]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/time/hrtimer.c
Merge tag 'pwm/for-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[mirror_ubuntu-jammy-kernel.git] / kernel / time / hrtimer.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
c0a31329 2/*
3c8aa39d 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
6 *
7 * High-resolution kernel timers
8 *
58c5fc2b
TG
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
c0a31329
TG
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
58c5fc2b 16 * Based on the original timer wheel code
c0a31329 17 *
66188fae
TG
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
c0a31329
TG
23 */
24
25#include <linux/cpu.h>
9984de1a 26#include <linux/export.h>
c0a31329
TG
27#include <linux/percpu.h>
28#include <linux/hrtimer.h>
29#include <linux/notifier.h>
30#include <linux/syscalls.h>
31#include <linux/interrupt.h>
79bf2bb3 32#include <linux/tick.h>
54cdfdb4 33#include <linux/err.h>
237fc6e7 34#include <linux/debugobjects.h>
174cd4b1 35#include <linux/sched/signal.h>
cf4aebc2 36#include <linux/sched/sysctl.h>
8bd75c77 37#include <linux/sched/rt.h>
aab03e05 38#include <linux/sched/deadline.h>
370c9135 39#include <linux/sched/nohz.h>
b17b0153 40#include <linux/sched/debug.h>
eea08f32 41#include <linux/timer.h>
b0f8c44f 42#include <linux/freezer.h>
edbeda46 43#include <linux/compat.h>
c0a31329 44
7c0f6ba6 45#include <linux/uaccess.h>
c0a31329 46
c6a2a177
XG
47#include <trace/events/timer.h>
48
c1797baf 49#include "tick-internal.h"
8b094cd0 50
c458b1d1
AMG
51/*
52 * Masks for selecting the soft and hard context timers from
53 * cpu_base->active
54 */
55#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59
c0a31329
TG
60/*
61 * The timer bases:
7978672c 62 *
571af55a 63 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 67 */
54cdfdb4 68DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 69{
84cc8fd2 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 71 .clock_base =
c0a31329 72 {
3c8aa39d 73 {
ab8177bc
TG
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
3c8aa39d 76 .get_time = &ktime_get,
3c8aa39d 77 },
68fa61c0
TG
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
68fa61c0 82 },
a3ed0e43
TG
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
90adda98
JS
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
90adda98 92 },
98ecadd4
AMG
93 {
94 .index = HRTIMER_BASE_MONOTONIC_SOFT,
95 .clockid = CLOCK_MONOTONIC,
96 .get_time = &ktime_get,
97 },
98 {
99 .index = HRTIMER_BASE_REALTIME_SOFT,
100 .clockid = CLOCK_REALTIME,
101 .get_time = &ktime_get_real,
102 },
a3ed0e43
TG
103 {
104 .index = HRTIMER_BASE_BOOTTIME_SOFT,
105 .clockid = CLOCK_BOOTTIME,
106 .get_time = &ktime_get_boottime,
107 },
98ecadd4
AMG
108 {
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
112 },
3c8aa39d 113 }
c0a31329
TG
114};
115
942c3c5c 116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
336a9cde
MZ
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
119
ce31332d
TG
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
a3ed0e43 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 124};
e06383db 125
c0a31329
TG
126/*
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
129 */
130#ifdef CONFIG_SMP
131
887d9dc9
PZ
132/*
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
136 */
137static struct hrtimer_cpu_base migration_cpu_base = {
af5a06b5
AD
138 .clock_base = { {
139 .cpu_base = &migration_cpu_base,
140 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
141 &migration_cpu_base.lock),
142 }, },
887d9dc9
PZ
143};
144
145#define migration_base migration_cpu_base.clock_base[0]
146
5d2295f3
SAS
147static inline bool is_migration_base(struct hrtimer_clock_base *base)
148{
149 return base == &migration_base;
150}
151
c0a31329
TG
152/*
153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
154 * means that all timers which are tied to this base via timer->base are
155 * locked, and the base itself is locked too.
156 *
157 * So __run_timers/migrate_timers can safely modify all timers which could
158 * be found on the lists/queues.
159 *
160 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
161 * possible to set timer->base = &migration_base and drop the lock: the timer
162 * remains locked.
c0a31329 163 */
3c8aa39d
TG
164static
165struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
166 unsigned long *flags)
c0a31329 167{
3c8aa39d 168 struct hrtimer_clock_base *base;
c0a31329
TG
169
170 for (;;) {
ff229eee 171 base = READ_ONCE(timer->base);
887d9dc9 172 if (likely(base != &migration_base)) {
ecb49d1a 173 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
174 if (likely(base == timer->base))
175 return base;
176 /* The timer has migrated to another CPU: */
ecb49d1a 177 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
178 }
179 cpu_relax();
180 }
181}
182
6ff7041d 183/*
07a9a7ea
AMG
184 * We do not migrate the timer when it is expiring before the next
185 * event on the target cpu. When high resolution is enabled, we cannot
186 * reprogram the target cpu hardware and we would cause it to fire
187 * late. To keep it simple, we handle the high resolution enabled and
188 * disabled case similar.
6ff7041d
TG
189 *
190 * Called with cpu_base->lock of target cpu held.
191 */
192static int
193hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
194{
6ff7041d
TG
195 ktime_t expires;
196
6ff7041d 197 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
2ac2dccc 198 return expires < new_base->cpu_base->expires_next;
6ff7041d
TG
199}
200
bc7a34b8
TG
201static inline
202struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
203 int pinned)
204{
ae67bada
TG
205#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
206 if (static_branch_likely(&timers_migration_enabled) && !pinned)
207 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
208#endif
662b3e19 209 return base;
bc7a34b8 210}
bc7a34b8 211
c0a31329 212/*
b48362d8
FW
213 * We switch the timer base to a power-optimized selected CPU target,
214 * if:
215 * - NO_HZ_COMMON is enabled
216 * - timer migration is enabled
217 * - the timer callback is not running
218 * - the timer is not the first expiring timer on the new target
219 *
220 * If one of the above requirements is not fulfilled we move the timer
221 * to the current CPU or leave it on the previously assigned CPU if
222 * the timer callback is currently running.
c0a31329 223 */
3c8aa39d 224static inline struct hrtimer_clock_base *
597d0275
AB
225switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
226 int pinned)
c0a31329 227{
b48362d8 228 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 229 struct hrtimer_clock_base *new_base;
ab8177bc 230 int basenum = base->index;
c0a31329 231
b48362d8
FW
232 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
233 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 234again:
e06383db 235 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
236
237 if (base != new_base) {
238 /*
6ff7041d 239 * We are trying to move timer to new_base.
c0a31329
TG
240 * However we can't change timer's base while it is running,
241 * so we keep it on the same CPU. No hassle vs. reprogramming
242 * the event source in the high resolution case. The softirq
243 * code will take care of this when the timer function has
244 * completed. There is no conflict as we hold the lock until
245 * the timer is enqueued.
