]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sys.c
x86/speculation: Add prctl for Speculative Store Bypass mitigation
[mirror_ubuntu-hirsute-kernel.git] / kernel / sys.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
9984de1a 8#include <linux/export.h>
1da177e4
LT
9#include <linux/mm.h>
10#include <linux/utsname.h>
11#include <linux/mman.h>
1da177e4
LT
12#include <linux/reboot.h>
13#include <linux/prctl.h>
1da177e4
LT
14#include <linux/highuid.h>
15#include <linux/fs.h>
74da1ff7 16#include <linux/kmod.h>
cdd6c482 17#include <linux/perf_event.h>
3e88c553 18#include <linux/resource.h>
dc009d92 19#include <linux/kernel.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e28cbf22 36#include <linux/personality.h>
e3d5a27d 37#include <linux/ptrace.h>
5ad4e53b 38#include <linux/fs_struct.h>
b32dfe37
CG
39#include <linux/file.h>
40#include <linux/mount.h>
5a0e3ad6 41#include <linux/gfp.h>
40dc166c 42#include <linux/syscore_ops.h>
be27425d
AK
43#include <linux/version.h>
44#include <linux/ctype.h>
1da177e4
LT
45
46#include <linux/compat.h>
47#include <linux/syscalls.h>
00d7c05a 48#include <linux/kprobes.h>
acce292c 49#include <linux/user_namespace.h>
7fe5e042 50#include <linux/binfmts.h>
1da177e4 51
4a22f166 52#include <linux/sched.h>
4eb5aaa3 53#include <linux/sched/autogroup.h>
4f17722c 54#include <linux/sched/loadavg.h>
03441a34 55#include <linux/sched/stat.h>
6e84f315 56#include <linux/sched/mm.h>
f7ccbae4 57#include <linux/sched/coredump.h>
29930025 58#include <linux/sched/task.h>
32ef5517 59#include <linux/sched/cputime.h>
4a22f166
SR
60#include <linux/rcupdate.h>
61#include <linux/uidgid.h>
62#include <linux/cred.h>
63
b617cfc8
TG
64#include <linux/nospec.h>
65
04c6862c 66#include <linux/kmsg_dump.h>
be27425d
AK
67/* Move somewhere else to avoid recompiling? */
68#include <generated/utsrelease.h>
04c6862c 69
7c0f6ba6 70#include <linux/uaccess.h>
1da177e4
LT
71#include <asm/io.h>
72#include <asm/unistd.h>
73
e530dca5
DB
74#include "uid16.h"
75
1da177e4 76#ifndef SET_UNALIGN_CTL
ec94fc3d 77# define SET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
78#endif
79#ifndef GET_UNALIGN_CTL
ec94fc3d 80# define GET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
81#endif
82#ifndef SET_FPEMU_CTL
ec94fc3d 83# define SET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
84#endif
85#ifndef GET_FPEMU_CTL
ec94fc3d 86# define GET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
87#endif
88#ifndef SET_FPEXC_CTL
ec94fc3d 89# define SET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4
LT
90#endif
91#ifndef GET_FPEXC_CTL
ec94fc3d 92# define GET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4 93#endif
651d765d 94#ifndef GET_ENDIAN
ec94fc3d 95# define GET_ENDIAN(a, b) (-EINVAL)
651d765d
AB
96#endif
97#ifndef SET_ENDIAN
ec94fc3d 98# define SET_ENDIAN(a, b) (-EINVAL)
651d765d 99#endif
8fb402bc
EB
100#ifndef GET_TSC_CTL
101# define GET_TSC_CTL(a) (-EINVAL)
102#endif
103#ifndef SET_TSC_CTL
104# define SET_TSC_CTL(a) (-EINVAL)
105#endif
fe3d197f 106#ifndef MPX_ENABLE_MANAGEMENT
46a6e0cf 107# define MPX_ENABLE_MANAGEMENT() (-EINVAL)
fe3d197f
DH
108#endif
109#ifndef MPX_DISABLE_MANAGEMENT
46a6e0cf 110# define MPX_DISABLE_MANAGEMENT() (-EINVAL)
fe3d197f 111#endif
9791554b
PB
112#ifndef GET_FP_MODE
113# define GET_FP_MODE(a) (-EINVAL)
114#endif
115#ifndef SET_FP_MODE
116# define SET_FP_MODE(a,b) (-EINVAL)
117#endif
2d2123bc
DM
118#ifndef SVE_SET_VL
119# define SVE_SET_VL(a) (-EINVAL)
120#endif
121#ifndef SVE_GET_VL
122# define SVE_GET_VL() (-EINVAL)
123#endif
1da177e4
LT
124
125/*
126 * this is where the system-wide overflow UID and GID are defined, for
127 * architectures that now have 32-bit UID/GID but didn't in the past
128 */
129
130int overflowuid = DEFAULT_OVERFLOWUID;
131int overflowgid = DEFAULT_OVERFLOWGID;
132
1da177e4
LT
133EXPORT_SYMBOL(overflowuid);
134EXPORT_SYMBOL(overflowgid);
1da177e4
LT
135
136/*
137 * the same as above, but for filesystems which can only store a 16-bit
138 * UID and GID. as such, this is needed on all architectures
139 */
140
141int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
8b2770a4 142int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
1da177e4
LT
143
144EXPORT_SYMBOL(fs_overflowuid);
145EXPORT_SYMBOL(fs_overflowgid);
146
fc832ad3
SH
147/*
148 * Returns true if current's euid is same as p's uid or euid,
149 * or has CAP_SYS_NICE to p's user_ns.
150 *
151 * Called with rcu_read_lock, creds are safe
152 */
153static bool set_one_prio_perm(struct task_struct *p)
154{
155 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
156
5af66203
EB
157 if (uid_eq(pcred->uid, cred->euid) ||
158 uid_eq(pcred->euid, cred->euid))
fc832ad3 159 return true;
c4a4d603 160 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
161 return true;
162 return false;
163}
164
c69e8d9c
DH
165/*
166 * set the priority of a task
167 * - the caller must hold the RCU read lock
168 */
1da177e4
LT
169static int set_one_prio(struct task_struct *p, int niceval, int error)
170{
171 int no_nice;
172
fc832ad3 173 if (!set_one_prio_perm(p)) {
1da177e4
LT
174 error = -EPERM;
175 goto out;
176 }
e43379f1 177 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
178 error = -EACCES;
179 goto out;
180 }
181 no_nice = security_task_setnice(p, niceval);
182 if (no_nice) {
183 error = no_nice;
184 goto out;
185 }
186 if (error == -ESRCH)
187 error = 0;
188 set_user_nice(p, niceval);
189out:
190 return error;
191}
192
754fe8d2 193SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
194{
195 struct task_struct *g, *p;
196 struct user_struct *user;
86a264ab 197 const struct cred *cred = current_cred();
1da177e4 198 int error = -EINVAL;
41487c65 199 struct pid *pgrp;
7b44ab97 200 kuid_t uid;
1da177e4 201
3e88c553 202 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
203 goto out;
204
205 /* normalize: avoid signed division (rounding problems) */
206 error = -ESRCH;
c4a4d2f4
DY
207 if (niceval < MIN_NICE)
208 niceval = MIN_NICE;
209 if (niceval > MAX_NICE)
210 niceval = MAX_NICE;
1da177e4 211
d4581a23 212 rcu_read_lock();
1da177e4
LT
213 read_lock(&tasklist_lock);
214 switch (which) {
ec94fc3d 215 case PRIO_PROCESS:
216 if (who)
217 p = find_task_by_vpid(who);
218 else
219 p = current;
220 if (p)
221 error = set_one_prio(p, niceval, error);
222 break;
223 case PRIO_PGRP:
224 if (who)
225 pgrp = find_vpid(who);
226 else
227 pgrp = task_pgrp(current);
228 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
229 error = set_one_prio(p, niceval, error);
230 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
231 break;
232 case PRIO_USER:
233 uid = make_kuid(cred->user_ns, who);
234 user = cred->user;
235 if (!who)
236 uid = cred->uid;
237 else if (!uid_eq(uid, cred->uid)) {
238 user = find_user(uid);
239 if (!user)
86a264ab 240 goto out_unlock; /* No processes for this user */
ec94fc3d 241 }
242 do_each_thread(g, p) {
8639b461 243 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
ec94fc3d 244 error = set_one_prio(p, niceval, error);
245 } while_each_thread(g, p);
246 if (!uid_eq(uid, cred->uid))
247 free_uid(user); /* For find_user() */
248 break;
1da177e4
LT
249 }
250out_unlock:
251 read_unlock(&tasklist_lock);
d4581a23 252 rcu_read_unlock();
1da177e4
LT
253out:
254 return error;
255}
256
257/*
258 * Ugh. To avoid negative return values, "getpriority()" will
259 * not return the normal nice-value, but a negated value that
260 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
261 * to stay compatible.
262 */
754fe8d2 263SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
264{
265 struct task_struct *g, *p;
266 struct user_struct *user;
86a264ab 267 const struct cred *cred = current_cred();
1da177e4 268 long niceval, retval = -ESRCH;
41487c65 269 struct pid *pgrp;
7b44ab97 270 kuid_t uid;
1da177e4 271
3e88c553 272 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
273 return -EINVAL;
274
70118837 275 rcu_read_lock();
1da177e4
LT
276 read_lock(&tasklist_lock);
277 switch (which) {
ec94fc3d 278 case PRIO_PROCESS:
279 if (who)
280 p = find_task_by_vpid(who);
281 else
282 p = current;
283 if (p) {
284 niceval = nice_to_rlimit(task_nice(p));
285 if (niceval > retval)
286 retval = niceval;
287 }
288 break;
289 case PRIO_PGRP:
290 if (who)
291 pgrp = find_vpid(who);
292 else
293 pgrp = task_pgrp(current);
294 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
295 niceval = nice_to_rlimit(task_nice(p));
296 if (niceval > retval)
297 retval = niceval;
298 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
299 break;
300 case PRIO_USER:
301 uid = make_kuid(cred->user_ns, who);
302 user = cred->user;
303 if (!who)
304 uid = cred->uid;
305 else if (!uid_eq(uid, cred->uid)) {
306 user = find_user(uid);
307 if (!user)
308 goto out_unlock; /* No processes for this user */
309 }
310 do_each_thread(g, p) {
8639b461 311 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
7aa2c016 312 niceval = nice_to_rlimit(task_nice(p));
1da177e4
LT
313 if (niceval > retval)
314 retval = niceval;
315 }
ec94fc3d 316 } while_each_thread(g, p);
317 if (!uid_eq(uid, cred->uid))
318 free_uid(user); /* for find_user() */
319 break;
1da177e4
LT
320 }
321out_unlock:
322 read_unlock(&tasklist_lock);
70118837 323 rcu_read_unlock();
1da177e4
LT
324
325 return retval;
326}
327
1da177e4
LT
328/*
329 * Unprivileged users may change the real gid to the effective gid
330 * or vice versa. (BSD-style)
331 *
332 * If you set the real gid at all, or set the effective gid to a value not
333 * equal to the real gid, then the saved gid is set to the new effective gid.
334 *
335 * This makes it possible for a setgid program to completely drop its
336 * privileges, which is often a useful assertion to make when you are doing
337 * a security audit over a program.
