]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/time/hrtimer.c
timer: Reduce timer migration overhead if disabled
[mirror_ubuntu-eoan-kernel.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32 46#include <linux/sched.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
eea08f32 50#include <linux/timer.h>
b0f8c44f 51#include <linux/freezer.h>
c0a31329
TG
52
53#include <asm/uaccess.h>
54
c6a2a177
XG
55#include <trace/events/timer.h>
56
c1797baf 57#include "tick-internal.h"
8b094cd0 58
c0a31329
TG
59/*
60 * The timer bases:
7978672c 61 *
e06383db
JS
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 66 */
54cdfdb4 67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 68{
84cc8fd2 69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
887d9dc9 70 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
3c8aa39d 71 .clock_base =
c0a31329 72 {
3c8aa39d 73 {
ab8177bc
TG
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
3c8aa39d 76 .get_time = &ktime_get,
3c8aa39d 77 },
68fa61c0
TG
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
68fa61c0 82 },
70a08cca 83 {
ab8177bc
TG
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
70a08cca 86 .get_time = &ktime_get_boottime,
70a08cca 87 },
90adda98
JS
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
90adda98 92 },
3c8aa39d 93 }
c0a31329
TG
94};
95
942c3c5c 96static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
ce31332d
TG
97 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
98 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
99 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 100 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 101};
e06383db
JS
102
103static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104{
105 return hrtimer_clock_to_base_table[clock_id];
106}
107
c0a31329
TG
108/*
109 * Functions and macros which are different for UP/SMP systems are kept in a
110 * single place
111 */
112#ifdef CONFIG_SMP
113
887d9dc9
PZ
114/*
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
118 */
119static struct hrtimer_cpu_base migration_cpu_base = {
120 .seq = SEQCNT_ZERO(migration_cpu_base),
121 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
122};
123
124#define migration_base migration_cpu_base.clock_base[0]
125
c0a31329
TG
126/*
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
130 *
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
133 *
134 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
135 * possible to set timer->base = &migration_base and drop the lock: the timer
136 * remains locked.
c0a31329 137 */
3c8aa39d
TG
138static
139struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 unsigned long *flags)
c0a31329 141{
3c8aa39d 142 struct hrtimer_clock_base *base;
c0a31329
TG
143
144 for (;;) {
145 base = timer->base;
887d9dc9 146 if (likely(base != &migration_base)) {
ecb49d1a 147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
148 if (likely(base == timer->base))
149 return base;
150 /* The timer has migrated to another CPU: */
ecb49d1a 151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
152 }
153 cpu_relax();
154 }
155}
156
6ff7041d
TG
157/*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164static int
165hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166{
167#ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175#else
176 return 0;
177#endif
178}
179
bc7a34b8
TG
180#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181static inline
182struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 int pinned)
184{
185 if (pinned || !base->migration_enabled)
186 return this_cpu_ptr(&hrtimer_bases);
187 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188}
189#else
190static inline
191struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 int pinned)
193{
194 return this_cpu_ptr(&hrtimer_bases);
195}
196#endif
197
c0a31329
TG
198/*
199 * Switch the timer base to the current CPU when possible.
200 */
3c8aa39d 201static inline struct hrtimer_clock_base *
597d0275
AB
202switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
203 int pinned)
c0a31329 204{
bc7a34b8 205 struct hrtimer_cpu_base *new_cpu_base, *this_base;
3c8aa39d 206 struct hrtimer_clock_base *new_base;
ab8177bc 207 int basenum = base->index;
c0a31329 208
bc7a34b8
TG
209 this_base = this_cpu_ptr(&hrtimer_bases);
210 new_cpu_base = get_target_base(this_base, pinned);
eea08f32 211again:
e06383db 212 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
213
214 if (base != new_base) {
215 /*
6ff7041d 216 * We are trying to move timer to new_base.
c0a31329
TG
217 * However we can't change timer's base while it is running,
218 * so we keep it on the same CPU. No hassle vs. reprogramming
219 * the event source in the high resolution case. The softirq
220 * code will take care of this when the timer function has
221 * completed. There is no conflict as we hold the lock until
222 * the timer is enqueued.
223 */
54cdfdb4 224 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
225 return base;
226
887d9dc9
PZ
227 /* See the comment in lock_hrtimer_base() */
228 timer->base = &migration_base;
ecb49d1a
TG
229 raw_spin_unlock(&base->cpu_base->lock);
230 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 231
bc7a34b8
TG
232 if (new_cpu_base != this_base &&
233 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
234 raw_spin_unlock(&new_base->cpu_base->lock);
235 raw_spin_lock(&base->cpu_base->lock);
bc7a34b8 236 new_cpu_base = this_base;
6ff7041d
TG
237 timer->base = base;
238 goto again;
eea08f32 239 }
c0a31329 240 timer->base = new_base;
012a45e3 241 } else {
bc7a34b8
TG
242 if (new_cpu_base != this_base &&
243 hrtimer_check_target(timer, new_base)) {
244 new_cpu_base = this_base;
012a45e3
LM
245 goto again;
246 }
c0a31329
TG
247 }
248 return new_base;
249}
250
251#else /* CONFIG_SMP */
252
3c8aa39d 253static inline struct hrtimer_clock_base *
c0a31329
TG
254lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
255{
3c8aa39d 256 struct hrtimer_clock_base *base = timer->base;
c0a31329 257
ecb49d1a 258 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
259
260 return base;
261}
262
eea08f32 263# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
264
265#endif /* !CONFIG_SMP */
266
267/*
268 * Functions for the union type storage format of ktime_t which are
269 * too large for inlining:
270 */
271#if BITS_PER_LONG < 64
c0a31329
TG
272/*
273 * Divide a ktime value by a nanosecond value
274 */
8b618628 275u64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 276{
900cfa46 277 u64 dclc;
c0a31329
TG
278 int sft = 0;
279
900cfa46 280 dclc = ktime_to_ns(kt);
c0a31329
TG
281 /* Make sure the divisor is less than 2^32: */
282 while (div >> 32) {
283 sft++;
284 div >>= 1;
285 }
286 dclc >>= sft;
287 do_div(dclc, (unsigned long) div);
288
4d672e7a 289 return dclc;
c0a31329 290}
8b618628 291EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
292#endif /* BITS_PER_LONG >= 64 */
293
5a7780e7
TG
294/*
295 * Add two ktime values and do a safety check for overflow:
296 */
297ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
298{
299 ktime_t res = ktime_add(lhs, rhs);
300
301 /*
302 * We use KTIME_SEC_MAX here, the maximum timeout which we can
303 * return to user space in a timespec:
304 */
305 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
306 res = ktime_set(KTIME_SEC_MAX, 0);
307
308 return res;
309}
310
8daa21e6
AB
311EXPORT_SYMBOL_GPL(ktime_add_safe);
312
237fc6e7
TG
313#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
314
