]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sys.c
posix-cpu-timers: cleanup rlimits usage
[mirror_ubuntu-jammy-kernel.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/notifier.h>
12#include <linux/reboot.h>
13#include <linux/prctl.h>
1da177e4
LT
14#include <linux/highuid.h>
15#include <linux/fs.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e3d5a27d 36#include <linux/ptrace.h>
5ad4e53b 37#include <linux/fs_struct.h>
1da177e4
LT
38
39#include <linux/compat.h>
40#include <linux/syscalls.h>
00d7c05a 41#include <linux/kprobes.h>
acce292c 42#include <linux/user_namespace.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/io.h>
46#include <asm/unistd.h>
47
48#ifndef SET_UNALIGN_CTL
49# define SET_UNALIGN_CTL(a,b) (-EINVAL)
50#endif
51#ifndef GET_UNALIGN_CTL
52# define GET_UNALIGN_CTL(a,b) (-EINVAL)
53#endif
54#ifndef SET_FPEMU_CTL
55# define SET_FPEMU_CTL(a,b) (-EINVAL)
56#endif
57#ifndef GET_FPEMU_CTL
58# define GET_FPEMU_CTL(a,b) (-EINVAL)
59#endif
60#ifndef SET_FPEXC_CTL
61# define SET_FPEXC_CTL(a,b) (-EINVAL)
62#endif
63#ifndef GET_FPEXC_CTL
64# define GET_FPEXC_CTL(a,b) (-EINVAL)
65#endif
651d765d
AB
66#ifndef GET_ENDIAN
67# define GET_ENDIAN(a,b) (-EINVAL)
68#endif
69#ifndef SET_ENDIAN
70# define SET_ENDIAN(a,b) (-EINVAL)
71#endif
8fb402bc
EB
72#ifndef GET_TSC_CTL
73# define GET_TSC_CTL(a) (-EINVAL)
74#endif
75#ifndef SET_TSC_CTL
76# define SET_TSC_CTL(a) (-EINVAL)
77#endif
1da177e4
LT
78
79/*
80 * this is where the system-wide overflow UID and GID are defined, for
81 * architectures that now have 32-bit UID/GID but didn't in the past
82 */
83
84int overflowuid = DEFAULT_OVERFLOWUID;
85int overflowgid = DEFAULT_OVERFLOWGID;
86
87#ifdef CONFIG_UID16
88EXPORT_SYMBOL(overflowuid);
89EXPORT_SYMBOL(overflowgid);
90#endif
91
92/*
93 * the same as above, but for filesystems which can only store a 16-bit
94 * UID and GID. as such, this is needed on all architectures
95 */
96
97int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
98int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
99
100EXPORT_SYMBOL(fs_overflowuid);
101EXPORT_SYMBOL(fs_overflowgid);
102
103/*
104 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
105 */
106
107int C_A_D = 1;
9ec52099
CLG
108struct pid *cad_pid;
109EXPORT_SYMBOL(cad_pid);
1da177e4 110
bd804eba
RW
111/*
112 * If set, this is used for preparing the system to power off.
113 */
114
115void (*pm_power_off_prepare)(void);
bd804eba 116
c69e8d9c
DH
117/*
118 * set the priority of a task
119 * - the caller must hold the RCU read lock
120 */
1da177e4
LT
121static int set_one_prio(struct task_struct *p, int niceval, int error)
122{
c69e8d9c 123 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
1da177e4
LT
124 int no_nice;
125
c69e8d9c
DH
126 if (pcred->uid != cred->euid &&
127 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
1da177e4
LT
128 error = -EPERM;
129 goto out;
130 }
e43379f1 131 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
132 error = -EACCES;
133 goto out;
134 }
135 no_nice = security_task_setnice(p, niceval);
136 if (no_nice) {
137 error = no_nice;
138 goto out;
139 }
140 if (error == -ESRCH)
141 error = 0;
142 set_user_nice(p, niceval);
143out:
144 return error;
145}
146
754fe8d2 147SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
148{
149 struct task_struct *g, *p;
150 struct user_struct *user;
86a264ab 151 const struct cred *cred = current_cred();
1da177e4 152 int error = -EINVAL;
41487c65 153 struct pid *pgrp;
1da177e4 154
3e88c553 155 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
156 goto out;
157
158 /* normalize: avoid signed division (rounding problems) */
159 error = -ESRCH;
160 if (niceval < -20)
161 niceval = -20;
162 if (niceval > 19)
163 niceval = 19;
164
d4581a23 165 rcu_read_lock();
1da177e4
LT
166 read_lock(&tasklist_lock);
167 switch (which) {
168 case PRIO_PROCESS:
41487c65 169 if (who)
228ebcbe 170 p = find_task_by_vpid(who);
41487c65
EB
171 else
172 p = current;
1da177e4
LT
173 if (p)
174 error = set_one_prio(p, niceval, error);
175 break;
176 case PRIO_PGRP:
41487c65 177 if (who)
b488893a 178 pgrp = find_vpid(who);
41487c65
EB
179 else
180 pgrp = task_pgrp(current);
2d70b68d 181 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 182 error = set_one_prio(p, niceval, error);
2d70b68d 183 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
184 break;
185 case PRIO_USER:
d84f4f99 186 user = (struct user_struct *) cred->user;
1da177e4 187 if (!who)
86a264ab
DH
188 who = cred->uid;
189 else if ((who != cred->uid) &&
190 !(user = find_user(who)))
191 goto out_unlock; /* No processes for this user */
1da177e4 192
dfc6a736 193 do_each_thread(g, p) {
86a264ab 194 if (__task_cred(p)->uid == who)
1da177e4 195 error = set_one_prio(p, niceval, error);
dfc6a736 196 } while_each_thread(g, p);
86a264ab 197 if (who != cred->uid)
1da177e4
LT
198 free_uid(user); /* For find_user() */
199 break;
200 }
201out_unlock:
202 read_unlock(&tasklist_lock);
d4581a23 203 rcu_read_unlock();
1da177e4
LT
204out:
205 return error;
206}
207
208/*
209 * Ugh. To avoid negative return values, "getpriority()" will
210 * not return the normal nice-value, but a negated value that
211 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
212 * to stay compatible.