246 */
54cdfdb4 247 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
248 return base;
249
887d9dc9 250 /* See the comment in lock_hrtimer_base() */
ff229eee 251 WRITE_ONCE(timer->base, &migration_base);
ecb49d1a
TG
252 raw_spin_unlock(&base->cpu_base->lock);
253 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 254
b48362d8 255 if (new_cpu_base != this_cpu_base &&
bc7a34b8 256 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
257 raw_spin_unlock(&new_base->cpu_base->lock);
258 raw_spin_lock(&base->cpu_base->lock);
b48362d8 259 new_cpu_base = this_cpu_base;
ff229eee 260 WRITE_ONCE(timer->base, base);
6ff7041d 261 goto again;
eea08f32 262 }
ff229eee 263 WRITE_ONCE(timer->base, new_base);
012a45e3 264 } else {
b48362d8 265 if (new_cpu_base != this_cpu_base &&
bc7a34b8 266 hrtimer_check_target(timer, new_base)) {
b48362d8 267 new_cpu_base = this_cpu_base;
012a45e3
LM
268 goto again;
269 }
c0a31329
TG
270 }
271 return new_base;
272}
273
274#else /* CONFIG_SMP */
275
5d2295f3
SAS
276static inline bool is_migration_base(struct hrtimer_clock_base *base)
277{
278 return false;
279}
280
3c8aa39d 281static inline struct hrtimer_clock_base *
c0a31329
TG
282lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
283{
3c8aa39d 284 struct hrtimer_clock_base *base = timer->base;
c0a31329 285
ecb49d1a 286 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
287
288 return base;
289}
290
eea08f32 291# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
292
293#endif /* !CONFIG_SMP */
294
295/*
296 * Functions for the union type storage format of ktime_t which are
297 * too large for inlining:
298 */
299#if BITS_PER_LONG < 64
c0a31329
TG
300/*
301 * Divide a ktime value by a nanosecond value
302 */
f7bcb70e 303s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 304{
c0a31329 305 int sft = 0;
f7bcb70e
JS
306 s64 dclc;
307 u64 tmp;
c0a31329 308
900cfa46 309 dclc = ktime_to_ns(kt);
f7bcb70e
JS
310 tmp = dclc < 0 ? -dclc : dclc;
311
c0a31329
TG
312 /* Make sure the divisor is less than 2^32: */
313 while (div >> 32) {
314 sft++;
315 div >>= 1;
316 }
f7bcb70e 317 tmp >>= sft;
38f7b0b1 318 do_div(tmp, (u32) div);
f7bcb70e 319 return dclc < 0 ? -tmp : tmp;
c0a31329 320}
8b618628 321EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
322#endif /* BITS_PER_LONG >= 64 */
323
5a7780e7
TG
324/*
325 * Add two ktime values and do a safety check for overflow:
326 */
327ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
328{
979515c5 329 ktime_t res = ktime_add_unsafe(lhs, rhs);
5a7780e7
TG
330
331 /*
332 * We use KTIME_SEC_MAX here, the maximum timeout which we can
333 * return to user space in a timespec:
334 */
2456e855 335 if (res < 0 || res < lhs || res < rhs)
5a7780e7
TG
336 res = ktime_set(KTIME_SEC_MAX, 0);
337
338 return res;
339}
340
8daa21e6
AB
341EXPORT_SYMBOL_GPL(ktime_add_safe);
342
237fc6e7
TG
343#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
344
f9e62f31 345static const struct debug_obj_descr hrtimer_debug_descr;
237fc6e7 346
99777288
SG
347static void *hrtimer_debug_hint(void *addr)
348{
349 return ((struct hrtimer *) addr)->function;
350}
351
237fc6e7
TG
352/*
353 * fixup_init is called when:
354 * - an active object is initialized
355 */
e3252464 356static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
357{
358 struct hrtimer *timer = addr;
359
360 switch (state) {
361 case ODEBUG_STATE_ACTIVE:
362 hrtimer_cancel(timer);
363 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 364 return true;
237fc6e7 365 default:
e3252464 366 return false;
237fc6e7
TG
367 }
368}
369
370/*
371 * fixup_activate is called when:
372 * - an active object is activated
b9fdac7f 373 * - an unknown non-static object is activated
237fc6e7 374 */
e3252464 375static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
376{
377 switch (state) {
237fc6e7
TG
378 case ODEBUG_STATE_ACTIVE:
379 WARN_ON(1);
df561f66 380 fallthrough;
237fc6e7 381 default:
e3252464 382 return false;
237fc6e7
TG
383 }
384}
385
386/*
387 * fixup_free is called when:
388 * - an active object is freed
389 */
e3252464 390static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
391{
392 struct hrtimer *timer = addr;
393
394 switch (state) {
395 case ODEBUG_STATE_ACTIVE:
396 hrtimer_cancel(timer);
397 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 398 return true;
237fc6e7 399 default:
e3252464 400 return false;
237fc6e7
TG
401 }
402}
403
f9e62f31 404static const struct debug_obj_descr hrtimer_debug_descr = {
237fc6e7 405 .name = "hrtimer",
99777288 406 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
407 .fixup_init = hrtimer_fixup_init,
408 .fixup_activate = hrtimer_fixup_activate,
409 .fixup_free = hrtimer_fixup_free,
410};
411
412static inline void debug_hrtimer_init(struct hrtimer *timer)
413{
414 debug_object_init(timer, &hrtimer_debug_descr);
415}
416
5da70160
AMG
417static inline void debug_hrtimer_activate(struct hrtimer *timer,
418 enum hrtimer_mode mode)
237fc6e7
TG
419{
420 debug_object_activate(timer, &hrtimer_debug_descr);
421}
422
423static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
424{
425 debug_object_deactivate(timer, &hrtimer_debug_descr);
426}
427
237fc6e7
TG
428static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
429 enum hrtimer_mode mode);
430
431void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
432 enum hrtimer_mode mode)
433{
434 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
435 __hrtimer_init(timer, clock_id, mode);
436}
2bc481cf 437EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7 438
dbc1625f
SAS
439static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
440 clockid_t clock_id, enum hrtimer_mode mode);
441
442void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
443 clockid_t clock_id, enum hrtimer_mode mode)
444{
445 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
446 __hrtimer_init_sleeper(sl, clock_id, mode);
447}
448EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
449
237fc6e7
TG
450void destroy_hrtimer_on_stack(struct hrtimer *timer)
451{
452 debug_object_free(timer, &hrtimer_debug_descr);
453}
c08376ac 454EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
237fc6e7
TG
455
456#else
5da70160 457
237fc6e7 458static inline void debug_hrtimer_init(struct hrtimer *timer) { }
5da70160
AMG
459static inline void debug_hrtimer_activate(struct hrtimer *timer,
460 enum hrtimer_mode mode) { }
237fc6e7
TG
461static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
462#endif
463
c6a2a177
XG
464static inline void
465debug_init(struct hrtimer *timer, clockid_t clockid,
466 enum hrtimer_mode mode)
467{
468 debug_hrtimer_init(timer);
469 trace_hrtimer_init(timer, clockid, mode);
470}
471
63e2ed36
AMG
472static inline void debug_activate(struct hrtimer *timer,
473 enum hrtimer_mode mode)
c6a2a177 474{
5da70160 475 debug_hrtimer_activate(timer, mode);
63e2ed36 476 trace_hrtimer_start(timer, mode);
c6a2a177
XG
477}
478
479static inline void debug_deactivate(struct hrtimer *timer)
480{
481 debug_hrtimer_deactivate(timer);
482 trace_hrtimer_cancel(timer);
483}
484
c272ca58
AMG
485static struct hrtimer_clock_base *
486__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
487{
488 unsigned int idx;
489
490 if (!*active)
491 return NULL;
492
493 idx = __ffs(*active);
494 *active &= ~(1U << idx);
495
496 return &cpu_base->clock_base[idx];
497}
498
499#define for_each_active_base(base, cpu_base, active) \
500 while ((base = __next_base((cpu_base), &(active))))
501
ad38f596 502static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
a59855cd 503 const struct hrtimer *exclude,
ad38f596
AMG
504 unsigned int active,
505 ktime_t expires_next)
9bc74919 506{
c272ca58 507 struct hrtimer_clock_base *base;
ad38f596 508 ktime_t expires;
9bc74919 509
c272ca58 510 for_each_active_base(base, cpu_base, active) {
9bc74919
TG
511 struct timerqueue_node *next;
512 struct hrtimer *timer;
513
34aee88a 514 next = timerqueue_getnext(&base->active);
9bc74919 515 timer = container_of(next, struct hrtimer, node);
a59855cd
RW
516 if (timer == exclude) {
517 /* Get to the next timer in the queue. */
7d2f6abb 518 next = timerqueue_iterate_next(next);
a59855cd
RW
519 if (!next)
520 continue;
521
522 timer = container_of(next, struct hrtimer, node);
523 }
9bc74919 524 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
2456e855 525 if (expires < expires_next) {
9bc74919 526 expires_next = expires;
a59855cd
RW
527
528 /* Skip cpu_base update if a timer is being excluded. */
529 if (exclude)
530 continue;
531
5da70160
AMG
532 if (timer->is_soft)
533 cpu_base->softirq_next_timer = timer;
534 else
535 cpu_base->next_timer = timer;
895bdfa7 536 }
9bc74919
TG
537 }
538 /*
539 * clock_was_set() might have changed base->offset of any of
540 * the clock bases so the result might be negative. Fix it up
541 * to prevent a false positive in clockevents_program_event().
542 */
2456e855
TG
543 if (expires_next < 0)
544 expires_next = 0;
9bc74919
TG
545 return expires_next;
546}
9bc74919 547
c458b1d1
AMG
548/*
549 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
550 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
551 *
5da70160
AMG
552 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
553 * those timers will get run whenever the softirq gets handled, at the end of
554 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
555 *
556 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
557 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
558 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
559 *
c458b1d1 560 * @active_mask must be one of:
5da70160 561 * - HRTIMER_ACTIVE_ALL,
c458b1d1
AMG
562 * - HRTIMER_ACTIVE_SOFT, or
563 * - HRTIMER_ACTIVE_HARD.
564 */
5da70160
AMG
565static ktime_t
566__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
ad38f596 567{
c458b1d1 568 unsigned int active;
5da70160 569 struct hrtimer *next_timer = NULL;
ad38f596
AMG
570 ktime_t expires_next = KTIME_MAX;
571
5da70160
AMG
572 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
573 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
574 cpu_base->softirq_next_timer = NULL;
a59855cd
RW
575 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
576 active, KTIME_MAX);
5da70160
AMG
577
578 next_timer = cpu_base->softirq_next_timer;
579 }
ad38f596 580
5da70160
AMG
581 if (active_mask & HRTIMER_ACTIVE_HARD) {
582 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
583 cpu_base->next_timer = next_timer;
a59855cd
RW
584 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
585 expires_next);
5da70160 586 }
ad38f596
AMG
587
588 return expires_next;
589}
590
21d6d52a
TG
591static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
592{
593 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
a3ed0e43 594 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
21d6d52a
TG
595 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
596
5da70160 597 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
a3ed0e43 598 offs_real, offs_boot, offs_tai);
5da70160
AMG
599
600 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
a3ed0e43 601 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
5da70160
AMG
602 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
603
604 return now;
21d6d52a
TG
605}
606
28bfd18b
AMG
607/*
608 * Is the high resolution mode active ?
