]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/time/hrtimer.c
hrtimer: Factor out __hrtimer_start_range_ns()
[mirror_ubuntu-eoan-kernel.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
174cd4b1 46#include <linux/sched/signal.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
370c9135 50#include <linux/sched/nohz.h>
b17b0153 51#include <linux/sched/debug.h>
eea08f32 52#include <linux/timer.h>
b0f8c44f 53#include <linux/freezer.h>
edbeda46 54#include <linux/compat.h>
c0a31329 55
7c0f6ba6 56#include <linux/uaccess.h>
c0a31329 57
c6a2a177
XG
58#include <trace/events/timer.h>
59
c1797baf 60#include "tick-internal.h"
8b094cd0 61
c0a31329
TG
62/*
63 * The timer bases:
7978672c 64 *
571af55a 65 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
66 * into the timer bases by the hrtimer_base_type enum. When trying
67 * to reach a base using a clockid, hrtimer_clockid_to_base()
68 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 69 */
54cdfdb4 70DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 71{
84cc8fd2 72 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 73 .clock_base =
c0a31329 74 {
3c8aa39d 75 {
ab8177bc
TG
76 .index = HRTIMER_BASE_MONOTONIC,
77 .clockid = CLOCK_MONOTONIC,
3c8aa39d 78 .get_time = &ktime_get,
3c8aa39d 79 },
68fa61c0
TG
80 {
81 .index = HRTIMER_BASE_REALTIME,
82 .clockid = CLOCK_REALTIME,
83 .get_time = &ktime_get_real,
68fa61c0 84 },
70a08cca 85 {
ab8177bc
TG
86 .index = HRTIMER_BASE_BOOTTIME,
87 .clockid = CLOCK_BOOTTIME,
70a08cca 88 .get_time = &ktime_get_boottime,
70a08cca 89 },
90adda98
JS
90 {
91 .index = HRTIMER_BASE_TAI,
92 .clockid = CLOCK_TAI,
93 .get_time = &ktime_get_clocktai,
90adda98 94 },
3c8aa39d 95 }
c0a31329
TG
96};
97
942c3c5c 98static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
336a9cde
MZ
99 /* Make sure we catch unsupported clockids */
100 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
101
ce31332d
TG
102 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
103 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
104 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 105 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 106};
e06383db 107
c0a31329
TG
108/*
109 * Functions and macros which are different for UP/SMP systems are kept in a
110 * single place
111 */
112#ifdef CONFIG_SMP
113
887d9dc9
PZ
114/*
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
118 */
119static struct hrtimer_cpu_base migration_cpu_base = {
887d9dc9
PZ
120 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
121};
122
123#define migration_base migration_cpu_base.clock_base[0]
124
c0a31329
TG
125/*
126 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
127 * means that all timers which are tied to this base via timer->base are
128 * locked, and the base itself is locked too.
129 *
130 * So __run_timers/migrate_timers can safely modify all timers which could
131 * be found on the lists/queues.
132 *
133 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
134 * possible to set timer->base = &migration_base and drop the lock: the timer
135 * remains locked.
c0a31329 136 */
3c8aa39d
TG
137static
138struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
139 unsigned long *flags)
c0a31329 140{
3c8aa39d 141 struct hrtimer_clock_base *base;
c0a31329
TG
142
143 for (;;) {
144 base = timer->base;
887d9dc9 145 if (likely(base != &migration_base)) {
ecb49d1a 146 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
147 if (likely(base == timer->base))
148 return base;
149 /* The timer has migrated to another CPU: */
ecb49d1a 150 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
151 }
152 cpu_relax();
153 }
154}
155
6ff7041d 156/*
07a9a7ea
AMG
157 * We do not migrate the timer when it is expiring before the next
158 * event on the target cpu. When high resolution is enabled, we cannot
159 * reprogram the target cpu hardware and we would cause it to fire
160 * late. To keep it simple, we handle the high resolution enabled and
161 * disabled case similar.
6ff7041d
TG
162 *
163 * Called with cpu_base->lock of target cpu held.
164 */
165static int
166hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
167{
6ff7041d
TG
168 ktime_t expires;
169
6ff7041d 170 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
2ac2dccc 171 return expires < new_base->cpu_base->expires_next;
6ff7041d
TG
172}
173
bc7a34b8
TG
174static inline
175struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
176 int pinned)
177{
ae67bada
TG
178#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
179 if (static_branch_likely(&timers_migration_enabled) && !pinned)
180 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
181#endif
662b3e19 182 return base;
bc7a34b8 183}
bc7a34b8 184
c0a31329 185/*
b48362d8
FW
186 * We switch the timer base to a power-optimized selected CPU target,
187 * if:
188 * - NO_HZ_COMMON is enabled
189 * - timer migration is enabled
190 * - the timer callback is not running
191 * - the timer is not the first expiring timer on the new target
192 *
193 * If one of the above requirements is not fulfilled we move the timer
194 * to the current CPU or leave it on the previously assigned CPU if
195 * the timer callback is currently running.
c0a31329 196 */
3c8aa39d 197static inline struct hrtimer_clock_base *
597d0275
AB
198switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
199 int pinned)
c0a31329 200{
b48362d8 201 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 202 struct hrtimer_clock_base *new_base;
ab8177bc 203 int basenum = base->index;
c0a31329 204
b48362d8
FW
205 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
206 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 207again:
e06383db 208 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
209
210 if (base != new_base) {
211 /*
6ff7041d 212 * We are trying to move timer to new_base.
c0a31329
TG
213 * However we can't change timer's base while it is running,
214 * so we keep it on the same CPU. No hassle vs. reprogramming
215 * the event source in the high resolution case. The softirq
216 * code will take care of this when the timer function has
217 * completed. There is no conflict as we hold the lock until
218 * the timer is enqueued.
