]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/time/hrtimer.c
hrtimer: Switch 'for' loop to _ffs() evaluation
[mirror_ubuntu-eoan-kernel.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
174cd4b1 46#include <linux/sched/signal.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
370c9135 50#include <linux/sched/nohz.h>
b17b0153 51#include <linux/sched/debug.h>
eea08f32 52#include <linux/timer.h>
b0f8c44f 53#include <linux/freezer.h>
edbeda46 54#include <linux/compat.h>
c0a31329 55
7c0f6ba6 56#include <linux/uaccess.h>
c0a31329 57
c6a2a177
XG
58#include <trace/events/timer.h>
59
c1797baf 60#include "tick-internal.h"
8b094cd0 61
c0a31329
TG
62/*
63 * The timer bases:
7978672c 64 *
571af55a 65 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
66 * into the timer bases by the hrtimer_base_type enum. When trying
67 * to reach a base using a clockid, hrtimer_clockid_to_base()
68 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 69 */
54cdfdb4 70DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 71{
84cc8fd2 72 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
887d9dc9 73 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
3c8aa39d 74 .clock_base =
c0a31329 75 {
3c8aa39d 76 {
ab8177bc
TG
77 .index = HRTIMER_BASE_MONOTONIC,
78 .clockid = CLOCK_MONOTONIC,
3c8aa39d 79 .get_time = &ktime_get,
3c8aa39d 80 },
68fa61c0
TG
81 {
82 .index = HRTIMER_BASE_REALTIME,
83 .clockid = CLOCK_REALTIME,
84 .get_time = &ktime_get_real,
68fa61c0 85 },
70a08cca 86 {
ab8177bc
TG
87 .index = HRTIMER_BASE_BOOTTIME,
88 .clockid = CLOCK_BOOTTIME,
70a08cca 89 .get_time = &ktime_get_boottime,
70a08cca 90 },
90adda98
JS
91 {
92 .index = HRTIMER_BASE_TAI,
93 .clockid = CLOCK_TAI,
94 .get_time = &ktime_get_clocktai,
90adda98 95 },
3c8aa39d 96 }
c0a31329
TG
97};
98
942c3c5c 99static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
336a9cde
MZ
100 /* Make sure we catch unsupported clockids */
101 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
102
ce31332d
TG
103 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
104 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
105 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 106 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 107};
e06383db 108
c0a31329
TG
109/*
110 * Functions and macros which are different for UP/SMP systems are kept in a
111 * single place
112 */
113#ifdef CONFIG_SMP
114
887d9dc9
PZ
115/*
116 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
117 * such that hrtimer_callback_running() can unconditionally dereference
118 * timer->base->cpu_base
119 */
120static struct hrtimer_cpu_base migration_cpu_base = {
121 .seq = SEQCNT_ZERO(migration_cpu_base),
122 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
123};
124
125#define migration_base migration_cpu_base.clock_base[0]
126
c0a31329
TG
127/*
128 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
129 * means that all timers which are tied to this base via timer->base are
130 * locked, and the base itself is locked too.
131 *
132 * So __run_timers/migrate_timers can safely modify all timers which could
133 * be found on the lists/queues.
134 *
135 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
136 * possible to set timer->base = &migration_base and drop the lock: the timer
137 * remains locked.
c0a31329 138 */
3c8aa39d
TG
139static
140struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
141 unsigned long *flags)
c0a31329 142{
3c8aa39d 143 struct hrtimer_clock_base *base;
c0a31329
TG
144
145 for (;;) {
146 base = timer->base;
887d9dc9 147 if (likely(base != &migration_base)) {
ecb49d1a 148 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
149 if (likely(base == timer->base))
150 return base;
151 /* The timer has migrated to another CPU: */
ecb49d1a 152 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
153 }
154 cpu_relax();
155 }
156}
157
6ff7041d
TG
158/*
159 * With HIGHRES=y we do not migrate the timer when it is expiring
160 * before the next event on the target cpu because we cannot reprogram
161 * the target cpu hardware and we would cause it to fire late.
162 *
163 * Called with cpu_base->lock of target cpu held.
164 */
165static int
166hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
167{
168#ifdef CONFIG_HIGH_RES_TIMERS
169 ktime_t expires;
170
171 if (!new_base->cpu_base->hres_active)
172 return 0;
173
174 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
2456e855 175 return expires <= new_base->cpu_base->expires_next;
6ff7041d
TG
176#else
177 return 0;
178#endif
179}
180
bc7a34b8
TG
181static inline
182struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 int pinned)
184{
ae67bada
TG
185#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
186 if (static_branch_likely(&timers_migration_enabled) && !pinned)
187 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188#endif
662b3e19 189 return base;
bc7a34b8 190}
bc7a34b8 191
c0a31329 192/*
b48362d8
FW
193 * We switch the timer base to a power-optimized selected CPU target,
194 * if:
195 * - NO_HZ_COMMON is enabled
196 * - timer migration is enabled
197 * - the timer callback is not running
198 * - the timer is not the first expiring timer on the new target
199 *
200 * If one of the above requirements is not fulfilled we move the timer
201 * to the current CPU or leave it on the previously assigned CPU if
202 * the timer callback is currently running.
c0a31329 203 */
3c8aa39d 204static inline struct hrtimer_clock_base *
597d0275
AB
205switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
206 int pinned)
c0a31329 207{
b48362d8 208 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 209 struct hrtimer_clock_base *new_base;
ab8177bc 210 int basenum = base->index;
c0a31329 211
b48362d8
FW
212 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
213 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 214again:
e06383db 215 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
216
217 if (base != new_base) {
218 /*
6ff7041d 219 * We are trying to move timer to new_base.
c0a31329
TG
220 * However we can't change timer's base while it is running,
221 * so we keep it on the same CPU. No hassle vs. reprogramming
222 * the event source in the high resolution case. The softirq
223 * code will take care of this when the timer function has
224 * completed. There is no conflict as we hold the lock until
225 * the timer is enqueued.