213 */
754fe8d2 214SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
215{
216 struct task_struct *g, *p;
217 struct user_struct *user;
86a264ab 218 const struct cred *cred = current_cred();
1da177e4 219 long niceval, retval = -ESRCH;
41487c65 220 struct pid *pgrp;
1da177e4 221
3e88c553 222 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
223 return -EINVAL;
224
70118837 225 rcu_read_lock();
1da177e4
LT
226 read_lock(&tasklist_lock);
227 switch (which) {
228 case PRIO_PROCESS:
41487c65 229 if (who)
228ebcbe 230 p = find_task_by_vpid(who);
41487c65
EB
231 else
232 p = current;
1da177e4
LT
233 if (p) {
234 niceval = 20 - task_nice(p);
235 if (niceval > retval)
236 retval = niceval;
237 }
238 break;
239 case PRIO_PGRP:
41487c65 240 if (who)
b488893a 241 pgrp = find_vpid(who);
41487c65
EB
242 else
243 pgrp = task_pgrp(current);
2d70b68d 244 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
245 niceval = 20 - task_nice(p);
246 if (niceval > retval)
247 retval = niceval;
2d70b68d 248 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
249 break;
250 case PRIO_USER:
86a264ab 251 user = (struct user_struct *) cred->user;
1da177e4 252 if (!who)
86a264ab
DH
253 who = cred->uid;
254 else if ((who != cred->uid) &&
255 !(user = find_user(who)))
256 goto out_unlock; /* No processes for this user */
1da177e4 257
dfc6a736 258 do_each_thread(g, p) {
86a264ab 259 if (__task_cred(p)->uid == who) {
1da177e4
LT
260 niceval = 20 - task_nice(p);
261 if (niceval > retval)
262 retval = niceval;
263 }
dfc6a736 264 } while_each_thread(g, p);
86a264ab 265 if (who != cred->uid)
1da177e4
LT
266 free_uid(user); /* for find_user() */
267 break;
268 }
269out_unlock:
270 read_unlock(&tasklist_lock);
70118837 271 rcu_read_unlock();
1da177e4
LT
272
273 return retval;
274}
275
e4c94330
EB
276/**
277 * emergency_restart - reboot the system
278 *
279 * Without shutting down any hardware or taking any locks
280 * reboot the system. This is called when we know we are in
281 * trouble so this is our best effort to reboot. This is
282 * safe to call in interrupt context.
283 */
7c903473
EB
284void emergency_restart(void)
285{
286 machine_emergency_restart();
287}
288EXPORT_SYMBOL_GPL(emergency_restart);
289
ca195b7f 290void kernel_restart_prepare(char *cmd)
4a00ea1e 291{
e041c683 292 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 293 system_state = SYSTEM_RESTART;
4a00ea1e 294 device_shutdown();
58b3b71d 295 sysdev_shutdown();
e4c94330 296}
1e5d5331
RD
297
298/**
299 * kernel_restart - reboot the system
300 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 301 * or %NULL
1e5d5331
RD
302 *
303 * Shutdown everything and perform a clean reboot.
304 * This is not safe to call in interrupt context.
305 */
e4c94330
EB
306void kernel_restart(char *cmd)
307{
308 kernel_restart_prepare(cmd);
756184b7 309 if (!cmd)
4a00ea1e 310 printk(KERN_EMERG "Restarting system.\n");
756184b7 311 else
4a00ea1e 312 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
4a00ea1e
EB
313 machine_restart(cmd);
314}
315EXPORT_SYMBOL_GPL(kernel_restart);
316
4ef7229f 317static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 318{
e041c683 319 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
320 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
321 system_state = state;
322 device_shutdown();
323}
e4c94330
EB
324/**
325 * kernel_halt - halt the system
326 *
327 * Shutdown everything and perform a clean system halt.
328 */
e4c94330
EB
329void kernel_halt(void)
330{
729b4d4c 331 kernel_shutdown_prepare(SYSTEM_HALT);
58b3b71d 332 sysdev_shutdown();
4a00ea1e
EB
333 printk(KERN_EMERG "System halted.\n");
334 machine_halt();
335}
729b4d4c 336
4a00ea1e
EB
337EXPORT_SYMBOL_GPL(kernel_halt);
338
e4c94330
EB
339/**
340 * kernel_power_off - power_off the system
341 *
342 * Shutdown everything and perform a clean system power_off.
343 */
e4c94330
EB
344void kernel_power_off(void)
345{
729b4d4c 346 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
347 if (pm_power_off_prepare)
348 pm_power_off_prepare();
4047727e 349 disable_nonboot_cpus();
58b3b71d 350 sysdev_shutdown();
4a00ea1e
EB
351 printk(KERN_EMERG "Power down.\n");
352 machine_power_off();
353}
354EXPORT_SYMBOL_GPL(kernel_power_off);
6f15fa50
TG
355
356static DEFINE_MUTEX(reboot_mutex);
357
1da177e4
LT
358/*
359 * Reboot system call: for obvious reasons only root may call it,
360 * and even root needs to set up some magic numbers in the registers
361 * so that some mistake won't make this reboot the whole machine.
362 * You can also set the meaning of the ctrl-alt-del-key here.
363 *
364 * reboot doesn't sync: do that yourself before calling this.
365 */
754fe8d2
HC
366SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
367 void __user *, arg)
1da177e4
LT
368{
369 char buffer[256];
3d26dcf7 370 int ret = 0;
1da177e4
LT
371
372 /* We only trust the superuser with rebooting the system. */
373 if (!capable(CAP_SYS_BOOT))
374 return -EPERM;
375
376 /* For safety, we require "magic" arguments. */
377 if (magic1 != LINUX_REBOOT_MAGIC1 ||
378 (magic2 != LINUX_REBOOT_MAGIC2 &&
379 magic2 != LINUX_REBOOT_MAGIC2A &&
380 magic2 != LINUX_REBOOT_MAGIC2B &&
381 magic2 != LINUX_REBOOT_MAGIC2C))
382 return -EINVAL;
383
5e38291d
EB
384 /* Instead of trying to make the power_off code look like
385 * halt when pm_power_off is not set do it the easy way.
386 */
387 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
388 cmd = LINUX_REBOOT_CMD_HALT;
389
6f15fa50 390 mutex_lock(&reboot_mutex);
1da177e4
LT
391 switch (cmd) {
392 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 393 kernel_restart(NULL);
1da177e4
LT
394 break;
395
396 case LINUX_REBOOT_CMD_CAD_ON:
397 C_A_D = 1;
398 break;
399
400 case LINUX_REBOOT_CMD_CAD_OFF:
401 C_A_D = 0;
402 break;
403
404 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 405 kernel_halt();
1da177e4 406 do_exit(0);
3d26dcf7 407 panic("cannot halt");
1da177e4
LT
408
409 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 410 kernel_power_off();
1da177e4
LT
411 do_exit(0);
412 break;
413
414 case LINUX_REBOOT_CMD_RESTART2:
415 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
6f15fa50
TG
416 ret = -EFAULT;
417 break;
1da177e4
LT
418 }
419 buffer[sizeof(buffer) - 1] = '\0';
420
4a00ea1e 421 kernel_restart(buffer);
1da177e4
LT
422 break;
423
3ab83521 424#ifdef CONFIG_KEXEC
dc009d92 425 case LINUX_REBOOT_CMD_KEXEC:
3d26dcf7
AK
426 ret = kernel_kexec();
427 break;
3ab83521 428#endif
4a00ea1e 429
b0cb1a19 430#ifdef CONFIG_HIBERNATION
1da177e4 431 case LINUX_REBOOT_CMD_SW_SUSPEND:
3d26dcf7
AK
432 ret = hibernate();
433 break;
1da177e4
LT
434#endif
435
436 default:
3d26dcf7
AK
437 ret = -EINVAL;
438 break;
1da177e4 439 }
6f15fa50 440 mutex_unlock(&reboot_mutex);
3d26dcf7 441 return ret;
1da177e4
LT
442}
443
65f27f38 444static void deferred_cad(struct work_struct *dummy)
1da177e4 445{
abcd9e51 446 kernel_restart(NULL);
1da177e4
LT
447}
448
449/*
450 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
451 * As it's called within an interrupt, it may NOT sync: the only choice
452 * is whether to reboot at once, or just ignore the ctrl-alt-del.