219 */
54cdfdb4 220 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
221 return base;
222
887d9dc9
PZ
223 /* See the comment in lock_hrtimer_base() */
224 timer->base = &migration_base;
ecb49d1a
TG
225 raw_spin_unlock(&base->cpu_base->lock);
226 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 227
b48362d8 228 if (new_cpu_base != this_cpu_base &&
bc7a34b8 229 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
230 raw_spin_unlock(&new_base->cpu_base->lock);
231 raw_spin_lock(&base->cpu_base->lock);
b48362d8 232 new_cpu_base = this_cpu_base;
6ff7041d
TG
233 timer->base = base;
234 goto again;
eea08f32 235 }
c0a31329 236 timer->base = new_base;
012a45e3 237 } else {
b48362d8 238 if (new_cpu_base != this_cpu_base &&
bc7a34b8 239 hrtimer_check_target(timer, new_base)) {
b48362d8 240 new_cpu_base = this_cpu_base;
012a45e3
LM
241 goto again;
242 }
c0a31329
TG
243 }
244 return new_base;
245}
246
247#else /* CONFIG_SMP */
248
3c8aa39d 249static inline struct hrtimer_clock_base *
c0a31329
TG
250lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
251{
3c8aa39d 252 struct hrtimer_clock_base *base = timer->base;
c0a31329 253
ecb49d1a 254 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
255
256 return base;
257}
258
eea08f32 259# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
260
261#endif /* !CONFIG_SMP */
262
263/*
264 * Functions for the union type storage format of ktime_t which are
265 * too large for inlining:
266 */
267#if BITS_PER_LONG < 64
c0a31329
TG
268/*
269 * Divide a ktime value by a nanosecond value
270 */
f7bcb70e 271s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 272{
c0a31329 273 int sft = 0;
f7bcb70e
JS
274 s64 dclc;
275 u64 tmp;
c0a31329 276
900cfa46 277 dclc = ktime_to_ns(kt);
f7bcb70e
JS
278 tmp = dclc < 0 ? -dclc : dclc;
279
c0a31329
TG
280 /* Make sure the divisor is less than 2^32: */
281 while (div >> 32) {
282 sft++;
283 div >>= 1;
284 }
f7bcb70e
JS
285 tmp >>= sft;
286 do_div(tmp, (unsigned long) div);
287 return dclc < 0 ? -tmp : tmp;
c0a31329 288}
8b618628 289EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
290#endif /* BITS_PER_LONG >= 64 */
291
5a7780e7
TG
292/*
293 * Add two ktime values and do a safety check for overflow:
294 */
295ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
296{
979515c5 297 ktime_t res = ktime_add_unsafe(lhs, rhs);
5a7780e7
TG
298
299 /*
300 * We use KTIME_SEC_MAX here, the maximum timeout which we can
301 * return to user space in a timespec:
302 */
2456e855 303 if (res < 0 || res < lhs || res < rhs)
5a7780e7
TG
304 res = ktime_set(KTIME_SEC_MAX, 0);
305
306 return res;
307}
308
8daa21e6
AB
309EXPORT_SYMBOL_GPL(ktime_add_safe);
310
237fc6e7
TG
311#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
312
313static struct debug_obj_descr hrtimer_debug_descr;
314
99777288
SG
315static void *hrtimer_debug_hint(void *addr)
316{
317 return ((struct hrtimer *) addr)->function;
318}
319
237fc6e7
TG
320/*
321 * fixup_init is called when:
322 * - an active object is initialized
323 */
e3252464 324static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
325{
326 struct hrtimer *timer = addr;
327
328 switch (state) {
329 case ODEBUG_STATE_ACTIVE:
330 hrtimer_cancel(timer);
331 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 332 return true;
237fc6e7 333 default:
e3252464 334 return false;
237fc6e7
TG
335 }
336}
337
338/*
339 * fixup_activate is called when:
340 * - an active object is activated
b9fdac7f 341 * - an unknown non-static object is activated
237fc6e7 342 */
e3252464 343static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
344{
345 switch (state) {
237fc6e7
TG
346 case ODEBUG_STATE_ACTIVE:
347 WARN_ON(1);
348
349 default:
e3252464 350 return false;
237fc6e7
TG
351 }
352}
353
354/*
355 * fixup_free is called when:
356 * - an active object is freed
357 */
e3252464 358static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
359{
360 struct hrtimer *timer = addr;
361
362 switch (state) {
363 case ODEBUG_STATE_ACTIVE:
364 hrtimer_cancel(timer);
365 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 366 return true;
237fc6e7 367 default:
e3252464 368 return false;
237fc6e7
TG
369 }
370}
371
372static struct debug_obj_descr hrtimer_debug_descr = {
373 .name = "hrtimer",
99777288 374 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
375 .fixup_init = hrtimer_fixup_init,
376 .fixup_activate = hrtimer_fixup_activate,
377 .fixup_free = hrtimer_fixup_free,
378};
379
380static inline void debug_hrtimer_init(struct hrtimer *timer)
381{
382 debug_object_init(timer, &hrtimer_debug_descr);
383}
384
385static inline void debug_hrtimer_activate(struct hrtimer *timer)
386{
387 debug_object_activate(timer, &hrtimer_debug_descr);
388}
389
390static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
391{
392 debug_object_deactivate(timer, &hrtimer_debug_descr);
393}
394
395static inline void debug_hrtimer_free(struct hrtimer *timer)
396{
397 debug_object_free(timer, &hrtimer_debug_descr);
398}
399
400static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
401 enum hrtimer_mode mode);
402
403void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
404 enum hrtimer_mode mode)
405{
406 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
407 __hrtimer_init(timer, clock_id, mode);
408}
2bc481cf 409EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
410
411void destroy_hrtimer_on_stack(struct hrtimer *timer)
412{
413 debug_object_free(timer, &hrtimer_debug_descr);
414}
c08376ac 415EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
237fc6e7
TG
416
417#else
418static inline void debug_hrtimer_init(struct hrtimer *timer) { }
419static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
420static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
421#endif
422
c6a2a177
XG
423static inline void
424debug_init(struct hrtimer *timer, clockid_t clockid,
425 enum hrtimer_mode mode)
426{
427 debug_hrtimer_init(timer);
428 trace_hrtimer_init(timer, clockid, mode);
429}
430
63e2ed36
AMG
431static inline void debug_activate(struct hrtimer *timer,
432 enum hrtimer_mode mode)
c6a2a177
XG
433{
434 debug_hrtimer_activate(timer);
63e2ed36 435 trace_hrtimer_start(timer, mode);
c6a2a177
XG
436}
437
438static inline void debug_deactivate(struct hrtimer *timer)
439{
440 debug_hrtimer_deactivate(timer);
441 trace_hrtimer_cancel(timer);
442}
443
c272ca58
AMG
444static struct hrtimer_clock_base *
445__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
446{
447 unsigned int idx;
448
449 if (!*active)
450 return NULL;
451
452 idx = __ffs(*active);
453 *active &= ~(1U << idx);
454
455 return &cpu_base->clock_base[idx];
456}
457
458#define for_each_active_base(base, cpu_base, active) \
459 while ((base = __next_base((cpu_base), &(active))))
460
4ebbda52 461static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
9bc74919 462{
c272ca58 463 struct hrtimer_clock_base *base;
34aee88a 464 unsigned int active = cpu_base->active_bases;
2456e855 465 ktime_t expires, expires_next = KTIME_MAX;
9bc74919 466
eb27926b 467 cpu_base->next_timer = NULL;
c272ca58 468 for_each_active_base(base, cpu_base, active) {
9bc74919
TG
469 struct timerqueue_node *next;
470 struct hrtimer *timer;
471
34aee88a 472 next = timerqueue_getnext(&base->active);
9bc74919
TG
473 timer = container_of(next, struct hrtimer, node);
474 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
2456e855 475 if (expires < expires_next) {
9bc74919 476 expires_next = expires;
eb27926b 477 cpu_base->next_timer = timer;
895bdfa7 478 }
9bc74919
TG
479 }
480 /*
481 * clock_was_set() might have changed base->offset of any of
482 * the clock bases so the result might be negative. Fix it up
483 * to prevent a false positive in clockevents_program_event().
484 */
2456e855
TG
485 if (expires_next < 0)
486 expires_next = 0;
9bc74919
TG
487 return expires_next;
488}
9bc74919 489
21d6d52a
TG
490static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
491{
492 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
493 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
494 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
495
868a3e91
TG
496 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
497 offs_real, offs_boot, offs_tai);
21d6d52a
TG
498}
499
28bfd18b
AMG
500/*
501 * Is the high resolution mode active ?