226 */
54cdfdb4 227 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
228 return base;
229
887d9dc9
PZ
230 /* See the comment in lock_hrtimer_base() */
231 timer->base = &migration_base;
ecb49d1a
TG
232 raw_spin_unlock(&base->cpu_base->lock);
233 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 234
b48362d8 235 if (new_cpu_base != this_cpu_base &&
bc7a34b8 236 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
237 raw_spin_unlock(&new_base->cpu_base->lock);
238 raw_spin_lock(&base->cpu_base->lock);
b48362d8 239 new_cpu_base = this_cpu_base;
6ff7041d
TG
240 timer->base = base;
241 goto again;
eea08f32 242 }
c0a31329 243 timer->base = new_base;
012a45e3 244 } else {
b48362d8 245 if (new_cpu_base != this_cpu_base &&
bc7a34b8 246 hrtimer_check_target(timer, new_base)) {
b48362d8 247 new_cpu_base = this_cpu_base;
012a45e3
LM
248 goto again;
249 }
c0a31329
TG
250 }
251 return new_base;
252}
253
254#else /* CONFIG_SMP */
255
3c8aa39d 256static inline struct hrtimer_clock_base *
c0a31329
TG
257lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
258{
3c8aa39d 259 struct hrtimer_clock_base *base = timer->base;
c0a31329 260
ecb49d1a 261 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
262
263 return base;
264}
265
eea08f32 266# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
267
268#endif /* !CONFIG_SMP */
269
270/*
271 * Functions for the union type storage format of ktime_t which are
272 * too large for inlining:
273 */
274#if BITS_PER_LONG < 64
c0a31329
TG
275/*
276 * Divide a ktime value by a nanosecond value
277 */
f7bcb70e 278s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 279{
c0a31329 280 int sft = 0;
f7bcb70e
JS
281 s64 dclc;
282 u64 tmp;
c0a31329 283
900cfa46 284 dclc = ktime_to_ns(kt);
f7bcb70e
JS
285 tmp = dclc < 0 ? -dclc : dclc;
286
c0a31329
TG
287 /* Make sure the divisor is less than 2^32: */
288 while (div >> 32) {
289 sft++;
290 div >>= 1;
291 }
f7bcb70e
JS
292 tmp >>= sft;
293 do_div(tmp, (unsigned long) div);
294 return dclc < 0 ? -tmp : tmp;
c0a31329 295}
8b618628 296EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
297#endif /* BITS_PER_LONG >= 64 */
298
5a7780e7
TG
299/*
300 * Add two ktime values and do a safety check for overflow:
301 */
302ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
303{
979515c5 304 ktime_t res = ktime_add_unsafe(lhs, rhs);
5a7780e7
TG
305
306 /*
307 * We use KTIME_SEC_MAX here, the maximum timeout which we can
308 * return to user space in a timespec:
309 */
2456e855 310 if (res < 0 || res < lhs || res < rhs)
5a7780e7
TG
311 res = ktime_set(KTIME_SEC_MAX, 0);
312
313 return res;
314}
315
8daa21e6
AB
316EXPORT_SYMBOL_GPL(ktime_add_safe);
317
237fc6e7
TG
318#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
319
320static struct debug_obj_descr hrtimer_debug_descr;
321
99777288
SG
322static void *hrtimer_debug_hint(void *addr)
323{
324 return ((struct hrtimer *) addr)->function;
325}
326
237fc6e7
TG
327/*
328 * fixup_init is called when:
329 * - an active object is initialized
330 */
e3252464 331static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
332{
333 struct hrtimer *timer = addr;
334
335 switch (state) {
336 case ODEBUG_STATE_ACTIVE:
337 hrtimer_cancel(timer);
338 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 339 return true;
237fc6e7 340 default:
e3252464 341 return false;
237fc6e7
TG
342 }
343}
344
345/*
346 * fixup_activate is called when:
347 * - an active object is activated
b9fdac7f 348 * - an unknown non-static object is activated
237fc6e7 349 */
e3252464 350static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
351{
352 switch (state) {
237fc6e7
TG
353 case ODEBUG_STATE_ACTIVE:
354 WARN_ON(1);
355
356 default:
e3252464 357 return false;
237fc6e7
TG
358 }
359}
360
361/*
362 * fixup_free is called when:
363 * - an active object is freed
364 */
e3252464 365static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
366{
367 struct hrtimer *timer = addr;
368
369 switch (state) {
370 case ODEBUG_STATE_ACTIVE:
371 hrtimer_cancel(timer);
372 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 373 return true;
237fc6e7 374 default:
e3252464 375 return false;
237fc6e7
TG
376 }
377}
378
379static struct debug_obj_descr hrtimer_debug_descr = {
380 .name = "hrtimer",
99777288 381 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
382 .fixup_init = hrtimer_fixup_init,
383 .fixup_activate = hrtimer_fixup_activate,
384 .fixup_free = hrtimer_fixup_free,
385};
386
387static inline void debug_hrtimer_init(struct hrtimer *timer)
388{
389 debug_object_init(timer, &hrtimer_debug_descr);
390}
391
392static inline void debug_hrtimer_activate(struct hrtimer *timer)
393{
394 debug_object_activate(timer, &hrtimer_debug_descr);
395}
396
397static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
398{
399 debug_object_deactivate(timer, &hrtimer_debug_descr);
400}
401
402static inline void debug_hrtimer_free(struct hrtimer *timer)
403{
404 debug_object_free(timer, &hrtimer_debug_descr);
405}
406
407static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
408 enum hrtimer_mode mode);
409
410void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
411 enum hrtimer_mode mode)
412{
413 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
414 __hrtimer_init(timer, clock_id, mode);
415}
2bc481cf 416EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
417
418void destroy_hrtimer_on_stack(struct hrtimer *timer)
419{
420 debug_object_free(timer, &hrtimer_debug_descr);
421}
c08376ac 422EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
237fc6e7
TG
423
424#else
425static inline void debug_hrtimer_init(struct hrtimer *timer) { }
426static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
427static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
428#endif
429
c6a2a177
XG
430static inline void
431debug_init(struct hrtimer *timer, clockid_t clockid,
432 enum hrtimer_mode mode)
433{
434 debug_hrtimer_init(timer);
435 trace_hrtimer_init(timer, clockid, mode);
436}
437
63e2ed36
AMG
438static inline void debug_activate(struct hrtimer *timer,
439 enum hrtimer_mode mode)
c6a2a177
XG
440{
441 debug_hrtimer_activate(timer);
63e2ed36 442 trace_hrtimer_start(timer, mode);
c6a2a177
XG
443}
444
445static inline void debug_deactivate(struct hrtimer *timer)
446{
447 debug_hrtimer_deactivate(timer);
448 trace_hrtimer_cancel(timer);
449}
450
c272ca58
AMG
451static struct hrtimer_clock_base *
452__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
453{
454 unsigned int idx;
455
456 if (!*active)
457 return NULL;
458
459 idx = __ffs(*active);
460 *active &= ~(1U << idx);
461
462 return &cpu_base->clock_base[idx];
463}
464
465#define for_each_active_base(base, cpu_base, active) \
466 while ((base = __next_base((cpu_base), &(active))))
467
9bc74919 468#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
895bdfa7
TG
469static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
470 struct hrtimer *timer)
471{
472#ifdef CONFIG_HIGH_RES_TIMERS
473 cpu_base->next_timer = timer;
474#endif
475}
476
4ebbda52 477static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
9bc74919 478{
c272ca58 479 struct hrtimer_clock_base *base;
34aee88a 480 unsigned int active = cpu_base->active_bases;
2456e855 481 ktime_t expires, expires_next = KTIME_MAX;
9bc74919 482
895bdfa7 483 hrtimer_update_next_timer(cpu_base, NULL);
c272ca58 484 for_each_active_base(base, cpu_base, active) {
9bc74919
TG
485 struct timerqueue_node *next;
486 struct hrtimer *timer;
487
34aee88a 488 next = timerqueue_getnext(&base->active);
9bc74919
TG
489 timer = container_of(next, struct hrtimer, node);
490 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
2456e855 491 if (expires < expires_next) {
9bc74919 492 expires_next = expires;
895bdfa7
TG
493 hrtimer_update_next_timer(cpu_base, timer);
494 }
9bc74919
TG
495 }
496 /*
497 * clock_was_set() might have changed base->offset of any of
498 * the clock bases so the result might be negative. Fix it up
499 * to prevent a false positive in clockevents_program_event().
500 */
2456e855
TG
501 if (expires_next < 0)
502 expires_next = 0;
9bc74919
TG
503 return expires_next;
504}
505#endif
506
21d6d52a
TG
507static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
508{
509 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
510 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
511 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
512
868a3e91
TG
513 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
514 offs_real, offs_boot, offs_tai);
21d6d52a
TG
515}
516
54cdfdb4
TG
517/* High resolution timer related functions */
518#ifdef CONFIG_HIGH_RES_TIMERS
519
520/*
521 * High resolution timer enabled ?
