pgrp)
83beaf3c 1142 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1143
1144 err = 0;
1145out:
1146 /* All paths lead to here, thus we are safe. -DaveM */
1147 write_unlock_irq(&tasklist_lock);
950eaaca 1148 rcu_read_unlock();
1da177e4
LT
1149 return err;
1150}
1151
dbf040d9 1152SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 1153{
12a3de0a
ON
1154 struct task_struct *p;
1155 struct pid *grp;
1156 int retval;
1157
1158 rcu_read_lock();
756184b7 1159 if (!pid)
12a3de0a 1160 grp = task_pgrp(current);
756184b7 1161 else {
1da177e4 1162 retval = -ESRCH;
12a3de0a
ON
1163 p = find_task_by_vpid(pid);
1164 if (!p)
1165 goto out;
1166 grp = task_pgrp(p);
1167 if (!grp)
1168 goto out;
1169
1170 retval = security_task_getpgid(p);
1171 if (retval)
1172 goto out;
1da177e4 1173 }
12a3de0a
ON
1174 retval = pid_vnr(grp);
1175out:
1176 rcu_read_unlock();
1177 return retval;
1da177e4
LT
1178}
1179
1180#ifdef __ARCH_WANT_SYS_GETPGRP
1181
dbf040d9 1182SYSCALL_DEFINE0(getpgrp)
1da177e4 1183{
12a3de0a 1184 return sys_getpgid(0);
1da177e4
LT
1185}
1186
1187#endif
1188
dbf040d9 1189SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1190{
1dd768c0
ON
1191 struct task_struct *p;
1192 struct pid *sid;
1193 int retval;
1194
1195 rcu_read_lock();
756184b7 1196 if (!pid)
1dd768c0 1197 sid = task_session(current);
756184b7 1198 else {
1da177e4 1199 retval = -ESRCH;
1dd768c0
ON
1200 p = find_task_by_vpid(pid);
1201 if (!p)
1202 goto out;
1203 sid = task_session(p);
1204 if (!sid)
1205 goto out;
1206
1207 retval = security_task_getsid(p);
1208 if (retval)
1209 goto out;
1da177e4 1210 }
1dd768c0
ON
1211 retval = pid_vnr(sid);
1212out:
1213 rcu_read_unlock();
1214 return retval;
1da177e4
LT
1215}
1216
b290ebe2 1217SYSCALL_DEFINE0(setsid)
1da177e4 1218{
e19f247a 1219 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1220 struct pid *sid = task_pid(group_leader);
1221 pid_t session = pid_vnr(sid);
1da177e4
LT
1222 int err = -EPERM;
1223
1da177e4 1224 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1225 /* Fail if I am already a session leader */
1226 if (group_leader->signal->leader)
1227 goto out;
1228
430c6231
ON
1229 /* Fail if a process group id already exists that equals the
1230 * proposed session id.
390e2ff0 1231 */
6806aac6 1232 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1233 goto out;
1234
e19f247a 1235 group_leader->signal->leader = 1;
8520d7c7 1236 __set_special_pids(sid);
24ec839c 1237
9c9f4ded 1238 proc_clear_tty(group_leader);
24ec839c 1239
e4cc0a9c 1240 err = session;
1da177e4
LT
1241out:
1242 write_unlock_irq(&tasklist_lock);
5091faa4 1243 if (err > 0) {
0d0df599 1244 proc_sid_connector(group_leader);
5091faa4
MG
1245 sched_autogroup_create_attach(group_leader);
1246 }
1da177e4
LT
1247 return err;
1248}
1249
1da177e4
LT
1250DECLARE_RWSEM(uts_sem);
1251
e28cbf22
CH
1252#ifdef COMPAT_UTS_MACHINE
1253#define override_architecture(name) \
46da2766 1254 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1255 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1256 sizeof(COMPAT_UTS_MACHINE)))
1257#else
1258#define override_architecture(name) 0
1259#endif
1260
be27425d
AK
1261/*
1262 * Work around broken programs that cannot handle "Linux 3.0".
1263 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1264 */
1265static int override_release(char __user *release, int len)
1266{
1267 int ret = 0;
a84a79e4 1268 char buf[65];
be27425d
AK
1269
1270 if (current->personality & UNAME26) {
1271 char *rest = UTS_RELEASE;
1272 int ndots = 0;
1273 unsigned v;
1274
1275 while (*rest) {
1276 if (*rest == '.' && ++ndots >= 3)
1277 break;
1278 if (!isdigit(*rest) && *rest != '.')