502 */
503static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
504{
505 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
506 cpu_base->hres_active : 0;
507}
508
509static inline int hrtimer_hres_active(void)
510{
511 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
512}
513
54cdfdb4
TG
514/*
515 * Reprogram the event source with checking both queues for the
516 * next event
517 * Called with interrupts disabled and base->lock held
518 */
7403f41f
AC
519static void
520hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 521{
21d6d52a
TG
522 ktime_t expires_next;
523
21d6d52a 524 expires_next = __hrtimer_get_next_event(cpu_base);
54cdfdb4 525
2456e855 526 if (skip_equal && expires_next == cpu_base->expires_next)
7403f41f
AC
527 return;
528
2456e855 529 cpu_base->expires_next = expires_next;
7403f41f 530
6c6c0d5a 531 /*
61bb4bcb
AMG
532 * If hres is not active, hardware does not have to be
533 * reprogrammed yet.
534 *
6c6c0d5a
SH
535 * If a hang was detected in the last timer interrupt then we
536 * leave the hang delay active in the hardware. We want the
537 * system to make progress. That also prevents the following
538 * scenario:
539 * T1 expires 50ms from now
540 * T2 expires 5s from now
541 *
542 * T1 is removed, so this code is called and would reprogram
543 * the hardware to 5s from now. Any hrtimer_start after that
544 * will not reprogram the hardware due to hang_detected being
545 * set. So we'd effectivly block all timers until the T2 event
546 * fires.
547 */
61bb4bcb 548 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
6c6c0d5a
SH
549 return;
550
d2540875 551 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
552}
553
ebba2c72
AMG
554/* High resolution timer related functions */
555#ifdef CONFIG_HIGH_RES_TIMERS
556
557/*
558 * High resolution timer enabled ?
559 */
560static bool hrtimer_hres_enabled __read_mostly = true;
561unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
562EXPORT_SYMBOL_GPL(hrtimer_resolution);
563
564/*
565 * Enable / Disable high resolution mode
566 */
567static int __init setup_hrtimer_hres(char *str)
568{
569 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
570}
571
572__setup("highres=", setup_hrtimer_hres);
573
574/*
575 * hrtimer_high_res_enabled - query, if the highres mode is enabled
576 */
577static inline int hrtimer_is_hres_enabled(void)
578{
579 return hrtimer_hres_enabled;
580}
581
9ec26907
TG
582/*
583 * Retrigger next event is called after clock was set
584 *
585 * Called with interrupts disabled via on_each_cpu()
586 */
587static void retrigger_next_event(void *arg)
588{
dc5df73b 589 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 590
851cff8c 591 if (!__hrtimer_hres_active(base))
9ec26907
TG
592 return;
593
9ec26907 594 raw_spin_lock(&base->lock);
5baefd6d 595 hrtimer_update_base(base);
9ec26907
TG
596 hrtimer_force_reprogram(base, 0);
597 raw_spin_unlock(&base->lock);
598}
b12a03ce 599
54cdfdb4
TG
600/*
601 * Switch to high resolution mode
602 */
75e3b37d 603static void hrtimer_switch_to_hres(void)
54cdfdb4 604{
c6eb3f70 605 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
606
607 if (tick_init_highres()) {
820de5c3 608 printk(KERN_WARNING "Could not switch to high resolution "
c6eb3f70 609 "mode on CPU %d\n", base->cpu);
85e1cd6e 610 return;
54cdfdb4
TG
611 }
612 base->hres_active = 1;
398ca17f 613 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
614
615 tick_setup_sched_timer();
54cdfdb4
TG
616 /* "Retrigger" the interrupt to get things going */
617 retrigger_next_event(NULL);
54cdfdb4
TG
618}
619
5ec2481b
TG
620static void clock_was_set_work(struct work_struct *work)
621{
622 clock_was_set();
623}
624
625static DECLARE_WORK(hrtimer_work, clock_was_set_work);
626
f55a6faa 627/*
b4d90e9f 628 * Called from timekeeping and resume code to reprogram the hrtimer
5ec2481b 629 * interrupt device on all cpus.
f55a6faa
JS
630 */
631void clock_was_set_delayed(void)
632{
5ec2481b 633 schedule_work(&hrtimer_work);
f55a6faa
JS
634}
635
54cdfdb4
TG
636#else
637
54cdfdb4 638static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 639static inline void hrtimer_switch_to_hres(void) { }
9ec26907 640static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
641
642#endif /* CONFIG_HIGH_RES_TIMERS */
643
11a9fe06
AMG
644/*
645 * When a timer is enqueued and expires earlier than the already enqueued
646 * timers, we have to check, whether it expires earlier than the timer for
647 * which the clock event device was armed.
648 *
649 * Called with interrupts disabled and base->cpu_base.lock held
650 */
3ec7a3ee 651static void hrtimer_reprogram(struct hrtimer *timer)
11a9fe06
AMG
652{
653 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
3ec7a3ee 654 struct hrtimer_clock_base *base = timer->base;
11a9fe06
AMG
655 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
656
657 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
658
659 /*
660 * If the timer is not on the current cpu, we cannot reprogram
661 * the other cpus clock event device.
662 */
663 if (base->cpu_base != cpu_base)
664 return;
665
666 /*
667 * If the hrtimer interrupt is running, then it will
668 * reevaluate the clock bases and reprogram the clock event
669 * device. The callbacks are always executed in hard interrupt
670 * context so we don't need an extra check for a running
671 * callback.
672 */
673 if (cpu_base->in_hrtirq)
674 return;
675
676 /*
677 * CLOCK_REALTIME timer might be requested with an absolute
678 * expiry time which is less than base->offset. Set it to 0.
679 */
680 if (expires < 0)
681 expires = 0;
682
683 if (expires >= cpu_base->expires_next)
684 return;
685
686 /* Update the pointer to the next expiring timer */
687 cpu_base->next_timer = timer;
14c80341 688 cpu_base->expires_next = expires;
11a9fe06
AMG
689
690 /*
14c80341
AMG
691 * If hres is not active, hardware does not have to be
692 * programmed yet.
693 *
11a9fe06
AMG
694 * If a hang was detected in the last timer interrupt then we
695 * do not schedule a timer which is earlier than the expiry
696 * which we enforced in the hang detection. We want the system
697 * to make progress.
698 */
14c80341 699 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
11a9fe06
AMG
700 return;
701
702 /*
703 * Program the timer hardware. We enforce the expiry for
704 * events which are already in the past.
705 */
11a9fe06
AMG
706 tick_program_event(expires, 1);
707}
708
b12a03ce
TG
709/*
710 * Clock realtime was set
711 *
712 * Change the offset of the realtime clock vs. the monotonic
713 * clock.
714 *
715 * We might have to reprogram the high resolution timer interrupt. On
716 * SMP we call the architecture specific code to retrigger _all_ high
717 * resolution timer interrupts. On UP we just disable interrupts and
718 * call the high resolution interrupt code.