338 *
339 * The general idea is that a program which uses just setregid() will be
340 * 100% compatible with BSD. A program which uses just setgid() will be
ec94fc3d 341 * 100% compatible with POSIX with saved IDs.
1da177e4
LT
342 *
343 * SMP: There are not races, the GIDs are checked only by filesystem
344 * operations (as far as semantic preservation is concerned).
345 */
2813893f 346#ifdef CONFIG_MULTIUSER
e530dca5 347long __sys_setregid(gid_t rgid, gid_t egid)
1da177e4 348{
a29c33f4 349 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
350 const struct cred *old;
351 struct cred *new;
1da177e4 352 int retval;
a29c33f4
EB
353 kgid_t krgid, kegid;
354
355 krgid = make_kgid(ns, rgid);
356 kegid = make_kgid(ns, egid);
357
358 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
359 return -EINVAL;
360 if ((egid != (gid_t) -1) && !gid_valid(kegid))
361 return -EINVAL;
1da177e4 362
d84f4f99
DH
363 new = prepare_creds();
364 if (!new)
365 return -ENOMEM;
366 old = current_cred();
367
d84f4f99 368 retval = -EPERM;
1da177e4 369 if (rgid != (gid_t) -1) {
a29c33f4
EB
370 if (gid_eq(old->gid, krgid) ||
371 gid_eq(old->egid, krgid) ||
c7b96acf 372 ns_capable(old->user_ns, CAP_SETGID))
a29c33f4 373 new->gid = krgid;
1da177e4 374 else
d84f4f99 375 goto error;
1da177e4
LT
376 }
377 if (egid != (gid_t) -1) {
a29c33f4
EB
378 if (gid_eq(old->gid, kegid) ||
379 gid_eq(old->egid, kegid) ||
380 gid_eq(old->sgid, kegid) ||
c7b96acf 381 ns_capable(old->user_ns, CAP_SETGID))
a29c33f4 382 new->egid = kegid;
756184b7 383 else
d84f4f99 384 goto error;
1da177e4 385 }
d84f4f99 386
1da177e4 387 if (rgid != (gid_t) -1 ||
a29c33f4 388 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
d84f4f99
DH
389 new->sgid = new->egid;
390 new->fsgid = new->egid;
391
392 return commit_creds(new);
393
394error:
395 abort_creds(new);
396 return retval;
1da177e4
LT
397}
398
e530dca5
DB
399SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
400{
401 return __sys_setregid(rgid, egid);
402}
403
1da177e4 404/*
ec94fc3d 405 * setgid() is implemented like SysV w/ SAVED_IDS
1da177e4
LT
406 *
407 * SMP: Same implicit races as above.
408 */
e530dca5 409long __sys_setgid(gid_t gid)
1da177e4 410{
a29c33f4 411 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
412 const struct cred *old;
413 struct cred *new;
1da177e4 414 int retval;
a29c33f4
EB
415 kgid_t kgid;
416
417 kgid = make_kgid(ns, gid);
418 if (!gid_valid(kgid))
419 return -EINVAL;
1da177e4 420
d84f4f99
DH
421 new = prepare_creds();
422 if (!new)
423 return -ENOMEM;
424 old = current_cred();
425
d84f4f99 426 retval = -EPERM;
c7b96acf 427 if (ns_capable(old->user_ns, CAP_SETGID))
a29c33f4
EB
428 new->gid = new->egid = new->sgid = new->fsgid = kgid;
429 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
430 new->egid = new->fsgid = kgid;
1da177e4 431 else
d84f4f99 432 goto error;
1da177e4 433
d84f4f99
DH
434 return commit_creds(new);
435
436error:
437 abort_creds(new);
438 return retval;
1da177e4 439}
54e99124 440
e530dca5
DB
441SYSCALL_DEFINE1(setgid, gid_t, gid)
442{
443 return __sys_setgid(gid);
444}
445
d84f4f99
DH
446/*
447 * change the user struct in a credentials set to match the new UID
448 */
449static int set_user(struct cred *new)
1da177e4
LT
450{
451 struct user_struct *new_user;
452
078de5f7 453 new_user = alloc_uid(new->uid);
1da177e4
LT
454 if (!new_user)
455 return -EAGAIN;
456
72fa5997
VK
457 /*
458 * We don't fail in case of NPROC limit excess here because too many
459 * poorly written programs don't check set*uid() return code, assuming
460 * it never fails if called by root. We may still enforce NPROC limit
461 * for programs doing set*uid()+execve() by harmlessly deferring the
462 * failure to the execve() stage.
463 */
78d7d407 464 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
72fa5997
VK
465 new_user != INIT_USER)
466 current->flags |= PF_NPROC_EXCEEDED;
467 else
468 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 469
d84f4f99
DH
470 free_uid(new->user);
471 new->user = new_user;
1da177e4
LT
472 return 0;
473}
474
475/*
476 * Unprivileged users may change the real uid to the effective uid
477 * or vice versa. (BSD-style)
478 *
479 * If you set the real uid at all, or set the effective uid to a value not
480 * equal to the real uid, then the saved uid is set to the new effective uid.
481 *
482 * This makes it possible for a setuid program to completely drop its
483 * privileges, which is often a useful assertion to make when you are doing
484 * a security audit over a program.
485 *
486 * The general idea is that a program which uses just setreuid() will be
487 * 100% compatible with BSD. A program which uses just setuid() will be
ec94fc3d 488 * 100% compatible with POSIX with saved IDs.
1da177e4 489 */
e530dca5 490long __sys_setreuid(uid_t ruid, uid_t euid)
1da177e4 491{
a29c33f4 492 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
493 const struct cred *old;
494 struct cred *new;
1da177e4 495 int retval;
a29c33f4
EB
496 kuid_t kruid, keuid;
497
498 kruid = make_kuid(ns, ruid);
499 keuid = make_kuid(ns, euid);
500
501 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
502 return -EINVAL;
503 if ((euid != (uid_t) -1) && !uid_valid(keuid))
504 return -EINVAL;
1da177e4 505
d84f4f99
DH
506 new = prepare_creds();
507 if (!new)
508 return -ENOMEM;
509 old = current_cred();
510
d84f4f99 511 retval = -EPERM;
1da177e4 512 if (ruid != (uid_t) -1) {
a29c33f4
EB
513 new->uid = kruid;
514 if (!uid_eq(old->uid, kruid) &&
515 !uid_eq(old->euid, kruid) &&
c7b96acf 516 !ns_capable(old->user_ns, CAP_SETUID))
d84f4f99 517 goto error;
1da177e4
LT
518 }
519
520 if (euid != (uid_t) -1) {
a29c33f4
EB
521 new->euid = keuid;
522 if (!uid_eq(old->uid, keuid) &&
523 !uid_eq(old->euid, keuid) &&
524 !uid_eq(old->suid, keuid) &&
c7b96acf 525 !ns_capable(old->user_ns, CAP_SETUID))
d84f4f99 526 goto error;
1da177e4
LT
527 }
528
a29c33f4 529 if (!uid_eq(new->uid, old->uid)) {
54e99124
DG
530 retval = set_user(new);
531 if (retval < 0)
532 goto error;
533 }
1da177e4 534 if (ruid != (uid_t) -1 ||
a29c33f4 535 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
d84f4f99
DH
536 new->suid = new->euid;
537 new->fsuid = new->euid;
1da177e4 538
d84f4f99
DH
539 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
540 if (retval < 0)
541 goto error;
1da177e4 542
d84f4f99 543 return commit_creds(new);
1da177e4 544
d84f4f99
DH
545error:
546 abort_creds(new);
547 return retval;
548}
ec94fc3d 549
e530dca5
DB
550SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
551{
552 return __sys_setreuid(ruid, euid);
553}
554
1da177e4 555/*
ec94fc3d 556 * setuid() is implemented like SysV with SAVED_IDS
557 *
1da177e4 558 * Note that SAVED_ID's is deficient in that a setuid root program
ec94fc3d 559 * like sendmail, for example, cannot set its uid to be a normal
1da177e4
LT
560 * user and then switch back, because if you're root, setuid() sets
561 * the saved uid too. If you don't like this, blame the bright people
562 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
563 * will allow a root program to temporarily drop privileges and be able to
ec94fc3d 564 * regain them by swapping the real and effective uid.
1da177e4 565 */
e530dca5 566long __sys_setuid(uid_t uid)
1da177e4 567{
a29c33f4 568 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
569 const struct cred *old;
570 struct cred *new;
1da177e4 571 int retval;
a29c33f4
EB
572 kuid_t kuid;
573
574 kuid = make_kuid(ns, uid);
575 if (!uid_valid(kuid))
576 return -EINVAL;
1da177e4 577
d84f4f99
DH
578 new = prepare_creds();
579 if (!new)
580 return -ENOMEM;
581 old = current_cred();
582
d84f4f99 583 retval = -EPERM;
c7b96acf 584 if (ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
585 new->suid = new->uid = kuid;
586 if (!uid_eq(kuid, old->uid)) {
54e99124
DG
587 retval = set_user(new);
588 if (retval < 0)
589 goto error;
d84f4f99 590 }
a29c33f4 591 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
d84f4f99 592 goto error;
1da177e4 593 }
1da177e4 594
a29c33f4 595 new->fsuid = new->euid = kuid;
d84f4f99
DH
596
597 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
598 if (retval < 0)
599 goto error;
1da177e4 600
d84f4f99 601 return commit_creds(new);
1da177e4 602
d84f4f99
DH
603error:
604 abort_creds(new);
605 return retval;
1da177e4
LT
606}
607
e530dca5
DB
608SYSCALL_DEFINE1(setuid, uid_t, uid)
609{
610 return __sys_setuid(uid);
611}
612
1da177e4
LT
613
614/*
615 * This function implements a generic ability to update ruid, euid,
616 * and suid. This allows you to implement the 4.4 compatible seteuid().
617 */
e530dca5 618long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1da177e4 619{
a29c33f4 620 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
621 const struct cred *old;
622 struct cred *new;
1da177e4 623 int retval;
a29c33f4
EB
624 kuid_t kruid, keuid, ksuid;
625
626 kruid = make_kuid(ns, ruid);
627 keuid = make_kuid(ns, euid);
628 ksuid = make_kuid(ns, suid);
629
630 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
631 return -EINVAL;
632
633 if ((euid != (uid_t) -1) && !uid_valid(keuid))
634 return -EINVAL;
635
636 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
637 return -EINVAL;
1da177e4 638
d84f4f99
DH
639 new = prepare_creds();
640 if (!new)
641 return -ENOMEM;
642
d84f4f99 643 old = current_cred();
1da177e4 644
d84f4f99 645 retval = -EPERM;
c7b96acf 646 if (!ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
647 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
648 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
d84f4f99 649 goto error;
a29c33f4
EB
650 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
651 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
d84f4f99 652 goto error;
a29c33f4
EB
653 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
654 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
d84f4f99 655 goto error;
1da177e4 656 }
d84f4f99 657
1da177e4 658 if (ruid != (uid_t) -1) {
a29c33f4
EB
659 new->uid = kruid;
660 if (!uid_eq(kruid, old->uid)) {
54e99124
DG
661 retval = set_user(new);
662 if (retval < 0)
663 goto error;
664 }
1da177e4 665 }
d84f4f99 666 if (euid != (uid_t) -1)
a29c33f4 667 new->euid = keuid;
1da177e4 668 if (suid != (uid_t) -1)
a29c33f4 669 new->suid = ksuid;
d84f4f99 670 new->fsuid = new->euid;
1da177e4 671
d84f4f99
DH
672 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
673 if (retval < 0)
674 goto error;
1da177e4 675
d84f4f99 676 return commit_creds(new);
1da177e4 677
d84f4f99
DH
678error:
679 abort_creds(new);
680 return retval;
1da177e4
LT
681}
682
e530dca5
DB
683SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
684{
685 return __sys_setresuid(ruid, euid, suid);
686}
687
a29c33f4 688SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
1da177e4 689{
86a264ab 690 const struct cred *cred = current_cred();
1da177e4 691 int retval;
a29c33f4
EB
692 uid_t ruid, euid, suid;
693
694 ruid = from_kuid_munged(cred->user_ns, cred->uid);
695 euid = from_kuid_munged(cred->user_ns, cred->euid);
696 suid = from_kuid_munged(cred->user_ns, cred->suid);
1da177e4 697
ec94fc3d 698 retval = put_user(ruid, ruidp);
699 if (!retval) {
700 retval = put_user(euid, euidp);
701 if (!retval)
702 return put_user(suid, suidp);
703 }
1da177e4
LT
704 return retval;
705}
706
707/*
708 * Same as above, but for rgid, egid, sgid.