609 */
610static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
611{
612 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
613 cpu_base->hres_active : 0;
614}
615
616static inline int hrtimer_hres_active(void)
617{
618 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
619}
620
54cdfdb4
TG
621/*
622 * Reprogram the event source with checking both queues for the
623 * next event
624 * Called with interrupts disabled and base->lock held
625 */
7403f41f
AC
626static void
627hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 628{
21d6d52a
TG
629 ktime_t expires_next;
630
5da70160
AMG
631 /*
632 * Find the current next expiration time.
633 */
634 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
635
636 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
637 /*
638 * When the softirq is activated, hrtimer has to be
639 * programmed with the first hard hrtimer because soft
640 * timer interrupt could occur too late.
641 */
642 if (cpu_base->softirq_activated)
643 expires_next = __hrtimer_get_next_event(cpu_base,
644 HRTIMER_ACTIVE_HARD);
645 else
646 cpu_base->softirq_expires_next = expires_next;
647 }
54cdfdb4 648
2456e855 649 if (skip_equal && expires_next == cpu_base->expires_next)
7403f41f
AC
650 return;
651
2456e855 652 cpu_base->expires_next = expires_next;
7403f41f 653
6c6c0d5a 654 /*
61bb4bcb
AMG
655 * If hres is not active, hardware does not have to be
656 * reprogrammed yet.
657 *
6c6c0d5a
SH
658 * If a hang was detected in the last timer interrupt then we
659 * leave the hang delay active in the hardware. We want the
660 * system to make progress. That also prevents the following
661 * scenario:
662 * T1 expires 50ms from now
663 * T2 expires 5s from now
664 *
665 * T1 is removed, so this code is called and would reprogram
666 * the hardware to 5s from now. Any hrtimer_start after that
667 * will not reprogram the hardware due to hang_detected being
668 * set. So we'd effectivly block all timers until the T2 event
669 * fires.
670 */
61bb4bcb 671 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
6c6c0d5a
SH
672 return;
673
d2540875 674 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
675}
676
ebba2c72
AMG
677/* High resolution timer related functions */
678#ifdef CONFIG_HIGH_RES_TIMERS
679
680/*
681 * High resolution timer enabled ?
682 */
683static bool hrtimer_hres_enabled __read_mostly = true;
684unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
685EXPORT_SYMBOL_GPL(hrtimer_resolution);
686
687/*
688 * Enable / Disable high resolution mode
689 */
690static int __init setup_hrtimer_hres(char *str)
691{
692 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
693}
694
695__setup("highres=", setup_hrtimer_hres);
696
697/*
698 * hrtimer_high_res_enabled - query, if the highres mode is enabled
699 */
700static inline int hrtimer_is_hres_enabled(void)
701{
702 return hrtimer_hres_enabled;
703}
704
9ec26907
TG
705/*
706 * Retrigger next event is called after clock was set
707 *
708 * Called with interrupts disabled via on_each_cpu()
709 */
710static void retrigger_next_event(void *arg)
711{
dc5df73b 712 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 713
851cff8c 714 if (!__hrtimer_hres_active(base))
9ec26907
TG
715 return;
716
9ec26907 717 raw_spin_lock(&base->lock);
5baefd6d 718 hrtimer_update_base(base);
9ec26907
TG
719 hrtimer_force_reprogram(base, 0);
720 raw_spin_unlock(&base->lock);
721}
b12a03ce 722
54cdfdb4
TG
723/*
724 * Switch to high resolution mode
725 */
75e3b37d 726static void hrtimer_switch_to_hres(void)
54cdfdb4 727{
c6eb3f70 728 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
729
730 if (tick_init_highres()) {
7a6e5537
GU
731 pr_warn("Could not switch to high resolution mode on CPU %u\n",
732 base->cpu);
85e1cd6e 733 return;
54cdfdb4
TG
734 }
735 base->hres_active = 1;
398ca17f 736 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
737
738 tick_setup_sched_timer();
54cdfdb4
TG
739 /* "Retrigger" the interrupt to get things going */
740 retrigger_next_event(NULL);
54cdfdb4
TG
741}
742
5ec2481b
TG
743static void clock_was_set_work(struct work_struct *work)
744{
745 clock_was_set();
746}
747
748static DECLARE_WORK(hrtimer_work, clock_was_set_work);
749
f55a6faa 750/*
b4d90e9f 751 * Called from timekeeping and resume code to reprogram the hrtimer
5ec2481b 752 * interrupt device on all cpus.
f55a6faa
JS
753 */
754void clock_was_set_delayed(void)
755{
5ec2481b 756 schedule_work(&hrtimer_work);
f55a6faa
JS
757}
758
54cdfdb4
TG
759#else
760
54cdfdb4 761static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 762static inline void hrtimer_switch_to_hres(void) { }
9ec26907 763static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
764
765#endif /* CONFIG_HIGH_RES_TIMERS */
766
11a9fe06
AMG
767/*
768 * When a timer is enqueued and expires earlier than the already enqueued
769 * timers, we have to check, whether it expires earlier than the timer for
770 * which the clock event device was armed.
771 *
772 * Called with interrupts disabled and base->cpu_base.lock held
773 */
5da70160 774static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
11a9fe06
AMG
775{
776 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
3ec7a3ee 777 struct hrtimer_clock_base *base = timer->base;
11a9fe06
AMG
778 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
779
780 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
781
5da70160
AMG
782 /*
783 * CLOCK_REALTIME timer might be requested with an absolute
784 * expiry time which is less than base->offset. Set it to 0.
785 */
786 if (expires < 0)
787 expires = 0;
788
789 if (timer->is_soft) {
790 /*
791 * soft hrtimer could be started on a remote CPU. In this
792 * case softirq_expires_next needs to be updated on the
793 * remote CPU. The soft hrtimer will not expire before the
794 * first hard hrtimer on the remote CPU -
795 * hrtimer_check_target() prevents this case.
796 */
797 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
798
799 if (timer_cpu_base->softirq_activated)
800 return;
801
802 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
803 return;
804
805 timer_cpu_base->softirq_next_timer = timer;
806 timer_cpu_base->softirq_expires_next = expires;
807
808 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
809 !reprogram)
810 return;
811 }
812
11a9fe06
AMG
813 /*
814 * If the timer is not on the current cpu, we cannot reprogram
815 * the other cpus clock event device.
816 */
817 if (base->cpu_base != cpu_base)
818 return;
819
820 /*
821 * If the hrtimer interrupt is running, then it will
822 * reevaluate the clock bases and reprogram the clock event
823 * device. The callbacks are always executed in hard interrupt
824 * context so we don't need an extra check for a running
825 * callback.
826 */
827 if (cpu_base->in_hrtirq)
828 return;
829
11a9fe06
AMG
830 if (expires >= cpu_base->expires_next)
831 return;
832
833 /* Update the pointer to the next expiring timer */
834 cpu_base->next_timer = timer;
14c80341 835 cpu_base->expires_next = expires;
11a9fe06
AMG
836
837 /*
14c80341
AMG
838 * If hres is not active, hardware does not have to be
839 * programmed yet.
840 *
11a9fe06
AMG
841 * If a hang was detected in the last timer interrupt then we
842 * do not schedule a timer which is earlier than the expiry
843 * which we enforced in the hang detection. We want the system
844 * to make progress.
845 */
14c80341 846 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
11a9fe06
AMG
847 return;
848
849 /*
850 * Program the timer hardware. We enforce the expiry for
851 * events which are already in the past.
852 */
11a9fe06
AMG
853 tick_program_event(expires, 1);
854}
855
b12a03ce
TG
856/*
857 * Clock realtime was set
858 *
859 * Change the offset of the realtime clock vs. the monotonic
860 * clock.
861 *
862 * We might have to reprogram the high resolution timer interrupt. On
863 * SMP we call the architecture specific code to retrigger _all_ high
864 * resolution timer interrupts. On UP we just disable interrupts and
865 * call the high resolution interrupt code.
866 */
867void clock_was_set(void)
868{
90ff1f30 869#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
870 /* Retrigger the CPU local events everywhere */
871 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
872#endif
873 timerfd_clock_was_set();
b12a03ce
TG
874}
875
876/*
877 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
878 * interrupt on all online CPUs. However, all other CPUs will be
879 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 880 * must be deferred.
b12a03ce
TG
881 */
882void hrtimers_resume(void)
883{
53bef3fd 884 lockdep_assert_irqs_disabled();
5ec2481b 885 /* Retrigger on the local CPU */
b12a03ce 886 retrigger_next_event(NULL);
5ec2481b
TG
887 /* And schedule a retrigger for all others */
888 clock_was_set_delayed();
b12a03ce
TG
889}
890
c0a31329 891/*
6506f2aa 892 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
893 */
894static inline
895void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
896{
ecb49d1a 897 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
898}
899
900/**
901 * hrtimer_forward - forward the timer expiry
c0a31329 902 * @timer: hrtimer to forward
44f21475 903 * @now: forward past this time
c0a31329
TG
904 * @interval: the interval to forward
905 *
906 * Forward the timer expiry so it will expire in the future.
8dca6f33 907 * Returns the number of overruns.
91e5a217
TG
908 *
909 * Can be safely called from the callback function of @timer. If
910 * called from other contexts @timer must neither be enqueued nor
911 * running the callback and the caller needs to take care of
912 * serialization.