1279 break;
1280 rest++;
1281 }
1282 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1283 snprintf(buf, len, "2.6.%u%s", v, rest);
1284 ret = copy_to_user(release, buf, len);
1285 }
1286 return ret;
1287}
1288
e48fbb69 1289SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1290{
1291 int errno = 0;
1292
1293 down_read(&uts_sem);
e9ff3990 1294 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1295 errno = -EFAULT;
1296 up_read(&uts_sem);
e28cbf22 1297
be27425d
AK
1298 if (!errno && override_release(name->release, sizeof(name->release)))
1299 errno = -EFAULT;
e28cbf22
CH
1300 if (!errno && override_architecture(name))
1301 errno = -EFAULT;
1da177e4
LT
1302 return errno;
1303}
1304
5cacdb4a
CH
1305#ifdef __ARCH_WANT_SYS_OLD_UNAME
1306/*
1307 * Old cruft
1308 */
1309SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1310{
1311 int error = 0;
1312
1313 if (!name)
1314 return -EFAULT;
1315
1316 down_read(&uts_sem);
1317 if (copy_to_user(name, utsname(), sizeof(*name)))
1318 error = -EFAULT;
1319 up_read(&uts_sem);
1320
be27425d
AK
1321 if (!error && override_release(name->release, sizeof(name->release)))
1322 error = -EFAULT;
5cacdb4a
CH
1323 if (!error && override_architecture(name))
1324 error = -EFAULT;
1325 return error;
1326}
1327
1328SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1329{
1330 int error;
1331
1332 if (!name)
1333 return -EFAULT;
1334 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1335 return -EFAULT;
1336
1337 down_read(&uts_sem);
1338 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1339 __OLD_UTS_LEN);
1340 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1341 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1342 __OLD_UTS_LEN);
1343 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1344 error |= __copy_to_user(&name->release, &utsname()->release,
1345 __OLD_UTS_LEN);
1346 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1347 error |= __copy_to_user(&name->version, &utsname()->version,
1348 __OLD_UTS_LEN);
1349 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1350 error |= __copy_to_user(&name->machine, &utsname()->machine,
1351 __OLD_UTS_LEN);
1352 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1353 up_read(&uts_sem);
1354
1355 if (!error && override_architecture(name))
1356 error = -EFAULT;
be27425d
AK
1357 if (!error && override_release(name->release, sizeof(name->release)))
1358 error = -EFAULT;
5cacdb4a
CH
1359 return error ? -EFAULT : 0;
1360}
1361#endif
1362
5a8a82b1 1363SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1364{
1365 int errno;
1366 char tmp[__NEW_UTS_LEN];
1367
bb96a6f5 1368 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1369 return -EPERM;
fc832ad3 1370
1da177e4
LT
1371 if (len < 0 || len > __NEW_UTS_LEN)
1372 return -EINVAL;
1373 down_write(&uts_sem);
1374 errno = -EFAULT;
1375 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1376 struct new_utsname *u = utsname();
1377
1378 memcpy(u->nodename, tmp, len);
1379 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4 1380 errno = 0;
499eea6b 1381 uts_proc_notify(UTS_PROC_HOSTNAME);
1da177e4
LT
1382 }
1383 up_write(&uts_sem);
1384 return errno;
1385}
1386
1387#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1388
5a8a82b1 1389SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1390{
1391 int i, errno;
9679e4dd 1392 struct new_utsname *u;
1da177e4
LT
1393
1394 if (len < 0)
1395 return -EINVAL;
1396 down_read(&uts_sem);
9679e4dd
AM
1397 u = utsname();
1398 i = 1 + strlen(u->nodename);
1da177e4
LT
1399 if (i > len)
1400 i = len;
1401 errno = 0;
9679e4dd 1402 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1403 errno = -EFAULT;
1404 up_read(&uts_sem);
1405 return errno;
1406}
1407
1408#endif
1409
1410/*
1411 * Only setdomainname; getdomainname can be implemented by calling
1412 * uname()
1413 */
5a8a82b1 1414SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1415{
1416 int errno;
1417 char tmp[__NEW_UTS_LEN];
1418
fc832ad3 1419 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1420 return -EPERM;
1421 if (len < 0 || len > __NEW_UTS_LEN)
1422 return -EINVAL;
1423
1424 down_write(&uts_sem);
1425 errno = -EFAULT;
1426 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1427 struct new_utsname *u = utsname();
1428
1429 memcpy(u->domainname, tmp, len);
1430 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4 1431 errno = 0;
499eea6b 1432 uts_proc_notify(UTS_PROC_DOMAINNAME);
1da177e4
LT
1433 }
1434 up_write(&uts_sem);
1435 return errno;
1436}
1437
e48fbb69 1438SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1439{
b9518345
JS
1440 struct rlimit value;
1441 int ret;
1442
1443 ret = do_prlimit(current, resource, NULL, &value);
1444 if (!ret)
1445 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1446
1447 return ret;
1da177e4
LT
1448}
1449
1450#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1451
1452/*
1453 * Back compatibility for getrlimit. Needed for some apps.
