]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/time/hrtimer.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
174cd4b1 46#include <linux/sched/signal.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
370c9135 50#include <linux/sched/nohz.h>
b17b0153 51#include <linux/sched/debug.h>
eea08f32 52#include <linux/timer.h>
b0f8c44f 53#include <linux/freezer.h>
c0a31329 54
7c0f6ba6 55#include <linux/uaccess.h>
c0a31329 56
c6a2a177
XG
57#include <trace/events/timer.h>
58
c1797baf 59#include "tick-internal.h"
8b094cd0 60
c0a31329
TG
61/*
62 * The timer bases:
7978672c 63 *
571af55a 64 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
65 * into the timer bases by the hrtimer_base_type enum. When trying
66 * to reach a base using a clockid, hrtimer_clockid_to_base()
67 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 68 */
54cdfdb4 69DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 70{
84cc8fd2 71 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
887d9dc9 72 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
3c8aa39d 73 .clock_base =
c0a31329 74 {
3c8aa39d 75 {
ab8177bc
TG
76 .index = HRTIMER_BASE_MONOTONIC,
77 .clockid = CLOCK_MONOTONIC,
3c8aa39d 78 .get_time = &ktime_get,
3c8aa39d 79 },
68fa61c0
TG
80 {
81 .index = HRTIMER_BASE_REALTIME,
82 .clockid = CLOCK_REALTIME,
83 .get_time = &ktime_get_real,
68fa61c0 84 },
70a08cca 85 {
ab8177bc
TG
86 .index = HRTIMER_BASE_BOOTTIME,
87 .clockid = CLOCK_BOOTTIME,
70a08cca 88 .get_time = &ktime_get_boottime,
70a08cca 89 },
90adda98
JS
90 {
91 .index = HRTIMER_BASE_TAI,
92 .clockid = CLOCK_TAI,
93 .get_time = &ktime_get_clocktai,
90adda98 94 },
3c8aa39d 95 }
c0a31329
TG
96};
97
942c3c5c 98static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
336a9cde
MZ
99 /* Make sure we catch unsupported clockids */
100 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
101
ce31332d
TG
102 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
103 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
104 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 105 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 106};
e06383db 107
c0a31329
TG
108/*
109 * Functions and macros which are different for UP/SMP systems are kept in a
110 * single place
111 */
112#ifdef CONFIG_SMP
113
887d9dc9
PZ
114/*
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
118 */
119static struct hrtimer_cpu_base migration_cpu_base = {
120 .seq = SEQCNT_ZERO(migration_cpu_base),
121 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
122};
123
124#define migration_base migration_cpu_base.clock_base[0]
125
c0a31329
TG
126/*
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
130 *
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
133 *
134 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
135 * possible to set timer->base = &migration_base and drop the lock: the timer
136 * remains locked.
c0a31329 137 */
3c8aa39d
TG
138static
139struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 unsigned long *flags)
c0a31329 141{
3c8aa39d 142 struct hrtimer_clock_base *base;
c0a31329
TG
143
144 for (;;) {
145 base = timer->base;
887d9dc9 146 if (likely(base != &migration_base)) {
ecb49d1a 147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
148 if (likely(base == timer->base))
149 return base;
150 /* The timer has migrated to another CPU: */
ecb49d1a 151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
152 }
153 cpu_relax();
154 }
155}
156
6ff7041d
TG
157/*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164static int
165hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166{
167#ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
2456e855 174 return expires <= new_base->cpu_base->expires_next;
6ff7041d
TG
175#else
176 return 0;
177#endif
178}
179
86721ab6 180#ifdef CONFIG_NO_HZ_COMMON
bc7a34b8
TG
181static inline
182struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 int pinned)
184{
185 if (pinned || !base->migration_enabled)
662b3e19 186 return base;
bc7a34b8
TG
187 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188}
189#else
190static inline
191struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 int pinned)
193{
662b3e19 194 return base;
bc7a34b8
TG
195}
196#endif
197
c0a31329 198/*
b48362d8
FW
199 * We switch the timer base to a power-optimized selected CPU target,
200 * if:
201 * - NO_HZ_COMMON is enabled
202 * - timer migration is enabled
203 * - the timer callback is not running
204 * - the timer is not the first expiring timer on the new target
205 *
206 * If one of the above requirements is not fulfilled we move the timer
207 * to the current CPU or leave it on the previously assigned CPU if
208 * the timer callback is currently running.
c0a31329 209 */
3c8aa39d 210static inline struct hrtimer_clock_base *
597d0275
AB
211switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
212 int pinned)
c0a31329 213{
b48362d8 214 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 215 struct hrtimer_clock_base *new_base;
ab8177bc 216 int basenum = base->index;
c0a31329 217
b48362d8
FW
218 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
219 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 220again:
e06383db 221 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
222
223 if (base != new_base) {
224 /*
6ff7041d 225 * We are trying to move timer to new_base.
c0a31329
TG
226 * However we can't change timer's base while it is running,
227 * so we keep it on the same CPU. No hassle vs. reprogramming
228 * the event source in the high resolution case. The softirq
229 * code will take care of this when the timer function has
230 * completed. There is no conflict as we hold the lock until
231 * the timer is enqueued.