709 */
e530dca5 710long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1da177e4 711{
a29c33f4 712 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
713 const struct cred *old;
714 struct cred *new;
1da177e4 715 int retval;
a29c33f4
EB
716 kgid_t krgid, kegid, ksgid;
717
718 krgid = make_kgid(ns, rgid);
719 kegid = make_kgid(ns, egid);
720 ksgid = make_kgid(ns, sgid);
721
722 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
723 return -EINVAL;
724 if ((egid != (gid_t) -1) && !gid_valid(kegid))
725 return -EINVAL;
726 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
727 return -EINVAL;
1da177e4 728
d84f4f99
DH
729 new = prepare_creds();
730 if (!new)
731 return -ENOMEM;
732 old = current_cred();
733
d84f4f99 734 retval = -EPERM;
c7b96acf 735 if (!ns_capable(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
736 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
737 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
d84f4f99 738 goto error;
a29c33f4
EB
739 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
740 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
d84f4f99 741 goto error;
a29c33f4
EB
742 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
743 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
d84f4f99 744 goto error;
1da177e4 745 }
d84f4f99 746
1da177e4 747 if (rgid != (gid_t) -1)
a29c33f4 748 new->gid = krgid;
d84f4f99 749 if (egid != (gid_t) -1)
a29c33f4 750 new->egid = kegid;
1da177e4 751 if (sgid != (gid_t) -1)
a29c33f4 752 new->sgid = ksgid;
d84f4f99 753 new->fsgid = new->egid;
1da177e4 754
d84f4f99
DH
755 return commit_creds(new);
756
757error:
758 abort_creds(new);
759 return retval;
1da177e4
LT
760}
761
e530dca5
DB
762SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
763{
764 return __sys_setresgid(rgid, egid, sgid);
765}
766
a29c33f4 767SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
1da177e4 768{
86a264ab 769 const struct cred *cred = current_cred();
1da177e4 770 int retval;
a29c33f4
EB
771 gid_t rgid, egid, sgid;
772
773 rgid = from_kgid_munged(cred->user_ns, cred->gid);
774 egid = from_kgid_munged(cred->user_ns, cred->egid);
775 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
1da177e4 776
ec94fc3d 777 retval = put_user(rgid, rgidp);
778 if (!retval) {
779 retval = put_user(egid, egidp);
780 if (!retval)
781 retval = put_user(sgid, sgidp);
782 }
1da177e4
LT
783
784 return retval;
785}
786
787
788/*
789 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
790 * is used for "access()" and for the NFS daemon (letting nfsd stay at
791 * whatever uid it wants to). It normally shadows "euid", except when
792 * explicitly set by setfsuid() or for access..
793 */
e530dca5 794long __sys_setfsuid(uid_t uid)
1da177e4 795{
d84f4f99
DH
796 const struct cred *old;
797 struct cred *new;
798 uid_t old_fsuid;
a29c33f4
EB
799 kuid_t kuid;
800
801 old = current_cred();
802 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
803
804 kuid = make_kuid(old->user_ns, uid);
805 if (!uid_valid(kuid))
806 return old_fsuid;
1da177e4 807
d84f4f99
DH
808 new = prepare_creds();
809 if (!new)
a29c33f4 810 return old_fsuid;
1da177e4 811
a29c33f4
EB
812 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
813 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
c7b96acf 814 ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
815 if (!uid_eq(kuid, old->fsuid)) {
816 new->fsuid = kuid;
d84f4f99
DH
817 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
818 goto change_okay;
1da177e4 819 }
1da177e4
LT
820 }
821
d84f4f99
DH
822 abort_creds(new);
823 return old_fsuid;
1da177e4 824
d84f4f99
DH
825change_okay:
826 commit_creds(new);
1da177e4
LT
827 return old_fsuid;
828}
829
e530dca5
DB
830SYSCALL_DEFINE1(setfsuid, uid_t, uid)
831{
832 return __sys_setfsuid(uid);
833}
834
1da177e4 835/*
f42df9e6 836 * Samma på svenska..
1da177e4 837 */
e530dca5 838long __sys_setfsgid(gid_t gid)
1da177e4 839{
d84f4f99
DH
840 const struct cred *old;
841 struct cred *new;
842 gid_t old_fsgid;
a29c33f4
EB
843 kgid_t kgid;
844
845 old = current_cred();
846 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
847
848 kgid = make_kgid(old->user_ns, gid);
849 if (!gid_valid(kgid))
850 return old_fsgid;
d84f4f99
DH
851
852 new = prepare_creds();
853 if (!new)
a29c33f4 854 return old_fsgid;
1da177e4 855
a29c33f4
EB
856 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
857 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
c7b96acf 858 ns_capable(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
859 if (!gid_eq(kgid, old->fsgid)) {
860 new->fsgid = kgid;
d84f4f99 861 goto change_okay;
1da177e4 862 }
1da177e4 863 }
d84f4f99 864
d84f4f99
DH
865 abort_creds(new);
866 return old_fsgid;
867
868change_okay:
869 commit_creds(new);
1da177e4
LT
870 return old_fsgid;
871}
e530dca5
DB
872
873SYSCALL_DEFINE1(setfsgid, gid_t, gid)
874{
875 return __sys_setfsgid(gid);
876}
2813893f 877#endif /* CONFIG_MULTIUSER */
1da177e4 878
4a22f166
SR
879/**
880 * sys_getpid - return the thread group id of the current process
881 *
882 * Note, despite the name, this returns the tgid not the pid. The tgid and
883 * the pid are identical unless CLONE_THREAD was specified on clone() in
884 * which case the tgid is the same in all threads of the same group.
885 *
886 * This is SMP safe as current->tgid does not change.
887 */
888SYSCALL_DEFINE0(getpid)
889{
890 return task_tgid_vnr(current);
891}
892
893/* Thread ID - the internal kernel "pid" */
894SYSCALL_DEFINE0(gettid)
895{
896 return task_pid_vnr(current);
897}
898
899/*
900 * Accessing ->real_parent is not SMP-safe, it could
901 * change from under us. However, we can use a stale
902 * value of ->real_parent under rcu_read_lock(), see
903 * release_task()->call_rcu(delayed_put_task_struct).
904 */
905SYSCALL_DEFINE0(getppid)
906{
907 int pid;
908
909 rcu_read_lock();
910 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
911 rcu_read_unlock();
912
913 return pid;
914}
915
916SYSCALL_DEFINE0(getuid)
917{
918 /* Only we change this so SMP safe */
919 return from_kuid_munged(current_user_ns(), current_uid());
920}
921
922SYSCALL_DEFINE0(geteuid)
923{
924 /* Only we change this so SMP safe */
925 return from_kuid_munged(current_user_ns(), current_euid());
926}
927
928SYSCALL_DEFINE0(getgid)
929{
930 /* Only we change this so SMP safe */
931 return from_kgid_munged(current_user_ns(), current_gid());
932}
933
934SYSCALL_DEFINE0(getegid)
935{
936 /* Only we change this so SMP safe */
937 return from_kgid_munged(current_user_ns(), current_egid());
938}
939
ca2406ed 940static void do_sys_times(struct tms *tms)
f06febc9 941{
5613fda9 942 u64 tgutime, tgstime, cutime, cstime;
f06febc9 943
e80d0a1a 944 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
f06febc9
FM
945 cutime = current->signal->cutime;
946 cstime = current->signal->cstime;
5613fda9
FW
947 tms->tms_utime = nsec_to_clock_t(tgutime);
948 tms->tms_stime = nsec_to_clock_t(tgstime);
949 tms->tms_cutime = nsec_to_clock_t(cutime);
950 tms->tms_cstime = nsec_to_clock_t(cstime);
f06febc9
FM
951}
952
58fd3aa2 953SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 954{
1da177e4
LT
955 if (tbuf) {
956 struct tms tmp;
f06febc9
FM
957
958 do_sys_times(&tmp);
1da177e4
LT
959 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
960 return -EFAULT;
961 }
e3d5a27d 962 force_successful_syscall_return();
1da177e4
LT
963 return (long) jiffies_64_to_clock_t(get_jiffies_64());
964}
965
ca2406ed
AV
966#ifdef CONFIG_COMPAT
967static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
968{
969 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
970}
971
972COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
973{
974 if (tbuf) {
975 struct tms tms;
976 struct compat_tms tmp;
977
978 do_sys_times(&tms);
979 /* Convert our struct tms to the compat version. */
980 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
981 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
982 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
983 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
984 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
985 return -EFAULT;
986 }
987 force_successful_syscall_return();
988 return compat_jiffies_to_clock_t(jiffies);
989}
990#endif
991
1da177e4
LT
992/*
993 * This needs some heavy checking ...
994 * I just haven't the stomach for it. I also don't fully
995 * understand sessions/pgrp etc. Let somebody who does explain it.
996 *
997 * OK, I think I have the protection semantics right.... this is really
998 * only important on a multi-user system anyway, to make sure one user
999 * can't send a signal to a process owned by another. -TYT, 12/12/91
1000 *
98611e4e 1001 * !PF_FORKNOEXEC check to conform completely to POSIX.