719 */
720void clock_was_set(void)
721{
90ff1f30 722#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
723 /* Retrigger the CPU local events everywhere */
724 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
725#endif
726 timerfd_clock_was_set();
b12a03ce
TG
727}
728
729/*
730 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
731 * interrupt on all online CPUs. However, all other CPUs will be
732 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 733 * must be deferred.
b12a03ce
TG
734 */
735void hrtimers_resume(void)
736{
53bef3fd 737 lockdep_assert_irqs_disabled();
5ec2481b 738 /* Retrigger on the local CPU */
b12a03ce 739 retrigger_next_event(NULL);
5ec2481b
TG
740 /* And schedule a retrigger for all others */
741 clock_was_set_delayed();
b12a03ce
TG
742}
743
c0a31329 744/*
6506f2aa 745 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
746 */
747static inline
748void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
749{
ecb49d1a 750 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
751}
752
753/**
754 * hrtimer_forward - forward the timer expiry
c0a31329 755 * @timer: hrtimer to forward
44f21475 756 * @now: forward past this time
c0a31329
TG
757 * @interval: the interval to forward
758 *
759 * Forward the timer expiry so it will expire in the future.
8dca6f33 760 * Returns the number of overruns.
91e5a217
TG
761 *
762 * Can be safely called from the callback function of @timer. If
763 * called from other contexts @timer must neither be enqueued nor
764 * running the callback and the caller needs to take care of
765 * serialization.
766 *
767 * Note: This only updates the timer expiry value and does not requeue
768 * the timer.
c0a31329 769 */
4d672e7a 770u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 771{
4d672e7a 772 u64 orun = 1;
44f21475 773 ktime_t delta;
c0a31329 774
cc584b21 775 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329 776
2456e855 777 if (delta < 0)
c0a31329
TG
778 return 0;
779
5de2755c
PZ
780 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
781 return 0;
782
2456e855
TG
783 if (interval < hrtimer_resolution)
784 interval = hrtimer_resolution;
c9db4fa1 785
2456e855 786 if (unlikely(delta >= interval)) {
df869b63 787 s64 incr = ktime_to_ns(interval);
c0a31329
TG
788
789 orun = ktime_divns(delta, incr);
cc584b21 790 hrtimer_add_expires_ns(timer, incr * orun);
2456e855 791 if (hrtimer_get_expires_tv64(timer) > now)
c0a31329
TG
792 return orun;
793 /*
794 * This (and the ktime_add() below) is the
795 * correction for exact:
796 */
797 orun++;
798 }
cc584b21 799 hrtimer_add_expires(timer, interval);
c0a31329
TG
800
801 return orun;
802}
6bdb6b62 803EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
804
805/*
806 * enqueue_hrtimer - internal function to (re)start a timer
807 *
808 * The timer is inserted in expiry order. Insertion into the
809 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
810 *
811 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 812 */
a6037b61 813static int enqueue_hrtimer(struct hrtimer *timer,
63e2ed36
AMG
814 struct hrtimer_clock_base *base,
815 enum hrtimer_mode mode)
c0a31329 816{
63e2ed36 817 debug_activate(timer, mode);
237fc6e7 818
ab8177bc 819 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 820
887d9dc9 821 timer->state = HRTIMER_STATE_ENQUEUED;
a6037b61 822
b97f44c9 823 return timerqueue_add(&base->active, &timer->node);
288867ec 824}
c0a31329
TG
825
826/*
827 * __remove_hrtimer - internal function to remove a timer
828 *
829 * Caller must hold the base lock.
54cdfdb4
TG
830 *
831 * High resolution timer mode reprograms the clock event device when the
832 * timer is the one which expires next. The caller can disable this by setting
833 * reprogram to zero. This is useful, when the context does a reprogramming
834 * anyway (e.g. timer interrupt)
c0a31329 835 */
3c8aa39d 836static void __remove_hrtimer(struct hrtimer *timer,
303e967f 837 struct hrtimer_clock_base *base,
203cbf77 838 u8 newstate, int reprogram)
c0a31329 839{
e19ffe8b 840 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 841 u8 state = timer->state;
e19ffe8b 842
895bdfa7
TG
843 timer->state = newstate;
844 if (!(state & HRTIMER_STATE_ENQUEUED))
845 return;
7403f41f 846
b97f44c9 847 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 848 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 849
895bdfa7
TG
850 /*
851 * Note: If reprogram is false we do not update
852 * cpu_base->next_timer. This happens when we remove the first
853 * timer on a remote cpu. No harm as we never dereference
854 * cpu_base->next_timer. So the worst thing what can happen is
855 * an superflous call to hrtimer_force_reprogram() on the
856 * remote cpu later on if the same timer gets enqueued again.
857 */
858 if (reprogram && timer == cpu_base->next_timer)
859 hrtimer_force_reprogram(cpu_base, 1);
c0a31329
TG
860}
861
862/*
863 * remove hrtimer, called with base lock held
864 */
865static inline int
8edfb036 866remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 867{
303e967f 868 if (hrtimer_is_queued(timer)) {
203cbf77 869 u8 state = timer->state;
54cdfdb4
TG
870 int reprogram;
871
872 /*
873 * Remove the timer and force reprogramming when high
874 * resolution mode is active and the timer is on the current
875 * CPU. If we remove a timer on another CPU, reprogramming is
876 * skipped. The interrupt event on this CPU is fired and
877 * reprogramming happens in the interrupt handler. This is a
878 * rare case and less expensive than a smp call.
879 */
c6a2a177 880 debug_deactivate(timer);
dc5df73b 881 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 882
887d9dc9
PZ
883 if (!restart)
884 state = HRTIMER_STATE_INACTIVE;
885
f13d4f97 886 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
887 return 1;
888 }
889 return 0;
890}
891
203cbf77
TG
892static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
893 const enum hrtimer_mode mode)
894{
895#ifdef CONFIG_TIME_LOW_RES
896 /*
897 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
898 * granular time values. For relative timers we add hrtimer_resolution
899 * (i.e. one jiffie) to prevent short timeouts.
900 */
901 timer->is_rel = mode & HRTIMER_MODE_REL;
902 if (timer->is_rel)
8b0e1953 903 tim = ktime_add_safe(tim, hrtimer_resolution);
203cbf77
TG
904#endif
905 return tim;
906}
907
138a6b7a
AMG
908static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
909 u64 delta_ns, const enum hrtimer_mode mode,
910 struct hrtimer_clock_base *base)
c0a31329 911{
138a6b7a 912 struct hrtimer_clock_base *new_base;
c0a31329
TG
913
914 /* Remove an active timer from the queue: */
8edfb036 915 remove_hrtimer(timer, base, true);
c0a31329 916
203cbf77 917 if (mode & HRTIMER_MODE_REL)
84ea7fe3 918 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
919
920 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 921
da8f2e17 922 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 923
84ea7fe3
VK
924 /* Switch the timer base, if necessary: */
925 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
926
138a6b7a
AMG
927 return enqueue_hrtimer(timer, new_base, mode);
928}
929/**
930 * hrtimer_start_range_ns - (re)start an hrtimer
931 * @timer: the timer to be added
932 * @tim: expiry time
933 * @delta_ns: "slack" range for the timer
934 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
935 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED)
936 */
937void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
938 u64 delta_ns, const enum hrtimer_mode mode)
939{
940 struct hrtimer_clock_base *base;
941 unsigned long flags;
942
943 base = lock_hrtimer_base(timer, &flags);
944
945 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
946 hrtimer_reprogram(timer);
49a2a075 947
c0a31329 948 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 949}
da8f2e17
AV
950EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
951
c0a31329
TG
952/**
953 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
954 * @timer: hrtimer to stop
955 *
956 * Returns:
957 * 0 when the timer was not active
958 * 1 when the timer was active
0ba42a59 959 * -1 when the timer is currently executing the callback function and
fa9799e3 960 * cannot be stopped
c0a31329
TG
961 */
962int hrtimer_try_to_cancel(struct hrtimer *timer)
963{
3c8aa39d 964 struct hrtimer_clock_base *base;
c0a31329
TG
965 unsigned long flags;
966 int ret = -1;
967
19d9f422
TG
968 /*
969 * Check lockless first. If the timer is not active (neither
970 * enqueued nor running the callback, nothing to do here. The
971 * base lock does not serialize against a concurrent enqueue,
972 * so we can avoid taking it.