913 *
914 * Note: This only updates the timer expiry value and does not requeue
915 * the timer.
c0a31329 916 */
4d672e7a 917u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 918{
4d672e7a 919 u64 orun = 1;
44f21475 920 ktime_t delta;
c0a31329 921
cc584b21 922 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329 923
2456e855 924 if (delta < 0)
c0a31329
TG
925 return 0;
926
5de2755c
PZ
927 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
928 return 0;
929
2456e855
TG
930 if (interval < hrtimer_resolution)
931 interval = hrtimer_resolution;
c9db4fa1 932
2456e855 933 if (unlikely(delta >= interval)) {
df869b63 934 s64 incr = ktime_to_ns(interval);
c0a31329
TG
935
936 orun = ktime_divns(delta, incr);
cc584b21 937 hrtimer_add_expires_ns(timer, incr * orun);
2456e855 938 if (hrtimer_get_expires_tv64(timer) > now)
c0a31329
TG
939 return orun;
940 /*
941 * This (and the ktime_add() below) is the
942 * correction for exact:
943 */
944 orun++;
945 }
cc584b21 946 hrtimer_add_expires(timer, interval);
c0a31329
TG
947
948 return orun;
949}
6bdb6b62 950EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
951
952/*
953 * enqueue_hrtimer - internal function to (re)start a timer
954 *
955 * The timer is inserted in expiry order. Insertion into the
956 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
957 *
958 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 959 */
a6037b61 960static int enqueue_hrtimer(struct hrtimer *timer,
63e2ed36
AMG
961 struct hrtimer_clock_base *base,
962 enum hrtimer_mode mode)
c0a31329 963{
63e2ed36 964 debug_activate(timer, mode);
237fc6e7 965
ab8177bc 966 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 967
56144737
ED
968 /* Pairs with the lockless read in hrtimer_is_queued() */
969 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
a6037b61 970
b97f44c9 971 return timerqueue_add(&base->active, &timer->node);
288867ec 972}
c0a31329
TG
973
974/*
975 * __remove_hrtimer - internal function to remove a timer
976 *
977 * Caller must hold the base lock.
54cdfdb4
TG
978 *
979 * High resolution timer mode reprograms the clock event device when the
980 * timer is the one which expires next. The caller can disable this by setting
981 * reprogram to zero. This is useful, when the context does a reprogramming
982 * anyway (e.g. timer interrupt)
c0a31329 983 */
3c8aa39d 984static void __remove_hrtimer(struct hrtimer *timer,
303e967f 985 struct hrtimer_clock_base *base,
203cbf77 986 u8 newstate, int reprogram)
c0a31329 987{
e19ffe8b 988 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 989 u8 state = timer->state;
e19ffe8b 990
56144737
ED
991 /* Pairs with the lockless read in hrtimer_is_queued() */
992 WRITE_ONCE(timer->state, newstate);
895bdfa7
TG
993 if (!(state & HRTIMER_STATE_ENQUEUED))
994 return;
7403f41f 995
b97f44c9 996 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 997 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 998
895bdfa7
TG
999 /*
1000 * Note: If reprogram is false we do not update
1001 * cpu_base->next_timer. This happens when we remove the first
1002 * timer on a remote cpu. No harm as we never dereference
1003 * cpu_base->next_timer. So the worst thing what can happen is
1004 * an superflous call to hrtimer_force_reprogram() on the
1005 * remote cpu later on if the same timer gets enqueued again.
1006 */
1007 if (reprogram && timer == cpu_base->next_timer)
1008 hrtimer_force_reprogram(cpu_base, 1);
c0a31329
TG
1009}
1010
1011/*
1012 * remove hrtimer, called with base lock held
1013 */
1014static inline int
8edfb036 1015remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 1016{
56144737
ED
1017 u8 state = timer->state;
1018
1019 if (state & HRTIMER_STATE_ENQUEUED) {
54cdfdb4
TG
1020 int reprogram;
1021
1022 /*
1023 * Remove the timer and force reprogramming when high
1024 * resolution mode is active and the timer is on the current
1025 * CPU. If we remove a timer on another CPU, reprogramming is
1026 * skipped. The interrupt event on this CPU is fired and
1027 * reprogramming happens in the interrupt handler. This is a
1028 * rare case and less expensive than a smp call.
1029 */
c6a2a177 1030 debug_deactivate(timer);
dc5df73b 1031 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 1032
887d9dc9
PZ
1033 if (!restart)
1034 state = HRTIMER_STATE_INACTIVE;
1035
f13d4f97 1036 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
1037 return 1;
1038 }
1039 return 0;
1040}
1041
203cbf77
TG
1042static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1043 const enum hrtimer_mode mode)
1044{
1045#ifdef CONFIG_TIME_LOW_RES
1046 /*
1047 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1048 * granular time values. For relative timers we add hrtimer_resolution
1049 * (i.e. one jiffie) to prevent short timeouts.
1050 */
1051 timer->is_rel = mode & HRTIMER_MODE_REL;
1052 if (timer->is_rel)
8b0e1953 1053 tim = ktime_add_safe(tim, hrtimer_resolution);
203cbf77
TG
1054#endif
1055 return tim;
1056}
1057
5da70160
AMG
1058static void
1059hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1060{
1061 ktime_t expires;
1062
1063 /*
1064 * Find the next SOFT expiration.
1065 */
1066 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1067
1068 /*
1069 * reprogramming needs to be triggered, even if the next soft
1070 * hrtimer expires at the same time than the next hard
1071 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1072 */
1073 if (expires == KTIME_MAX)
1074 return;
1075
1076 /*
1077 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1078 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1079 */
1080 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1081}
1082
138a6b7a
AMG
1083static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1084 u64 delta_ns, const enum hrtimer_mode mode,
1085 struct hrtimer_clock_base *base)
c0a31329 1086{
138a6b7a 1087 struct hrtimer_clock_base *new_base;
c0a31329
TG
1088
1089 /* Remove an active timer from the queue: */
8edfb036 1090 remove_hrtimer(timer, base, true);
c0a31329 1091
203cbf77 1092 if (mode & HRTIMER_MODE_REL)
84ea7fe3 1093 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
1094
1095 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 1096
da8f2e17 1097 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 1098
84ea7fe3
VK
1099 /* Switch the timer base, if necessary: */
1100 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1101
138a6b7a
AMG
1102 return enqueue_hrtimer(timer, new_base, mode);
1103}
5da70160 1104
138a6b7a
AMG
1105/**
1106 * hrtimer_start_range_ns - (re)start an hrtimer
1107 * @timer: the timer to be added
1108 * @tim: expiry time
1109 * @delta_ns: "slack" range for the timer
1110 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
5da70160
AMG
1111 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1112 * softirq based mode is considered for debug purpose only!
138a6b7a
AMG
1113 */
1114void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1115 u64 delta_ns, const enum hrtimer_mode mode)
1116{
1117 struct hrtimer_clock_base *base;
1118 unsigned long flags;
1119
5da70160
AMG
1120 /*
1121 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
0ab6a3dd
TG
1122 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1123 * expiry mode because unmarked timers are moved to softirq expiry.
5da70160 1124 */
0ab6a3dd
TG
1125 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1126 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1127 else
1128 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
5da70160 1129
138a6b7a
AMG
1130 base = lock_hrtimer_base(timer, &flags);
1131
1132 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
5da70160 1133 hrtimer_reprogram(timer, true);
49a2a075 1134
c0a31329 1135 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 1136}
da8f2e17
AV
1137EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1138
c0a31329
TG
1139/**
1140 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1141 * @timer: hrtimer to stop
1142 *
1143 * Returns:
51633704
MCC
1144 *
1145 * * 0 when the timer was not active
1146 * * 1 when the timer was active
1147 * * -1 when the timer is currently executing the callback function and
fa9799e3 1148 * cannot be stopped
c0a31329
TG
1149 */
1150int hrtimer_try_to_cancel(struct hrtimer *timer)
1151{
3c8aa39d 1152 struct hrtimer_clock_base *base;
c0a31329
TG
1153 unsigned long flags;
1154 int ret = -1;
1155
19d9f422
TG
1156 /*
1157 * Check lockless first. If the timer is not active (neither
1158 * enqueued nor running the callback, nothing to do here. The
1159 * base lock does not serialize against a concurrent enqueue,
1160 * so we can avoid taking it.
1161 */
1162 if (!hrtimer_active(timer))
1163 return 0;
1164
c0a31329
TG
1165 base = lock_hrtimer_base(timer, &flags);
1166
303e967f 1167 if (!hrtimer_callback_running(timer))
8edfb036 1168 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1169
1170 unlock_hrtimer_base(timer, &flags);
1171
1172 return ret;
1173
1174}
8d16b764 1175EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329 1176
f61eff83
AMG
1177#ifdef CONFIG_PREEMPT_RT
1178static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1179{
1180 spin_lock_init(&base->softirq_expiry_lock);
1181}
1182
1183static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1184{
1185 spin_lock(&base->softirq_expiry_lock);
1186}
1187
1188static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1189{
1190 spin_unlock(&base->softirq_expiry_lock);
1191}
1192
1193/*
1194 * The counterpart to hrtimer_cancel_wait_running().
1195 *
1196 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1197 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1198 * allows the waiter to acquire the lock and make progress.