1da177e4 1002 */
b290ebe2 1003SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
1004{
1005 struct task_struct *p;
ee0acf90 1006 struct task_struct *group_leader = current->group_leader;
4e021306
ON
1007 struct pid *pgrp;
1008 int err;
1da177e4
LT
1009
1010 if (!pid)
b488893a 1011 pid = task_pid_vnr(group_leader);
1da177e4
LT
1012 if (!pgid)
1013 pgid = pid;
1014 if (pgid < 0)
1015 return -EINVAL;
950eaaca 1016 rcu_read_lock();
1da177e4
LT
1017
1018 /* From this point forward we keep holding onto the tasklist lock
1019 * so that our parent does not change from under us. -DaveM
1020 */
1021 write_lock_irq(&tasklist_lock);
1022
1023 err = -ESRCH;
4e021306 1024 p = find_task_by_vpid(pid);
1da177e4
LT
1025 if (!p)
1026 goto out;
1027
1028 err = -EINVAL;
1029 if (!thread_group_leader(p))
1030 goto out;
1031
4e021306 1032 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 1033 err = -EPERM;
41487c65 1034 if (task_session(p) != task_session(group_leader))
1da177e4
LT
1035 goto out;
1036 err = -EACCES;
98611e4e 1037 if (!(p->flags & PF_FORKNOEXEC))
1da177e4
LT
1038 goto out;
1039 } else {
1040 err = -ESRCH;
ee0acf90 1041 if (p != group_leader)
1da177e4
LT
1042 goto out;
1043 }
1044
1045 err = -EPERM;
1046 if (p->signal->leader)
1047 goto out;
1048
4e021306 1049 pgrp = task_pid(p);
1da177e4 1050 if (pgid != pid) {
b488893a 1051 struct task_struct *g;
1da177e4 1052
4e021306
ON
1053 pgrp = find_vpid(pgid);
1054 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1055 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1056 goto out;
1da177e4
LT
1057 }
1058
1da177e4
LT
1059 err = security_task_setpgid(p, pgid);
1060 if (err)
1061 goto out;
1062
1b0f7ffd 1063 if (task_pgrp(p) != pgrp)
83beaf3c 1064 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1065
1066 err = 0;
1067out:
1068 /* All paths lead to here, thus we are safe. -DaveM */
1069 write_unlock_irq(&tasklist_lock);
950eaaca 1070 rcu_read_unlock();
1da177e4
LT
1071 return err;
1072}
1073
192c5807 1074static int do_getpgid(pid_t pid)
1da177e4 1075{
12a3de0a
ON
1076 struct task_struct *p;
1077 struct pid *grp;
1078 int retval;
1079
1080 rcu_read_lock();
756184b7 1081 if (!pid)
12a3de0a 1082 grp = task_pgrp(current);
756184b7 1083 else {
1da177e4 1084 retval = -ESRCH;
12a3de0a
ON
1085 p = find_task_by_vpid(pid);
1086 if (!p)
1087 goto out;
1088 grp = task_pgrp(p);
1089 if (!grp)
1090 goto out;
1091
1092 retval = security_task_getpgid(p);
1093 if (retval)
1094 goto out;
1da177e4 1095 }
12a3de0a
ON
1096 retval = pid_vnr(grp);
1097out:
1098 rcu_read_unlock();
1099 return retval;
1da177e4
LT
1100}
1101
192c5807
DB
1102SYSCALL_DEFINE1(getpgid, pid_t, pid)
1103{
1104 return do_getpgid(pid);
1105}
1106
1da177e4
LT
1107#ifdef __ARCH_WANT_SYS_GETPGRP
1108
dbf040d9 1109SYSCALL_DEFINE0(getpgrp)
1da177e4 1110{
192c5807 1111 return do_getpgid(0);
1da177e4
LT
1112}
1113
1114#endif
1115
dbf040d9 1116SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1117{
1dd768c0
ON
1118 struct task_struct *p;
1119 struct pid *sid;
1120 int retval;
1121
1122 rcu_read_lock();
756184b7 1123 if (!pid)
1dd768c0 1124 sid = task_session(current);
756184b7 1125 else {
1da177e4 1126 retval = -ESRCH;
1dd768c0
ON
1127 p = find_task_by_vpid(pid);
1128 if (!p)
1129 goto out;
1130 sid = task_session(p);
1131 if (!sid)
1132 goto out;
1133
1134 retval = security_task_getsid(p);
1135 if (retval)
1136 goto out;
1da177e4 1137 }
1dd768c0
ON
1138 retval = pid_vnr(sid);
1139out:
1140 rcu_read_unlock();
1141 return retval;
1da177e4
LT
1142}
1143
81dabb46
ON
1144static void set_special_pids(struct pid *pid)
1145{
1146 struct task_struct *curr = current->group_leader;
1147
1148 if (task_session(curr) != pid)
1149 change_pid(curr, PIDTYPE_SID, pid);
1150
1151 if (task_pgrp(curr) != pid)
1152 change_pid(curr, PIDTYPE_PGID, pid);
1153}
1154
e2aaa9f4 1155int ksys_setsid(void)
1da177e4 1156{
e19f247a 1157 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1158 struct pid *sid = task_pid(group_leader);
1159 pid_t session = pid_vnr(sid);
1da177e4
LT
1160 int err = -EPERM;
1161
1da177e4 1162 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1163 /* Fail if I am already a session leader */
1164 if (group_leader->signal->leader)
1165 goto out;
1166
430c6231
ON
1167 /* Fail if a process group id already exists that equals the
1168 * proposed session id.
390e2ff0 1169 */
6806aac6 1170 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1171 goto out;
1172
e19f247a 1173 group_leader->signal->leader = 1;
81dabb46 1174 set_special_pids(sid);
24ec839c 1175
9c9f4ded 1176 proc_clear_tty(group_leader);
24ec839c 1177
e4cc0a9c 1178 err = session;
1da177e4
LT
1179out:
1180 write_unlock_irq(&tasklist_lock);
5091faa4 1181 if (err > 0) {
0d0df599 1182 proc_sid_connector(group_leader);
5091faa4
MG
1183 sched_autogroup_create_attach(group_leader);
1184 }
1da177e4
LT
1185 return err;
1186}
1187
e2aaa9f4
DB
1188SYSCALL_DEFINE0(setsid)
1189{
1190 return ksys_setsid();
1191}
1192
1da177e4
LT
1193DECLARE_RWSEM(uts_sem);
1194
e28cbf22
CH
1195#ifdef COMPAT_UTS_MACHINE
1196#define override_architecture(name) \
46da2766 1197 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1198 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1199 sizeof(COMPAT_UTS_MACHINE)))
1200#else
1201#define override_architecture(name) 0
1202#endif
1203
be27425d
AK
1204/*
1205 * Work around broken programs that cannot handle "Linux 3.0".
1206 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
39afb5ee 1207 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
be27425d 1208 */
2702b152 1209static int override_release(char __user *release, size_t len)
be27425d
AK
1210{
1211 int ret = 0;
be27425d
AK
1212
1213 if (current->personality & UNAME26) {
2702b152
KC
1214 const char *rest = UTS_RELEASE;
1215 char buf[65] = { 0 };
be27425d
AK
1216 int ndots = 0;
1217 unsigned v;
2702b152 1218 size_t copy;
be27425d
AK
1219
1220 while (*rest) {
1221 if (*rest == '.' && ++ndots >= 3)
1222 break;
1223 if (!isdigit(*rest) && *rest != '.')
1224 break;
1225 rest++;
1226 }
39afb5ee 1227 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
31fd84b9 1228 copy = clamp_t(size_t, len, 1, sizeof(buf));
2702b152
KC
1229 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1230 ret = copy_to_user(release, buf, copy + 1);
be27425d
AK
1231 }
1232 return ret;
1233}
1234
e48fbb69 1235SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1236{
1237 int errno = 0;
1238
1239 down_read(&uts_sem);
e9ff3990 1240 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1241 errno = -EFAULT;
1242 up_read(&uts_sem);
e28cbf22 1243
be27425d
AK
1244 if (!errno && override_release(name->release, sizeof(name->release)))
1245 errno = -EFAULT;
e28cbf22
CH
1246 if (!errno && override_architecture(name))
1247 errno = -EFAULT;
1da177e4
LT
1248 return errno;
1249}
1250
5cacdb4a
CH
1251#ifdef __ARCH_WANT_SYS_OLD_UNAME
1252/*
1253 * Old cruft
1254 */
1255SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1256{
1257 int error = 0;
1258
1259 if (!name)
1260 return -EFAULT;
1261
1262 down_read(&uts_sem);
1263 if (copy_to_user(name, utsname(), sizeof(*name)))
1264 error = -EFAULT;
1265 up_read(&uts_sem);
1266
be27425d
AK
1267 if (!error && override_release(name->release, sizeof(name->release)))
1268 error = -EFAULT;
5cacdb4a
CH
1269 if (!error && override_architecture(name))
1270 error = -EFAULT;
1271 return error;
1272}
1273
1274SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1275{
1276 int error;
1277
1278 if (!name)
1279 return -EFAULT;
1280 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1281 return -EFAULT;
1282
1283 down_read(&uts_sem);
1284 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1285 __OLD_UTS_LEN);
1286 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1287 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1288 __OLD_UTS_LEN);
1289 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1290 error |= __copy_to_user(&name->release, &utsname()->release,
1291 __OLD_UTS_LEN);
1292 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1293 error |= __copy_to_user(&name->version, &utsname()->version,
1294 __OLD_UTS_LEN);
1295 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1296 error |= __copy_to_user(&name->machine, &utsname()->machine,
1297 __OLD_UTS_LEN);
1298 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1299 up_read(&uts_sem);
1300
1301 if (!error && override_architecture(name))
1302 error = -EFAULT;
be27425d
AK
1303 if (!error && override_release(name->release, sizeof(name->release)))
1304 error = -EFAULT;
5cacdb4a
CH
1305 return error ? -EFAULT : 0;
1306}
1307#endif
1308
5a8a82b1 1309SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1310{
1311 int errno;
1312 char tmp[__NEW_UTS_LEN];
1313
bb96a6f5 1314 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1315 return -EPERM;
fc832ad3 1316
1da177e4
LT
1317 if (len < 0 || len > __NEW_UTS_LEN)
1318 return -EINVAL;
1319 down_write(&uts_sem);
1320 errno = -EFAULT;
1321 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1322 struct new_utsname *u = utsname();
1323
1324 memcpy(u->nodename, tmp, len);
1325 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4 1326 errno = 0;
499eea6b 1327 uts_proc_notify(UTS_PROC_HOSTNAME);
1da177e4
LT
1328 }
1329 up_write(&uts_sem);
1330 return errno;
1331}
1332
1333#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1334
5a8a82b1 1335SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1336{
1337 int i, errno;
9679e4dd 1338 struct new_utsname *u;
1da177e4
LT
1339
1340 if (len < 0)
1341 return -EINVAL;
1342 down_read(&uts_sem);
9679e4dd
AM
1343 u = utsname();
1344 i = 1 + strlen(u->nodename);
1da177e4
LT
1345 if (i > len)
1346 i = len;
1347 errno = 0;
9679e4dd 1348 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1349 errno = -EFAULT;
1350 up_read(&uts_sem);
1351 return errno;
1352}
1353
1354#endif
1355
1356/*
1357 * Only setdomainname; getdomainname can be implemented by calling
1358 * uname()
1359 */
5a8a82b1 1360SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1361{
1362 int errno;
1363 char tmp[__NEW_UTS_LEN];
1364
fc832ad3 1365 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1366 return -EPERM;
1367 if (len < 0 || len > __NEW_UTS_LEN)
1368 return -EINVAL;
1369
1370 down_write(&uts_sem);
1371 errno = -EFAULT;
1372 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1373 struct new_utsname *u = utsname();
1374
1375 memcpy(u->domainname, tmp, len);
1376 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4 1377 errno = 0;
499eea6b 1378 uts_proc_notify(UTS_PROC_DOMAINNAME);
1da177e4
LT
1379 }
1380 up_write(&uts_sem);
1381 return errno;
1382}
1383
e48fbb69 1384SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1385{
b9518345
JS
1386 struct rlimit value;
1387 int ret;
1388
1389 ret = do_prlimit(current, resource, NULL, &value);
1390 if (!ret)
1391 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1392
1393 return ret;
1da177e4
LT
1394}
1395
d9e968cb
AV
1396#ifdef CONFIG_COMPAT
1397
1398COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1399 struct compat_rlimit __user *, rlim)
1400{
1401 struct rlimit r;
1402 struct compat_rlimit r32;
1403
1404 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1405 return -EFAULT;
1406
1407 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1408 r.rlim_cur = RLIM_INFINITY;
1409 else
1410 r.rlim_cur = r32.rlim_cur;
1411 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1412 r.rlim_max = RLIM_INFINITY;
1413 else
1414 r.rlim_max = r32.rlim_max;
1415 return do_prlimit(current, resource, &r, NULL);
1416}
1417
1418COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1419 struct compat_rlimit __user *, rlim)
1420{
1421 struct rlimit r;
1422 int ret;
1423
1424 ret = do_prlimit(current, resource, NULL, &r);
1425 if (!ret) {
58c7ffc0 1426 struct compat_rlimit r32;
d9e968cb
AV
1427 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1428 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1429 else
1430 r32.rlim_cur = r.rlim_cur;
1431 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1432 r32.rlim_max = COMPAT_RLIM_INFINITY;
1433 else
1434 r32.rlim_max = r.rlim_max;
1435
1436 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1437 return -EFAULT;
1438 }
1439 return ret;
1440}
1441
1442#endif
1443
1da177e4
LT
1444#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1445
1446/*
1447 * Back compatibility for getrlimit. Needed for some apps.