232 */
54cdfdb4 233 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
234 return base;
235
887d9dc9
PZ
236 /* See the comment in lock_hrtimer_base() */
237 timer->base = &migration_base;
ecb49d1a
TG
238 raw_spin_unlock(&base->cpu_base->lock);
239 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 240
b48362d8 241 if (new_cpu_base != this_cpu_base &&
bc7a34b8 242 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
243 raw_spin_unlock(&new_base->cpu_base->lock);
244 raw_spin_lock(&base->cpu_base->lock);
b48362d8 245 new_cpu_base = this_cpu_base;
6ff7041d
TG
246 timer->base = base;
247 goto again;
eea08f32 248 }
c0a31329 249 timer->base = new_base;
012a45e3 250 } else {
b48362d8 251 if (new_cpu_base != this_cpu_base &&
bc7a34b8 252 hrtimer_check_target(timer, new_base)) {
b48362d8 253 new_cpu_base = this_cpu_base;
012a45e3
LM
254 goto again;
255 }
c0a31329
TG
256 }
257 return new_base;
258}
259
260#else /* CONFIG_SMP */
261
3c8aa39d 262static inline struct hrtimer_clock_base *
c0a31329
TG
263lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
264{
3c8aa39d 265 struct hrtimer_clock_base *base = timer->base;
c0a31329 266
ecb49d1a 267 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
268
269 return base;
270}
271
eea08f32 272# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
273
274#endif /* !CONFIG_SMP */
275
276/*
277 * Functions for the union type storage format of ktime_t which are
278 * too large for inlining:
279 */
280#if BITS_PER_LONG < 64
c0a31329
TG
281/*
282 * Divide a ktime value by a nanosecond value
283 */
f7bcb70e 284s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 285{
c0a31329 286 int sft = 0;
f7bcb70e
JS
287 s64 dclc;
288 u64 tmp;
c0a31329 289
900cfa46 290 dclc = ktime_to_ns(kt);
f7bcb70e
JS
291 tmp = dclc < 0 ? -dclc : dclc;
292
c0a31329
TG
293 /* Make sure the divisor is less than 2^32: */
294 while (div >> 32) {
295 sft++;
296 div >>= 1;
297 }
f7bcb70e
JS
298 tmp >>= sft;
299 do_div(tmp, (unsigned long) div);
300 return dclc < 0 ? -tmp : tmp;
c0a31329 301}
8b618628 302EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
303#endif /* BITS_PER_LONG >= 64 */
304
5a7780e7
TG
305/*
306 * Add two ktime values and do a safety check for overflow:
307 */
308ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
309{
979515c5 310 ktime_t res = ktime_add_unsafe(lhs, rhs);
5a7780e7
TG
311
312 /*
313 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 * return to user space in a timespec:
315 */
2456e855 316 if (res < 0 || res < lhs || res < rhs)
5a7780e7
TG
317 res = ktime_set(KTIME_SEC_MAX, 0);
318
319 return res;
320}
321
8daa21e6
AB
322EXPORT_SYMBOL_GPL(ktime_add_safe);
323
237fc6e7
TG
324#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
325
326static struct debug_obj_descr hrtimer_debug_descr;
327
99777288
SG
328static void *hrtimer_debug_hint(void *addr)
329{
330 return ((struct hrtimer *) addr)->function;
331}
332
237fc6e7
TG
333/*
334 * fixup_init is called when:
335 * - an active object is initialized
336 */
e3252464 337static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
338{
339 struct hrtimer *timer = addr;
340
341 switch (state) {
342 case ODEBUG_STATE_ACTIVE:
343 hrtimer_cancel(timer);
344 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 345 return true;
237fc6e7 346 default:
e3252464 347 return false;
237fc6e7
TG
348 }
349}
350
351/*
352 * fixup_activate is called when:
353 * - an active object is activated
b9fdac7f 354 * - an unknown non-static object is activated
237fc6e7 355 */
e3252464 356static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
357{
358 switch (state) {
237fc6e7
TG
359 case ODEBUG_STATE_ACTIVE:
360 WARN_ON(1);
361
362 default:
e3252464 363 return false;
237fc6e7
TG
364 }
365}
366
367/*
368 * fixup_free is called when:
369 * - an active object is freed
370 */
e3252464 371static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
372{
373 struct hrtimer *timer = addr;
374
375 switch (state) {
376 case ODEBUG_STATE_ACTIVE:
377 hrtimer_cancel(timer);
378 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 379 return true;
237fc6e7 380 default:
e3252464 381 return false;
237fc6e7
TG
382 }
383}
384
385static struct debug_obj_descr hrtimer_debug_descr = {
386 .name = "hrtimer",
99777288 387 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
388 .fixup_init = hrtimer_fixup_init,
389 .fixup_activate = hrtimer_fixup_activate,
390 .fixup_free = hrtimer_fixup_free,
391};
392
393static inline void debug_hrtimer_init(struct hrtimer *timer)
394{
395 debug_object_init(timer, &hrtimer_debug_descr);
396}
397
398static inline void debug_hrtimer_activate(struct hrtimer *timer)
399{
400 debug_object_activate(timer, &hrtimer_debug_descr);
401}
402
403static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
404{
405 debug_object_deactivate(timer, &hrtimer_debug_descr);
406}
407
408static inline void debug_hrtimer_free(struct hrtimer *timer)
409{
410 debug_object_free(timer, &hrtimer_debug_descr);
411}
412
413static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
414 enum hrtimer_mode mode);
415
416void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
417 enum hrtimer_mode mode)
418{
419 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
420 __hrtimer_init(timer, clock_id, mode);
421}
2bc481cf 422EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
423
424void destroy_hrtimer_on_stack(struct hrtimer *timer)
425{
426 debug_object_free(timer, &hrtimer_debug_descr);
427}
c08376ac 428EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
237fc6e7
TG
429
430#else
431static inline void debug_hrtimer_init(struct hrtimer *timer) { }
432static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
433static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
434#endif
435
c6a2a177
XG
436static inline void
437debug_init(struct hrtimer *timer, clockid_t clockid,
438 enum hrtimer_mode mode)
439{
440 debug_hrtimer_init(timer);
441 trace_hrtimer_init(timer, clockid, mode);
442}
443
444static inline void debug_activate(struct hrtimer *timer)
445{
446 debug_hrtimer_activate(timer);
447 trace_hrtimer_start(timer);
448}
449
450static inline void debug_deactivate(struct hrtimer *timer)
451{
452 debug_hrtimer_deactivate(timer);
453 trace_hrtimer_cancel(timer);
454}
455
9bc74919 456#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
895bdfa7
TG
457static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
458 struct hrtimer *timer)
459{
460#ifdef CONFIG_HIGH_RES_TIMERS
461 cpu_base->next_timer = timer;
462#endif
463}
464
4ebbda52 465static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
9bc74919
TG
466{
467 struct hrtimer_clock_base *base = cpu_base->clock_base;
34aee88a 468 unsigned int active = cpu_base->active_bases;
2456e855 469 ktime_t expires, expires_next = KTIME_MAX;
9bc74919 470
895bdfa7 471 hrtimer_update_next_timer(cpu_base, NULL);
34aee88a 472 for (; active; base++, active >>= 1) {
9bc74919
TG
473 struct timerqueue_node *next;
474 struct hrtimer *timer;
475
34aee88a 476 if (!(active & 0x01))
9bc74919
TG
477 continue;
478
34aee88a 479 next = timerqueue_getnext(&base->active);
9bc74919
TG
480 timer = container_of(next, struct hrtimer, node);
481 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
2456e855 482 if (expires < expires_next) {
9bc74919 483 expires_next = expires;
895bdfa7
TG
484 hrtimer_update_next_timer(cpu_base, timer);
485 }
9bc74919
TG
486 }
487 /*
488 * clock_was_set() might have changed base->offset of any of
489 * the clock bases so the result might be negative. Fix it up
490 * to prevent a false positive in clockevents_program_event().
491 */
2456e855
TG
492 if (expires_next < 0)
493 expires_next = 0;
9bc74919
TG
494 return expires_next;
495}
496#endif
497
21d6d52a
TG
498static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
499{
500 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
501 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
502 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
503
868a3e91
TG
504 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
505 offs_real, offs_boot, offs_tai);
21d6d52a
TG
506}
507
54cdfdb4
TG
508/* High resolution timer related functions */
509#ifdef CONFIG_HIGH_RES_TIMERS
510
511/*
512 * High resolution timer enabled ?
513 */
4cc7ecb7 514static bool hrtimer_hres_enabled __read_mostly = true;
398ca17f
TG
515unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
516EXPORT_SYMBOL_GPL(hrtimer_resolution);
54cdfdb4
TG
517
518/*
519 * Enable / Disable high resolution mode
520 */
521static int __init setup_hrtimer_hres(char *str)
522{
4cc7ecb7 523 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
54cdfdb4
TG
524}
525
526__setup("highres=", setup_hrtimer_hres);
527
528/*
529 * hrtimer_high_res_enabled - query, if the highres mode is enabled
530 */
531static inline int hrtimer_is_hres_enabled(void)
532{
533 return hrtimer_hres_enabled;
534}
535
536/*
537 * Is the high resolution mode active ?
