]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/time/hrtimer.c
cpuidle: teo: Fix intervals[] array indexing bug
[mirror_ubuntu-eoan-kernel.git] / kernel / time / hrtimer.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
c0a31329 2/*
3c8aa39d 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
6 *
7 * High-resolution kernel timers
8 *
58c5fc2b
TG
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
c0a31329
TG
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
58c5fc2b 16 * Based on the original timer wheel code
c0a31329 17 *
66188fae
TG
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
c0a31329
TG
23 */
24
25#include <linux/cpu.h>
9984de1a 26#include <linux/export.h>
c0a31329
TG
27#include <linux/percpu.h>
28#include <linux/hrtimer.h>
29#include <linux/notifier.h>
30#include <linux/syscalls.h>
31#include <linux/interrupt.h>
79bf2bb3 32#include <linux/tick.h>
54cdfdb4 33#include <linux/err.h>
237fc6e7 34#include <linux/debugobjects.h>
174cd4b1 35#include <linux/sched/signal.h>
cf4aebc2 36#include <linux/sched/sysctl.h>
8bd75c77 37#include <linux/sched/rt.h>
aab03e05 38#include <linux/sched/deadline.h>
370c9135 39#include <linux/sched/nohz.h>
b17b0153 40#include <linux/sched/debug.h>
eea08f32 41#include <linux/timer.h>
b0f8c44f 42#include <linux/freezer.h>
edbeda46 43#include <linux/compat.h>
c0a31329 44
7c0f6ba6 45#include <linux/uaccess.h>
c0a31329 46
c6a2a177
XG
47#include <trace/events/timer.h>
48
c1797baf 49#include "tick-internal.h"
8b094cd0 50
c458b1d1
AMG
51/*
52 * Masks for selecting the soft and hard context timers from
53 * cpu_base->active
54 */
55#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59
c0a31329
TG
60/*
61 * The timer bases:
7978672c 62 *
571af55a 63 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 67 */
54cdfdb4 68DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 69{
84cc8fd2 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 71 .clock_base =
c0a31329 72 {
3c8aa39d 73 {
ab8177bc
TG
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
3c8aa39d 76 .get_time = &ktime_get,
3c8aa39d 77 },
68fa61c0
TG
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
68fa61c0 82 },
a3ed0e43
TG
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
90adda98
JS
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
90adda98 92 },
98ecadd4
AMG
93 {
94 .index = HRTIMER_BASE_MONOTONIC_SOFT,
95 .clockid = CLOCK_MONOTONIC,
96 .get_time = &ktime_get,
97 },
98 {
99 .index = HRTIMER_BASE_REALTIME_SOFT,
100 .clockid = CLOCK_REALTIME,
101 .get_time = &ktime_get_real,
102 },
a3ed0e43
TG
103 {
104 .index = HRTIMER_BASE_BOOTTIME_SOFT,
105 .clockid = CLOCK_BOOTTIME,
106 .get_time = &ktime_get_boottime,
107 },
98ecadd4
AMG
108 {
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
112 },
3c8aa39d 113 }
c0a31329
TG
114};
115
942c3c5c 116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
336a9cde
MZ
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
119
ce31332d
TG
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
a3ed0e43 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 124};
e06383db 125
c0a31329
TG
126/*
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
129 */
130#ifdef CONFIG_SMP
131
887d9dc9
PZ
132/*
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
136 */
137static struct hrtimer_cpu_base migration_cpu_base = {
887d9dc9
PZ
138 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
139};
140
141#define migration_base migration_cpu_base.clock_base[0]
142
c0a31329
TG
143/*
144 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
145 * means that all timers which are tied to this base via timer->base are
146 * locked, and the base itself is locked too.
147 *
148 * So __run_timers/migrate_timers can safely modify all timers which could
149 * be found on the lists/queues.
150 *
151 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
152 * possible to set timer->base = &migration_base and drop the lock: the timer
153 * remains locked.
c0a31329 154 */
3c8aa39d
TG
155static
156struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
157 unsigned long *flags)
c0a31329 158{
3c8aa39d 159 struct hrtimer_clock_base *base;
c0a31329
TG
160
161 for (;;) {
162 base = timer->base;
887d9dc9 163 if (likely(base != &migration_base)) {
ecb49d1a 164 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
165 if (likely(base == timer->base))
166 return base;
167 /* The timer has migrated to another CPU: */
ecb49d1a 168 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
169 }
170 cpu_relax();
171 }
172}
173
6ff7041d 174/*
07a9a7ea
AMG
175 * We do not migrate the timer when it is expiring before the next
176 * event on the target cpu. When high resolution is enabled, we cannot
177 * reprogram the target cpu hardware and we would cause it to fire
178 * late. To keep it simple, we handle the high resolution enabled and
179 * disabled case similar.
6ff7041d
TG
180 *
181 * Called with cpu_base->lock of target cpu held.
182 */
183static int
184hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
185{
6ff7041d
TG
186 ktime_t expires;
187
6ff7041d 188 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
2ac2dccc 189 return expires < new_base->cpu_base->expires_next;
6ff7041d
TG
190}
191
bc7a34b8
TG
192static inline
193struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
194 int pinned)
195{
ae67bada
TG
196#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
197 if (static_branch_likely(&timers_migration_enabled) && !pinned)
198 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
199#endif
662b3e19 200 return base;
bc7a34b8 201}
bc7a34b8 202
c0a31329 203/*
b48362d8
FW
204 * We switch the timer base to a power-optimized selected CPU target,
205 * if:
206 * - NO_HZ_COMMON is enabled
207 * - timer migration is enabled
208 * - the timer callback is not running
209 * - the timer is not the first expiring timer on the new target
210 *
211 * If one of the above requirements is not fulfilled we move the timer
212 * to the current CPU or leave it on the previously assigned CPU if
213 * the timer callback is currently running.
c0a31329 214 */
3c8aa39d 215static inline struct hrtimer_clock_base *
597d0275
AB
216switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
217 int pinned)
c0a31329 218{
b48362d8 219 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 220 struct hrtimer_clock_base *new_base;
ab8177bc 221 int basenum = base->index;
c0a31329 222
b48362d8
FW
223 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
224 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 225again:
e06383db 226 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
227
228 if (base != new_base) {
229 /*
6ff7041d 230 * We are trying to move timer to new_base.
c0a31329
TG
231 * However we can't change timer's base while it is running,
232 * so we keep it on the same CPU. No hassle vs. reprogramming
233 * the event source in the high resolution case. The softirq
234 * code will take care of this when the timer function has
235 * completed. There is no conflict as we hold the lock until
236 * the timer is enqueued.