973 */
974 if (!hrtimer_active(timer))
975 return 0;
976
c0a31329
TG
977 base = lock_hrtimer_base(timer, &flags);
978
303e967f 979 if (!hrtimer_callback_running(timer))
8edfb036 980 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
981
982 unlock_hrtimer_base(timer, &flags);
983
984 return ret;
985
986}
8d16b764 987EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
988
989/**
990 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
991 * @timer: the timer to be cancelled
992 *
993 * Returns:
994 * 0 when the timer was not active
995 * 1 when the timer was active
996 */
997int hrtimer_cancel(struct hrtimer *timer)
998{
999 for (;;) {
1000 int ret = hrtimer_try_to_cancel(timer);
1001
1002 if (ret >= 0)
1003 return ret;
5ef37b19 1004 cpu_relax();
c0a31329
TG
1005 }
1006}
8d16b764 1007EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1008
1009/**
1010 * hrtimer_get_remaining - get remaining time for the timer
c0a31329 1011 * @timer: the timer to read
203cbf77 1012 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1013 */
203cbf77 1014ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1015{
c0a31329
TG
1016 unsigned long flags;
1017 ktime_t rem;
1018
b3bd3de6 1019 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1020 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1021 rem = hrtimer_expires_remaining_adjusted(timer);
1022 else
1023 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1024 unlock_hrtimer_base(timer, &flags);
1025
1026 return rem;
1027}
203cbf77 1028EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1029
3451d024 1030#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1031/**
1032 * hrtimer_get_next_event - get the time until next expiry event
1033 *
c1ad348b 1034 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1035 */
c1ad348b 1036u64 hrtimer_get_next_event(void)
69239749 1037{
dc5df73b 1038 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1039 u64 expires = KTIME_MAX;
69239749 1040 unsigned long flags;
69239749 1041
ecb49d1a 1042 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1043
e19ffe8b 1044 if (!__hrtimer_hres_active(cpu_base))
2456e855 1045 expires = __hrtimer_get_next_event(cpu_base);
3c8aa39d 1046
ecb49d1a 1047 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1048
c1ad348b 1049 return expires;
69239749
TL
1050}
1051#endif
1052
336a9cde
MZ
1053static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1054{
1055 if (likely(clock_id < MAX_CLOCKS)) {
1056 int base = hrtimer_clock_to_base_table[clock_id];
1057
1058 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1059 return base;
1060 }
1061 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1062 return HRTIMER_BASE_MONOTONIC;
1063}
1064
237fc6e7
TG
1065static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1066 enum hrtimer_mode mode)
c0a31329 1067{
3c8aa39d 1068 struct hrtimer_cpu_base *cpu_base;
e06383db 1069 int base;
c0a31329 1070
7978672c
GA
1071 memset(timer, 0, sizeof(struct hrtimer));
1072
22127e93 1073 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1074
48d0c9be
AMG
1075 /*
1076 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1077 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1078 * ensure POSIX compliance.
1079 */
1080 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
7978672c
GA
1081 clock_id = CLOCK_MONOTONIC;
1082
e06383db
JS
1083 base = hrtimer_clockid_to_base(clock_id);
1084 timer->base = &cpu_base->clock_base[base];
998adc3d 1085 timerqueue_init(&timer->node);
c0a31329 1086}
237fc6e7
TG
1087
1088/**
1089 * hrtimer_init - initialize a timer to the given clock
1090 * @timer: the timer to be initialized
1091 * @clock_id: the clock to be used
6de6250c
AMG
1092 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1093 * relative (HRTIMER_MODE_REL); pinned is not considered here!
237fc6e7
TG
1094 */
1095void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1096 enum hrtimer_mode mode)
1097{
c6a2a177 1098 debug_init(timer, clock_id, mode);
237fc6e7
TG
1099 __hrtimer_init(timer, clock_id, mode);
1100}
8d16b764 1101EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1102
887d9dc9
PZ
1103/*
1104 * A timer is active, when it is enqueued into the rbtree or the
1105 * callback function is running or it's in the state of being migrated
1106 * to another cpu.
c0a31329 1107 *
887d9dc9 1108 * It is important for this function to not return a false negative.
c0a31329 1109 */
887d9dc9 1110bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1111{
3f0b9e8e 1112 struct hrtimer_clock_base *base;
887d9dc9 1113 unsigned int seq;
c0a31329 1114
887d9dc9 1115 do {
3f0b9e8e
AMG
1116 base = READ_ONCE(timer->base);
1117 seq = raw_read_seqcount_begin(&base->seq);
c0a31329 1118
887d9dc9 1119 if (timer->state != HRTIMER_STATE_INACTIVE ||
3f0b9e8e 1120 base->running == timer)
887d9dc9
PZ
1121 return true;
1122
3f0b9e8e
AMG
1123 } while (read_seqcount_retry(&base->seq, seq) ||
1124 base != READ_ONCE(timer->base));
887d9dc9
PZ
1125
1126 return false;
c0a31329 1127}
887d9dc9 1128EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1129
887d9dc9
PZ
1130/*
1131 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1132 * distinct sections:
1133 *
1134 * - queued: the timer is queued
1135 * - callback: the timer is being ran
1136 * - post: the timer is inactive or (re)queued
1137 *
1138 * On the read side we ensure we observe timer->state and cpu_base->running
1139 * from the same section, if anything changed while we looked at it, we retry.
1140 * This includes timer->base changing because sequence numbers alone are
1141 * insufficient for that.
1142 *
1143 * The sequence numbers are required because otherwise we could still observe
1144 * a false negative if the read side got smeared over multiple consequtive
1145 * __run_hrtimer() invocations.
1146 */
1147
21d6d52a
TG
1148static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1149 struct hrtimer_clock_base *base,
1150 struct hrtimer *timer, ktime_t *now)
d3d74453 1151{
d3d74453
PZ
1152 enum hrtimer_restart (*fn)(struct hrtimer *);
1153 int restart;
1154
887d9dc9 1155 lockdep_assert_held(&cpu_base->lock);
ca109491 1156
c6a2a177 1157 debug_deactivate(timer);
3f0b9e8e 1158 base->running = timer;
887d9dc9
PZ
1159
1160 /*
1161 * Separate the ->running assignment from the ->state assignment.
1162 *
1163 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1164 * hrtimer_active() cannot observe base->running == NULL &&
887d9dc9
PZ
1165 * timer->state == INACTIVE.
1166 */
3f0b9e8e 1167 raw_write_seqcount_barrier(&base->seq);
887d9dc9
PZ
1168
1169 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1170 fn = timer->function;
ca109491 1171
203cbf77
TG
1172 /*
1173 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1174 * timer is restarted with a period then it becomes an absolute
1175 * timer. If its not restarted it does not matter.