522 */
4cc7ecb7 523static bool hrtimer_hres_enabled __read_mostly = true;
398ca17f
TG
524unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
525EXPORT_SYMBOL_GPL(hrtimer_resolution);
54cdfdb4
TG
526
527/*
528 * Enable / Disable high resolution mode
529 */
530static int __init setup_hrtimer_hres(char *str)
531{
4cc7ecb7 532 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
54cdfdb4
TG
533}
534
535__setup("highres=", setup_hrtimer_hres);
536
537/*
538 * hrtimer_high_res_enabled - query, if the highres mode is enabled
539 */
540static inline int hrtimer_is_hres_enabled(void)
541{
542 return hrtimer_hres_enabled;
543}
544
545/*
546 * Is the high resolution mode active ?
547 */
e19ffe8b
TG
548static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
549{
550 return cpu_base->hres_active;
551}
552
54cdfdb4
TG
553static inline int hrtimer_hres_active(void)
554{
e19ffe8b 555 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
54cdfdb4
TG
556}
557
558/*
559 * Reprogram the event source with checking both queues for the
560 * next event
561 * Called with interrupts disabled and base->lock held
562 */
7403f41f
AC
563static void
564hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 565{
21d6d52a
TG
566 ktime_t expires_next;
567
568 if (!cpu_base->hres_active)
569 return;
570
571 expires_next = __hrtimer_get_next_event(cpu_base);
54cdfdb4 572
2456e855 573 if (skip_equal && expires_next == cpu_base->expires_next)
7403f41f
AC
574 return;
575
2456e855 576 cpu_base->expires_next = expires_next;
7403f41f 577
6c6c0d5a
SH
578 /*
579 * If a hang was detected in the last timer interrupt then we
580 * leave the hang delay active in the hardware. We want the
581 * system to make progress. That also prevents the following
582 * scenario:
583 * T1 expires 50ms from now
584 * T2 expires 5s from now
585 *
586 * T1 is removed, so this code is called and would reprogram
587 * the hardware to 5s from now. Any hrtimer_start after that
588 * will not reprogram the hardware due to hang_detected being
589 * set. So we'd effectivly block all timers until the T2 event
590 * fires.
591 */
592 if (cpu_base->hang_detected)
593 return;
594
d2540875 595 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
596}
597
598/*
54cdfdb4
TG
599 * When a timer is enqueued and expires earlier than the already enqueued
600 * timers, we have to check, whether it expires earlier than the timer for
601 * which the clock event device was armed.
602 *
603 * Called with interrupts disabled and base->cpu_base.lock held
604 */
c6eb3f70
TG
605static void hrtimer_reprogram(struct hrtimer *timer,
606 struct hrtimer_clock_base *base)
54cdfdb4 607{
dc5df73b 608 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
cc584b21 609 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4 610
cc584b21 611 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 612
54cdfdb4 613 /*
c6eb3f70
TG
614 * If the timer is not on the current cpu, we cannot reprogram
615 * the other cpus clock event device.
54cdfdb4 616 */
c6eb3f70
TG
617 if (base->cpu_base != cpu_base)
618 return;
619
620 /*
621 * If the hrtimer interrupt is running, then it will
622 * reevaluate the clock bases and reprogram the clock event
623 * device. The callbacks are always executed in hard interrupt
624 * context so we don't need an extra check for a running
625 * callback.
626 */
627 if (cpu_base->in_hrtirq)
628 return;
54cdfdb4 629
63070a79
TG
630 /*
631 * CLOCK_REALTIME timer might be requested with an absolute
c6eb3f70 632 * expiry time which is less than base->offset. Set it to 0.
63070a79 633 */
2456e855
TG
634 if (expires < 0)
635 expires = 0;
63070a79 636
2456e855 637 if (expires >= cpu_base->expires_next)
c6eb3f70 638 return;
41d2e494 639
c6eb3f70 640 /* Update the pointer to the next expiring timer */
895bdfa7 641 cpu_base->next_timer = timer;
9bc74919 642
41d2e494
TG
643 /*
644 * If a hang was detected in the last timer interrupt then we
645 * do not schedule a timer which is earlier than the expiry
646 * which we enforced in the hang detection. We want the system
647 * to make progress.
648 */
649 if (cpu_base->hang_detected)
c6eb3f70 650 return;
54cdfdb4
TG
651
652 /*
c6eb3f70
TG
653 * Program the timer hardware. We enforce the expiry for
654 * events which are already in the past.
54cdfdb4 655 */
c6eb3f70
TG
656 cpu_base->expires_next = expires;
657 tick_program_event(expires, 1);
54cdfdb4
TG
658}
659
54cdfdb4
TG
660/*
661 * Initialize the high resolution related parts of cpu_base
662 */
663static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
664{
2456e855 665 base->expires_next = KTIME_MAX;
54cdfdb4 666 base->hres_active = 0;
54cdfdb4
TG
667}
668
9ec26907
TG
669/*
670 * Retrigger next event is called after clock was set
671 *
672 * Called with interrupts disabled via on_each_cpu()
673 */
674static void retrigger_next_event(void *arg)
675{
dc5df73b 676 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 677
e19ffe8b 678 if (!base->hres_active)
9ec26907
TG
679 return;
680
9ec26907 681 raw_spin_lock(&base->lock);
5baefd6d 682 hrtimer_update_base(base);
9ec26907
TG
683 hrtimer_force_reprogram(base, 0);
684 raw_spin_unlock(&base->lock);
685}
b12a03ce 686
54cdfdb4
TG
687/*
688 * Switch to high resolution mode
689 */
75e3b37d 690static void hrtimer_switch_to_hres(void)
54cdfdb4 691{
c6eb3f70 692 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
693
694 if (tick_init_highres()) {
820de5c3 695 printk(KERN_WARNING "Could not switch to high resolution "
c6eb3f70 696 "mode on CPU %d\n", base->cpu);
85e1cd6e 697 return;
54cdfdb4
TG
698 }
699 base->hres_active = 1;
398ca17f 700 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
701
702 tick_setup_sched_timer();
54cdfdb4
TG
703 /* "Retrigger" the interrupt to get things going */
704 retrigger_next_event(NULL);
54cdfdb4
TG
705}
706
5ec2481b
TG
707static void clock_was_set_work(struct work_struct *work)
708{
709 clock_was_set();
710}
711
712static DECLARE_WORK(hrtimer_work, clock_was_set_work);
713
f55a6faa 714/*
b4d90e9f 715 * Called from timekeeping and resume code to reprogram the hrtimer
5ec2481b 716 * interrupt device on all cpus.
f55a6faa
JS
717 */
718void clock_was_set_delayed(void)
719{
5ec2481b 720 schedule_work(&hrtimer_work);
f55a6faa
JS
721}
722
54cdfdb4
TG
723#else
724
e19ffe8b 725static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
54cdfdb4
TG
726static inline int hrtimer_hres_active(void) { return 0; }
727static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 728static inline void hrtimer_switch_to_hres(void) { }
7403f41f
AC
729static inline void
730hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
9e1e01dd
VK
731static inline int hrtimer_reprogram(struct hrtimer *timer,
732 struct hrtimer_clock_base *base)
54cdfdb4
TG
733{
734 return 0;
735}
54cdfdb4 736static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 737static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
738
739#endif /* CONFIG_HIGH_RES_TIMERS */
740
b12a03ce
TG
741/*
742 * Clock realtime was set
743 *
744 * Change the offset of the realtime clock vs. the monotonic
745 * clock.