237 */
54cdfdb4 238 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
239 return base;
240
887d9dc9
PZ
241 /* See the comment in lock_hrtimer_base() */
242 timer->base = &migration_base;
ecb49d1a
TG
243 raw_spin_unlock(&base->cpu_base->lock);
244 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 245
b48362d8 246 if (new_cpu_base != this_cpu_base &&
bc7a34b8 247 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
248 raw_spin_unlock(&new_base->cpu_base->lock);
249 raw_spin_lock(&base->cpu_base->lock);
b48362d8 250 new_cpu_base = this_cpu_base;
6ff7041d
TG
251 timer->base = base;
252 goto again;
eea08f32 253 }
c0a31329 254 timer->base = new_base;
012a45e3 255 } else {
b48362d8 256 if (new_cpu_base != this_cpu_base &&
bc7a34b8 257 hrtimer_check_target(timer, new_base)) {
b48362d8 258 new_cpu_base = this_cpu_base;
012a45e3
LM
259 goto again;
260 }
c0a31329
TG
261 }
262 return new_base;
263}
264
265#else /* CONFIG_SMP */
266
3c8aa39d 267static inline struct hrtimer_clock_base *
c0a31329
TG
268lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
269{
3c8aa39d 270 struct hrtimer_clock_base *base = timer->base;
c0a31329 271
ecb49d1a 272 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
273
274 return base;
275}
276
eea08f32 277# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
278
279#endif /* !CONFIG_SMP */
280
281/*
282 * Functions for the union type storage format of ktime_t which are
283 * too large for inlining:
284 */
285#if BITS_PER_LONG < 64
c0a31329
TG
286/*
287 * Divide a ktime value by a nanosecond value
288 */
f7bcb70e 289s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 290{
c0a31329 291 int sft = 0;
f7bcb70e
JS
292 s64 dclc;
293 u64 tmp;
c0a31329 294
900cfa46 295 dclc = ktime_to_ns(kt);
f7bcb70e
JS
296 tmp = dclc < 0 ? -dclc : dclc;
297
c0a31329
TG
298 /* Make sure the divisor is less than 2^32: */
299 while (div >> 32) {
300 sft++;
301 div >>= 1;
302 }
f7bcb70e
JS
303 tmp >>= sft;
304 do_div(tmp, (unsigned long) div);
305 return dclc < 0 ? -tmp : tmp;
c0a31329 306}
8b618628 307EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
308#endif /* BITS_PER_LONG >= 64 */
309
5a7780e7
TG
310/*
311 * Add two ktime values and do a safety check for overflow:
312 */
313ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
314{
979515c5 315 ktime_t res = ktime_add_unsafe(lhs, rhs);
5a7780e7
TG
316
317 /*
318 * We use KTIME_SEC_MAX here, the maximum timeout which we can
319 * return to user space in a timespec:
320 */
2456e855 321 if (res < 0 || res < lhs || res < rhs)
5a7780e7
TG
322 res = ktime_set(KTIME_SEC_MAX, 0);
323
324 return res;
325}
326
8daa21e6
AB
327EXPORT_SYMBOL_GPL(ktime_add_safe);
328
237fc6e7
TG
329#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
330
331static struct debug_obj_descr hrtimer_debug_descr;
332
99777288
SG
333static void *hrtimer_debug_hint(void *addr)
334{
335 return ((struct hrtimer *) addr)->function;
336}
337
237fc6e7
TG
338/*
339 * fixup_init is called when:
340 * - an active object is initialized
341 */
e3252464 342static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
343{
344 struct hrtimer *timer = addr;
345
346 switch (state) {
347 case ODEBUG_STATE_ACTIVE:
348 hrtimer_cancel(timer);
349 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 350 return true;
237fc6e7 351 default:
e3252464 352 return false;
237fc6e7
TG
353 }
354}
355
356/*
357 * fixup_activate is called when:
358 * - an active object is activated
b9fdac7f 359 * - an unknown non-static object is activated
237fc6e7 360 */
e3252464 361static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
362{
363 switch (state) {
237fc6e7
TG
364 case ODEBUG_STATE_ACTIVE:
365 WARN_ON(1);
75b710af 366 /* fall through */
237fc6e7 367 default:
e3252464 368 return false;
237fc6e7
TG
369 }
370}
371
372/*
373 * fixup_free is called when:
374 * - an active object is freed
375 */
e3252464 376static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
377{
378 struct hrtimer *timer = addr;
379
380 switch (state) {
381 case ODEBUG_STATE_ACTIVE:
382 hrtimer_cancel(timer);
383 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 384 return true;
237fc6e7 385 default:
e3252464 386 return false;
237fc6e7
TG
387 }
388}
389
390static struct debug_obj_descr hrtimer_debug_descr = {
391 .name = "hrtimer",
99777288 392 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
393 .fixup_init = hrtimer_fixup_init,
394 .fixup_activate = hrtimer_fixup_activate,
395 .fixup_free = hrtimer_fixup_free,
396};
397
398static inline void debug_hrtimer_init(struct hrtimer *timer)
399{
400 debug_object_init(timer, &hrtimer_debug_descr);
401}
402
5da70160
AMG
403static inline void debug_hrtimer_activate(struct hrtimer *timer,
404 enum hrtimer_mode mode)
237fc6e7
TG
405{
406 debug_object_activate(timer, &hrtimer_debug_descr);
407}
408
409static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
410{
411 debug_object_deactivate(timer, &hrtimer_debug_descr);
412}
413
414static inline void debug_hrtimer_free(struct hrtimer *timer)
415{
416 debug_object_free(timer, &hrtimer_debug_descr);
417}
418
419static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
420 enum hrtimer_mode mode);
421
422void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
423 enum hrtimer_mode mode)
424{
425 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
426 __hrtimer_init(timer, clock_id, mode);
427}
2bc481cf 428EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
429
430void destroy_hrtimer_on_stack(struct hrtimer *timer)
431{
432 debug_object_free(timer, &hrtimer_debug_descr);
433}
c08376ac 434EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
237fc6e7
TG
435
436#else
5da70160 437
237fc6e7 438static inline void debug_hrtimer_init(struct hrtimer *timer) { }
5da70160
AMG
439static inline void debug_hrtimer_activate(struct hrtimer *timer,
440 enum hrtimer_mode mode) { }
237fc6e7
TG
441static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
442#endif
443
c6a2a177
XG
444static inline void
445debug_init(struct hrtimer *timer, clockid_t clockid,
446 enum hrtimer_mode mode)
447{
448 debug_hrtimer_init(timer);
449 trace_hrtimer_init(timer, clockid, mode);
450}
451
63e2ed36
AMG
452static inline void debug_activate(struct hrtimer *timer,
453 enum hrtimer_mode mode)
c6a2a177 454{
5da70160 455 debug_hrtimer_activate(timer, mode);
63e2ed36 456 trace_hrtimer_start(timer, mode);
c6a2a177
XG
457}
458
459static inline void debug_deactivate(struct hrtimer *timer)
460{
461 debug_hrtimer_deactivate(timer);
462 trace_hrtimer_cancel(timer);
463}
464
c272ca58
AMG
465static struct hrtimer_clock_base *
466__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
467{
468 unsigned int idx;
469
470 if (!*active)
471 return NULL;
472
473 idx = __ffs(*active);
474 *active &= ~(1U << idx);
475
476 return &cpu_base->clock_base[idx];
477}
478
479#define for_each_active_base(base, cpu_base, active) \
480 while ((base = __next_base((cpu_base), &(active))))
481
ad38f596 482static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
a59855cd 483 const struct hrtimer *exclude,
ad38f596
AMG
484 unsigned int active,
485 ktime_t expires_next)
9bc74919 486{
c272ca58 487 struct hrtimer_clock_base *base;
ad38f596 488 ktime_t expires;
9bc74919 489
c272ca58 490 for_each_active_base(base, cpu_base, active) {
9bc74919
TG
491 struct timerqueue_node *next;
492 struct hrtimer *timer;
493
34aee88a 494 next = timerqueue_getnext(&base->active);
9bc74919 495 timer = container_of(next, struct hrtimer, node);
a59855cd
RW
496 if (timer == exclude) {
497 /* Get to the next timer in the queue. */
7d2f6abb 498 next = timerqueue_iterate_next(next);
a59855cd
RW
499 if (!next)
500 continue;
501
502 timer = container_of(next, struct hrtimer, node);
503 }
9bc74919 504 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
2456e855 505 if (expires < expires_next) {
9bc74919 506 expires_next = expires;
a59855cd
RW
507
508 /* Skip cpu_base update if a timer is being excluded. */
509 if (exclude)
510 continue;
511
5da70160
AMG
512 if (timer->is_soft)
513 cpu_base->softirq_next_timer = timer;
514 else
515 cpu_base->next_timer = timer;
895bdfa7 516 }
9bc74919
TG
517 }
518 /*
519 * clock_was_set() might have changed base->offset of any of
520 * the clock bases so the result might be negative. Fix it up
521 * to prevent a false positive in clockevents_program_event().
522 */
2456e855
TG
523 if (expires_next < 0)
524 expires_next = 0;
9bc74919
TG
525 return expires_next;
526}
9bc74919 527
c458b1d1
AMG
528/*
529 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
530 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
531 *
5da70160
AMG
532 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
533 * those timers will get run whenever the softirq gets handled, at the end of
534 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
535 *
536 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
537 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
538 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
539 *
c458b1d1 540 * @active_mask must be one of:
5da70160 541 * - HRTIMER_ACTIVE_ALL,
c458b1d1
AMG
542 * - HRTIMER_ACTIVE_SOFT, or
543 * - HRTIMER_ACTIVE_HARD.