1454 */
1455
e48fbb69
HC
1456SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1457 struct rlimit __user *, rlim)
1da177e4
LT
1458{
1459 struct rlimit x;
1460 if (resource >= RLIM_NLIMITS)
1461 return -EINVAL;
1462
1463 task_lock(current->group_leader);
1464 x = current->signal->rlim[resource];
1465 task_unlock(current->group_leader);
756184b7 1466 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1467 x.rlim_cur = 0x7FFFFFFF;
756184b7 1468 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1469 x.rlim_max = 0x7FFFFFFF;
1470 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1471}
1472
1473#endif
1474
c022a0ac
JS
1475static inline bool rlim64_is_infinity(__u64 rlim64)
1476{
1477#if BITS_PER_LONG < 64
1478 return rlim64 >= ULONG_MAX;
1479#else
1480 return rlim64 == RLIM64_INFINITY;
1481#endif
1482}
1483
1484static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1485{
1486 if (rlim->rlim_cur == RLIM_INFINITY)
1487 rlim64->rlim_cur = RLIM64_INFINITY;
1488 else
1489 rlim64->rlim_cur = rlim->rlim_cur;
1490 if (rlim->rlim_max == RLIM_INFINITY)
1491 rlim64->rlim_max = RLIM64_INFINITY;
1492 else
1493 rlim64->rlim_max = rlim->rlim_max;
1494}
1495
1496static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1497{
1498 if (rlim64_is_infinity(rlim64->rlim_cur))
1499 rlim->rlim_cur = RLIM_INFINITY;
1500 else
1501 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1502 if (rlim64_is_infinity(rlim64->rlim_max))
1503 rlim->rlim_max = RLIM_INFINITY;
1504 else
1505 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1506}
1507
1c1e618d 1508/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1509int do_prlimit(struct task_struct *tsk, unsigned int resource,
1510 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1511{
5b41535a 1512 struct rlimit *rlim;
86f162f4 1513 int retval = 0;
1da177e4
LT
1514
1515 if (resource >= RLIM_NLIMITS)
1516 return -EINVAL;
5b41535a
JS
1517 if (new_rlim) {
1518 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1519 return -EINVAL;
1520 if (resource == RLIMIT_NOFILE &&
1521 new_rlim->rlim_max > sysctl_nr_open)
1522 return -EPERM;
1523 }
1da177e4 1524
1c1e618d
JS
1525 /* protect tsk->signal and tsk->sighand from disappearing */
1526 read_lock(&tasklist_lock);
1527 if (!tsk->sighand) {
1528 retval = -ESRCH;
1529 goto out;
1530 }
1531
5b41535a 1532 rlim = tsk->signal->rlim + resource;
86f162f4 1533 task_lock(tsk->group_leader);
5b41535a 1534 if (new_rlim) {
fc832ad3
SH
1535 /* Keep the capable check against init_user_ns until
1536 cgroups can contain all limits */
5b41535a
JS
1537 if (new_rlim->rlim_max > rlim->rlim_max &&
1538 !capable(CAP_SYS_RESOURCE))
1539 retval = -EPERM;
1540 if (!retval)
1541 retval = security_task_setrlimit(tsk->group_leader,
1542 resource, new_rlim);
1543 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1544 /*
1545 * The caller is asking for an immediate RLIMIT_CPU
1546 * expiry. But we use the zero value to mean "it was
1547 * never set". So let's cheat and make it one second
1548 * instead
1549 */
1550 new_rlim->rlim_cur = 1;
1551 }
1552 }
1553 if (!retval) {
1554 if (old_rlim)
1555 *old_rlim = *rlim;
1556 if (new_rlim)
1557 *rlim = *new_rlim;
9926e4c7 1558 }
7855c35d 1559 task_unlock(tsk->group_leader);
1da177e4 1560
d3561f78
AM
1561 /*
1562 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1563 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1564 * very long-standing error, and fixing it now risks breakage of
1565 * applications, so we live with it
1566 */
5b41535a
JS
1567 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1568 new_rlim->rlim_cur != RLIM_INFINITY)
1569 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1570out:
1c1e618d 1571 read_unlock(&tasklist_lock);