1199 */
1200static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1201 unsigned long flags)
1202{
1203 if (atomic_read(&cpu_base->timer_waiters)) {
1204 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1205 spin_unlock(&cpu_base->softirq_expiry_lock);
1206 spin_lock(&cpu_base->softirq_expiry_lock);
1207 raw_spin_lock_irq(&cpu_base->lock);
1208 }
1209}
1210
1211/*
1212 * This function is called on PREEMPT_RT kernels when the fast path
1213 * deletion of a timer failed because the timer callback function was
1214 * running.
1215 *
0bee3b60
FW
1216 * This prevents priority inversion: if the soft irq thread is preempted
1217 * in the middle of a timer callback, then calling del_timer_sync() can
1218 * lead to two issues:
1219 *
1220 * - If the caller is on a remote CPU then it has to spin wait for the timer
1221 * handler to complete. This can result in unbound priority inversion.
1222 *
1223 * - If the caller originates from the task which preempted the timer
1224 * handler on the same CPU, then spin waiting for the timer handler to
1225 * complete is never going to end.
f61eff83
AMG
1226 */
1227void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1228{
dd2261ed
JG
1229 /* Lockless read. Prevent the compiler from reloading it below */
1230 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
f61eff83 1231
68b2c8c1
JG
1232 /*
1233 * Just relax if the timer expires in hard interrupt context or if
1234 * it is currently on the migration base.
1235 */
5d2295f3 1236 if (!timer->is_soft || is_migration_base(base)) {
f61eff83
AMG
1237 cpu_relax();
1238 return;
1239 }
1240
1241 /*
1242 * Mark the base as contended and grab the expiry lock, which is
1243 * held by the softirq across the timer callback. Drop the lock
1244 * immediately so the softirq can expire the next timer. In theory
1245 * the timer could already be running again, but that's more than
1246 * unlikely and just causes another wait loop.
1247 */
1248 atomic_inc(&base->cpu_base->timer_waiters);
1249 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1250 atomic_dec(&base->cpu_base->timer_waiters);
1251 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1252}
1253#else
1254static inline void
1255hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1256static inline void
1257hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1258static inline void
1259hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1260static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1261 unsigned long flags) { }
1262#endif
1263
c0a31329
TG
1264/**
1265 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1266 * @timer: the timer to be cancelled
1267 *
1268 * Returns:
1269 * 0 when the timer was not active
1270 * 1 when the timer was active
1271 */
1272int hrtimer_cancel(struct hrtimer *timer)
1273{
f61eff83 1274 int ret;
c0a31329 1275
f61eff83
AMG
1276 do {
1277 ret = hrtimer_try_to_cancel(timer);
1278
1279 if (ret < 0)
1280 hrtimer_cancel_wait_running(timer);
1281 } while (ret < 0);
1282 return ret;
c0a31329 1283}
8d16b764 1284EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1285
1286/**
66981c37 1287 * __hrtimer_get_remaining - get remaining time for the timer
c0a31329 1288 * @timer: the timer to read
203cbf77 1289 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1290 */
203cbf77 1291ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1292{
c0a31329
TG
1293 unsigned long flags;
1294 ktime_t rem;
1295
b3bd3de6 1296 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1297 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1298 rem = hrtimer_expires_remaining_adjusted(timer);
1299 else
1300 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1301 unlock_hrtimer_base(timer, &flags);
1302
1303 return rem;
1304}
203cbf77 1305EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1306
3451d024 1307#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1308/**
1309 * hrtimer_get_next_event - get the time until next expiry event
1310 *
c1ad348b 1311 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1312 */
c1ad348b 1313u64 hrtimer_get_next_event(void)
69239749 1314{
dc5df73b 1315 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1316 u64 expires = KTIME_MAX;
69239749 1317 unsigned long flags;
69239749 1318
ecb49d1a 1319 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1320
e19ffe8b 1321 if (!__hrtimer_hres_active(cpu_base))
5da70160 1322 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
3c8aa39d 1323
ecb49d1a 1324 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1325
c1ad348b 1326 return expires;
69239749 1327}
a59855cd
RW
1328
1329/**
1330 * hrtimer_next_event_without - time until next expiry event w/o one timer
1331 * @exclude: timer to exclude
1332 *
1333 * Returns the next expiry time over all timers except for the @exclude one or
1334 * KTIME_MAX if none of them is pending.
1335 */
1336u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1337{
1338 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1339 u64 expires = KTIME_MAX;
1340 unsigned long flags;
1341
1342 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1343
1344 if (__hrtimer_hres_active(cpu_base)) {
1345 unsigned int active;
1346
1347 if (!cpu_base->softirq_activated) {
1348 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1349 expires = __hrtimer_next_event_base(cpu_base, exclude,
1350 active, KTIME_MAX);
1351 }
1352 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1353 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1354 expires);
1355 }
1356
1357 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1358
1359 return expires;
1360}
69239749
TL
1361#endif
1362
336a9cde
MZ
1363static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1364{
1365 if (likely(clock_id < MAX_CLOCKS)) {
1366 int base = hrtimer_clock_to_base_table[clock_id];
1367
1368 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1369 return base;
1370 }
1371 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1372 return HRTIMER_BASE_MONOTONIC;
1373}
1374
237fc6e7
TG
1375static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1376 enum hrtimer_mode mode)
c0a31329 1377{
42f42da4 1378 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
3c8aa39d 1379 struct hrtimer_cpu_base *cpu_base;
f5c2f021
SAS
1380 int base;
1381
1382 /*
1383 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1384 * marked for hard interrupt expiry mode are moved into soft
1385 * interrupt context for latency reasons and because the callbacks
1386 * can invoke functions which might sleep on RT, e.g. spin_lock().
1387 */
1388 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1389 softtimer = true;
c0a31329 1390
7978672c
GA
1391 memset(timer, 0, sizeof(struct hrtimer));
1392
22127e93 1393 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1394
48d0c9be
AMG
1395 /*
1396 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1397 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1398 * ensure POSIX compliance.
1399 */
1400 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
7978672c
GA
1401 clock_id = CLOCK_MONOTONIC;
1402
f5c2f021 1403 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
42f42da4
AMG
1404 base += hrtimer_clockid_to_base(clock_id);
1405 timer->is_soft = softtimer;
40db1739 1406 timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
e06383db 1407 timer->base = &cpu_base->clock_base[base];
998adc3d 1408 timerqueue_init(&timer->node);
c0a31329 1409}
237fc6e7
TG
1410
1411/**
1412 * hrtimer_init - initialize a timer to the given clock
1413 * @timer: the timer to be initialized
1414 * @clock_id: the clock to be used
42f42da4
AMG
1415 * @mode: The modes which are relevant for intitialization:
1416 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1417 * HRTIMER_MODE_REL_SOFT
1418 *
1419 * The PINNED variants of the above can be handed in,
1420 * but the PINNED bit is ignored as pinning happens
1421 * when the hrtimer is started
237fc6e7
TG
1422 */
1423void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1424 enum hrtimer_mode mode)
1425{
c6a2a177 1426 debug_init(timer, clock_id, mode);
237fc6e7
TG
1427 __hrtimer_init(timer, clock_id, mode);
1428}
8d16b764 1429EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1430
887d9dc9
PZ
1431/*
1432 * A timer is active, when it is enqueued into the rbtree or the
1433 * callback function is running or it's in the state of being migrated
1434 * to another cpu.
c0a31329 1435 *
887d9dc9 1436 * It is important for this function to not return a false negative.
c0a31329 1437 */
887d9dc9 1438bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1439{
3f0b9e8e 1440 struct hrtimer_clock_base *base;
887d9dc9 1441 unsigned int seq;
c0a31329 1442
887d9dc9 1443 do {
3f0b9e8e
AMG
1444 base = READ_ONCE(timer->base);
1445 seq = raw_read_seqcount_begin(&base->seq);
c0a31329 1446
887d9dc9 1447 if (timer->state != HRTIMER_STATE_INACTIVE ||
3f0b9e8e 1448 base->running == timer)
887d9dc9
PZ
1449 return true;
1450
3f0b9e8e
AMG
1451 } while (read_seqcount_retry(&base->seq, seq) ||
1452 base != READ_ONCE(timer->base));
887d9dc9
PZ
1453
1454 return false;
c0a31329 1455}
887d9dc9 1456EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1457
887d9dc9
PZ
1458/*
1459 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1460 * distinct sections:
1461 *
1462 * - queued: the timer is queued
1463 * - callback: the timer is being ran
1464 * - post: the timer is inactive or (re)queued
1465 *
1466 * On the read side we ensure we observe timer->state and cpu_base->running
1467 * from the same section, if anything changed while we looked at it, we retry.
1468 * This includes timer->base changing because sequence numbers alone are
1469 * insufficient for that.
1470 *
1471 * The sequence numbers are required because otherwise we could still observe
1472 * a false negative if the read side got smeared over multiple consequtive
1473 * __run_hrtimer() invocations.