544 */
5da70160
AMG
545static ktime_t
546__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
ad38f596 547{
c458b1d1 548 unsigned int active;
5da70160 549 struct hrtimer *next_timer = NULL;
ad38f596
AMG
550 ktime_t expires_next = KTIME_MAX;
551
5da70160
AMG
552 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
553 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
554 cpu_base->softirq_next_timer = NULL;
a59855cd
RW
555 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
556 active, KTIME_MAX);
5da70160
AMG
557
558 next_timer = cpu_base->softirq_next_timer;
559 }
ad38f596 560
5da70160
AMG
561 if (active_mask & HRTIMER_ACTIVE_HARD) {
562 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
563 cpu_base->next_timer = next_timer;
a59855cd
RW
564 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
565 expires_next);
5da70160 566 }
ad38f596
AMG
567
568 return expires_next;
569}
570
21d6d52a
TG
571static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
572{
573 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
a3ed0e43 574 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
21d6d52a
TG
575 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
576
5da70160 577 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
a3ed0e43 578 offs_real, offs_boot, offs_tai);
5da70160
AMG
579
580 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
a3ed0e43 581 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
5da70160
AMG
582 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
583
584 return now;
21d6d52a
TG
585}
586
28bfd18b
AMG
587/*
588 * Is the high resolution mode active ?
589 */
590static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
591{
592 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
593 cpu_base->hres_active : 0;
594}
595
596static inline int hrtimer_hres_active(void)
597{
598 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
599}
600
54cdfdb4
TG
601/*
602 * Reprogram the event source with checking both queues for the
603 * next event
604 * Called with interrupts disabled and base->lock held
605 */
7403f41f
AC
606static void
607hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 608{
21d6d52a
TG
609 ktime_t expires_next;
610
5da70160
AMG
611 /*
612 * Find the current next expiration time.
613 */
614 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
615
616 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
617 /*
618 * When the softirq is activated, hrtimer has to be
619 * programmed with the first hard hrtimer because soft
620 * timer interrupt could occur too late.
621 */
622 if (cpu_base->softirq_activated)
623 expires_next = __hrtimer_get_next_event(cpu_base,
624 HRTIMER_ACTIVE_HARD);
625 else
626 cpu_base->softirq_expires_next = expires_next;
627 }
54cdfdb4 628
2456e855 629 if (skip_equal && expires_next == cpu_base->expires_next)
7403f41f
AC
630 return;
631
2456e855 632 cpu_base->expires_next = expires_next;
7403f41f 633
6c6c0d5a 634 /*
61bb4bcb
AMG
635 * If hres is not active, hardware does not have to be
636 * reprogrammed yet.
637 *
6c6c0d5a
SH
638 * If a hang was detected in the last timer interrupt then we
639 * leave the hang delay active in the hardware. We want the
640 * system to make progress. That also prevents the following
641 * scenario:
642 * T1 expires 50ms from now
643 * T2 expires 5s from now
644 *
645 * T1 is removed, so this code is called and would reprogram
646 * the hardware to 5s from now. Any hrtimer_start after that
647 * will not reprogram the hardware due to hang_detected being
648 * set. So we'd effectivly block all timers until the T2 event
649 * fires.
650 */
61bb4bcb 651 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
6c6c0d5a
SH
652 return;
653
d2540875 654 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
655}
656
ebba2c72
AMG
657/* High resolution timer related functions */
658#ifdef CONFIG_HIGH_RES_TIMERS
659
660/*
661 * High resolution timer enabled ?
662 */
663static bool hrtimer_hres_enabled __read_mostly = true;
664unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
665EXPORT_SYMBOL_GPL(hrtimer_resolution);
666
667/*
668 * Enable / Disable high resolution mode
669 */
670static int __init setup_hrtimer_hres(char *str)
671{
672 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
673}
674
675__setup("highres=", setup_hrtimer_hres);
676
677/*
678 * hrtimer_high_res_enabled - query, if the highres mode is enabled
679 */
680static inline int hrtimer_is_hres_enabled(void)
681{
682 return hrtimer_hres_enabled;
683}
684
9ec26907
TG
685/*
686 * Retrigger next event is called after clock was set
687 *
688 * Called with interrupts disabled via on_each_cpu()
689 */
690static void retrigger_next_event(void *arg)
691{
dc5df73b 692 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 693
851cff8c 694 if (!__hrtimer_hres_active(base))
9ec26907
TG
695 return;
696
9ec26907 697 raw_spin_lock(&base->lock);
5baefd6d 698 hrtimer_update_base(base);
9ec26907
TG
699 hrtimer_force_reprogram(base, 0);
700 raw_spin_unlock(&base->lock);
701}
b12a03ce 702
54cdfdb4
TG
703/*
704 * Switch to high resolution mode
705 */
75e3b37d 706static void hrtimer_switch_to_hres(void)
54cdfdb4 707{
c6eb3f70 708 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
709
710 if (tick_init_highres()) {
7a6e5537
GU
711 pr_warn("Could not switch to high resolution mode on CPU %u\n",
712 base->cpu);
85e1cd6e 713 return;
54cdfdb4
TG
714 }
715 base->hres_active = 1;
398ca17f 716 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
717
718 tick_setup_sched_timer();
54cdfdb4
TG
719 /* "Retrigger" the interrupt to get things going */
720 retrigger_next_event(NULL);
54cdfdb4
TG
721}
722
5ec2481b
TG
723static void clock_was_set_work(struct work_struct *work)
724{
725 clock_was_set();
726}
727
728static DECLARE_WORK(hrtimer_work, clock_was_set_work);
729
f55a6faa 730/*
b4d90e9f 731 * Called from timekeeping and resume code to reprogram the hrtimer
5ec2481b 732 * interrupt device on all cpus.
f55a6faa
JS
733 */
734void clock_was_set_delayed(void)
735{
5ec2481b 736 schedule_work(&hrtimer_work);
f55a6faa
JS
737}
738
54cdfdb4
TG
739#else
740
54cdfdb4 741static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 742static inline void hrtimer_switch_to_hres(void) { }
9ec26907 743static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
744
745#endif /* CONFIG_HIGH_RES_TIMERS */
746
11a9fe06
AMG
747/*
748 * When a timer is enqueued and expires earlier than the already enqueued
749 * timers, we have to check, whether it expires earlier than the timer for
750 * which the clock event device was armed.
751 *
752 * Called with interrupts disabled and base->cpu_base.lock held
753 */
5da70160 754static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
11a9fe06
AMG
755{
756 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
3ec7a3ee 757 struct hrtimer_clock_base *base = timer->base;
11a9fe06
AMG
758 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
759
760 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
761
5da70160
AMG
762 /*
763 * CLOCK_REALTIME timer might be requested with an absolute
764 * expiry time which is less than base->offset. Set it to 0.
765 */
766 if (expires < 0)
767 expires = 0;
768
769 if (timer->is_soft) {
770 /*
771 * soft hrtimer could be started on a remote CPU. In this
772 * case softirq_expires_next needs to be updated on the
773 * remote CPU. The soft hrtimer will not expire before the
774 * first hard hrtimer on the remote CPU -
775 * hrtimer_check_target() prevents this case.
776 */
777 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
778
779 if (timer_cpu_base->softirq_activated)
780 return;
781
782 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
783 return;
784
785 timer_cpu_base->softirq_next_timer = timer;
786 timer_cpu_base->softirq_expires_next = expires;
787
788 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
789 !reprogram)
790 return;
791 }
792
11a9fe06
AMG
793 /*
794 * If the timer is not on the current cpu, we cannot reprogram
795 * the other cpus clock event device.
796 */
797 if (base->cpu_base != cpu_base)
798 return;
799
800 /*
801 * If the hrtimer interrupt is running, then it will
802 * reevaluate the clock bases and reprogram the clock event
803 * device. The callbacks are always executed in hard interrupt
804 * context so we don't need an extra check for a running
805 * callback.
806 */
807 if (cpu_base->in_hrtirq)
808 return;
809
11a9fe06
AMG
810 if (expires >= cpu_base->expires_next)
811 return;
812
813 /* Update the pointer to the next expiring timer */
814 cpu_base->next_timer = timer;
14c80341 815 cpu_base->expires_next = expires;
11a9fe06
AMG
816
817 /*
14c80341
AMG
818 * If hres is not active, hardware does not have to be
819 * programmed yet.
820 *
11a9fe06
AMG
821 * If a hang was detected in the last timer interrupt then we
822 * do not schedule a timer which is earlier than the expiry
823 * which we enforced in the hang detection. We want the system
824 * to make progress.
825 */
14c80341 826 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
11a9fe06
AMG
827 return;
828
829 /*
830 * Program the timer hardware. We enforce the expiry for
831 * events which are already in the past.