315static struct debug_obj_descr hrtimer_debug_descr;
316
99777288
SG
317static void *hrtimer_debug_hint(void *addr)
318{
319 return ((struct hrtimer *) addr)->function;
320}
321
237fc6e7
TG
322/*
323 * fixup_init is called when:
324 * - an active object is initialized
325 */
326static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
327{
328 struct hrtimer *timer = addr;
329
330 switch (state) {
331 case ODEBUG_STATE_ACTIVE:
332 hrtimer_cancel(timer);
333 debug_object_init(timer, &hrtimer_debug_descr);
334 return 1;
335 default:
336 return 0;
337 }
338}
339
340/*
341 * fixup_activate is called when:
342 * - an active object is activated
343 * - an unknown object is activated (might be a statically initialized object)
344 */
345static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
346{
347 switch (state) {
348
349 case ODEBUG_STATE_NOTAVAILABLE:
350 WARN_ON_ONCE(1);
351 return 0;
352
353 case ODEBUG_STATE_ACTIVE:
354 WARN_ON(1);
355
356 default:
357 return 0;
358 }
359}
360
361/*
362 * fixup_free is called when:
363 * - an active object is freed
364 */
365static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
366{
367 struct hrtimer *timer = addr;
368
369 switch (state) {
370 case ODEBUG_STATE_ACTIVE:
371 hrtimer_cancel(timer);
372 debug_object_free(timer, &hrtimer_debug_descr);
373 return 1;
374 default:
375 return 0;
376 }
377}
378
379static struct debug_obj_descr hrtimer_debug_descr = {
380 .name = "hrtimer",
99777288 381 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
382 .fixup_init = hrtimer_fixup_init,
383 .fixup_activate = hrtimer_fixup_activate,
384 .fixup_free = hrtimer_fixup_free,
385};
386
387static inline void debug_hrtimer_init(struct hrtimer *timer)
388{
389 debug_object_init(timer, &hrtimer_debug_descr);
390}
391
392static inline void debug_hrtimer_activate(struct hrtimer *timer)
393{
394 debug_object_activate(timer, &hrtimer_debug_descr);
395}
396
397static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
398{
399 debug_object_deactivate(timer, &hrtimer_debug_descr);
400}
401
402static inline void debug_hrtimer_free(struct hrtimer *timer)
403{
404 debug_object_free(timer, &hrtimer_debug_descr);
405}
406
407static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
408 enum hrtimer_mode mode);
409
410void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
411 enum hrtimer_mode mode)
412{
413 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
414 __hrtimer_init(timer, clock_id, mode);
415}
2bc481cf 416EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
417
418void destroy_hrtimer_on_stack(struct hrtimer *timer)
419{
420 debug_object_free(timer, &hrtimer_debug_descr);
421}
422
423#else
424static inline void debug_hrtimer_init(struct hrtimer *timer) { }
425static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
426static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
427#endif
428
c6a2a177
XG
429static inline void
430debug_init(struct hrtimer *timer, clockid_t clockid,
431 enum hrtimer_mode mode)
432{
433 debug_hrtimer_init(timer);
434 trace_hrtimer_init(timer, clockid, mode);
435}
436
437static inline void debug_activate(struct hrtimer *timer)
438{
439 debug_hrtimer_activate(timer);
440 trace_hrtimer_start(timer);
441}
442
443static inline void debug_deactivate(struct hrtimer *timer)
444{
445 debug_hrtimer_deactivate(timer);
446 trace_hrtimer_cancel(timer);
447}
448
9bc74919 449#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
895bdfa7
TG
450static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
451 struct hrtimer *timer)
452{
453#ifdef CONFIG_HIGH_RES_TIMERS
454 cpu_base->next_timer = timer;
455#endif
456}
457
4ebbda52 458static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
9bc74919
TG
459{
460 struct hrtimer_clock_base *base = cpu_base->clock_base;
461 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
34aee88a 462 unsigned int active = cpu_base->active_bases;
9bc74919 463
895bdfa7 464 hrtimer_update_next_timer(cpu_base, NULL);
34aee88a 465 for (; active; base++, active >>= 1) {
9bc74919
TG
466 struct timerqueue_node *next;
467 struct hrtimer *timer;
468
34aee88a 469 if (!(active & 0x01))
9bc74919
TG
470 continue;
471
34aee88a 472 next = timerqueue_getnext(&base->active);
9bc74919
TG
473 timer = container_of(next, struct hrtimer, node);
474 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
895bdfa7 475 if (expires.tv64 < expires_next.tv64) {
9bc74919 476 expires_next = expires;
895bdfa7
TG
477 hrtimer_update_next_timer(cpu_base, timer);
478 }
9bc74919
TG
479 }
480 /*
481 * clock_was_set() might have changed base->offset of any of
482 * the clock bases so the result might be negative. Fix it up
483 * to prevent a false positive in clockevents_program_event().
484 */
485 if (expires_next.tv64 < 0)
486 expires_next.tv64 = 0;
487 return expires_next;
488}
489#endif
490
21d6d52a
TG
491static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
492{
493 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
494 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
495 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
496
868a3e91
TG
497 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
498 offs_real, offs_boot, offs_tai);
21d6d52a
TG
499}
500
54cdfdb4
TG
501/* High resolution timer related functions */
502#ifdef CONFIG_HIGH_RES_TIMERS
503
504/*
505 * High resolution timer enabled ?
506 */
507static int hrtimer_hres_enabled __read_mostly = 1;
398ca17f
TG
508unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
509EXPORT_SYMBOL_GPL(hrtimer_resolution);
54cdfdb4
TG
510
511/*
512 * Enable / Disable high resolution mode
513 */
514static int __init setup_hrtimer_hres(char *str)
515{
516 if (!strcmp(str, "off"))
517 hrtimer_hres_enabled = 0;
518 else if (!strcmp(str, "on"))
519 hrtimer_hres_enabled = 1;
520 else
521 return 0;
522 return 1;
523}
524
525__setup("highres=", setup_hrtimer_hres);
526
527/*
528 * hrtimer_high_res_enabled - query, if the highres mode is enabled
529 */
530static inline int hrtimer_is_hres_enabled(void)
531{
532 return hrtimer_hres_enabled;
533}
534
535/*
536 * Is the high resolution mode active ?
537 */
e19ffe8b
TG
538static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
539{
540 return cpu_base->hres_active;
541}
542
54cdfdb4
TG
543static inline int hrtimer_hres_active(void)
544{
e19ffe8b 545 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
54cdfdb4
TG
546}
547
548/*
549 * Reprogram the event source with checking both queues for the
550 * next event
551 * Called with interrupts disabled and base->lock held
552 */
7403f41f
AC
553static void
554hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 555{
21d6d52a
TG
556 ktime_t expires_next;
557
558 if (!cpu_base->hres_active)
559 return;
560
561 expires_next = __hrtimer_get_next_event(cpu_base);
54cdfdb4 562
7403f41f
AC
563 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
564 return;
565
566 cpu_base->expires_next.tv64 = expires_next.tv64;
567
6c6c0d5a
SH
568 /*
569 * If a hang was detected in the last timer interrupt then we
570 * leave the hang delay active in the hardware. We want the
571 * system to make progress. That also prevents the following
572 * scenario:
573 * T1 expires 50ms from now
574 * T2 expires 5s from now
575 *
576 * T1 is removed, so this code is called and would reprogram
577 * the hardware to 5s from now. Any hrtimer_start after that
578 * will not reprogram the hardware due to hang_detected being
579 * set. So we'd effectivly block all timers until the T2 event
580 * fires.