453 */
454void ctrl_alt_del(void)
455{
65f27f38 456 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
457
458 if (C_A_D)
459 schedule_work(&cad_work);
460 else
9ec52099 461 kill_cad_pid(SIGINT, 1);
1da177e4
LT
462}
463
1da177e4
LT
464/*
465 * Unprivileged users may change the real gid to the effective gid
466 * or vice versa. (BSD-style)
467 *
468 * If you set the real gid at all, or set the effective gid to a value not
469 * equal to the real gid, then the saved gid is set to the new effective gid.
470 *
471 * This makes it possible for a setgid program to completely drop its
472 * privileges, which is often a useful assertion to make when you are doing
473 * a security audit over a program.
474 *
475 * The general idea is that a program which uses just setregid() will be
476 * 100% compatible with BSD. A program which uses just setgid() will be
477 * 100% compatible with POSIX with saved IDs.
478 *
479 * SMP: There are not races, the GIDs are checked only by filesystem
480 * operations (as far as semantic preservation is concerned).
481 */
ae1251ab 482SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 483{
d84f4f99
DH
484 const struct cred *old;
485 struct cred *new;
1da177e4
LT
486 int retval;
487
d84f4f99
DH
488 new = prepare_creds();
489 if (!new)
490 return -ENOMEM;
491 old = current_cred();
492
1da177e4
LT
493 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
494 if (retval)
d84f4f99 495 goto error;
1da177e4 496
d84f4f99 497 retval = -EPERM;
1da177e4 498 if (rgid != (gid_t) -1) {
d84f4f99
DH
499 if (old->gid == rgid ||
500 old->egid == rgid ||
1da177e4 501 capable(CAP_SETGID))
d84f4f99 502 new->gid = rgid;
1da177e4 503 else
d84f4f99 504 goto error;
1da177e4
LT
505 }
506 if (egid != (gid_t) -1) {
d84f4f99
DH
507 if (old->gid == egid ||
508 old->egid == egid ||
509 old->sgid == egid ||
1da177e4 510 capable(CAP_SETGID))
d84f4f99 511 new->egid = egid;
756184b7 512 else
d84f4f99 513 goto error;
1da177e4 514 }
d84f4f99 515
1da177e4 516 if (rgid != (gid_t) -1 ||
d84f4f99
DH
517 (egid != (gid_t) -1 && egid != old->gid))
518 new->sgid = new->egid;
519 new->fsgid = new->egid;
520
521 return commit_creds(new);
522
523error:
524 abort_creds(new);
525 return retval;
1da177e4
LT
526}
527
528/*
529 * setgid() is implemented like SysV w/ SAVED_IDS
530 *
531 * SMP: Same implicit races as above.
532 */
ae1251ab 533SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 534{
d84f4f99
DH
535 const struct cred *old;
536 struct cred *new;
1da177e4
LT
537 int retval;
538
d84f4f99
DH
539 new = prepare_creds();
540 if (!new)
541 return -ENOMEM;
542 old = current_cred();
543
1da177e4
LT
544 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
545 if (retval)
d84f4f99 546 goto error;
1da177e4 547
d84f4f99
DH
548 retval = -EPERM;
549 if (capable(CAP_SETGID))
550 new->gid = new->egid = new->sgid = new->fsgid = gid;
551 else if (gid == old->gid || gid == old->sgid)
552 new->egid = new->fsgid = gid;
1da177e4 553 else
d84f4f99 554 goto error;
1da177e4 555
d84f4f99
DH
556 return commit_creds(new);
557
558error:
559 abort_creds(new);
560 return retval;
1da177e4 561}
54e99124 562
d84f4f99
DH
563/*
564 * change the user struct in a credentials set to match the new UID
565 */
566static int set_user(struct cred *new)
1da177e4
LT
567{
568 struct user_struct *new_user;
569
18b6e041 570 new_user = alloc_uid(current_user_ns(), new->uid);
1da177e4
LT
571 if (!new_user)
572 return -EAGAIN;
573
574 if (atomic_read(&new_user->processes) >=
575 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
18b6e041 576 new_user != INIT_USER) {
1da177e4
LT
577 free_uid(new_user);
578 return -EAGAIN;
579 }
580
d84f4f99
DH
581 free_uid(new->user);
582 new->user = new_user;
1da177e4
LT
583 return 0;
584}
585
586/*
587 * Unprivileged users may change the real uid to the effective uid
588 * or vice versa. (BSD-style)
589 *
590 * If you set the real uid at all, or set the effective uid to a value not
591 * equal to the real uid, then the saved uid is set to the new effective uid.
592 *
593 * This makes it possible for a setuid program to completely drop its
594 * privileges, which is often a useful assertion to make when you are doing
595 * a security audit over a program.
596 *
597 * The general idea is that a program which uses just setreuid() will be
598 * 100% compatible with BSD. A program which uses just setuid() will be
599 * 100% compatible with POSIX with saved IDs.
600 */
ae1251ab 601SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 602{
d84f4f99
DH
603 const struct cred *old;
604 struct cred *new;
1da177e4
LT
605 int retval;
606
d84f4f99
DH
607 new = prepare_creds();
608 if (!new)
609 return -ENOMEM;
610 old = current_cred();
611
1da177e4
LT
612 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
613 if (retval)
d84f4f99 614 goto error;
1da177e4 615
d84f4f99 616 retval = -EPERM;
1da177e4 617 if (ruid != (uid_t) -1) {
d84f4f99
DH
618 new->uid = ruid;
619 if (old->uid != ruid &&
620 old->euid != ruid &&
1da177e4 621 !capable(CAP_SETUID))
d84f4f99 622 goto error;
1da177e4
LT
623 }
624
625 if (euid != (uid_t) -1) {
d84f4f99
DH
626 new->euid = euid;
627 if (old->uid != euid &&
628 old->euid != euid &&
629 old->suid != euid &&
1da177e4 630 !capable(CAP_SETUID))
d84f4f99 631 goto error;
1da177e4
LT
632 }
633
54e99124
DG
634 if (new->uid != old->uid) {
635 retval = set_user(new);
636 if (retval < 0)
637 goto error;
638 }
1da177e4 639 if (ruid != (uid_t) -1 ||
d84f4f99
DH
640 (euid != (uid_t) -1 && euid != old->uid))
641 new->suid = new->euid;
642 new->fsuid = new->euid;
1da177e4 643
d84f4f99
DH
644 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
645 if (retval < 0)
646 goto error;
1da177e4 647
d84f4f99 648 return commit_creds(new);
1da177e4 649
d84f4f99
DH
650error:
651 abort_creds(new);
652 return retval;
653}
1da177e4
LT
654
655/*
656 * setuid() is implemented like SysV with SAVED_IDS
657 *
658 * Note that SAVED_ID's is deficient in that a setuid root program
659 * like sendmail, for example, cannot set its uid to be a normal
660 * user and then switch back, because if you're root, setuid() sets
661 * the saved uid too. If you don't like this, blame the bright people
662 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
663 * will allow a root program to temporarily drop privileges and be able to
664 * regain them by swapping the real and effective uid.