832 */
11a9fe06
AMG
833 tick_program_event(expires, 1);
834}
835
b12a03ce
TG
836/*
837 * Clock realtime was set
838 *
839 * Change the offset of the realtime clock vs. the monotonic
840 * clock.
841 *
842 * We might have to reprogram the high resolution timer interrupt. On
843 * SMP we call the architecture specific code to retrigger _all_ high
844 * resolution timer interrupts. On UP we just disable interrupts and
845 * call the high resolution interrupt code.
846 */
847void clock_was_set(void)
848{
90ff1f30 849#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
850 /* Retrigger the CPU local events everywhere */
851 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
852#endif
853 timerfd_clock_was_set();
b12a03ce
TG
854}
855
856/*
857 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
858 * interrupt on all online CPUs. However, all other CPUs will be
859 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 860 * must be deferred.
b12a03ce
TG
861 */
862void hrtimers_resume(void)
863{
53bef3fd 864 lockdep_assert_irqs_disabled();
5ec2481b 865 /* Retrigger on the local CPU */
b12a03ce 866 retrigger_next_event(NULL);
5ec2481b
TG
867 /* And schedule a retrigger for all others */
868 clock_was_set_delayed();
b12a03ce
TG
869}
870
c0a31329 871/*
6506f2aa 872 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
873 */
874static inline
875void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
876{
ecb49d1a 877 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
878}
879
880/**
881 * hrtimer_forward - forward the timer expiry
c0a31329 882 * @timer: hrtimer to forward
44f21475 883 * @now: forward past this time
c0a31329
TG
884 * @interval: the interval to forward
885 *
886 * Forward the timer expiry so it will expire in the future.
8dca6f33 887 * Returns the number of overruns.
91e5a217
TG
888 *
889 * Can be safely called from the callback function of @timer. If
890 * called from other contexts @timer must neither be enqueued nor
891 * running the callback and the caller needs to take care of
892 * serialization.
893 *
894 * Note: This only updates the timer expiry value and does not requeue
895 * the timer.
c0a31329 896 */
4d672e7a 897u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 898{
4d672e7a 899 u64 orun = 1;
44f21475 900 ktime_t delta;
c0a31329 901
cc584b21 902 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329 903
2456e855 904 if (delta < 0)
c0a31329
TG
905 return 0;
906
5de2755c
PZ
907 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
908 return 0;
909
2456e855
TG
910 if (interval < hrtimer_resolution)
911 interval = hrtimer_resolution;
c9db4fa1 912
2456e855 913 if (unlikely(delta >= interval)) {
df869b63 914 s64 incr = ktime_to_ns(interval);
c0a31329
TG
915
916 orun = ktime_divns(delta, incr);
cc584b21 917 hrtimer_add_expires_ns(timer, incr * orun);
2456e855 918 if (hrtimer_get_expires_tv64(timer) > now)
c0a31329
TG
919 return orun;
920 /*
921 * This (and the ktime_add() below) is the
922 * correction for exact:
923 */
924 orun++;
925 }
cc584b21 926 hrtimer_add_expires(timer, interval);
c0a31329
TG
927
928 return orun;
929}
6bdb6b62 930EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
931
932/*
933 * enqueue_hrtimer - internal function to (re)start a timer
934 *
935 * The timer is inserted in expiry order. Insertion into the
936 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
937 *
938 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 939 */
a6037b61 940static int enqueue_hrtimer(struct hrtimer *timer,
63e2ed36
AMG
941 struct hrtimer_clock_base *base,
942 enum hrtimer_mode mode)
c0a31329 943{
63e2ed36 944 debug_activate(timer, mode);
237fc6e7 945
ab8177bc 946 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 947
eb7b6f32
ED
948 /* Pairs with the lockless read in hrtimer_is_queued() */
949 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
a6037b61 950
b97f44c9 951 return timerqueue_add(&base->active, &timer->node);
288867ec 952}
c0a31329
TG
953
954/*
955 * __remove_hrtimer - internal function to remove a timer
956 *
957 * Caller must hold the base lock.
54cdfdb4
TG
958 *
959 * High resolution timer mode reprograms the clock event device when the
960 * timer is the one which expires next. The caller can disable this by setting
961 * reprogram to zero. This is useful, when the context does a reprogramming
962 * anyway (e.g. timer interrupt)
c0a31329 963 */
3c8aa39d 964static void __remove_hrtimer(struct hrtimer *timer,
303e967f 965 struct hrtimer_clock_base *base,
203cbf77 966 u8 newstate, int reprogram)
c0a31329 967{
e19ffe8b 968 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 969 u8 state = timer->state;
e19ffe8b 970
eb7b6f32
ED
971 /* Pairs with the lockless read in hrtimer_is_queued() */
972 WRITE_ONCE(timer->state, newstate);
895bdfa7
TG
973 if (!(state & HRTIMER_STATE_ENQUEUED))
974 return;
7403f41f 975
b97f44c9 976 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 977 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 978
895bdfa7
TG
979 /*
980 * Note: If reprogram is false we do not update
981 * cpu_base->next_timer. This happens when we remove the first
982 * timer on a remote cpu. No harm as we never dereference
983 * cpu_base->next_timer. So the worst thing what can happen is
984 * an superflous call to hrtimer_force_reprogram() on the
985 * remote cpu later on if the same timer gets enqueued again.
986 */
987 if (reprogram && timer == cpu_base->next_timer)
988 hrtimer_force_reprogram(cpu_base, 1);
c0a31329
TG
989}
990
991/*
992 * remove hrtimer, called with base lock held
993 */
994static inline int
8edfb036 995remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 996{
eb7b6f32
ED
997 u8 state = timer->state;
998
999 if (state & HRTIMER_STATE_ENQUEUED) {
54cdfdb4
TG
1000 int reprogram;
1001
1002 /*
1003 * Remove the timer and force reprogramming when high
1004 * resolution mode is active and the timer is on the current
1005 * CPU. If we remove a timer on another CPU, reprogramming is
1006 * skipped. The interrupt event on this CPU is fired and
1007 * reprogramming happens in the interrupt handler. This is a
1008 * rare case and less expensive than a smp call.
1009 */
c6a2a177 1010 debug_deactivate(timer);
dc5df73b 1011 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 1012
887d9dc9
PZ
1013 if (!restart)
1014 state = HRTIMER_STATE_INACTIVE;
1015
f13d4f97 1016 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
1017 return 1;
1018 }
1019 return 0;
1020}
1021
203cbf77
TG
1022static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1023 const enum hrtimer_mode mode)
1024{
1025#ifdef CONFIG_TIME_LOW_RES
1026 /*
1027 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1028 * granular time values. For relative timers we add hrtimer_resolution
1029 * (i.e. one jiffie) to prevent short timeouts.
1030 */
1031 timer->is_rel = mode & HRTIMER_MODE_REL;
1032 if (timer->is_rel)
8b0e1953 1033 tim = ktime_add_safe(tim, hrtimer_resolution);
203cbf77
TG
1034#endif
1035 return tim;
1036}
1037
5da70160
AMG
1038static void
1039hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1040{
1041 ktime_t expires;
1042
1043 /*
1044 * Find the next SOFT expiration.
1045 */
1046 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1047
1048 /*
1049 * reprogramming needs to be triggered, even if the next soft
1050 * hrtimer expires at the same time than the next hard
1051 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1052 */
1053 if (expires == KTIME_MAX)
1054 return;
1055
1056 /*
1057 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1058 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1059 */
1060 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1061}
1062
138a6b7a
AMG
1063static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1064 u64 delta_ns, const enum hrtimer_mode mode,
1065 struct hrtimer_clock_base *base)
c0a31329 1066{
138a6b7a 1067 struct hrtimer_clock_base *new_base;
c0a31329
TG
1068
1069 /* Remove an active timer from the queue: */
8edfb036 1070 remove_hrtimer(timer, base, true);
c0a31329 1071
203cbf77 1072 if (mode & HRTIMER_MODE_REL)
84ea7fe3 1073 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
1074
1075 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 1076
da8f2e17 1077 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 1078
84ea7fe3
VK
1079 /* Switch the timer base, if necessary: */
1080 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1081
138a6b7a
AMG
1082 return enqueue_hrtimer(timer, new_base, mode);
1083}
5da70160 1084
138a6b7a
AMG
1085/**
1086 * hrtimer_start_range_ns - (re)start an hrtimer
1087 * @timer: the timer to be added
1088 * @tim: expiry time
1089 * @delta_ns: "slack" range for the timer
1090 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
5da70160
AMG
1091 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1092 * softirq based mode is considered for debug purpose only!