746 *
747 * We might have to reprogram the high resolution timer interrupt. On
748 * SMP we call the architecture specific code to retrigger _all_ high
749 * resolution timer interrupts. On UP we just disable interrupts and
750 * call the high resolution interrupt code.
751 */
752void clock_was_set(void)
753{
90ff1f30 754#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
755 /* Retrigger the CPU local events everywhere */
756 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
757#endif
758 timerfd_clock_was_set();
b12a03ce
TG
759}
760
761/*
762 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
763 * interrupt on all online CPUs. However, all other CPUs will be
764 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 765 * must be deferred.
b12a03ce
TG
766 */
767void hrtimers_resume(void)
768{
53bef3fd 769 lockdep_assert_irqs_disabled();
5ec2481b 770 /* Retrigger on the local CPU */
b12a03ce 771 retrigger_next_event(NULL);
5ec2481b
TG
772 /* And schedule a retrigger for all others */
773 clock_was_set_delayed();
b12a03ce
TG
774}
775
c0a31329 776/*
6506f2aa 777 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
778 */
779static inline
780void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
781{
ecb49d1a 782 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
783}
784
785/**
786 * hrtimer_forward - forward the timer expiry
c0a31329 787 * @timer: hrtimer to forward
44f21475 788 * @now: forward past this time
c0a31329
TG
789 * @interval: the interval to forward
790 *
791 * Forward the timer expiry so it will expire in the future.
8dca6f33 792 * Returns the number of overruns.
91e5a217
TG
793 *
794 * Can be safely called from the callback function of @timer. If
795 * called from other contexts @timer must neither be enqueued nor
796 * running the callback and the caller needs to take care of
797 * serialization.
798 *
799 * Note: This only updates the timer expiry value and does not requeue
800 * the timer.
c0a31329 801 */
4d672e7a 802u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 803{
4d672e7a 804 u64 orun = 1;
44f21475 805 ktime_t delta;
c0a31329 806
cc584b21 807 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329 808
2456e855 809 if (delta < 0)
c0a31329
TG
810 return 0;
811
5de2755c
PZ
812 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
813 return 0;
814
2456e855
TG
815 if (interval < hrtimer_resolution)
816 interval = hrtimer_resolution;
c9db4fa1 817
2456e855 818 if (unlikely(delta >= interval)) {
df869b63 819 s64 incr = ktime_to_ns(interval);
c0a31329
TG
820
821 orun = ktime_divns(delta, incr);
cc584b21 822 hrtimer_add_expires_ns(timer, incr * orun);
2456e855 823 if (hrtimer_get_expires_tv64(timer) > now)
c0a31329
TG
824 return orun;
825 /*
826 * This (and the ktime_add() below) is the
827 * correction for exact:
828 */
829 orun++;
830 }
cc584b21 831 hrtimer_add_expires(timer, interval);
c0a31329
TG
832
833 return orun;
834}
6bdb6b62 835EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
836
837/*
838 * enqueue_hrtimer - internal function to (re)start a timer
839 *
840 * The timer is inserted in expiry order. Insertion into the
841 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
842 *
843 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 844 */
a6037b61 845static int enqueue_hrtimer(struct hrtimer *timer,
63e2ed36
AMG
846 struct hrtimer_clock_base *base,
847 enum hrtimer_mode mode)
c0a31329 848{
63e2ed36 849 debug_activate(timer, mode);
237fc6e7 850
ab8177bc 851 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 852
887d9dc9 853 timer->state = HRTIMER_STATE_ENQUEUED;
a6037b61 854
b97f44c9 855 return timerqueue_add(&base->active, &timer->node);
288867ec 856}
c0a31329
TG
857
858/*
859 * __remove_hrtimer - internal function to remove a timer
860 *
861 * Caller must hold the base lock.
54cdfdb4
TG
862 *
863 * High resolution timer mode reprograms the clock event device when the
864 * timer is the one which expires next. The caller can disable this by setting
865 * reprogram to zero. This is useful, when the context does a reprogramming
866 * anyway (e.g. timer interrupt)
c0a31329 867 */
3c8aa39d 868static void __remove_hrtimer(struct hrtimer *timer,
303e967f 869 struct hrtimer_clock_base *base,
203cbf77 870 u8 newstate, int reprogram)
c0a31329 871{
e19ffe8b 872 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 873 u8 state = timer->state;
e19ffe8b 874
895bdfa7
TG
875 timer->state = newstate;
876 if (!(state & HRTIMER_STATE_ENQUEUED))
877 return;
7403f41f 878
b97f44c9 879 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 880 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 881
7403f41f 882#ifdef CONFIG_HIGH_RES_TIMERS
895bdfa7
TG
883 /*
884 * Note: If reprogram is false we do not update
885 * cpu_base->next_timer. This happens when we remove the first
886 * timer on a remote cpu. No harm as we never dereference
887 * cpu_base->next_timer. So the worst thing what can happen is
888 * an superflous call to hrtimer_force_reprogram() on the
889 * remote cpu later on if the same timer gets enqueued again.
890 */
891 if (reprogram && timer == cpu_base->next_timer)
892 hrtimer_force_reprogram(cpu_base, 1);
7403f41f 893#endif
c0a31329
TG
894}
895
896/*
897 * remove hrtimer, called with base lock held
898 */
899static inline int
8edfb036 900remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 901{
303e967f 902 if (hrtimer_is_queued(timer)) {
203cbf77 903 u8 state = timer->state;
54cdfdb4
TG
904 int reprogram;
905
906 /*
907 * Remove the timer and force reprogramming when high
908 * resolution mode is active and the timer is on the current
909 * CPU. If we remove a timer on another CPU, reprogramming is
910 * skipped. The interrupt event on this CPU is fired and
911 * reprogramming happens in the interrupt handler. This is a
912 * rare case and less expensive than a smp call.
913 */
c6a2a177 914 debug_deactivate(timer);
dc5df73b 915 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 916
887d9dc9
PZ
917 if (!restart)
918 state = HRTIMER_STATE_INACTIVE;
919
f13d4f97 920 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
921 return 1;
922 }
923 return 0;
924}
925
203cbf77
TG
926static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
927 const enum hrtimer_mode mode)
928{
929#ifdef CONFIG_TIME_LOW_RES
930 /*
931 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
932 * granular time values. For relative timers we add hrtimer_resolution
933 * (i.e. one jiffie) to prevent short timeouts.
934 */
935 timer->is_rel = mode & HRTIMER_MODE_REL;
936 if (timer->is_rel)
8b0e1953 937 tim = ktime_add_safe(tim, hrtimer_resolution);
203cbf77
TG
938#endif
939 return tim;
940}
941
58f1f803 942/**
6de6250c 943 * hrtimer_start_range_ns - (re)start an hrtimer
58f1f803
TG
944 * @timer: the timer to be added
945 * @tim: expiry time
946 * @delta_ns: "slack" range for the timer
6de6250c
AMG
947 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
948 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED)
58f1f803 949 */
61699e13 950void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
da8b44d5 951 u64 delta_ns, const enum hrtimer_mode mode)
c0a31329 952{
3c8aa39d 953 struct hrtimer_clock_base *base, *new_base;
c0a31329 954 unsigned long flags;
61699e13 955 int leftmost;
c0a31329
TG
956
957 base = lock_hrtimer_base(timer, &flags);
958
959 /* Remove an active timer from the queue: */
8edfb036 960 remove_hrtimer(timer, base, true);
c0a31329 961
203cbf77 962 if (mode & HRTIMER_MODE_REL)
84ea7fe3 963 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
964
965 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 966
da8f2e17 967 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 968
84ea7fe3
VK
969 /* Switch the timer base, if necessary: */
970 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
971
63e2ed36 972 leftmost = enqueue_hrtimer(timer, new_base, mode);
61699e13
TG
973 if (!leftmost)
974 goto unlock;
49a2a075
VK
975
976 if (!hrtimer_is_hres_active(timer)) {
977 /*
978 * Kick to reschedule the next tick to handle the new timer
979 * on dynticks target.