581 */
582 if (cpu_base->hang_detected)
583 return;
584
d2540875 585 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
586}
587
588/*
54cdfdb4
TG
589 * When a timer is enqueued and expires earlier than the already enqueued
590 * timers, we have to check, whether it expires earlier than the timer for
591 * which the clock event device was armed.
592 *
593 * Called with interrupts disabled and base->cpu_base.lock held
594 */
c6eb3f70
TG
595static void hrtimer_reprogram(struct hrtimer *timer,
596 struct hrtimer_clock_base *base)
54cdfdb4 597{
dc5df73b 598 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
cc584b21 599 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4 600
cc584b21 601 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 602
54cdfdb4 603 /*
c6eb3f70
TG
604 * If the timer is not on the current cpu, we cannot reprogram
605 * the other cpus clock event device.
54cdfdb4 606 */
c6eb3f70
TG
607 if (base->cpu_base != cpu_base)
608 return;
609
610 /*
611 * If the hrtimer interrupt is running, then it will
612 * reevaluate the clock bases and reprogram the clock event
613 * device. The callbacks are always executed in hard interrupt
614 * context so we don't need an extra check for a running
615 * callback.
616 */
617 if (cpu_base->in_hrtirq)
618 return;
54cdfdb4 619
63070a79
TG
620 /*
621 * CLOCK_REALTIME timer might be requested with an absolute
c6eb3f70 622 * expiry time which is less than base->offset. Set it to 0.
63070a79
TG
623 */
624 if (expires.tv64 < 0)
c6eb3f70 625 expires.tv64 = 0;
63070a79 626
41d2e494 627 if (expires.tv64 >= cpu_base->expires_next.tv64)
c6eb3f70 628 return;
9bc74919 629
c6eb3f70 630 /* Update the pointer to the next expiring timer */
895bdfa7
TG
631 cpu_base->next_timer = timer;
632
41d2e494
TG
633 /*
634 * If a hang was detected in the last timer interrupt then we
635 * do not schedule a timer which is earlier than the expiry
636 * which we enforced in the hang detection. We want the system
637 * to make progress.
638 */
639 if (cpu_base->hang_detected)
c6eb3f70 640 return;
54cdfdb4
TG
641
642 /*
c6eb3f70
TG
643 * Program the timer hardware. We enforce the expiry for
644 * events which are already in the past.
54cdfdb4 645 */
c6eb3f70
TG
646 cpu_base->expires_next = expires;
647 tick_program_event(expires, 1);
54cdfdb4
TG
648}
649
54cdfdb4
TG
650/*
651 * Initialize the high resolution related parts of cpu_base
652 */
653static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
654{
655 base->expires_next.tv64 = KTIME_MAX;
656 base->hres_active = 0;
54cdfdb4
TG
657}
658
9ec26907
TG
659/*
660 * Retrigger next event is called after clock was set
661 *
662 * Called with interrupts disabled via on_each_cpu()
663 */
664static void retrigger_next_event(void *arg)
665{
dc5df73b 666 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 667
e19ffe8b 668 if (!base->hres_active)
9ec26907
TG
669 return;
670
9ec26907 671 raw_spin_lock(&base->lock);
5baefd6d 672 hrtimer_update_base(base);
9ec26907
TG
673 hrtimer_force_reprogram(base, 0);
674 raw_spin_unlock(&base->lock);
675}
b12a03ce 676
54cdfdb4
TG
677/*
678 * Switch to high resolution mode
679 */
f8953856 680static int hrtimer_switch_to_hres(void)
54cdfdb4 681{
c6eb3f70 682 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
683
684 if (tick_init_highres()) {
820de5c3 685 printk(KERN_WARNING "Could not switch to high resolution "
c6eb3f70 686 "mode on CPU %d\n", base->cpu);
f8953856 687 return 0;
54cdfdb4
TG
688 }
689 base->hres_active = 1;
398ca17f 690 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
691
692 tick_setup_sched_timer();
54cdfdb4
TG
693 /* "Retrigger" the interrupt to get things going */
694 retrigger_next_event(NULL);
f8953856 695 return 1;
54cdfdb4
TG
696}
697
5ec2481b
TG
698static void clock_was_set_work(struct work_struct *work)
699{
700 clock_was_set();
701}
702
703static DECLARE_WORK(hrtimer_work, clock_was_set_work);
704
f55a6faa 705/*
5ec2481b
TG
706 * Called from timekeeping and resume code to reprogramm the hrtimer
707 * interrupt device on all cpus.
f55a6faa
JS
708 */
709void clock_was_set_delayed(void)
710{
5ec2481b 711 schedule_work(&hrtimer_work);
f55a6faa
JS
712}
713
54cdfdb4
TG
714#else
715
e19ffe8b 716static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
54cdfdb4
TG
717static inline int hrtimer_hres_active(void) { return 0; }
718static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 719static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
720static inline void
721hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
9e1e01dd
VK
722static inline int hrtimer_reprogram(struct hrtimer *timer,
723 struct hrtimer_clock_base *base)
54cdfdb4
TG
724{
725 return 0;
726}
54cdfdb4 727static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 728static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
729
730#endif /* CONFIG_HIGH_RES_TIMERS */
731
b12a03ce
TG
732/*
733 * Clock realtime was set
734 *
735 * Change the offset of the realtime clock vs. the monotonic
736 * clock.
737 *
738 * We might have to reprogram the high resolution timer interrupt. On
739 * SMP we call the architecture specific code to retrigger _all_ high
740 * resolution timer interrupts. On UP we just disable interrupts and
741 * call the high resolution interrupt code.
742 */
743void clock_was_set(void)
744{
90ff1f30 745#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
746 /* Retrigger the CPU local events everywhere */
747 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
748#endif
749 timerfd_clock_was_set();
b12a03ce
TG
750}
751
752/*
753 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
754 * interrupt on all online CPUs. However, all other CPUs will be
755 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 756 * must be deferred.
b12a03ce
TG
757 */
758void hrtimers_resume(void)
759{
760 WARN_ONCE(!irqs_disabled(),
761 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
762
5ec2481b 763 /* Retrigger on the local CPU */
b12a03ce 764 retrigger_next_event(NULL);
5ec2481b
TG
765 /* And schedule a retrigger for all others */
766 clock_was_set_delayed();
b12a03ce
TG
767}
768
5f201907 769static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 770{
5f201907 771#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
772 if (timer->start_site)
773 return;
5f201907 774 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
775 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
776 timer->start_pid = current->pid;
5f201907
HC
777#endif
778}
779
780static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
781{
782#ifdef CONFIG_TIMER_STATS
783 timer->start_site = NULL;
784#endif
82f67cd9 785}
5f201907
HC
786
787static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
788{
789#ifdef CONFIG_TIMER_STATS
790 if (likely(!timer_stats_active))
791 return;
792 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
793 timer->function, timer->start_comm, 0);
82f67cd9 794#endif
5f201907 795}
82f67cd9 796
c0a31329 797/*
6506f2aa 798 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
799 */
800static inline
801void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
802{
ecb49d1a 803 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
804}
805
806/**
807 * hrtimer_forward - forward the timer expiry
c0a31329 808 * @timer: hrtimer to forward
44f21475 809 * @now: forward past this time
c0a31329
TG
810 * @interval: the interval to forward
811 *
812 * Forward the timer expiry so it will expire in the future.