138a6b7a
AMG
1093 */
1094void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1095 u64 delta_ns, const enum hrtimer_mode mode)
1096{
1097 struct hrtimer_clock_base *base;
1098 unsigned long flags;
1099
5da70160
AMG
1100 /*
1101 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1102 * match.
1103 */
1104 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1105
138a6b7a
AMG
1106 base = lock_hrtimer_base(timer, &flags);
1107
1108 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
5da70160 1109 hrtimer_reprogram(timer, true);
49a2a075 1110
c0a31329 1111 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 1112}
da8f2e17
AV
1113EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1114
c0a31329
TG
1115/**
1116 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1117 * @timer: hrtimer to stop
1118 *
1119 * Returns:
51633704
MCC
1120 *
1121 * * 0 when the timer was not active
1122 * * 1 when the timer was active
1123 * * -1 when the timer is currently executing the callback function and
fa9799e3 1124 * cannot be stopped
c0a31329
TG
1125 */
1126int hrtimer_try_to_cancel(struct hrtimer *timer)
1127{
3c8aa39d 1128 struct hrtimer_clock_base *base;
c0a31329
TG
1129 unsigned long flags;
1130 int ret = -1;
1131
19d9f422
TG
1132 /*
1133 * Check lockless first. If the timer is not active (neither
1134 * enqueued nor running the callback, nothing to do here. The
1135 * base lock does not serialize against a concurrent enqueue,
1136 * so we can avoid taking it.
1137 */
1138 if (!hrtimer_active(timer))
1139 return 0;
1140
c0a31329
TG
1141 base = lock_hrtimer_base(timer, &flags);
1142
303e967f 1143 if (!hrtimer_callback_running(timer))
8edfb036 1144 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1145
1146 unlock_hrtimer_base(timer, &flags);
1147
1148 return ret;
1149
1150}
8d16b764 1151EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1152
1153/**
1154 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1155 * @timer: the timer to be cancelled
1156 *
1157 * Returns:
1158 * 0 when the timer was not active
1159 * 1 when the timer was active
1160 */
1161int hrtimer_cancel(struct hrtimer *timer)
1162{
1163 for (;;) {
1164 int ret = hrtimer_try_to_cancel(timer);
1165
1166 if (ret >= 0)
1167 return ret;
5ef37b19 1168 cpu_relax();
c0a31329
TG
1169 }
1170}
8d16b764 1171EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1172
1173/**
1174 * hrtimer_get_remaining - get remaining time for the timer
c0a31329 1175 * @timer: the timer to read
203cbf77 1176 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1177 */
203cbf77 1178ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1179{
c0a31329
TG
1180 unsigned long flags;
1181 ktime_t rem;
1182
b3bd3de6 1183 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1184 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1185 rem = hrtimer_expires_remaining_adjusted(timer);
1186 else
1187 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1188 unlock_hrtimer_base(timer, &flags);
1189
1190 return rem;
1191}
203cbf77 1192EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1193
3451d024 1194#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1195/**
1196 * hrtimer_get_next_event - get the time until next expiry event
1197 *
c1ad348b 1198 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1199 */
c1ad348b 1200u64 hrtimer_get_next_event(void)
69239749 1201{
dc5df73b 1202 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1203 u64 expires = KTIME_MAX;
69239749 1204 unsigned long flags;
69239749 1205
ecb49d1a 1206 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1207
e19ffe8b 1208 if (!__hrtimer_hres_active(cpu_base))
5da70160 1209 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
3c8aa39d 1210
ecb49d1a 1211 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1212
c1ad348b 1213 return expires;
69239749 1214}
a59855cd
RW
1215
1216/**
1217 * hrtimer_next_event_without - time until next expiry event w/o one timer
1218 * @exclude: timer to exclude
1219 *
1220 * Returns the next expiry time over all timers except for the @exclude one or
1221 * KTIME_MAX if none of them is pending.
1222 */
1223u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1224{
1225 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1226 u64 expires = KTIME_MAX;
1227 unsigned long flags;
1228
1229 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1230
1231 if (__hrtimer_hres_active(cpu_base)) {
1232 unsigned int active;
1233
1234 if (!cpu_base->softirq_activated) {
1235 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1236 expires = __hrtimer_next_event_base(cpu_base, exclude,
1237 active, KTIME_MAX);
1238 }
1239 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1240 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1241 expires);
1242 }
1243
1244 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1245
1246 return expires;
1247}
69239749
TL
1248#endif
1249
336a9cde
MZ
1250static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1251{
1252 if (likely(clock_id < MAX_CLOCKS)) {
1253 int base = hrtimer_clock_to_base_table[clock_id];
1254
1255 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1256 return base;
1257 }
1258 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1259 return HRTIMER_BASE_MONOTONIC;
1260}
1261
237fc6e7
TG
1262static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1263 enum hrtimer_mode mode)
c0a31329 1264{
42f42da4
AMG
1265 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1266 int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
3c8aa39d 1267 struct hrtimer_cpu_base *cpu_base;
c0a31329 1268
7978672c
GA
1269 memset(timer, 0, sizeof(struct hrtimer));
1270
22127e93 1271 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1272
48d0c9be
AMG
1273 /*
1274 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1275 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1276 * ensure POSIX compliance.
1277 */
1278 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
7978672c
GA
1279 clock_id = CLOCK_MONOTONIC;
1280
42f42da4
AMG
1281 base += hrtimer_clockid_to_base(clock_id);
1282 timer->is_soft = softtimer;
e06383db 1283 timer->base = &cpu_base->clock_base[base];
998adc3d 1284 timerqueue_init(&timer->node);
c0a31329 1285}
237fc6e7
TG
1286
1287/**
1288 * hrtimer_init - initialize a timer to the given clock
1289 * @timer: the timer to be initialized
1290 * @clock_id: the clock to be used
42f42da4
AMG
1291 * @mode: The modes which are relevant for intitialization:
1292 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1293 * HRTIMER_MODE_REL_SOFT
1294 *
1295 * The PINNED variants of the above can be handed in,
1296 * but the PINNED bit is ignored as pinning happens
1297 * when the hrtimer is started
237fc6e7
TG
1298 */
1299void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1300 enum hrtimer_mode mode)
1301{
c6a2a177 1302 debug_init(timer, clock_id, mode);
237fc6e7
TG
1303 __hrtimer_init(timer, clock_id, mode);
1304}
8d16b764 1305EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1306
887d9dc9
PZ
1307/*
1308 * A timer is active, when it is enqueued into the rbtree or the
1309 * callback function is running or it's in the state of being migrated
1310 * to another cpu.
c0a31329 1311 *
887d9dc9 1312 * It is important for this function to not return a false negative.
c0a31329 1313 */
887d9dc9 1314bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1315{
3f0b9e8e 1316 struct hrtimer_clock_base *base;
887d9dc9 1317 unsigned int seq;
c0a31329 1318
887d9dc9 1319 do {
3f0b9e8e
AMG
1320 base = READ_ONCE(timer->base);
1321 seq = raw_read_seqcount_begin(&base->seq);
c0a31329 1322
887d9dc9 1323 if (timer->state != HRTIMER_STATE_INACTIVE ||
3f0b9e8e 1324 base->running == timer)
887d9dc9
PZ
1325 return true;
1326
3f0b9e8e
AMG
1327 } while (read_seqcount_retry(&base->seq, seq) ||
1328 base != READ_ONCE(timer->base));
887d9dc9
PZ
1329
1330 return false;
c0a31329 1331}
887d9dc9 1332EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1333
887d9dc9
PZ
1334/*
1335 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1336 * distinct sections:
1337 *
1338 * - queued: the timer is queued
1339 * - callback: the timer is being ran
1340 * - post: the timer is inactive or (re)queued
1341 *
1342 * On the read side we ensure we observe timer->state and cpu_base->running
1343 * from the same section, if anything changed while we looked at it, we retry.
1344 * This includes timer->base changing because sequence numbers alone are
1345 * insufficient for that.