980 */
ae67bada 981 if (is_timers_nohz_active())
683be13a 982 wake_up_nohz_cpu(new_base->cpu_base->cpu);
c6eb3f70
TG
983 } else {
984 hrtimer_reprogram(timer, new_base);
b22affe0 985 }
61699e13 986unlock:
c0a31329 987 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 988}
da8f2e17
AV
989EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
990
c0a31329
TG
991/**
992 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
993 * @timer: hrtimer to stop
994 *
995 * Returns:
996 * 0 when the timer was not active
997 * 1 when the timer was active
0ba42a59 998 * -1 when the timer is currently executing the callback function and
fa9799e3 999 * cannot be stopped
c0a31329
TG
1000 */
1001int hrtimer_try_to_cancel(struct hrtimer *timer)
1002{
3c8aa39d 1003 struct hrtimer_clock_base *base;
c0a31329
TG
1004 unsigned long flags;
1005 int ret = -1;
1006
19d9f422
TG
1007 /*
1008 * Check lockless first. If the timer is not active (neither
1009 * enqueued nor running the callback, nothing to do here. The
1010 * base lock does not serialize against a concurrent enqueue,
1011 * so we can avoid taking it.
1012 */
1013 if (!hrtimer_active(timer))
1014 return 0;
1015
c0a31329
TG
1016 base = lock_hrtimer_base(timer, &flags);
1017
303e967f 1018 if (!hrtimer_callback_running(timer))
8edfb036 1019 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1020
1021 unlock_hrtimer_base(timer, &flags);
1022
1023 return ret;
1024
1025}
8d16b764 1026EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1027
1028/**
1029 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1030 * @timer: the timer to be cancelled
1031 *
1032 * Returns:
1033 * 0 when the timer was not active
1034 * 1 when the timer was active
1035 */
1036int hrtimer_cancel(struct hrtimer *timer)
1037{
1038 for (;;) {
1039 int ret = hrtimer_try_to_cancel(timer);
1040
1041 if (ret >= 0)
1042 return ret;
5ef37b19 1043 cpu_relax();
c0a31329
TG
1044 }
1045}
8d16b764 1046EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1047
1048/**
1049 * hrtimer_get_remaining - get remaining time for the timer
c0a31329 1050 * @timer: the timer to read
203cbf77 1051 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1052 */
203cbf77 1053ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1054{
c0a31329
TG
1055 unsigned long flags;
1056 ktime_t rem;
1057
b3bd3de6 1058 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1059 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1060 rem = hrtimer_expires_remaining_adjusted(timer);
1061 else
1062 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1063 unlock_hrtimer_base(timer, &flags);
1064
1065 return rem;
1066}
203cbf77 1067EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1068
3451d024 1069#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1070/**
1071 * hrtimer_get_next_event - get the time until next expiry event
1072 *
c1ad348b 1073 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1074 */
c1ad348b 1075u64 hrtimer_get_next_event(void)
69239749 1076{
dc5df73b 1077 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1078 u64 expires = KTIME_MAX;
69239749 1079 unsigned long flags;
69239749 1080
ecb49d1a 1081 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1082
e19ffe8b 1083 if (!__hrtimer_hres_active(cpu_base))
2456e855 1084 expires = __hrtimer_get_next_event(cpu_base);
3c8aa39d 1085
ecb49d1a 1086 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1087
c1ad348b 1088 return expires;
69239749
TL
1089}
1090#endif
1091
336a9cde
MZ
1092static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1093{
1094 if (likely(clock_id < MAX_CLOCKS)) {
1095 int base = hrtimer_clock_to_base_table[clock_id];
1096
1097 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1098 return base;
1099 }
1100 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1101 return HRTIMER_BASE_MONOTONIC;
1102}
1103
237fc6e7
TG
1104static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1105 enum hrtimer_mode mode)
c0a31329 1106{
3c8aa39d 1107 struct hrtimer_cpu_base *cpu_base;
e06383db 1108 int base;
c0a31329 1109
7978672c
GA
1110 memset(timer, 0, sizeof(struct hrtimer));
1111
22127e93 1112 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1113
48d0c9be
AMG
1114 /*
1115 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1116 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1117 * ensure POSIX compliance.
1118 */
1119 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
7978672c
GA
1120 clock_id = CLOCK_MONOTONIC;
1121
e06383db
JS
1122 base = hrtimer_clockid_to_base(clock_id);
1123 timer->base = &cpu_base->clock_base[base];
998adc3d 1124 timerqueue_init(&timer->node);
c0a31329 1125}
237fc6e7
TG
1126
1127/**
1128 * hrtimer_init - initialize a timer to the given clock
1129 * @timer: the timer to be initialized
1130 * @clock_id: the clock to be used
6de6250c
AMG
1131 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1132 * relative (HRTIMER_MODE_REL); pinned is not considered here!
237fc6e7
TG
1133 */
1134void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1135 enum hrtimer_mode mode)
1136{
c6a2a177 1137 debug_init(timer, clock_id, mode);
237fc6e7
TG
1138 __hrtimer_init(timer, clock_id, mode);
1139}
8d16b764 1140EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1141
887d9dc9
PZ
1142/*
1143 * A timer is active, when it is enqueued into the rbtree or the
1144 * callback function is running or it's in the state of being migrated
1145 * to another cpu.
c0a31329 1146 *
887d9dc9 1147 * It is important for this function to not return a false negative.
c0a31329 1148 */
887d9dc9 1149bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1150{
3c8aa39d 1151 struct hrtimer_cpu_base *cpu_base;
887d9dc9 1152 unsigned int seq;
c0a31329 1153
887d9dc9
PZ
1154 do {
1155 cpu_base = READ_ONCE(timer->base->cpu_base);
1156 seq = raw_read_seqcount_begin(&cpu_base->seq);
c0a31329 1157
887d9dc9
PZ
1158 if (timer->state != HRTIMER_STATE_INACTIVE ||
1159 cpu_base->running == timer)
1160 return true;
1161
1162 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1163 cpu_base != READ_ONCE(timer->base->cpu_base));
1164
1165 return false;
c0a31329 1166}
887d9dc9 1167EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1168
887d9dc9
PZ
1169/*
1170 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1171 * distinct sections:
1172 *
1173 * - queued: the timer is queued
1174 * - callback: the timer is being ran
1175 * - post: the timer is inactive or (re)queued
1176 *
1177 * On the read side we ensure we observe timer->state and cpu_base->running
1178 * from the same section, if anything changed while we looked at it, we retry.
1179 * This includes timer->base changing because sequence numbers alone are
1180 * insufficient for that.
1181 *
1182 * The sequence numbers are required because otherwise we could still observe
1183 * a false negative if the read side got smeared over multiple consequtive
1184 * __run_hrtimer() invocations.