538 */
e19ffe8b
TG
539static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
540{
541 return cpu_base->hres_active;
542}
543
54cdfdb4
TG
544static inline int hrtimer_hres_active(void)
545{
e19ffe8b 546 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
54cdfdb4
TG
547}
548
549/*
550 * Reprogram the event source with checking both queues for the
551 * next event
552 * Called with interrupts disabled and base->lock held
553 */
7403f41f
AC
554static void
555hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 556{
21d6d52a
TG
557 ktime_t expires_next;
558
559 if (!cpu_base->hres_active)
560 return;
561
562 expires_next = __hrtimer_get_next_event(cpu_base);
54cdfdb4 563
2456e855 564 if (skip_equal && expires_next == cpu_base->expires_next)
7403f41f
AC
565 return;
566
2456e855 567 cpu_base->expires_next = expires_next;
7403f41f 568
6c6c0d5a
SH
569 /*
570 * If a hang was detected in the last timer interrupt then we
571 * leave the hang delay active in the hardware. We want the
572 * system to make progress. That also prevents the following
573 * scenario:
574 * T1 expires 50ms from now
575 * T2 expires 5s from now
576 *
577 * T1 is removed, so this code is called and would reprogram
578 * the hardware to 5s from now. Any hrtimer_start after that
579 * will not reprogram the hardware due to hang_detected being
580 * set. So we'd effectivly block all timers until the T2 event
581 * fires.
582 */
583 if (cpu_base->hang_detected)
584 return;
585
d2540875 586 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
587}
588
589/*
54cdfdb4
TG
590 * When a timer is enqueued and expires earlier than the already enqueued
591 * timers, we have to check, whether it expires earlier than the timer for
592 * which the clock event device was armed.
593 *
594 * Called with interrupts disabled and base->cpu_base.lock held
595 */
c6eb3f70
TG
596static void hrtimer_reprogram(struct hrtimer *timer,
597 struct hrtimer_clock_base *base)
54cdfdb4 598{
dc5df73b 599 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
cc584b21 600 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4 601
cc584b21 602 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 603
54cdfdb4 604 /*
c6eb3f70
TG
605 * If the timer is not on the current cpu, we cannot reprogram
606 * the other cpus clock event device.
54cdfdb4 607 */
c6eb3f70
TG
608 if (base->cpu_base != cpu_base)
609 return;
610
611 /*
612 * If the hrtimer interrupt is running, then it will
613 * reevaluate the clock bases and reprogram the clock event
614 * device. The callbacks are always executed in hard interrupt
615 * context so we don't need an extra check for a running
616 * callback.
617 */
618 if (cpu_base->in_hrtirq)
619 return;
54cdfdb4 620
63070a79
TG
621 /*
622 * CLOCK_REALTIME timer might be requested with an absolute
c6eb3f70 623 * expiry time which is less than base->offset. Set it to 0.
63070a79 624 */
2456e855
TG
625 if (expires < 0)
626 expires = 0;
63070a79 627
2456e855 628 if (expires >= cpu_base->expires_next)
c6eb3f70 629 return;
41d2e494 630
c6eb3f70 631 /* Update the pointer to the next expiring timer */
895bdfa7 632 cpu_base->next_timer = timer;
9bc74919 633
41d2e494
TG
634 /*
635 * If a hang was detected in the last timer interrupt then we
636 * do not schedule a timer which is earlier than the expiry
637 * which we enforced in the hang detection. We want the system
638 * to make progress.
639 */
640 if (cpu_base->hang_detected)
c6eb3f70 641 return;
54cdfdb4
TG
642
643 /*
c6eb3f70
TG
644 * Program the timer hardware. We enforce the expiry for
645 * events which are already in the past.
54cdfdb4 646 */
c6eb3f70
TG
647 cpu_base->expires_next = expires;
648 tick_program_event(expires, 1);
54cdfdb4
TG
649}
650
54cdfdb4
TG
651/*
652 * Initialize the high resolution related parts of cpu_base
653 */
654static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
655{
2456e855 656 base->expires_next = KTIME_MAX;
54cdfdb4 657 base->hres_active = 0;
54cdfdb4
TG
658}
659
9ec26907
TG
660/*
661 * Retrigger next event is called after clock was set
662 *
663 * Called with interrupts disabled via on_each_cpu()
664 */
665static void retrigger_next_event(void *arg)
666{
dc5df73b 667 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 668
e19ffe8b 669 if (!base->hres_active)
9ec26907
TG
670 return;
671
9ec26907 672 raw_spin_lock(&base->lock);
5baefd6d 673 hrtimer_update_base(base);
9ec26907
TG
674 hrtimer_force_reprogram(base, 0);
675 raw_spin_unlock(&base->lock);
676}
b12a03ce 677
54cdfdb4
TG
678/*
679 * Switch to high resolution mode
680 */
75e3b37d 681static void hrtimer_switch_to_hres(void)
54cdfdb4 682{
c6eb3f70 683 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
684
685 if (tick_init_highres()) {
820de5c3 686 printk(KERN_WARNING "Could not switch to high resolution "
c6eb3f70 687 "mode on CPU %d\n", base->cpu);
85e1cd6e 688 return;
54cdfdb4
TG
689 }
690 base->hres_active = 1;
398ca17f 691 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
692
693 tick_setup_sched_timer();
54cdfdb4
TG
694 /* "Retrigger" the interrupt to get things going */
695 retrigger_next_event(NULL);
54cdfdb4
TG
696}
697
5ec2481b
TG
698static void clock_was_set_work(struct work_struct *work)
699{
700 clock_was_set();
701}
702
703static DECLARE_WORK(hrtimer_work, clock_was_set_work);
704
f55a6faa 705/*
b4d90e9f 706 * Called from timekeeping and resume code to reprogram the hrtimer
5ec2481b 707 * interrupt device on all cpus.
f55a6faa
JS
708 */
709void clock_was_set_delayed(void)
710{
5ec2481b 711 schedule_work(&hrtimer_work);
f55a6faa
JS
712}
713
54cdfdb4
TG
714#else
715
e19ffe8b 716static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
54cdfdb4
TG
717static inline int hrtimer_hres_active(void) { return 0; }
718static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 719static inline void hrtimer_switch_to_hres(void) { }
7403f41f
AC
720static inline void
721hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
9e1e01dd
VK
722static inline int hrtimer_reprogram(struct hrtimer *timer,
723 struct hrtimer_clock_base *base)
54cdfdb4
TG
724{
725 return 0;
726}
54cdfdb4 727static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 728static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
729
730#endif /* CONFIG_HIGH_RES_TIMERS */
731
b12a03ce
TG
732/*
733 * Clock realtime was set
734 *
735 * Change the offset of the realtime clock vs. the monotonic
736 * clock.
737 *
738 * We might have to reprogram the high resolution timer interrupt. On
739 * SMP we call the architecture specific code to retrigger _all_ high
740 * resolution timer interrupts. On UP we just disable interrupts and
741 * call the high resolution interrupt code.