1176 */
1177 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1178 timer->is_rel = false;
1179
ca109491 1180 /*
d05ca13b
TG
1181 * The timer is marked as running in the CPU base, so it is
1182 * protected against migration to a different CPU even if the lock
1183 * is dropped.
ca109491 1184 */
ecb49d1a 1185 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1186 trace_hrtimer_expire_entry(timer, now);
ca109491 1187 restart = fn(timer);
c6a2a177 1188 trace_hrtimer_expire_exit(timer);
ecb49d1a 1189 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1190
1191 /*
887d9dc9 1192 * Note: We clear the running state after enqueue_hrtimer and
b4d90e9f 1193 * we do not reprogram the event hardware. Happens either in
e3f1d883 1194 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1195 *
1196 * Note: Because we dropped the cpu_base->lock above,
1197 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1198 * for us already.
d3d74453 1199 */
5de2755c
PZ
1200 if (restart != HRTIMER_NORESTART &&
1201 !(timer->state & HRTIMER_STATE_ENQUEUED))
63e2ed36 1202 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
f13d4f97 1203
887d9dc9
PZ
1204 /*
1205 * Separate the ->running assignment from the ->state assignment.
1206 *
1207 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1208 * hrtimer_active() cannot observe base->running.timer == NULL &&
887d9dc9
PZ
1209 * timer->state == INACTIVE.
1210 */
3f0b9e8e 1211 raw_write_seqcount_barrier(&base->seq);
f13d4f97 1212
3f0b9e8e
AMG
1213 WARN_ON_ONCE(base->running != timer);
1214 base->running = NULL;
d3d74453
PZ
1215}
1216
21d6d52a 1217static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
54cdfdb4 1218{
c272ca58 1219 struct hrtimer_clock_base *base;
34aee88a 1220 unsigned int active = cpu_base->active_bases;
6ff7041d 1221
c272ca58 1222 for_each_active_base(base, cpu_base, active) {
998adc3d 1223 struct timerqueue_node *node;
ab8177bc
TG
1224 ktime_t basenow;
1225
54cdfdb4
TG
1226 basenow = ktime_add(now, base->offset);
1227
998adc3d 1228 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1229 struct hrtimer *timer;
1230
998adc3d 1231 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1232
654c8e0b
AV
1233 /*
1234 * The immediate goal for using the softexpires is
1235 * minimizing wakeups, not running timers at the
1236 * earliest interrupt after their soft expiration.
1237 * This allows us to avoid using a Priority Search
1238 * Tree, which can answer a stabbing querry for
1239 * overlapping intervals and instead use the simple
1240 * BST we already have.
1241 * We don't add extra wakeups by delaying timers that
1242 * are right-of a not yet expired timer, because that
1243 * timer will have to trigger a wakeup anyway.
1244 */
2456e855 1245 if (basenow < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1246 break;
54cdfdb4 1247
21d6d52a 1248 __run_hrtimer(cpu_base, base, timer, &basenow);
54cdfdb4 1249 }
54cdfdb4 1250 }
21d6d52a
TG
1251}
1252
1253#ifdef CONFIG_HIGH_RES_TIMERS
1254
1255/*
1256 * High resolution timer interrupt
1257 * Called with interrupts disabled
1258 */
1259void hrtimer_interrupt(struct clock_event_device *dev)
1260{
1261 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1262 ktime_t expires_next, now, entry_time, delta;
1263 int retries = 0;
1264
1265 BUG_ON(!cpu_base->hres_active);
1266 cpu_base->nr_events++;
2456e855 1267 dev->next_event = KTIME_MAX;
21d6d52a
TG
1268
1269 raw_spin_lock(&cpu_base->lock);
1270 entry_time = now = hrtimer_update_base(cpu_base);
1271retry:
1272 cpu_base->in_hrtirq = 1;
1273 /*
1274 * We set expires_next to KTIME_MAX here with cpu_base->lock
1275 * held to prevent that a timer is enqueued in our queue via
1276 * the migration code. This does not affect enqueueing of
1277 * timers which run their callback and need to be requeued on
1278 * this CPU.
1279 */
2456e855 1280 cpu_base->expires_next = KTIME_MAX;
21d6d52a
TG
1281
1282 __hrtimer_run_queues(cpu_base, now);
1283
9bc74919
TG
1284 /* Reevaluate the clock bases for the next expiry */
1285 expires_next = __hrtimer_get_next_event(cpu_base);
6ff7041d
TG
1286 /*
1287 * Store the new expiry value so the migration code can verify
1288 * against it.
1289 */
54cdfdb4 1290 cpu_base->expires_next = expires_next;
9bc74919 1291 cpu_base->in_hrtirq = 0;
ecb49d1a 1292 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1293
1294 /* Reprogramming necessary ? */
d2540875 1295 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1296 cpu_base->hang_detected = 0;
1297 return;
54cdfdb4 1298 }
41d2e494
TG
1299
1300 /*
1301 * The next timer was already expired due to:
1302 * - tracing
1303 * - long lasting callbacks
1304 * - being scheduled away when running in a VM
1305 *
1306 * We need to prevent that we loop forever in the hrtimer
1307 * interrupt routine. We give it 3 attempts to avoid
1308 * overreacting on some spurious event.
5baefd6d
JS
1309 *
1310 * Acquire base lock for updating the offsets and retrieving
1311 * the current time.
41d2e494 1312 */
196951e9 1313 raw_spin_lock(&cpu_base->lock);
5baefd6d 1314 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1315 cpu_base->nr_retries++;
1316 if (++retries < 3)
1317 goto retry;
1318 /*
1319 * Give the system a chance to do something else than looping
1320 * here. We stored the entry time, so we know exactly how long
1321 * we spent here. We schedule the next event this amount of
1322 * time away.
1323 */
1324 cpu_base->nr_hangs++;
1325 cpu_base->hang_detected = 1;
196951e9 1326 raw_spin_unlock(&cpu_base->lock);
41d2e494 1327 delta = ktime_sub(now, entry_time);
2456e855
TG
1328 if ((unsigned int)delta > cpu_base->max_hang_time)
1329 cpu_base->max_hang_time = (unsigned int) delta;
41d2e494
TG
1330 /*
1331 * Limit it to a sensible value as we enforce a longer
1332 * delay. Give the CPU at least 100ms to catch up.