1474 */
1475
21d6d52a
TG
1476static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1477 struct hrtimer_clock_base *base,
dd934aa8 1478 struct hrtimer *timer, ktime_t *now,
eb5a4d0a 1479 unsigned long flags) __must_hold(&cpu_base->lock)
d3d74453 1480{
d3d74453 1481 enum hrtimer_restart (*fn)(struct hrtimer *);
73d20564 1482 bool expires_in_hardirq;
d3d74453
PZ
1483 int restart;
1484
887d9dc9 1485 lockdep_assert_held(&cpu_base->lock);
ca109491 1486
c6a2a177 1487 debug_deactivate(timer);
3f0b9e8e 1488 base->running = timer;
887d9dc9
PZ
1489
1490 /*
1491 * Separate the ->running assignment from the ->state assignment.
1492 *
1493 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1494 * hrtimer_active() cannot observe base->running == NULL &&
887d9dc9
PZ
1495 * timer->state == INACTIVE.
1496 */
3f0b9e8e 1497 raw_write_seqcount_barrier(&base->seq);
887d9dc9
PZ
1498
1499 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1500 fn = timer->function;
ca109491 1501
203cbf77
TG
1502 /*
1503 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1504 * timer is restarted with a period then it becomes an absolute
1505 * timer. If its not restarted it does not matter.
1506 */
1507 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1508 timer->is_rel = false;
1509
ca109491 1510 /*
d05ca13b
TG
1511 * The timer is marked as running in the CPU base, so it is
1512 * protected against migration to a different CPU even if the lock
1513 * is dropped.
ca109491 1514 */
dd934aa8 1515 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c6a2a177 1516 trace_hrtimer_expire_entry(timer, now);
73d20564 1517 expires_in_hardirq = lockdep_hrtimer_enter(timer);
40db1739 1518
ca109491 1519 restart = fn(timer);
40db1739 1520
73d20564 1521 lockdep_hrtimer_exit(expires_in_hardirq);
c6a2a177 1522 trace_hrtimer_expire_exit(timer);
dd934aa8 1523 raw_spin_lock_irq(&cpu_base->lock);
d3d74453
PZ
1524
1525 /*
887d9dc9 1526 * Note: We clear the running state after enqueue_hrtimer and
b4d90e9f 1527 * we do not reprogram the event hardware. Happens either in
e3f1d883 1528 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1529 *
1530 * Note: Because we dropped the cpu_base->lock above,
1531 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1532 * for us already.
d3d74453 1533 */
5de2755c
PZ
1534 if (restart != HRTIMER_NORESTART &&
1535 !(timer->state & HRTIMER_STATE_ENQUEUED))
63e2ed36 1536 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
f13d4f97 1537
887d9dc9
PZ
1538 /*
1539 * Separate the ->running assignment from the ->state assignment.
1540 *
1541 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1542 * hrtimer_active() cannot observe base->running.timer == NULL &&
887d9dc9
PZ
1543 * timer->state == INACTIVE.
1544 */
3f0b9e8e 1545 raw_write_seqcount_barrier(&base->seq);
f13d4f97 1546
3f0b9e8e
AMG
1547 WARN_ON_ONCE(base->running != timer);
1548 base->running = NULL;
d3d74453
PZ
1549}
1550
dd934aa8 1551static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
c458b1d1 1552 unsigned long flags, unsigned int active_mask)
54cdfdb4 1553{
c272ca58 1554 struct hrtimer_clock_base *base;
c458b1d1 1555 unsigned int active = cpu_base->active_bases & active_mask;
6ff7041d 1556
c272ca58 1557 for_each_active_base(base, cpu_base, active) {
998adc3d 1558 struct timerqueue_node *node;
ab8177bc
TG
1559 ktime_t basenow;
1560
54cdfdb4
TG
1561 basenow = ktime_add(now, base->offset);
1562
998adc3d 1563 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1564 struct hrtimer *timer;
1565
998adc3d 1566 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1567
654c8e0b
AV
1568 /*
1569 * The immediate goal for using the softexpires is
1570 * minimizing wakeups, not running timers at the
1571 * earliest interrupt after their soft expiration.
1572 * This allows us to avoid using a Priority Search
1573 * Tree, which can answer a stabbing querry for
1574 * overlapping intervals and instead use the simple
1575 * BST we already have.
1576 * We don't add extra wakeups by delaying timers that
1577 * are right-of a not yet expired timer, because that
1578 * timer will have to trigger a wakeup anyway.
1579 */
2456e855 1580 if (basenow < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1581 break;
54cdfdb4 1582
dd934aa8 1583 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
f61eff83
AMG
1584 if (active_mask == HRTIMER_ACTIVE_SOFT)
1585 hrtimer_sync_wait_running(cpu_base, flags);
54cdfdb4 1586 }
54cdfdb4 1587 }
21d6d52a
TG
1588}
1589
5da70160
AMG
1590static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1591{
1592 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1593 unsigned long flags;
1594 ktime_t now;
1595
f61eff83 1596 hrtimer_cpu_base_lock_expiry(cpu_base);
5da70160
AMG
1597 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1598
1599 now = hrtimer_update_base(cpu_base);
1600 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1601
1602 cpu_base->softirq_activated = 0;
1603 hrtimer_update_softirq_timer(cpu_base, true);
1604
1605 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
f61eff83 1606 hrtimer_cpu_base_unlock_expiry(cpu_base);
5da70160
AMG
1607}
1608
21d6d52a
TG
1609#ifdef CONFIG_HIGH_RES_TIMERS
1610
1611/*
1612 * High resolution timer interrupt
1613 * Called with interrupts disabled
1614 */
1615void hrtimer_interrupt(struct clock_event_device *dev)
1616{
1617 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1618 ktime_t expires_next, now, entry_time, delta;
dd934aa8 1619 unsigned long flags;
21d6d52a
TG
1620 int retries = 0;
1621
1622 BUG_ON(!cpu_base->hres_active);
1623 cpu_base->nr_events++;
2456e855 1624 dev->next_event = KTIME_MAX;
21d6d52a 1625
dd934aa8 1626 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a
TG
1627 entry_time = now = hrtimer_update_base(cpu_base);
1628retry:
1629 cpu_base->in_hrtirq = 1;
1630 /*
1631 * We set expires_next to KTIME_MAX here with cpu_base->lock
1632 * held to prevent that a timer is enqueued in our queue via
1633 * the migration code. This does not affect enqueueing of
1634 * timers which run their callback and need to be requeued on
1635 * this CPU.
1636 */
2456e855 1637 cpu_base->expires_next = KTIME_MAX;
21d6d52a 1638
5da70160
AMG
1639 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1640 cpu_base->softirq_expires_next = KTIME_MAX;
1641 cpu_base->softirq_activated = 1;
1642 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1643 }
1644
c458b1d1 1645 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
21d6d52a 1646
9bc74919 1647 /* Reevaluate the clock bases for the next expiry */
5da70160 1648 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
6ff7041d
TG
1649 /*
1650 * Store the new expiry value so the migration code can verify
1651 * against it.
1652 */
54cdfdb4 1653 cpu_base->expires_next = expires_next;
9bc74919 1654 cpu_base->in_hrtirq = 0;
dd934aa8 1655 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
54cdfdb4
TG
1656
1657 /* Reprogramming necessary ? */
d2540875 1658 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1659 cpu_base->hang_detected = 0;
1660 return;
54cdfdb4 1661 }
41d2e494
TG
1662
1663 /*
1664 * The next timer was already expired due to:
1665 * - tracing
1666 * - long lasting callbacks
1667 * - being scheduled away when running in a VM
1668 *
1669 * We need to prevent that we loop forever in the hrtimer
1670 * interrupt routine. We give it 3 attempts to avoid
1671 * overreacting on some spurious event.
5baefd6d
JS
1672 *
1673 * Acquire base lock for updating the offsets and retrieving
1674 * the current time.
41d2e494 1675 */
dd934aa8 1676 raw_spin_lock_irqsave(&cpu_base->lock, flags);
5baefd6d 1677 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1678 cpu_base->nr_retries++;
1679 if (++retries < 3)
1680 goto retry;
1681 /*
1682 * Give the system a chance to do something else than looping
1683 * here. We stored the entry time, so we know exactly how long
1684 * we spent here. We schedule the next event this amount of
1685 * time away.
1686 */
1687 cpu_base->nr_hangs++;
1688 cpu_base->hang_detected = 1;
dd934aa8
AMG
1689 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1690
41d2e494 1691 delta = ktime_sub(now, entry_time);
2456e855
TG
1692 if ((unsigned int)delta > cpu_base->max_hang_time)
1693 cpu_base->max_hang_time = (unsigned int) delta;
41d2e494
TG
1694 /*
1695 * Limit it to a sensible value as we enforce a longer
1696 * delay. Give the CPU at least 100ms to catch up.