742 */
743void clock_was_set(void)
744{
90ff1f30 745#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
746 /* Retrigger the CPU local events everywhere */
747 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
748#endif
749 timerfd_clock_was_set();
b12a03ce
TG
750}
751
752/*
753 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
754 * interrupt on all online CPUs. However, all other CPUs will be
755 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 756 * must be deferred.
b12a03ce
TG
757 */
758void hrtimers_resume(void)
759{
760 WARN_ONCE(!irqs_disabled(),
761 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
762
5ec2481b 763 /* Retrigger on the local CPU */
b12a03ce 764 retrigger_next_event(NULL);
5ec2481b
TG
765 /* And schedule a retrigger for all others */
766 clock_was_set_delayed();
b12a03ce
TG
767}
768
c0a31329 769/*
6506f2aa 770 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
771 */
772static inline
773void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
774{
ecb49d1a 775 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
776}
777
778/**
779 * hrtimer_forward - forward the timer expiry
c0a31329 780 * @timer: hrtimer to forward
44f21475 781 * @now: forward past this time
c0a31329
TG
782 * @interval: the interval to forward
783 *
784 * Forward the timer expiry so it will expire in the future.
8dca6f33 785 * Returns the number of overruns.
91e5a217
TG
786 *
787 * Can be safely called from the callback function of @timer. If
788 * called from other contexts @timer must neither be enqueued nor
789 * running the callback and the caller needs to take care of
790 * serialization.
791 *
792 * Note: This only updates the timer expiry value and does not requeue
793 * the timer.
c0a31329 794 */
4d672e7a 795u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 796{
4d672e7a 797 u64 orun = 1;
44f21475 798 ktime_t delta;
c0a31329 799
cc584b21 800 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329 801
2456e855 802 if (delta < 0)
c0a31329
TG
803 return 0;
804
5de2755c
PZ
805 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
806 return 0;
807
2456e855
TG
808 if (interval < hrtimer_resolution)
809 interval = hrtimer_resolution;
c9db4fa1 810
2456e855 811 if (unlikely(delta >= interval)) {
df869b63 812 s64 incr = ktime_to_ns(interval);
c0a31329
TG
813
814 orun = ktime_divns(delta, incr);
cc584b21 815 hrtimer_add_expires_ns(timer, incr * orun);
2456e855 816 if (hrtimer_get_expires_tv64(timer) > now)
c0a31329
TG
817 return orun;
818 /*
819 * This (and the ktime_add() below) is the
820 * correction for exact:
821 */
822 orun++;
823 }
cc584b21 824 hrtimer_add_expires(timer, interval);
c0a31329
TG
825
826 return orun;
827}
6bdb6b62 828EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
829
830/*
831 * enqueue_hrtimer - internal function to (re)start a timer
832 *
833 * The timer is inserted in expiry order. Insertion into the
834 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
835 *
836 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 837 */
a6037b61
PZ
838static int enqueue_hrtimer(struct hrtimer *timer,
839 struct hrtimer_clock_base *base)
c0a31329 840{
c6a2a177 841 debug_activate(timer);
237fc6e7 842
ab8177bc 843 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 844
887d9dc9 845 timer->state = HRTIMER_STATE_ENQUEUED;
a6037b61 846
b97f44c9 847 return timerqueue_add(&base->active, &timer->node);
288867ec 848}
c0a31329
TG
849
850/*
851 * __remove_hrtimer - internal function to remove a timer
852 *
853 * Caller must hold the base lock.
54cdfdb4
TG
854 *
855 * High resolution timer mode reprograms the clock event device when the
856 * timer is the one which expires next. The caller can disable this by setting
857 * reprogram to zero. This is useful, when the context does a reprogramming
858 * anyway (e.g. timer interrupt)
c0a31329 859 */
3c8aa39d 860static void __remove_hrtimer(struct hrtimer *timer,
303e967f 861 struct hrtimer_clock_base *base,
203cbf77 862 u8 newstate, int reprogram)
c0a31329 863{
e19ffe8b 864 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 865 u8 state = timer->state;
e19ffe8b 866
895bdfa7
TG
867 timer->state = newstate;
868 if (!(state & HRTIMER_STATE_ENQUEUED))
869 return;
7403f41f 870
b97f44c9 871 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 872 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 873
7403f41f 874#ifdef CONFIG_HIGH_RES_TIMERS
895bdfa7
TG
875 /*
876 * Note: If reprogram is false we do not update
877 * cpu_base->next_timer. This happens when we remove the first
878 * timer on a remote cpu. No harm as we never dereference
879 * cpu_base->next_timer. So the worst thing what can happen is
880 * an superflous call to hrtimer_force_reprogram() on the
881 * remote cpu later on if the same timer gets enqueued again.
882 */
883 if (reprogram && timer == cpu_base->next_timer)
884 hrtimer_force_reprogram(cpu_base, 1);
7403f41f 885#endif
c0a31329
TG
886}
887
888/*
889 * remove hrtimer, called with base lock held
890 */
891static inline int
8edfb036 892remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 893{
303e967f 894 if (hrtimer_is_queued(timer)) {
203cbf77 895 u8 state = timer->state;
54cdfdb4
TG
896 int reprogram;
897
898 /*
899 * Remove the timer and force reprogramming when high
900 * resolution mode is active and the timer is on the current
901 * CPU. If we remove a timer on another CPU, reprogramming is
902 * skipped. The interrupt event on this CPU is fired and
903 * reprogramming happens in the interrupt handler. This is a
904 * rare case and less expensive than a smp call.
905 */
c6a2a177 906 debug_deactivate(timer);
dc5df73b 907 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 908
887d9dc9
PZ
909 if (!restart)
910 state = HRTIMER_STATE_INACTIVE;
911
f13d4f97 912 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
913 return 1;
914 }
915 return 0;
916}
917
203cbf77
TG
918static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
919 const enum hrtimer_mode mode)
920{
921#ifdef CONFIG_TIME_LOW_RES
922 /*
923 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
924 * granular time values. For relative timers we add hrtimer_resolution
925 * (i.e. one jiffie) to prevent short timeouts.
926 */
927 timer->is_rel = mode & HRTIMER_MODE_REL;
928 if (timer->is_rel)
8b0e1953 929 tim = ktime_add_safe(tim, hrtimer_resolution);
203cbf77
TG
930#endif
931 return tim;
932}
933
58f1f803
TG
934/**
935 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
936 * @timer: the timer to be added
937 * @tim: expiry time
938 * @delta_ns: "slack" range for the timer
939 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
940 * relative (HRTIMER_MODE_REL)
58f1f803 941 */
61699e13 942void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
da8b44d5 943 u64 delta_ns, const enum hrtimer_mode mode)
c0a31329 944{
3c8aa39d 945 struct hrtimer_clock_base *base, *new_base;
c0a31329 946 unsigned long flags;
61699e13 947 int leftmost;
c0a31329
TG
948
949 base = lock_hrtimer_base(timer, &flags);
950
951 /* Remove an active timer from the queue: */
8edfb036 952 remove_hrtimer(timer, base, true);
c0a31329 953
203cbf77 954 if (mode & HRTIMER_MODE_REL)
84ea7fe3 955 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
956
957 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 958
da8f2e17 959 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 960
84ea7fe3
VK
961 /* Switch the timer base, if necessary: */
962 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
963
a6037b61 964 leftmost = enqueue_hrtimer(timer, new_base);
61699e13
TG
965 if (!leftmost)
966 goto unlock;
49a2a075
VK
967
968 if (!hrtimer_is_hres_active(timer)) {
969 /*
970 * Kick to reschedule the next tick to handle the new timer
971 * on dynticks target.