1185 */
1186
21d6d52a
TG
1187static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1188 struct hrtimer_clock_base *base,
1189 struct hrtimer *timer, ktime_t *now)
d3d74453 1190{
d3d74453
PZ
1191 enum hrtimer_restart (*fn)(struct hrtimer *);
1192 int restart;
1193
887d9dc9 1194 lockdep_assert_held(&cpu_base->lock);
ca109491 1195
c6a2a177 1196 debug_deactivate(timer);
887d9dc9
PZ
1197 cpu_base->running = timer;
1198
1199 /*
1200 * Separate the ->running assignment from the ->state assignment.
1201 *
1202 * As with a regular write barrier, this ensures the read side in
1203 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1204 * timer->state == INACTIVE.
1205 */
1206 raw_write_seqcount_barrier(&cpu_base->seq);
1207
1208 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1209 fn = timer->function;
ca109491 1210
203cbf77
TG
1211 /*
1212 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1213 * timer is restarted with a period then it becomes an absolute
1214 * timer. If its not restarted it does not matter.
1215 */
1216 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1217 timer->is_rel = false;
1218
ca109491 1219 /*
d05ca13b
TG
1220 * The timer is marked as running in the CPU base, so it is
1221 * protected against migration to a different CPU even if the lock
1222 * is dropped.
ca109491 1223 */
ecb49d1a 1224 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1225 trace_hrtimer_expire_entry(timer, now);
ca109491 1226 restart = fn(timer);
c6a2a177 1227 trace_hrtimer_expire_exit(timer);
ecb49d1a 1228 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1229
1230 /*
887d9dc9 1231 * Note: We clear the running state after enqueue_hrtimer and
b4d90e9f 1232 * we do not reprogram the event hardware. Happens either in
e3f1d883 1233 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1234 *
1235 * Note: Because we dropped the cpu_base->lock above,
1236 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1237 * for us already.
d3d74453 1238 */
5de2755c
PZ
1239 if (restart != HRTIMER_NORESTART &&
1240 !(timer->state & HRTIMER_STATE_ENQUEUED))
63e2ed36 1241 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
f13d4f97 1242
887d9dc9
PZ
1243 /*
1244 * Separate the ->running assignment from the ->state assignment.
1245 *
1246 * As with a regular write barrier, this ensures the read side in
1247 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1248 * timer->state == INACTIVE.
1249 */
1250 raw_write_seqcount_barrier(&cpu_base->seq);
f13d4f97 1251
887d9dc9
PZ
1252 WARN_ON_ONCE(cpu_base->running != timer);
1253 cpu_base->running = NULL;
d3d74453
PZ
1254}
1255
21d6d52a 1256static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
54cdfdb4 1257{
c272ca58 1258 struct hrtimer_clock_base *base;
34aee88a 1259 unsigned int active = cpu_base->active_bases;
6ff7041d 1260
c272ca58 1261 for_each_active_base(base, cpu_base, active) {
998adc3d 1262 struct timerqueue_node *node;
ab8177bc
TG
1263 ktime_t basenow;
1264
54cdfdb4
TG
1265 basenow = ktime_add(now, base->offset);
1266
998adc3d 1267 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1268 struct hrtimer *timer;
1269
998adc3d 1270 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1271
654c8e0b
AV
1272 /*
1273 * The immediate goal for using the softexpires is
1274 * minimizing wakeups, not running timers at the
1275 * earliest interrupt after their soft expiration.
1276 * This allows us to avoid using a Priority Search
1277 * Tree, which can answer a stabbing querry for
1278 * overlapping intervals and instead use the simple
1279 * BST we already have.
1280 * We don't add extra wakeups by delaying timers that
1281 * are right-of a not yet expired timer, because that
1282 * timer will have to trigger a wakeup anyway.
1283 */
2456e855 1284 if (basenow < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1285 break;
54cdfdb4 1286
21d6d52a 1287 __run_hrtimer(cpu_base, base, timer, &basenow);
54cdfdb4 1288 }
54cdfdb4 1289 }
21d6d52a
TG
1290}
1291
1292#ifdef CONFIG_HIGH_RES_TIMERS
1293
1294/*
1295 * High resolution timer interrupt
1296 * Called with interrupts disabled
1297 */
1298void hrtimer_interrupt(struct clock_event_device *dev)
1299{
1300 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1301 ktime_t expires_next, now, entry_time, delta;
1302 int retries = 0;
1303
1304 BUG_ON(!cpu_base->hres_active);
1305 cpu_base->nr_events++;
2456e855 1306 dev->next_event = KTIME_MAX;
21d6d52a
TG
1307
1308 raw_spin_lock(&cpu_base->lock);
1309 entry_time = now = hrtimer_update_base(cpu_base);
1310retry:
1311 cpu_base->in_hrtirq = 1;
1312 /*
1313 * We set expires_next to KTIME_MAX here with cpu_base->lock
1314 * held to prevent that a timer is enqueued in our queue via
1315 * the migration code. This does not affect enqueueing of
1316 * timers which run their callback and need to be requeued on
1317 * this CPU.
1318 */
2456e855 1319 cpu_base->expires_next = KTIME_MAX;
21d6d52a
TG
1320
1321 __hrtimer_run_queues(cpu_base, now);
1322
9bc74919
TG
1323 /* Reevaluate the clock bases for the next expiry */
1324 expires_next = __hrtimer_get_next_event(cpu_base);
6ff7041d
TG
1325 /*
1326 * Store the new expiry value so the migration code can verify
1327 * against it.
1328 */
54cdfdb4 1329 cpu_base->expires_next = expires_next;
9bc74919 1330 cpu_base->in_hrtirq = 0;
ecb49d1a 1331 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1332
1333 /* Reprogramming necessary ? */
d2540875 1334 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1335 cpu_base->hang_detected = 0;
1336 return;
54cdfdb4 1337 }
41d2e494
TG
1338
1339 /*
1340 * The next timer was already expired due to:
1341 * - tracing
1342 * - long lasting callbacks
1343 * - being scheduled away when running in a VM
1344 *
1345 * We need to prevent that we loop forever in the hrtimer
1346 * interrupt routine. We give it 3 attempts to avoid
1347 * overreacting on some spurious event.
5baefd6d
JS
1348 *
1349 * Acquire base lock for updating the offsets and retrieving
1350 * the current time.
41d2e494 1351 */
196951e9 1352 raw_spin_lock(&cpu_base->lock);
5baefd6d 1353 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1354 cpu_base->nr_retries++;
1355 if (++retries < 3)
1356 goto retry;
1357 /*
1358 * Give the system a chance to do something else than looping
1359 * here. We stored the entry time, so we know exactly how long
1360 * we spent here. We schedule the next event this amount of
1361 * time away.
1362 */
1363 cpu_base->nr_hangs++;
1364 cpu_base->hang_detected = 1;
196951e9 1365 raw_spin_unlock(&cpu_base->lock);
41d2e494 1366 delta = ktime_sub(now, entry_time);
2456e855
TG
1367 if ((unsigned int)delta > cpu_base->max_hang_time)
1368 cpu_base->max_hang_time = (unsigned int) delta;
41d2e494
TG
1369 /*
1370 * Limit it to a sensible value as we enforce a longer
1371 * delay. Give the CPU at least 100ms to catch up.