8dca6f33 813 * Returns the number of overruns.
91e5a217
TG
814 *
815 * Can be safely called from the callback function of @timer. If
816 * called from other contexts @timer must neither be enqueued nor
817 * running the callback and the caller needs to take care of
818 * serialization.
819 *
820 * Note: This only updates the timer expiry value and does not requeue
821 * the timer.
c0a31329 822 */
4d672e7a 823u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 824{
4d672e7a 825 u64 orun = 1;
44f21475 826 ktime_t delta;
c0a31329 827
cc584b21 828 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
829
830 if (delta.tv64 < 0)
831 return 0;
832
5de2755c
PZ
833 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
834 return 0;
835
398ca17f
TG
836 if (interval.tv64 < hrtimer_resolution)
837 interval.tv64 = hrtimer_resolution;
c9db4fa1 838
c0a31329 839 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 840 s64 incr = ktime_to_ns(interval);
c0a31329
TG
841
842 orun = ktime_divns(delta, incr);
cc584b21
AV
843 hrtimer_add_expires_ns(timer, incr * orun);
844 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
845 return orun;
846 /*
847 * This (and the ktime_add() below) is the
848 * correction for exact:
849 */
850 orun++;
851 }
cc584b21 852 hrtimer_add_expires(timer, interval);
c0a31329
TG
853
854 return orun;
855}
6bdb6b62 856EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
857
858/*
859 * enqueue_hrtimer - internal function to (re)start a timer
860 *
861 * The timer is inserted in expiry order. Insertion into the
862 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
863 *
864 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 865 */
a6037b61
PZ
866static int enqueue_hrtimer(struct hrtimer *timer,
867 struct hrtimer_clock_base *base)
c0a31329 868{
c6a2a177 869 debug_activate(timer);
237fc6e7 870
ab8177bc 871 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 872
887d9dc9 873 timer->state = HRTIMER_STATE_ENQUEUED;
a6037b61 874
b97f44c9 875 return timerqueue_add(&base->active, &timer->node);
288867ec 876}
c0a31329
TG
877
878/*
879 * __remove_hrtimer - internal function to remove a timer
880 *
881 * Caller must hold the base lock.
54cdfdb4
TG
882 *
883 * High resolution timer mode reprograms the clock event device when the
884 * timer is the one which expires next. The caller can disable this by setting
885 * reprogram to zero. This is useful, when the context does a reprogramming
886 * anyway (e.g. timer interrupt)
c0a31329 887 */
3c8aa39d 888static void __remove_hrtimer(struct hrtimer *timer,
303e967f 889 struct hrtimer_clock_base *base,
54cdfdb4 890 unsigned long newstate, int reprogram)
c0a31329 891{
e19ffe8b 892 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
895bdfa7 893 unsigned int state = timer->state;
e19ffe8b 894
895bdfa7
TG
895 timer->state = newstate;
896 if (!(state & HRTIMER_STATE_ENQUEUED))
897 return;
7403f41f 898
b97f44c9 899 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 900 cpu_base->active_bases &= ~(1 << base->index);
d9f0acde 901
7403f41f 902#ifdef CONFIG_HIGH_RES_TIMERS
895bdfa7
TG
903 /*
904 * Note: If reprogram is false we do not update
905 * cpu_base->next_timer. This happens when we remove the first
906 * timer on a remote cpu. No harm as we never dereference
907 * cpu_base->next_timer. So the worst thing what can happen is
908 * an superflous call to hrtimer_force_reprogram() on the
909 * remote cpu later on if the same timer gets enqueued again.
910 */
911 if (reprogram && timer == cpu_base->next_timer)
912 hrtimer_force_reprogram(cpu_base, 1);
7403f41f 913#endif
c0a31329
TG
914}
915
916/*
917 * remove hrtimer, called with base lock held
918 */
919static inline int
8edfb036 920remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 921{
303e967f 922 if (hrtimer_is_queued(timer)) {
8edfb036 923 unsigned long state = timer->state;
54cdfdb4
TG
924 int reprogram;
925
926 /*
927 * Remove the timer and force reprogramming when high
928 * resolution mode is active and the timer is on the current
929 * CPU. If we remove a timer on another CPU, reprogramming is
930 * skipped. The interrupt event on this CPU is fired and
931 * reprogramming happens in the interrupt handler. This is a
932 * rare case and less expensive than a smp call.
933 */
c6a2a177 934 debug_deactivate(timer);
82f67cd9 935 timer_stats_hrtimer_clear_start_info(timer);
dc5df73b 936 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 937
887d9dc9
PZ
938 if (!restart)
939 state = HRTIMER_STATE_INACTIVE;
940
f13d4f97 941 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
942 return 1;
943 }
944 return 0;
945}
946
58f1f803
TG
947/**
948 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
949 * @timer: the timer to be added
950 * @tim: expiry time
951 * @delta_ns: "slack" range for the timer
952 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
953 * relative (HRTIMER_MODE_REL)
58f1f803 954 */
61699e13
TG
955void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
956 unsigned long delta_ns, const enum hrtimer_mode mode)
c0a31329 957{
3c8aa39d 958 struct hrtimer_clock_base *base, *new_base;
c0a31329 959 unsigned long flags;
61699e13 960 int leftmost;
c0a31329
TG
961
962 base = lock_hrtimer_base(timer, &flags);
963
964 /* Remove an active timer from the queue: */
8edfb036 965 remove_hrtimer(timer, base, true);
c0a31329 966
597d0275 967 if (mode & HRTIMER_MODE_REL) {
84ea7fe3 968 tim = ktime_add_safe(tim, base->get_time());
06027bdd
IM
969 /*
970 * CONFIG_TIME_LOW_RES is a temporary way for architectures
971 * to signal that they simply return xtime in
972 * do_gettimeoffset(). In this case we want to round up by
973 * resolution when starting a relative timer, to avoid short
974 * timeouts. This will go away with the GTOD framework.