1448 */
e48fbb69
HC
1449SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1450 struct rlimit __user *, rlim)
1da177e4
LT
1451{
1452 struct rlimit x;
1453 if (resource >= RLIM_NLIMITS)
1454 return -EINVAL;
1455
1456 task_lock(current->group_leader);
1457 x = current->signal->rlim[resource];
1458 task_unlock(current->group_leader);
756184b7 1459 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1460 x.rlim_cur = 0x7FFFFFFF;
756184b7 1461 if (x.rlim_max > 0x7FFFFFFF)
1da177e4 1462 x.rlim_max = 0x7FFFFFFF;
ec94fc3d 1463 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1da177e4
LT
1464}
1465
613763a1
AV
1466#ifdef CONFIG_COMPAT
1467COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1468 struct compat_rlimit __user *, rlim)
1469{
1470 struct rlimit r;
1471
1472 if (resource >= RLIM_NLIMITS)
1473 return -EINVAL;
1474
1475 task_lock(current->group_leader);
1476 r = current->signal->rlim[resource];
1477 task_unlock(current->group_leader);
1478 if (r.rlim_cur > 0x7FFFFFFF)
1479 r.rlim_cur = 0x7FFFFFFF;
1480 if (r.rlim_max > 0x7FFFFFFF)
1481 r.rlim_max = 0x7FFFFFFF;
1482
1483 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1484 put_user(r.rlim_max, &rlim->rlim_max))
1485 return -EFAULT;
1486 return 0;
1487}
1488#endif
1489
1da177e4
LT
1490#endif
1491
c022a0ac
JS
1492static inline bool rlim64_is_infinity(__u64 rlim64)
1493{
1494#if BITS_PER_LONG < 64
1495 return rlim64 >= ULONG_MAX;
1496#else
1497 return rlim64 == RLIM64_INFINITY;
1498#endif
1499}
1500
1501static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1502{
1503 if (rlim->rlim_cur == RLIM_INFINITY)
1504 rlim64->rlim_cur = RLIM64_INFINITY;
1505 else
1506 rlim64->rlim_cur = rlim->rlim_cur;
1507 if (rlim->rlim_max == RLIM_INFINITY)
1508 rlim64->rlim_max = RLIM64_INFINITY;
1509 else
1510 rlim64->rlim_max = rlim->rlim_max;
1511}
1512
1513static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1514{
1515 if (rlim64_is_infinity(rlim64->rlim_cur))
1516 rlim->rlim_cur = RLIM_INFINITY;
1517 else
1518 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1519 if (rlim64_is_infinity(rlim64->rlim_max))
1520 rlim->rlim_max = RLIM_INFINITY;
1521 else
1522 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1523}
1524
1c1e618d 1525/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1526int do_prlimit(struct task_struct *tsk, unsigned int resource,
1527 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1528{
5b41535a 1529 struct rlimit *rlim;
86f162f4 1530 int retval = 0;
1da177e4
LT
1531
1532 if (resource >= RLIM_NLIMITS)
1533 return -EINVAL;
5b41535a
JS
1534 if (new_rlim) {
1535 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1536 return -EINVAL;
1537 if (resource == RLIMIT_NOFILE &&
1538 new_rlim->rlim_max > sysctl_nr_open)
1539 return -EPERM;
1540 }
1da177e4 1541
1c1e618d
JS
1542 /* protect tsk->signal and tsk->sighand from disappearing */
1543 read_lock(&tasklist_lock);
1544 if (!tsk->sighand) {
1545 retval = -ESRCH;
1546 goto out;
1547 }
1548
5b41535a 1549 rlim = tsk->signal->rlim + resource;
86f162f4 1550 task_lock(tsk->group_leader);
5b41535a 1551 if (new_rlim) {
fc832ad3
SH
1552 /* Keep the capable check against init_user_ns until
1553 cgroups can contain all limits */
5b41535a
JS
1554 if (new_rlim->rlim_max > rlim->rlim_max &&
1555 !capable(CAP_SYS_RESOURCE))
1556 retval = -EPERM;
1557 if (!retval)
cad4ea54 1558 retval = security_task_setrlimit(tsk, resource, new_rlim);
5b41535a
JS
1559 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1560 /*
1561 * The caller is asking for an immediate RLIMIT_CPU
1562 * expiry. But we use the zero value to mean "it was
1563 * never set". So let's cheat and make it one second
1564 * instead
1565 */
1566 new_rlim->rlim_cur = 1;
1567 }
1568 }
1569 if (!retval) {
1570 if (old_rlim)
1571 *old_rlim = *rlim;
1572 if (new_rlim)
1573 *rlim = *new_rlim;
9926e4c7 1574 }
7855c35d 1575 task_unlock(tsk->group_leader);
1da177e4 1576
d3561f78
AM
1577 /*
1578 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1579 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1580 * very long-standing error, and fixing it now risks breakage of
1581 * applications, so we live with it
1582 */
5b41535a 1583 if (!retval && new_rlim && resource == RLIMIT_CPU &&
baa73d9e
NP
1584 new_rlim->rlim_cur != RLIM_INFINITY &&
1585 IS_ENABLED(CONFIG_POSIX_TIMERS))
5b41535a 1586 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1587out:
1c1e618d 1588 read_unlock(&tasklist_lock);
2fb9d268 1589 return retval;
1da177e4
LT
1590}
1591
c022a0ac 1592/* rcu lock must be held */
791ec491
SS
1593static int check_prlimit_permission(struct task_struct *task,
1594 unsigned int flags)
c022a0ac
JS
1595{
1596 const struct cred *cred = current_cred(), *tcred;
791ec491 1597 bool id_match;
c022a0ac 1598
fc832ad3
SH
1599 if (current == task)
1600 return 0;
c022a0ac 1601
fc832ad3 1602 tcred = __task_cred(task);
791ec491
SS
1603 id_match = (uid_eq(cred->uid, tcred->euid) &&
1604 uid_eq(cred->uid, tcred->suid) &&
1605 uid_eq(cred->uid, tcred->uid) &&
1606 gid_eq(cred->gid, tcred->egid) &&
1607 gid_eq(cred->gid, tcred->sgid) &&
1608 gid_eq(cred->gid, tcred->gid));
1609 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1610 return -EPERM;
fc832ad3 1611
791ec491 1612 return security_task_prlimit(cred, tcred, flags);
c022a0ac
JS
1613}
1614
1615SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1616 const struct rlimit64 __user *, new_rlim,
1617 struct rlimit64 __user *, old_rlim)
1618{
1619 struct rlimit64 old64, new64;
1620 struct rlimit old, new;
1621 struct task_struct *tsk;
791ec491 1622 unsigned int checkflags = 0;
c022a0ac
JS
1623 int ret;
1624
791ec491
SS
1625 if (old_rlim)
1626 checkflags |= LSM_PRLIMIT_READ;
1627
c022a0ac
JS
1628 if (new_rlim) {
1629 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1630 return -EFAULT;
1631 rlim64_to_rlim(&new64, &new);
791ec491 1632 checkflags |= LSM_PRLIMIT_WRITE;
c022a0ac
JS
1633 }
1634
1635 rcu_read_lock();
1636 tsk = pid ? find_task_by_vpid(pid) : current;
1637 if (!tsk) {
1638 rcu_read_unlock();
1639 return -ESRCH;
1640 }
791ec491 1641 ret = check_prlimit_permission(tsk, checkflags);
c022a0ac
JS
1642 if (ret) {
1643 rcu_read_unlock();
1644 return ret;
1645 }
1646 get_task_struct(tsk);
1647 rcu_read_unlock();
1648
1649 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1650 old_rlim ? &old : NULL);
1651
1652 if (!ret && old_rlim) {
1653 rlim_to_rlim64(&old, &old64);
1654 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1655 ret = -EFAULT;
1656 }
1657
1658 put_task_struct(tsk);
1659 return ret;
1660}
1661
7855c35d
JS
1662SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1663{
1664 struct rlimit new_rlim;
1665
1666 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1667 return -EFAULT;
5b41535a 1668 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1669}
1670
1da177e4
LT
1671/*
1672 * It would make sense to put struct rusage in the task_struct,
1673 * except that would make the task_struct be *really big*. After
1674 * task_struct gets moved into malloc'ed memory, it would
1675 * make sense to do this. It will make moving the rest of the information
1676 * a lot simpler! (Which we're not doing right now because we're not
1677 * measuring them yet).
1678 *
1da177e4
LT
1679 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1680 * races with threads incrementing their own counters. But since word
1681 * reads are atomic, we either get new values or old values and we don't
1682 * care which for the sums. We always take the siglock to protect reading
1683 * the c* fields from p->signal from races with exit.c updating those
1684 * fields when reaping, so a sample either gets all the additions of a
1685 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1686 *
de047c1b
RT
1687 * Locking:
1688 * We need to take the siglock for CHILDEREN, SELF and BOTH
1689 * for the cases current multithreaded, non-current single threaded
1690 * non-current multithreaded. Thread traversal is now safe with
1691 * the siglock held.
1692 * Strictly speaking, we donot need to take the siglock if we are current and
1693 * single threaded, as no one else can take our signal_struct away, no one
1694 * else can reap the children to update signal->c* counters, and no one else
1695 * can race with the signal-> fields. If we do not take any lock, the
1696 * signal-> fields could be read out of order while another thread was just
1697 * exiting. So we should place a read memory barrier when we avoid the lock.