1346 *
1347 * The sequence numbers are required because otherwise we could still observe
1348 * a false negative if the read side got smeared over multiple consequtive
1349 * __run_hrtimer() invocations.
1350 */
1351
21d6d52a
TG
1352static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1353 struct hrtimer_clock_base *base,
dd934aa8
AMG
1354 struct hrtimer *timer, ktime_t *now,
1355 unsigned long flags)
d3d74453 1356{
d3d74453
PZ
1357 enum hrtimer_restart (*fn)(struct hrtimer *);
1358 int restart;
1359
887d9dc9 1360 lockdep_assert_held(&cpu_base->lock);
ca109491 1361
c6a2a177 1362 debug_deactivate(timer);
3f0b9e8e 1363 base->running = timer;
887d9dc9
PZ
1364
1365 /*
1366 * Separate the ->running assignment from the ->state assignment.
1367 *
1368 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1369 * hrtimer_active() cannot observe base->running == NULL &&
887d9dc9
PZ
1370 * timer->state == INACTIVE.
1371 */
3f0b9e8e 1372 raw_write_seqcount_barrier(&base->seq);
887d9dc9
PZ
1373
1374 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1375 fn = timer->function;
ca109491 1376
203cbf77
TG
1377 /*
1378 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1379 * timer is restarted with a period then it becomes an absolute
1380 * timer. If its not restarted it does not matter.
1381 */
1382 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1383 timer->is_rel = false;
1384
ca109491 1385 /*
d05ca13b
TG
1386 * The timer is marked as running in the CPU base, so it is
1387 * protected against migration to a different CPU even if the lock
1388 * is dropped.
ca109491 1389 */
dd934aa8 1390 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c6a2a177 1391 trace_hrtimer_expire_entry(timer, now);
ca109491 1392 restart = fn(timer);
c6a2a177 1393 trace_hrtimer_expire_exit(timer);
dd934aa8 1394 raw_spin_lock_irq(&cpu_base->lock);
d3d74453
PZ
1395
1396 /*
887d9dc9 1397 * Note: We clear the running state after enqueue_hrtimer and
b4d90e9f 1398 * we do not reprogram the event hardware. Happens either in
e3f1d883 1399 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1400 *
1401 * Note: Because we dropped the cpu_base->lock above,
1402 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1403 * for us already.
d3d74453 1404 */
5de2755c
PZ
1405 if (restart != HRTIMER_NORESTART &&
1406 !(timer->state & HRTIMER_STATE_ENQUEUED))
63e2ed36 1407 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
f13d4f97 1408
887d9dc9
PZ
1409 /*
1410 * Separate the ->running assignment from the ->state assignment.
1411 *
1412 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1413 * hrtimer_active() cannot observe base->running.timer == NULL &&
887d9dc9
PZ
1414 * timer->state == INACTIVE.
1415 */
3f0b9e8e 1416 raw_write_seqcount_barrier(&base->seq);
f13d4f97 1417
3f0b9e8e
AMG
1418 WARN_ON_ONCE(base->running != timer);
1419 base->running = NULL;
d3d74453
PZ
1420}
1421
dd934aa8 1422static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
c458b1d1 1423 unsigned long flags, unsigned int active_mask)
54cdfdb4 1424{
c272ca58 1425 struct hrtimer_clock_base *base;
c458b1d1 1426 unsigned int active = cpu_base->active_bases & active_mask;
6ff7041d 1427
c272ca58 1428 for_each_active_base(base, cpu_base, active) {
998adc3d 1429 struct timerqueue_node *node;
ab8177bc
TG
1430 ktime_t basenow;
1431
54cdfdb4
TG
1432 basenow = ktime_add(now, base->offset);
1433
998adc3d 1434 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1435 struct hrtimer *timer;
1436
998adc3d 1437 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1438
654c8e0b
AV
1439 /*
1440 * The immediate goal for using the softexpires is
1441 * minimizing wakeups, not running timers at the
1442 * earliest interrupt after their soft expiration.
1443 * This allows us to avoid using a Priority Search
1444 * Tree, which can answer a stabbing querry for
1445 * overlapping intervals and instead use the simple
1446 * BST we already have.
1447 * We don't add extra wakeups by delaying timers that
1448 * are right-of a not yet expired timer, because that
1449 * timer will have to trigger a wakeup anyway.
1450 */
2456e855 1451 if (basenow < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1452 break;
54cdfdb4 1453
dd934aa8 1454 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
54cdfdb4 1455 }
54cdfdb4 1456 }
21d6d52a
TG
1457}
1458
5da70160
AMG
1459static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1460{
1461 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1462 unsigned long flags;
1463 ktime_t now;
1464
1465 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1466
1467 now = hrtimer_update_base(cpu_base);
1468 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1469
1470 cpu_base->softirq_activated = 0;
1471 hrtimer_update_softirq_timer(cpu_base, true);
1472
1473 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1474}
1475
21d6d52a
TG
1476#ifdef CONFIG_HIGH_RES_TIMERS
1477
1478/*
1479 * High resolution timer interrupt
1480 * Called with interrupts disabled
1481 */
1482void hrtimer_interrupt(struct clock_event_device *dev)
1483{
1484 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1485 ktime_t expires_next, now, entry_time, delta;
dd934aa8 1486 unsigned long flags;
21d6d52a
TG
1487 int retries = 0;
1488
1489 BUG_ON(!cpu_base->hres_active);
1490 cpu_base->nr_events++;
2456e855 1491 dev->next_event = KTIME_MAX;
21d6d52a 1492
dd934aa8 1493 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a
TG
1494 entry_time = now = hrtimer_update_base(cpu_base);
1495retry:
1496 cpu_base->in_hrtirq = 1;
1497 /*
1498 * We set expires_next to KTIME_MAX here with cpu_base->lock
1499 * held to prevent that a timer is enqueued in our queue via
1500 * the migration code. This does not affect enqueueing of
1501 * timers which run their callback and need to be requeued on
1502 * this CPU.
1503 */
2456e855 1504 cpu_base->expires_next = KTIME_MAX;
21d6d52a 1505
5da70160
AMG
1506 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1507 cpu_base->softirq_expires_next = KTIME_MAX;
1508 cpu_base->softirq_activated = 1;
1509 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1510 }
1511
c458b1d1 1512 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
21d6d52a 1513
9bc74919 1514 /* Reevaluate the clock bases for the next expiry */
5da70160 1515 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
6ff7041d
TG
1516 /*
1517 * Store the new expiry value so the migration code can verify
1518 * against it.
1519 */
54cdfdb4 1520 cpu_base->expires_next = expires_next;
9bc74919 1521 cpu_base->in_hrtirq = 0;
dd934aa8 1522 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
54cdfdb4
TG
1523
1524 /* Reprogramming necessary ? */
d2540875 1525 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1526 cpu_base->hang_detected = 0;
1527 return;
54cdfdb4 1528 }
41d2e494
TG
1529
1530 /*
1531 * The next timer was already expired due to:
1532 * - tracing
1533 * - long lasting callbacks
1534 * - being scheduled away when running in a VM
1535 *
1536 * We need to prevent that we loop forever in the hrtimer
1537 * interrupt routine. We give it 3 attempts to avoid
1538 * overreacting on some spurious event.
5baefd6d
JS
1539 *
1540 * Acquire base lock for updating the offsets and retrieving
1541 * the current time.
41d2e494 1542 */
dd934aa8 1543 raw_spin_lock_irqsave(&cpu_base->lock, flags);
5baefd6d 1544 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1545 cpu_base->nr_retries++;
1546 if (++retries < 3)
1547 goto retry;
1548 /*
1549 * Give the system a chance to do something else than looping
1550 * here. We stored the entry time, so we know exactly how long
1551 * we spent here. We schedule the next event this amount of
1552 * time away.
1553 */
1554 cpu_base->nr_hangs++;
1555 cpu_base->hang_detected = 1;
dd934aa8
AMG
1556 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1557
41d2e494 1558 delta = ktime_sub(now, entry_time);
2456e855
TG
1559 if ((unsigned int)delta > cpu_base->max_hang_time)
1560 cpu_base->max_hang_time = (unsigned int) delta;
41d2e494
TG
1561 /*
1562 * Limit it to a sensible value as we enforce a longer
1563 * delay. Give the CPU at least 100ms to catch up.