972 */
683be13a
TG
973 if (new_base->cpu_base->nohz_active)
974 wake_up_nohz_cpu(new_base->cpu_base->cpu);
c6eb3f70
TG
975 } else {
976 hrtimer_reprogram(timer, new_base);
b22affe0 977 }
61699e13 978unlock:
c0a31329 979 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 980}
da8f2e17
AV
981EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
982
c0a31329
TG
983/**
984 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
985 * @timer: hrtimer to stop
986 *
987 * Returns:
988 * 0 when the timer was not active
989 * 1 when the timer was active
990 * -1 when the timer is currently excuting the callback function and
fa9799e3 991 * cannot be stopped
c0a31329
TG
992 */
993int hrtimer_try_to_cancel(struct hrtimer *timer)
994{
3c8aa39d 995 struct hrtimer_clock_base *base;
c0a31329
TG
996 unsigned long flags;
997 int ret = -1;
998
19d9f422
TG
999 /*
1000 * Check lockless first. If the timer is not active (neither
1001 * enqueued nor running the callback, nothing to do here. The
1002 * base lock does not serialize against a concurrent enqueue,
1003 * so we can avoid taking it.
1004 */
1005 if (!hrtimer_active(timer))
1006 return 0;
1007
c0a31329
TG
1008 base = lock_hrtimer_base(timer, &flags);
1009
303e967f 1010 if (!hrtimer_callback_running(timer))
8edfb036 1011 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1012
1013 unlock_hrtimer_base(timer, &flags);
1014
1015 return ret;
1016
1017}
8d16b764 1018EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1019
1020/**
1021 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1022 * @timer: the timer to be cancelled
1023 *
1024 * Returns:
1025 * 0 when the timer was not active
1026 * 1 when the timer was active
1027 */
1028int hrtimer_cancel(struct hrtimer *timer)
1029{
1030 for (;;) {
1031 int ret = hrtimer_try_to_cancel(timer);
1032
1033 if (ret >= 0)
1034 return ret;
5ef37b19 1035 cpu_relax();
c0a31329
TG
1036 }
1037}
8d16b764 1038EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1039
1040/**
1041 * hrtimer_get_remaining - get remaining time for the timer
c0a31329 1042 * @timer: the timer to read
203cbf77 1043 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1044 */
203cbf77 1045ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1046{
c0a31329
TG
1047 unsigned long flags;
1048 ktime_t rem;
1049
b3bd3de6 1050 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1051 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1052 rem = hrtimer_expires_remaining_adjusted(timer);
1053 else
1054 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1055 unlock_hrtimer_base(timer, &flags);
1056
1057 return rem;
1058}
203cbf77 1059EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1060
3451d024 1061#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1062/**
1063 * hrtimer_get_next_event - get the time until next expiry event
1064 *
c1ad348b 1065 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1066 */
c1ad348b 1067u64 hrtimer_get_next_event(void)
69239749 1068{
dc5df73b 1069 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1070 u64 expires = KTIME_MAX;
69239749 1071 unsigned long flags;
69239749 1072
ecb49d1a 1073 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1074
e19ffe8b 1075 if (!__hrtimer_hres_active(cpu_base))
2456e855 1076 expires = __hrtimer_get_next_event(cpu_base);
3c8aa39d 1077
ecb49d1a 1078 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1079
c1ad348b 1080 return expires;
69239749
TL
1081}
1082#endif
1083
336a9cde
MZ
1084static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1085{
1086 if (likely(clock_id < MAX_CLOCKS)) {
1087 int base = hrtimer_clock_to_base_table[clock_id];
1088
1089 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1090 return base;
1091 }
1092 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1093 return HRTIMER_BASE_MONOTONIC;
1094}
1095
237fc6e7
TG
1096static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1097 enum hrtimer_mode mode)
c0a31329 1098{
3c8aa39d 1099 struct hrtimer_cpu_base *cpu_base;
e06383db 1100 int base;
c0a31329 1101
7978672c
GA
1102 memset(timer, 0, sizeof(struct hrtimer));
1103
22127e93 1104 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1105
c9cb2e3d 1106 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1107 clock_id = CLOCK_MONOTONIC;
1108
e06383db
JS
1109 base = hrtimer_clockid_to_base(clock_id);
1110 timer->base = &cpu_base->clock_base[base];
998adc3d 1111 timerqueue_init(&timer->node);
c0a31329 1112}
237fc6e7
TG
1113
1114/**
1115 * hrtimer_init - initialize a timer to the given clock
1116 * @timer: the timer to be initialized
1117 * @clock_id: the clock to be used
1118 * @mode: timer mode abs/rel
1119 */
1120void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1121 enum hrtimer_mode mode)
1122{
c6a2a177 1123 debug_init(timer, clock_id, mode);
237fc6e7
TG
1124 __hrtimer_init(timer, clock_id, mode);
1125}
8d16b764 1126EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1127
887d9dc9
PZ
1128/*
1129 * A timer is active, when it is enqueued into the rbtree or the
1130 * callback function is running or it's in the state of being migrated
1131 * to another cpu.
c0a31329 1132 *
887d9dc9 1133 * It is important for this function to not return a false negative.
c0a31329 1134 */
887d9dc9 1135bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1136{
3c8aa39d 1137 struct hrtimer_cpu_base *cpu_base;
887d9dc9 1138 unsigned int seq;
c0a31329 1139
887d9dc9
PZ
1140 do {
1141 cpu_base = READ_ONCE(timer->base->cpu_base);
1142 seq = raw_read_seqcount_begin(&cpu_base->seq);
c0a31329 1143
887d9dc9
PZ
1144 if (timer->state != HRTIMER_STATE_INACTIVE ||
1145 cpu_base->running == timer)
1146 return true;
1147
1148 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1149 cpu_base != READ_ONCE(timer->base->cpu_base));
1150
1151 return false;
c0a31329 1152}
887d9dc9 1153EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1154
887d9dc9
PZ
1155/*
1156 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1157 * distinct sections:
1158 *
1159 * - queued: the timer is queued
1160 * - callback: the timer is being ran
1161 * - post: the timer is inactive or (re)queued
1162 *
1163 * On the read side we ensure we observe timer->state and cpu_base->running
1164 * from the same section, if anything changed while we looked at it, we retry.
1165 * This includes timer->base changing because sequence numbers alone are
1166 * insufficient for that.
1167 *
1168 * The sequence numbers are required because otherwise we could still observe
1169 * a false negative if the read side got smeared over multiple consequtive
1170 * __run_hrtimer() invocations.