665 */
ae1251ab 666SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 667{
d84f4f99
DH
668 const struct cred *old;
669 struct cred *new;
1da177e4
LT
670 int retval;
671
d84f4f99
DH
672 new = prepare_creds();
673 if (!new)
674 return -ENOMEM;
675 old = current_cred();
676
1da177e4
LT
677 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
678 if (retval)
d84f4f99 679 goto error;
1da177e4 680
d84f4f99 681 retval = -EPERM;
1da177e4 682 if (capable(CAP_SETUID)) {
d84f4f99 683 new->suid = new->uid = uid;
54e99124
DG
684 if (uid != old->uid) {
685 retval = set_user(new);
686 if (retval < 0)
687 goto error;
d84f4f99
DH
688 }
689 } else if (uid != old->uid && uid != new->suid) {
690 goto error;
1da177e4 691 }
1da177e4 692
d84f4f99
DH
693 new->fsuid = new->euid = uid;
694
695 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
696 if (retval < 0)
697 goto error;
1da177e4 698
d84f4f99 699 return commit_creds(new);
1da177e4 700
d84f4f99
DH
701error:
702 abort_creds(new);
703 return retval;
1da177e4
LT
704}
705
706
707/*
708 * This function implements a generic ability to update ruid, euid,
709 * and suid. This allows you to implement the 4.4 compatible seteuid().
710 */
ae1251ab 711SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 712{
d84f4f99
DH
713 const struct cred *old;
714 struct cred *new;
1da177e4
LT
715 int retval;
716
d84f4f99
DH
717 new = prepare_creds();
718 if (!new)
719 return -ENOMEM;
720
1da177e4
LT
721 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
722 if (retval)
d84f4f99
DH
723 goto error;
724 old = current_cred();
1da177e4 725
d84f4f99 726 retval = -EPERM;
1da177e4 727 if (!capable(CAP_SETUID)) {
d84f4f99
DH
728 if (ruid != (uid_t) -1 && ruid != old->uid &&
729 ruid != old->euid && ruid != old->suid)
730 goto error;
731 if (euid != (uid_t) -1 && euid != old->uid &&
732 euid != old->euid && euid != old->suid)
733 goto error;
734 if (suid != (uid_t) -1 && suid != old->uid &&
735 suid != old->euid && suid != old->suid)
736 goto error;
1da177e4 737 }
d84f4f99 738
1da177e4 739 if (ruid != (uid_t) -1) {
d84f4f99 740 new->uid = ruid;
54e99124
DG
741 if (ruid != old->uid) {
742 retval = set_user(new);
743 if (retval < 0)
744 goto error;
745 }
1da177e4 746 }
d84f4f99
DH
747 if (euid != (uid_t) -1)
748 new->euid = euid;
1da177e4 749 if (suid != (uid_t) -1)
d84f4f99
DH
750 new->suid = suid;
751 new->fsuid = new->euid;
1da177e4 752
d84f4f99
DH
753 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
754 if (retval < 0)
755 goto error;
1da177e4 756
d84f4f99 757 return commit_creds(new);
1da177e4 758
d84f4f99
DH
759error:
760 abort_creds(new);
761 return retval;
1da177e4
LT
762}
763
dbf040d9 764SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
1da177e4 765{
86a264ab 766 const struct cred *cred = current_cred();
1da177e4
LT
767 int retval;
768
86a264ab
DH
769 if (!(retval = put_user(cred->uid, ruid)) &&
770 !(retval = put_user(cred->euid, euid)))
b6dff3ec 771 retval = put_user(cred->suid, suid);
1da177e4
LT
772
773 return retval;
774}
775
776/*
777 * Same as above, but for rgid, egid, sgid.
778 */
ae1251ab 779SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 780{
d84f4f99
DH
781 const struct cred *old;
782 struct cred *new;
1da177e4
LT
783 int retval;
784
d84f4f99
DH
785 new = prepare_creds();
786 if (!new)
787 return -ENOMEM;
788 old = current_cred();
789
1da177e4
LT
790 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
791 if (retval)
d84f4f99 792 goto error;
1da177e4 793
d84f4f99 794 retval = -EPERM;
1da177e4 795 if (!capable(CAP_SETGID)) {
d84f4f99
DH
796 if (rgid != (gid_t) -1 && rgid != old->gid &&
797 rgid != old->egid && rgid != old->sgid)
798 goto error;
799 if (egid != (gid_t) -1 && egid != old->gid &&
800 egid != old->egid && egid != old->sgid)
801 goto error;
802 if (sgid != (gid_t) -1 && sgid != old->gid &&
803 sgid != old->egid && sgid != old->sgid)
804 goto error;
1da177e4 805 }
d84f4f99 806
1da177e4 807 if (rgid != (gid_t) -1)
d84f4f99
DH
808 new->gid = rgid;
809 if (egid != (gid_t) -1)
810 new->egid = egid;
1da177e4 811 if (sgid != (gid_t) -1)
d84f4f99
DH
812 new->sgid = sgid;
813 new->fsgid = new->egid;
1da177e4 814
d84f4f99
DH
815 return commit_creds(new);
816
817error:
818 abort_creds(new);
819 return retval;
1da177e4
LT
820}
821
dbf040d9 822SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
1da177e4 823{
86a264ab 824 const struct cred *cred = current_cred();
1da177e4
LT
825 int retval;
826
86a264ab
DH
827 if (!(retval = put_user(cred->gid, rgid)) &&
828 !(retval = put_user(cred->egid, egid)))
b6dff3ec 829 retval = put_user(cred->sgid, sgid);
1da177e4
LT
830
831 return retval;
832}
833
834
835/*
836 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
837 * is used for "access()" and for the NFS daemon (letting nfsd stay at
838 * whatever uid it wants to). It normally shadows "euid", except when
839 * explicitly set by setfsuid() or for access..