1697 */
2456e855 1698 if (delta > 100 * NSEC_PER_MSEC)
41d2e494
TG
1699 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1700 else
1701 expires_next = ktime_add(now, delta);
1702 tick_program_event(expires_next, 1);
7a6e5537 1703 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
54cdfdb4
TG
1704}
1705
016da201 1706/* called with interrupts disabled */
c6eb3f70 1707static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1708{
1709 struct tick_device *td;
1710
1711 if (!hrtimer_hres_active())
1712 return;
1713
22127e93 1714 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1715 if (td && td->evtdev)
1716 hrtimer_interrupt(td->evtdev);
1717}
1718
82c5b7b5
IM
1719#else /* CONFIG_HIGH_RES_TIMERS */
1720
1721static inline void __hrtimer_peek_ahead_timers(void) { }
1722
1723#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1724
d3d74453 1725/*
c6eb3f70 1726 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1727 */
833883d9 1728void hrtimer_run_queues(void)
d3d74453 1729{
dc5df73b 1730 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
dd934aa8 1731 unsigned long flags;
21d6d52a 1732 ktime_t now;
c0a31329 1733
e19ffe8b 1734 if (__hrtimer_hres_active(cpu_base))
d3d74453 1735 return;
54cdfdb4 1736
d3d74453 1737 /*
c6eb3f70
TG
1738 * This _is_ ugly: We have to check periodically, whether we
1739 * can switch to highres and / or nohz mode. The clocksource
1740 * switch happens with xtime_lock held. Notification from
1741 * there only sets the check bit in the tick_oneshot code,
1742 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1743 */
c6eb3f70 1744 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1745 hrtimer_switch_to_hres();
3055adda 1746 return;
833883d9 1747 }
c6eb3f70 1748
dd934aa8 1749 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a 1750 now = hrtimer_update_base(cpu_base);
5da70160
AMG
1751
1752 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1753 cpu_base->softirq_expires_next = KTIME_MAX;
1754 cpu_base->softirq_activated = 1;
1755 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1756 }
1757
c458b1d1 1758 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
dd934aa8 1759 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c0a31329
TG
1760}
1761
10c94ec1
TG
1762/*
1763 * Sleep related functions:
1764 */
c9cb2e3d 1765static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1766{
1767 struct hrtimer_sleeper *t =
1768 container_of(timer, struct hrtimer_sleeper, timer);
1769 struct task_struct *task = t->task;
1770
1771 t->task = NULL;
1772 if (task)
1773 wake_up_process(task);
1774
1775 return HRTIMER_NORESTART;
1776}
1777
01656464
TG
1778/**
1779 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1780 * @sl: sleeper to be started
1781 * @mode: timer mode abs/rel
1782 *
1783 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1784 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1785 */
1786void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1787 enum hrtimer_mode mode)
1788{
1842f5a4
SAS
1789 /*
1790 * Make the enqueue delivery mode check work on RT. If the sleeper
1791 * was initialized for hard interrupt delivery, force the mode bit.
1792 * This is a special case for hrtimer_sleepers because
1793 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1794 * fiddling with this decision is avoided at the call sites.
1795 */
1796 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1797 mode |= HRTIMER_MODE_HARD;
1798
01656464
TG
1799 hrtimer_start_expires(&sl->timer, mode);
1800}
1801EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1802
dbc1625f
SAS
1803static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1804 clockid_t clock_id, enum hrtimer_mode mode)
00362e33 1805{
1842f5a4
SAS
1806 /*
1807 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1808 * marked for hard interrupt expiry mode are moved into soft
1809 * interrupt context either for latency reasons or because the
1810 * hrtimer callback takes regular spinlocks or invokes other
1811 * functions which are not suitable for hard interrupt context on
1812 * PREEMPT_RT.
1813 *
1814 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1815 * context, but there is a latency concern: Untrusted userspace can
1816 * spawn many threads which arm timers for the same expiry time on
1817 * the same CPU. That causes a latency spike due to the wakeup of
1818 * a gazillion threads.
1819 *
1820 * OTOH, priviledged real-time user space applications rely on the
1821 * low latency of hard interrupt wakeups. If the current task is in
1822 * a real-time scheduling class, mark the mode for hard interrupt
1823 * expiry.
1824 */
1825 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1826 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1827 mode |= HRTIMER_MODE_HARD;
1828 }
1829
dbc1625f 1830 __hrtimer_init(&sl->timer, clock_id, mode);
00362e33 1831 sl->timer.function = hrtimer_wakeup;
b7449487 1832 sl->task = current;
00362e33 1833}
dbc1625f
SAS
1834
1835/**
1836 * hrtimer_init_sleeper - initialize sleeper to the given clock
1837 * @sl: sleeper to be initialized
1838 * @clock_id: the clock to be used
1839 * @mode: timer mode abs/rel
1840 */
1841void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1842 enum hrtimer_mode mode)
1843{
1844 debug_init(&sl->timer, clock_id, mode);
1845 __hrtimer_init_sleeper(sl, clock_id, mode);
1846
1847}
2bc481cf 1848EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1849
c0edd7c9 1850int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
ce41aaf4
AV
1851{
1852 switch(restart->nanosleep.type) {
0fe27955 1853#ifdef CONFIG_COMPAT_32BIT_TIME
ce41aaf4 1854 case TT_COMPAT:
9afc5eee 1855 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
ce41aaf4
AV
1856 return -EFAULT;
1857 break;
1858#endif
1859 case TT_NATIVE:
c0edd7c9 1860 if (put_timespec64(ts, restart->nanosleep.rmtp))
ce41aaf4
AV
1861 return -EFAULT;
1862 break;
1863 default:
1864 BUG();
1865 }
1866 return -ERESTART_RESTARTBLOCK;
1867}
1868
669d7868 1869static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1870{
edbeda46
AV
1871 struct restart_block *restart;
1872
432569bb
RZ
1873 do {
1874 set_current_state(TASK_INTERRUPTIBLE);
01656464 1875 hrtimer_sleeper_start_expires(t, mode);
432569bb 1876
54cdfdb4 1877 if (likely(t->task))
b0f8c44f 1878 freezable_schedule();
432569bb 1879
669d7868 1880 hrtimer_cancel(&t->timer);
c9cb2e3d 1881 mode = HRTIMER_MODE_ABS;
669d7868
TG
1882
1883 } while (t->task && !signal_pending(current));
432569bb 1884
3588a085
PZ
1885 __set_current_state(TASK_RUNNING);
1886
a7602681 1887 if (!t->task)
080344b9 1888 return 0;
080344b9 1889
edbeda46
AV
1890 restart = &current->restart_block;
1891 if (restart->nanosleep.type != TT_NONE) {
a7602681 1892 ktime_t rem = hrtimer_expires_remaining(&t->timer);
c0edd7c9 1893 struct timespec64 rmt;
edbeda46 1894
a7602681
AV
1895 if (rem <= 0)
1896 return 0;
c0edd7c9 1897 rmt = ktime_to_timespec64(rem);
a7602681 1898
ce41aaf4 1899 return nanosleep_copyout(restart, &rmt);
a7602681
AV
1900 }
1901 return -ERESTART_RESTARTBLOCK;
080344b9
ON
1902}
1903
fb923c4a 1904static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1905{
669d7868 1906 struct hrtimer_sleeper t;
a7602681 1907 int ret;
10c94ec1 1908
dbc1625f
SAS
1909 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1910 HRTIMER_MODE_ABS);
cc584b21 1911 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
a7602681 1912 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
237fc6e7
TG
1913 destroy_hrtimer_on_stack(&t.timer);
1914 return ret;
10c94ec1
TG
1915}
1916
ea2d1f7f
AV
1917long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
1918 const clockid_t clockid)
10c94ec1 1919{
a7602681 1920 struct restart_block *restart;
669d7868 1921 struct hrtimer_sleeper t;
237fc6e7 1922 int ret = 0;
da8b44d5 1923 u64 slack;
3bd01206
AV
1924
1925 slack = current->timer_slack_ns;
aab03e05 1926 if (dl_task(current) || rt_task(current))
3bd01206 1927 slack = 0;
10c94ec1 1928
dbc1625f 1929 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
ea2d1f7f 1930 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
a7602681
AV
1931 ret = do_nanosleep(&t, mode);
1932 if (ret != -ERESTART_RESTARTBLOCK)
237fc6e7 1933 goto out;
10c94ec1 1934
7978672c 1935 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1936 if (mode == HRTIMER_MODE_ABS) {
1937 ret = -ERESTARTNOHAND;
1938 goto out;
1939 }
10c94ec1 1940
a7602681 1941 restart = &current->restart_block;
1711ef38 1942 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1943 restart->nanosleep.clockid = t.timer.base->clockid;
cc584b21 1944 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
237fc6e7
TG
1945out:
1946 destroy_hrtimer_on_stack(&t.timer);
1947 return ret;
10c94ec1
TG
1948}
1949
3ca47e95 1950#ifdef CONFIG_64BIT
01909974
DD
1951
1952SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1953 struct __kernel_timespec __user *, rmtp)
6ba1b912 1954{
c0edd7c9 1955 struct timespec64 tu;
6ba1b912 1956
c0edd7c9 1957 if (get_timespec64(&tu, rqtp))
6ba1b912
TG
1958 return -EFAULT;
1959
c0edd7c9 1960 if (!timespec64_valid(&tu))
6ba1b912
TG
1961 return -EINVAL;
1962
edbeda46 1963 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
192a82f9 1964 current->restart_block.nanosleep.rmtp = rmtp;
ea2d1f7f
AV
1965 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1966 CLOCK_MONOTONIC);
6ba1b912
TG
1967}
1968
01909974
DD
1969#endif
1970
b5793b0d 1971#ifdef CONFIG_COMPAT_32BIT_TIME
edbeda46 1972
8dabe724 1973SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
9afc5eee 1974 struct old_timespec32 __user *, rmtp)
edbeda46 1975{
c0edd7c9 1976 struct timespec64 tu;
edbeda46 1977
9afc5eee 1978 if (get_old_timespec32(&tu, rqtp))
edbeda46
AV
1979 return -EFAULT;
1980
c0edd7c9 1981 if (!timespec64_valid(&tu))
edbeda46
AV
1982 return -EINVAL;
1983
1984 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1985 current->restart_block.nanosleep.compat_rmtp = rmtp;
ea2d1f7f
AV
1986 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1987 CLOCK_MONOTONIC);
edbeda46
AV
1988}
1989#endif
1990
c0a31329
TG
1991/*
1992 * Functions related to boot-time initialization:
1993 */
27590dc1 1994int hrtimers_prepare_cpu(unsigned int cpu)
c0a31329 1995{
3c8aa39d 1996 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1997 int i;
1998
998adc3d 1999 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
af5a06b5
AD
2000 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2001
2002 clock_b->cpu_base = cpu_base;
2003 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2004 timerqueue_init_head(&clock_b->active);
998adc3d 2005 }
3c8aa39d 2006
cddd0248 2007 cpu_base->cpu = cpu;
303c146d 2008 cpu_base->active_bases = 0;
28bfd18b 2009 cpu_base->hres_active = 0;
303c146d
TG
2010 cpu_base->hang_detected = 0;
2011 cpu_base->next_timer = NULL;
2012 cpu_base->softirq_next_timer = NULL;
07a9a7ea 2013 cpu_base->expires_next = KTIME_MAX;
5da70160 2014 cpu_base->softirq_expires_next = KTIME_MAX;
f61eff83 2015 hrtimer_cpu_base_init_expiry_lock(cpu_base);
27590dc1 2016 return 0;
c0a31329
TG
2017}
2018
2019#ifdef CONFIG_HOTPLUG_CPU
2020
ca109491 2021static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 2022 struct hrtimer_clock_base *new_base)
c0a31329
TG
2023{
2024 struct hrtimer *timer;
998adc3d 2025 struct timerqueue_node *node;
c0a31329 2026
998adc3d
JS
2027 while ((node = timerqueue_getnext(&old_base->active))) {
2028 timer = container_of(node, struct hrtimer, node);
54cdfdb4 2029 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 2030 debug_deactivate(timer);
b00c1a99
TG
2031
2032 /*
c04dca02 2033 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
2034 * timer could be seen as !active and just vanish away
2035 * under us on another CPU
2036 */
c04dca02 2037 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 2038 timer->base = new_base;
54cdfdb4 2039 /*
e3f1d883
TG
2040 * Enqueue the timers on the new cpu. This does not
2041 * reprogram the event device in case the timer
2042 * expires before the earliest on this CPU, but we run
2043 * hrtimer_interrupt after we migrated everything to
2044 * sort out already expired timers and reprogram the
2045 * event device.