2fb9d268 1572 return retval;
1da177e4
LT
1573}
1574
c022a0ac
JS
1575/* rcu lock must be held */
1576static int check_prlimit_permission(struct task_struct *task)
1577{
1578 const struct cred *cred = current_cred(), *tcred;
1579
fc832ad3
SH
1580 if (current == task)
1581 return 0;
c022a0ac 1582
fc832ad3 1583 tcred = __task_cred(task);
5af66203
EB
1584 if (uid_eq(cred->uid, tcred->euid) &&
1585 uid_eq(cred->uid, tcred->suid) &&
1586 uid_eq(cred->uid, tcred->uid) &&
1587 gid_eq(cred->gid, tcred->egid) &&
1588 gid_eq(cred->gid, tcred->sgid) &&
1589 gid_eq(cred->gid, tcred->gid))
fc832ad3 1590 return 0;
c4a4d603 1591 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
fc832ad3
SH
1592 return 0;
1593
1594 return -EPERM;
c022a0ac
JS
1595}
1596
1597SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1598 const struct rlimit64 __user *, new_rlim,
1599 struct rlimit64 __user *, old_rlim)
1600{
1601 struct rlimit64 old64, new64;
1602 struct rlimit old, new;
1603 struct task_struct *tsk;
1604 int ret;
1605
1606 if (new_rlim) {
1607 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1608 return -EFAULT;
1609 rlim64_to_rlim(&new64, &new);
1610 }
1611
1612 rcu_read_lock();
1613 tsk = pid ? find_task_by_vpid(pid) : current;
1614 if (!tsk) {
1615 rcu_read_unlock();
1616 return -ESRCH;
1617 }
1618 ret = check_prlimit_permission(tsk);
1619 if (ret) {
1620 rcu_read_unlock();
1621 return ret;
1622 }
1623 get_task_struct(tsk);
1624 rcu_read_unlock();
1625
1626 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1627 old_rlim ? &old : NULL);
1628
1629 if (!ret && old_rlim) {
1630 rlim_to_rlim64(&old, &old64);
1631 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1632 ret = -EFAULT;
1633 }
1634
1635 put_task_struct(tsk);
1636 return ret;
1637}
1638
7855c35d
JS
1639SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1640{
1641 struct rlimit new_rlim;
1642
1643 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1644 return -EFAULT;
5b41535a 1645 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1646}
1647
1da177e4
LT
1648/*
1649 * It would make sense to put struct rusage in the task_struct,
1650 * except that would make the task_struct be *really big*. After
1651 * task_struct gets moved into malloc'ed memory, it would
1652 * make sense to do this. It will make moving the rest of the information
1653 * a lot simpler! (Which we're not doing right now because we're not
1654 * measuring them yet).
1655 *
1da177e4
LT
1656 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1657 * races with threads incrementing their own counters. But since word
1658 * reads are atomic, we either get new values or old values and we don't
1659 * care which for the sums. We always take the siglock to protect reading
1660 * the c* fields from p->signal from races with exit.c updating those
1661 * fields when reaping, so a sample either gets all the additions of a
1662 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1663 *
de047c1b
RT
1664 * Locking:
1665 * We need to take the siglock for CHILDEREN, SELF and BOTH
1666 * for the cases current multithreaded, non-current single threaded
1667 * non-current multithreaded. Thread traversal is now safe with
1668 * the siglock held.
1669 * Strictly speaking, we donot need to take the siglock if we are current and
1670 * single threaded, as no one else can take our signal_struct away, no one
1671 * else can reap the children to update signal->c* counters, and no one else
1672 * can race with the signal-> fields. If we do not take any lock, the
1673 * signal-> fields could be read out of order while another thread was just
1674 * exiting. So we should place a read memory barrier when we avoid the lock.