840 */
ae1251ab 841SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 842{
d84f4f99
DH
843 const struct cred *old;
844 struct cred *new;
845 uid_t old_fsuid;
1da177e4 846
d84f4f99
DH
847 new = prepare_creds();
848 if (!new)
849 return current_fsuid();
850 old = current_cred();
851 old_fsuid = old->fsuid;
1da177e4 852
d84f4f99
DH
853 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
854 goto error;
1da177e4 855
d84f4f99
DH
856 if (uid == old->uid || uid == old->euid ||
857 uid == old->suid || uid == old->fsuid ||
756184b7
CP
858 capable(CAP_SETUID)) {
859 if (uid != old_fsuid) {
d84f4f99
DH
860 new->fsuid = uid;
861 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
862 goto change_okay;
1da177e4 863 }
1da177e4
LT
864 }
865
d84f4f99
DH
866error:
867 abort_creds(new);
868 return old_fsuid;
1da177e4 869
d84f4f99
DH
870change_okay:
871 commit_creds(new);
1da177e4
LT
872 return old_fsuid;
873}
874
875/*
f42df9e6 876 * Samma på svenska..
1da177e4 877 */
ae1251ab 878SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 879{
d84f4f99
DH
880 const struct cred *old;
881 struct cred *new;
882 gid_t old_fsgid;
883
884 new = prepare_creds();
885 if (!new)
886 return current_fsgid();
887 old = current_cred();
888 old_fsgid = old->fsgid;
1da177e4 889
1da177e4 890 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
d84f4f99 891 goto error;
1da177e4 892
d84f4f99
DH
893 if (gid == old->gid || gid == old->egid ||
894 gid == old->sgid || gid == old->fsgid ||
756184b7
CP
895 capable(CAP_SETGID)) {
896 if (gid != old_fsgid) {
d84f4f99
DH
897 new->fsgid = gid;
898 goto change_okay;
1da177e4 899 }
1da177e4 900 }
d84f4f99
DH
901
902error:
903 abort_creds(new);
904 return old_fsgid;
905
906change_okay:
907 commit_creds(new);
1da177e4
LT
908 return old_fsgid;
909}
910
f06febc9
FM
911void do_sys_times(struct tms *tms)
912{
0cf55e1e 913 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 914
2b5fe6de 915 spin_lock_irq(&current->sighand->siglock);
0cf55e1e 916 thread_group_times(current, &tgutime, &tgstime);
f06febc9
FM
917 cutime = current->signal->cutime;
918 cstime = current->signal->cstime;
919 spin_unlock_irq(&current->sighand->siglock);
0cf55e1e
HS
920 tms->tms_utime = cputime_to_clock_t(tgutime);
921 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
922 tms->tms_cutime = cputime_to_clock_t(cutime);
923 tms->tms_cstime = cputime_to_clock_t(cstime);
924}
925
58fd3aa2 926SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 927{
1da177e4
LT
928 if (tbuf) {
929 struct tms tmp;
f06febc9
FM
930
931 do_sys_times(&tmp);
1da177e4
LT
932 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
933 return -EFAULT;
934 }
e3d5a27d 935 force_successful_syscall_return();
1da177e4
LT
936 return (long) jiffies_64_to_clock_t(get_jiffies_64());
937}
938
939/*
940 * This needs some heavy checking ...
941 * I just haven't the stomach for it. I also don't fully
942 * understand sessions/pgrp etc. Let somebody who does explain it.
943 *
944 * OK, I think I have the protection semantics right.... this is really
945 * only important on a multi-user system anyway, to make sure one user
946 * can't send a signal to a process owned by another. -TYT, 12/12/91
947 *
948 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
949 * LBT 04.03.94
950 */
b290ebe2 951SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
952{
953 struct task_struct *p;
ee0acf90 954 struct task_struct *group_leader = current->group_leader;
4e021306
ON
955 struct pid *pgrp;
956 int err;
1da177e4
LT
957
958 if (!pid)
b488893a 959 pid = task_pid_vnr(group_leader);
1da177e4
LT
960 if (!pgid)
961 pgid = pid;
962 if (pgid < 0)
963 return -EINVAL;
964
965 /* From this point forward we keep holding onto the tasklist lock
966 * so that our parent does not change from under us. -DaveM
967 */
968 write_lock_irq(&tasklist_lock);
969
970 err = -ESRCH;
4e021306 971 p = find_task_by_vpid(pid);
1da177e4
LT
972 if (!p)
973 goto out;
974
975 err = -EINVAL;
976 if (!thread_group_leader(p))
977 goto out;
978
4e021306 979 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 980 err = -EPERM;
41487c65 981 if (task_session(p) != task_session(group_leader))
1da177e4
LT
982 goto out;
983 err = -EACCES;
984 if (p->did_exec)
985 goto out;
986 } else {
987 err = -ESRCH;
ee0acf90 988 if (p != group_leader)
1da177e4
LT
989 goto out;
990 }
991
992 err = -EPERM;
993 if (p->signal->leader)
994 goto out;
995
4e021306 996 pgrp = task_pid(p);
1da177e4 997 if (pgid != pid) {
b488893a 998 struct task_struct *g;
1da177e4 999
4e021306
ON
1000 pgrp = find_vpid(pgid);
1001 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1002 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1003 goto out;
1da177e4
LT
1004 }
1005
1da177e4
LT
1006 err = security_task_setpgid(p, pgid);
1007 if (err)
1008 goto out;
1009
1b0f7ffd 1010 if (task_pgrp(p) != pgrp)
83beaf3c 1011 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1012
1013 err = 0;
1014out:
1015 /* All paths lead to here, thus we are safe. -DaveM */
1016 write_unlock_irq(&tasklist_lock);
1017 return err;
1018}
1019
dbf040d9 1020SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 1021{
12a3de0a
ON
1022 struct task_struct *p;
1023 struct pid *grp;
1024 int retval;
1025
1026 rcu_read_lock();
756184b7 1027 if (!pid)
12a3de0a 1028 grp = task_pgrp(current);
756184b7 1029 else {
1da177e4 1030 retval = -ESRCH;
12a3de0a
ON
1031 p = find_task_by_vpid(pid);
1032 if (!p)
1033 goto out;
1034 grp = task_pgrp(p);
1035 if (!grp)
1036 goto out;
1037
1038 retval = security_task_getpgid(p);
1039 if (retval)
1040 goto out;
1da177e4 1041 }
12a3de0a
ON
1042 retval = pid_vnr(grp);
1043out:
1044 rcu_read_unlock();
1045 return retval;
1da177e4
LT
1046}
1047
1048#ifdef __ARCH_WANT_SYS_GETPGRP
1049
dbf040d9 1050SYSCALL_DEFINE0(getpgrp)
1da177e4 1051{
12a3de0a 1052 return sys_getpgid(0);
1da177e4
LT
1053}
1054
1055#endif
1056
dbf040d9 1057SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1058{
1dd768c0
ON
1059 struct task_struct *p;
1060 struct pid *sid;
1061 int retval;
1062
1063 rcu_read_lock();
756184b7 1064 if (!pid)
1dd768c0 1065 sid = task_session(current);
756184b7 1066 else {
1da177e4 1067 retval = -ESRCH;
1dd768c0
ON
1068 p = find_task_by_vpid(pid);
1069 if (!p)
1070 goto out;
1071 sid = task_session(p);
1072 if (!sid)
1073 goto out;
1074
1075 retval = security_task_getsid(p);
1076 if (retval)
1077 goto out;
1da177e4 1078 }
1dd768c0
ON
1079 retval = pid_vnr(sid);
1080out:
1081 rcu_read_unlock();
1082 return retval;
1da177e4
LT
1083}
1084
b290ebe2 1085SYSCALL_DEFINE0(setsid)
1da177e4 1086{
e19f247a 1087 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1088 struct pid *sid = task_pid(group_leader);
1089 pid_t session = pid_vnr(sid);
1da177e4
LT
1090 int err = -EPERM;
1091
1da177e4 1092 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1093 /* Fail if I am already a session leader */
1094 if (group_leader->signal->leader)
1095 goto out;
1096
430c6231
ON
1097 /* Fail if a process group id already exists that equals the
1098 * proposed session id.