1698 * On the writer side, write memory barrier is implied in __exit_signal
1699 * as __exit_signal releases the siglock spinlock after updating the signal->
1700 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1701 *
1da177e4
LT
1702 */
1703
f06febc9 1704static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1705{
679c9cd4
SK
1706 r->ru_nvcsw += t->nvcsw;
1707 r->ru_nivcsw += t->nivcsw;
1708 r->ru_minflt += t->min_flt;
1709 r->ru_majflt += t->maj_flt;
1710 r->ru_inblock += task_io_get_inblock(t);
1711 r->ru_oublock += task_io_get_oublock(t);
1712}
1713
ce72a16f 1714void getrusage(struct task_struct *p, int who, struct rusage *r)
1da177e4
LT
1715{
1716 struct task_struct *t;
1717 unsigned long flags;
5613fda9 1718 u64 tgutime, tgstime, utime, stime;
1f10206c 1719 unsigned long maxrss = 0;
1da177e4 1720
ec94fc3d 1721 memset((char *)r, 0, sizeof (*r));
64861634 1722 utime = stime = 0;
1da177e4 1723
679c9cd4 1724 if (who == RUSAGE_THREAD) {
e80d0a1a 1725 task_cputime_adjusted(current, &utime, &stime);
f06febc9 1726 accumulate_thread_rusage(p, r);
1f10206c 1727 maxrss = p->signal->maxrss;
679c9cd4
SK
1728 goto out;
1729 }
1730
d6cf723a 1731 if (!lock_task_sighand(p, &flags))
de047c1b 1732 return;
0f59cc4a 1733
1da177e4 1734 switch (who) {
ec94fc3d 1735 case RUSAGE_BOTH:
1736 case RUSAGE_CHILDREN:
1737 utime = p->signal->cutime;
1738 stime = p->signal->cstime;
1739 r->ru_nvcsw = p->signal->cnvcsw;
1740 r->ru_nivcsw = p->signal->cnivcsw;
1741 r->ru_minflt = p->signal->cmin_flt;
1742 r->ru_majflt = p->signal->cmaj_flt;
1743 r->ru_inblock = p->signal->cinblock;
1744 r->ru_oublock = p->signal->coublock;
1745 maxrss = p->signal->cmaxrss;
1746
1747 if (who == RUSAGE_CHILDREN)
1da177e4 1748 break;
0f59cc4a 1749
ec94fc3d 1750 case RUSAGE_SELF:
1751 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1752 utime += tgutime;
1753 stime += tgstime;
1754 r->ru_nvcsw += p->signal->nvcsw;
1755 r->ru_nivcsw += p->signal->nivcsw;
1756 r->ru_minflt += p->signal->min_flt;
1757 r->ru_majflt += p->signal->maj_flt;
1758 r->ru_inblock += p->signal->inblock;
1759 r->ru_oublock += p->signal->oublock;
1760 if (maxrss < p->signal->maxrss)
1761 maxrss = p->signal->maxrss;
1762 t = p;
1763 do {
1764 accumulate_thread_rusage(t, r);
1765 } while_each_thread(p, t);
1766 break;
1767
1768 default:
1769 BUG();
1da177e4 1770 }
de047c1b 1771 unlock_task_sighand(p, &flags);
de047c1b 1772
679c9cd4 1773out:
5613fda9
FW
1774 r->ru_utime = ns_to_timeval(utime);
1775 r->ru_stime = ns_to_timeval(stime);
1f10206c
JP
1776
1777 if (who != RUSAGE_CHILDREN) {
1778 struct mm_struct *mm = get_task_mm(p);
ec94fc3d 1779
1f10206c
JP
1780 if (mm) {
1781 setmax_mm_hiwater_rss(&maxrss, mm);
1782 mmput(mm);
1783 }
1784 }
1785 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1786}
1787
ce72a16f 1788SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4
LT
1789{
1790 struct rusage r;
ec94fc3d 1791
679c9cd4
SK
1792 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1793 who != RUSAGE_THREAD)
1da177e4 1794 return -EINVAL;
ce72a16f
AV
1795
1796 getrusage(current, who, &r);
1797 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1da177e4
LT
1798}
1799
8d2d5c4a
AV
1800#ifdef CONFIG_COMPAT
1801COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1802{
1803 struct rusage r;
1804
1805 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1806 who != RUSAGE_THREAD)
1807 return -EINVAL;
1808
ce72a16f 1809 getrusage(current, who, &r);
8d2d5c4a
AV
1810 return put_compat_rusage(&r, ru);
1811}
1812#endif
1813
e48fbb69 1814SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1815{
1816 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1817 return mask;
1818}
3b7391de 1819
6e399cd1 1820static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
b32dfe37 1821{
2903ff01 1822 struct fd exe;
6e399cd1 1823 struct file *old_exe, *exe_file;
496ad9aa 1824 struct inode *inode;
2903ff01 1825 int err;
b32dfe37 1826
2903ff01
AV
1827 exe = fdget(fd);
1828 if (!exe.file)
b32dfe37
CG
1829 return -EBADF;
1830
496ad9aa 1831 inode = file_inode(exe.file);
b32dfe37
CG
1832
1833 /*
1834 * Because the original mm->exe_file points to executable file, make
1835 * sure that this one is executable as well, to avoid breaking an
1836 * overall picture.
1837 */
1838 err = -EACCES;
90f8572b 1839 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
b32dfe37
CG
1840 goto exit;
1841
496ad9aa 1842 err = inode_permission(inode, MAY_EXEC);
b32dfe37
CG
1843 if (err)
1844 goto exit;
1845
bafb282d 1846 /*
4229fb1d 1847 * Forbid mm->exe_file change if old file still mapped.
bafb282d 1848 */
6e399cd1 1849 exe_file = get_mm_exe_file(mm);
bafb282d 1850 err = -EBUSY;
6e399cd1 1851 if (exe_file) {
4229fb1d
KK
1852 struct vm_area_struct *vma;
1853
6e399cd1
DB
1854 down_read(&mm->mmap_sem);
1855 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1856 if (!vma->vm_file)
1857 continue;
1858 if (path_equal(&vma->vm_file->f_path,
1859 &exe_file->f_path))
1860 goto exit_err;
1861 }
1862
1863 up_read(&mm->mmap_sem);
1864 fput(exe_file);
bafb282d
KK
1865 }
1866
4229fb1d 1867 err = 0;
6e399cd1
DB
1868 /* set the new file, lockless */
1869 get_file(exe.file);
1870 old_exe = xchg(&mm->exe_file, exe.file);
1871 if (old_exe)
1872 fput(old_exe);
b32dfe37 1873exit:
2903ff01 1874 fdput(exe);
b32dfe37 1875 return err;
6e399cd1
DB
1876exit_err:
1877 up_read(&mm->mmap_sem);
1878 fput(exe_file);
1879 goto exit;
b32dfe37
CG
1880}
1881
f606b77f
CG
1882/*
1883 * WARNING: we don't require any capability here so be very careful
1884 * in what is allowed for modification from userspace.
1885 */
1886static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1887{
1888 unsigned long mmap_max_addr = TASK_SIZE;
1889 struct mm_struct *mm = current->mm;
1890 int error = -EINVAL, i;
1891
1892 static const unsigned char offsets[] = {
1893 offsetof(struct prctl_mm_map, start_code),
1894 offsetof(struct prctl_mm_map, end_code),
1895 offsetof(struct prctl_mm_map, start_data),
1896 offsetof(struct prctl_mm_map, end_data),
1897 offsetof(struct prctl_mm_map, start_brk),
1898 offsetof(struct prctl_mm_map, brk),
1899 offsetof(struct prctl_mm_map, start_stack),
1900 offsetof(struct prctl_mm_map, arg_start),
1901 offsetof(struct prctl_mm_map, arg_end),
1902 offsetof(struct prctl_mm_map, env_start),
1903 offsetof(struct prctl_mm_map, env_end),
1904 };
1905
1906 /*
1907 * Make sure the members are not somewhere outside
1908 * of allowed address space.
1909 */
1910 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1911 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1912
1913 if ((unsigned long)val >= mmap_max_addr ||
1914 (unsigned long)val < mmap_min_addr)
1915 goto out;
1916 }
1917
1918 /*
1919 * Make sure the pairs are ordered.
1920 */
1921#define __prctl_check_order(__m1, __op, __m2) \
1922 ((unsigned long)prctl_map->__m1 __op \
1923 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1924 error = __prctl_check_order(start_code, <, end_code);
1925 error |= __prctl_check_order(start_data, <, end_data);
1926 error |= __prctl_check_order(start_brk, <=, brk);
1927 error |= __prctl_check_order(arg_start, <=, arg_end);
1928 error |= __prctl_check_order(env_start, <=, env_end);
1929 if (error)
1930 goto out;
1931#undef __prctl_check_order
1932
1933 error = -EINVAL;
1934
1935 /*
1936 * @brk should be after @end_data in traditional maps.
1937 */
1938 if (prctl_map->start_brk <= prctl_map->end_data ||
1939 prctl_map->brk <= prctl_map->end_data)
1940 goto out;
1941
1942 /*
1943 * Neither we should allow to override limits if they set.
1944 */
1945 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1946 prctl_map->start_brk, prctl_map->end_data,
1947 prctl_map->start_data))
1948 goto out;
1949
1950 /*
1951 * Someone is trying to cheat the auxv vector.
1952 */
1953 if (prctl_map->auxv_size) {
1954 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1955 goto out;
1956 }
1957
1958 /*
1959 * Finally, make sure the caller has the rights to
4d28df61 1960 * change /proc/pid/exe link: only local sys admin should
f606b77f
CG
1961 * be allowed to.
1962 */
1963 if (prctl_map->exe_fd != (u32)-1) {
4d28df61 1964 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
f606b77f
CG
1965 goto out;
1966 }
1967
1968 error = 0;
1969out:
1970 return error;
1971}
1972
4a00e9df 1973#ifdef CONFIG_CHECKPOINT_RESTORE
f606b77f
CG
1974static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1975{
1976 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1977 unsigned long user_auxv[AT_VECTOR_SIZE];
1978 struct mm_struct *mm = current->mm;
1979 int error;
1980
1981 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1982 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1983
1984 if (opt == PR_SET_MM_MAP_SIZE)
1985 return put_user((unsigned int)sizeof(prctl_map),
1986 (unsigned int __user *)addr);
1987
1988 if (data_size != sizeof(prctl_map))
1989 return -EINVAL;
1990
1991 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1992 return -EFAULT;
1993
1994 error = validate_prctl_map(&prctl_map);
1995 if (error)
1996 return error;
1997
1998 if (prctl_map.auxv_size) {
1999 memset(user_auxv, 0, sizeof(user_auxv));
2000 if (copy_from_user(user_auxv,
2001 (const void __user *)prctl_map.auxv,
2002 prctl_map.auxv_size))
2003 return -EFAULT;
2004
2005 /* Last entry must be AT_NULL as specification requires */
2006 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2007 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2008 }
2009
ddf1d398 2010 if (prctl_map.exe_fd != (u32)-1) {
6e399cd1 2011 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
ddf1d398
MG
2012 if (error)
2013 return error;
2014 }
2015
2016 down_write(&mm->mmap_sem);
f606b77f
CG
2017
2018 /*
2019 * We don't validate if these members are pointing to
2020 * real present VMAs because application may have correspond
2021 * VMAs already unmapped and kernel uses these members for statistics
2022 * output in procfs mostly, except
2023 *
2024 * - @start_brk/@brk which are used in do_brk but kernel lookups
2025 * for VMAs when updating these memvers so anything wrong written
2026 * here cause kernel to swear at userspace program but won't lead
2027 * to any problem in kernel itself
2028 */
2029
2030 mm->start_code = prctl_map.start_code;
2031 mm->end_code = prctl_map.end_code;
2032 mm->start_data = prctl_map.start_data;
2033 mm->end_data = prctl_map.end_data;
2034 mm->start_brk = prctl_map.start_brk;
2035 mm->brk = prctl_map.brk;
2036 mm->start_stack = prctl_map.start_stack;
2037 mm->arg_start = prctl_map.arg_start;
2038 mm->arg_end = prctl_map.arg_end;
2039 mm->env_start = prctl_map.env_start;
2040 mm->env_end = prctl_map.env_end;
2041
2042 /*
2043 * Note this update of @saved_auxv is lockless thus
2044 * if someone reads this member in procfs while we're
2045 * updating -- it may get partly updated results. It's
2046 * known and acceptable trade off: we leave it as is to
2047 * not introduce additional locks here making the kernel
2048 * more complex.