975 */
976#ifdef CONFIG_TIME_LOW_RES
398ca17f 977 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
06027bdd
IM
978#endif
979 }
237fc6e7 980
da8f2e17 981 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 982
84ea7fe3
VK
983 /* Switch the timer base, if necessary: */
984 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
985
82f67cd9
IM
986 timer_stats_hrtimer_set_start_info(timer);
987
a6037b61 988 leftmost = enqueue_hrtimer(timer, new_base);
61699e13
TG
989 if (!leftmost)
990 goto unlock;
49a2a075
VK
991
992 if (!hrtimer_is_hres_active(timer)) {
993 /*
994 * Kick to reschedule the next tick to handle the new timer
995 * on dynticks target.
996 */
997 wake_up_nohz_cpu(new_base->cpu_base->cpu);
c6eb3f70
TG
998 } else {
999 hrtimer_reprogram(timer, new_base);
b22affe0 1000 }
61699e13 1001unlock:
c0a31329 1002 unlock_hrtimer_base(timer, &flags);
c0a31329 1003}
da8f2e17
AV
1004EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1005
c0a31329
TG
1006/**
1007 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1008 * @timer: hrtimer to stop
1009 *
1010 * Returns:
1011 * 0 when the timer was not active
1012 * 1 when the timer was active
1013 * -1 when the timer is currently excuting the callback function and
fa9799e3 1014 * cannot be stopped
c0a31329
TG
1015 */
1016int hrtimer_try_to_cancel(struct hrtimer *timer)
1017{
3c8aa39d 1018 struct hrtimer_clock_base *base;
c0a31329
TG
1019 unsigned long flags;
1020 int ret = -1;
1021
19d9f422
TG
1022 /*
1023 * Check lockless first. If the timer is not active (neither
1024 * enqueued nor running the callback, nothing to do here. The
1025 * base lock does not serialize against a concurrent enqueue,
1026 * so we can avoid taking it.
1027 */
1028 if (!hrtimer_active(timer))
1029 return 0;
1030
c0a31329
TG
1031 base = lock_hrtimer_base(timer, &flags);
1032
303e967f 1033 if (!hrtimer_callback_running(timer))
8edfb036 1034 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1035
1036 unlock_hrtimer_base(timer, &flags);
1037
1038 return ret;
1039
1040}
8d16b764 1041EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1042
1043/**
1044 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1045 * @timer: the timer to be cancelled
1046 *
1047 * Returns:
1048 * 0 when the timer was not active
1049 * 1 when the timer was active
1050 */
1051int hrtimer_cancel(struct hrtimer *timer)
1052{
1053 for (;;) {
1054 int ret = hrtimer_try_to_cancel(timer);
1055
1056 if (ret >= 0)
1057 return ret;
5ef37b19 1058 cpu_relax();
c0a31329
TG
1059 }
1060}
8d16b764 1061EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1062
1063/**
1064 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1065 * @timer: the timer to read
1066 */
1067ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1068{
c0a31329
TG
1069 unsigned long flags;
1070 ktime_t rem;
1071
b3bd3de6 1072 lock_hrtimer_base(timer, &flags);
cc584b21 1073 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1074 unlock_hrtimer_base(timer, &flags);
1075
1076 return rem;
1077}
8d16b764 1078EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1079
3451d024 1080#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1081/**
1082 * hrtimer_get_next_event - get the time until next expiry event
1083 *
c1ad348b 1084 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1085 */
c1ad348b 1086u64 hrtimer_get_next_event(void)
69239749 1087{
dc5df73b 1088 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1089 u64 expires = KTIME_MAX;
69239749 1090 unsigned long flags;
69239749 1091
ecb49d1a 1092 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1093
e19ffe8b 1094 if (!__hrtimer_hres_active(cpu_base))
c1ad348b 1095 expires = __hrtimer_get_next_event(cpu_base).tv64;
3c8aa39d 1096
ecb49d1a 1097 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1098
c1ad348b 1099 return expires;
69239749
TL
1100}
1101#endif
1102
237fc6e7
TG
1103static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1104 enum hrtimer_mode mode)
c0a31329 1105{
3c8aa39d 1106 struct hrtimer_cpu_base *cpu_base;
e06383db 1107 int base;
c0a31329 1108
7978672c
GA
1109 memset(timer, 0, sizeof(struct hrtimer));
1110
22127e93 1111 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1112
c9cb2e3d 1113 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1114 clock_id = CLOCK_MONOTONIC;
1115
e06383db
JS
1116 base = hrtimer_clockid_to_base(clock_id);
1117 timer->base = &cpu_base->clock_base[base];
998adc3d 1118 timerqueue_init(&timer->node);
82f67cd9
IM
1119
1120#ifdef CONFIG_TIMER_STATS
1121 timer->start_site = NULL;
1122 timer->start_pid = -1;
1123 memset(timer->start_comm, 0, TASK_COMM_LEN);
1124#endif
c0a31329 1125}
237fc6e7
TG
1126
1127/**
1128 * hrtimer_init - initialize a timer to the given clock
1129 * @timer: the timer to be initialized
1130 * @clock_id: the clock to be used
1131 * @mode: timer mode abs/rel
1132 */
1133void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1134 enum hrtimer_mode mode)
1135{
c6a2a177 1136 debug_init(timer, clock_id, mode);
237fc6e7
TG
1137 __hrtimer_init(timer, clock_id, mode);
1138}
8d16b764 1139EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1140
887d9dc9
PZ
1141/*
1142 * A timer is active, when it is enqueued into the rbtree or the
1143 * callback function is running or it's in the state of being migrated
1144 * to another cpu.
1145 *
1146 * It is important for this function to not return a false negative.
1147 */
1148bool hrtimer_active(const struct hrtimer *timer)
1149{
1150 struct hrtimer_cpu_base *cpu_base;
1151 unsigned int seq;
1152
1153 do {
1154 cpu_base = READ_ONCE(timer->base->cpu_base);
1155 seq = raw_read_seqcount_begin(&cpu_base->seq);
1156
1157 if (timer->state != HRTIMER_STATE_INACTIVE ||
1158 cpu_base->running == timer)
1159 return true;
1160
1161 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1162 cpu_base != READ_ONCE(timer->base->cpu_base));
1163
1164 return false;
1165}
1166EXPORT_SYMBOL_GPL(hrtimer_active);
1167
1168/*
1169 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1170 * distinct sections:
1171 *
1172 * - queued: the timer is queued
1173 * - callback: the timer is being ran
1174 * - post: the timer is inactive or (re)queued
1175 *
1176 * On the read side we ensure we observe timer->state and cpu_base->running
1177 * from the same section, if anything changed while we looked at it, we retry.
1178 * This includes timer->base changing because sequence numbers alone are
1179 * insufficient for that.
1180 *
1181 * The sequence numbers are required because otherwise we could still observe
1182 * a false negative if the read side got smeared over multiple consequtive
1183 * __run_hrtimer() invocations.
1184 */
1185
21d6d52a
TG
1186static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1187 struct hrtimer_clock_base *base,
1188 struct hrtimer *timer, ktime_t *now)
d3d74453 1189{
d3d74453
PZ
1190 enum hrtimer_restart (*fn)(struct hrtimer *);
1191 int restart;
1192
887d9dc9 1193 lockdep_assert_held(&cpu_base->lock);
ca109491 1194
c6a2a177 1195 debug_deactivate(timer);
887d9dc9
PZ
1196 cpu_base->running = timer;
1197
1198 /*
1199 * Separate the ->running assignment from the ->state assignment.