390e2ff0 1099 */
6806aac6 1100 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1101 goto out;
1102
e19f247a 1103 group_leader->signal->leader = 1;
8520d7c7 1104 __set_special_pids(sid);
24ec839c 1105
9c9f4ded 1106 proc_clear_tty(group_leader);
24ec839c 1107
e4cc0a9c 1108 err = session;
1da177e4
LT
1109out:
1110 write_unlock_irq(&tasklist_lock);
0d0df599
CB
1111 if (err > 0)
1112 proc_sid_connector(group_leader);
1da177e4
LT
1113 return err;
1114}
1115
1da177e4
LT
1116DECLARE_RWSEM(uts_sem);
1117
e48fbb69 1118SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1119{
1120 int errno = 0;
1121
1122 down_read(&uts_sem);
e9ff3990 1123 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1124 errno = -EFAULT;
1125 up_read(&uts_sem);
1126 return errno;
1127}
1128
5a8a82b1 1129SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1130{
1131 int errno;
1132 char tmp[__NEW_UTS_LEN];
1133
1134 if (!capable(CAP_SYS_ADMIN))
1135 return -EPERM;
1136 if (len < 0 || len > __NEW_UTS_LEN)
1137 return -EINVAL;
1138 down_write(&uts_sem);
1139 errno = -EFAULT;
1140 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1141 struct new_utsname *u = utsname();
1142
1143 memcpy(u->nodename, tmp, len);
1144 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4
LT
1145 errno = 0;
1146 }
1147 up_write(&uts_sem);
1148 return errno;
1149}
1150
1151#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1152
5a8a82b1 1153SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1154{
1155 int i, errno;
9679e4dd 1156 struct new_utsname *u;
1da177e4
LT
1157
1158 if (len < 0)
1159 return -EINVAL;
1160 down_read(&uts_sem);
9679e4dd
AM
1161 u = utsname();
1162 i = 1 + strlen(u->nodename);
1da177e4
LT
1163 if (i > len)
1164 i = len;
1165 errno = 0;
9679e4dd 1166 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1167 errno = -EFAULT;
1168 up_read(&uts_sem);
1169 return errno;
1170}
1171
1172#endif
1173
1174/*
1175 * Only setdomainname; getdomainname can be implemented by calling
1176 * uname()
1177 */
5a8a82b1 1178SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1179{
1180 int errno;
1181 char tmp[__NEW_UTS_LEN];
1182
1183 if (!capable(CAP_SYS_ADMIN))
1184 return -EPERM;
1185 if (len < 0 || len > __NEW_UTS_LEN)
1186 return -EINVAL;
1187
1188 down_write(&uts_sem);
1189 errno = -EFAULT;
1190 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1191 struct new_utsname *u = utsname();
1192
1193 memcpy(u->domainname, tmp, len);
1194 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4
LT
1195 errno = 0;
1196 }
1197 up_write(&uts_sem);
1198 return errno;
1199}
1200
e48fbb69 1201SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4
LT
1202{
1203 if (resource >= RLIM_NLIMITS)
1204 return -EINVAL;
1205 else {
1206 struct rlimit value;
1207 task_lock(current->group_leader);
1208 value = current->signal->rlim[resource];
1209 task_unlock(current->group_leader);
1210 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1211 }
1212}
1213
1214#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1215
1216/*
1217 * Back compatibility for getrlimit. Needed for some apps.
1218 */
1219
e48fbb69
HC
1220SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1221 struct rlimit __user *, rlim)
1da177e4
LT
1222{
1223 struct rlimit x;
1224 if (resource >= RLIM_NLIMITS)
1225 return -EINVAL;
1226
1227 task_lock(current->group_leader);
1228 x = current->signal->rlim[resource];
1229 task_unlock(current->group_leader);
756184b7 1230 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1231 x.rlim_cur = 0x7FFFFFFF;
756184b7 1232 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1233 x.rlim_max = 0x7FFFFFFF;
1234 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1235}
1236
1237#endif
1238
e48fbb69 1239SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4
LT
1240{
1241 struct rlimit new_rlim, *old_rlim;
1242 int retval;
1243
1244 if (resource >= RLIM_NLIMITS)
1245 return -EINVAL;
ec9e16ba 1246 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1da177e4 1247 return -EFAULT;
60fd760f
AM
1248 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1249 return -EINVAL;
1da177e4
LT
1250 old_rlim = current->signal->rlim + resource;
1251 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1252 !capable(CAP_SYS_RESOURCE))
1253 return -EPERM;
60fd760f
AM
1254 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1255 return -EPERM;
1da177e4
LT
1256
1257 retval = security_task_setrlimit(resource, &new_rlim);
1258 if (retval)
1259 return retval;
1260
9926e4c7
TA
1261 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1262 /*
1263 * The caller is asking for an immediate RLIMIT_CPU
1264 * expiry. But we use the zero value to mean "it was
1265 * never set". So let's cheat and make it one second
1266 * instead
1267 */
1268 new_rlim.rlim_cur = 1;
1269 }
1270
1da177e4
LT
1271 task_lock(current->group_leader);
1272 *old_rlim = new_rlim;
1273 task_unlock(current->group_leader);
1274
ec9e16ba
AM
1275 if (resource != RLIMIT_CPU)
1276 goto out;
d3561f78
AM
1277
1278 /*
1279 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1280 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1281 * very long-standing error, and fixing it now risks breakage of
1282 * applications, so we live with it
1283 */
ec9e16ba
AM
1284 if (new_rlim.rlim_cur == RLIM_INFINITY)
1285 goto out;
1286
f06febc9 1287 update_rlimit_cpu(new_rlim.rlim_cur);
ec9e16ba 1288out:
1da177e4
LT
1289 return 0;
1290}
1291
1292/*
1293 * It would make sense to put struct rusage in the task_struct,
1294 * except that would make the task_struct be *really big*. After
1295 * task_struct gets moved into malloc'ed memory, it would
1296 * make sense to do this. It will make moving the rest of the information
1297 * a lot simpler! (Which we're not doing right now because we're not
1298 * measuring them yet).