1372 */
2456e855 1373 if (delta > 100 * NSEC_PER_MSEC)
41d2e494
TG
1374 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1375 else
1376 expires_next = ktime_add(now, delta);
1377 tick_program_event(expires_next, 1);
1378 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1379 ktime_to_ns(delta));
54cdfdb4
TG
1380}
1381
016da201 1382/* called with interrupts disabled */
c6eb3f70 1383static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1384{
1385 struct tick_device *td;
1386
1387 if (!hrtimer_hres_active())
1388 return;
1389
22127e93 1390 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1391 if (td && td->evtdev)
1392 hrtimer_interrupt(td->evtdev);
1393}
1394
82c5b7b5
IM
1395#else /* CONFIG_HIGH_RES_TIMERS */
1396
1397static inline void __hrtimer_peek_ahead_timers(void) { }
1398
1399#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1400
d3d74453 1401/*
c6eb3f70 1402 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1403 */
833883d9 1404void hrtimer_run_queues(void)
d3d74453 1405{
dc5df73b 1406 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
21d6d52a 1407 ktime_t now;
c0a31329 1408
e19ffe8b 1409 if (__hrtimer_hres_active(cpu_base))
d3d74453 1410 return;
54cdfdb4 1411
d3d74453 1412 /*
c6eb3f70
TG
1413 * This _is_ ugly: We have to check periodically, whether we
1414 * can switch to highres and / or nohz mode. The clocksource
1415 * switch happens with xtime_lock held. Notification from
1416 * there only sets the check bit in the tick_oneshot code,
1417 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1418 */
c6eb3f70 1419 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1420 hrtimer_switch_to_hres();
3055adda 1421 return;
833883d9 1422 }
c6eb3f70 1423
21d6d52a
TG
1424 raw_spin_lock(&cpu_base->lock);
1425 now = hrtimer_update_base(cpu_base);
1426 __hrtimer_run_queues(cpu_base, now);
1427 raw_spin_unlock(&cpu_base->lock);
c0a31329
TG
1428}
1429
10c94ec1
TG
1430/*
1431 * Sleep related functions:
1432 */
c9cb2e3d 1433static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1434{
1435 struct hrtimer_sleeper *t =
1436 container_of(timer, struct hrtimer_sleeper, timer);
1437 struct task_struct *task = t->task;
1438
1439 t->task = NULL;
1440 if (task)
1441 wake_up_process(task);
1442
1443 return HRTIMER_NORESTART;
1444}
1445
36c8b586 1446void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1447{
1448 sl->timer.function = hrtimer_wakeup;
1449 sl->task = task;
1450}
2bc481cf 1451EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1452
c0edd7c9 1453int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
ce41aaf4
AV
1454{
1455 switch(restart->nanosleep.type) {
1456#ifdef CONFIG_COMPAT
1457 case TT_COMPAT:
c0edd7c9 1458 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
ce41aaf4
AV
1459 return -EFAULT;
1460 break;
1461#endif
1462 case TT_NATIVE:
c0edd7c9 1463 if (put_timespec64(ts, restart->nanosleep.rmtp))
ce41aaf4
AV
1464 return -EFAULT;
1465 break;
1466 default:
1467 BUG();
1468 }
1469 return -ERESTART_RESTARTBLOCK;
1470}
1471
669d7868 1472static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1473{
edbeda46
AV
1474 struct restart_block *restart;
1475
669d7868 1476 hrtimer_init_sleeper(t, current);
10c94ec1 1477
432569bb
RZ
1478 do {
1479 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1480 hrtimer_start_expires(&t->timer, mode);
432569bb 1481
54cdfdb4 1482 if (likely(t->task))
b0f8c44f 1483 freezable_schedule();
432569bb 1484
669d7868 1485 hrtimer_cancel(&t->timer);
c9cb2e3d 1486 mode = HRTIMER_MODE_ABS;
669d7868
TG
1487
1488 } while (t->task && !signal_pending(current));
432569bb 1489
3588a085
PZ
1490 __set_current_state(TASK_RUNNING);
1491
a7602681 1492 if (!t->task)
080344b9 1493 return 0;
080344b9 1494
edbeda46
AV
1495 restart = &current->restart_block;
1496 if (restart->nanosleep.type != TT_NONE) {
a7602681 1497 ktime_t rem = hrtimer_expires_remaining(&t->timer);
c0edd7c9 1498 struct timespec64 rmt;
edbeda46 1499
a7602681
AV
1500 if (rem <= 0)
1501 return 0;
c0edd7c9 1502 rmt = ktime_to_timespec64(rem);
a7602681 1503
ce41aaf4 1504 return nanosleep_copyout(restart, &rmt);
a7602681
AV
1505 }
1506 return -ERESTART_RESTARTBLOCK;
080344b9
ON
1507}
1508
fb923c4a 1509static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1510{
669d7868 1511 struct hrtimer_sleeper t;
a7602681 1512 int ret;
10c94ec1 1513
ab8177bc 1514 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1515 HRTIMER_MODE_ABS);
cc584b21 1516 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1517
a7602681 1518 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
237fc6e7
TG
1519 destroy_hrtimer_on_stack(&t.timer);
1520 return ret;
10c94ec1
TG
1521}
1522
938e7cf2 1523long hrtimer_nanosleep(const struct timespec64 *rqtp,
10c94ec1
TG
1524 const enum hrtimer_mode mode, const clockid_t clockid)
1525{
a7602681 1526 struct restart_block *restart;
669d7868 1527 struct hrtimer_sleeper t;
237fc6e7 1528 int ret = 0;
da8b44d5 1529 u64 slack;
3bd01206
AV
1530
1531 slack = current->timer_slack_ns;
aab03e05 1532 if (dl_task(current) || rt_task(current))
3bd01206 1533 slack = 0;
10c94ec1 1534
237fc6e7 1535 hrtimer_init_on_stack(&t.timer, clockid, mode);
ad196384 1536 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
a7602681
AV
1537 ret = do_nanosleep(&t, mode);
1538 if (ret != -ERESTART_RESTARTBLOCK)
237fc6e7 1539 goto out;
10c94ec1 1540
7978672c 1541 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1542 if (mode == HRTIMER_MODE_ABS) {
1543 ret = -ERESTARTNOHAND;
1544 goto out;
1545 }
10c94ec1 1546
a7602681 1547 restart = &current->restart_block;
1711ef38 1548 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1549 restart->nanosleep.clockid = t.timer.base->clockid;
cc584b21 1550 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
237fc6e7
TG
1551out:
1552 destroy_hrtimer_on_stack(&t.timer);
1553 return ret;
10c94ec1
TG
1554}
1555
58fd3aa2
HC
1556SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1557 struct timespec __user *, rmtp)
6ba1b912 1558{
c0edd7c9 1559 struct timespec64 tu;
6ba1b912 1560
c0edd7c9 1561 if (get_timespec64(&tu, rqtp))
6ba1b912
TG
1562 return -EFAULT;
1563
c0edd7c9 1564 if (!timespec64_valid(&tu))
6ba1b912
TG
1565 return -EINVAL;
1566
edbeda46 1567 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
192a82f9 1568 current->restart_block.nanosleep.rmtp = rmtp;
c0edd7c9 1569 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1570}
1571
edbeda46
AV
1572#ifdef CONFIG_COMPAT
1573
1574COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1575 struct compat_timespec __user *, rmtp)
1576{
c0edd7c9 1577 struct timespec64 tu;
edbeda46 1578
c0edd7c9 1579 if (compat_get_timespec64(&tu, rqtp))
edbeda46
AV
1580 return -EFAULT;
1581
c0edd7c9 1582 if (!timespec64_valid(&tu))
edbeda46
AV
1583 return -EINVAL;
1584
1585 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1586 current->restart_block.nanosleep.compat_rmtp = rmtp;
c0edd7c9 1587 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
edbeda46
AV
1588}
1589#endif
1590
c0a31329
TG
1591/*
1592 * Functions related to boot-time initialization:
1593 */
27590dc1 1594int hrtimers_prepare_cpu(unsigned int cpu)
c0a31329 1595{
3c8aa39d 1596 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1597 int i;
1598
998adc3d 1599 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1600 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1601 timerqueue_init_head(&cpu_base->clock_base[i].active);
1602 }
3c8aa39d 1603
cddd0248 1604 cpu_base->cpu = cpu;
54cdfdb4 1605 hrtimer_init_hres(cpu_base);
27590dc1 1606 return 0;
c0a31329
TG
1607}
1608
1609#ifdef CONFIG_HOTPLUG_CPU
1610
ca109491 1611static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1612 struct hrtimer_clock_base *new_base)
c0a31329
TG
1613{
1614 struct hrtimer *timer;
998adc3d 1615 struct timerqueue_node *node;
c0a31329 1616
998adc3d
JS
1617 while ((node = timerqueue_getnext(&old_base->active))) {
1618 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1619 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1620 debug_deactivate(timer);
b00c1a99
TG
1621
1622 /*
c04dca02 1623 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1624 * timer could be seen as !active and just vanish away
1625 * under us on another CPU
1626 */
c04dca02 1627 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1628 timer->base = new_base;
54cdfdb4 1629 /*
e3f1d883
TG
1630 * Enqueue the timers on the new cpu. This does not
1631 * reprogram the event device in case the timer
1632 * expires before the earliest on this CPU, but we run
1633 * hrtimer_interrupt after we migrated everything to
1634 * sort out already expired timers and reprogram the
1635 * event device.