1675 * On the writer side, write memory barrier is implied in __exit_signal
1676 * as __exit_signal releases the siglock spinlock after updating the signal->
1677 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1678 *
1da177e4
LT
1679 */
1680
f06febc9 1681static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1682{
679c9cd4
SK
1683 r->ru_nvcsw += t->nvcsw;
1684 r->ru_nivcsw += t->nivcsw;
1685 r->ru_minflt += t->min_flt;
1686 r->ru_majflt += t->maj_flt;
1687 r->ru_inblock += task_io_get_inblock(t);
1688 r->ru_oublock += task_io_get_oublock(t);
1689}
1690
1da177e4
LT
1691static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1692{
1693 struct task_struct *t;
1694 unsigned long flags;
0cf55e1e 1695 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1696 unsigned long maxrss = 0;
1da177e4
LT
1697
1698 memset((char *) r, 0, sizeof *r);
64861634 1699 utime = stime = 0;
1da177e4 1700
679c9cd4 1701 if (who == RUSAGE_THREAD) {
d180c5bc 1702 task_times(current, &utime, &stime);
f06febc9 1703 accumulate_thread_rusage(p, r);
1f10206c 1704 maxrss = p->signal->maxrss;
679c9cd4
SK
1705 goto out;
1706 }
1707
d6cf723a 1708 if (!lock_task_sighand(p, &flags))
de047c1b 1709 return;
0f59cc4a 1710
1da177e4 1711 switch (who) {
0f59cc4a 1712 case RUSAGE_BOTH:
1da177e4 1713 case RUSAGE_CHILDREN:
1da177e4
LT
1714 utime = p->signal->cutime;
1715 stime = p->signal->cstime;
1716 r->ru_nvcsw = p->signal->cnvcsw;
1717 r->ru_nivcsw = p->signal->cnivcsw;
1718 r->ru_minflt = p->signal->cmin_flt;
1719 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1720 r->ru_inblock = p->signal->cinblock;
1721 r->ru_oublock = p->signal->coublock;
1f10206c 1722 maxrss = p->signal->cmaxrss;
0f59cc4a
ON
1723
1724 if (who == RUSAGE_CHILDREN)
1725 break;
1726
1da177e4 1727 case RUSAGE_SELF:
0cf55e1e 1728 thread_group_times(p, &tgutime, &tgstime);
64861634
MS
1729 utime += tgutime;
1730 stime += tgstime;
1da177e4
LT
1731 r->ru_nvcsw += p->signal->nvcsw;
1732 r->ru_nivcsw += p->signal->nivcsw;
1733 r->ru_minflt += p->signal->min_flt;
1734 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1735 r->ru_inblock += p->signal->inblock;
1736 r->ru_oublock += p->signal->oublock;
1f10206c
JP
1737 if (maxrss < p->signal->maxrss)
1738 maxrss = p->signal->maxrss;
1da177e4
LT
1739 t = p;
1740 do {
f06febc9 1741 accumulate_thread_rusage(t, r);
1da177e4
LT
1742 t = next_thread(t);
1743 } while (t != p);
1da177e4 1744 break;
0f59cc4a 1745
1da177e4
LT
1746 default:
1747 BUG();
1748 }
de047c1b 1749 unlock_task_sighand(p, &flags);
de047c1b 1750
679c9cd4 1751out:
0f59cc4a
ON
1752 cputime_to_timeval(utime, &r->ru_utime);
1753 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1754
1755 if (who != RUSAGE_CHILDREN) {
1756 struct mm_struct *mm = get_task_mm(p);
1757 if (mm) {
1758 setmax_mm_hiwater_rss(&maxrss, mm);
1759 mmput(mm);
1760 }
1761 }
1762 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1763}
1764
1765int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1766{
1767 struct rusage r;
1da177e4 1768 k_getrusage(p, who, &r);
1da177e4
LT
1769 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1770}
1771
e48fbb69 1772SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1773{
679c9cd4
SK
1774 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1775 who != RUSAGE_THREAD)
1da177e4
LT
1776 return -EINVAL;
1777 return getrusage(current, who, ru);
1778}
1779
e48fbb69 1780SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1781{
1782 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1783 return mask;
1784}
3b7391de 1785
028ee4be
CG
1786#ifdef CONFIG_CHECKPOINT_RESTORE