1299 *
1da177e4
LT
1300 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1301 * races with threads incrementing their own counters. But since word
1302 * reads are atomic, we either get new values or old values and we don't
1303 * care which for the sums. We always take the siglock to protect reading
1304 * the c* fields from p->signal from races with exit.c updating those
1305 * fields when reaping, so a sample either gets all the additions of a
1306 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1307 *
de047c1b
RT
1308 * Locking:
1309 * We need to take the siglock for CHILDEREN, SELF and BOTH
1310 * for the cases current multithreaded, non-current single threaded
1311 * non-current multithreaded. Thread traversal is now safe with
1312 * the siglock held.
1313 * Strictly speaking, we donot need to take the siglock if we are current and
1314 * single threaded, as no one else can take our signal_struct away, no one
1315 * else can reap the children to update signal->c* counters, and no one else
1316 * can race with the signal-> fields. If we do not take any lock, the
1317 * signal-> fields could be read out of order while another thread was just
1318 * exiting. So we should place a read memory barrier when we avoid the lock.
1319 * On the writer side, write memory barrier is implied in __exit_signal
1320 * as __exit_signal releases the siglock spinlock after updating the signal->
1321 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1322 *
1da177e4
LT
1323 */
1324
f06febc9 1325static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1326{
679c9cd4
SK
1327 r->ru_nvcsw += t->nvcsw;
1328 r->ru_nivcsw += t->nivcsw;
1329 r->ru_minflt += t->min_flt;
1330 r->ru_majflt += t->maj_flt;
1331 r->ru_inblock += task_io_get_inblock(t);
1332 r->ru_oublock += task_io_get_oublock(t);
1333}
1334
1da177e4
LT
1335static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1336{
1337 struct task_struct *t;
1338 unsigned long flags;
0cf55e1e 1339 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1340 unsigned long maxrss = 0;
1da177e4
LT
1341
1342 memset((char *) r, 0, sizeof *r);
2dd0ebcd 1343 utime = stime = cputime_zero;
1da177e4 1344
679c9cd4 1345 if (who == RUSAGE_THREAD) {
d180c5bc 1346 task_times(current, &utime, &stime);
f06febc9 1347 accumulate_thread_rusage(p, r);
1f10206c 1348 maxrss = p->signal->maxrss;
679c9cd4
SK
1349 goto out;
1350 }
1351
d6cf723a 1352 if (!lock_task_sighand(p, &flags))
de047c1b 1353 return;
0f59cc4a 1354
1da177e4 1355 switch (who) {
0f59cc4a 1356 case RUSAGE_BOTH:
1da177e4 1357 case RUSAGE_CHILDREN:
1da177e4
LT
1358 utime = p->signal->cutime;
1359 stime = p->signal->cstime;
1360 r->ru_nvcsw = p->signal->cnvcsw;
1361 r->ru_nivcsw = p->signal->cnivcsw;
1362 r->ru_minflt = p->signal->cmin_flt;
1363 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1364 r->ru_inblock = p->signal->cinblock;
1365 r->ru_oublock = p->signal->coublock;
1f10206c 1366 maxrss = p->signal->cmaxrss;
0f59cc4a
ON
1367
1368 if (who == RUSAGE_CHILDREN)
1369 break;
1370
1da177e4 1371 case RUSAGE_SELF:
0cf55e1e
HS
1372 thread_group_times(p, &tgutime, &tgstime);
1373 utime = cputime_add(utime, tgutime);
1374 stime = cputime_add(stime, tgstime);
1da177e4
LT
1375 r->ru_nvcsw += p->signal->nvcsw;
1376 r->ru_nivcsw += p->signal->nivcsw;
1377 r->ru_minflt += p->signal->min_flt;
1378 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1379 r->ru_inblock += p->signal->inblock;
1380 r->ru_oublock += p->signal->oublock;
1f10206c
JP
1381 if (maxrss < p->signal->maxrss)
1382 maxrss = p->signal->maxrss;
1da177e4
LT
1383 t = p;
1384 do {
f06febc9 1385 accumulate_thread_rusage(t, r);
1da177e4
LT
1386 t = next_thread(t);
1387 } while (t != p);
1da177e4 1388 break;
0f59cc4a 1389
1da177e4
LT
1390 default:
1391 BUG();
1392 }
de047c1b 1393 unlock_task_sighand(p, &flags);
de047c1b 1394
679c9cd4 1395out:
0f59cc4a
ON
1396 cputime_to_timeval(utime, &r->ru_utime);
1397 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1398
1399 if (who != RUSAGE_CHILDREN) {
1400 struct mm_struct *mm = get_task_mm(p);
1401 if (mm) {
1402 setmax_mm_hiwater_rss(&maxrss, mm);
1403 mmput(mm);
1404 }
1405 }
1406 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1407}
1408
1409int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1410{
1411 struct rusage r;
1da177e4 1412 k_getrusage(p, who, &r);
1da177e4
LT
1413 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1414}
1415
e48fbb69 1416SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1417{
679c9cd4
SK
1418 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1419 who != RUSAGE_THREAD)
1da177e4
LT
1420 return -EINVAL;
1421 return getrusage(current, who, ru);
1422}
1423
e48fbb69 1424SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1425{
1426 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1427 return mask;
1428}
3b7391de 1429
c4ea37c2
HC
1430SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1431 unsigned long, arg4, unsigned long, arg5)
1da177e4 1432{
b6dff3ec
DH
1433 struct task_struct *me = current;
1434 unsigned char comm[sizeof(me->comm)];
1435 long error;
1da177e4 1436
d84f4f99
DH
1437 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1438 if (error != -ENOSYS)
1da177e4
LT
1439 return error;
1440
d84f4f99 1441 error = 0;
1da177e4
LT
1442 switch (option) {
1443 case PR_SET_PDEATHSIG:
0730ded5 1444 if (!valid_signal(arg2)) {
1da177e4
LT
1445 error = -EINVAL;
1446 break;
1447 }
b6dff3ec
DH
1448 me->pdeath_signal = arg2;
1449 error = 0;
1da177e4
LT
1450 break;
1451 case PR_GET_PDEATHSIG:
b6dff3ec 1452 error = put_user(me->pdeath_signal, (int __user *)arg2);
1da177e4
LT
1453 break;
1454 case PR_GET_DUMPABLE:
b6dff3ec 1455 error = get_dumpable(me->mm);
1da177e4