1200 *
1201 * As with a regular write barrier, this ensures the read side in
1202 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1203 * timer->state == INACTIVE.
1204 */
1205 raw_write_seqcount_barrier(&cpu_base->seq);
1206
1207 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1208 timer_stats_account_hrtimer(timer);
d3d74453 1209 fn = timer->function;
ca109491
PZ
1210
1211 /*
1212 * Because we run timers from hardirq context, there is no chance
1213 * they get migrated to another cpu, therefore its safe to unlock
1214 * the timer base.
1215 */
ecb49d1a 1216 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1217 trace_hrtimer_expire_entry(timer, now);
ca109491 1218 restart = fn(timer);
c6a2a177 1219 trace_hrtimer_expire_exit(timer);
ecb49d1a 1220 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1221
1222 /*
887d9dc9 1223 * Note: We clear the running state after enqueue_hrtimer and
e3f1d883
TG
1224 * we do not reprogramm the event hardware. Happens either in
1225 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1226 *
1227 * Note: Because we dropped the cpu_base->lock above,
1228 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1229 * for us already.
d3d74453 1230 */
5de2755c
PZ
1231 if (restart != HRTIMER_NORESTART &&
1232 !(timer->state & HRTIMER_STATE_ENQUEUED))
a6037b61 1233 enqueue_hrtimer(timer, base);
f13d4f97 1234
887d9dc9
PZ
1235 /*
1236 * Separate the ->running assignment from the ->state assignment.
1237 *
1238 * As with a regular write barrier, this ensures the read side in
1239 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1240 * timer->state == INACTIVE.
1241 */
1242 raw_write_seqcount_barrier(&cpu_base->seq);
f13d4f97 1243
887d9dc9
PZ
1244 WARN_ON_ONCE(cpu_base->running != timer);
1245 cpu_base->running = NULL;
d3d74453
PZ
1246}
1247
21d6d52a 1248static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
54cdfdb4 1249{
34aee88a
TG
1250 struct hrtimer_clock_base *base = cpu_base->clock_base;
1251 unsigned int active = cpu_base->active_bases;
6ff7041d 1252
34aee88a 1253 for (; active; base++, active >>= 1) {
998adc3d 1254 struct timerqueue_node *node;
ab8177bc
TG
1255 ktime_t basenow;
1256
34aee88a 1257 if (!(active & 0x01))
ab8177bc 1258 continue;
54cdfdb4 1259
54cdfdb4
TG
1260 basenow = ktime_add(now, base->offset);
1261
998adc3d 1262 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1263 struct hrtimer *timer;
1264
998adc3d 1265 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1266
654c8e0b
AV
1267 /*
1268 * The immediate goal for using the softexpires is
1269 * minimizing wakeups, not running timers at the
1270 * earliest interrupt after their soft expiration.
1271 * This allows us to avoid using a Priority Search
1272 * Tree, which can answer a stabbing querry for
1273 * overlapping intervals and instead use the simple
1274 * BST we already have.
1275 * We don't add extra wakeups by delaying timers that
1276 * are right-of a not yet expired timer, because that
1277 * timer will have to trigger a wakeup anyway.
1278 */
9bc74919 1279 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1280 break;
54cdfdb4 1281
21d6d52a 1282 __run_hrtimer(cpu_base, base, timer, &basenow);
54cdfdb4 1283 }
54cdfdb4 1284 }
21d6d52a
TG
1285}
1286
1287#ifdef CONFIG_HIGH_RES_TIMERS
1288
1289/*
1290 * High resolution timer interrupt
1291 * Called with interrupts disabled
1292 */
1293void hrtimer_interrupt(struct clock_event_device *dev)
1294{
1295 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1296 ktime_t expires_next, now, entry_time, delta;
1297 int retries = 0;
1298
1299 BUG_ON(!cpu_base->hres_active);
1300 cpu_base->nr_events++;
1301 dev->next_event.tv64 = KTIME_MAX;
1302
1303 raw_spin_lock(&cpu_base->lock);
1304 entry_time = now = hrtimer_update_base(cpu_base);
1305retry:
1306 cpu_base->in_hrtirq = 1;
1307 /*
1308 * We set expires_next to KTIME_MAX here with cpu_base->lock
1309 * held to prevent that a timer is enqueued in our queue via
1310 * the migration code. This does not affect enqueueing of
1311 * timers which run their callback and need to be requeued on
1312 * this CPU.
1313 */
1314 cpu_base->expires_next.tv64 = KTIME_MAX;
1315
1316 __hrtimer_run_queues(cpu_base, now);
1317
9bc74919
TG
1318 /* Reevaluate the clock bases for the next expiry */
1319 expires_next = __hrtimer_get_next_event(cpu_base);
6ff7041d
TG
1320 /*
1321 * Store the new expiry value so the migration code can verify
1322 * against it.
1323 */
54cdfdb4 1324 cpu_base->expires_next = expires_next;
9bc74919 1325 cpu_base->in_hrtirq = 0;
ecb49d1a 1326 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1327
1328 /* Reprogramming necessary ? */
d2540875 1329 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1330 cpu_base->hang_detected = 0;
1331 return;
54cdfdb4 1332 }
41d2e494
TG
1333
1334 /*
1335 * The next timer was already expired due to:
1336 * - tracing
1337 * - long lasting callbacks
1338 * - being scheduled away when running in a VM
1339 *
1340 * We need to prevent that we loop forever in the hrtimer
1341 * interrupt routine. We give it 3 attempts to avoid
1342 * overreacting on some spurious event.
5baefd6d
JS
1343 *
1344 * Acquire base lock for updating the offsets and retrieving
1345 * the current time.
41d2e494 1346 */
196951e9 1347 raw_spin_lock(&cpu_base->lock);
5baefd6d 1348 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1349 cpu_base->nr_retries++;
1350 if (++retries < 3)
1351 goto retry;
1352 /*
1353 * Give the system a chance to do something else than looping
1354 * here. We stored the entry time, so we know exactly how long
1355 * we spent here. We schedule the next event this amount of
1356 * time away.
1357 */
1358 cpu_base->nr_hangs++;
1359 cpu_base->hang_detected = 1;
196951e9 1360 raw_spin_unlock(&cpu_base->lock);
41d2e494 1361 delta = ktime_sub(now, entry_time);
a6ffebce
TG
1362 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1363 cpu_base->max_hang_time = (unsigned int) delta.tv64;
41d2e494
TG
1364 /*
1365 * Limit it to a sensible value as we enforce a longer
1366 * delay. Give the CPU at least 100ms to catch up.
1367 */
1368 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1369 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1370 else
1371 expires_next = ktime_add(now, delta);
1372 tick_program_event(expires_next, 1);
1373 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1374 ktime_to_ns(delta));
54cdfdb4
TG
1375}
1376
8bdec955
TG
1377/*
1378 * local version of hrtimer_peek_ahead_timers() called with interrupts
1379 * disabled.