1564 */
2456e855 1565 if (delta > 100 * NSEC_PER_MSEC)
41d2e494
TG
1566 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1567 else
1568 expires_next = ktime_add(now, delta);
1569 tick_program_event(expires_next, 1);
7a6e5537 1570 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
54cdfdb4
TG
1571}
1572
016da201 1573/* called with interrupts disabled */
c6eb3f70 1574static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1575{
1576 struct tick_device *td;
1577
1578 if (!hrtimer_hres_active())
1579 return;
1580
22127e93 1581 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1582 if (td && td->evtdev)
1583 hrtimer_interrupt(td->evtdev);
1584}
1585
82c5b7b5
IM
1586#else /* CONFIG_HIGH_RES_TIMERS */
1587
1588static inline void __hrtimer_peek_ahead_timers(void) { }
1589
1590#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1591
d3d74453 1592/*
c6eb3f70 1593 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1594 */
833883d9 1595void hrtimer_run_queues(void)
d3d74453 1596{
dc5df73b 1597 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
dd934aa8 1598 unsigned long flags;
21d6d52a 1599 ktime_t now;
c0a31329 1600
e19ffe8b 1601 if (__hrtimer_hres_active(cpu_base))
d3d74453 1602 return;
54cdfdb4 1603
d3d74453 1604 /*
c6eb3f70
TG
1605 * This _is_ ugly: We have to check periodically, whether we
1606 * can switch to highres and / or nohz mode. The clocksource
1607 * switch happens with xtime_lock held. Notification from
1608 * there only sets the check bit in the tick_oneshot code,
1609 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1610 */
c6eb3f70 1611 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1612 hrtimer_switch_to_hres();
3055adda 1613 return;
833883d9 1614 }
c6eb3f70 1615
dd934aa8 1616 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a 1617 now = hrtimer_update_base(cpu_base);
5da70160
AMG
1618
1619 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1620 cpu_base->softirq_expires_next = KTIME_MAX;
1621 cpu_base->softirq_activated = 1;
1622 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1623 }
1624
c458b1d1 1625 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
dd934aa8 1626 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c0a31329
TG
1627}
1628
10c94ec1
TG
1629/*
1630 * Sleep related functions:
1631 */
c9cb2e3d 1632static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1633{
1634 struct hrtimer_sleeper *t =
1635 container_of(timer, struct hrtimer_sleeper, timer);
1636 struct task_struct *task = t->task;
1637
1638 t->task = NULL;
1639 if (task)
1640 wake_up_process(task);
1641
1642 return HRTIMER_NORESTART;
1643}
1644
36c8b586 1645void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1646{
1647 sl->timer.function = hrtimer_wakeup;
1648 sl->task = task;
1649}
2bc481cf 1650EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1651
c0edd7c9 1652int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
ce41aaf4
AV
1653{
1654 switch(restart->nanosleep.type) {
0fe27955 1655#ifdef CONFIG_COMPAT_32BIT_TIME
ce41aaf4 1656 case TT_COMPAT:
9afc5eee 1657 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
ce41aaf4
AV
1658 return -EFAULT;
1659 break;
1660#endif
1661 case TT_NATIVE:
c0edd7c9 1662 if (put_timespec64(ts, restart->nanosleep.rmtp))
ce41aaf4
AV
1663 return -EFAULT;
1664 break;
1665 default:
1666 BUG();
1667 }
1668 return -ERESTART_RESTARTBLOCK;
1669}
1670
669d7868 1671static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1672{
edbeda46
AV
1673 struct restart_block *restart;
1674
669d7868 1675 hrtimer_init_sleeper(t, current);
10c94ec1 1676
432569bb
RZ
1677 do {
1678 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1679 hrtimer_start_expires(&t->timer, mode);
432569bb 1680
54cdfdb4 1681 if (likely(t->task))
b0f8c44f 1682 freezable_schedule();
432569bb 1683
669d7868 1684 hrtimer_cancel(&t->timer);
c9cb2e3d 1685 mode = HRTIMER_MODE_ABS;
669d7868
TG
1686
1687 } while (t->task && !signal_pending(current));
432569bb 1688
3588a085
PZ
1689 __set_current_state(TASK_RUNNING);
1690
a7602681 1691 if (!t->task)
080344b9 1692 return 0;
080344b9 1693
edbeda46
AV
1694 restart = &current->restart_block;
1695 if (restart->nanosleep.type != TT_NONE) {
a7602681 1696 ktime_t rem = hrtimer_expires_remaining(&t->timer);
c0edd7c9 1697 struct timespec64 rmt;
edbeda46 1698
a7602681
AV
1699 if (rem <= 0)
1700 return 0;
c0edd7c9 1701 rmt = ktime_to_timespec64(rem);
a7602681 1702
ce41aaf4 1703 return nanosleep_copyout(restart, &rmt);
a7602681
AV
1704 }
1705 return -ERESTART_RESTARTBLOCK;
080344b9
ON
1706}
1707
fb923c4a 1708static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1709{
669d7868 1710 struct hrtimer_sleeper t;
a7602681 1711 int ret;
10c94ec1 1712
ab8177bc 1713 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1714 HRTIMER_MODE_ABS);
cc584b21 1715 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1716
a7602681 1717 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
237fc6e7
TG
1718 destroy_hrtimer_on_stack(&t.timer);
1719 return ret;
10c94ec1
TG
1720}
1721
938e7cf2 1722long hrtimer_nanosleep(const struct timespec64 *rqtp,
10c94ec1
TG
1723 const enum hrtimer_mode mode, const clockid_t clockid)
1724{
a7602681 1725 struct restart_block *restart;
669d7868 1726 struct hrtimer_sleeper t;
237fc6e7 1727 int ret = 0;
da8b44d5 1728 u64 slack;
3bd01206
AV
1729
1730 slack = current->timer_slack_ns;
aab03e05 1731 if (dl_task(current) || rt_task(current))
3bd01206 1732 slack = 0;
10c94ec1 1733
237fc6e7 1734 hrtimer_init_on_stack(&t.timer, clockid, mode);
ad196384 1735 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
a7602681
AV
1736 ret = do_nanosleep(&t, mode);
1737 if (ret != -ERESTART_RESTARTBLOCK)
237fc6e7 1738 goto out;
10c94ec1 1739
7978672c 1740 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1741 if (mode == HRTIMER_MODE_ABS) {
1742 ret = -ERESTARTNOHAND;
1743 goto out;
1744 }
10c94ec1 1745
a7602681 1746 restart = &current->restart_block;
1711ef38 1747 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1748 restart->nanosleep.clockid = t.timer.base->clockid;
cc584b21 1749 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
237fc6e7
TG
1750out:
1751 destroy_hrtimer_on_stack(&t.timer);
1752 return ret;
10c94ec1
TG
1753}
1754
01909974
DD
1755#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1756
1757SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1758 struct __kernel_timespec __user *, rmtp)
6ba1b912 1759{
c0edd7c9 1760 struct timespec64 tu;
6ba1b912 1761
c0edd7c9 1762 if (get_timespec64(&tu, rqtp))
6ba1b912
TG
1763 return -EFAULT;
1764
c0edd7c9 1765 if (!timespec64_valid(&tu))
6ba1b912
TG
1766 return -EINVAL;
1767
edbeda46 1768 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
192a82f9 1769 current->restart_block.nanosleep.rmtp = rmtp;
c0edd7c9 1770 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1771}
1772
01909974
DD
1773#endif
1774
b5793b0d 1775#ifdef CONFIG_COMPAT_32BIT_TIME
edbeda46 1776
8dabe724 1777SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
9afc5eee 1778 struct old_timespec32 __user *, rmtp)
edbeda46 1779{
c0edd7c9 1780 struct timespec64 tu;
edbeda46 1781
9afc5eee 1782 if (get_old_timespec32(&tu, rqtp))
edbeda46
AV
1783 return -EFAULT;
1784
c0edd7c9 1785 if (!timespec64_valid(&tu))
edbeda46
AV
1786 return -EINVAL;
1787
1788 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1789 current->restart_block.nanosleep.compat_rmtp = rmtp;
c0edd7c9 1790 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
edbeda46
AV
1791}
1792#endif
1793
c0a31329
TG
1794/*
1795 * Functions related to boot-time initialization:
1796 */
27590dc1 1797int hrtimers_prepare_cpu(unsigned int cpu)
c0a31329 1798{
3c8aa39d 1799 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1800 int i;
1801
998adc3d 1802 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1803 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1804 timerqueue_init_head(&cpu_base->clock_base[i].active);
1805 }
3c8aa39d 1806
cddd0248 1807 cpu_base->cpu = cpu;
303c146d 1808 cpu_base->active_bases = 0;
28bfd18b 1809 cpu_base->hres_active = 0;
303c146d
TG
1810 cpu_base->hang_detected = 0;
1811 cpu_base->next_timer = NULL;
1812 cpu_base->softirq_next_timer = NULL;
07a9a7ea 1813 cpu_base->expires_next = KTIME_MAX;
5da70160 1814 cpu_base->softirq_expires_next = KTIME_MAX;
27590dc1 1815 return 0;
c0a31329
TG
1816}
1817
1818#ifdef CONFIG_HOTPLUG_CPU
1819
ca109491 1820static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1821 struct hrtimer_clock_base *new_base)
c0a31329
TG
1822{
1823 struct hrtimer *timer;
998adc3d 1824 struct timerqueue_node *node;
c0a31329 1825
998adc3d
JS
1826 while ((node = timerqueue_getnext(&old_base->active))) {
1827 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1828 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1829 debug_deactivate(timer);
b00c1a99
TG
1830
1831 /*
c04dca02 1832 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1833 * timer could be seen as !active and just vanish away
1834 * under us on another CPU
1835 */
c04dca02 1836 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1837 timer->base = new_base;
54cdfdb4 1838 /*
e3f1d883
TG
1839 * Enqueue the timers on the new cpu. This does not
1840 * reprogram the event device in case the timer
1841 * expires before the earliest on this CPU, but we run
1842 * hrtimer_interrupt after we migrated everything to
1843 * sort out already expired timers and reprogram the
1844 * event device.