LT
1456 break;
1457 case PR_SET_DUMPABLE:
abf75a50 1458 if (arg2 < 0 || arg2 > 1) {
1da177e4
LT
1459 error = -EINVAL;
1460 break;
1461 }
b6dff3ec
DH
1462 set_dumpable(me->mm, arg2);
1463 error = 0;
1da177e4
LT
1464 break;
1465
1466 case PR_SET_UNALIGN:
b6dff3ec 1467 error = SET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1468 break;
1469 case PR_GET_UNALIGN:
b6dff3ec 1470 error = GET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1471 break;
1472 case PR_SET_FPEMU:
b6dff3ec 1473 error = SET_FPEMU_CTL(me, arg2);
1da177e4
LT
1474 break;
1475 case PR_GET_FPEMU:
b6dff3ec 1476 error = GET_FPEMU_CTL(me, arg2);
1da177e4
LT
1477 break;
1478 case PR_SET_FPEXC:
b6dff3ec 1479 error = SET_FPEXC_CTL(me, arg2);
1da177e4
LT
1480 break;
1481 case PR_GET_FPEXC:
b6dff3ec 1482 error = GET_FPEXC_CTL(me, arg2);
1da177e4
LT
1483 break;
1484 case PR_GET_TIMING:
1485 error = PR_TIMING_STATISTICAL;
1486 break;
1487 case PR_SET_TIMING:
7b26655f 1488 if (arg2 != PR_TIMING_STATISTICAL)
1da177e4 1489 error = -EINVAL;
b6dff3ec
DH
1490 else
1491 error = 0;
1da177e4
LT
1492 break;
1493
b6dff3ec
DH
1494 case PR_SET_NAME:
1495 comm[sizeof(me->comm)-1] = 0;
1496 if (strncpy_from_user(comm, (char __user *)arg2,
1497 sizeof(me->comm) - 1) < 0)
1da177e4 1498 return -EFAULT;
b6dff3ec 1499 set_task_comm(me, comm);
1da177e4 1500 return 0;
b6dff3ec
DH
1501 case PR_GET_NAME:
1502 get_task_comm(comm, me);
1503 if (copy_to_user((char __user *)arg2, comm,
1504 sizeof(comm)))
1da177e4
LT
1505 return -EFAULT;
1506 return 0;
651d765d 1507 case PR_GET_ENDIAN:
b6dff3ec 1508 error = GET_ENDIAN(me, arg2);
651d765d
AB
1509 break;
1510 case PR_SET_ENDIAN:
b6dff3ec 1511 error = SET_ENDIAN(me, arg2);
651d765d
AB
1512 break;
1513
1d9d02fe
AA
1514 case PR_GET_SECCOMP:
1515 error = prctl_get_seccomp();
1516 break;
1517 case PR_SET_SECCOMP:
1518 error = prctl_set_seccomp(arg2);
1519 break;
8fb402bc
EB
1520 case PR_GET_TSC:
1521 error = GET_TSC_CTL(arg2);
1522 break;
1523 case PR_SET_TSC:
1524 error = SET_TSC_CTL(arg2);
1525 break;
cdd6c482
IM
1526 case PR_TASK_PERF_EVENTS_DISABLE:
1527 error = perf_event_task_disable();
1d1c7ddb 1528 break;
cdd6c482
IM
1529 case PR_TASK_PERF_EVENTS_ENABLE:
1530 error = perf_event_task_enable();
1d1c7ddb 1531 break;
6976675d
AV
1532 case PR_GET_TIMERSLACK:
1533 error = current->timer_slack_ns;
1534 break;
1535 case PR_SET_TIMERSLACK:
1536 if (arg2 <= 0)
1537 current->timer_slack_ns =
1538 current->default_timer_slack_ns;
1539 else
1540 current->timer_slack_ns = arg2;
b6dff3ec 1541 error = 0;
6976675d 1542 break;
4db96cf0
AK
1543 case PR_MCE_KILL:
1544 if (arg4 | arg5)
1545 return -EINVAL;
1546 switch (arg2) {
1087e9b4 1547 case PR_MCE_KILL_CLEAR:
4db96cf0
AK
1548 if (arg3 != 0)
1549 return -EINVAL;
1550 current->flags &= ~PF_MCE_PROCESS;
1551 break;
1087e9b4 1552 case PR_MCE_KILL_SET:
4db96cf0 1553 current->flags |= PF_MCE_PROCESS;
1087e9b4 1554 if (arg3 == PR_MCE_KILL_EARLY)
4db96cf0 1555 current->flags |= PF_MCE_EARLY;
1087e9b4 1556 else if (arg3 == PR_MCE_KILL_LATE)
4db96cf0 1557 current->flags &= ~PF_MCE_EARLY;
1087e9b4
AK
1558 else if (arg3 == PR_MCE_KILL_DEFAULT)
1559 current->flags &=
1560 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1561 else
1562 return -EINVAL;
4db96cf0
AK
1563 break;
1564 default:
1565 return -EINVAL;
1566 }
1567 error = 0;
1568 break;
1087e9b4
AK
1569 case PR_MCE_KILL_GET:
1570 if (arg2 | arg3 | arg4 | arg5)
1571 return -EINVAL;
1572 if (current->flags & PF_MCE_PROCESS)
1573 error = (current->flags & PF_MCE_EARLY) ?
1574 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1575 else
1576 error = PR_MCE_KILL_DEFAULT;
1577 break;
1da177e4
LT
1578 default:
1579 error = -EINVAL;
1580 break;
1581 }
1582 return error;
1583}
3cfc348b 1584
836f92ad
HC
1585SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1586 struct getcpu_cache __user *, unused)
3cfc348b
AK
1587{
1588 int err = 0;
1589 int cpu = raw_smp_processor_id();
1590 if (cpup)
1591 err |= put_user(cpu, cpup);
1592 if (nodep)
1593 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
1594 return err ? -EFAULT : 0;
1595}
10a0a8d4
JF
1596
1597char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1598
1599static void argv_cleanup(char **argv, char **envp)
1600{
1601 argv_free(argv);
1602}
1603
1604/**
1605 * orderly_poweroff - Trigger an orderly system poweroff
1606 * @force: force poweroff if command execution fails
1607 *
1608 * This may be called from any context to trigger a system shutdown.
1609 * If the orderly shutdown fails, it will force an immediate shutdown.
1610 */
1611int orderly_poweroff(bool force)
1612{
1613 int argc;
1614 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1615 static char *envp[] = {
1616 "HOME=/",
1617 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1618 NULL
1619 };
1620 int ret = -ENOMEM;
1621 struct subprocess_info *info;
1622
1623 if (argv == NULL) {
1624 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1625 __func__, poweroff_cmd);
1626 goto out;
1627 }
1628
ac331d15 1629 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
10a0a8d4
JF
1630 if (info == NULL) {
1631 argv_free(argv);
1632 goto out;
1633 }
1634
1635 call_usermodehelper_setcleanup(info, argv_cleanup);
1636
86313c48 1637 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
10a0a8d4
JF
1638
1639 out:
1640 if (ret && force) {
1641 printk(KERN_WARNING "Failed to start orderly shutdown: "
1642 "forcing the issue\n");
1643
1644 /* I guess this should try to kick off some daemon to
1645 sync and poweroff asap. Or not even bother syncing
1646 if we're doing an emergency shutdown? */
1647 emergency_sync();
1648 kernel_power_off();
1649 }
1650
1651 return ret;
1652}
1653EXPORT_SYMBOL_GPL(orderly_poweroff);