1171 */
1172
21d6d52a
TG
1173static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1174 struct hrtimer_clock_base *base,
1175 struct hrtimer *timer, ktime_t *now)
d3d74453 1176{
d3d74453
PZ
1177 enum hrtimer_restart (*fn)(struct hrtimer *);
1178 int restart;
1179
887d9dc9 1180 lockdep_assert_held(&cpu_base->lock);
ca109491 1181
c6a2a177 1182 debug_deactivate(timer);
887d9dc9
PZ
1183 cpu_base->running = timer;
1184
1185 /*
1186 * Separate the ->running assignment from the ->state assignment.
1187 *
1188 * As with a regular write barrier, this ensures the read side in
1189 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1190 * timer->state == INACTIVE.
1191 */
1192 raw_write_seqcount_barrier(&cpu_base->seq);
1193
1194 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1195 fn = timer->function;
ca109491 1196
203cbf77
TG
1197 /*
1198 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1199 * timer is restarted with a period then it becomes an absolute
1200 * timer. If its not restarted it does not matter.
1201 */
1202 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1203 timer->is_rel = false;
1204
ca109491
PZ
1205 /*
1206 * Because we run timers from hardirq context, there is no chance
1207 * they get migrated to another cpu, therefore its safe to unlock
1208 * the timer base.
1209 */
ecb49d1a 1210 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1211 trace_hrtimer_expire_entry(timer, now);
ca109491 1212 restart = fn(timer);
c6a2a177 1213 trace_hrtimer_expire_exit(timer);
ecb49d1a 1214 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1215
1216 /*
887d9dc9 1217 * Note: We clear the running state after enqueue_hrtimer and
b4d90e9f 1218 * we do not reprogram the event hardware. Happens either in
e3f1d883 1219 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1220 *
1221 * Note: Because we dropped the cpu_base->lock above,
1222 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1223 * for us already.
d3d74453 1224 */
5de2755c
PZ
1225 if (restart != HRTIMER_NORESTART &&
1226 !(timer->state & HRTIMER_STATE_ENQUEUED))
a6037b61 1227 enqueue_hrtimer(timer, base);
f13d4f97 1228
887d9dc9
PZ
1229 /*
1230 * Separate the ->running assignment from the ->state assignment.
1231 *
1232 * As with a regular write barrier, this ensures the read side in
1233 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1234 * timer->state == INACTIVE.
1235 */
1236 raw_write_seqcount_barrier(&cpu_base->seq);
f13d4f97 1237
887d9dc9
PZ
1238 WARN_ON_ONCE(cpu_base->running != timer);
1239 cpu_base->running = NULL;
d3d74453
PZ
1240}
1241
21d6d52a 1242static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
54cdfdb4 1243{
34aee88a
TG
1244 struct hrtimer_clock_base *base = cpu_base->clock_base;
1245 unsigned int active = cpu_base->active_bases;
6ff7041d 1246
34aee88a 1247 for (; active; base++, active >>= 1) {
998adc3d 1248 struct timerqueue_node *node;
ab8177bc
TG
1249 ktime_t basenow;
1250
34aee88a 1251 if (!(active & 0x01))
ab8177bc 1252 continue;
54cdfdb4 1253
54cdfdb4
TG
1254 basenow = ktime_add(now, base->offset);
1255
998adc3d 1256 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1257 struct hrtimer *timer;
1258
998adc3d 1259 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1260
654c8e0b
AV
1261 /*
1262 * The immediate goal for using the softexpires is
1263 * minimizing wakeups, not running timers at the
1264 * earliest interrupt after their soft expiration.
1265 * This allows us to avoid using a Priority Search
1266 * Tree, which can answer a stabbing querry for
1267 * overlapping intervals and instead use the simple
1268 * BST we already have.
1269 * We don't add extra wakeups by delaying timers that
1270 * are right-of a not yet expired timer, because that
1271 * timer will have to trigger a wakeup anyway.
1272 */
2456e855 1273 if (basenow < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1274 break;
54cdfdb4 1275
21d6d52a 1276 __run_hrtimer(cpu_base, base, timer, &basenow);
54cdfdb4 1277 }
54cdfdb4 1278 }
21d6d52a
TG
1279}
1280
1281#ifdef CONFIG_HIGH_RES_TIMERS
1282
1283/*
1284 * High resolution timer interrupt
1285 * Called with interrupts disabled
1286 */
1287void hrtimer_interrupt(struct clock_event_device *dev)
1288{
1289 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1290 ktime_t expires_next, now, entry_time, delta;
1291 int retries = 0;
1292
1293 BUG_ON(!cpu_base->hres_active);
1294 cpu_base->nr_events++;
2456e855 1295 dev->next_event = KTIME_MAX;
21d6d52a
TG
1296
1297 raw_spin_lock(&cpu_base->lock);
1298 entry_time = now = hrtimer_update_base(cpu_base);
1299retry:
1300 cpu_base->in_hrtirq = 1;
1301 /*
1302 * We set expires_next to KTIME_MAX here with cpu_base->lock
1303 * held to prevent that a timer is enqueued in our queue via
1304 * the migration code. This does not affect enqueueing of
1305 * timers which run their callback and need to be requeued on
1306 * this CPU.
1307 */
2456e855 1308 cpu_base->expires_next = KTIME_MAX;
21d6d52a
TG
1309
1310 __hrtimer_run_queues(cpu_base, now);
1311
9bc74919
TG
1312 /* Reevaluate the clock bases for the next expiry */
1313 expires_next = __hrtimer_get_next_event(cpu_base);
6ff7041d
TG
1314 /*
1315 * Store the new expiry value so the migration code can verify
1316 * against it.
1317 */
54cdfdb4 1318 cpu_base->expires_next = expires_next;
9bc74919 1319 cpu_base->in_hrtirq = 0;
ecb49d1a 1320 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1321
1322 /* Reprogramming necessary ? */
d2540875 1323 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1324 cpu_base->hang_detected = 0;
1325 return;
54cdfdb4 1326 }
41d2e494
TG
1327
1328 /*
1329 * The next timer was already expired due to:
1330 * - tracing
1331 * - long lasting callbacks
1332 * - being scheduled away when running in a VM
1333 *
1334 * We need to prevent that we loop forever in the hrtimer
1335 * interrupt routine. We give it 3 attempts to avoid
1336 * overreacting on some spurious event.
5baefd6d
JS
1337 *
1338 * Acquire base lock for updating the offsets and retrieving
1339 * the current time.
41d2e494 1340 */
196951e9 1341 raw_spin_lock(&cpu_base->lock);
5baefd6d 1342 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1343 cpu_base->nr_retries++;
1344 if (++retries < 3)
1345 goto retry;
1346 /*
1347 * Give the system a chance to do something else than looping
1348 * here. We stored the entry time, so we know exactly how long
1349 * we spent here. We schedule the next event this amount of
1350 * time away.
1351 */
1352 cpu_base->nr_hangs++;
1353 cpu_base->hang_detected = 1;
196951e9 1354 raw_spin_unlock(&cpu_base->lock);
41d2e494 1355 delta = ktime_sub(now, entry_time);
2456e855
TG
1356 if ((unsigned int)delta > cpu_base->max_hang_time)
1357 cpu_base->max_hang_time = (unsigned int) delta;
41d2e494
TG
1358 /*
1359 * Limit it to a sensible value as we enforce a longer
1360 * delay. Give the CPU at least 100ms to catch up.