1380 */
c6eb3f70 1381static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1382{
1383 struct tick_device *td;
1384
1385 if (!hrtimer_hres_active())
1386 return;
1387
22127e93 1388 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1389 if (td && td->evtdev)
1390 hrtimer_interrupt(td->evtdev);
1391}
1392
82c5b7b5
IM
1393#else /* CONFIG_HIGH_RES_TIMERS */
1394
1395static inline void __hrtimer_peek_ahead_timers(void) { }
1396
1397#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1398
d3d74453 1399/*
c6eb3f70 1400 * Called from run_local_timers in hardirq context every jiffy
c0a31329 1401 */
833883d9 1402void hrtimer_run_queues(void)
c0a31329 1403{
dc5df73b 1404 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
21d6d52a 1405 ktime_t now;
c0a31329 1406
e19ffe8b 1407 if (__hrtimer_hres_active(cpu_base))
3055adda
DS
1408 return;
1409
c6eb3f70
TG
1410 /*
1411 * This _is_ ugly: We have to check periodically, whether we
1412 * can switch to highres and / or nohz mode. The clocksource
1413 * switch happens with xtime_lock held. Notification from
1414 * there only sets the check bit in the tick_oneshot code,
1415 * otherwise we might deadlock vs. xtime_lock.
1416 */
1417 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1418 hrtimer_switch_to_hres();
1419 return;
1420 }
1421
21d6d52a
TG
1422 raw_spin_lock(&cpu_base->lock);
1423 now = hrtimer_update_base(cpu_base);
1424 __hrtimer_run_queues(cpu_base, now);
1425 raw_spin_unlock(&cpu_base->lock);
c0a31329
TG
1426}
1427
10c94ec1
TG
1428/*
1429 * Sleep related functions:
1430 */
c9cb2e3d 1431static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1432{
1433 struct hrtimer_sleeper *t =
1434 container_of(timer, struct hrtimer_sleeper, timer);
1435 struct task_struct *task = t->task;
1436
1437 t->task = NULL;
1438 if (task)
1439 wake_up_process(task);
1440
1441 return HRTIMER_NORESTART;
1442}
1443
36c8b586 1444void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1445{
1446 sl->timer.function = hrtimer_wakeup;
1447 sl->task = task;
1448}
2bc481cf 1449EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1450
669d7868 1451static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1452{
669d7868 1453 hrtimer_init_sleeper(t, current);
10c94ec1 1454
432569bb
RZ
1455 do {
1456 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1457 hrtimer_start_expires(&t->timer, mode);
432569bb 1458
54cdfdb4 1459 if (likely(t->task))
b0f8c44f 1460 freezable_schedule();
432569bb 1461
669d7868 1462 hrtimer_cancel(&t->timer);
c9cb2e3d 1463 mode = HRTIMER_MODE_ABS;
669d7868
TG
1464
1465 } while (t->task && !signal_pending(current));
432569bb 1466
3588a085
PZ
1467 __set_current_state(TASK_RUNNING);
1468
669d7868 1469 return t->task == NULL;
10c94ec1
TG
1470}
1471
080344b9
ON
1472static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1473{
1474 struct timespec rmt;
1475 ktime_t rem;
1476
cc584b21 1477 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1478 if (rem.tv64 <= 0)
1479 return 0;
1480 rmt = ktime_to_timespec(rem);
1481
1482 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1483 return -EFAULT;
1484
1485 return 1;
1486}
1487
1711ef38 1488long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1489{
669d7868 1490 struct hrtimer_sleeper t;
080344b9 1491 struct timespec __user *rmtp;
237fc6e7 1492 int ret = 0;
10c94ec1 1493
ab8177bc 1494 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1495 HRTIMER_MODE_ABS);
cc584b21 1496 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1497
c9cb2e3d 1498 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1499 goto out;
10c94ec1 1500
029a07e0 1501 rmtp = restart->nanosleep.rmtp;
432569bb 1502 if (rmtp) {
237fc6e7 1503 ret = update_rmtp(&t.timer, rmtp);
080344b9 1504 if (ret <= 0)
237fc6e7 1505 goto out;
432569bb 1506 }
10c94ec1 1507
10c94ec1 1508 /* The other values in restart are already filled in */
237fc6e7
TG
1509 ret = -ERESTART_RESTARTBLOCK;
1510out:
1511 destroy_hrtimer_on_stack(&t.timer);
1512 return ret;
10c94ec1
TG
1513}
1514
080344b9 1515long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1516 const enum hrtimer_mode mode, const clockid_t clockid)
1517{
1518 struct restart_block *restart;
669d7868 1519 struct hrtimer_sleeper t;
237fc6e7 1520 int ret = 0;
3bd01206
AV
1521 unsigned long slack;
1522
1523 slack = current->timer_slack_ns;
aab03e05 1524 if (dl_task(current) || rt_task(current))
3bd01206 1525 slack = 0;
10c94ec1 1526
237fc6e7 1527 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1528 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1529 if (do_nanosleep(&t, mode))
237fc6e7 1530 goto out;
10c94ec1 1531
7978672c 1532 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1533 if (mode == HRTIMER_MODE_ABS) {
1534 ret = -ERESTARTNOHAND;
1535 goto out;
1536 }
10c94ec1 1537
432569bb 1538 if (rmtp) {
237fc6e7 1539 ret = update_rmtp(&t.timer, rmtp);
080344b9 1540 if (ret <= 0)
237fc6e7 1541 goto out;
432569bb 1542 }
10c94ec1 1543
f56141e3 1544 restart = &current->restart_block;
1711ef38 1545 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1546 restart->nanosleep.clockid = t.timer.base->clockid;
029a07e0 1547 restart->nanosleep.rmtp = rmtp;
cc584b21 1548 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1549
237fc6e7
TG
1550 ret = -ERESTART_RESTARTBLOCK;
1551out:
1552 destroy_hrtimer_on_stack(&t.timer);
1553 return ret;
10c94ec1
TG
1554}
1555
58fd3aa2
HC
1556SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1557 struct timespec __user *, rmtp)
6ba1b912 1558{
080344b9 1559 struct timespec tu;
6ba1b912
TG
1560
1561 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1562 return -EFAULT;
1563
1564 if (!timespec_valid(&tu))
1565 return -EINVAL;
1566
080344b9 1567 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1568}
1569
c0a31329
TG
1570/*
1571 * Functions related to boot-time initialization:
1572 */
0db0628d 1573static void init_hrtimers_cpu(int cpu)
c0a31329 1574{
3c8aa39d 1575 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1576 int i;
1577
998adc3d 1578 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1579 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1580 timerqueue_init_head(&cpu_base->clock_base[i].active);
1581 }
3c8aa39d 1582
cddd0248 1583 cpu_base->cpu = cpu;
54cdfdb4 1584 hrtimer_init_hres(cpu_base);
c0a31329
TG
1585}
1586
1587#ifdef CONFIG_HOTPLUG_CPU
1588
ca109491 1589static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1590 struct hrtimer_clock_base *new_base)
c0a31329
TG
1591{
1592 struct hrtimer *timer;
998adc3d 1593 struct timerqueue_node *node;
c0a31329 1594
998adc3d
JS
1595 while ((node = timerqueue_getnext(&old_base->active))) {
1596 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1597 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1598 debug_deactivate(timer);
b00c1a99
TG
1599
1600 /*
c04dca02 1601 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1602 * timer could be seen as !active and just vanish away
1603 * under us on another CPU
1604 */
c04dca02 1605 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1606 timer->base = new_base;
54cdfdb4 1607 /*
e3f1d883
TG
1608 * Enqueue the timers on the new cpu. This does not
1609 * reprogram the event device in case the timer
1610 * expires before the earliest on this CPU, but we run
1611 * hrtimer_interrupt after we migrated everything to
1612 * sort out already expired timers and reprogram the
1613 * event device.