54cdfdb4 2046 */
63e2ed36 2047 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
c0a31329
TG
2048 }
2049}
2050
27590dc1 2051int hrtimers_dead_cpu(unsigned int scpu)
c0a31329 2052{
3c8aa39d 2053 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 2054 int i;
c0a31329 2055
37810659 2056 BUG_ON(cpu_online(scpu));
37810659 2057 tick_cancel_sched_timer(scpu);
731a55ba 2058
5da70160
AMG
2059 /*
2060 * this BH disable ensures that raise_softirq_irqoff() does
2061 * not wakeup ksoftirqd (and acquire the pi-lock) while
2062 * holding the cpu_base lock
2063 */
2064 local_bh_disable();
731a55ba
TG
2065 local_irq_disable();
2066 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 2067 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
2068 /*
2069 * The caller is globally serialized and nobody else
2070 * takes two locks at once, deadlock is not possible.
2071 */
ecb49d1a
TG
2072 raw_spin_lock(&new_base->lock);
2073 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 2074
3c8aa39d 2075 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 2076 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 2077 &new_base->clock_base[i]);
c0a31329
TG
2078 }
2079
5da70160
AMG
2080 /*
2081 * The migration might have changed the first expiring softirq
2082 * timer on this CPU. Update it.
2083 */
2084 hrtimer_update_softirq_timer(new_base, false);
2085
ecb49d1a
TG
2086 raw_spin_unlock(&old_base->lock);
2087 raw_spin_unlock(&new_base->lock);
37810659 2088
731a55ba
TG
2089 /* Check, if we got expired work to do */
2090 __hrtimer_peek_ahead_timers();
2091 local_irq_enable();
5da70160 2092 local_bh_enable();
27590dc1 2093 return 0;
c0a31329 2094}
37810659 2095
c0a31329
TG
2096#endif /* CONFIG_HOTPLUG_CPU */
2097
c0a31329
TG
2098void __init hrtimers_init(void)
2099{
27590dc1 2100 hrtimers_prepare_cpu(smp_processor_id());
5da70160 2101 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
c0a31329
TG
2102}
2103
7bb67439 2104/**
351b3f7a 2105 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 2106 * @expires: timeout value (ktime_t)
654c8e0b 2107 * @delta: slack in expires timeout (ktime_t)
90777713
AMG
2108 * @mode: timer mode
2109 * @clock_id: timer clock to be used
7bb67439 2110 */
351b3f7a 2111int __sched
da8b44d5 2112schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
90777713 2113 const enum hrtimer_mode mode, clockid_t clock_id)
7bb67439
AV
2114{
2115 struct hrtimer_sleeper t;
2116
2117 /*
2118 * Optimize when a zero timeout value is given. It does not
2119 * matter whether this is an absolute or a relative time.
2120 */
2456e855 2121 if (expires && *expires == 0) {
7bb67439
AV
2122 __set_current_state(TASK_RUNNING);
2123 return 0;
2124 }
2125
2126 /*
43b21013 2127 * A NULL parameter means "infinite"
7bb67439
AV
2128 */
2129 if (!expires) {
2130 schedule();
7bb67439
AV
2131 return -EINTR;
2132 }
2133
dbc1625f 2134 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
654c8e0b 2135 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
01656464 2136 hrtimer_sleeper_start_expires(&t, mode);
7bb67439
AV
2137
2138 if (likely(t.task))
2139 schedule();
2140
2141 hrtimer_cancel(&t.timer);
2142 destroy_hrtimer_on_stack(&t.timer);
2143
2144 __set_current_state(TASK_RUNNING);
2145
2146 return !t.task ? 0 : -EINTR;
2147}
351b3f7a
CE
2148
2149/**
2150 * schedule_hrtimeout_range - sleep until timeout
2151 * @expires: timeout value (ktime_t)
2152 * @delta: slack in expires timeout (ktime_t)
90777713 2153 * @mode: timer mode
351b3f7a
CE
2154 *
2155 * Make the current task sleep until the given expiry time has
2156 * elapsed. The routine will return immediately unless
2157 * the current task state has been set (see set_current_state()).
2158 *
2159 * The @delta argument gives the kernel the freedom to schedule the
2160 * actual wakeup to a time that is both power and performance friendly.
2161 * The kernel give the normal best effort behavior for "@expires+@delta",
2162 * but may decide to fire the timer earlier, but no earlier than @expires.
2163 *
2164 * You can set the task state as follows -
2165 *
2166 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
2167 * pass before the routine returns unless the current task is explicitly
2168 * woken up, (e.g. by wake_up_process()).
351b3f7a
CE
2169 *
2170 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
2171 * delivered to the current task or the current task is explicitly woken
2172 * up.
351b3f7a
CE
2173 *
2174 * The current task state is guaranteed to be TASK_RUNNING when this
2175 * routine returns.
2176 *
4b7e9cf9
DA
2177 * Returns 0 when the timer has expired. If the task was woken before the
2178 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2179 * by an explicit wakeup, it returns -EINTR.
351b3f7a 2180 */
da8b44d5 2181int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
2182 const enum hrtimer_mode mode)
2183{
2184 return schedule_hrtimeout_range_clock(expires, delta, mode,
2185 CLOCK_MONOTONIC);
2186}
654c8e0b
AV
2187EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2188
2189/**
2190 * schedule_hrtimeout - sleep until timeout
2191 * @expires: timeout value (ktime_t)
90777713 2192 * @mode: timer mode
654c8e0b
AV
2193 *
2194 * Make the current task sleep until the given expiry time has
2195 * elapsed. The routine will return immediately unless
2196 * the current task state has been set (see set_current_state()).
2197 *
2198 * You can set the task state as follows -
2199 *
2200 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
2201 * pass before the routine returns unless the current task is explicitly
2202 * woken up, (e.g. by wake_up_process()).
654c8e0b
AV
2203 *
2204 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
2205 * delivered to the current task or the current task is explicitly woken
2206 * up.
654c8e0b
AV
2207 *
2208 * The current task state is guaranteed to be TASK_RUNNING when this
2209 * routine returns.
2210 *
4b7e9cf9
DA
2211 * Returns 0 when the timer has expired. If the task was woken before the
2212 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2213 * by an explicit wakeup, it returns -EINTR.
654c8e0b
AV
2214 */
2215int __sched schedule_hrtimeout(ktime_t *expires,
2216 const enum hrtimer_mode mode)
2217{
2218 return schedule_hrtimeout_range(expires, 0, mode);
2219}
7bb67439 2220EXPORT_SYMBOL_GPL(schedule_hrtimeout);