2049 */
2050 if (prctl_map.auxv_size)
2051 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2052
ddf1d398
MG
2053 up_write(&mm->mmap_sem);
2054 return 0;
f606b77f
CG
2055}
2056#endif /* CONFIG_CHECKPOINT_RESTORE */
2057
4a00e9df
AD
2058static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2059 unsigned long len)
2060{
2061 /*
2062 * This doesn't move the auxiliary vector itself since it's pinned to
2063 * mm_struct, but it permits filling the vector with new values. It's
2064 * up to the caller to provide sane values here, otherwise userspace
2065 * tools which use this vector might be unhappy.
2066 */
2067 unsigned long user_auxv[AT_VECTOR_SIZE];
2068
2069 if (len > sizeof(user_auxv))
2070 return -EINVAL;
2071
2072 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2073 return -EFAULT;
2074
2075 /* Make sure the last entry is always AT_NULL */
2076 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2077 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2078
2079 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2080
2081 task_lock(current);
2082 memcpy(mm->saved_auxv, user_auxv, len);
2083 task_unlock(current);
2084
2085 return 0;
2086}
2087
028ee4be
CG
2088static int prctl_set_mm(int opt, unsigned long addr,
2089 unsigned long arg4, unsigned long arg5)
2090{
028ee4be 2091 struct mm_struct *mm = current->mm;
4a00e9df 2092 struct prctl_mm_map prctl_map;
fe8c7f5c
CG
2093 struct vm_area_struct *vma;
2094 int error;
028ee4be 2095
f606b77f
CG
2096 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2097 opt != PR_SET_MM_MAP &&
2098 opt != PR_SET_MM_MAP_SIZE)))
028ee4be
CG
2099 return -EINVAL;
2100
f606b77f
CG
2101#ifdef CONFIG_CHECKPOINT_RESTORE
2102 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2103 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2104#endif
2105
79f0713d 2106 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
2107 return -EPERM;
2108
6e399cd1
DB
2109 if (opt == PR_SET_MM_EXE_FILE)
2110 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
b32dfe37 2111
4a00e9df
AD
2112 if (opt == PR_SET_MM_AUXV)
2113 return prctl_set_auxv(mm, addr, arg4);
2114
1ad75b9e 2115 if (addr >= TASK_SIZE || addr < mmap_min_addr)
028ee4be
CG
2116 return -EINVAL;
2117
fe8c7f5c
CG
2118 error = -EINVAL;
2119
ddf1d398 2120 down_write(&mm->mmap_sem);
028ee4be
CG
2121 vma = find_vma(mm, addr);
2122
4a00e9df
AD
2123 prctl_map.start_code = mm->start_code;
2124 prctl_map.end_code = mm->end_code;
2125 prctl_map.start_data = mm->start_data;
2126 prctl_map.end_data = mm->end_data;
2127 prctl_map.start_brk = mm->start_brk;
2128 prctl_map.brk = mm->brk;
2129 prctl_map.start_stack = mm->start_stack;
2130 prctl_map.arg_start = mm->arg_start;
2131 prctl_map.arg_end = mm->arg_end;
2132 prctl_map.env_start = mm->env_start;
2133 prctl_map.env_end = mm->env_end;
2134 prctl_map.auxv = NULL;
2135 prctl_map.auxv_size = 0;
2136 prctl_map.exe_fd = -1;
2137
028ee4be
CG
2138 switch (opt) {
2139 case PR_SET_MM_START_CODE:
4a00e9df 2140 prctl_map.start_code = addr;
fe8c7f5c 2141 break;
028ee4be 2142 case PR_SET_MM_END_CODE:
4a00e9df 2143 prctl_map.end_code = addr;
028ee4be 2144 break;
028ee4be 2145 case PR_SET_MM_START_DATA:
4a00e9df 2146 prctl_map.start_data = addr;
028ee4be 2147 break;
fe8c7f5c 2148 case PR_SET_MM_END_DATA:
4a00e9df
AD
2149 prctl_map.end_data = addr;
2150 break;
2151 case PR_SET_MM_START_STACK:
2152 prctl_map.start_stack = addr;
028ee4be 2153 break;
028ee4be 2154 case PR_SET_MM_START_BRK:
4a00e9df 2155 prctl_map.start_brk = addr;
028ee4be 2156 break;
028ee4be 2157 case PR_SET_MM_BRK:
4a00e9df 2158 prctl_map.brk = addr;
028ee4be 2159 break;
4a00e9df
AD
2160 case PR_SET_MM_ARG_START:
2161 prctl_map.arg_start = addr;
2162 break;
2163 case PR_SET_MM_ARG_END:
2164 prctl_map.arg_end = addr;
2165 break;
2166 case PR_SET_MM_ENV_START:
2167 prctl_map.env_start = addr;
2168 break;
2169 case PR_SET_MM_ENV_END:
2170 prctl_map.env_end = addr;
2171 break;
2172 default:
2173 goto out;
2174 }
2175
2176 error = validate_prctl_map(&prctl_map);
2177 if (error)
2178 goto out;
028ee4be 2179
4a00e9df 2180 switch (opt) {
fe8c7f5c
CG
2181 /*
2182 * If command line arguments and environment
2183 * are placed somewhere else on stack, we can
2184 * set them up here, ARG_START/END to setup
2185 * command line argumets and ENV_START/END
2186 * for environment.
2187 */
2188 case PR_SET_MM_START_STACK:
2189 case PR_SET_MM_ARG_START:
2190 case PR_SET_MM_ARG_END:
2191 case PR_SET_MM_ENV_START:
2192 case PR_SET_MM_ENV_END:
2193 if (!vma) {
2194 error = -EFAULT;
2195 goto out;
2196 }
028ee4be
CG
2197 }
2198
4a00e9df
AD
2199 mm->start_code = prctl_map.start_code;
2200 mm->end_code = prctl_map.end_code;
2201 mm->start_data = prctl_map.start_data;
2202 mm->end_data = prctl_map.end_data;
2203 mm->start_brk = prctl_map.start_brk;
2204 mm->brk = prctl_map.brk;
2205 mm->start_stack = prctl_map.start_stack;
2206 mm->arg_start = prctl_map.arg_start;
2207 mm->arg_end = prctl_map.arg_end;
2208 mm->env_start = prctl_map.env_start;
2209 mm->env_end = prctl_map.env_end;
2210
028ee4be 2211 error = 0;
028ee4be 2212out:
ddf1d398 2213 up_write(&mm->mmap_sem);
028ee4be
CG
2214 return error;
2215}
300f786b 2216
52b36941 2217#ifdef CONFIG_CHECKPOINT_RESTORE
300f786b
CG
2218static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2219{
2220 return put_user(me->clear_child_tid, tid_addr);
2221}
52b36941 2222#else
300f786b
CG
2223static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2224{
2225 return -EINVAL;
2226}
028ee4be
CG
2227#endif
2228
749860ce
PT
2229static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2230{
2231 /*
2232 * If task has has_child_subreaper - all its decendants
2233 * already have these flag too and new decendants will
2234 * inherit it on fork, skip them.
2235 *
2236 * If we've found child_reaper - skip descendants in
2237 * it's subtree as they will never get out pidns.
2238 */
2239 if (p->signal->has_child_subreaper ||
2240 is_child_reaper(task_pid(p)))
2241 return 0;
2242
2243 p->signal->has_child_subreaper = 1;
2244 return 1;
2245}
2246
b617cfc8
TG
2247int __weak arch_prctl_spec_ctrl_get(unsigned long which)
2248{
2249 return -EINVAL;
2250}
2251
2252int __weak arch_prctl_spec_ctrl_set(unsigned long which, unsigned long ctrl)
2253{
2254 return -EINVAL;
2255}
2256
c4ea37c2
HC
2257SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2258 unsigned long, arg4, unsigned long, arg5)
1da177e4 2259{
b6dff3ec
DH
2260 struct task_struct *me = current;
2261 unsigned char comm[sizeof(me->comm)];
2262 long error;
1da177e4 2263
d84f4f99
DH
2264 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2265 if (error != -ENOSYS)
1da177e4
LT
2266 return error;
2267
d84f4f99 2268 error = 0;
1da177e4 2269 switch (option) {
f3cbd435
AM
2270 case PR_SET_PDEATHSIG:
2271 if (!valid_signal(arg2)) {
2272 error = -EINVAL;
1da177e4 2273 break;
f3cbd435
AM
2274 }
2275 me->pdeath_signal = arg2;
2276 break;
2277 case PR_GET_PDEATHSIG:
2278 error = put_user(me->pdeath_signal, (int __user *)arg2);
2279 break;
2280 case PR_GET_DUMPABLE:
2281 error = get_dumpable(me->mm);
2282 break;
2283 case PR_SET_DUMPABLE:
2284 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2285 error = -EINVAL;
1da177e4 2286 break;
f3cbd435
AM
2287 }
2288 set_dumpable(me->mm, arg2);
2289 break;
1da177e4 2290
f3cbd435
AM
2291 case PR_SET_UNALIGN:
2292 error = SET_UNALIGN_CTL(me, arg2);
2293 break;
2294 case PR_GET_UNALIGN:
2295 error = GET_UNALIGN_CTL(me, arg2);
2296 break;
2297 case PR_SET_FPEMU:
2298 error = SET_FPEMU_CTL(me, arg2);
2299 break;
2300 case PR_GET_FPEMU:
2301 error = GET_FPEMU_CTL(me, arg2);
2302 break;
2303 case PR_SET_FPEXC:
2304 error = SET_FPEXC_CTL(me, arg2);
2305 break;
2306 case PR_GET_FPEXC:
2307 error = GET_FPEXC_CTL(me, arg2);
2308 break;
2309 case PR_GET_TIMING:
2310 error = PR_TIMING_STATISTICAL;
2311 break;
2312 case PR_SET_TIMING:
2313 if (arg2 != PR_TIMING_STATISTICAL)
2314 error = -EINVAL;
2315 break;
2316 case PR_SET_NAME:
2317 comm[sizeof(me->comm) - 1] = 0;
2318 if (strncpy_from_user(comm, (char __user *)arg2,
2319 sizeof(me->comm) - 1) < 0)
2320 return -EFAULT;
2321 set_task_comm(me, comm);
2322 proc_comm_connector(me);
2323 break;
2324 case PR_GET_NAME:
2325 get_task_comm(comm, me);
2326 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2327 return -EFAULT;
2328 break;
2329 case PR_GET_ENDIAN:
2330 error = GET_ENDIAN(me, arg2);
2331 break;
2332 case PR_SET_ENDIAN:
2333 error = SET_ENDIAN(me, arg2);
2334 break;
2335 case PR_GET_SECCOMP:
2336 error = prctl_get_seccomp();
2337 break;
2338 case PR_SET_SECCOMP:
2339 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2340 break;
2341 case PR_GET_TSC:
2342 error = GET_TSC_CTL(arg2);
2343 break;
2344 case PR_SET_TSC:
2345 error = SET_TSC_CTL(arg2);
2346 break;
2347 case PR_TASK_PERF_EVENTS_DISABLE:
2348 error = perf_event_task_disable();
2349 break;
2350 case PR_TASK_PERF_EVENTS_ENABLE:
2351 error = perf_event_task_enable();
2352 break;
2353 case PR_GET_TIMERSLACK:
da8b44d5
JS
2354 if (current->timer_slack_ns > ULONG_MAX)
2355 error = ULONG_MAX;
2356 else
2357 error = current->timer_slack_ns;
f3cbd435
AM
2358 break;
2359 case PR_SET_TIMERSLACK:
2360 if (arg2 <= 0)
2361 current->timer_slack_ns =
6976675d 2362 current->default_timer_slack_ns;
f3cbd435
AM
2363 else
2364 current->timer_slack_ns = arg2;
2365 break;
2366 case PR_MCE_KILL:
2367 if (arg4 | arg5)
2368 return -EINVAL;
2369 switch (arg2) {
2370 case PR_MCE_KILL_CLEAR:
2371 if (arg3 != 0)
4db96cf0 2372 return -EINVAL;
f3cbd435 2373 current->flags &= ~PF_MCE_PROCESS;
4db96cf0 2374 break;
f3cbd435
AM
2375 case PR_MCE_KILL_SET:
2376 current->flags |= PF_MCE_PROCESS;
2377 if (arg3 == PR_MCE_KILL_EARLY)
2378 current->flags |= PF_MCE_EARLY;
2379 else if (arg3 == PR_MCE_KILL_LATE)
2380 current->flags &= ~PF_MCE_EARLY;
2381 else if (arg3 == PR_MCE_KILL_DEFAULT)
2382 current->flags &=
2383 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1087e9b4 2384 else
259e5e6c 2385 return -EINVAL;
259e5e6c 2386 break;
1da177e4 2387 default:
f3cbd435
AM
2388 return -EINVAL;
2389 }
2390 break;
2391 case PR_MCE_KILL_GET:
2392 if (arg2 | arg3 | arg4 | arg5)
2393 return -EINVAL;
2394 if (current->flags & PF_MCE_PROCESS)
2395 error = (current->flags & PF_MCE_EARLY) ?