1361 */
2456e855 1362 if (delta > 100 * NSEC_PER_MSEC)
41d2e494
TG
1363 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1364 else
1365 expires_next = ktime_add(now, delta);
1366 tick_program_event(expires_next, 1);
1367 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1368 ktime_to_ns(delta));
54cdfdb4
TG
1369}
1370
8bdec955
TG
1371/*
1372 * local version of hrtimer_peek_ahead_timers() called with interrupts
1373 * disabled.
1374 */
c6eb3f70 1375static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1376{
1377 struct tick_device *td;
1378
1379 if (!hrtimer_hres_active())
1380 return;
1381
22127e93 1382 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1383 if (td && td->evtdev)
1384 hrtimer_interrupt(td->evtdev);
1385}
1386
82c5b7b5
IM
1387#else /* CONFIG_HIGH_RES_TIMERS */
1388
1389static inline void __hrtimer_peek_ahead_timers(void) { }
1390
1391#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1392
d3d74453 1393/*
c6eb3f70 1394 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1395 */
833883d9 1396void hrtimer_run_queues(void)
d3d74453 1397{
dc5df73b 1398 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
21d6d52a 1399 ktime_t now;
c0a31329 1400
e19ffe8b 1401 if (__hrtimer_hres_active(cpu_base))
d3d74453 1402 return;
54cdfdb4 1403
d3d74453 1404 /*
c6eb3f70
TG
1405 * This _is_ ugly: We have to check periodically, whether we
1406 * can switch to highres and / or nohz mode. The clocksource
1407 * switch happens with xtime_lock held. Notification from
1408 * there only sets the check bit in the tick_oneshot code,
1409 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1410 */
c6eb3f70 1411 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1412 hrtimer_switch_to_hres();
3055adda 1413 return;
833883d9 1414 }
c6eb3f70 1415
21d6d52a
TG
1416 raw_spin_lock(&cpu_base->lock);
1417 now = hrtimer_update_base(cpu_base);
1418 __hrtimer_run_queues(cpu_base, now);
1419 raw_spin_unlock(&cpu_base->lock);
c0a31329
TG
1420}
1421
10c94ec1
TG
1422/*
1423 * Sleep related functions:
1424 */
c9cb2e3d 1425static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1426{
1427 struct hrtimer_sleeper *t =
1428 container_of(timer, struct hrtimer_sleeper, timer);
1429 struct task_struct *task = t->task;
1430
1431 t->task = NULL;
1432 if (task)
1433 wake_up_process(task);
1434
1435 return HRTIMER_NORESTART;
1436}
1437
36c8b586 1438void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1439{
1440 sl->timer.function = hrtimer_wakeup;
1441 sl->task = task;
1442}
2bc481cf 1443EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1444
669d7868 1445static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1446{
669d7868 1447 hrtimer_init_sleeper(t, current);
10c94ec1 1448
432569bb
RZ
1449 do {
1450 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1451 hrtimer_start_expires(&t->timer, mode);
432569bb 1452
54cdfdb4 1453 if (likely(t->task))
b0f8c44f 1454 freezable_schedule();
432569bb 1455
669d7868 1456 hrtimer_cancel(&t->timer);
c9cb2e3d 1457 mode = HRTIMER_MODE_ABS;
669d7868
TG
1458
1459 } while (t->task && !signal_pending(current));
432569bb 1460
3588a085
PZ
1461 __set_current_state(TASK_RUNNING);
1462
669d7868 1463 return t->task == NULL;
10c94ec1
TG
1464}
1465
080344b9
ON
1466static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1467{
1468 struct timespec rmt;
1469 ktime_t rem;
1470
cc584b21 1471 rem = hrtimer_expires_remaining(timer);
2456e855 1472 if (rem <= 0)
080344b9
ON
1473 return 0;
1474 rmt = ktime_to_timespec(rem);
1475
1476 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1477 return -EFAULT;
1478
1479 return 1;
1480}
1481
1711ef38 1482long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1483{
669d7868 1484 struct hrtimer_sleeper t;
080344b9 1485 struct timespec __user *rmtp;
237fc6e7 1486 int ret = 0;
10c94ec1 1487
ab8177bc 1488 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1489 HRTIMER_MODE_ABS);
cc584b21 1490 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1491
c9cb2e3d 1492 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1493 goto out;
10c94ec1 1494
029a07e0 1495 rmtp = restart->nanosleep.rmtp;
432569bb 1496 if (rmtp) {
237fc6e7 1497 ret = update_rmtp(&t.timer, rmtp);
080344b9 1498 if (ret <= 0)
237fc6e7 1499 goto out;
432569bb 1500 }
10c94ec1 1501
10c94ec1 1502 /* The other values in restart are already filled in */
237fc6e7
TG
1503 ret = -ERESTART_RESTARTBLOCK;
1504out:
1505 destroy_hrtimer_on_stack(&t.timer);
1506 return ret;
10c94ec1
TG
1507}
1508
080344b9 1509long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1510 const enum hrtimer_mode mode, const clockid_t clockid)
1511{
1512 struct restart_block *restart;
669d7868 1513 struct hrtimer_sleeper t;
237fc6e7 1514 int ret = 0;
da8b44d5 1515 u64 slack;
3bd01206
AV
1516
1517 slack = current->timer_slack_ns;
aab03e05 1518 if (dl_task(current) || rt_task(current))
3bd01206 1519 slack = 0;
10c94ec1 1520
237fc6e7 1521 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1522 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1523 if (do_nanosleep(&t, mode))
237fc6e7 1524 goto out;
10c94ec1 1525
7978672c 1526 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1527 if (mode == HRTIMER_MODE_ABS) {
1528 ret = -ERESTARTNOHAND;
1529 goto out;
1530 }
10c94ec1 1531
432569bb 1532 if (rmtp) {
237fc6e7 1533 ret = update_rmtp(&t.timer, rmtp);
080344b9 1534 if (ret <= 0)
237fc6e7 1535 goto out;
432569bb 1536 }
10c94ec1 1537
f56141e3 1538 restart = &current->restart_block;
1711ef38 1539 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1540 restart->nanosleep.clockid = t.timer.base->clockid;
029a07e0 1541 restart->nanosleep.rmtp = rmtp;
cc584b21 1542 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1543
237fc6e7
TG
1544 ret = -ERESTART_RESTARTBLOCK;
1545out:
1546 destroy_hrtimer_on_stack(&t.timer);
1547 return ret;
10c94ec1
TG
1548}
1549
58fd3aa2
HC
1550SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1551 struct timespec __user *, rmtp)
6ba1b912 1552{
080344b9 1553 struct timespec tu;
6ba1b912
TG
1554
1555 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1556 return -EFAULT;
1557
1558 if (!timespec_valid(&tu))
1559 return -EINVAL;
1560
080344b9 1561 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1562}
1563
c0a31329
TG
1564/*
1565 * Functions related to boot-time initialization:
1566 */
27590dc1 1567int hrtimers_prepare_cpu(unsigned int cpu)
c0a31329 1568{
3c8aa39d 1569 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1570 int i;
1571
998adc3d 1572 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1573 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1574 timerqueue_init_head(&cpu_base->clock_base[i].active);
1575 }
3c8aa39d 1576
cddd0248 1577 cpu_base->cpu = cpu;
54cdfdb4 1578 hrtimer_init_hres(cpu_base);
27590dc1 1579 return 0;
c0a31329
TG
1580}
1581
1582#ifdef CONFIG_HOTPLUG_CPU
1583
ca109491 1584static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1585 struct hrtimer_clock_base *new_base)
c0a31329
TG
1586{
1587 struct hrtimer *timer;
998adc3d 1588 struct timerqueue_node *node;
c0a31329 1589
998adc3d
JS
1590 while ((node = timerqueue_getnext(&old_base->active))) {
1591 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1592 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1593 debug_deactivate(timer);
b00c1a99
TG
1594
1595 /*
c04dca02 1596 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1597 * timer could be seen as !active and just vanish away
1598 * under us on another CPU
1599 */
c04dca02 1600 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1601 timer->base = new_base;
54cdfdb4 1602 /*
e3f1d883
TG
1603 * Enqueue the timers on the new cpu. This does not
1604 * reprogram the event device in case the timer
1605 * expires before the earliest on this CPU, but we run
1606 * hrtimer_interrupt after we migrated everything to
1607 * sort out already expired timers and reprogram the
1608 * event device.