54cdfdb4 1614 */
a6037b61 1615 enqueue_hrtimer(timer, new_base);
c0a31329
TG
1616 }
1617}
1618
d5fd43c4 1619static void migrate_hrtimers(int scpu)
c0a31329 1620{
3c8aa39d 1621 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1622 int i;
c0a31329 1623
37810659 1624 BUG_ON(cpu_online(scpu));
37810659 1625 tick_cancel_sched_timer(scpu);
731a55ba
TG
1626
1627 local_irq_disable();
1628 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1629 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1630 /*
1631 * The caller is globally serialized and nobody else
1632 * takes two locks at once, deadlock is not possible.
1633 */
ecb49d1a
TG
1634 raw_spin_lock(&new_base->lock);
1635 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1636
3c8aa39d 1637 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1638 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1639 &new_base->clock_base[i]);
c0a31329
TG
1640 }
1641
ecb49d1a
TG
1642 raw_spin_unlock(&old_base->lock);
1643 raw_spin_unlock(&new_base->lock);
37810659 1644
731a55ba
TG
1645 /* Check, if we got expired work to do */
1646 __hrtimer_peek_ahead_timers();
1647 local_irq_enable();
c0a31329 1648}
37810659 1649
c0a31329
TG
1650#endif /* CONFIG_HOTPLUG_CPU */
1651
0db0628d 1652static int hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1653 unsigned long action, void *hcpu)
1654{
b2e3c0ad 1655 int scpu = (long)hcpu;
c0a31329
TG
1656
1657 switch (action) {
1658
1659 case CPU_UP_PREPARE:
8bb78442 1660 case CPU_UP_PREPARE_FROZEN:
37810659 1661 init_hrtimers_cpu(scpu);
c0a31329
TG
1662 break;
1663
1664#ifdef CONFIG_HOTPLUG_CPU
1665 case CPU_DEAD:
8bb78442 1666 case CPU_DEAD_FROZEN:
d5fd43c4 1667 migrate_hrtimers(scpu);
c0a31329
TG
1668 break;
1669#endif
1670
1671 default:
1672 break;
1673 }
1674
1675 return NOTIFY_OK;
1676}
1677
0db0628d 1678static struct notifier_block hrtimers_nb = {
c0a31329
TG
1679 .notifier_call = hrtimer_cpu_notify,
1680};
1681
1682void __init hrtimers_init(void)
1683{
1684 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1685 (void *)(long)smp_processor_id());
1686 register_cpu_notifier(&hrtimers_nb);
1687}
1688
7bb67439 1689/**
351b3f7a 1690 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1691 * @expires: timeout value (ktime_t)
654c8e0b 1692 * @delta: slack in expires timeout (ktime_t)
7bb67439 1693 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1694 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1695 */
351b3f7a
CE
1696int __sched
1697schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1698 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1699{
1700 struct hrtimer_sleeper t;
1701
1702 /*
1703 * Optimize when a zero timeout value is given. It does not
1704 * matter whether this is an absolute or a relative time.
1705 */
1706 if (expires && !expires->tv64) {
1707 __set_current_state(TASK_RUNNING);
1708 return 0;
1709 }
1710
1711 /*
43b21013 1712 * A NULL parameter means "infinite"
7bb67439
AV
1713 */
1714 if (!expires) {
1715 schedule();
7bb67439
AV
1716 return -EINTR;
1717 }
1718
351b3f7a 1719 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1720 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1721
1722 hrtimer_init_sleeper(&t, current);
1723
cc584b21 1724 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1725
1726 if (likely(t.task))
1727 schedule();
1728
1729 hrtimer_cancel(&t.timer);
1730 destroy_hrtimer_on_stack(&t.timer);
1731
1732 __set_current_state(TASK_RUNNING);
1733
1734 return !t.task ? 0 : -EINTR;
1735}
351b3f7a
CE
1736
1737/**
1738 * schedule_hrtimeout_range - sleep until timeout
1739 * @expires: timeout value (ktime_t)
1740 * @delta: slack in expires timeout (ktime_t)
1741 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1742 *
1743 * Make the current task sleep until the given expiry time has
1744 * elapsed. The routine will return immediately unless
1745 * the current task state has been set (see set_current_state()).
1746 *
1747 * The @delta argument gives the kernel the freedom to schedule the
1748 * actual wakeup to a time that is both power and performance friendly.
1749 * The kernel give the normal best effort behavior for "@expires+@delta",
1750 * but may decide to fire the timer earlier, but no earlier than @expires.
1751 *
1752 * You can set the task state as follows -
1753 *
1754 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1755 * pass before the routine returns.
1756 *
1757 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1758 * delivered to the current task.
1759 *
1760 * The current task state is guaranteed to be TASK_RUNNING when this
1761 * routine returns.
1762 *
1763 * Returns 0 when the timer has expired otherwise -EINTR
1764 */
1765int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1766 const enum hrtimer_mode mode)
1767{
1768 return schedule_hrtimeout_range_clock(expires, delta, mode,
1769 CLOCK_MONOTONIC);
1770}
654c8e0b
AV
1771EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1772
1773/**
1774 * schedule_hrtimeout - sleep until timeout
1775 * @expires: timeout value (ktime_t)
1776 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1777 *
1778 * Make the current task sleep until the given expiry time has
1779 * elapsed. The routine will return immediately unless
1780 * the current task state has been set (see set_current_state()).
1781 *
1782 * You can set the task state as follows -
1783 *
1784 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1785 * pass before the routine returns.
1786 *
1787 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1788 * delivered to the current task.
1789 *
1790 * The current task state is guaranteed to be TASK_RUNNING when this
1791 * routine returns.
1792 *
1793 * Returns 0 when the timer has expired otherwise -EINTR
1794 */
1795int __sched schedule_hrtimeout(ktime_t *expires,
1796 const enum hrtimer_mode mode)
1797{
1798 return schedule_hrtimeout_range(expires, 0, mode);
1799}
7bb67439 1800EXPORT_SYMBOL_GPL(schedule_hrtimeout);