2396 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2397 else
2398 error = PR_MCE_KILL_DEFAULT;
2399 break;
2400 case PR_SET_MM:
2401 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2402 break;
2403 case PR_GET_TID_ADDRESS:
2404 error = prctl_get_tid_address(me, (int __user **)arg2);
2405 break;
2406 case PR_SET_CHILD_SUBREAPER:
2407 me->signal->is_child_subreaper = !!arg2;
749860ce
PT
2408 if (!arg2)
2409 break;
2410
2411 walk_process_tree(me, propagate_has_child_subreaper, NULL);
f3cbd435
AM
2412 break;
2413 case PR_GET_CHILD_SUBREAPER:
2414 error = put_user(me->signal->is_child_subreaper,
2415 (int __user *)arg2);
2416 break;
2417 case PR_SET_NO_NEW_PRIVS:
2418 if (arg2 != 1 || arg3 || arg4 || arg5)
2419 return -EINVAL;
2420
1d4457f9 2421 task_set_no_new_privs(current);
f3cbd435
AM
2422 break;
2423 case PR_GET_NO_NEW_PRIVS:
2424 if (arg2 || arg3 || arg4 || arg5)
2425 return -EINVAL;
1d4457f9 2426 return task_no_new_privs(current) ? 1 : 0;
a0715cc2
AT
2427 case PR_GET_THP_DISABLE:
2428 if (arg2 || arg3 || arg4 || arg5)
2429 return -EINVAL;
18600332 2430 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2
AT
2431 break;
2432 case PR_SET_THP_DISABLE:
2433 if (arg3 || arg4 || arg5)
2434 return -EINVAL;
17b0573d
MH
2435 if (down_write_killable(&me->mm->mmap_sem))
2436 return -EINTR;
a0715cc2 2437 if (arg2)
18600332 2438 set_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2 2439 else
18600332 2440 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2
AT
2441 up_write(&me->mm->mmap_sem);
2442 break;
fe3d197f 2443 case PR_MPX_ENABLE_MANAGEMENT:
e9d1b4f3
DH
2444 if (arg2 || arg3 || arg4 || arg5)
2445 return -EINVAL;
46a6e0cf 2446 error = MPX_ENABLE_MANAGEMENT();
fe3d197f
DH
2447 break;
2448 case PR_MPX_DISABLE_MANAGEMENT:
e9d1b4f3
DH
2449 if (arg2 || arg3 || arg4 || arg5)
2450 return -EINVAL;
46a6e0cf 2451 error = MPX_DISABLE_MANAGEMENT();
fe3d197f 2452 break;
9791554b
PB
2453 case PR_SET_FP_MODE:
2454 error = SET_FP_MODE(me, arg2);
2455 break;
2456 case PR_GET_FP_MODE:
2457 error = GET_FP_MODE(me);
2458 break;
2d2123bc
DM
2459 case PR_SVE_SET_VL:
2460 error = SVE_SET_VL(arg2);
2461 break;
2462 case PR_SVE_GET_VL:
2463 error = SVE_GET_VL();
2464 break;
b617cfc8
TG
2465 case PR_GET_SPECULATION_CTRL:
2466 if (arg3 || arg4 || arg5)
2467 return -EINVAL;
2468 error = arch_prctl_spec_ctrl_get(arg2);
2469 break;
2470 case PR_SET_SPECULATION_CTRL:
2471 if (arg4 || arg5)
2472 return -EINVAL;
2473 error = arch_prctl_spec_ctrl_set(arg2, arg3);
2474 break;
f3cbd435
AM
2475 default:
2476 error = -EINVAL;
2477 break;
1da177e4
LT
2478 }
2479 return error;
2480}
3cfc348b 2481
836f92ad
HC
2482SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2483 struct getcpu_cache __user *, unused)
3cfc348b
AK
2484{
2485 int err = 0;
2486 int cpu = raw_smp_processor_id();
ec94fc3d 2487
3cfc348b
AK
2488 if (cpup)
2489 err |= put_user(cpu, cpup);
2490 if (nodep)
2491 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2492 return err ? -EFAULT : 0;
2493}
10a0a8d4 2494
4a22f166
SR
2495/**
2496 * do_sysinfo - fill in sysinfo struct
2497 * @info: pointer to buffer to fill
2498 */
2499static int do_sysinfo(struct sysinfo *info)
2500{
2501 unsigned long mem_total, sav_total;
2502 unsigned int mem_unit, bitcount;
2503 struct timespec tp;
2504
2505 memset(info, 0, sizeof(struct sysinfo));
2506
45c64940 2507 get_monotonic_boottime(&tp);
4a22f166
SR
2508 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2509
2510 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2511
2512 info->procs = nr_threads;
2513
2514 si_meminfo(info);
2515 si_swapinfo(info);
2516
2517 /*
2518 * If the sum of all the available memory (i.e. ram + swap)
2519 * is less than can be stored in a 32 bit unsigned long then
2520 * we can be binary compatible with 2.2.x kernels. If not,
2521 * well, in that case 2.2.x was broken anyways...
2522 *
2523 * -Erik Andersen <andersee@debian.org>
2524 */
2525
2526 mem_total = info->totalram + info->totalswap;
2527 if (mem_total < info->totalram || mem_total < info->totalswap)
2528 goto out;
2529 bitcount = 0;
2530 mem_unit = info->mem_unit;
2531 while (mem_unit > 1) {
2532 bitcount++;
2533 mem_unit >>= 1;
2534 sav_total = mem_total;
2535 mem_total <<= 1;
2536 if (mem_total < sav_total)
2537 goto out;
2538 }
2539
2540 /*
2541 * If mem_total did not overflow, multiply all memory values by
2542 * info->mem_unit and set it to 1. This leaves things compatible
2543 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2544 * kernels...
2545 */
2546
2547 info->mem_unit = 1;
2548 info->totalram <<= bitcount;
2549 info->freeram <<= bitcount;
2550 info->sharedram <<= bitcount;
2551 info->bufferram <<= bitcount;
2552 info->totalswap <<= bitcount;
2553 info->freeswap <<= bitcount;
2554 info->totalhigh <<= bitcount;
2555 info->freehigh <<= bitcount;
2556
2557out:
2558 return 0;
2559}
2560
2561SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2562{
2563 struct sysinfo val;
2564
2565 do_sysinfo(&val);
2566
2567 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2568 return -EFAULT;
2569
2570 return 0;
2571}
2572
2573#ifdef CONFIG_COMPAT
2574struct compat_sysinfo {
2575 s32 uptime;
2576 u32 loads[3];
2577 u32 totalram;
2578 u32 freeram;
2579 u32 sharedram;
2580 u32 bufferram;
2581 u32 totalswap;
2582 u32 freeswap;
2583 u16 procs;
2584 u16 pad;
2585 u32 totalhigh;
2586 u32 freehigh;
2587 u32 mem_unit;
2588 char _f[20-2*sizeof(u32)-sizeof(int)];
2589};
2590
2591COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2592{
2593 struct sysinfo s;
2594
2595 do_sysinfo(&s);
2596
2597 /* Check to see if any memory value is too large for 32-bit and scale
2598 * down if needed
2599 */
0baae41e 2600 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
4a22f166
SR
2601 int bitcount = 0;
2602
2603 while (s.mem_unit < PAGE_SIZE) {
2604 s.mem_unit <<= 1;
2605 bitcount++;
2606 }
2607
2608 s.totalram >>= bitcount;
2609 s.freeram >>= bitcount;
2610 s.sharedram >>= bitcount;
2611 s.bufferram >>= bitcount;
2612 s.totalswap >>= bitcount;
2613 s.freeswap >>= bitcount;
2614 s.totalhigh >>= bitcount;
2615 s.freehigh >>= bitcount;
2616 }
2617
2618 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2619 __put_user(s.uptime, &info->uptime) ||
2620 __put_user(s.loads[0], &info->loads[0]) ||
2621 __put_user(s.loads[1], &info->loads[1]) ||
2622 __put_user(s.loads[2], &info->loads[2]) ||
2623 __put_user(s.totalram, &info->totalram) ||
2624 __put_user(s.freeram, &info->freeram) ||
2625 __put_user(s.sharedram, &info->sharedram) ||
2626 __put_user(s.bufferram, &info->bufferram) ||
2627 __put_user(s.totalswap, &info->totalswap) ||
2628 __put_user(s.freeswap, &info->freeswap) ||
2629 __put_user(s.procs, &info->procs) ||
2630 __put_user(s.totalhigh, &info->totalhigh) ||
2631 __put_user(s.freehigh, &info->freehigh) ||
2632 __put_user(s.mem_unit, &info->mem_unit))
2633 return -EFAULT;
2634
2635 return 0;
2636}
2637#endif /* CONFIG_COMPAT */