1333 */
2456e855 1334 if (delta > 100 * NSEC_PER_MSEC)
41d2e494
TG
1335 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1336 else
1337 expires_next = ktime_add(now, delta);
1338 tick_program_event(expires_next, 1);
1339 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1340 ktime_to_ns(delta));
54cdfdb4
TG
1341}
1342
016da201 1343/* called with interrupts disabled */
c6eb3f70 1344static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1345{
1346 struct tick_device *td;
1347
1348 if (!hrtimer_hres_active())
1349 return;
1350
22127e93 1351 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1352 if (td && td->evtdev)
1353 hrtimer_interrupt(td->evtdev);
1354}
1355
82c5b7b5
IM
1356#else /* CONFIG_HIGH_RES_TIMERS */
1357
1358static inline void __hrtimer_peek_ahead_timers(void) { }
1359
1360#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1361
d3d74453 1362/*
c6eb3f70 1363 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1364 */
833883d9 1365void hrtimer_run_queues(void)
d3d74453 1366{
dc5df73b 1367 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
21d6d52a 1368 ktime_t now;
c0a31329 1369
e19ffe8b 1370 if (__hrtimer_hres_active(cpu_base))
d3d74453 1371 return;
54cdfdb4 1372
d3d74453 1373 /*
c6eb3f70
TG
1374 * This _is_ ugly: We have to check periodically, whether we
1375 * can switch to highres and / or nohz mode. The clocksource
1376 * switch happens with xtime_lock held. Notification from
1377 * there only sets the check bit in the tick_oneshot code,
1378 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1379 */
c6eb3f70 1380 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1381 hrtimer_switch_to_hres();
3055adda 1382 return;
833883d9 1383 }
c6eb3f70 1384
21d6d52a
TG
1385 raw_spin_lock(&cpu_base->lock);
1386 now = hrtimer_update_base(cpu_base);
1387 __hrtimer_run_queues(cpu_base, now);
1388 raw_spin_unlock(&cpu_base->lock);
c0a31329
TG
1389}
1390
10c94ec1
TG
1391/*
1392 * Sleep related functions:
1393 */
c9cb2e3d 1394static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1395{
1396 struct hrtimer_sleeper *t =
1397 container_of(timer, struct hrtimer_sleeper, timer);
1398 struct task_struct *task = t->task;
1399
1400 t->task = NULL;
1401 if (task)
1402 wake_up_process(task);
1403
1404 return HRTIMER_NORESTART;
1405}
1406
36c8b586 1407void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1408{
1409 sl->timer.function = hrtimer_wakeup;
1410 sl->task = task;
1411}
2bc481cf 1412EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1413
c0edd7c9 1414int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
ce41aaf4
AV
1415{
1416 switch(restart->nanosleep.type) {
1417#ifdef CONFIG_COMPAT
1418 case TT_COMPAT:
c0edd7c9 1419 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
ce41aaf4
AV
1420 return -EFAULT;
1421 break;
1422#endif
1423 case TT_NATIVE:
c0edd7c9 1424 if (put_timespec64(ts, restart->nanosleep.rmtp))
ce41aaf4
AV
1425 return -EFAULT;
1426 break;
1427 default:
1428 BUG();
1429 }
1430 return -ERESTART_RESTARTBLOCK;
1431}
1432
669d7868 1433static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1434{
edbeda46
AV
1435 struct restart_block *restart;
1436
669d7868 1437 hrtimer_init_sleeper(t, current);
10c94ec1 1438
432569bb
RZ
1439 do {
1440 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1441 hrtimer_start_expires(&t->timer, mode);
432569bb 1442
54cdfdb4 1443 if (likely(t->task))
b0f8c44f 1444 freezable_schedule();
432569bb 1445
669d7868 1446 hrtimer_cancel(&t->timer);
c9cb2e3d 1447 mode = HRTIMER_MODE_ABS;
669d7868
TG
1448
1449 } while (t->task && !signal_pending(current));
432569bb 1450
3588a085
PZ
1451 __set_current_state(TASK_RUNNING);
1452
a7602681 1453 if (!t->task)
080344b9 1454 return 0;
080344b9 1455
edbeda46
AV
1456 restart = &current->restart_block;
1457 if (restart->nanosleep.type != TT_NONE) {
a7602681 1458 ktime_t rem = hrtimer_expires_remaining(&t->timer);
c0edd7c9 1459 struct timespec64 rmt;
edbeda46 1460
a7602681
AV
1461 if (rem <= 0)
1462 return 0;
c0edd7c9 1463 rmt = ktime_to_timespec64(rem);
a7602681 1464
ce41aaf4 1465 return nanosleep_copyout(restart, &rmt);
a7602681
AV
1466 }
1467 return -ERESTART_RESTARTBLOCK;
080344b9
ON
1468}
1469
fb923c4a 1470static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1471{
669d7868 1472 struct hrtimer_sleeper t;
a7602681 1473 int ret;
10c94ec1 1474
ab8177bc 1475 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1476 HRTIMER_MODE_ABS);
cc584b21 1477 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1478
a7602681 1479 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
237fc6e7
TG
1480 destroy_hrtimer_on_stack(&t.timer);
1481 return ret;
10c94ec1
TG
1482}
1483
938e7cf2 1484long hrtimer_nanosleep(const struct timespec64 *rqtp,
10c94ec1
TG
1485 const enum hrtimer_mode mode, const clockid_t clockid)
1486{
a7602681 1487 struct restart_block *restart;
669d7868 1488 struct hrtimer_sleeper t;
237fc6e7 1489 int ret = 0;
da8b44d5 1490 u64 slack;
3bd01206
AV
1491
1492 slack = current->timer_slack_ns;
aab03e05 1493 if (dl_task(current) || rt_task(current))
3bd01206 1494 slack = 0;
10c94ec1 1495
237fc6e7 1496 hrtimer_init_on_stack(&t.timer, clockid, mode);
ad196384 1497 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
a7602681
AV
1498 ret = do_nanosleep(&t, mode);
1499 if (ret != -ERESTART_RESTARTBLOCK)
237fc6e7 1500 goto out;
10c94ec1 1501
7978672c 1502 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1503 if (mode == HRTIMER_MODE_ABS) {
1504 ret = -ERESTARTNOHAND;
1505 goto out;
1506 }
10c94ec1 1507
a7602681 1508 restart = &current->restart_block;
1711ef38 1509 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1510 restart->nanosleep.clockid = t.timer.base->clockid;
cc584b21 1511 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
237fc6e7
TG
1512out:
1513 destroy_hrtimer_on_stack(&t.timer);
1514 return ret;
10c94ec1
TG
1515}
1516
58fd3aa2
HC
1517SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1518 struct timespec __user *, rmtp)
6ba1b912 1519{
c0edd7c9 1520 struct timespec64 tu;
6ba1b912 1521
c0edd7c9 1522 if (get_timespec64(&tu, rqtp))
6ba1b912
TG
1523 return -EFAULT;
1524
c0edd7c9 1525 if (!timespec64_valid(&tu))
6ba1b912
TG
1526 return -EINVAL;
1527
edbeda46 1528 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
192a82f9 1529 current->restart_block.nanosleep.rmtp = rmtp;
c0edd7c9 1530 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1531}
1532
edbeda46
AV
1533#ifdef CONFIG_COMPAT
1534
1535COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1536 struct compat_timespec __user *, rmtp)
1537{
c0edd7c9 1538 struct timespec64 tu;
edbeda46 1539
c0edd7c9 1540 if (compat_get_timespec64(&tu, rqtp))
edbeda46
AV
1541 return -EFAULT;
1542
c0edd7c9 1543 if (!timespec64_valid(&tu))
edbeda46
AV
1544 return -EINVAL;
1545
1546 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1547 current->restart_block.nanosleep.compat_rmtp = rmtp;
c0edd7c9 1548 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
edbeda46
AV
1549}
1550#endif
1551
c0a31329
TG
1552/*
1553 * Functions related to boot-time initialization:
1554 */
27590dc1 1555int hrtimers_prepare_cpu(unsigned int cpu)
c0a31329 1556{
3c8aa39d 1557 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1558 int i;
1559
998adc3d 1560 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1561 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1562 timerqueue_init_head(&cpu_base->clock_base[i].active);
1563 }
3c8aa39d 1564
cddd0248 1565 cpu_base->cpu = cpu;
28bfd18b 1566 cpu_base->hres_active = 0;
07a9a7ea 1567 cpu_base->expires_next = KTIME_MAX;
27590dc1 1568 return 0;
c0a31329
TG
1569}
1570
1571#ifdef CONFIG_HOTPLUG_CPU
1572
ca109491 1573static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1574 struct hrtimer_clock_base *new_base)
c0a31329
TG
1575{
1576 struct hrtimer *timer;
998adc3d 1577 struct timerqueue_node *node;
c0a31329 1578
998adc3d
JS
1579 while ((node = timerqueue_getnext(&old_base->active))) {
1580 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1581 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1582 debug_deactivate(timer);
b00c1a99
TG
1583
1584 /*
c04dca02 1585 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1586 * timer could be seen as !active and just vanish away
1587 * under us on another CPU
1588 */
c04dca02 1589 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1590 timer->base = new_base;
54cdfdb4 1591 /*
e3f1d883
TG
1592 * Enqueue the timers on the new cpu. This does not
1593 * reprogram the event device in case the timer
1594 * expires before the earliest on this CPU, but we run
1595 * hrtimer_interrupt after we migrated everything to
1596 * sort out already expired timers and reprogram the
1597 * event device.