1787static int prctl_set_mm(int opt, unsigned long addr,
1788 unsigned long arg4, unsigned long arg5)
1789{
1790 unsigned long rlim = rlimit(RLIMIT_DATA);
1791 unsigned long vm_req_flags;
1792 unsigned long vm_bad_flags;
1793 struct vm_area_struct *vma;
1794 int error = 0;
1795 struct mm_struct *mm = current->mm;
1796
1797 if (arg4 | arg5)
1798 return -EINVAL;
1799
79f0713d 1800 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
1801 return -EPERM;
1802
1803 if (addr >= TASK_SIZE)
1804 return -EINVAL;
1805
1806 down_read(&mm->mmap_sem);
1807 vma = find_vma(mm, addr);
1808
1809 if (opt != PR_SET_MM_START_BRK && opt != PR_SET_MM_BRK) {
1810 /* It must be existing VMA */
1811 if (!vma || vma->vm_start > addr)
1812 goto out;
1813 }
1814
1815 error = -EINVAL;
1816 switch (opt) {
1817 case PR_SET_MM_START_CODE:
1818 case PR_SET_MM_END_CODE:
1819 vm_req_flags = VM_READ | VM_EXEC;
1820 vm_bad_flags = VM_WRITE | VM_MAYSHARE;
1821
1822 if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1823 (vma->vm_flags & vm_bad_flags))
1824 goto out;
1825
1826 if (opt == PR_SET_MM_START_CODE)
1827 mm->start_code = addr;
1828 else
1829 mm->end_code = addr;
1830 break;
1831
1832 case PR_SET_MM_START_DATA:
1833 case PR_SET_MM_END_DATA:
1834 vm_req_flags = VM_READ | VM_WRITE;
1835 vm_bad_flags = VM_EXEC | VM_MAYSHARE;
1836
1837 if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1838 (vma->vm_flags & vm_bad_flags))
1839 goto out;
1840
1841 if (opt == PR_SET_MM_START_DATA)
1842 mm->start_data = addr;
1843 else
1844 mm->end_data = addr;
1845 break;
1846
1847 case PR_SET_MM_START_STACK:
1848
1849#ifdef CONFIG_STACK_GROWSUP
1850 vm_req_flags = VM_READ | VM_WRITE | VM_GROWSUP;
1851#else
1852 vm_req_flags = VM_READ | VM_WRITE | VM_GROWSDOWN;
1853#endif
1854 if ((vma->vm_flags & vm_req_flags) != vm_req_flags)
1855 goto out;
1856
1857 mm->start_stack = addr;
1858 break;
1859
1860 case PR_SET_MM_START_BRK:
1861 if (addr <= mm->end_data)
1862 goto out;
1863
1864 if (rlim < RLIM_INFINITY &&
1865 (mm->brk - addr) +
1866 (mm->end_data - mm->start_data) > rlim)
1867 goto out;
1868
1869 mm->start_brk = addr;
1870 break;
1871
1872 case PR_SET_MM_BRK:
1873 if (addr <= mm->end_data)
1874 goto out;
1875
1876 if (rlim < RLIM_INFINITY &&
1877 (addr - mm->start_brk) +
1878 (mm->end_data - mm->start_data) > rlim)
1879 goto out;
1880
1881 mm->brk = addr;
1882 break;
1883
1884 default:
1885 error = -EINVAL;
1886 goto out;
1887 }
1888
1889 error = 0;
1890
1891out:
1892 up_read(&mm->mmap_sem);
1893
1894 return error;
1895}
1896#else /* CONFIG_CHECKPOINT_RESTORE */
1897static int prctl_set_mm(int opt, unsigned long addr,
1898 unsigned long arg4, unsigned long arg5)
1899{
1900 return -EINVAL;
1901}
1902#endif
1903
c4ea37c2
HC
1904SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1905 unsigned long, arg4, unsigned long, arg5)
1da177e4 1906{
b6dff3ec
DH
1907 struct task_struct *me = current;
1908 unsigned char comm[sizeof(me->comm)];
1909 long error;
1da177e4 1910
d84f4f99
DH
1911 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1912 if (error != -ENOSYS)
1da177e4
LT
1913 return error;
1914
d84f4f99 1915 error = 0;
1da177e4
LT
1916 switch (option) {
1917 case PR_SET_PDEATHSIG:
0730ded5 1918 if (!valid_signal(arg2)) {
1da177e4
LT
1919 error = -EINVAL;
1920 break;
1921 }
b6dff3ec
DH
1922 me->pdeath_signal = arg2;
1923 error = 0;
1da177e4
LT
1924 break;
1925 case PR_GET_PDEATHSIG:
b6dff3ec 1926 error = put_user(me->pdeath_signal, (int __user *)arg2);
1da177e4
LT
1927 break;
1928 case PR_GET_DUMPABLE:
b6dff3ec 1929 error = get_dumpable(me->mm);
1da177e4