54cdfdb4 1845 */
63e2ed36 1846 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
c0a31329
TG
1847 }
1848}
1849
27590dc1 1850int hrtimers_dead_cpu(unsigned int scpu)
c0a31329 1851{
3c8aa39d 1852 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1853 int i;
c0a31329 1854
37810659 1855 BUG_ON(cpu_online(scpu));
37810659 1856 tick_cancel_sched_timer(scpu);
731a55ba 1857
5da70160
AMG
1858 /*
1859 * this BH disable ensures that raise_softirq_irqoff() does
1860 * not wakeup ksoftirqd (and acquire the pi-lock) while
1861 * holding the cpu_base lock
1862 */
1863 local_bh_disable();
731a55ba
TG
1864 local_irq_disable();
1865 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1866 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1867 /*
1868 * The caller is globally serialized and nobody else
1869 * takes two locks at once, deadlock is not possible.
1870 */
ecb49d1a
TG
1871 raw_spin_lock(&new_base->lock);
1872 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1873
3c8aa39d 1874 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1875 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1876 &new_base->clock_base[i]);
c0a31329
TG
1877 }
1878
5da70160
AMG
1879 /*
1880 * The migration might have changed the first expiring softirq
1881 * timer on this CPU. Update it.
1882 */
1883 hrtimer_update_softirq_timer(new_base, false);
1884
ecb49d1a
TG
1885 raw_spin_unlock(&old_base->lock);
1886 raw_spin_unlock(&new_base->lock);
37810659 1887
731a55ba
TG
1888 /* Check, if we got expired work to do */
1889 __hrtimer_peek_ahead_timers();
1890 local_irq_enable();
5da70160 1891 local_bh_enable();
27590dc1 1892 return 0;
c0a31329 1893}
37810659 1894
c0a31329
TG
1895#endif /* CONFIG_HOTPLUG_CPU */
1896
c0a31329
TG
1897void __init hrtimers_init(void)
1898{
27590dc1 1899 hrtimers_prepare_cpu(smp_processor_id());
5da70160 1900 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
c0a31329
TG
1901}
1902
7bb67439 1903/**
351b3f7a 1904 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1905 * @expires: timeout value (ktime_t)
654c8e0b 1906 * @delta: slack in expires timeout (ktime_t)
90777713
AMG
1907 * @mode: timer mode
1908 * @clock_id: timer clock to be used
7bb67439 1909 */
351b3f7a 1910int __sched
da8b44d5 1911schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
90777713 1912 const enum hrtimer_mode mode, clockid_t clock_id)
7bb67439
AV
1913{
1914 struct hrtimer_sleeper t;
1915
1916 /*
1917 * Optimize when a zero timeout value is given. It does not
1918 * matter whether this is an absolute or a relative time.
1919 */
2456e855 1920 if (expires && *expires == 0) {
7bb67439
AV
1921 __set_current_state(TASK_RUNNING);
1922 return 0;
1923 }
1924
1925 /*
43b21013 1926 * A NULL parameter means "infinite"
7bb67439
AV
1927 */
1928 if (!expires) {
1929 schedule();
7bb67439
AV
1930 return -EINTR;
1931 }
1932
90777713 1933 hrtimer_init_on_stack(&t.timer, clock_id, mode);
654c8e0b 1934 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1935
1936 hrtimer_init_sleeper(&t, current);
1937
cc584b21 1938 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1939
1940 if (likely(t.task))
1941 schedule();
1942
1943 hrtimer_cancel(&t.timer);
1944 destroy_hrtimer_on_stack(&t.timer);
1945
1946 __set_current_state(TASK_RUNNING);
1947
1948 return !t.task ? 0 : -EINTR;
1949}
351b3f7a
CE
1950
1951/**
1952 * schedule_hrtimeout_range - sleep until timeout
1953 * @expires: timeout value (ktime_t)
1954 * @delta: slack in expires timeout (ktime_t)
90777713 1955 * @mode: timer mode
351b3f7a
CE
1956 *
1957 * Make the current task sleep until the given expiry time has
1958 * elapsed. The routine will return immediately unless
1959 * the current task state has been set (see set_current_state()).
1960 *
1961 * The @delta argument gives the kernel the freedom to schedule the
1962 * actual wakeup to a time that is both power and performance friendly.
1963 * The kernel give the normal best effort behavior for "@expires+@delta",
1964 * but may decide to fire the timer earlier, but no earlier than @expires.
1965 *
1966 * You can set the task state as follows -
1967 *
1968 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1969 * pass before the routine returns unless the current task is explicitly
1970 * woken up, (e.g. by wake_up_process()).
351b3f7a
CE
1971 *
1972 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1973 * delivered to the current task or the current task is explicitly woken
1974 * up.
351b3f7a
CE
1975 *
1976 * The current task state is guaranteed to be TASK_RUNNING when this
1977 * routine returns.
1978 *
4b7e9cf9
DA
1979 * Returns 0 when the timer has expired. If the task was woken before the
1980 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1981 * by an explicit wakeup, it returns -EINTR.
351b3f7a 1982 */
da8b44d5 1983int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
1984 const enum hrtimer_mode mode)
1985{
1986 return schedule_hrtimeout_range_clock(expires, delta, mode,
1987 CLOCK_MONOTONIC);
1988}
654c8e0b
AV
1989EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1990
1991/**
1992 * schedule_hrtimeout - sleep until timeout
1993 * @expires: timeout value (ktime_t)
90777713 1994 * @mode: timer mode
654c8e0b
AV
1995 *
1996 * Make the current task sleep until the given expiry time has
1997 * elapsed. The routine will return immediately unless
1998 * the current task state has been set (see set_current_state()).
1999 *
2000 * You can set the task state as follows -
2001 *
2002 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
2003 * pass before the routine returns unless the current task is explicitly
2004 * woken up, (e.g. by wake_up_process()).
654c8e0b
AV
2005 *
2006 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
2007 * delivered to the current task or the current task is explicitly woken
2008 * up.
654c8e0b
AV
2009 *
2010 * The current task state is guaranteed to be TASK_RUNNING when this
2011 * routine returns.
2012 *
4b7e9cf9
DA
2013 * Returns 0 when the timer has expired. If the task was woken before the
2014 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2015 * by an explicit wakeup, it returns -EINTR.
654c8e0b
AV
2016 */
2017int __sched schedule_hrtimeout(ktime_t *expires,
2018 const enum hrtimer_mode mode)
2019{
2020 return schedule_hrtimeout_range(expires, 0, mode);
2021}
7bb67439 2022EXPORT_SYMBOL_GPL(schedule_hrtimeout);