54cdfdb4 1609 */
a6037b61 1610 enqueue_hrtimer(timer, new_base);
c0a31329
TG
1611 }
1612}
1613
27590dc1 1614int hrtimers_dead_cpu(unsigned int scpu)
c0a31329 1615{
3c8aa39d 1616 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1617 int i;
c0a31329 1618
37810659 1619 BUG_ON(cpu_online(scpu));
37810659 1620 tick_cancel_sched_timer(scpu);
731a55ba
TG
1621
1622 local_irq_disable();
1623 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1624 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1625 /*
1626 * The caller is globally serialized and nobody else
1627 * takes two locks at once, deadlock is not possible.
1628 */
ecb49d1a
TG
1629 raw_spin_lock(&new_base->lock);
1630 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1631
3c8aa39d 1632 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1633 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1634 &new_base->clock_base[i]);
c0a31329
TG
1635 }
1636
ecb49d1a
TG
1637 raw_spin_unlock(&old_base->lock);
1638 raw_spin_unlock(&new_base->lock);
37810659 1639
731a55ba
TG
1640 /* Check, if we got expired work to do */
1641 __hrtimer_peek_ahead_timers();
1642 local_irq_enable();
27590dc1 1643 return 0;
c0a31329 1644}
37810659 1645
c0a31329
TG
1646#endif /* CONFIG_HOTPLUG_CPU */
1647
c0a31329
TG
1648void __init hrtimers_init(void)
1649{
27590dc1 1650 hrtimers_prepare_cpu(smp_processor_id());
c0a31329
TG
1651}
1652
7bb67439 1653/**
351b3f7a 1654 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1655 * @expires: timeout value (ktime_t)
654c8e0b 1656 * @delta: slack in expires timeout (ktime_t)
7bb67439 1657 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1658 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1659 */
351b3f7a 1660int __sched
da8b44d5 1661schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
351b3f7a 1662 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1663{
1664 struct hrtimer_sleeper t;
1665
1666 /*
1667 * Optimize when a zero timeout value is given. It does not
1668 * matter whether this is an absolute or a relative time.
1669 */
2456e855 1670 if (expires && *expires == 0) {
7bb67439
AV
1671 __set_current_state(TASK_RUNNING);
1672 return 0;
1673 }
1674
1675 /*
43b21013 1676 * A NULL parameter means "infinite"
7bb67439
AV
1677 */
1678 if (!expires) {
1679 schedule();
7bb67439
AV
1680 return -EINTR;
1681 }
1682
351b3f7a 1683 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1684 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1685
1686 hrtimer_init_sleeper(&t, current);
1687
cc584b21 1688 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1689
1690 if (likely(t.task))
1691 schedule();
1692
1693 hrtimer_cancel(&t.timer);
1694 destroy_hrtimer_on_stack(&t.timer);
1695
1696 __set_current_state(TASK_RUNNING);
1697
1698 return !t.task ? 0 : -EINTR;
1699}
351b3f7a
CE
1700
1701/**
1702 * schedule_hrtimeout_range - sleep until timeout
1703 * @expires: timeout value (ktime_t)
1704 * @delta: slack in expires timeout (ktime_t)
1705 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1706 *
1707 * Make the current task sleep until the given expiry time has
1708 * elapsed. The routine will return immediately unless
1709 * the current task state has been set (see set_current_state()).
1710 *
1711 * The @delta argument gives the kernel the freedom to schedule the
1712 * actual wakeup to a time that is both power and performance friendly.
1713 * The kernel give the normal best effort behavior for "@expires+@delta",
1714 * but may decide to fire the timer earlier, but no earlier than @expires.
1715 *
1716 * You can set the task state as follows -
1717 *
1718 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1719 * pass before the routine returns unless the current task is explicitly
1720 * woken up, (e.g. by wake_up_process()).
351b3f7a
CE
1721 *
1722 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1723 * delivered to the current task or the current task is explicitly woken
1724 * up.
351b3f7a
CE
1725 *
1726 * The current task state is guaranteed to be TASK_RUNNING when this
1727 * routine returns.
1728 *
4b7e9cf9
DA
1729 * Returns 0 when the timer has expired. If the task was woken before the
1730 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1731 * by an explicit wakeup, it returns -EINTR.
351b3f7a 1732 */
da8b44d5 1733int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
1734 const enum hrtimer_mode mode)
1735{
1736 return schedule_hrtimeout_range_clock(expires, delta, mode,
1737 CLOCK_MONOTONIC);
1738}
654c8e0b
AV
1739EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1740
1741/**
1742 * schedule_hrtimeout - sleep until timeout
1743 * @expires: timeout value (ktime_t)
1744 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1745 *
1746 * Make the current task sleep until the given expiry time has
1747 * elapsed. The routine will return immediately unless
1748 * the current task state has been set (see set_current_state()).
1749 *
1750 * You can set the task state as follows -
1751 *
1752 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1753 * pass before the routine returns unless the current task is explicitly
1754 * woken up, (e.g. by wake_up_process()).
654c8e0b
AV
1755 *
1756 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1757 * delivered to the current task or the current task is explicitly woken
1758 * up.
654c8e0b
AV
1759 *
1760 * The current task state is guaranteed to be TASK_RUNNING when this
1761 * routine returns.
1762 *
4b7e9cf9
DA
1763 * Returns 0 when the timer has expired. If the task was woken before the
1764 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1765 * by an explicit wakeup, it returns -EINTR.
654c8e0b
AV
1766 */
1767int __sched schedule_hrtimeout(ktime_t *expires,
1768 const enum hrtimer_mode mode)
1769{
1770 return schedule_hrtimeout_range(expires, 0, mode);
1771}
7bb67439 1772EXPORT_SYMBOL_GPL(schedule_hrtimeout);