LT
1930 break;
1931 case PR_SET_DUMPABLE:
abf75a50 1932 if (arg2 < 0 || arg2 > 1) {
1da177e4
LT
1933 error = -EINVAL;
1934 break;
1935 }
b6dff3ec
DH
1936 set_dumpable(me->mm, arg2);
1937 error = 0;
1da177e4
LT
1938 break;
1939
1940 case PR_SET_UNALIGN:
b6dff3ec 1941 error = SET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1942 break;
1943 case PR_GET_UNALIGN:
b6dff3ec 1944 error = GET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1945 break;
1946 case PR_SET_FPEMU:
b6dff3ec 1947 error = SET_FPEMU_CTL(me, arg2);
1da177e4
LT
1948 break;
1949 case PR_GET_FPEMU:
b6dff3ec 1950 error = GET_FPEMU_CTL(me, arg2);
1da177e4
LT
1951 break;
1952 case PR_SET_FPEXC:
b6dff3ec 1953 error = SET_FPEXC_CTL(me, arg2);
1da177e4
LT
1954 break;
1955 case PR_GET_FPEXC:
b6dff3ec 1956 error = GET_FPEXC_CTL(me, arg2);
1da177e4
LT
1957 break;
1958 case PR_GET_TIMING:
1959 error = PR_TIMING_STATISTICAL;
1960 break;
1961 case PR_SET_TIMING:
7b26655f 1962 if (arg2 != PR_TIMING_STATISTICAL)
1da177e4 1963 error = -EINVAL;
b6dff3ec
DH
1964 else
1965 error = 0;
1da177e4
LT
1966 break;
1967
b6dff3ec
DH
1968 case PR_SET_NAME:
1969 comm[sizeof(me->comm)-1] = 0;
1970 if (strncpy_from_user(comm, (char __user *)arg2,
1971 sizeof(me->comm) - 1) < 0)
1da177e4 1972 return -EFAULT;
b6dff3ec 1973 set_task_comm(me, comm);
f786ecba 1974 proc_comm_connector(me);
1da177e4 1975 return 0;
b6dff3ec
DH
1976 case PR_GET_NAME:
1977 get_task_comm(comm, me);
1978 if (copy_to_user((char __user *)arg2, comm,
1979 sizeof(comm)))
1da177e4
LT
1980 return -EFAULT;
1981 return 0;
651d765d 1982 case PR_GET_ENDIAN:
b6dff3ec 1983 error = GET_ENDIAN(me, arg2);
651d765d
AB
1984 break;
1985 case PR_SET_ENDIAN:
b6dff3ec 1986 error = SET_ENDIAN(me, arg2);
651d765d
AB
1987 break;
1988
1d9d02fe
AA
1989 case PR_GET_SECCOMP:
1990 error = prctl_get_seccomp();
1991 break;
1992 case PR_SET_SECCOMP:
e2cfabdf 1993 error = prctl_set_seccomp(arg2, (char __user *)arg3);
1d9d02fe 1994 break;
8fb402bc
EB
1995 case PR_GET_TSC:
1996 error = GET_TSC_CTL(arg2);
1997 break;
1998 case PR_SET_TSC:
1999 error = SET_TSC_CTL(arg2);
2000 break;
cdd6c482
IM
2001 case PR_TASK_PERF_EVENTS_DISABLE:
2002 error = perf_event_task_disable();
1d1c7ddb 2003 break;
cdd6c482
IM
2004 case PR_TASK_PERF_EVENTS_ENABLE:
2005 error = perf_event_task_enable();
1d1c7ddb 2006 break;
6976675d
AV
2007 case PR_GET_TIMERSLACK:
2008 error = current->timer_slack_ns;
2009 break;
2010 case PR_SET_TIMERSLACK:
2011 if (arg2 <= 0)
2012 current->timer_slack_ns =
2013 current->default_timer_slack_ns;
2014 else
2015 current->timer_slack_ns = arg2;
b6dff3ec 2016 error = 0;
6976675d 2017 break;
4db96cf0
AK
2018 case PR_MCE_KILL:
2019 if (arg4 | arg5)
2020 return -EINVAL;
2021 switch (arg2) {
1087e9b4 2022 case PR_MCE_KILL_CLEAR:
4db96cf0
AK
2023 if (arg3 != 0)
2024 return -EINVAL;
2025 current->flags &= ~PF_MCE_PROCESS;
2026 break;
1087e9b4 2027 case PR_MCE_KILL_SET:
4db96cf0 2028 current->flags |= PF_MCE_PROCESS;
1087e9b4 2029 if (arg3 == PR_MCE_KILL_EARLY)
4db96cf0 2030 current->flags |= PF_MCE_EARLY;
1087e9b4 2031 else if (arg3 == PR_MCE_KILL_LATE)
4db96cf0 2032 current->flags &= ~PF_MCE_EARLY;
1087e9b4
AK
2033 else if (arg3 == PR_MCE_KILL_DEFAULT)
2034 current->flags &=
2035 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2036 else
2037 return -EINVAL;
4db96cf0
AK
2038 break;
2039 default:
2040 return -EINVAL;
2041 }
2042 error = 0;
2043 break;
1087e9b4
AK
2044 case PR_MCE_KILL_GET:
2045 if (arg2 | arg3 | arg4 | arg5)
2046 return -EINVAL;
2047 if (current->flags & PF_MCE_PROCESS)
2048 error = (current->flags & PF_MCE_EARLY) ?