54cdfdb4 1636 */
63e2ed36 1637 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
c0a31329
TG
1638 }
1639}
1640
27590dc1 1641int hrtimers_dead_cpu(unsigned int scpu)
c0a31329 1642{
3c8aa39d 1643 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1644 int i;
c0a31329 1645
37810659 1646 BUG_ON(cpu_online(scpu));
37810659 1647 tick_cancel_sched_timer(scpu);
731a55ba
TG
1648
1649 local_irq_disable();
1650 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1651 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1652 /*
1653 * The caller is globally serialized and nobody else
1654 * takes two locks at once, deadlock is not possible.
1655 */
ecb49d1a
TG
1656 raw_spin_lock(&new_base->lock);
1657 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1658
3c8aa39d 1659 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1660 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1661 &new_base->clock_base[i]);
c0a31329
TG
1662 }
1663
ecb49d1a
TG
1664 raw_spin_unlock(&old_base->lock);
1665 raw_spin_unlock(&new_base->lock);
37810659 1666
731a55ba
TG
1667 /* Check, if we got expired work to do */
1668 __hrtimer_peek_ahead_timers();
1669 local_irq_enable();
27590dc1 1670 return 0;
c0a31329 1671}
37810659 1672
c0a31329
TG
1673#endif /* CONFIG_HOTPLUG_CPU */
1674
c0a31329
TG
1675void __init hrtimers_init(void)
1676{
27590dc1 1677 hrtimers_prepare_cpu(smp_processor_id());
c0a31329
TG
1678}
1679
7bb67439 1680/**
351b3f7a 1681 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1682 * @expires: timeout value (ktime_t)
654c8e0b 1683 * @delta: slack in expires timeout (ktime_t)
90777713
AMG
1684 * @mode: timer mode
1685 * @clock_id: timer clock to be used
7bb67439 1686 */
351b3f7a 1687int __sched
da8b44d5 1688schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
90777713 1689 const enum hrtimer_mode mode, clockid_t clock_id)
7bb67439
AV
1690{
1691 struct hrtimer_sleeper t;
1692
1693 /*
1694 * Optimize when a zero timeout value is given. It does not
1695 * matter whether this is an absolute or a relative time.
1696 */
2456e855 1697 if (expires && *expires == 0) {
7bb67439
AV
1698 __set_current_state(TASK_RUNNING);
1699 return 0;
1700 }
1701
1702 /*
43b21013 1703 * A NULL parameter means "infinite"
7bb67439
AV
1704 */
1705 if (!expires) {
1706 schedule();
7bb67439
AV
1707 return -EINTR;
1708 }
1709
90777713 1710 hrtimer_init_on_stack(&t.timer, clock_id, mode);
654c8e0b 1711 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1712
1713 hrtimer_init_sleeper(&t, current);
1714
cc584b21 1715 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1716
1717 if (likely(t.task))
1718 schedule();
1719
1720 hrtimer_cancel(&t.timer);
1721 destroy_hrtimer_on_stack(&t.timer);
1722
1723 __set_current_state(TASK_RUNNING);
1724
1725 return !t.task ? 0 : -EINTR;
1726}
351b3f7a
CE
1727
1728/**
1729 * schedule_hrtimeout_range - sleep until timeout
1730 * @expires: timeout value (ktime_t)
1731 * @delta: slack in expires timeout (ktime_t)
90777713 1732 * @mode: timer mode
351b3f7a
CE
1733 *
1734 * Make the current task sleep until the given expiry time has
1735 * elapsed. The routine will return immediately unless
1736 * the current task state has been set (see set_current_state()).
1737 *
1738 * The @delta argument gives the kernel the freedom to schedule the
1739 * actual wakeup to a time that is both power and performance friendly.
1740 * The kernel give the normal best effort behavior for "@expires+@delta",
1741 * but may decide to fire the timer earlier, but no earlier than @expires.
1742 *
1743 * You can set the task state as follows -
1744 *
1745 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1746 * pass before the routine returns unless the current task is explicitly
1747 * woken up, (e.g. by wake_up_process()).
351b3f7a
CE
1748 *
1749 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1750 * delivered to the current task or the current task is explicitly woken
1751 * up.
351b3f7a
CE
1752 *
1753 * The current task state is guaranteed to be TASK_RUNNING when this
1754 * routine returns.
1755 *
4b7e9cf9
DA
1756 * Returns 0 when the timer has expired. If the task was woken before the
1757 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1758 * by an explicit wakeup, it returns -EINTR.
351b3f7a 1759 */
da8b44d5 1760int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
1761 const enum hrtimer_mode mode)
1762{
1763 return schedule_hrtimeout_range_clock(expires, delta, mode,
1764 CLOCK_MONOTONIC);
1765}
654c8e0b
AV
1766EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1767
1768/**
1769 * schedule_hrtimeout - sleep until timeout
1770 * @expires: timeout value (ktime_t)
90777713 1771 * @mode: timer mode
654c8e0b
AV
1772 *
1773 * Make the current task sleep until the given expiry time has
1774 * elapsed. The routine will return immediately unless
1775 * the current task state has been set (see set_current_state()).
1776 *
1777 * You can set the task state as follows -
1778 *
1779 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1780 * pass before the routine returns unless the current task is explicitly
1781 * woken up, (e.g. by wake_up_process()).
654c8e0b
AV
1782 *
1783 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1784 * delivered to the current task or the current task is explicitly woken
1785 * up.
654c8e0b
AV
1786 *
1787 * The current task state is guaranteed to be TASK_RUNNING when this
1788 * routine returns.
1789 *
4b7e9cf9
DA
1790 * Returns 0 when the timer has expired. If the task was woken before the
1791 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1792 * by an explicit wakeup, it returns -EINTR.
654c8e0b
AV
1793 */
1794int __sched schedule_hrtimeout(ktime_t *expires,
1795 const enum hrtimer_mode mode)
1796{
1797 return schedule_hrtimeout_range(expires, 0, mode);
1798}
7bb67439 1799EXPORT_SYMBOL_GPL(schedule_hrtimeout);