54cdfdb4 1598 */
63e2ed36 1599 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
c0a31329
TG
1600 }
1601}
1602
27590dc1 1603int hrtimers_dead_cpu(unsigned int scpu)
c0a31329 1604{
3c8aa39d 1605 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1606 int i;
c0a31329 1607
37810659 1608 BUG_ON(cpu_online(scpu));
37810659 1609 tick_cancel_sched_timer(scpu);
731a55ba
TG
1610
1611 local_irq_disable();
1612 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1613 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1614 /*
1615 * The caller is globally serialized and nobody else
1616 * takes two locks at once, deadlock is not possible.
1617 */
ecb49d1a
TG
1618 raw_spin_lock(&new_base->lock);
1619 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1620
3c8aa39d 1621 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1622 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1623 &new_base->clock_base[i]);
c0a31329
TG
1624 }
1625
ecb49d1a
TG
1626 raw_spin_unlock(&old_base->lock);
1627 raw_spin_unlock(&new_base->lock);
37810659 1628
731a55ba
TG
1629 /* Check, if we got expired work to do */
1630 __hrtimer_peek_ahead_timers();
1631 local_irq_enable();
27590dc1 1632 return 0;
c0a31329 1633}
37810659 1634
c0a31329
TG
1635#endif /* CONFIG_HOTPLUG_CPU */
1636
c0a31329
TG
1637void __init hrtimers_init(void)
1638{
27590dc1 1639 hrtimers_prepare_cpu(smp_processor_id());
c0a31329
TG
1640}
1641
7bb67439 1642/**
351b3f7a 1643 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1644 * @expires: timeout value (ktime_t)
654c8e0b 1645 * @delta: slack in expires timeout (ktime_t)
90777713
AMG
1646 * @mode: timer mode
1647 * @clock_id: timer clock to be used
7bb67439 1648 */
351b3f7a 1649int __sched
da8b44d5 1650schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
90777713 1651 const enum hrtimer_mode mode, clockid_t clock_id)
7bb67439
AV
1652{
1653 struct hrtimer_sleeper t;
1654
1655 /*
1656 * Optimize when a zero timeout value is given. It does not
1657 * matter whether this is an absolute or a relative time.
1658 */
2456e855 1659 if (expires && *expires == 0) {
7bb67439
AV
1660 __set_current_state(TASK_RUNNING);
1661 return 0;
1662 }
1663
1664 /*
43b21013 1665 * A NULL parameter means "infinite"
7bb67439
AV
1666 */
1667 if (!expires) {
1668 schedule();
7bb67439
AV
1669 return -EINTR;
1670 }
1671
90777713 1672 hrtimer_init_on_stack(&t.timer, clock_id, mode);
654c8e0b 1673 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1674
1675 hrtimer_init_sleeper(&t, current);
1676
cc584b21 1677 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1678
1679 if (likely(t.task))
1680 schedule();
1681
1682 hrtimer_cancel(&t.timer);
1683 destroy_hrtimer_on_stack(&t.timer);
1684
1685 __set_current_state(TASK_RUNNING);
1686
1687 return !t.task ? 0 : -EINTR;
1688}
351b3f7a
CE
1689
1690/**
1691 * schedule_hrtimeout_range - sleep until timeout
1692 * @expires: timeout value (ktime_t)
1693 * @delta: slack in expires timeout (ktime_t)
90777713 1694 * @mode: timer mode
351b3f7a
CE
1695 *
1696 * Make the current task sleep until the given expiry time has
1697 * elapsed. The routine will return immediately unless
1698 * the current task state has been set (see set_current_state()).
1699 *
1700 * The @delta argument gives the kernel the freedom to schedule the
1701 * actual wakeup to a time that is both power and performance friendly.
1702 * The kernel give the normal best effort behavior for "@expires+@delta",
1703 * but may decide to fire the timer earlier, but no earlier than @expires.
1704 *
1705 * You can set the task state as follows -
1706 *
1707 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1708 * pass before the routine returns unless the current task is explicitly
1709 * woken up, (e.g. by wake_up_process()).
351b3f7a
CE
1710 *
1711 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1712 * delivered to the current task or the current task is explicitly woken
1713 * up.
351b3f7a
CE
1714 *
1715 * The current task state is guaranteed to be TASK_RUNNING when this
1716 * routine returns.
1717 *
4b7e9cf9
DA
1718 * Returns 0 when the timer has expired. If the task was woken before the
1719 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1720 * by an explicit wakeup, it returns -EINTR.
351b3f7a 1721 */
da8b44d5 1722int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
1723 const enum hrtimer_mode mode)
1724{
1725 return schedule_hrtimeout_range_clock(expires, delta, mode,
1726 CLOCK_MONOTONIC);
1727}
654c8e0b
AV
1728EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1729
1730/**
1731 * schedule_hrtimeout - sleep until timeout
1732 * @expires: timeout value (ktime_t)
90777713 1733 * @mode: timer mode
654c8e0b
AV
1734 *
1735 * Make the current task sleep until the given expiry time has
1736 * elapsed. The routine will return immediately unless
1737 * the current task state has been set (see set_current_state()).
1738 *
1739 * You can set the task state as follows -
1740 *
1741 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1742 * pass before the routine returns unless the current task is explicitly
1743 * woken up, (e.g. by wake_up_process()).
654c8e0b
AV
1744 *
1745 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1746 * delivered to the current task or the current task is explicitly woken
1747 * up.
654c8e0b
AV
1748 *
1749 * The current task state is guaranteed to be TASK_RUNNING when this
1750 * routine returns.
1751 *
4b7e9cf9
DA
1752 * Returns 0 when the timer has expired. If the task was woken before the
1753 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1754 * by an explicit wakeup, it returns -EINTR.
654c8e0b
AV
1755 */
1756int __sched schedule_hrtimeout(ktime_t *expires,
1757 const enum hrtimer_mode mode)
1758{
1759 return schedule_hrtimeout_range(expires, 0, mode);
1760}
7bb67439 1761EXPORT_SYMBOL_GPL(schedule_hrtimeout);