2049 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2050 else
2051 error = PR_MCE_KILL_DEFAULT;
2052 break;
028ee4be
CG
2053 case PR_SET_MM:
2054 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2055 break;
ebec18a6
LP
2056 case PR_SET_CHILD_SUBREAPER:
2057 me->signal->is_child_subreaper = !!arg2;
2058 error = 0;
2059 break;
2060 case PR_GET_CHILD_SUBREAPER:
2061 error = put_user(me->signal->is_child_subreaper,
2062 (int __user *) arg2);
2063 break;
259e5e6c
AL
2064 case PR_SET_NO_NEW_PRIVS:
2065 if (arg2 != 1 || arg3 || arg4 || arg5)
2066 return -EINVAL;
2067
2068 current->no_new_privs = 1;
2069 break;
2070 case PR_GET_NO_NEW_PRIVS:
2071 if (arg2 || arg3 || arg4 || arg5)
2072 return -EINVAL;
2073 return current->no_new_privs ? 1 : 0;
1da177e4
LT
2074 default:
2075 error = -EINVAL;
2076 break;
2077 }
2078 return error;
2079}
3cfc348b 2080
836f92ad
HC
2081SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2082 struct getcpu_cache __user *, unused)
3cfc348b
AK
2083{
2084 int err = 0;
2085 int cpu = raw_smp_processor_id();
2086 if (cpup)
2087 err |= put_user(cpu, cpup);
2088 if (nodep)
2089 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2090 return err ? -EFAULT : 0;
2091}
10a0a8d4
JF
2092
2093char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2094
a06a4dc3 2095static void argv_cleanup(struct subprocess_info *info)
10a0a8d4 2096{
a06a4dc3 2097 argv_free(info->argv);
10a0a8d4
JF
2098}
2099
2100/**
2101 * orderly_poweroff - Trigger an orderly system poweroff
2102 * @force: force poweroff if command execution fails
2103 *
2104 * This may be called from any context to trigger a system shutdown.
2105 * If the orderly shutdown fails, it will force an immediate shutdown.
2106 */
2107int orderly_poweroff(bool force)
2108{
2109 int argc;
2110 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2111 static char *envp[] = {
2112 "HOME=/",
2113 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2114 NULL
2115 };
2116 int ret = -ENOMEM;
10a0a8d4
JF
2117
2118 if (argv == NULL) {
2119 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2120 __func__, poweroff_cmd);
2121 goto out;
2122 }
2123
81ab6e7b
BH
2124 ret = call_usermodehelper_fns(argv[0], argv, envp, UMH_NO_WAIT,
2125 NULL, argv_cleanup, NULL);
2126out:
2127 if (likely(!ret))
2128 return 0;
10a0a8d4 2129
81ab6e7b
BH
2130 if (ret == -ENOMEM)
2131 argv_free(argv);
10a0a8d4 2132
81ab6e7b 2133 if (force) {
10a0a8d4
JF
2134 printk(KERN_WARNING "Failed to start orderly shutdown: "
2135 "forcing the issue\n");
2136
2137 /* I guess this should try to kick off some daemon to
2138 sync and poweroff asap. Or not even bother syncing
2139 if we're doing an emergency shutdown? */
2140 emergency_sync();
2141 kernel_power_off();
2142 }
2143
2144 return ret;
2145}
2146EXPORT_SYMBOL_GPL(orderly_poweroff);